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Main Findings
The study focused on the comparison between TIR (thermal infrared) cameras and RGB (visual 
spectrum) cameras attached to a drone for detecting poachers in miombo woodlands in Tanzania. 
We found that TIR cameras improve detection of poachers over RGB cameras particular in cooler 
times of the day. However, detection is significantly hampered by thick vegetation cover. The 
effects of diminished detection with increased distance from the image centreline can be improved 
by increasing the overlap between images although this requires more flights over a specific area. 
Analysts experience can furthermore improve the probability of detection.
These finding can help drone operators to evaluate the limitations of drones for detecting poachers 
and to ultimately increase the drone defectiveness.
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1 Detecting ‘poachers’ with drones: Factors influencing the probability of 
2 detection with TIR and RGB imaging in miombo woodlands, Tanzania
3
4 Abstract
5 Conservationist increasingly employ drones to reduce poaching of animals. However, there are no 
6 published studies on the detection probability of poachers and the factors influencing detection. In 
7 an experimental setting with voluntary subjects, we evaluated the influence of various factors on 
8 poacher detection probability: camera (visual spectrum: RGB and thermal infrared: TIR), density of 
9 canopy cover, subject distance from the image centreline, subject contrast against the background, 

10 altitude of the drone and image analyst. We manually analysed the footage and marked all recorded 
11 subject detections. A multilevel model statistical approach was used to analyse the TIR image data 
12 and a general linear model approach was used for the RGB image data. We found that the TIR 
13 camera had a higher detection probability than the RGB camera. Detection probability in TIR 
14 images was significantly influenced by canopy density, subject distance from the centreline and the 
15 analyst. Detection probability in RGB images was significantly influenced by canopy density, 
16 subject contrast against the background, altitude and the analyst. Overall, our findings indicate that 
17 TIR cameras improve human detection, particularly at cooler times of the day, but this is 
18 significantly hampered by thick vegetation cover. The effects of diminished detection with 
19 increased distance from the image centreline can be improved by increasing the overlap between 
20 images although this requires more flights over a specific area. Analyst experience also contributed 
21 to detection probability, but this might cease to become a problem following the development of 
22 automated detection using machine learning.
23
24
25
26
27
28
29
30
31
32
33
34
35
36 Keywords:
37 UAV, drone, thermal, TIR, RGB, comparison, contrast, distance, centerline, poachers, people, time 
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39 1 Introduction
40 Poaching, the unlawful harvest of wildlife products, supports illegal global wildlife trade and is a 

41 major conservation issue due to its impact on species extinctions. The demand for illegal wildlife 

42 products has risen in the few last years with 7000 species recorded as having been trafficked 

43 (Lawson and Vines, 2014; United Nations Office on Drugs and Crime, 2016). This results in the 

44 decline of threatened species, as well as rise in international security threats and economic losses 

45 (Balazs, 2016; Becker et al., 2013; Chapron et al., 2008; Liberg et al., 2012; Naidoo et al., 2016; 

46 United Nations Office on Drugs and Crime, 2016). Wildlife enforcement officers and 

47 conservationists try to fight poaching using a variety of methods, such as reducing demand in key 

48 areas such as Asia, implementing community conservation areas, deploying ranger patrols in 

49 protected areas, strengthening wildlife laws, dehorning rhinos and implementing new technologies 

50 such as DNA mapping, mobile biological sensors and drones (Dinerstein et al., 2017; Lunstrum, 

51 2014; Mukwazvure and Magadza, 2014). Drones are a cost-effective and flexible tool that can be 

52 used in the field to monitor protected habitat and gather intelligence on wildlife crime activities 

53 (Koh and Wich, 2012; Linchant et al., 2015; World Bank, 2018). This intelligence includes the 

54 detection of poachers in the field (Air Shepherd, 2017; Mulero-Pázmány et al., 2014; Smart parks, 

55 2018).

56 There are several key safety, technical and practical differences between the use of drones for 

57 detecting poachers and the more traditional use of manned aircrafts. Most importantly, the latter 

58 pose a higher risk to the operator as poachers can deploy powerful weapons. In contrast, drones 

59 allow detection while simultaneously minimizing confrontations with poachers (Baggaley, 2017; 

60 Parveen, 2016). Secondly, manned aircraft require an on-board observer, while drones can use a 

61 variety of sensors to record still and moving images that either need to be viewed as a live stream or 

62 analysed after the flight. Additional advantages of using drones include their cost-effectiveness, the 

63 fact that they do not require a runway and that they can be programmed to follow precisely a 

64 predefined path (Kakaes et al., 2015). Furthermore, drones have been found to be able deliver more 

65 accurate animal count data than traditional ground-based surveys (Hodgson et al., 2018).

66 Although their deployments in anti-poaching efforts are promising, there are no studies that have 

67 explicitly investigated the factors that determine detection probability in this specific context. 

68 However, it is important to do so for several reasons, including the optimization of flight patterns to 

69 improve detection and identify the environmental conditions under which poachers are likely to be 

70 missed during drone missions. Fixed wing drones are the preferred tool for anti-poaching operations 

71 because of their long flight duration and extended range (Mulero-Pázmány et al., 2014; Olivares-

72 Mendez et al., 2015).
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73 There are various factors that affect the probability of detecting animals – and potentially humans – 

74 including body size, position of the sun, distance from the transect, group density, target contrast, 

75 terrain ruggedness, animal activity, vegetation type and camera type (Caughley et al., 1976; 

76 Chrétien et al., 2015; Chrétien et al., 2016; Patterson et al., 2015; Ransom, 2012; Schlossberg et al., 

77 2016; Zabransky et al., 2016). Two types of camera are most typically used: those that use the Red 

78 Green Blue colour model (RGB) and thermal infrared (TIR) devices. RGB cameras acquire images 

79 in the light spectrum visible to humans and can be found on most consumer drones. They are often 

80 more affordable and may have a higher resolution than TIR cameras (Wich and Koh, 2018). TIR 

81 cameras capture infrared radiation which is emitted as heat from different sources of energy as well 

82 as endothermic organisms (Vollmer and Möllmann, 2010). This makes them useful for detecting 

83 poachers who generally operate at night to reduce the risk of detection (Mulero-Pázmány et al., 

84 2014). TIR cameras have been used for decades to remotely sense wildlife and, with drones, the 

85 focus has been to survey large terrestrial as well as marine mammals (Chrétien et al., 2016, 2015; 

86 Christiansen et al., 2014; Seymour et al., 2017; Wride and Baker, 1977). In recent years, algorithms 

87 have been developed to improve the detection of animals in TIR camera footage and made 

88 automatic detection possible (Burke et al., 2018a, 2018b; Christiansen et al., 2014; Longmore et al., 

89 2017; Seymour et al., 2017). There are no studies that have examined the detection probabilities of 

90 poachers by RGB and TIR imaging cameras.

91 In this study we investigate the factors that determine the detection probability of people (subjects) 

92 in a Miombo woodland in Tanzania. We conducted an experiment in which a drone with RGB and 

93 TIR imaging cameras was flown over a group of test subjects to determine which of the following 

94 variables influenced detection probability: camera type (RGB or TIR), canopy cover, subjects 

95 distance from image centreline, contrast between subject and background and the altitude of the 

96 drone. Contrasts between subjects and the background was controlled through use of differently 

97 coloured t-shirts. We hypothesized that the probability of detection is negatively affected by a dense 

98 canopy cover, a larger distance from the image centreline and higher altitude for both RGB and TIR 

99 cameras. In addition, we hypothesized that a larger contrast between the subject and background 

100 increases the probability of detection for RGB cameras and that detection will be better with the 

101 TIR camera during low light conditions.



4

102 2 Methods
103
104 2.1. Study Area

105 The study was conducted at the Issa study site (-5.50, 30.56) in the western part of Tanzania. This 

106 location lies at 1500 meters (m) above sea level and the dominant vegetation type is miombo 

107 woodland (dominated by the genera: Brachystegia and Julbernardia) (Piel et al., 2015). The data 

108 were collected in March 2017, which coincides with the end of the rainy season, when the 

109 vegetation is green and dense across the region. 

110

111 2.2. Drone and Cameras
112 We used a multicopter consisting of a DJI F550 frame with a Pixhawk flight controller. The drone 

113 carried two cameras: 1) a 16 MP RGB Survey 2 camera (Mapir, 2016a) with a field of view (FOV) 

114 of 82° which was triggered by the flight controller to take an image at 10m intervals, 2) a 

115 ThermalCapture v1.0 TIR camera with a TAU 640 core with a FOV of 45° (TeAx Technology, 

116 2018). The RGB camera was set at ISO 100 and a shutter speed of 1/250. The TIR camera 

117 continuously recorded video with automatic settings. All flights were conducted by one of the 

118 authors (SW). The two cameras used were: 1) a 16 MP RGB Survey 2 camera (Mapir, 2016a) with 

119 a field of view (FOV) of 82° which was triggered by the flight controller to take an image at an 

120 interval of every 10 m, 2) a ThermalCapture v1.0 TIR camera with a TAU 640 core with a FOV of 

121 45° (TeAx Technology, 2018). The RGB camera was set at ISO 100 and a shutter speed of 1/250. 

122 The TIR camera continuously recorded video with automatic settings.

123

124 2.3. Flight Path
125 Drone flight paths (Appendix A.1) were created using Mission Planner software (ArduPilot Dev 

126 Team, 2017) and uploaded to the Pixhawk flight controller. Take-offs and landings were conducted 

127 in loiter mode whereas auto mode was used for the flight pattern. The flight pattern consists of three 

128 parallel rows with a length of 70 m each and a connection section of 30 m in length between each 

129 row. The descent (dotted line) leads the drone back to its take-off location (Appendix A, Black 

130 Square). The flight pattern was performed twice at two different altitudes (70 m and 100 m), 

131 providing six rows per flight. The upper altitude of 100 m was chosen as it was close to the usual 

132 operation altitude of fixed wing drones while still staying within the legal boundaries of 122 m (400 

133 ft.) (Tanzania Civil Aviation Authority, 2017). The lower altitude of 70 m was chosen as the lowest 

134 recommended altitude for safe operation of fixed wing drones and the 70 – 100 m range was 

135 considered suitable for this type of drone. The average flight duration during the data collection was 
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136 approximately six minutes at a ground speed of 4 – 5 m/s. Two flight areas were set up at different 

137 locations with the same flight pattern as can be seen in Appendix A. A total of seven flights were 

138 conducted: four in flight area 1 and three in flight area 2. A dawn flight (7:30 am) was conducted in 

139 each area, followed by a second flight at dusk on the same day (7:00 pm). These times were chosen 

140 to improve the image quality of the TIR images, as lower environmental temperatures create a 

141 greater contrast between a person and their surroundings. However, low light levels during several 

142 of these flights meant that the RGB camera was unable to produce sufficiently exposed images.

143

144 2.4. Location
145 We selected 24 locations within each flight area and then randomly assigned each test subject to one 

146 of them. The locations were chosen on-site to create an equal spatial distribution of locations in the 

147 area and with equal frequencies of dense and less dense canopy covers. GPS coordinates of the 

148 locations were recorded with the MobileMapper 20 (MM20) model by Spectra Precision. The 

149 MM20 has an accuracy of <2 m in real-time (Trimb et al., 2013).

150

151 2.5. Test Subjects and T-shirt Colours

152 A group of 10 - 20 voluntary subjects (varying per flight) were positioned within the flight area for 

153 each of the flights. Each subject wore a standard red, green or blue t-shirt to create a controlled 

154 contrast with the background. Each subject wore the same t-shirt and was positioned at the same 

155 location for each flight. The test subjects were required to stay at their assigned locations during the 

156 flights, with a single subject assigned to each location.

157

158 2.6. Canopy Cover

159 The canopy densities of the locations were measured by photographing the canopy and calculating 

160 the canopy density in the software CanopyDigi (Goodenough and Goodenough, 2016). CanopyDigi 

161 gives a calculated value between 0 (open sky) and 1 (completely covered) for each image. Photos 

162 were taken with a 24-mm fixed focal length lens mounted on an APS-C camera body with a 1.6 

163 crop sensor resulting in a FOV of 59°. The camera was set up on a tripod at a height of 1.5 m and 

164 aligned horizontally using a level. Goodenough and Goodenough (2012) recommend a cloudy sky 

165 for best results when photographing the canopy cover. However, this was not always possible and 

166 most images were taken with a clear sky and the sun in the frame. This resulted in brighter images 

167 which were compensated by adjusting the auto exposure of the camera by -1 stop. This adjustment 

168 darkened the images to compensate for the bright sky. The camera was manually focused on the 



6

169 closest branch to ensure sharp images and an aperture of f/16 was used for a sufficient depth of 

170 field. ReaConverter Light (ReaSoft Development, 2017) was used to convert the images into the file 

171 format required by CanopyDigi (Goodenough and Goodenough, 2012). The threshold values in 

172 CanopyDigi were adjusted to deal with images in which the sun was visible in the frame. The 

173 thresholds used a range from 45 to 125.

174

175 2.7. Image Processing and analyses
176 Footage from the two cameras were checked for quality. Any footage taken during take-off, landing 

177 or from the connection and transition piece was discarded. We reviewed the footage from the TIR 

178 camera in the proprietary ThermoViewer 2.1.2 software (TeAx Technology, 2017). The Non 

179 Uniformity Correction (NUC) option was turned on in ThermoViewer, as recommended by the 

180 manufacturers. Video footage was converted into 3 to 4 JPG images per row. We converted the 

181 RGB camera footage from raw into JPG images using the MAPIR plugin (Mapir, 2016b) for the 

182 Fiji software (Schindelin et al., 2012). RGB images were then downscaled to the same resolution as 

183 the TIR images (701x512) with the Exiftool software (Harvey, 2017). This allows for a universal 

184 comparison of the two image types, independent of resolution quality. 

185 Images were analysed separately by three independent analysts, none of whom had previous 

186 experience in detecting human subjects in aerial images. Images were provided to the analysts in a 

187 random order. In avoiding the sequential showing of all images from one row, analysts could not 

188 apply their knowledge of locations from previous images to detect the subjects. The plugin in Cell 

189 Count (De Vos, 2010) for the ImageJ .1.8.0 software (Rueden et al., 2017) was used to annotate 

190 detected subjects in the images.

191 The images were not georeferenced and the subjects are identified by their relative location to each 

192 other and to landmarks, and the colour of their t-shirts (Appendix B). The results of images from the 

193 same row were summarized, thereby simulating a tracking motion in moving images. The multiple 

194 angles simulate a tracking motion of a subject in the frame. The tracking enhances the probability of 

195 detection because of the multiple camera angles (Gonzalez et al., 2016).

196

197 2.8. Calculating the Distance to the Centreline of the Image
198 We calculated the distance from each subject to the centreline using QGIS 2.18 (Quantum GIS 

199 Development Team, 2017). The calculation of the distances used the GPX track as centreline and 

200 the shortest distance to each location was calculated with the distance matrix tool.

201

Figure 1: Comparison 
between RGB images on the 
left and thermal on right. 
Both images show the same 
area, at the same resolution 
with two people visible.
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202 2.9. Statistical Analysis
203 All analyses were carried out using the Ime4, glm2 and MuMIn packages in R v3.4.1 (Bates et al., 

204 2017; R Core Team, 2017). We chose a multilevel model approach to accomodate random effects, 

205 repeated measurements and crossed data (Field et al., 2012; Grueber et al., 2011; Qian et al., 2010). 

206 Following the approach suggested by Grueber et al. (2011), entries with missing data were excluded 

207 from the analysis. We used a general linear model for the data from the RGB camera as described 

208 below. All responses were binary (detection (1)/no-detection (0)) and thus a logit link function was 

209 used for all analyses. The variables used in the code for the global data models can be seen in Table 

210 1.

211 Table 1 Overview of the tested variables with description.

No Variable type Variable Definition

Response variable

0 Binomial Detected Detected = 1; undetected = 0

Predictor variable

1 Continuous Fixed Canopy 
density

Canopy density between 0 and 1

2 Continuous Fixed Distance Distance from centreline (m)

3 Binomial Fixed Altitude 70 m = 0; 100 m = 1

4 Nominal Fixed Colour White/ TIR = 0; red = 1; blue = 2; 
green = 3

5 Binomial Fixed Time of day Dusk = 0; dawn = 1

6 Nominal Fixed Analyst Analyst 1, 2, 3

Hierarchical variable

7 Nominal Random Flight Number Identification number of flight

212

213 Continuous variables were group-centred. Two separate base data models were created for the TIR 

214 images and RGB images. In the TIR base data model, the variable colour was not included since the 

215 TIR images only display in black and white. The inclusion of Flight Number as a random intercept 

216 significantly improved the TIR data model. However, random effects did not improve the RGB base 

217 data model and so a general linear model was used (using the “glm” function in the “glm2” 

218 package: Marschner, 2018). Maximum likelihood was used to perform the model estimation for 

219 both data models. Data sub-models were created from the base data models, using the function 

220 “dredge” from the “MuMIn” (Bartón, 2017) packages as described by Grueber et al. (2011). This 

221 resulted in a total of 64 data sub-models for the RGB images and 32 data sub-models for the TIR 

222 images. The Akaike Information Criterion corrected for small sample sizes (AICc) was used to 
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223 assess the data (sub) models (Akaike, 1998; Grueber et al., 2011). Data models with cut-off values 

224 of 2AICc were selected using the “get.model” function from the “MuMIn” packages as shown by 

225 (Bartón, 2016; Grueber et al., 2011). The final data models above this cut-off point were averaged 

226 using the zero method to compare between them and identify the one with the best fit (Nakagawa 

227 and Freckleton, 2011). These data models have been ranked by their AICc values and their Akaike 

228 weight (lower AICc indicates a better model fit and a higher Akaike weight shows a more 

229 parsimonious fit overall) (Patterson et al., 2016). The last step was to conduct a Tukey’s honestly 

230 significant difference (HSD) analysis with the “glht” function from the “multcomp” package 

231 (Hothorn et al., 2008; Piepho, 2004) to analyse the differences between individual colours and their 

232 effect on the probability of detection.

233
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234 3 Results
235 To determine which factors influenced detection probability we fitted models to the TIR and RGB 

236 data. The analyses are first presented individually and then compared. 

237

238 3.1. TIR data model
239 For the TIR data model, three models were selected under the described AICc criterion (Table 2). 

240 Canopy density, Distance and Analyst were included in the best data model.

241 Table 2: A summary of the three selected data models under the AICc criterion (from 32 data sub 
242 models) for the detection of subjects using a TIR imaging camera. The best data model includes 
243 Canopy density, Distance and Analyst.

Data model name Df LogLik AICc Delta weight

Canopy density + Distance + Analyst 5 -1117.35 2244.72 0.00 0.50

Canopy density + Distance + Time of Day + 
Analyst

6 -1116.84 2245.72 1.00 0.31

Canopy density + Time of Day + Altitude + 
Analyst

6 -1117.31 2246.66 1.94 0.19

244

245 For the TIR data model, three data models were selected under the described criterion (Table 2). 

246 The best data model contained the variables Canopy density, Distance and Analyst. The best fitting 

247 data model is described in Table 3 in more detail.

248 Table 3: The data model with the best fit for the TIR images include the variables Canopy density 
249 (p<0.001), Distance (p<0.001) and Analyst (p=0.005).

Variable Estimate 95% Confident Standard 
Error

p

(Intercept) 0.082202 -0.57588189, 0.74028561 0.335592 0.807

Canopy density -2.512167 -2.93676277, -2.08757128 0.216496 <0.001

Distance -0.040112 -0.04966423, -0.03056052 0.004870 <0.001

Analyst -0.178310 -0.30211515, -0.05450457 0.063127 0.005

250
251 The variables Canopy density and Distance had negative coefficients, which indicates a decrease in 

252 the probability of detection with an increase in vegetation density and/or increase in distance from 

253 the centreline. The negative coefficient for Analyst is irrelevant since analysts were ranked in a 

254 random order.

255
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256 3.2. RGB data model
257 The best data model for the RGB data included Canopy density, Altitude, Colour, and Analyst as 

258 variables (Table 4). All of these variables were significant (Table 5). The variables Canopy density 

259 and Altitude had negative coefficients, which indicates that an increase in the vegetation density and 

260 altitude negatively influences the probability of detection. The variable Colour also had a 

261 significant effect on the probability of detection while the variable Distance was not included in the 

262 best data model, which indicates it does not affect the probability of detection. As in the TIR model, 

263 the negative coefficient for Analyst was meaningless.

264

265 Table 4: A summary of the top three data models that were selected under the 2AICc criteria (from 
266 64 data sub-models) for the RGB camera. Canopy density, Altitude, Colour and Analyst are 
267 included in the best data model.

Data model name Df LogLik AICc Delta weight

Canopy density + Altitude + Colour + Analyst 5 -352.23 714.53 0.00 0.54

Canopy density + Altitude + Colour + Time of Day + 
Analyst

6 -352.02 716.15 1.62 0.24

Canopy density + Distance + Altitude + Colour + 
Analyst

6 -352.10 716.31 1.78 0.22

268

269 Table 5: The best fitting RGB data model includes Canopy density (p<0.001), Altitude (p<0.001), 
270 Colour (p=0.012) and Analyst (p=0.013).

Variable Estimate 95% Confident Standard 
Error

p

(Intercept) 0.0697321 -0.60499062, 0.74445474 0.3437274 0.840

Canopy density -4.4783526 -5.33703130, -3.61967387 0.4374412 <0.001

Altitude -0.9168489 -1.29410419, -0.53959361 0.1921870 <0.001

Colour -0.3111846 -0.55472733, -0.06764184 0.1240692 0.012

Analyst -0.2884761 -0.51514749, -0.06180480 0.1154742 0.013

271
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272 All variables included in the best fitting RGB data model have a negative coefficient indicating that 

273 an increase in Canopy density and Altitude have a negative effect on the probability of detection. 

274 The Colour variable was further analysed with a Tukey’s HSD post-hoc test to assess which colours 

275 were significantly different (Figure 1).  The Tukey’s HSD analysis showed that the probability of 

276 detection of a green subject (a) was significantly lower than the probability of detection of either a 

277 blue or red t-shirt (b) (Figure 1).

278

279 3.3. Comparison
280 The overall detection probability was higher 

281 for TIR images than for RGB images (Figure 

282 2). A two sample t-test showed a significant 

283 (p<0.005) difference in mean detection 

284 probabilities between RGB and TIR images.

285 The best fitting models were compared for 

286 TIR and RGB images. Only Canopy density 
Figure 2. Bar charts that summarize mean subject 
detection probability with standard error.

Figure 1. Box-and-whisker plots that summarize detection probabilities for the three t-shirt colours 
worn by subjects.
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287 (negative coefficient) and Analyst were included in both data models. Distance was only included in 

288 the TIR data model, whereas Altitude and Colour were included in the RGB data model. As 

289 previously stated, Colour was not included in the TIR base data model.

290 It is important to note that Time of Day was not significant in either data model.
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291 4 Discussion
292 We aimed to identify factors that have a significant effect on the probability of detection of 

293 poachers by drones using two camera types (RGB and TIR). Factors that had a significant effect on 

294 the probability of detection by TIR images were canopy density, subject distance from the image 

295 centreline and the image analyst, while the RGB camera was significant affected by canopy density, 

296 altitude of the drone, the subjects’ contrast against the background and the image analyst.

297 Canopy density had a significant negative influence on detection probability for both cameras. This 

298 is in accordance with studies on aerial surveying of animals that have found that vegetation density 

299 or habitat type has a significant negative impact on probability of detection (Chrétien et al., 2015; 

300 Ransom, 2012; Schlossberg et al., 2016; Zabransky et al., 2016). Our results are also consistent with 

301 a study that found that habitat type had a significant impact on detection of caribou (Patterson et al. 

302 2016). 

303 Our study also showed a decrease in detection probability with increasing distance from the image 

304 centreline, for TIR images. In contrast, no equivalent effect was found in our RGB analysis or by a 

305 previous caribou study (Patterson et al., 2016). The latter used a 50-mm lens on a full-frame camera 

306 attached to the drone resulting in a FOV of 40°. On this system, distortion and other effects towards 

307 the edges of the frame are minimal and it could thus be expected that no effect would be observed. 

308 Our RGB camera had a wide-angle lens with a FOV of 82° and therefore has a greater distortion 

309 than a normal lens (Brauer-Burchardt and Voss, 2001). In contrast, the TIR camera we deployed in 

310 our study had a narrow FOV of 45°. This runs counter to the suggestion that greater distortion from 

311 a wider FOV could explain the significant effect for the TIR but not the RGB camera. We were 

312 unable to find any similar reports in literature, however, the impact of the distance from the 

313 centreline on the probability of detection is well-known in line-transect surveys (Ridgway, 2010). 

314 Other studies have hypothesized that subjects’ distance from the centreline is affected by the height 

315 of the canopy (Israel, 2011).

316 The RGB images revealed that detection was strongly influenced by the subjects’ colour against the 

317 background. A similar effect was found by Patterson et al. (2016) who found that targets with 

318 greater contrast against the landscape were more easily detected. Detection is also impeded by 

319 greater contrast variation in the image background, as this results in variable contrast of the subject 

320 against the background (Abd-Elrahman et al., 2005). Chrétien et al. (2015) found animals with 

321 cryptic fur have a lower probability of detection because they blend into their environment. Hence, 

322 our findings add to previous studies that have shown that aspects of colour, such as contrast, affect 

323 the probability detection using RGB images.
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324 Higher flight altitudes also showed lower detection probabilities for RGB images. One way around 

325 this might be to use the full resolution original images. Patterson et al. (2016) flew at a constant 

326 altitude of around 690 m with no significant variation in elevation in the study area; and therefore 

327 was not able to test for the effect of altitude on the probability of detection. However, our results do 

328 suggest that the TIR imaging camera is superior at higher flight elevations for the same number of 

329 pixels. This could be important in cases where drones must be flown low or where drone height 

330 above ground will vary considerably over an area being investigated.

331 Another significant effect in the data models was the variation in detection probabilities between 

332 observers. Patterson et al. (2016) did not find an analyst effect in their study. A possible explanation 

333 might be that Patterson et al. (2016) used a controlled procedure for the analysts who were 

334 instructed to work through a fixed number of images per day, while the analysts themselves had no 

335 previous experience. In our study the analyst effect might be due to the use of three different 

336 analysts, with different experience levels.

337 Time of day was included as factors in the present study for RGB and TIR images, however no 

338 significant difference was found. In contrast, Patterson et al. (2016) found a significant time of day 

339 effect. Nonetheless, their flights were performed in a larger time window (7:00 – 9:30 am and 2:00 

340 – 3:00 pm), with more targets being detected in the afternoon. Also, their study site was in 

341 Labrador, Canada with potentially very different changes in light level between the two flight 

342 periods, relative to Tanzania.

343 An increasing number of research projects are examining the use of drones for ecological 

344 conservation and anti-poaching efforts (Chrétien et al., 2015; Christiansen et al., 2014; Christie et 

345 al., 2016; Linchant et al., 2015; Martin et al., 2012; Mukwazvure and Magadza, 2014; Mulero-

346 Pázmány et al., 2014; Olivares-Mendez et al., 2015; Patterson et al., 2015; Vermeulen et al., 2013). 

347 This is the first study to focus on poacher-detection and the first to explore the factors affecting 

348 detection probabilities for TIR imaging. Most other studies that have examined TIR imaging with 

349 drones have focused on the automated detection of animals and humans, which is essential to 

350 reduce the researcher-hours spent on analysing images and can facilitate near-real time detection of 

351 animals/humans in the field (Christiansen et al., 2014; Gonzalez et al., 2016; Longmore et al., 2017; 

352 McMillen, 2016; Olivares-Mendez et al., 2015; Seymour et al., 2017). Burke et al. (2018b) applied 

353 automatic detection software to the TIR images used in our study. Promising methods for increased 

354 detection probabilities lie in the integration of data from multiple sensors such as RGB and TIR 

355 cameras (Chrétien et al., 2015; Christiansen et al., 2014).

356 In conclusion, the TIR images allowed for higher detection probability of our experimental 

357 poachers than RGB images. This provides a clear advantage against poachers are trying to hide 
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358 under vegetation, wear low-contract clothing, or operate at night. However, during the daytime, 

359 when temperatures are higher, the RGB performs better than the TIR camera. As expected, 

360 poachers hiding under thick vegetation remain undetected with both systems. Distance from the 

361 flight midline also influenced detection and should be considered when conducting anti-poaching 

362 missions. Potential improvements to detect poachers under trees might be achieved by use of a 

363 camera placed at an oblique angle as well as use of machine learning for detection instead of human 

364 image analysts. 

365
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366 5 Glossary
367 Altitude: The altitude of the drone measured from the take-off point.
368 Analyst: Person who reviewed each image from the drone and marks every person detected in the 
369 images.
370 Canopy Cover: Percentage of canopy covering the location compared to open sky.
371 Colour: Test subject have been wearing uniform red, green or blue coloured t-shirt to create a 
372 controlled contrast against the green vegetation in the background.
373 Distance: The distance of a test subject to the centreline of an image in meters.
374 Field of View (FOV): A measurement of a lens in degrees of the area in front of the lens which is 
375 been captured.
376 Probability of Detection: The likelihood that an object is been detecting.
377 Red Green Blue (RGB): Colour model used by most common cameras today.
378 Time of Day: Variable to compare the influence of dawn and dusk on the probability of detection.
379 Thermal Infrared (TIR): A wave spectrum which is radiated by warm objects.

380 6 Appendix
381 A. Flight pattern

382

Appendix A: Flight pattern of 
the drone. Each row is 70 m 
in length and the Connection 
Sections are 30 m long. The 
Decent leads the drone back 
to the Take-off area.

383
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384 B. Comparison between RGB and TIR images.

385

Appendix B: Comparison between 
RGB images on the left and TIR on 
right. Both images show the same 
area, at the same resolution with 
two people visible.

386

387 Appendix B to be printed in colour
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