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Introduction
Gait analysis has by far received the most study as compared to 

other human body movement [1] because of its readily observable 
features. Gait comprises a periodic phenomenon in both legs in 
such a way that the entire body moves from one place to another 
[2]. A single gait cycle consists of one stride length which is further 
divided into stance and swing phases. In the stance phase, one leg 
bears the weight of the body whereas the swing phase causes the 
leg’s forward motion to propel the body. The swing and stance 
phases are classified by a cut-off point such that the interval 
between the toe-off point and heel- strike for a foot represents 
the swing phase while the stance occurs between the heel-strike 
and toe-off. Swing and stancephases are further divided into seven 
sub-phases that include, Initial Contact (IC), Load Response (LR), 
Mid Stance (MSt), Terminal Stance (TSt), Pre-Swing (PSw), Initial 
Swing (ISw), Mid- Swing (MSw), and Terminal Swing (TSw) [2,3]. 
Since a measurement of the gait with foot switches, gyroscopes, and 
accelerometers can only detect events that are caused by repetitive 
patterns in the movement and in measured signals, the phases 
detected from sensors differ from those based on functional 
tasks. Literature contains a variety of gait segmentation models  
consisting of a different number of sub-phases varying from two to 
seven depending upon different clinical aims [4].

An accurate detection of the gait sub-phases is fundamental 
in clinical gait analysis to interpret kinetic and kinematic data [2]. 
Correct segmentation of the gait sub-phases can be considered as 
research initiatives for several scientific studies that include daily 
life activities Abnormality Detection, assessment of gait anomaly 
level in patients after interventions or rehabilitation treatments, 
the synergistic control of robotic devices for the recovery of lower 
limb mobility, athlete coaching, and distinguishing between normal 
and pathological gait [4]. Human locomotors system functionality 
can be affected by various causes leading to atypical gait generation. 
As an example, a gait cycle usually starts with the forefoot contact 
instead of a heel strike for patients with an equinus foot. Similarly, 
a foot-drop may be seen during the swing phase [5] in the case of 
different neurological and degenerative diseases such as muscular 
dystrophy, multiple sclerosis, stroke, and Parkinson’s disease. Anal-
ysis of the gait biomechanics to a sub-phase level is very useful for 
a patient’s degree of performance, gait rehabilitation, walking pat-
tern recognition, and other related research [1]. A typical example 
would include pathological gait which can be diagnosed and evalu-
ated after rehabilitation using different gait features such as stride 
width, walking speed, cadence, and walking symmetry [6]. Similarly, 
the gait sub-phase information has been used by various application 
devices such as functional electronic stimulation [7-11], wearable 
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limb exoskeleton [12-16], and powered prostheses [17-20] which 
support subjects with gait anomalies. These applications utilise the 
sub-phase level information to enable patients with spinal cord in-
juries to walk and also enhance the performance of healthy subjects.

Despite the vast application areas of gait segmentation, it has 
been a challenging task more specifically for pathological gait [5]. In 
general, detecting the gait events that mark the transition from one 
gait sub- phase to another as well as the sequence of gait sub-phases 
is essential to evaluate gait abnormalities [21]. Literature consists of 
a number of approaches to classify the gait sub-phases in a normal 
walking gait. For instance, support vector machines, artificial neural 
networks [22], hidden Markov models [23-26], fuzzy models 
[27,28], and simple heuristic threshold methods [9,20] have been 
employed for gait sub-phase segmentation. These methods use 
variety of wearable sensors that include accelerometers [29], 
gyroscopes and force sensing resistors [9], inclinometers [30], and 
other force-contact sensors [31] for the gait data acquisition. 
Although, the aforementioned gait segmentation methods have been 
performed efficient sub-phase level gait segmentation; these are 
limited to healthy subjects (i.e. normal gait) only.

On the other hand, pathological gait segmentation has been a 
challenging task [5] because of its varying features for different 
patients and corresponding gait anomalies. The literature contains 
a variety of approaches to segmenting the abnormal gait into sub-
phases [5,32-36]. For instance, Jasiewicz et al. [32] proposed an 
algorithm for gait event (initial contact and end contact) detection 
in healthy and spinal-cord injured subjects. A number of methods 
were implemented using foot linear acceleration, foot sagittal 
angular velocity, and shank sagittal angular velocity data and their 
performances were compared with the most commonly used foot 
switch based gait data. Effective event detection was achieved 
for normal footfall patterns which are reduced significantly in 
pathological gaits specifically those involving the use of walking 
aids. Similarly, a pathological gait cycle segmentation presented in 
Agostini et al. [5].

performs the task of partitioning input signal into multiple 
gait cycles followed by the determination of atypical gait cycle in 
a foot switch signal. The anti-causal anti-bounce filter was used to 
eliminate the spurious spikes from the input signal. The processed 
signal is auto-segmented into four sub-phases that include heel 
contact, flat foot contact, heel-off, and swing. The duration of each 
gait cycle is measured by integrating the number of samples in its 
sub-phases which is then used for atypical gait cycle recognition. 
This method was tested on healthy as well as pathological gait cycles 
acquired from patients with Parkinson’s disease and Hemiplegic 
children. Despite the efficient performance, these methods are able 
to segment the gait cycle up to a limited (two to three) number of 
sub-phases. These methods are also applicable to a specific type of 
pathology.

This manuscript introduces a novel approach used in the CORBYS 
system to perform multiple tasks that include: (i) partition of the 
joints’ angular data into separate gait cycles (ii) identification of the 
pathological gait cycle based on the acquired signal during walking 
(iii) and finally segmentation of the pathological and healthy gait into 
sub-phases. In the case of pathological gait, the degree of deviation 
(i.e. anomaly level) in each sub-phase is measured to be used for 
medical treatment (i.e. gait rehabilitation). The segmentation 
and Abnormality Detection of pathological gait cycles becomes 
difficult because of associated dynamics for different patients and 
corresponding gait anomalies. In this scene, the proposed method 
introduces a generic gait segmentation applicable to both; healthy 
and pathological subjects having different types of anomalies, since 
the segmentation process is carried out without the definition of 
gait sub-phases templates. Time domain features are extracted 
from the acquired hip-joint angular data for sagittal movement and 
utilized to divide the automated gait segmentation into seven sub-
phases. The degree of anomaly is then estimated at sub-phase level 
with respect to an optimal reference to find out the pathology type 
and exact location in the gait cycle.

Materials and Methods
Data acquisition and pre-processing

Figure 1: Gait coordinate system in CORBYS to acquire and analyse the joint motion data.

http://dx.doi.org/10.31031/RMES.2019.07.000662
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The gait data for healthy and disabled patients has been 
recorded by the CORBYS clinical partners URIRS2. Data was 
recorded using the VICON motion capture system which logs the 
motion of infra-red sensitive markers strategically placed on the 
patients. Synchronised sensor readings are transmitted wirelessly 
formatted as standardised Robot Operating System (ROS) data 
from the human sensory system controller. Markers measure the 
motion within particular axes of the gait motion. This clinical data 
comprises the motion data relayed to the feed-forward trajectory 
controller for calculation of joint moments for the human body 
model. The coordinate system for this gait data is described in 
Figure 1 which depicts gait measured along three planes of motion. 
The sagittal plane describes motion around x- axis, the transversal 
plane describes motion around y-axis, and the frontal plane 
describes motion around the z-axis. The acquired dataset consists 

of measurements for each joint in both legs recorded in selected 
planes. Hip data is recorded in all three axes, knee data is recorded 
in only x-axis, and ankle data is recorded in the x-axis and z-axes.

The initial motion data for two patients are five to eight seconds 
of duration and contain six to eight gait cycles. The duration of a 
gait cycle is limited by the size of the recording area of the motion 
capture system. The URIRS does not record patients on the treadmill 
and therefore we have to append several gait cycles in order to 
obtain longer datasets of disabled gait. However, a large dataset 
for healthy subjects was recorded by walking on a treadmill. In 
addition, simulated data is generated using the optimal gait ranges 
[1] for joint muscular motion. Details of the appended motion data 
for one healthy subject, two patients, and a simulated dataset are 
presented in Table 1.

Table 1: Data characteristics.

Subject Gait Condition

Appended No. of 
Gait Cycles

Frequency 
(DataSample/

Second)

No. Of 
Trials Joints and Axis

Source

Patient 1
Spastic Hemiparesis 

(Right side more 
effected)

400 100 3 LH, RH (x, y, z) LK, RK (x)
LA, RA (x, z) URIRS

Patient 2 Spastic Para-paresis 620 100 3 LH, RH (x, y, z) LK, RK (x)
LA, RA (x, z) URIRS

Healthy Subject 1 Healthy/Normal 900 100, 20 2 LH, RH (x, y, z) LK, RK (x)
LA, RA (x, z) URIRS

Healthy Subject 2 Optimal 2000 60 1 LH (x-axis) Simulated 
DataRef [1]

Gait analysis and anomaly detection

Figure 2: Body positions and corresponding hip, knee, and ankle joints sagittal dimension activities in both legs for a complete 
gait cycle and sub-phases within the swing and stance phases. from left to right, figure demonstrates the side view of synchronised 
joints motion and transitions between sub-phases in a healthy gait cycle.

2University of rehabilitation institute, republic of slovenia; 
http://www.irrs.si/en/Research_and_development_unit/

http://dx.doi.org/10.31031/RMES.2019.07.000662
http://www.irrs.si/en/Research_and_development_unit/


Res Med Eng Sci

4/9How to cite this article: Wasiq Khan, Atta Badii. Pathological Gait Classification and Segmentation by Processing the Hip Joints Motion Data to Support Mobile Gait 
Rehabilitation. Res Med Eng Sci. 7(3). RMES.000662. 2019.DOI: 10.31031/RMES.2019.07.000662

Volume -7  Issue 3

Copyright ©Wasiq Khan

Gait model employed in the proposed study is a classic gait 
model by Perry [2] which divides each cycle into seven sub-phases 
that include: Initial Contact (IC) to Load Response (LR), Mid Stance 
(MSt), Terminal Stance (TSt), Pre Swing (PSw), Initial Swing (ISw), 
Mid Swing (MSw), and Terminal Swing (TSw). Figure 2 demonstrates 
a complete gait cycle acquired for healthy subject in Table 1, 
transitions between its sub-phases, and corresponding left hip, 
knee, and ankle joint movements in sagittal dimension.

Hip flexion and extension are one of the most important 
muscular activities in the walking phenomenon that occur with 
the pelvic girdle forward and backward rotation in the hip flexion 
and extension respectively [37-39]. It can be observed in Figure 
2 that the Hip joint motion, specifically in sagittal dimension is a 
necessary condition for the body to move forward. In other words, 
without the Hip sagittal motion, a subject cannot progress (i.e. step 

forward or backward) along a horizontal axis regardless of gait 
medical conditions. This implies that maximum and minimum values 
for Hip joint sagittal dimension angular motion indicate the flexion 
and extension extremes of the corresponding leg respectively in 
a gait cycle. Hence, the proposed method exclusively processes 
the Hip joint muscular activities to partition and segment the 
gait cycle. A number of time-domain features are extracted from 
the acquired Hip-joint motion data (sagittal dimension only) to 
segment the entire gait into sub-phases. These features include 
global maxima, global minima, zero cross index, and offset value 
along with the expert knowledge from the literature [1,40,41] for 
joint motion ranges. Figure 3 shows sequential processing of the 
proposed method to partition, sub-phase level segmentation, and 
Abnormality Detection (healthy/pathological) of a gait cycle which 
is further used to measure the degree of deviation in the effected 
sub-phase.

Figure 3: Sequential processing of the proposed method for (1) Data acquisition; (2) Feature extraction; (3) Gait segmentation 
into sub-phases; (4) Classification of the gait into healthy and abnormal gait using hip muscular activities; (5) Measurement of 
anomaly type, degree, and exact event in terms of sub-phase.

The proposed gait segmentation algorithm using time domain 
features of Hip joints sagittal dimension motion data is described 
below.

Input :

1) 2-dimensional vector XLhip, Rhip for Hip-joints angular data

Vector Gp for partitioned gait cycles start and end points 
Output: 

2) Segmented gait Gsub into 7 sub-phases

Algorithm steps:

1) Find index of the 1st negative-going ZCR- sample in XLhip if 
there is and set as terminal-stance start TSt_ s

2) In case of no ZCR-, find the minimum value ( Xmin) in XLhip, 
shift the entire vector by an offset of offset min( 5 )offset X= − −  
and perform the above step

3) Find index of the 1st positive-going ZCR+ sample in XLhip 

after TSt_s and set as initial-swing start ISw_s

4) Find minimum value sample index between TSt_s , ISw_s 
and set as pre-swing start PSw_s

5) Find index of the 1st negative-going sample ZCR- in XLhip 
after ISw_s and set as end of 1st gait cycle Gend

6) Find minimum value sample in XRhip index in-between 
ISw_ s and Gend. Then find the corresponding index in XLhip and 
set as mid-stance start MSt_ s

7) Find index of maximum value sample between ISw_s & 
MSt_s and set as terminal-swing start TSw _s

8) Set the mid-point between ISw_s and TSw_s as mid-swing 
start MSw_s

9) Make segment of each sub-phase using the calculated 
start points and assign the output vector Gsub containing start 
and end index for each sub-phase. For instance, GMst = XLhip _ indexes 
(MSt _ s to Gend ) and so on

http://dx.doi.org/10.31031/RMES.2019.07.000662
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10) Finally, revert the entire gait sub-phases to original level if 
offset is applied in the first step.

A visual demonstration of the described algorithm is presented 
in Figure 4. The interval between two successive negative going 
Zero-Crossing Rate (ZCR) produces a complete gait cycle. Following 
the ZCR- which represents the start of the TSt as the initial point, 
1st positive data sample after ZCR gives the index of positive-going 
zero-cross (ZCR+) that represents the end of PSw sub-phase. The 
index of minimum data sample (Gmin) between ZCR- and ZCR+ is 
then calculated that gives the end of the TSt. In the next step, the 

index of the LR segment is calculated using the opposite leg 
angular data. As the data is synchronised, the index in the left Hip 
data corresponding to the minimum data sample in the right Hip 
will produce the finishing point of the LR sub-phase. To assure the 
synchronization in terms of being within the same gait cycle, the 
IC_LR index is calculated between the indexes of ZCR+ and the end 
of the gait cycle as shown in Figure 4 above. The index of the data 
sample with a maximum value (Gmax) between ZCR+ and IC_LR is 
then calculated which indicates the starting index of TSw. Finally, 
data samples between IC_LR and the end of the gait cycle (2nd ZCR-) 
indicates the MSt which is the longest sub-phase in a gait cycle.

Figure 4: A visual representation of aforementioned gait segmentation algorithm using minima, maxima, offset, and zero 
crossings features extracted from left and right hip x-axis motion data.

An important aspect of the proposed method is the ability to 
segment the gait with many types of pathology since training on 
the pathology specific templates is not required. To increase the 
reliability of the proposed algorithm, a number of important checks 
are carried out specifically for pathological gaits.

For example, the data synchronisation check is performed 
prior to sub-phase Abnormality Detection as described earlier. 
Likewise, an offset value is used to ensure that the corresponding 
leg always crosses the pelvis point (origin) in the sagittal dimension 
that pursues the Hip flexion and extension phenomenon. The 
importance of the offset check can be analysed in Figure 4 which 
indicates that the gait segmentation uses zero crossings. In the case 
of a healthy subject, the gait always performs positive and negative 
angular activities which may not be the case for a pathological gait. 
In order to rectify this, we use an offset value to shift the entire gait 
by the required amount according to optimal gait ranges [1,40,41]. 
After the sub-phases measurements, the offset value is reused with 
a reverse sign to revert the signal into its original form. The degree 
of deviation in each sub-phase is then measured using the optimal 
gait ranges as a reference. The Euclidean distance between the sub-
phases of the test subject and optimal reference gives the anomaly 
in a particular sub-phase that is further used for gait rehabilitation 

and the decision controller in the CORBYS system [42,43].

Mathematically,

                         
2

( 1)
( , ) ( )

n

k ki
k

R T R Tδ
=

∑= − −∆        (1)

Where R and T are the optimal and test gait cycles respectively, 
and k is the current index of n number of samples/element in the 
current sub-phase i, and ∆ is the degree of deviation (i.e. anomaly) 
in current sub-phase of a particular gait cycle, and δ is the varying 
tolerance threshold. A gait cycle is identified as ‘pathological/
abnormal’ if the calculated deviation ∆i(R,T) in any of the 
corresponding sub-phases exceeds zero.

Experimental setup and evaluation methodology
Experiments were conducted on the dataset presented in Table 

1 using the proposed algorithm described earlier. The acquired 
data was forwarded to sequential setup presented in Figure 2 to 
achieve the desired goal of sub-phases Abnormality Detection. 
MATLAB® by Math works was used for data processing, analysis, and 
simulation purposes. The validation process aims to demonstrate 
that the algorithm is as good as the human expert. The algorithm 
was validated on a total of 3920 gait cycles; 2900 from healthy 
and 1020 from pathological subjects) using the manual and 

http://dx.doi.org/10.31031/RMES.2019.07.000662
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automated methods presented in Agostini et al. [5]. For each signal, 
we compared the gait cycle Abnormality Detection obtained from 
the proposed algorithm and “manual” segmentation. The manual 
segmentation was performed with the following steps: (1) Extract 
the Hip joints X-axis motion data from the acquired ROS bags (2) 
Store in Excel sheets and mark each gait with a segmentation line 
(3) Label the dataset with a corresponding gait cycle number and 
sub-phases. Algorithm output can be classified in the binary form 
of correct and incorrect segmentation of a sub- phase. When a 
new sub-phase is incorrectly classified by an algorithm, a cross is 

added on a sheet of paper near the corresponding sub-phase name 
(4) Counting the crosses assigned to each sub-phase segment, we 
calculated the mismatched sub-phases between the procedures 
(i.e. algorithm and manual segmentation) if present. Performance 
of the algorithm was defined as the number of sub-phases matching 
the manual segmentation divided by the total number of sub-phases. 
Likewise, the performance of the healthy subject and self-generated 
dataset is evaluated by varying the tolerance window in terms of 
sub- phase start and end position estimates.

Results and Discussion
Table 2: Overall statistical results for optimal and pathological gait segmentation and classification for varying 
temporal tolerance window.

Tolerance Window (Temporal % of 
a Gait Cycle)

Gait Partition 
Accuracy (% )

Gait Abnormality 
Detection-Accuracy 

(% )

Sub-phase Level Segmentation Accuracy (% )

LR MSt TSt PSw ISw MSw TSw

± 3 100 99.7 98.5 100 100 100 100 100 98.7

± 4 100 100 98.9 100 100 100 100 100 99.3

± 5 100 100 99.7 100 100 100 100 100 100

± 6 100 100 100 100 100 100 100 100 100

The proposed gait segmentation algorithm is applied to the 
sample dataset and results were obtained as reported in Table 2. For 
each examined subject, we indicated the subject’s health condition, 
accuracy for complete cycle partition in the gait data through 
manual and automatic procedures, the Abnormality Detection 
accuracy for a gait to be recognised as normal or pathological, and 
accuracy of sub-phase level segmentation for healthy and patient 
gait data corresponding to the varying temporal tolerance window.

Time period of the oscillations in the gait data also varies 
depending on how fast the patient is walking. Additionally, from left 
to right leg, qualitatively the dynamics become more erratic. This 
is likely due to the increased degrees of freedom and variability of 
movement and the successive dependency of the left hip dynamics 
on those of the right hip; specifically, for the LR sub-phase. 
Taken together, these factors make the learning of a patient’s gait 
challenging [5]. The extreme indexes for sub-phases in ground truth 
and algorithm output may lag by a number of samples. The varying 
tolerance window indicates granularity in the system performance 
for sub-phases segmentation as shown in Table 2. This phenomenon 
can be analysed in Table 2 results where the accuracy is affected 
only during the TSw and LR sub-phases. Statistics indicated that the 
system performance degraded 003% when the tolerance level is 
decreased from 6% to 3% of the gait cycle. However, the proposed 
algorithm classified, partitioned, and segmented 100% of the cycles 
in healthy subjects and over 99% in pathological subjects which 
demonstrate that the muscular activities of Hip joints can be used 
for sub-phase level segmentation for both healthy and pathological 
gaits. These results indicate the superiority of our algorithm 
in terms of the segmentation accuracy and granularity level of 

seven sub-phases as compared to the existing signal processing 
[32,34,35] and machine learning [22,23,25,26] based approaches 
that are limited to segment the gait cycle into up to three sub-
phases. Despite of the accuracy (100% and 98% for healthy and 
pathological subjects respectively) achieved by Agostini et al. [5] in 
terms of gait segmentation and Abnormality Detection into normal 
and pathological, it was limited to three sub-phases only which 
decreases the granularity level of gait rehabilitation.

Angular ranges for the joint muscles in a healthy gait vary with 
respect to subject physical properties and other dynamics [1,40]. 
For instance, in left Hip sagittal motion, it varies from 30 to 35 in 
flexion and -2 to -10 in the extension phase. This gives an indication 
to set the anomaly threshold for each sub-phase to classify a 
gait cycle as normal or pathological. For instance, the gait 
Abnormality Detection results shown in Table 2 are achieved using 
a threshold value of ±5 degree which means that a gait is identified 
as pathological if any of its sub-phases deviate more than 5 degrees 
(flexion or extension). However, the threshold value may vary 
with respect to application, patient condition, and rehabilitation 
process. The efficient sub-phase level segmentation is very useful 
for detecting the exact spatial and temporal position of defected 
gait as shown in Table 3. It can be observed that the mean deviations 
of the patient sub-phase from the optimal gait are larger than in a 
healthy gait. For instance, the MSw for patient 1 is deviated 8.07 
degrees in the sagittal dimension which indicates the required 
degree of rehabilitation in the left Hip joint sagittal dimension in 
that particular sub-phase. Also, diminutive deviations within the 
anomaly threshold for healthy subjects as expected; validate the 
proposed method for healthy gait segmentation.

http://dx.doi.org/10.31031/RMES.2019.07.000662
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Table 3: Comparison of statistical results for healthy and pathological subject’s degree of anomaly per sub-phase 
of gait cycles, gait partition, and healthy/pathological gait identification.

Subject

Gait Partition 
Accuracy (% )

Gait Abnormality 
Detection-Accuracy 

(% )

Degree of Deviation in LHip Sagittal Dimension in All Sub-phases

(µ,σ) LR MSt TSt PSw ISw MSw TSw

Patient 1 100 99.7
µ 3.54 5.54 5.06 5.83 3.56 8.07 0.89

σ 0.99 1.00 3.14 2.53 1.15 0.44 0.34

Patient 2 100 99.1
µ 2.23 5.15 7.07 7.91 1.81 3.78 0.25

σ 0.19 0.25 3.95 3.20 1.61 0.18 0.62

Healthy 1 100 100
µ 1.00 0.29 0.09 0.42 0.43 0.94 1.42

σ 0.03 0.06 0.04 0.05 0.06 1.01 0.11

Healthy 2 100 100
µ 1.69 1.49 0.18 0.43 2.74 3.66 1.27

σ 0.50 0.88 0.04 0.20 0.62 0.11 0.21

An accurate segmentation of gait sub-phases is useful for 
several scientific studies such as the assessment of the gait anomaly 
level in patients after interventions or rehabilitation treatments 
and distinguishing between a normal and pathological gait [2,4]. 
Figure 5 demonstrates a test case outcome for healthy and 
pathological gait segmentation into seven sub-phases. The degree 

of deviation in each sub-phase can be easily observed and calculated 
which indicates the anomaly type and location in a pathological gait 
cycle. For instance, the TSt and PSw phases of both patients are 
an approximately deviated mean value of 10 degrees with respect 
to the optimal reference which indicates that the rehabilitation is 
needed for these two sub-phases only.

Figure 5: Hip joint angles (X-axis / Sagittal Movement) for one pathological and healthy gait cycle as extracted and segmented 
per sub-phase by proposed method. from top-left to bottom-right, 1st graph shows the synchronised gait cycles of left hip angles 
in sagittal axis for 4 subjects as input data followed by the segmented sub-phases for each subject.

Conclusion
This research was focused on the gait segmentation into 

seven sub-phase using Hip joint angular motion independent of 
a pathology type. The proposed method was able to partition the 

continuous stream of Hip joint sagittal dimensional motion data into 
individual gait cycles and classify the gait as normal or pathological 
based on the measured degree of anomaly in each sub-phase. The 
Sub-phase level gait segmentation enabled the determination of the 
deviation in a patient’s gait from the optimal reference gait pattern. 
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The measured deviation provided the required information for 
the gait rehabilitation system to make inferences regarding what 
supportive actuation needs to be applied at which point in the walk 
cycle to improve the patient’s gait as best suited to the condition 
consistent with the clinical judgement of the gait therapist. These 
outcomes also serve as an enabler for future research on different 
aspects. For instance, multiple joint muscular activities may be 
combined together to produce a more reliable gait segmentation.
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