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ABSTRACT: 75-96% of maritime accidents are caused by human and organisational factors. Seafarers’ 9 

emotion may degrade the effectivity of human behaviour when tasks in onboard environment are complex 10 

and demanding. This study was concerned with the relationship between seafarers’ emotion and occurring 11 

events in navigation. The Electroencephalogram (EEG) and Self-Assessment Manikin (SAM) scale rating 12 

are used to investigate the occurrence and impact of seafarers’ emotions on their performance using a bridge 13 

simulator. The study was conducted and described in two sections: emotion calibration and test recognition. 14 

In the first section, two types of emotions are induced by the sound clips of the International Affective Dig-15 

itized Sounds (IADS), developed by the National Institute of Mental Health Center for the Study of Human 16 

Emotions. In the second section, emotion is recognised by the Support Vector Machine (SVM) classifier, as 17 

well as self-rated after the crew-qualified test in a bridge simulator. The results indicate that SVM can identify 18 

the emotions by EEG feature extraction, with an accuracy of 77.55%. The results concerning officers’ emo-19 

tion in a bridge simulator test reveal that seafarers’ emotion in maritime operations, relating to events expo-20 

sure, affects their behaviour and decision-making. In addition, negative emotion has a higher likelihood of 21 

contributing to human errors than positive emotion. Less negative emotion is the most dangerous emotion 22 

state during navigation, followed by extreme positive emotion. 23 

 24 

KEYWORDS: Human errors, Bridge simulation, Maritime operations, Emotion 25 

1 INTRODUCTION 26 

The ship operation system is a system based on people behaviour, and about 75-96% of marine accidents are 27 

caused, at least in part, by human errors (Hanzu-Pazara et al., 2008). The activities onboard or off-board 28 

related to seafarers or mariners are influenced by internal and external factors. A study that analysed the 29 
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specific onboard duties and off-board entities involving Greek-flagged ships, during 1993–2006, found that 30 

57.1% of all accidents were attributed to the human element (Tzannatos, 2010). Among them, 75.8% were 31 

detected onboard and 80.4% of the onboard human-induced accidents were related to errors and violations 32 

of the ship’s master. As the ship’s master is responsible for onboard decisions making, it was evident that the 33 

master’s errors or violations would affect other crews’ working procedures, manoeuvring behaviours, and 34 

emergency responses. However, problems in international maritime training became obvious, that is the ex-35 

periential learning gap of entry-level officers or “lost apprenticeship”. In addition, the declining of experi-36 

enced crewmembers and the pressure of fast promotion into responsible positions increased the “experiential 37 

learning gap’ of officers (Hanzu-Pazara et al., 2008). Therefore, human errors existing within maritime op-38 

erations are complicated and worth being further investigated.  39 

In this regard, it is meaningful to investigate human factors in a ship bridge from an operational 40 

perspective, as it is closer to the root causes of maritime accidents. One of the earliest initiatives was fired up 41 

by accidents caused by a typical radar-assisted collision (Grech et al., 2008). In 1956, the collision between 42 

the two passenger ships Andrea Doria and the Stockholm was one illustrative example. The root causes of 43 

the accident were related to the ship bridge. It was demonstrated that more attention should be paid to human 44 

factors and the bridge. Consequently, it caused some interest in the area of bridge design and cognition. 45 

Nowadays, the bridge has become more automated. Automation is often highlighted because it has been 46 

overwhelmingly understood that it would reduce the involvement of crew, so as to reduce human-related 47 

problems, and increase safety and efficiency. However, as demonstrated by the grounding of the Royal 48 

Majesty (the Panamanian passenger ship, which grounded on the Rose and Crown Shoal, 10 miles to the east 49 

of Nantucket Island, Massachusetts on June 10, 1995), as well as evidenced by other research findings 50 

(Lutzhoft and Dekker, 2002), automation has a prospecting expectation of human work which cannot be 51 

simply replaced completely. There is no evidence that fewer crew members lead to less individual mistakes 52 

in bridge. As increased mental workload onboard affecting situation awareness (Aguiar et al., 2015), emotion, 53 

as an individual factors, in bridge operations might contribute to human behaviours in accident chains. In this 54 

regard, automation in the bridge creates new error pathways, especially resulting from human errors, defi-55 

ciencies in mission shifts, and postponed chances to correct errors further into the future in the system. It is 56 

noteworthy that bridge operations plays an essential role in the success or failure of navigation. 57 
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The machine learning technology and signal processing method have been developing rapidly given the 58 

mature of physiological equipment and device to obtain objective data. The investigations of human factors 59 

based on physiological data have become an emerging subject. The main contents of human factors in the 60 

maritime sector usually compose the following aspects: mental workload, emotion, attention, pressure, and 61 

fatigue (Hou et al., 2016, Fan et al., 2017). The emotion factor of the crew is sensitive to tight working spaces, 62 

inaccessible information sources, and the single gender in some countries. Roidl et al. (2014) pointed out that 63 

behavioural patterns, e.g. aggressive driving and delayed reactions, could be influenced by strong emotions 64 

in the driver. For example, anger leads to stronger acceleration and higher speeds even beyond the emotion-65 

eliciting event. In addition, anxiety and contempt had weaker effects, showed the same negative driving pat-66 

tern as anger. Fright was related to stronger braking momentum and lower speeds. Moreover, the negative 67 

emotions are also related to irritability, tension, instability, depression and burnout with periodic changes 68 

(Lafont et al., 2018, Scott-Parker, 2017, Liu and Sourina, 2014). Fairclough et al. (2014) found that cardio-69 

vascular reactivity to negative mood may be affected by the emotional properties of music in simulated driv-70 

ing. Therefore, studying the emotion associated with accidents would benefit the crew training in navigation 71 

and improvement of the watch-keeping operations.  72 

In this paper, the approach to the identification of seafarers’ emotion during operations is studied, using a 73 

bridge simulator and the EEG device. Based on this, the relationship between operators’’ emotion and their 74 

performance is investigated. The remainder of paper is organised as follows. In Section 2, the literature re-75 

view of the relevant studies is presented. The experiment design with the detailed procedures and method is 76 

described in Section 3. The results are illustrated in Section 4, including the feature extraction of EEG data, 77 

emotion classification, and relationship between emotion and events. The discussions are presented in Section 78 

5. Finally, the conclusion is given in Section 6. 79 

2 LITERATURE REVIEW 80 

2.1 Human errors in maritime operations 81 

In the amendments of Seafarers’ Training, Certification and Watchkeeping (STCW) Code in 1995, human 82 

error was classified into three major taxonomies: operational-based, management-based, and the combination 83 
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of the two. Human Reliability Analysis (HRA) is one of the most widely used methods, which focuses on the 84 

quantification of human operations (Precondition of human and contexts error). HRA is developed from 85 

engineering risk analysis aiming to predict likely failure event sequences quantitatively, and analyses human 86 

factors in maritime accidents. Error frequency and expert opinion are used to predict the underlying reasons 87 

(Kirwan, 1994).  88 

At the early stage of modelling human errors, some studies tried to assign a probability to the failure of a 89 

human operator in performing tasks (Zio, 2009), including the Technique for Human Error Rate Prediction 90 

(THERP) (Swain and Guttmann, 1983), Accident Sequence Evaluation Program (ASEP) (Swain, 1987) and 91 

Human Cognition Reliability (HCR) (Hannaman et al., 1985). However, neither of these studies went beyond 92 

individual human errors by considering personnel, situational or organisational factors. Consequently, HRA 93 

has been further developed. First, the situational influence on human errors with local conditions and task-94 

specific factors is taken into account to categorize errors, including the Cognitive Reliability and Error 95 

Analysis Method (CREAM) (Hollnagel, 1998). Secondly, A Technique for Human Error Analysis 96 

(ATHEANA) (Cooper et al., 1996) tried to model the relationship between the context and the probability of 97 

a human failure (Zio, 2009). In this way, cognitive failures are traced back to the psychological and situational 98 

precursors with relatively less organisational conditions involved.  99 

In more recent research, Celik and Cebi (2009) applied a Human Factors Analysis and Classification Sys-100 

tem (HFACS) initially from the aviation transportation (Wiegmann and Shappell, 2017) to identify human 101 

errors in shipping accidents using a Fuzzy Analytical Hierarchy Process (FAHP). In line with HFACS, as 102 

well as Reason's Swiss Cheese Model and Hawkins' SHEL (Software, Hardware, Environment, Liveware) 103 

model, Chen et al. (2013) proposed HFACS for a Maritime Accidents (HFACS-MA) model to measure the 104 

Human and Organisational Factors (HOFs). Studies on the estimation of human failure probabilities include 105 

Yang et al. (2013), Yoshimura et al. (2015), and Yang and Wang (2012). Soner et al. (2015) combined Fuzzy 106 

Cognitive Mapping (FCM) and HFACS to develop onboard fire prevention modelling for ships. Akyuz and 107 

Celik (2015) adopted CREAM to assess human reliability under a cargo loading process. Akhtar and Utne 108 

(2015) investigated the common patterns of interlinked fatigue factors. It was illustrated that “inattention”, 109 

“inadequate procedures”, “observation missed”, and “communication failure” were related to fatigue factors 110 
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that influence the human cognitive processes in accidents. Moreover, Hetherington et al. (2006) divided hu-111 

man factors into fatigue, stress, health, situation awareness, teamwork, decision-making, communication, 112 

automation, and safety cultural diversity.  113 

2.2 Seafarers’ emotion identification 114 

The investigation on historical data (Barsan et al., 2007, Luo and Shin, 2016) is one of the most popular 115 

approaches to identify the causes of maritime accidents. Most of such studies are unable to measure the 116 

specific factor changing, especially the quantitative data of psychological and physiological characteristics 117 

of the human. Relevant studies (Xi et al., 2017, Akyuz and Celik, 2014, Chen et al., 2013) focus on the 118 

concepts of HOFs, HRA, and human errors, human failure, etc. Physiological signals (Hou et al., 2016) are 119 

collected to quantify human factors using sensors like Electroencephalograph (EEG), Electrocardiograph 120 

(ECG), Electromyography (EMG), blood volume pulse, skin electrical response, and eye movement. 121 

Moreover, other studies on angry driving in road transportation (Yan et al., 2015, Zhang et al., 2014, Lafont 122 

et al., 2018) have been conducted to find the emotional connection between drivers and behaviours.  123 

The emotion factor of the seafarers in watchkeeping is relevant to working space conditions, inaccessible 124 

information sources, and communication. Although there are some studies focused on the road or railway 125 

(Lucidi et al., 2010, Read et al., 2012, Morales et al., 2017, Scott-Parker, 2017, Zimasa et al., 2017) emotional 126 

factors and human errors quantification, relatively rare researchers study this in maritime operations. In order 127 

to identify the negative emotions, Liu and Sourina (2014) started to use an EEG (Electroencephalogram) 128 

system in bridge simulators to monitor officers’ workload and pressure. It was one of the earliest studies on 129 

seafarer’s psychological response using bridge simulators. However, the relationship between psychological 130 

response and seafarers’ performance was not fully demonstrated. For the quantification of crew emotion, a 131 

system took into account monitoring emotion, emotional stress, and environmental stress (Liu et al., 2016). 132 

It identified the emotion (three-dimensional description) of cadets in the bridge simulator by extracting fea-133 

tures of EEG data, but not related to human errors yet. The researchers found that activity of emotional states 134 

was localized in relatively non-overlapping brain regions, spanning cortical and subcortical areas (Kragel and 135 

LaBar, 2016). The ventral striatum activities are associated with music evoking joy and happiness (Menon 136 
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and Levitin, 2005), whereas sad music activates the hippocampus, amygdala, and neighbouring medial tem-137 

poral lobe areas that distinct negative affective states and anxiety (Mitterschiffthaler et al., 2007). Geethanjali 138 

et al. (2017) detected and recognised human emotion using SAM rating by pleasure, arousal, and dominance. 139 

The statistical analysis revealed the emotion identification differences between several groups. Hence, sea-140 

farers’ emotion identification can be further studied by better incorporating psychological knowledge.  141 

In summary, it is imperative to study the influence of seafarers’ emotion in maritime from the perspective 142 

of physiological behaviour of seafarers, which is of great significance for identifying the leading causations 143 

of human errors and direct causes of accidents. This study is conducted to identify the emotion in the bridge 144 

using EEG, and to classify the emotion in a SVM model by use of bridge simulators. 145 

3 MATERIAL AND METHOD 146 

3.1 Test subject selection 147 

Seafarers from different companies who were taking the captain and first officer qualification examinations 148 

were recruited to be involved in the experiments. There were 11 exams scheduled in two days. Each exam 149 

tested one participant who acted as a captain in a four-person exam group. All the test subjects were in good 150 

health without head injuries. They had 7.7 years of experience at sea on average, as they presented a typical 151 

emotional response during sailing when compared to beginners or cadets. The test subjects ranged from 26-152 

38 years old, with the average of 31.9 years old. They were all males. These seafarers attended the experi-153 

ments as volunteers. They were also informed that they could quit the experiments whenever they changed 154 

their minds. Based on this agreement, the calibration part of this study was conducted before the crew-qual-155 

ified exam, and the test part was carried out after the whole exam. The test subjects were operating in a bridge 156 

simulator room (Figure 1a), while the staffs were in a separate control room (Figure 1b) providing scenarios 157 

to subjects.  158 

 159 
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(a) Test subjects in simulator room 160 

 161 

 162 

(b) Staff in control room 163 

Figure 1. The test subjects and staff in control room 164 

3.2 Stimuli selection 165 

The role of “captain” in the four seafarers during the exam was selected as an independent sample. The rating 166 

of their perceived emotion for each stimulus presented uses a SAM scale. In view of this, International Af-167 

fective Digitized Sounds (IADS) database, developed by the National Institute of Mental Health Center for 168 

the Study of Human Emotion, was used as the stimulus with two categories (pleasant and unpleasant). It was 169 

presented to them for the first time, and all the test subjects in this study were not aware of the clips prior to 170 

the experiment, and may reflect facial avoiding effects on the subjective rating from the questionnaire. 171 

3.3 Experiment device 172 

This study utilised a low-cost wireless EEG headset – NeuroSky Mindwave to collect the brain wave signals 173 

of test subjects. NeuroSky Mindwave is a general public single-channel (electrode) device, with dry active 174 

sensor technology that eliminates the use of gel for electrode placement. 175 

The test subjects were not allowed or willing to use the gel of normal EEG devices in this qualified test. 176 

The mobility during their test was highly required so that the wireless device was preferred. For this reason, 177 

NeuroSky Mindwave, a wireless single-channel (electrode) EEG headset, was selected to use in this study. 178 

3.4 Experimental protocol 179 

The experiment was conducted by EEG technology and SAM scale rating questionnaires received separately 180 

within two sections, which are emotion calibration and recognition respectively. In calibration, two types of 181 
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emotions were induced by the IADS methodology. Every test subject was given by listening to sound clips 182 

from IADS with eyes closed in case of blink interrupts. In this section, emotion 1 began with 5 seconds 183 

silence to calm down, and 10 seconds for one category of emotion stimulus, and then the SAM rating was 184 

carried out. After that, another category of emotion 2 was repeated. The objective of doing this is to calibrate 185 

emotion of each subject. In other words, the specific feature or standard of personal emotion type was 186 

obtained. 187 

In the test part, the subjects filled the questionnaires after at least 30 minutes’ exam in the bridge simulator. 188 

Figure 2 demonstrates the process of the experiment. All two sections of each seafarer, calibration part and 189 

test part in time zone except for the self-rating were conducted by wearing the EEG device.  190 

Calibration

Time   

Emotion 1 Emotion 2

Silence Induction Self rating

Test

Self 
rating

Emotion 
Identification

Exam

 191 

Figure 2. Experimental protocol 192 

4 RESULTS 193 

4.1 Feature extraction of EEG data 194 

The EEG device collected 11 test subjects’ brainwave signals in both calibration section and test section 195 

with the sample rate of 512 Hz. For each test subject, two pieces of calibration data had a duration of no more 196 

than 1 minute, and one piece of test data was within 30 minutes. Figure 3 reveals the primary EEG data of 2 197 

seconds from test subject 1.  198 

 199 

 200 
-0.0004

-0.0002

0

0.0002

0.0004

1 256 511 766 1021

Primary EEG data
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Figure 3. Two seconds primary EEG data from Neurosky Mindwave headset for subject 1- calibration) 201 

In the calibration section, EEG data was extracted by wavelet analysis. A wavelet is a small wave oscilla-202 

tion with an amplitude that increases from zero, and then decreases back to zero. The wavelet transform is a 203 

methodology to construct the time-frequency representation of signals, to extract information from many 204 

different kinds of data. In this way, the original signal can be represented by a suitable integration over all 205 

the resulting frequency components. The Daubechies wavelets are orthogonal wavelets defining a discrete 206 

wavelet transform and featured by a maximum number of vanishing moments (Mahmoodabadi et al., 2005). 207 

The dbN wavelets are the Daubechies’ extremal phase wavelets, where N refers to the number of vanishing 208 

moments. In this study, Daubechies wavelets db8 was selected to extract features from the EEG data in the 209 

model, where 8 Level wavelet decomposition was used to obtain Gamma (40 Hz to 100 Hz), Beta (12 Hz to 210 

40 Hz), Alpha (8 Hz to 12 Hz), Theta (4 Hz to 8 Hz) and Delta (0 Hz to 4 Hz) waveband. These five brain-211 

waves related to different psychological concepts, e.g. Gamma waves correlate with anxiety and stress in 212 

high levels, depression in low levels; Beta waves are related to inability to feel relaxed in high levels, poor 213 

cognitive ability and lack of attention in low levels; Alpha waves usually concern over-relaxed state or an 214 

inability to focus in high levels, higher stress levels in low levels; Theta waves reveal hyperactivity or poor 215 

emotional awareness; Delta waves is associated with learning problems and poor sleep. 216 

In order to obtain the feature matrix, features of the signal data were extracted with 512 Hz sample rate, 217 

where window size was 512, and windows increment was 32. Specifically, there was an input of 10510×1 218 

matrix for test subject 1 in calibration part – negative emotion, then “datasize” equaled to 10510, “winsize” 219 

was 512, “wininc” represents 32, and the output was “313×5” matrix, where “313”=floor((datasize - 220 

winsize)/wininc)+1 and “5” represents five features: Gamma wave, Beta wave, Alpha wave, Theta wave, and 221 

Delta wave. The output matrix formed the classifier of feature extraction. 222 

4.2 Emotion classification 223 

In this study, emotion was classified into two categories: positive and negative. In the test section, EEG 224 

data was extracted by wavelet analysis, and then a classified by the SVM methodology.  225 

SVM is used to identify the emotion category for the tested seafarers. SVM is a supervised learning model 226 

with associated learning algorithms that analyse data used for classification and regression analysis. It finds 227 



10 

 

an optimised hyperplane, calculating the parameters constructing the hyperplan to maximise the margin 228 

between two sets while still separating the sets.  229 

For EEG data analysis, it reveals the real-time emotion identification. There are five features describing 230 

every two kinds of emotion: Gamma wave, Beta wave, Alpha wave, Theta wave, and Delta wave. In the 231 

calibration part, the features matrix extracted from EEG data was used to train the SVM classifier. Then 232 

emotion in the test part of seafarers was identified by the classifier training by SVM. 233 

In the questionnaire analysis, the classifier distinguishes the emotion describing the subjective feeling of 234 

whole examination, which is the overall emotion identification. These points were defined in three dimen-235 

sions illustrated in SAM as pleasure, arousal, and dominance. As the emotion was a subjective variable, the 236 

SVM used the feature of a specific emotion in calibration to generate the classifier. Using the classifier train-237 

ing by SVM, emotion in the qualified test of seafarers was identified by the three-dimensional description 238 

questionnaire. After normalisation, the optimal parameters in the SVM were searched by cross-validation. 239 

The kernel function of the model was calculated. The result of identification of emotion taxonomy can be 240 

calculated. 241 

4.2.1 EEG data analysis 242 

Negative emotion and positive emotion were described in three-dimensional space of pleasure, arousal, 243 

and dominance. After extracting the EEG features in calibration section, given negative emotion and positive 244 

emotion, emotion classification was carried out by SVM model, where “1” represents negative emotion, and 245 

“2” means positive emotion. 246 

For every test subject, there were two piecies of EEG data: calibration EEG data induced by IADS sound 247 

clip database, and test EEG data driven by operation process during the mission. The sample rate of emotion 248 

identification was 512 Hz, while the instantaneous emotion value was identified as two kinds of emotion. 249 

Then the average emotion value was calculated during a certain period, figuring out that the emotion (average 250 

emotion) value is between 1 and 2. Figure 4 shows the emotion identification of test subject 2 every 5 seconds. 251 

Figure 5 depicts the mean emotion value of single test subjects every 60 seconds, where the emotion value is 252 

defined between 1 and 2. 253 
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 254 

Figure 4. Emotion identification of subject 2 in test (every 5s) 255 

 256 

For test subject 2, the SVM model extracted the features from EEG data in the calibration section to 257 

establish classifier with accuracy of 91.55% (390/426). It recognised the emotion value in the test section 258 

with the classifier. In Figure 4, it demonstrates the emotion value of test subject 2 every 5 seconds. Similarly, 259 

the approach can also be used to identify the emotion of other subjects given their exams in Figure 5. 260 

 261 

Figure 5. Emotion identification of subjects in the test (every 60s) 262 

 263 

From the results, it shows that the emotion identification values of subjects fluctuate with time during the 264 

examination. Given the SVM model, the accuracy of classifiers are stated in Table 1, and the average 265 

accuracy is 77.55%. According to individual differences among the test subjects, emotion identification re-266 

flects various characteristics. Assuming that the emotion state can be described by a given emotion value, 267 

there are four levels emotion: extreme negative emotion within value [1, 1.25], less negative emotion within 268 
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value (1.25, 1.5], less positive emotion (1.5, 1.75], and extreme positive emotion (1.75, 2]. The changes in 269 

the emotion value are associated with several events in scenarios during the test. 270 

Table 1. Accuracy of the classifying method 271 

Number 1 2 3 4 5 6 

Accuracy 

67.3704% 

(351/521)  

91.5493% 

(390/426)  

82.4773% 

(273/331)  

66.3551% 

(284/428)  

73.7226% 

(202/274)  

70.7006% 

(222/314)  

Number 7 8 9 10 11 Average 

Accuracy  

87.0712% 

(330/379)  

69.6296% 

(188/270)  

93.7269% 

(254/271)  

80.6154% 

(262/325)  

69.8225% 

(236/338)  
77.55% 

 272 

4.2.2 Questionnaire data analysis  273 

In this paper, the nine-point scale in SAM (Bradley and Lang, 1994) (Bradley and Lang, 2007) was used to 274 

describe pleasure, arousal, and dominance in response to the stimuli. Figure 6 shows the questionnaire that 275 

the test subjects need to complete after the experiments, reflecting on their subjective feelings during the 276 

assessment. 277 

1. SAM rating 

Happy                                                                                                  Unhappy

Excited                                                                                                 Calm

Control                                                                                                In-control

(not important)                                                                                    (important) 

2. Word rating

Joyful Surprised Satisfied Protected 

Angry Fear Unconcerned Sad 

Or give your own descriptive word: 

 
 278 

Figure 6. The questionnaire of emotion with SAM scale on a nine-point rating (Liu et al., 2016) 279 

 280 
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The scoring measures the degree of pleasure, arousal, and dominance associated with the stimuli. The first 281 

SAM is the happy/unhappy scale, which ranges from a smile to a frown. The second one is the excited/calm 282 

scale, which ranges from left to right. The last dimension is the controlled/In-control dimension. The left end 283 

of the scale represents the feeling of completely controlled and influenced whereas the right end of the scale 284 

is the feeling of completely in-control, important, and dominant.  285 

The SAM methodology reveals the specific feature of a test subject’s certain emotion, as it is a subjective 286 

variable. This method quantifies the emotion in a specific time and condition. After the qualified test, com-287 

ments on the performance of seafarers from the experts is recorded by audio, and the test subjects are given 288 

a result of pass or failure. 289 

This study collects 22 (11×2) calibration questionnaires and 11 test questionnaires reflecting 11 seafarers’ 290 

emotions. Table 2 demonstrates descriptive statistics of seafarers in the experiments, while Table 3 presents 291 

the statistics in the IADS (2nd edition) database. The clip sounds 105 represents negative emotion, while 220 292 

represents positive emotion. Letters “p”, “a”, and “d” represent “pleasure”, “arousal”, “dominance” respec-293 

tively while “t” means test emotion. The majority of the mean value in the test is, at large, consistent with the 294 

mean value of the IADS, except for the pleasure dimension in negative emotion. 295 

 296 

Table 2.  Statistics of seafarers in the questionnaires 297 

 Min. Max.  Mean SD 

105p 1 9 4.82 2.601 

105a 1 7 4.18 2.272 

105d 1 8 5.18 2.523 

220p 3 9 8.09 1.814 

220a 1 8 5.27 2.195 

220d 3 9 6.36 1.912 

tp 3 9 5.73 1.679 

ta 1 7 4.64 2.063 

td 1 9 6.00 2.449 

*SD - Std. Deviation, p – pleasure, a - arousal, d – dominance. 298 

Table 3.  Statistics in the IADS (2nd Edition) 299 

 Mean Std. Deviation 

105p 2.88 2.14 

105a 6.40 2.13 

105d 3.80 2.17 
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220p 7.28 1.91 

220a 6.00 1.93 

220d 5.99 1.88 

After collecting the emotion data from seafarers by SAM questionnaires, SVM was used to identify the 300 

emotion category during watch-keeping. Overall, 11 samples consisting of 33×3 matrix of emotion descrip-301 

tion, and 33×1 matrix of emotion labels were compiled. The former 22 pieces were from the calibration part 302 

as a training set for SVM. The later 11 pieces are from the test part as a test set. From these perspectives, the 303 

SVM model was constructed to find a hyperplane that divided the test set into two kinds of emotion catego-304 

ries. Figure 7 is the result of the test classification with the accuracy of 72.73% (the training accuracy of 305 

95.45%), where “1” represents negative emotion, and “2” means positive emotion. The kernel function of 306 

this model is calculated in the way that “-t = 2” represents a kernel type radial basis function: exp (-γ×|x-x’|2); 307 

“-c = 776.0469” represents cost parameter C; “-g = 0.0068012” represents γ in the kernel function. 308 

 309 

Figure 7. Emotion identification by using the SVM: Accuracy = 95.4545% (21/22) (training); Accuracy 310 

= 72.73% (8/11) (test)  311 

 312 

The emotion identification by the questionnaire from both the test subjects and the SVM methodology are 313 

presented in Table 4, where “P” represents positive and “N” represents negative. More specifically, the self-314 

rating emotions of subjects 2 and 10 are positive but were predicted as negative. The self-rating emotion of 315 

subject 9 is negative while it was predicted as positive. All the others have the same results between self-316 

rating and SVM. 317 

Table 4. Comments from self-evaluation and third party 318 
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ID 
Emotion 

Self-evaluation Third party 
SR SVM 

1 P P 
Untimely watch keeping in poor visibility 

Wrong operation sequence 
Operate in incorrect sequence when stopping 

2 P N 

Too late to realise poor visibility 

Speed control problem 

Inaccurate report in time 

unconcerned watch keeping 

3 P P 

Anxious when collision 

Wrong decision making (collision at ship body in-

stead of bow) 

Not fulfil the Convention on the International 

Regulations for Preventing Collisions at Sea 

(COLREGs) 

4 P P 

Tension during ship encounter 

Response too late 

Unfamiliar with navigation device 

Mistake for sail against the current 

Not fulfil COLREGs 

Too panic when stranding 

5 N N 

Speed control problem 

Not enough communication 

Not stop timely 

Wrong decision making of the captain 

Inappropriate manoeuvring  

6 N N 
Speed control problem 

Course deviation 

Not enough communication 

Not enough cooperation not enough 

7 P P 

Late report in emergency 

Unconcerned 

Inappropriate manoeuvring 

Wrong manoeuvring 

Too high speed 

Course deviation 

8 N N Not familiar with rudder failure 
Slow speed affecting steering 

Failure to meet a contingency 

9 N P Not switch on navigation lights when starting fog 
Not on-time watch keeping 

Too large deflection angle 

10 P N 
Unfamiliar with navigation environment 

Not report the collision on time 

Unfamiliar with navigation device 

Ignore environment when reporting 

Failed to fulfil COLREGs 

11 P P Anxious when getting hurt 
Speed control problem 

Irregular language 

4.3 Relationship between seafarers’ emotion and events 319 

The scenarios of the test were not exactly same, as the questions in the exam database that test subjects 320 

chose before the qualifying exam were different. The events induced in the scenarios were commanded in 321 

the control room without specific or fixed time, so that the performance analysis given events relied on the 322 

marks in the examination and comments by the experts/examiners. 323 

4.3.1 Performance comments  324 

The comments on the examination for each test subject were further analysed to investigate if negative 325 

emotion identified by the SVM model affected human errors and human performance. Meanwhile, the com-326 

ments from experts as an inevitable process of the qualified exam were collected by audios. It took place 327 

after the whole experiment, beginning with the summarised comments from self-evaluation and third party, 328 

and ending with experts’ comments. 329 

According to the self-evaluation from the subjects and experts, it is common to demonstrate that the human 330 

emotion emerging from watch-keeping affects ship-manoeuvring, concentration, response to an emergency, 331 
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and decision-making. For example, test subject 1 was not able to concentrate on watch-keeping in poor visi-332 

bility when sailing, which made him incapable of observing the crew onboard falling into the water. Moreo-333 

ver, a further step was supposed to stop in accurate and timely operation sequence. The test subjects 2 and 7 334 

had the same result as unconcerned when encountering collision scenarios in poor visibility, resulting in a 335 

delayed report and operational problem. As a result, test subject 2 reported inaccurately in the collision sce-336 

nario and subject 7 made an unnecessary course deviation. There was evident anxiety when the collision 337 

occurred as subject 3 demonstrated, causing not fulfilling COLREGs (International Regulations for Prevent-338 

ing Collisions at Sea). Subject 11 just became anxious when the crew got hurt, causing the irregular use of 339 

language and inappropriate manoeuvring. Test subject 4 had tension emotion when the encounter happened 340 

and panic emotion during stranding, which caused several mistakes, as shown in Table 5. Also, subjects 4 341 

and 10 had physiological problems because they were unfamiliar with the device. They were not fulfilling 342 

COLREGs. 343 

According to the above emotion problems existing in test subjects 1, 2, 3, 4, 7, 10, and 11, all of them 344 

rated overall positive emotion after the sessions. However, the subjects who rated a negative emotion did not 345 

reveal apparent emotion interruption on performance. Emotion rating through subjective judgement presents 346 

the overall feeling after the examination, whereas human errors occur at certain instant moments.  347 

4.3.2 Real-time relation to events  348 

From the scenarios of the test, several typical events are mainly considered: ship meeting/multi-ships en-349 

counter; emergency events such as stranding, collision, overboard or sudden illness of crews; reduced visi-350 

bility in the condition of dense fog. The relationships between seafarer’s emotion identification and the oc-351 

currence of events are presented in Figure 8 and Figure 9.  352 

 353 
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 354 

Figure 8 Frequency of events by emotions 1 and 2 355 

 356 

 357 

Figure 9 Frequency of events by emotion change 358 

The events in scenarios for test subject 5 are lost due to the recording processes in the experiment. There-359 

fore, the result of 10 subjects is demonstrated above. “C” represents ship meeting/multi-ships encounter; “E” 360 

stands for emergency events such as stranding, collision, overboard or sudden illness of crews; “V” means 361 

poor visibility in the condition of dense fog.  362 

In ship encounter scenarios, test subjects tended to have both negative and positive emotion, and a subject 363 

may indicate two different trends on separate encounter process in the same test. Subjects 1, 2 and 10 reflected 364 

relatively smooth or stable emotion, while the other subjects showed differences. Subjects 4 and 6 showed 365 

decreased tendency of emotion in the first meeting condition, but increased emotion value on the second 366 

meeting condition. In addition, subject 11 revealed a falling emotion value at the first situation, then a stable 367 

state of emotion in a later situation. While subjects 8 and 9 demonstrated positive changes of emotion during 368 

the first encounter, but negative changes in the later ship encounter process. Subject 7 showed a positive 369 

tendency emotion in the condition all the time.  370 
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In emergency events, test subjects 2, 4, 11 had relatively stable emotion changes in an emergency; others 371 

showed obvious emotion dropping in emergency responses. From the experts’ comments, they had problems 372 

with poor watch-keeping or were unfamiliar with devices onboard to some extent. Subjects 1 and 6 showed 373 

negative emotion and evidence-decreased emotion values to negative emotion. This was confirmed with 374 

manoeuvring, lookout or communication problems among their groups. Moreover the subjects 3, 8, 9, 10 375 

demonstrated a sharp reduction of emotion values at the point of the emergency event and revealed to be 376 

incapable of fulfilling the regulation as well as committing errors.  377 

In the condition of poor visibility, only test subject 3 showed a decreased change rate of emotion. Others 378 

had relatively steady or a slightly increased emotion state.  379 

5 DISCUSSION  380 

Overall, there are 13 cases which account for 8.07% likelihood of human errors happening within 161 381 

negative emotion points, and 9 cases accounting for 7.20% likelihood of human errors existing in 125 positive 382 

emotion moments. As shown in Figure 9, the emotion values between 1.25 and 1.5 (where “1” represents 383 

negative emotion and “2” represents positive emotion) have the highest frequency (10.17%) of human errors, 384 

followed by the emotion values between 1.75 and 2 (frequency of 8.33%). 385 

  386 

Figure 9 Emotion distribution and human errors frequency 387 

From the questionnaire analysis, there is no definite correlation between overall emotion modes identified 388 

and behavioural consequences. As the rating is done after the examination, some seafarers may hide or ignore 389 
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their true feelings in the questionnaire after the exam if emergency problems are adequately solved in sce-390 

narios. However, there is a link between the real-time emotion and events. It is evident that the seafarers’ 391 

emotion changed along with the scenarios during the simulations. In this study, some subjects behaved better 392 

in a repeated situation, due to familiarity with the situation and readiness for the same condition, while others 393 

did not behave as good as the previous performance, due to over-confidence with the previous response and 394 

posibly due to a “too late” response for an emergency. 395 

From the real-time physiological responses analysis, the link between seafarers’ emotion and their perfor-396 

mance is tied up to the factors contributing to the errors. It is evidenced that less negative emotion (1.25, 1.5] 397 

is more likely to contribute to human errors in this study, followed by extreme positive emotion (1.75, 2]. It 398 

is also derived from the accident report (MAIB, 2015) that overconfidence on duties or underestimation of 399 

severity of the condition during the navigation leads to errors. Thus, the relations between emotion and human 400 

errors are complex, and need to be further analysed considering the factors associated with human errors.  401 

Moreover, this study incorporates an effect delay or advance in the experiment, as the response time and 402 

expected procedure of seafarers in the ship is different from it on the road or railway. For example, it is 403 

typical for the seafarers to follow a procedure or a checklist to deal with a collision situation instead of taking 404 

instant measures (e.g. brake hard to avoid collision on the road). Consequently, the psychological reaction of 405 

people may be prior to events exposure or postponed for executing an emergency plan after accidents. 406 

6 CONCLUSION 407 

Seafarers’ emotion associates with sailing safety. It emerges during watch-keeping and could jeopardise their 408 

performance and decision-making. When an emergency happens, there are requests for a timely report and 409 

accurate operation of ships. This study utilises SVM as a classifier to extract features of EEG data with an 410 

average accuracy rate of 77.55%. The results concerning officers’ emotion in a bridge simulator test reveal 411 

that seafarers’ emotion from maritime operations affects their behaviour, and negative emotion has a higher 412 

likelihood of contributing to human errors than positive emotion. In addition, less negative emotion is the 413 

most dangerous emotion state during navigation, followed by extreme positive emotion.  414 

Seafarers tend to be in a sensitive position when manoeuvring in a bridge simulator. The difference be-415 

tween bridge simulation and realistic navigation results in the change of emotional state of seafarers, which 416 
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reveals the limitation of this study. Conducting psychophysiology research in a bridge simulator is significant 417 

on human error in maritime operations. In addition, the bridge simulation benefits research on human factors, 418 

especially for crew training purpose. In this regards, further studies will involve psychophysiological methods 419 

to design human error-oriented scenarios affecting seafarers’ performance and measure their mental state in 420 

association with these factors.  421 
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