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Abstract 

Sedentary behaviour (SB) has emerged as a risk factor for cardiovascular 

morbidity and mortality, independent of physical activity (PA) levels. Despite 

associations between SB and cerebrovascular disease, little research has 

assessed the influence of SB on cerebrovascular function, comprising cerebral 

blood flow (CBF), cerebral autoregulation (CA) and cerebrovascular carbon 

dioxide reactivity (CVR). This is of upmost importance since the maintenance of 

cerebrovascular function appears critical for cognition, mood and the prevention 

of cerebrovascular diseases. Consequently, the overarching aims of this thesis 

were to explore the effects of sitting on cerebrovascular function, cognition and 

mood and to explore the effect of breaking up sitting on these parameters. 

 

Study one assessed whether objectively measured workplace sitting and PA 

were associated with cognition and mood. Results showed workplace sitting 

was negatively associated with calm mood state, but not cognition. Standing 

and stepping whilst at work were positively associated with aspects of cognition 

(working memory and attention) and mood (positive affect and calm and content 

mood states), indicating PA throughout the workday should be encouraged as it 

may have beneficial effects on mental wellbeing and cognitive performance. In 

contrast to guidelines advising increasing light-intensity PA in the workplace, 

only moderate-intensity PA at work was positively associated with working 

memory, possibly indicating this higher intensity of PA should be encouraged 

during work hours to positively influence cognitive performance in desk workers. 

 

Study two aimed to determine the acute effects of a prolonged sitting period on 

cerebrovascular function, cognition and mood in healthy desk workers. 

Uninterrupted sitting for six hours reduced CBF and impaired aspects of CA but 

had no effect on CVR. Decreases in positive affect, and the alert and content 

mood states were also observed, but these were not related to the concurrent 

changes in cerebrovascular function. There was no change in cognition 

following prolonged sitting. Results may have important implications for the 

long-term mental and physical health of individuals who are repeatedly exposed 

to periods of uninterrupted sitting. 

 

Study three assessed the acute effects of breaking up sitting time on 

cerebrovascular function in healthy desk workers using two different walking 

break strategies. The decrease in CBF and CA observed following four hours of 

uninterrupted sitting was prevented using frequent, short duration walking 

breaks rather than less frequent, longer duration walking breaks. Results further 

demonstrate that prolonged uninterrupted sitting impairs cerebrovascular 

function and suggest that the frequency of the breaks used to interrupt sitting is 

an important component to preserve aspects of function. In contrast, both 
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walking break strategies caused a larger increase in CVR compared to 

prolonged sitting. This indicates that, for this aspect of cerebrovascular function, 

any duration or frequency of PA may have acute benefits. 

Study four assessed whether using a computer-based prompting software 

designed to break up prolonged sitting at work altered cerebrovascular function, 

cognition and mood in healthy office workers. Following the intervention, 

workplace sitting was reduced and replaced predominantly by increased time 

spent standing. This reduction in sitting improved aspects of CA but had no 

influence on other measures of cerebrovascular function, cognition or mood. 

Results provide preliminary evidence that long-term reductions in SB may 

improve aspects of cerebrovascular function.  

Overall, the major findings of this thesis are that prolonged, uninterrupted sitting 

acutely impairs aspects of cerebrovascular function, however this can be 

prevented by breaking up sitting with short duration, regular walking breaks. 

Prolonged sitting also acutely impairs aspects of mood but not cognition. Taken 

together this thesis provides the first evidence that SB negatively effects 

cerebrovascular function and further research should explore whether this leads 

to heightened cerebrovascular disease risk.  
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1.1. Background 

Sedentary behaviour (SB) has emerged as an independent risk factor for 

cardiovascular and metabolic health (Dunstan et al., 2012; Healy et al., 2008). 

SB refers to any waking behaviour in a sitting, reclining or lying posture with an 

energy expenditure of less than 1.5 metabolic equivalents (Sedentary 

Behaviour Research Network, 2012; Tremblay et al., 2017) and includes 

activities such as workplace sitting, television viewing and computer use 

(Dunstan et al., 2012). The prevalence of SB is increasing, with the workplace 

identified as a key setting where most adults accrue SB since many light activity 

jobs now require extended sitting periods and are computer-based (Owen et al., 

2010; Parry and Straker, 2013; Ryan et al., 2011). Indeed, UK office workers 

spend 60-65% of their work hours sitting which is not compensated with 

increased physical activity (PA) during leisure time (Clemes et al., 2014, 2016). 

 

Associations between prolonged periods of SB and all-cause morbidity and 

mortality have been observed, which are not due to the lack of engagement in 

low-, moderate- or vigorous-intensity PA (Biswas et al., 2015). Indeed, there is a 

substantial body of prospective data on the associations of SB and the risk of 

developing diabetes mellitus and cardiovascular disease (CVD), as well as with 

overall mortality (Young et al., 2016). There is also some evidence that SB is 

associated with cerebrovascular diseases such as stroke (Chomistek et al., 

2013; McDonnell et al., 2016). The potential mechanisms underlying the 

relationship between SB and CVD mortality and morbidity possibly relate to the 

impact of SB on traditional CVD risk factors. SB has negative connotations on 

body mass index, waist circumference (Campbell et al., 2018; Healy et al., 
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2008; 2011), serum triglycerides, 2-hour plasma glucose, inflammatory markers 

(Healy et al., 2008; 2011) and blood pressure (Beunza et al., 2007; Gerage et 

al., 2015; Jakes et al., 2003; King et al., 2016). Additionally, recent experimental 

evidence suggests SB exerts direct and indirect effects on the vascular system 

itself. SB is associated with increased arterial stiffness (García-Hermoso et al., 

2015) and carotid intima-media thickness (García-Hermoso et al., 2015). 

Furthermore, a single bout of prolonged sitting leads to acute lower limb 

peripheral conduit artery endothelial dysfunction (Restaino et al., 2015, 2016; 

Thosar et al., 2014; 2015), an early marker of atherosclerosis. However, to date 

research has focused on peripheral artery function and, despite some evidence 

that SB may be associated with cerebrovascular diseases, little experimental 

work has examined the direct effects of SB on cerebrovascular function. 

 

Cerebrovascular function describes the mechanisms regulating cerebral blood 

flow (CBF) to maintain constant cerebral perfusion (Willie et al., 2014), 

preserving normal brain function (Willie et al., 2011) and preventing the risk of 

ischemic brain injury and damage (Tzeng and Ainslie, 2014; Wheeler et al., 

2017; Willie et al., 2014). Impairments in cerebrovascular function can cause 

reduced cognitive functioning (Bertsch et al., 2009; Marshall et al., 2001), 

neurodegenerative diseases including dementia, Alzheimer’s disease and 

stroke (Gommer et al., 2012; Keage et al., 2012; Wolters et al., 2017), and 

mood disorders such as depression (Honda et al., 2014; Nobler et al., 2002; 

Videbech, 2000) and bipolar disorder (Benabarre et al., 2005; Dev et al., 2015). 

Minimal research has considered the potential impact of SB on cerebrovascular 

function, cognition and mood. Physically active adults exhibit improved 
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cerebrovascular function compared to sedentary adults (Ainslie et al., 2008; 

Bailey et al., 2013; Brown et al., 2010) however, individuals were classified as 

sedentary if they did not complete regular PA and physical inactivity is distinct 

from SB. Mood appears to also be influenced by SB since experimentally 

increased SB enhanced negative mood state (Edwards and Loprinzi, 2016a; 

Endrighi et al., 2016), but the mechanisms underlying this response are 

unknown. Additionally, a systematic review recently concluded SB is negatively 

associated with cognitive function, however, as highlighted by the authors, all 

included studies were observational in design and used subjective assessments 

of SB, whilst some misclassified SB as a lack of PA (Falck et al., 2017). 

However, recently some evidence indicates SB may affect cognition since SB 

was associated with reduced thickness of the medial temporal lobe, which is 

thought to be the site of atrophy during cognitive decline (Siddarth et al., 2018). 

Collectively, to date in the few studies that have examined the influence of SB 

on cerebrovascular function, cognition and mood, most have not actually 

assessed SB or the research designs adopted mean causality cannot be 

determined, highlighting the need for further experimental research.  

 

Following on from research demonstrating the potential detrimental health 

effects of SB, evidence is emerging that breaking up periods of prolonged SB 

with short PA bouts can improve cardiometabolic health and CVD risk factors. 

Laboratory studies have observed breaking up sitting with walking breaks 

prevents the detrimental impact of prolonged sitting on glucose metabolism 

(Bailey and Locke, 2015; Dunstan et al., 2012; Peddie et al., 2013), lower limb 

endothelial function (Thosar et al., 2015) and blood pressure (Larsen et al., 
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2014). Similarly, breaking up sitting also improves mood and potentially 

cognition. Mood state increased when sitting was interrupted with hourly 

treadmill walking bouts (Bergouignan et al., 2016), whilst four days of following 

a free-living ‘sit less’ strategy also increased pleasantness (Duvivier et al., 

2017). Acute improvements in cognitive performance were observed when 

breaking up eight hours of sitting with either standing, walking or cycling bouts 

(Mullane et al., 2017), however this has not been universally observed 

(Bergouignan et al., 2016; Duvivier et al., 2017; Wennberg et al., 2016). 

Furthermore, the mechanisms underlying these observations have not been 

investigated, but owing to the previously discussed influence of cerebrovascular 

function on mood and cognition, changes in cerebrovascular function may 

contribute. 

 

In summary, SB has emerged as independent risk factor for cardiometabolic 

and cardiovascular morbidity and mortality. Research investigating the 

mechanisms underlying this risk to date have focused on traditional CVD risk 

factors and peripheral artery function. Despite associations between SB and 

cerebrovascular disease, little research has assessed the influence of SB on 

cerebrovascular function. This is of upmost importance since the regulation of 

cerebrovascular function may be critical for cognitive performance, mood and 

the prevention of cerebrovascular disease development. The inclusion of PA 

breaks during prolonged sedentary periods can improve mood and potentially 

cognition, however the mechanisms explaining this response are unknown, but 

may relate to changes in cerebrovascular function. Consequently, the 

overarching aims of this thesis are to investigate the effects of sitting on 
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cerebrovascular function, cognition and mood, and to explore the effect of 

breaking up sitting on cerebrovascular function, cognition and mood.  

 

1.2. Aims and Objectives  

The overall aims of this thesis are to: 

1. Assess the relationship between workplace SB and PA, cognition 

and mood. 

2. Determine the acute effects of a prolonged, uninterrupted sitting 

period on cerebrovascular function, cognition and mood. 

3. Determine the acute effects of breaking up prolonged sitting with 

short bouts of light-intensity PA on cerebrovascular function. 

4. Assess the changes in cerebrovascular function, cognition and 

mood following an 8-week intervention designed to break up 

prolonged sitting at work.   

 

The aims outlined above will be achieved through the following objectives: 

In line with Aim 1: 

1. Objectively measure workplace SB and PA in a sample of full-time 

workers. 

2. Assess whether the time spent sitting, standing and stepping during 

work hours is associated with cognition and mood. 

3. Assess whether the time spent sitting, standing and stepping during 

weekdays and the weekend is associated with cognition and mood. 



  

7 

 

4. Assess whether the time spent in light-, moderate- and vigorous-

intensity PA during work hours, weekdays and the weekend is 

associated with cognition and mood.  

In line with Aim 2: 

1. Measure cerebrovascular function, cognition and mood prior to and 

following an acute period of prolonged, uninterrupted sitting.  

2. Assess whether any observed changes in cerebrovascular function 

are related to any observed changes in cognition or mood.  

In line with Aim 3: 

1. Compare the effect of a prolonged, uninterrupted sitting period to 

breaking up sitting with walking breaks on cerebrovascular function, 

cognition and mood.  

2. Compare two different walking break protocols to establish the most 

effective PA break protocol to potentially enhance cerebrovascular 

function.  

In line with Aim 4: 

1. Engage office workers in an 8-week intervention using a computer-

based prompting software designed to reduce workplace sitting.  

2. Objectively assess SB and PA levels prior to and after using the 

prompting software for 8-weeks.  

3. Compare the effects of using the prompting-software or a no-

software control period on SB and PA levels, cerebrovascular 

function, cognition and mood.  
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2. Literature Review  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parts of this review are based on the publication in 

Exercise and Sport Sciences Reviews, 2017 

‘Sedentary behavior and cardiovascular disease risk: 

mediating mechanisms.’ 
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2.1. The Cerebrovasculature and Cerebrovascular Function   

2.1.1. Cerebral Vasculature 

At rest, blood flow to the brain accounts for 15% of total cardiac output (Willie et 

al., 2011). The combination of the brain’s high energy demand, accounting for 

20% of the body’s total resting oxygen consumption (Ainslie and Duffin, 2009), 

and small energy storage capacity (Willie et al., 2011) mean that the constant 

delivery and regulation of cerebral blood flow (CBF) is vital. The brain is 

perfused by four main blood vessels: two internal carotid arteries and two 

vertebral arteries, with the latter joining to form the basilar artery (Cipolla, 2009; 

Willie et al., 2014). These vessels subsequently unite to form the Circle of Willis, 

which in turn branches into three pairs of arteries: the anterior, middle and 

posterior cerebral arteries, with each pair perfusing the left and right side of the 

brain (Cipolla, 2009; Querido and Sheel, 2007). The middle cerebral arteries 

(MCA) and the anterior cerebral arteries (ACA) supply blood to the frontal, 

temporal and parietal brain regions, whilst the posterior cerebral arteries (PCA) 

supply the occipital lobe and inferior part of the temporal lobe. These vessels 

then branch into smaller pial arteries which travel across the brain surface and 

further divide into penetrating arteries and arterioles which infiltrate the cerebral 

cortex (Cipolla, 2009; Girouard and Iadecola, 2006; Willie et al., 2014; Figure 

2-1).  
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Figure 2-1: (a) The cerebral circulation (adapted from Willie et al., 2014). (b) Regions 

of the cortex supplied by the middle, posterior and anterior cerebral arteries.   
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The image originally presented here cannot be made freely available via LJMU E-

Theses Collection because of copyright. The image was sourced at: Willie, C.K., 

Tzeng, Y.-C., Fisher, J.A. and Ainslie, P.N. (2014), Integrative regulation of 

human brain blood flow, The Journal of Physiology, 592(5), pp.841–859. 
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2.1.2. Cerebral Blood Flow and Function  

CBF is determined by cerebral perfusion pressure and cerebrovascular 

resistance (Ainslie and Duffin, 2009; Tzeng and Ainslie, 2014). Cerebral 

perfusion pressure is the difference in blood pressure (BP) at the circle of Willis 

and intracranial pressure, with the latter formed from central venous pressure 

and the pressures within the cerebrospinal fluid (Ainslie and Duffin, 2009). 

Cerebrovascular resistance describes the resistive forces acting on blood flow 

through the brain. Resistance to flow occurs mostly in the cerebral arteries and 

capillary beds, with increasing vascular tone in turn increasing resistance 

(Ainslie and Duffin, 2009; Phillips et al., 2016). Regulation of CBF is essential to 

prevent the risk of ischemic brain injury and damage, but also to prevent 

hyperperfusion of the cerebral tissues, as excessive blood flow can cause the 

breakdown of the blood-brain barrier, permitting the transudation of fluid into the 

interstitium and pericapillary astrocytes. Such changes can underlie the 

development of hyper-perfusion syndromes including seizures, headaches, 

encephalopathy and stroke (Tzeng and Ainslie, 2014). The regulation of CBF is 

an integrative process, with at least four key regulators involved: BP (cerebral 

autoregulation), chemical factors (cerebrovascular reactivity), cerebral 

metabolism (neurovascular coupling) and the autonomic nervous system (Willie 

et al., 2011a, 2012, 2014; Figure 2-2).  



  

12 

 

 

 

Figure 2-2: A summary of the main mechanisms contributing to the regulation of 

cerebral blood flow (CBF). BP- blood pressure; SNA- sympathetic nerve activity; PCO2- 

partial pressure of carbon dioxide (adapted from Ainslie and Duffin, 2009). 

 

2.1.2.1. Chemical Factors 

The partial pressure of arterial carbon dioxide (PaCO2) is the main regulator of 

CBF (Ainslie and Duffin, 2009), with cerebral perfusion exhibiting high sensitivity 

to changes in PaCO2 levels (Willie et al., 2014). This high PaCO2 sensitivity is 

unique to the cerebrovasculature (Ainslie et al., 2005) and is evident across the 

cerebral arterial tree. The pial arterioles are considered the main site of 

resistance modulation as they are located within the cerebrospinal fluid in the 

subarachnoid space, meaning they are readily exposed to changes in metabolic 

conditions (Willie et al., 2014).  

 

The term cerebrovascular carbon dioxide (CO2) reactivity (CVR) provides a 

measure of the ability of the cerebrovascular bed to dilate or constrict in 

response to changes in PaCO2 (Ainslie and Duffin, 2009). Increased PaCO2 

elevates CBF by around 3-6% per millimetre of mercury change in CO2 above 

that during normal breathing (Willie et al., 2014). In contrast, CBF declines in 

response to reductions in PaCO2, with decreases observed between 1-3% per 

millimetre of mercury decrease in resting CO2 (Willie et al., 2014). This 

regulation of blood flow functions to maintain cerebral CO2 and in turn keep pH 

 

The image originally presented here cannot be made freely available via LJMU E-

Theses Collection because of copyright. The image was sourced at: Ainslie, P.N. 

and Duffin, J. (2009), Integration of cerebrovascular CO2 reactivity and 

chemoreflex control of breathing: mechanisms of regulation, measurement, and 

interpretation, American Journal of Physiology. Regulatory, Integrative and 

Comparative Physiology, 296(5), pp.R1473-95. 
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levels constant (Willie et al., 2012). Furthermore, this serves as a control 

mechanism for respiration, as within the brainstem are respiratory 

chemoreceptors sensitive to alterations in pH (Ainslie and Duffin, 2009; Willie et 

al., 2012). The mechanisms underlying the cerebrovasculature’s sensitivity to 

CO2 are not fully explained (Ainslie and Duffin, 2009; Willie et al., 2014), but 

likely relate to changes in pH. It is suggested that reductions in blood pH 

activate potassium channels in the vascular smooth muscle, enacting 

endothelial cell hyperpolarisation and subsequent smooth muscle dilation. 

Additionally, shear-stress mediated release of vasodilators, such as nitric oxide 

(NO) and prostaglandins, may also contribute (Ainslie and Duffin, 2009).  

 

2.1.2.2. Blood Pressure  

Cerebral autoregulation (CA) is the physiological process that maintains 

constant CBF despite changes in mean arterial pressure (MAP) (Ainslie and 

Duffin, 2009; Numan et al., 2014; Querido and Sheel, 2007). The concept of CA 

was introduced by Lassen (1959), who developed a CA curve based on data 

gathered from studies examining various patient groups with a range of BP 

values. This curve showed CBF to be stable across a BP range of 60-150 

mmHg (Figure 2-3a), termed static autoregulation (Willie et al., 2014). However, 

this curve was generated from data acquired as averages over several minutes 

and compared between different patient groups. Nonetheless, examining within-

subject CBF responses to changes in BP is challenging as the baroreflex limits 

the range of BP values and using other techniques to manipulate BP, such as 

vasoactive drugs, can confound results. Despite this, recent within-subject data 
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suggests the static autoregulatory range is smaller than 60-150 mmHg (Willie et 

al., 2014; Figure 2-3b). 

 

 

Figure 2-3: (a) The classical view of the dynamic autoregulation. (b) A schematic 

diagram based on contemporary data indicating a small plateau region for dynamic 

autoregulation (adapted from Willie et al., 2014). 

 

In addition to static autoregulation, advancements in the temporal resolution of 

data collection technologies has enabled the development of the concept of 

dynamic autoregulation (Aaslid et al., 1989). Seminal work by Aaslid et al. 

(1989) demonstrated CBF followed the rapid decline in MAP that occurred 

during the release of inflated thigh-occlusion cuffs. Dynamic autoregulation 

therefore describes the transient response of CBF to sudden changes in BP 

(Panerai, 2009), such as when changing posture (Willie et al., 2014). Whilst 

static autoregulation maintains CBF during gradual variations in BP occurring 

over minutes to hours (Ainslie and Duffin, 2009; Numan et al., 2014), dynamic 

autoregulation refers to how CBF responds to rapid BP alterations occurring 

within a few seconds (Ainslie and Duffin, 2009). The latter has evolved as a 

result of being able to measure beat-to-beat CBF and BP, therefore they are 

(a) (b)  

 

 

The image originally presented here cannot be made freely available via LJMU E-

Theses Collection because of copyright. The image was sourced at: Willie, C.K., 

Tzeng, Y.-C., Fisher, J.A. and Ainslie, P.N. (2014), Integrative regulation of 

human brain blood flow, The Journal of Physiology, 592(5), pp.841–859. 
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more of an experimental rather than physiological distinction (Willie et al., 

2014).  

 

CA occurs by altering cerebrovascular resistance in accordance with BP 

changes. Increases in BP causes vasoconstriction, whilst vasodilation occurs 

when BP decreases and together this functions to maintain a consistent blood 

flow (Gommer et al., 2012). In the main this regulation occurs at pial arteries via 

alterations in their vascular tone, however the physiological mechanisms 

underpinning this are unclear (Peterson et al., 2011; Tzeng and Ainslie, 2014). 

The endothelium and arterial vascular smooth muscle likely contribute via their 

mechanoreceptor properties and changes in shear stress and stretch responses 

respectively (Peterson et al., 2011). However, the larger extracranial arteries 

may also play a role in CA as, due to their compliant nature, it is suggested they 

mechanically buffer changes in BP based on the arterial Windkessel model 

(Chan et al., 2011; Willie et al., 2014). Indeed, during increases and decreases 

of BP via drug infusion the internal carotid artery has been shown to constrict 

and dilate respectively (Liu et al., 2013), whilst constriction of the internal carotid 

artery and vertebral artery contribute to a hypotension induced decrease in CBF 

during lower-body negative pressure (Lewis et al., 2015). 

 

2.1.2.3. Cerebral Metabolism 

Cerebral perfusion is linked to cerebral metabolic activity, whereby local blood 

flow changes according to the regions of the brain that are activated (Girouard 

and Iadecola, 2006; Willie et al., 2014). This temporal and regional linkage 

between neural activity and CBF response is termed neurovascular coupling 
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(NVC) (Phillips et al., 2016). Structurally, the vascular and nervous systems 

within the brain are closely linked, creating a neurovascular unit (Girouard and 

Iadecola, 2006; Willie et al., 2014) supporting this functional relationship. The 

neurovascular unit is formed of three components: the vascular smooth muscle 

cell, the neuron and the astrocyte glial cell (Phillips et al., 2016). As arterioles 

penetrate deep into the cerebral tissue they directly contact astrocytic end feet, 

linking to the nervous system (Girouard and Iadecola, 2006).  

 

There are many mechanisms suggested to mediate NVC including vasoactive 

ions, metabolic by-products, and vasoactive factors released in response to 

neurotransmitters (Girouard and Iadecola, 2006). Increases in extracellular 

glutamine released from neural synapses are key to the process of NVC. 

Glutamine can interact with both neural and astrocyte cells to activate signalling 

cascades leading to vasodilation of local arteries due to the release of 

vasodilators (Figure 2-4). In neural cells, glutamine stimulates the release of NO 

via the N-methyl-D-aspartate receptor, while in astrocytes glutamine stimulates 

metabotropic glutamine receptors leading to the production of prostaglandins 

and epoxyeicosatrienoic acid (Girouard and Iadecola, 2006; Phillips et al., 

2016). Pericytes, small contractile cells that wrap around capillaries, are also 

suggested to have an important role in NVC due to their closer proximity to 

neurons compared to arterioles. It is therefore suggested that neural activation 

first alters pericyte tone on capillaries via glutamine leading to vasodilation 

(Phillips et al., 2016). Vasoactive ions and factors also likely contribute to NVC. 

Neural signalling resulting in the generation of action potentials and synaptic 

transmissions produces potassium and hydrogen ions, which open potassium 
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channels on smooth muscle cells, causing dilation. Furthermore, during 

neuronal metabolism the production of adenosine and lactate also elicits 

vasodilation (Girouard and Iadecola, 2006). Taken together, the NVC response 

is the result of multiple mediators working to produce the functional link between 

neural activity and blood flow responses. 

 

Figure 2-4: The primary glutaminergic pathways involved in neurovascular coupling 

(NVC) (adapted from Phillip et al., 2015).  

 

2.1.2.4. Autonomic Nervous System  

The cerebrovasculature is extensively innervated by adrenergic (sympathetic) 

and cholinergic (parasympathetic) fibres (Willie et al., 2014). Alpha-adrenergic 

receptors located in the extracranial arteries, (internal carotid artery, vertebral 

artery), intracranial arteries (MCA, PCA, ACA) and small pial arterioles are 

activated via noradrenaline release causing vasoconstriction. Whilst beta-

adrenergic receptors are primarily located in the parenchymal arterioles, 

activation of which leads to vasodilation (Brassard et al., 2017). Despite this 

 

 

 

 

The image originally presented here cannot be made freely available via LJMU E-

Theses Collection because of copyright. The image was sourced at: Phillips, A.A., 

Chan, F.H., Zheng, M.M.Z., Krassioukov, A. V and Ainslie, P.N. (2016), 

Neurovascular coupling in humans: Physiology, methodological advances and 

clinical implications, Journal of Cerebral Blood Flow and Metabolism, 36(4), 

pp.647–64. 
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high innervation, the sympathetic regulation of CBF is controversial (Ainslie and 

Duffin, 2009; Brassard et al., 2017; Willie et al., 2014). Indeed, it has been 

suggested that any sympathetic regulation is masked by the other stronger 

regulatory mechanisms, namely CA and CVR (Ainslie and Duffin, 2009). 

Furthermore, sympathetic and parasympathetic activity may instead have an 

indirect influence on CBF, since this neural activity also influences BP and 

venous tone, which contribute to CBF (Brassard et al., 2017). 

 

However, using various approaches to investigate sympathetic nervous activity, 

research indicates sympathetic activity may contribute to the regulation of CBF. 

Indeed, the removal or blockade of ganglia increases CBF (Ter Laan et al., 

2013; Willie et al., 2014). Furthermore, reductions in CBF following an 

orthostatic challenge are suggested to be in part due to sympathetic-mediated 

vasoconstriction of extracranial or intracranial arteries (Brassard et al., 2017; 

Tymko et al., 2016). For example, lower body negative pressure reduces MCA 

and PCA blood flow velocities despite controlling for hypocapnia, which could 

also cause vasoconstriction (Tymko et al., 2016), however sympathetic activity 

was not directly assessed. CA is also impaired following the removal of 

sympathetic activity (Hamner and Tan, 2014; Ter Laan et al., 2013; Zhang, 

2004). For example, following pharmaceutical autonomic ganglion blockade, CA 

failed to attenuate the reduction in CBF that occurred during the BP-lowering 

Valsalva manoeuvre (Zhang, 2004). More recently, when modelling the relative 

contributions of sympathetic, cholinergic and myogenic mechanisms to CA, 

sympathetic activity was identified as the second largest contributor (Hamner 

and Tan, 2014). The role of the sympathetic nervous system in the response to 
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alterations in arterial CO2 levels is however less clear with decreases (Zhang et 

al., 2011) or no change (Ainslie et al., 2005) following sympathetic nervous 

system modulation. However, these effects may in part be due to concurrent 

changes in MAP influencing results (Willie et al., 2014). Alternatively, there is a 

paucity of data examining the cholinergic regulation of CBF, especially in 

humans (Ainslie and Duffin, 2009). Nonetheless, systemic cholinergic blockade 

impaired CA in healthy humans, suggesting some contribution (Hamner et al., 

2012). 

 

Despite studies supporting a role for sympathetic activity in the control of CBF, 

this is not universal finding and hence the topic remains controversial (Ainslie 

and Brassard, 2014; Brassard et al., 2017). Factors adding to this controversy 

include if regional differences in cerebral circulation responses exist, the 

influence of perfusion pressure on sympathetic activity and whether brain 

metabolic activity may blunt the sympathetic vasoconstrictive response (Ainslie 

and Brassard, 2014). Additionally, differences in the methodologies used to 

assess CBF and the experimental approaches used to examine sympathetic 

activity may further contribute to discrepancies (Brassard et al., 2017). For 

example, in a review of studies that have used alpha-adrenergic blockade to 

assess CBF regulation, eleven out of the twelve studies concluded sympathetic 

activity regulates CBF; however in the two studies that used beta-adrenergic 

blockade the opposite conclusion was drawn (Brassard et al., 2017). Overall, it 

appears the autonomic nervous system contributes to the regulation of CBF, 

however the extent of its role is not clear. 
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In summary, the regulation of cerebrovascular function is a multi-dimensional 

process that functions to maintain constant CBF, in turn reducing the risk of 

damage to the brain. This regulation has a critical role in preserving vital brain 

functions, such as cognition and mood, as will now be discussed.  

 



  

21 

 

2.2. Cerebrovascular Function, Cognition and Mood  

2.2.1. Cerebrovascular Function and Cognition 

Cognition refers to the mental abilities that facilitate processes such as memory, 

planning, inhibition, and problem-solving (Gijselaers et al., 2016). Chronically, 

reduction in CBF is a risk factor for cognitive impairment (Ruitenberg et al., 

2005) and is associated with cerebrovascular diseases whose aetiology include 

a decline in cognitive function, such as Alzheimer’s disease and dementia 

(Sabayan et al., 2012; Schuff et al., 2009; Wolters et al., 2017; Yew and Nation, 

2017). In healthy adults, a lower CBF at baseline is associated with a higher risk 

of dementia (Hazard Ratio: 1.31) and an accelerated rate of cognitive decline 

over the following seven years (Wolters et al., 2017). Furthermore, Alzheimer’s 

disease patients at baseline with a lower CBF exhibit an increased degree of 

cognitive impairment over a two-year follow up (Benedictus et al., 2017). In 

healthy ageing, there is a progressive decline in CBF of around 28–50% from 

the age of 30 to 70 years (Ogoh and Ainslie, 2009). Concomitantly, cognitive 

performance is known to reduce with advancing age and may be partly 

associated with this decline. Indeed, young healthy adults exhibit higher resting 

CBF and superior cognitive performance compared to older counterparts 

(Bertsch et al., 2009).  

 

CVR, NVC and CA are also impaired in Alzheimer’s disease and dementia 

patients. Even after controlling for risk factors, MCA reactivity to hypercapnia 

and hypocapnia is lower in Alzheimer’s disease and vascular dementia patients 

compared to healthy individuals (Glodzik et al., 2013; Vicenzini et al., 2007). 

Furthermore, a systematic review examining the relationship between CVR and 
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cognition using magnetic resonance imaging found CVR was consistently lower 

in these patients groups or in those with cognitive impairment compared to 

healthy individuals (Catchlove et al., 2018). Alzheimer’s patients also exhibit 

impaired CA as, during BP oscillations the relative change in CBF is higher 

compared to healthy individuals, indicating less effective damping by CA (den 

Abeelen et al., 2014). Various studies have also shown that during visual and 

verbal stimulating tasks, Alzheimer’s patients exhibit attenuated CBF in the 

corresponding cerebral regions, indicating NVC dysfunction (Girouard and 

Iadecola, 2006). Finally, impaired CVR also predicts future stroke incidence 

(Markus and Cullinane, 2001; Ogasawara et al., 2002) and transient ischemic 

attack incident (Markus and Cullinane, 2001), both of which can lead to 

diminished cognition (Ganzer et al., 2016; Sun et al., 2014). 

 

In addition to clinical populations, impaired CVR can cause cognitive 

impairment in healthy adults. In older adults, those with a greater CVR were 

less likely to show cognitive decline over a a six-year follow up (Ruitenberg et 

al., 2005), whilst in young adults greater CVR was associated with better 

cognition as assessed by inhibitory control (Guiney et al., 2015). It is suggested 

impaired CVR may cause diminished cognition due to influence of other CVD 

risk factors on the cerebrovasculature (Catchlove et al., 2018). Indeed, the 

Framingham cardiovascular risk profile correlates with CVR (Glodzik et al., 

2011), whilst peripheral artery disease patients exhibit impaired CVR and 

concomitant reductions in cognitive performance (Glodzik et al., 2011). 
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Collectively these studies indicate that in both healthy and patient groups, 

optimal functioning of the cerebrovasculature is important to maintain cognitive 

functions (Catchlove et al., 2018).  

 

2.2.2. Cerebrovascular Function and Mood  

Mood is defined as a short-term, diluted response to general environmental 

stimuli (Rothbard and Wilk, 2011). Moods tend to be diffuse, not focused on a 

specific cause and usually take the form of general positive or negative feelings 

(Frijda, 1986). Impairments in CBF are associated with mood disorders such as 

depression (Honda et al., 2014; Nobler et al., 2002; Videbech, 2000) and 

bipolar disorder (Benabarre et al., 2005; Dev et al., 2015). Patients with major 

depression have reduced blood flow in specific brain regions (Videbech, 2000) 

and reduced cerebrovascular reactivity (Neu et al., 2004). Furthermore, 

Alzheimer’s disease patients with higher scores on the Geriatric Depression 

Scale exhibit significantly greater regional hypoperfusion compared to those 

with low scores (Honda et al., 2014). Interventions designed to increase 

cerebrovascular function also enhance mood. In post-menopausal women, 

fourteen weeks supplementation with resveratrol increased CVR and also 

mood, which was suggested to be due to an enhanced ability for the cerebral 

vessels to modulate brain perfusion during times of demand (Evans et al., 

2017). Whilst these data indicate a role of cerebrovascular function in clinical 

mood disorders, relationships between CBF and function with everyday 

alterations in mood have received little attention and warrants further 

investigation.  
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Collectively, impairments in cerebrovascular function are associated with 

neurodegenerative diseases and subsequently reduced cognitive functioning. 

Moreover, cerebrovascular function may contribute to changes in mood. It is 

therefore of great importance to identify risk factors for cerebrovascular 

dysfunction to in turn prevent disease incidence. Meta-analyses and reviews 

indicate that physical activity (PA) is associated with decreased cerebrovascular 

disease risk (Guure et al., 2017; Stephen et al., 2017), however, less is known 

about the influence of sedentary behaviour (SB) on cerebrovascular function. 

The focus of the next section of this literature review is therefore to discuss SB 

as an independent health risk factor and the potential impact of SB on 

cerebrovascular function, cognition and mood.  
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2.3. Sedentary Behaviour 

2.3.1. Definition and Prevalence of Sedentary Behaviour  

Physical inactivity has long been recognised as detrimental to cardiovascular 

and metabolic health (Hamilton et al., 2008), however SB has also been 

identified as an independent health risk factor (Dunstan et al., 2012; Healy et 

al., 2008). SB describes any waking behaviour in a sitting, reclining or lying 

posture with an energy expenditure of less than 1.5 metabolic equivalents 

(METs) (Sedentary Behaviour Research Network, 2012; Tremblay et al., 2017) 

and includes activities such as workplace sitting, television viewing and 

computer use (Dunstan et al., 2012). The inclusion of a MET threshold within 

this definition has recently been challenged as some sitting-based activities, 

such as driving, exceed this limit (Henson et al., 2016; Mansoubi et al., 2015). 

Most importantly however, is that the definition of SB is distinct to that of 

physical inactivity, with the latter describing the failure to meet the minimum 

guideline of 150 minutes of moderate-intensity activity a week (Henson et al., 

2016). It is therefore possible for an individual to be physically active, but also 

highly sedentary and this behavioural pattern has been termed the active couch 

potato phenomenon (Owen et al., 2010). Due to developments in transportation, 

workplace, and daily living technologies, SB is increasing both in the workplace 

and during everyday life (Dunstan et al., 2012; Owen et al., 2010). Although 

estimates of the prevalence of SB differs depending on the assessment tool, it 

is estimated that adults spend 6 to 8 hours per day in SB, which includes sitting, 

television viewing, screen time and computer use (Young et al., 2016). 
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2.3.2. Workplace Sedentary Behaviour 

The workplace has been identified as a key setting where most adults accrue 

SB as many occupations are computer-based, resulting in predominantly 

sedentary work (Parry and Straker, 2013; Ryan et al., 2011). Indeed, workplace 

SB has increased during the past decades, with many light activity jobs now 

requiring extended sitting periods (Owen et al., 2010). UK office workers spend 

60-65% of their work time sitting which is not compensated with increased 

leisure time PA (Clemes et al., 2014, 2016). During a weekday, English office 

workers spend 66.2% of their time sedentary, 23.3% of their time standing and 

10.5% stepping (Smith et al., 2015). Furthermore, SB at work is accrued in 

prolonged periods and importantly the manner in which SB is accumulated has 

important implications for many health risk factors as described in section 2.7. 

Of their total sitting time, UK office workers spent 67% in sedentary bouts longer 

than 20 minutes, 52% in bouts longer than 30 minutes and 25% in bouts longer 

than 55 minutes (Ryan et al., 2011). In acknowledgement of the high 

prevalence of SB within workplaces, guidelines have been published 

emphasising the need to reduce this behaviour during the work day. It is 

suggested that a less sedentary office environment has the potential to enhance 

workforce health, productivity and profitability by reducing factors such as 

employee sickness and absenteeism (Buckley et al., 2015).  
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2.4. Sedentary Behaviour as an Independent Health Risk Factor  

Associations between prolonged periods of SB and all-cause morbidity and 

mortality have been observed, which are not due to the lack of engagement in 

low-, moderate- or vigorous-intensity PA (Biswas et al., 2015). It could be 

postulated that the association between SB and disease risk and mortality is 

merely due to a lack of PA which is displaced by sedentary time. To date 

however the evidence indicates otherwise, in that SB is a risk factor 

independent of PA levels (Hamilton et al., 2008).  

 

In adults meeting weekly PA guidelines, dose-response associations are 

observed between television viewing time and several cardiometabolic risk 

factors including waist circumference, systolic BP and 2-hour plasma glucose 

(Healy et al., 2008). Moreover, individuals participating in more than seven 

hours of moderate-to-vigorous PA a week, yet also accruing more than seven 

hours of daily television viewing time, present a two-fold greater risk of 

cardiovascular mortality compared with those engaging in seven hours of 

moderate-to-vigorous PA a week and only one hour of daily television viewing 

time (Matthews et al., 2012). Whilst these studies only considered television 

viewing time, a recent systematic review and meta-analysis assessing all forms 

of SB determined that, after statistical adjustment for PA, sedentary time was 

independently associated with increased risk for CVD incidence and mortality, 

in addition to all-cause mortality, cancer mortality and incidence, and type 2 

diabetes (Biswas et al., 2015). A limitation to these studies showing 

associations between SB, morbidity and mortality is that causation cannot be 

determined. However, using Bradford Hill’s causal criteria (Bradford-Hill, 1965), 
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which assesses if observed epidemiologic associations are causal, it was 

concluded that there is reasonable evidence for a likely causal relationship 

between SB and all-cause mortality (Biddle et al., 2016) 

 

Nonetheless, the risk of mortality associated with sitting may be partially 

attenuated by PA. In a meta-analysis, compared to those sitting for one hour a 

day, the risk for mortality was 52% higher in physically inactive sedentary 

adults, whereas this risk was reduced to 34% in active sedentary individuals 

(Chau et al., 2013). More recent meta-analyses indicate engagement in at least 

one hour per day of moderate-intensity PA appears to offset the sitting-

associated all-cause, CVD and cancer mortality (Ekelund et al., 2016, 2018).  

However, such high levels of PA greatly exceed current UK guidelines of 150 

minutes of moderate-intensity PA a week (Department of Health Physical 

Activity Health Improvement and Protection, 2011), meaning those who sit for 

prolonged periods may still have an increased mortality risk.  In addition to the 

engagement in PA reducing sitting-associated mortality, it appears even small 

movements in the form of fidgeting may also negate the risk. In a cohort of 

women followed up over 12 years, self-report fidgeting behaviour modified the 

association between sitting and mortality, independent of PA levels. Sitting for 

more than seven hours per day was associated with increased all-cause 

mortality in the low fidgeting group however not in the medium and high 

fidgeting groups (Hagger-Johnson et al., 2016). Objective and posture-specific 

assessments of fidgeting are needed to explore the potential protective role of 

fidgeting further. Collectively, data indicates SB contributes to disease 
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development and increased mortality risk and that this is largely independent 

from engagement in PA.  
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2.5. Sedentary Behaviour and Cardiovascular Health 

2.5.1. Sedentary Behaviour and Cardiovascular Morbidity and 

Mortality  

Evidence is accumulating that SB might be associated with increased 

cardiovascular-specific and overall mortality. Indeed, there is a substantial body 

of prospective data on the associations of SB with the risk of developing 

diabetes mellitus and CVD, as well as with overall mortality (Young et al., 2016). 

 

Early work, using data from Australian Diabetes, Obesity and Lifestyle Studies, 

showed television viewing time (as a surrogate for SB) was associated with an 

increased risk of all-cause and CVD-related mortality. Every one-hour increment 

in television viewing time was associated with an 11% and 18% increased risk 

of all-cause and CVD mortality respectively. Furthermore, each additional hour 

of viewing time was associated with an increased CVD mortality risk of 18% 

(Dunstan et al., 2010). The negative association between SB and mortality 

persists when total sitting time is assessed, with dose-response relationships 

observed between all-cause mortality and sitting even among individuals with 

high levels of PA (van der Ploeg et al., 2012). Furthermore, in healthy women, 

sitting more than ten hours a day compared with five hours a day was 

associated with increased CVD risk (Hazard Ratio: 1.18), taking into account 

PA levels (Chomistek et al., 2013). Finally, a recent systematic review and 

meta-analysis demonstrated SB was associated with increased CVD incidence 

(Hazard Ratio: 1.14) and mortality (Hazard Ratio: 1.18) after statistical 

adjustment for PA (Biswas et al., 2015).  
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A small number of prospective studies have investigated the association of SB 

as a risk factor for developing type 2 diabetes mellitus, with most showing a 

consistent positive association, which has been further confirmed by meta-

analyses and systematic reviews (Young et al., 2016). Once again using 

television viewing as a surrogate for SB, each additional two hours of viewing 

per day was associated with a relative risk of 1.20 of developing type 2 diabetes 

mellitus (Grøntved and Hu, 2011). More recently, a meta-analysis demonstrated 

both television viewing time and total SB were linearly associated with type 2 

diabetes mellitus independent of PA (Patterson et al., 2018).  

  

There is also some evidence that SB is associated with cerebrovascular 

disease, namely stroke incidence. In postmenopausal women over a mean 

follow-up of 12.2 years, sitting for more than 10 hours per day was associated 

with a stroke Hazard Ratio of 1.21 compared to those who sat for less than 5 

hours per day (Chomistek et al., 2013). Further work assessing healthy males 

and females demonstrated that those who watched television (surrogate for SB) 

for more than four hours per day were significantly more likely to have a stroke 

than those who watched television for two hours per day (Hazard Ratio 1.37) 

(McDonnell et al., 2016), however snacking behaviours associated with 

television viewing may also contribute to this risk. It is suggested that prolonged 

sitting may increase stroke risk through detrimental effects on known stroke risk 

factors such as glycaemic control, BP and waist circumference (McDonnell et 

al., 2016), however further research is needed to understand potential 

mechanisms underlying this association. 
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2.5.2. Sedentary Behaviour and Cardiovascular Risk Factors  

The potential mechanisms underlying the relationship between SB and CVD 

mortality and morbidity are currently unknown but are possibly related to the 

impact of SB on both traditional and novel CVD risk factors. 

 

2.5.2.1. Traditional Risk Factors 

Early, large cross-sectional studies using data from the US National Health and 

Nutrition Examination Survey (2003-2004 and 2005-2006) and Australian 

Diabetes, Obesity and Lifestyle study (2004-2005) were the first to demonstrate 

detrimental associations between SB and CVD risk factors. Such studies 

showed that, in healthy adults, SB is positively associated with body mass index 

(BMI), serum triglycerides, 2-hour plasma glucose (Healy et al., 2008), waist 

circumference (Healy et al., 2008; 2011) and inflammatory markers (Healy et 

al., 2011). Since these seminal studies, further research supports this link 

between SB and CVD development.  

 

In young and old adults with known risk factors for type 2 diabetes, SB is 

detrimentally associated with 2-hour plasma glucose, high-density lipoprotein 

cholesterol and triacylglycerol after adjusting for PA and BMI. Importantly, these 

associations were stronger compared to total or moderate-to-vigorous PA 

(Henson et al., 2013). More recently, a systematic review of objective, 

accelerometer-measured SB demonstrated total SB is negatively associated 

with insulin sensitivity, whilst some evidence supported an unfavourable 

association between SB and fasting insulin, insulin resistance (HOMA-IR) and 

triglyceride levels (Brocklebank et al., 2015). Furthermore, meta-analyses have 
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demonstrated high levels of SB are associated with a 112% increased risk 

(relative risk 2.12) of diabetes (Wilmot et al., 2012) and a 73% increased odds 

of metabolic syndrome (Edwardson et al., 2012) compared to low SB groups, 

and importantly such conditions are associated with CVD complications. 

Collectively, such data highlights SB has an important impact on several 

cardiometabolic health risk factors in both healthy and at-risk young and old 

populations and alterations in these metabolic parameters may further mediate 

the heightened CVD risk associated with sitting. 

 

Cross-sectional and prospective observations indicate positive associations 

between SB and BP. Systolic BP was 2.1 mmHg and 1.5 mmHg lower for 

middle-aged men and women, respectively, in the lowest quartile of television 

viewing compared to the highest quartile (Jakes et al., 2003). Importantly, in 

middle-age individuals, a reduction in systolic BP of 2 mmHg is associated with 

a 7% lower incidence of death following stroke and a 10% lower incidence from 

other vascular causes (Lewington et al., 2002). Furthermore, in healthy 

university graduates the most sedentary subjects had a 48% increased risk of 

developing hypertension compared to their non-sedentary peers (Hazard Ratio: 

1.48), independent of PA levels (Beunza et al., 2007). This relationship extends 

to populations with heightened CVD risk as more time spent sedentary was 

associated with higher brachial and central BP in hypertensive patients (Gerage 

et al., 2015), while in severely obese patients every additional hour of sitting 

was associated with a 14% higher risk of developing hypertension (King et al., 

2016). Although this area of research shows promise, there are very little data 
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available, therefore the influence of SB on BP in both heathy and high-risk 

populations warrants further investigation.  

 

Cross-sectional studies frequently find positive associations between SB and 

body weight (Campbell et al., 2018). Self-report SB is associated with body fat 

percentage (Wanner et al., 2016), waist circumference and BMI (Stamatakis et 

al., 2012). However, when SB is objectively monitored associations between 

waist circumference and BMI are no longer observed (Stamatakis et al., 2012), 

highlighting the potential limitations of self-report data such as the inaccurate 

reporting of data or response bias (Prince et al., 2008). More recently, a 

systematic review and meta-analysis of prospective studies including objective 

and self-report SB data observed a significant association between SB and 

waist circumference (Campbell et al., 2018). Furthermore, the odds ratio of 

becoming overweight or obese during follow-up was 1.33 in the highest 

compared with lowest category of SB (Campbell et al., 2018). Collectively, data 

indicates SB may have a small effect on body weight and composition, but 

whether these observed changes are clinically meaningful is questioned 

(Campbell et al., 2018). 

 

2.5.2.2. Novel Risk Factors 

Recent experimental evidence indicates that in addition to changes to traditional 

CVD risk factors, SB exerts direct and indirect effects on the vascular system 

itself, leading to increased CVD risk (Carter et al., 2017). Total sedentary time 

and bouts of sedentary time greater than ten minutes are associated with 

increased arterial stiffness (García-Hermoso et al., 2015) and carotid intima-
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media thickness (García-Hermoso et al., 2015). Furthermore, weekend SB was 

positively associated with arterial stiffness, even after adjustment for vigorous 

PA (Huynh et al., 2014).  

 

Endothelial dysfunction is an early marker of atherosclerosis (Bonetti, 2002; 

Lerman and Zeiher, 2005; Versari et al., 2009) and is associated with increased 

risk of cardiovascular events such as myocardial infarction, heart failure and 

stroke (Bonetti, 2002; Lerman and Zeiher, 2005). A single bout of prolonged 

sitting leads to acute lower limb peripheral conduit artery endothelial 

dysfunction, likely due to reductions in blood flow and shear stress (Restaino et 

al., 2015; 2016; Thosar et al., 2014; 2015). Three hours of uninterrupted sitting 

decreases superficial femoral artery mean shear rate (SR; an estimate of shear 

stress) and endothelial function (Thosar et al., 2014; 2015), whilst reductions in 

popliteal artery SR and endothelial function are also observed after six hours of 

sitting (Restaino et al., 2015). However, preventing lower limb decreases in 

blood flow and shear stress using limb heating (Restaino et al., 2016) or by 

small amounts of fidgeting leg movements (Morishima et al., 2016) abolishes 

the impairment in popliteal artery endothelial function observed in the opposite 

limb (Morishima et al., 2016; Restaino et al., 2016). This indicates SR 

contributes to sitting-induced vascular dysfunction. Contrastingly, sitting for up 

to six hours did not impair brachial artery endothelial function (Restaino et al., 

2015; Thosar et al., 2014). This difference may be due to the study protocols 

completely restricting lower limb motion during sitting but permitting upper limb 

movements, thereby maintaining blood flow and SR, or that this vessel may 
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exhibit a greater resilience to SR reductions (Restaino et al., 2015; Thosar et 

al., 2014; 2015). 

 

The type of shear stress experienced by the endothelium can also affect 

endothelial function. Antegrade shear stress, caused by a constant smooth 

laminar blood flow, preserves or enhances endothelial function, whilst 

retrograde or oscillatory shear, caused by turbulent blood flow at arterial 

bifurcations, promotes atherosclerosis and inflammation (Chatzizisis et al., 

2007; Johnson et al., 2011). Three hours of sitting reduces antegrade shear in 

the superficial femoral and brachial artery and increases brachial artery 

oscillatory shear (Thosar et al., 2014). Interestingly, changes in the shear 

pattern of both vessels occurred over distinct time courses. The reduction in 

femoral artery antegrade SR was evident after one hour of sitting, coinciding 

with the reduction in endothelial function. In contrast, in the brachial artery the 

changes in antegrade and oscillatory SR were observed after three hours of 

sitting. These data indicate that over a relatively short time scale, uninterrupted 

sitting elicits negative effects on antegrade and oscillatory shear and, 

consequently, endothelial function in the lower limbs. However, the negative SB 

effects on shear patterns in the upper limb occur over a longer period and are 

not accompanied by endothelial dysfunction (Thosar et al., 2014). Studies of a 

longer duration are needed to fully examine the effects of sitting-induced 

alterations in shear patterns on endothelial function. 

 

Increased inflammation may also contribute to the heightened CVD risk 

associated with sitting, as activation of the inflammatory cascade is a key 
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process in atherosclerotic plaque development (Willerson and Ridker, 2004) 

and is associated with CVD incidence (Healy et al., 2011). Indeed, greater SB is 

associated with increased markers of inflammation (Allison et al., 2012; Healy et 

al., 2011; Howard et al., 2015; Stamatakis et al., 2012; Yates et al., 2012), 

although this may in part be mediated by adiposity levels (Healy et al., 2011; 

Howard et al., 2015). Inflammatory cytokines also activate vascular production 

of reactive oxygen species (Zhang et al., 2010), which may further explain the 

association between SB and CVD risk as reactive oxygen species are thought 

to be an important component in the pathogenesis of CVD (Sugamura, 2011; 

Taniyama and Griendling, 2003; Zhang et al., 2010). Indeed, the reduction in 

superficial femoral endothelial function following three hours of sitting was 

prevented by oral administration of vitamin C, a potent reactive oxygen species 

scavenger (Thosar et al., 2015). However, the study did not perform additional 

testing to confirm that vitamin C was indeed responsible for a reduction in 

oxidative stress. Consequently, these initial findings support the need for further 

work to focus on a potential role of reactive oxygen species contributing to the 

impact of prolonged sitting on vascular function and subsequently CVD 

development.  

 

Overall, there is accumulating evidence that prolonged sitting is associated with 

increased mortality risk and CVD development which cannot be explained by an 

absence of PA. This association likely relates to the effect on CVD risk factors 

and experimental work has begun to explore the mechanisms underlying these 

associations. However, to date research has focused on peripheral arteries and, 

despite some evidence that SB may be associated with cerebrovascular 
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diseases, little experimental work has examined the direct effects of SB on the 

cerebrovasculature. 
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2.6. Sedentary Behaviour, Cerebrovascular Function, 

Cognition and Mood  

The influence of SB on cerebrovascular structure and function, and how this 

may in turn influence cognition and mood, has received little scientific attention. 

Investigating the impact of SB is of critical importance considering the role of 

cerebrovascular function for cognition, mood and neurodegenerative disease 

development. Furthermore, due to the high prevalence of workplace SB, any 

influence on cerebrovascular function, cognition or mood would have important 

implications for the health, productivity, performance and presenteeism of the 

workforce (Buckley et al., 2015; Wennberg et al., 2016).  

 

2.6.1. Sedentary Behaviour and Cerebrovascular Function  

To date, there are no studies specifically assessing the influence of SB on 

cerebrovascular function (Zlatar et al., 2014). Research exploring differences 

between physically active or exercise-trained individuals and sedentary 

individuals does however provide indication that cerebrovascular function is 

influenced by SB. Endurance-trained men had a 17% greater CBF compared to 

sedentary counterparts, which was present across more than a 60 year age 

span (Ainslie et al., 2008). Decreased CBF has also been observed in older 

sedentary women, who were classified as having a V̇O2max less than 90% of 

their age-predicted value, compared to older active women, who undertook 

regular aerobic exercise and had a V̇O2max greater than 90% of their age-

predicted value (Brown et al., 2010). Furthermore, when comparing both old 

and young sedentary individuals who completed no recreational activity outside 

of everyday living to trained individuals who completed at least 150 minutes of 

moderate-to-vigorous intensity activity each week, the latter had enhanced CVR 
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(Bailey et al., 2013). Conversely, there was no difference in CA between 

Masters athletes and sedentary controls (Aengevaeren et al., 2013). However, 

in these studies participants were classified as sedentary if they did not 

complete regular PA or exercise training, or based on their V̇O2max. Yet, 

physical inactivity and training status are distinct from SB and it is possible an 

individual may have an active lifestyle but still have a low V̇O2max, thus these 

studies did not truly assess SB. Interestingly, those with a genetic deposition for 

Alzheimer’s disease have shown increased CBF with longer sedentary time 

when objectively measured using accelerometery (Zlatar et al., 2014). However, 

this is suggested to be a compensatory mechanism for the greater metabolic 

demand for neuronal activity associated with the disease (Zlatar et al., 2014). 

Consequently, there is a need for future research to establish whether SB is an 

independent risk factor for impaired cerebrovascular function.  

 

2.6.2. Sedentary Behaviour and Cognition 

To date only a small number of studies have investigated the influence of SB on 

cognition and few have explored potential mechanisms. A systematic review 

concluded SB is negatively associated with cognitive function (Falck et al., 

2017). However, of the eight included studies, all were observational in design, 

all included subjective methods to assess SB (of which some had not been 

previously validated) and some misclassified SB as a lack of PA (Falck et al., 

2017). Consequently, this conclusion should be viewed cautiously.  

 

Mechanistically, it has been suggested that SB may be a risk factor for cognitive 

decline due to the interaction between brain blood glucose regulation and CBF. 
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It is proposed that SB leads to impaired glucose regulation, in turn reducing 

CBF and that over time this may present as a risk factor for cognitive decline 

and disease development (Wheeler et al., 2017). Acute hyperglycaemia 

reduces regional CBF and increases insulin to enable glucose clearance. This 

creates a glucose nadir, which can impair endocrine counter-regulation to 

subsequent decreases in glucose, exacerbating the hypoglycaemia. 

Chronically, poor glycaemic control can impair brain structure and function 

(Geijselaers et al., 2015) by causing pericyte damage and endothelial 

dysfunction of brain arterioles, resulting in chronic hypoperfusion (Wheeler et 

al., 2017). Importantly, hypoperfusion of the brain may be both a consequence 

and a cause of early neurodegeneration in both vascular dementia and 

Alzheimer’s disease (Wheeler et al., 2017). With relation to SB, glycaemic 

regulation is impaired during prolonged sitting periods (Dempsey et al., 2016; 

Dunstan et al., 2012; Duvivier et al., 2016; Peddie et al., 2013), suggesting SB 

could contribute to cognitive impairments.  

 

Recent research examining the effects of SB on structural changes to the brain 

provides indication that SB does affect cognitive functioning. The atrophic 

processes that occur during cognitive decline are thought to take place in the 

medial temporal lobe of the brain which is involved in memory processes. 

Indeed, medial temporal lobe volume atrophy is associated with memory 

impairment and Alzheimer’s disease (Rusinek et al., 2003). In non-demented 

middle-aged and older adults, SB was associated with reduced thickness of the 

medial temporal lobe. Importantly, no association was found between PA and 

lobe thickness indicating SB is a more significant predictor of changes in brain 
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structure (Siddarth et al., 2018). Whilst results must be viewed with caution as 

the study relied on self-report PA and SB levels, it further supports the need to 

investigate the potential mechanisms mediating relationships between SB and 

cognition.  

 

2.6.3. Sedentary Behaviour and Mood 

Long-term studies suggest SB itself may directly influence mood. One week of 

free-living SB decreased mood in older adults (Edwards and Loprinzi, 2016a). 

Furthermore, pleasantness was increased after four days of reducing sitting 

time (Duvivier et al., 2017), while breaking up six hours of uninterrupted sitting 

with hourly treadmill walking bouts enhanced mood state (Bergouignan et al., 

2016). Moreover, these findings have been replicated over a longer exposure to 

SB. Negative mood score increased following two weeks of free-living SB, 

independent of changes in objectively measured moderate-to-vigorous PA 

(Endrighi et al., 2016). The mechanisms underlying the association between SB 

and mood require further investigation, but may relate to increased inflammation 

(Endrighi et al., 2016). Longer sitting time is associated with markers of 

systemic inflammation (Healy et al., 2011; Howard et al., 2015) and 

interestingly, following increased sitting time, individuals with greater mood 

disturbance had an elevated inflammatory response to a stress test (Endrighi et 

al., 2016). This enhanced response was suggested to increase negative mood 

by upregulating inflammatory signalling pathways and increasing vulnerability to 

mood disturbances (Endrighi et al., 2016). This is plausible considering 

inflammation is a critical mediator in the pathophysiology of mood disorders 

(Rosenblat et al., 2014).  
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SB is also associated clinical mood disorders, such as depression (Stubbs et 

al., 2018; Zhai et al., 2015) and anxiety (Teychenne et al., 2015; Vancampfort et 

al., 2018). A meta-analysis of observational studies demonstrated SB is 

associated with increased risk of depression, with relative risk of depression 

1.25 for those with the highest SB (Zhai et al., 2015). Indeed, adults with 

depression spend on average 26 more minutes per day in SB than non-

depressed individuals, with the highest prevalence of depression in those 

spending more than eleven hours sedentary (Stubbs et al., 2018). Since 

depression is associated with cognitive impairment (Stubbs et al., 2018), this 

further indicates reducing SB could enhance cognition and mood. The risk of 

anxiety is also elevated as SB increases (Teychenne et al., 2015). Adults with 

anxiety engage in 24 more minutes per day of SB than non-anxious individuals 

(Vancampfort et al., 2018). Furthermore, when SB was experimentally 

increased for one week in young adults, anxiety levels increased (Edwards and 

Loprinzi, 2016b). A possible explanation for these associations is that SB may 

displace PA, which has been shown to be beneficial in reducing the risk of 

mood disorders (Zhai et al., 2015), but further research is required exploring the 

mechanisms underlying these associations.  

 

Overall, a small body of research has considered the potential impact of SB on 

cerebrovascular function, cognition and mood; however most have not actually 

assessed SB and, while mechanisms have been suggested, these have not 

been explored or tested. Consequently, these areas warrant further research. 

Collectively this will allow a true picture of the influence on SB on 

cerebrovascular health, and in turn allow suitable interventions to be designed 
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to reduce any associated health risks. Indeed, evidence is emerging that 

breaking up periods of prolonged sedentary time with either short PA bouts or 

merely standing up can improve cardiometabolic health and CVD risk factors.  
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2.7. Breaking Up Sedentary Behaviour with Physical Activity  

Many health promotion and PA interventions aim to reduce SB by targeting 

moderate-to-vigorous PA, which is unlikely to be achievable within the 

constraints of a high SB environments such as the workplace (Buckley et al., 

2015). Importantly, accumulating evidence suggests that light-intensity PA is 

beneficially associated with biomarkers of cardiometabolic health and may 

reduce mortality risk (Füzéki et al., 2017). Collectively this indicates that 

sedentary individuals should be encouraged to engage in PA of low intensities 

to confer improvements to health, which is supported by research studies using 

light-intensity PA to break up SB.   

 

The health benefits of breaking up sitting were first demonstrated in large cross 

sectional studies using data from the Australian Diabetes, Obesity and Lifestyle 

Studies which showed the number of interruptions to sedentary time, 

independent of total sedentary time and time spent in moderate-to-vigorous PA, 

is beneficial to BMI, serum triglycerides, 2-hour plasma glucose (Healy et al., 

2008), waist circumference (Healy et al., 2008; 2011) and inflammatory markers 

(Healy et al., 2011). More recent cross-sectional data has started to delineate 

the specific activity-related benefits of breaking up SB. Increasing standing time 

by two hours per day with a concurrent reduction in the sitting time was 

associated with reduced fasting glucose, triglycerides and increased high-

density lipoprotein cholesterol. While displacing two hours of sitting with 

stepping was associated with lower BMI, waist circumference, 2-hour plasma 

glucose, triglycerides and greater high-density lipoprotein cholesterol (Healy et 

al., 2015). This indicates there may be important differences to cardiometabolic 
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health markers based on the type of activity used to break up SB. Controlled 

laboratory-based studies have begun to address the different break modalities 

and frequencies that can achieve this. 

 

A range of activity types have been shown to be effective at negating the 

negative consequences of prolonged sitting. Intermittently walking to break up 

SB enhances glucose metabolism by attenuating postprandial glucose and 

insulin levels (Bailey and Locke, 2015; Dunstan et al., 2012; Peddie et al., 

2013). In obese or overweight participants, two-minute light- or moderate-

intensity treadmill walking breaks every twenty minutes over five hours reduced 

postprandial plasma glucose by 24-30% and serum insulin levels by 23% 

(Dunstan et al., 2012). Similarly, but in a non-obese population, two-minute 

walking breaks every twenty minutes lowered postprandial plasma glucose by 

16% (Bailey and Locke, 2015), demonstrating metabolic health improvements 

are not limited to higher risk populations. In healthy adults, breaking up three 

hours of sitting with five-minute light-intensity treadmill walks every hour 

prevented the decline in superficial femoral endothelial function that was 

otherwise observed (Thosar et al., 2015). Femoral artery endothelial function 

was also maintained in children who completed a ten-minute cycling bout every 

hour during three hours of sitting (McManus et al., 2015). Finally, in type 2 

diabetes patients systolic and diastolic BP were reduced after breaking up 

sitting with either light-intensity walking breaks or simple resistance activities 

(Dempsey et al., 2016). 
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Importantly, the intensity of the PA break does not need to be high to produce 

metabolic changes. In overweight women, standing for five minutes every thirty 

minutes lowered postprandial glucose by 28% and insulin by 20% and such 

improvements were similar to that observed using treadmill walking breaks 

(Henson et al., 2016). Moreover, breaking up five hours of sitting with either 

light- or moderate-intensity PA breaks significantly lowered resting systolic BP 

by 2-3 mmHg and diastolic BP by 2 mmHg in overweight and obese adults 

(Larsen et al., 2014).  

 

It appears the frequency of the PA bout is of importance; as breaking up sitting 

with frequent bouts of activity is more effective at enhancing metabolic health 

markers than a single continuous exercise session (Duvivier et al., 2013; 

Peddie et al., 2013). Interrupting nine hours of sitting with frequent, short 

duration treadmill walks lowered postprandial plasma insulin and glucose 

concentrations to a greater extent than a single thirty-minute walk followed by a 

prolonged sitting period and crucially, total exercise duration was the same for 

both conditions. Compared to sitting, postprandial glucose and insulin 

concentrations were lowered by 37% and 18% respectively with regular breaks, 

whilst the single PA bout lowered levels by only 4% and 10% (Peddie et al., 

2013). Moreover, completing low-intensity standing and walking during the day 

was more effective at attenuating the impairment in insulin sensitivity following 

prolonged sitting than a single exercise bout (Duvivier et al., 2013). Taken 

together these data emphasise the importance of the dispersion of PA 

throughout prolonged sitting periods.  
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Longer-term research also supports the beneficial effect of breaking of SB on 

cardiometabolic health. Five days of alternating between standing and sitting 

every thirty minutes attenuated postprandial glucose levels, as has been 

observed in acute studies (Thorp et al., 2014). Interestingly, there was no 

difference in responses between day one to day five, indicating that longer time 

periods are required to produce larger cardiometabolic health improvements. 

Supporting this, when sitting was broken up with two-minute walking bouts 

every twenty minutes for three days, postprandial glucose was attenuated, but 

there was no difference in the magnitude of this reduction between day one and 

day three (Larsen et al., 2015).  

 

2.7.1. Breaking Up Sedentary Behaviour and Cognition  

It is well established that PA is associated with improvements in cognitive 

functioning and the maintenance of cognition in later life (Blondell et al., 2014; 

Hillman et al., 2008; Kramer and Erickson, 2007). Despite this association 

between PA and cognition, experimental studies assessing the effects of using 

PA breaks to interrupt sitting on cognition have shown little effect. Interrupting 

five hours of sitting with three-minute light-intensity walking bouts every thirty 

minutes had no effect on executive function, episodic memory or inhibition 

(Wennberg et al., 2016). The intensity of the walking breaks were suggested to 

be too low to influence cognition; however breaking up sitting with five-minute 

moderate-intensity walking breaks also had no influence on inhibitory control, 

attention and cognitive flexibility (Bergouignan et al., 2016). Furthermore, no 

differences were observed in attention, memory or executive function following 

four days of a free-living ‘sit’ (walking or standing for less than one hour a day) 
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strategy compared to a ‘sit less’ (substituting at least seven hours a day of 

sitting with walking or standing) strategy (Duvivier et al., 2017). Despite this, 

acute improvements in cognitive performance were observed when breaking up 

eight hours of sitting with either standing, walking or cycling bouts. A pooled 

cognitive z-score was significantly higher in all three activity conditions 

compared to sitting which was suggested to be due to posture-induced 

increases in arousal, as heightened arousal improves cognition (Mullane et al., 

2017). Importantly however, unlike in previous studies (Bergouignan et al., 

2016; Duvivier et al., 2017; Wennberg et al., 2016), cognition was assessed 

during the middle of day rather than at the end, so data is not truly comparable 

due to differences in SB exposure times.  

 

2.7.2. Breaking Up Sedentary Behaviour and Mood  

It is well documented that PA and exercise can enhance mood and that this is a 

primary benefit of PA (Berger and Motl, 2000). Furthermore, breaking up sitting 

time with PA breaks appears to improve measures of mood (Bergouignan et al., 

2016; Duvivier et al., 2017) likely due to the known benefits of exercise for 

mental well-being (Paluska and Schwenk, 2000; Stathopoulou et al., 2006). 

Pleasantness increased after four days of following a free-living ‘sit less’ 

strategy, where participants substituted seven hours of sitting with walking and 

standing, compared to four days of free-living SB, where participants were 

instructed to restrict waking and standing to less than one hour per day 

(Duvivier et al., 2017). Furthermore, compared to six hours of uninterrupted 

sitting, breaking this time up with hourly treadmill walking bouts enhanced mood 

state (Bergouignan et al., 2016). 
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In summary, laboratory-based research studies have shown that breaking up 

SB with various types of PA can prevent impairments to cardiometabolic health 

markers. There is also promising evidence that breaking up sitting may improve 

mood. Consequently, the possibility of applying these strategies to high SB 

environments, such as the workplace, has been explored.   

 

2.7.3. Breaking Up Sedentary Behaviour in the Workplace  

Due to the high prevalence of workplace SB, a range of intervention strategies 

to reduce sitting have been employed targeting this environment. This can 

include, but is not limited to, changes to the workplace environment and its 

design such as active workstations, e-health interventions and adapting office 

layouts to promote more movement; changing workplace organisation policies; 

and the provision of information about the benefits of reducing SB (Shrestha et 

al., 2018).  

 

Active workstations are designed to incorporate PA into normally sedentary 

desk tasks (Torbeyns et al., 2014) and can include treadmill desks, stepping or 

cycling devices positioned under a desk, or height-adjustable and sit-to-stand 

workstations (Neuhaus et al., 2014). Recent meta-analysis and reviews have 

concluded active workstations are an effective intervention strategy to reduce 

workplace sitting time (Commissaris et al., 2015; Neuhaus et al., 2014; 

Torbeyns et al., 2014), with a pooled effect of a reduction in 77 minutes of 

sitting per eight-hour workday (Neuhaus et al., 2014). It appears sit-to-stand 

desks appear to be driving this reduction in sitting,  as when active workstations 

are reviewed individually, sit-to-stand workstations reduce sitting by 84 to 116 
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minutes per day however the effects of treadmill desks or cycling desks are 

inconsistent (Shrestha et al., 2018). This may however reflect the 

disproportionate research focus given to the different types of active 

workstation, with most studies examining sit-to-stand desks.  

 

Despite active workstations showing promise as an intervention to reduce 

workplace sitting, the limitation of this strategy is the cost required by employers 

to purchase and install them, something which may be beyond the financial 

restraints of certain workplaces. As such, there is a need examine workplace 

interventions that are low-cost to consider workplaces with limited financial 

resources (Shrestha et al., 2018). One such alternative low-cost method to 

reduce workplace SB is using prompting devices to encourage workers to take 

a break from sitting. A range of computer (Evans et al., 2012; Gilson et al., 

2015; Júdice et al., 2015; Mainsbridge et al., 2014, 2016; Pedersen et al., 2014; 

Swartz et al., 2014) and mobile phone (Bond et al., 2014; Pellegrini et al., 2015) 

technologies have been employed, with varying levels of success. A 

smartphone prompting app encouraging PA breaks resulted in significantly 

reduced sitting time by 47 minutes from baseline (Bond et al., 2014). 

Furthermore, computer-based prompts reduced the number and duration of 

sitting bouts lasting 30 minutes or longer (Swartz et al., 2014). Alternatively a 

computer programme with a pop-up window reminding workers to take a break 

did not significantly decrease total sitting time (Evans et al., 2012).  

 

Whilst workplace interventions can reduce workplace sitting, minimal research 

has focused on their effect on health-related outcomes therefore any potential 
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influence on health parameters is less clear (Neuhaus et al., 2014; Winkler et 

al., 2018). The effect of sit-to-stand desk interventions are inconsistent. Office 

workers using sit-to-stand desks for three months had increased fasting high-

density lipoprotein cholesterol concentrations, but no change in total 

cholesterol, triglycerides or blood glucose concentrations (Alkhajah et al., 2012). 

Contrastingly, office-based workers who displaced an afternoon of sitting with 

standing, demonstrated attenuated postprandial blood glucose concentrations 

alongside elevated energy expenditure (Buckley et al., 2014). A more recent 

randomised control trial evaluated the impact of using sit-stand workstations for 

eight weeks on cardiovascular and metabolic health outcomes in university 

office workers. Significant reductions in sitting time, alongside improvements in 

total cholesterol levels were observed, whilst there were likely and possible 

beneficial improvements in brachial artery endothelial function and diastolic BP 

respectively (Graves et al., 2015). Alternatively, the influence of prompting 

devices on markers of health is not well researched. However, a computer-

based prompting software promoting workers to take PA breaks including 

walking breaks and desk-based exercises increased work-time PA and 

improved markers of health. Workers using the software for up to 26 weeks 

spent an additional eight minutes a day performing PA breaks (Mainsbridge et 

al., 2014, 2016; Pedersen et al., 2014), which resulted in increased self-report 

health and wellbeing (Mainsbridge et al., 2016), increased energy expenditure 

(Pedersen et al., 2014), and reductions in MAP (Mainsbridge et al., 2014). 

 

Alternatively, multi-component interventions appear to be effective at both 

reducing workplace sitting (Shrestha et al., 2018) and improving health markers. 
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Such multicomponent interventions combine environmental changes, such as 

active workstations, with strategies such as organisational support, educational 

sessions and goal setting. For example, an intervention incorporating 

organisational, individual, and environmental components reduced prolonged 

workplace sitting time by 39 minutes and increased stepping time by 12 minutes 

(Maylor et al., 2018). Interventions of this type have reduced BP (Winkler et al., 

2018), triglyceride and cholesterol concentrations (Winkler et al., 2018), and 

favourably improved body composition (Danquah et al., 2016; Maylor et al., 

2018; Winkler et al., 2018).  

 

Collectively, whilst laboratory-based studies have shown breaking up sitting can 

improve cardiometabolic health markers, there is a lack of research translating 

these practises into the workplace, where high amounts of SB are accrued. 

Indeed, a recent Cochrane review of workplace interventions designed to 

reduce sitting time highlighted the need for future research assessing valid 

measures of productivity and cardiometabolic health (Shrestha et al., 2018). 

Research needs to also consider using multi-component approaches and 

strategies other than active work stations, such as computer prompts, to reduce 

the costs associated with these interventions.  
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2.8. Summary 

Prolonged SB has emerged as risk factor for cardiometabolic and 

cardiovascular morbidity and mortality, independent of PA levels. Despite this, 

little research has focused on the influence of SB on cerebrovascular function 

and health. This is of upmost importance since the regulation of 

cerebrovascular function is critical for cognitive performance, mood and the 

prevention of cerebrovascular disease development. The inclusion of PA breaks 

during prolonged sedentary periods can reduce cardiometabolic and 

cardiovascular risk factors, however the influence on cerebrovascular function is 

unknown. Breaking up sitting improves mood and potentially cognition, thus 

owing to the impact of cerebrovascular function on these variables, changes in 

cerebrovascular function may be a contributing mechanism (Figure 2-5). 

Consequently, research is needed assessing the acute and longer-term effects 

of SB on cerebrovascular function and, as seen in existing research, if using PA 

breaks during sitting can enhance cerebrovascular function or prevent any 

impairments. Furthermore, any impact of SB on cognition and mood should be 

considered. Owing to the high incidence of workplace SB, such information 

could have important implications for workers’ health and productivity. 
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Figure 2-5: A summary of the known and potential interactions between sedentary behaviour, cardiometabolic, cardiovascular and 

cerebrovascular disease; cerebrovascular function; cognition and mood described in this literature review. Dashed lines indicate potential 

influence; red lines indicate negative influence; green lines indicate positive influence. 
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3. General Methods 
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The majority of the measurements and protocols undertaken in this thesis were 

adopted throughout all studies. This general methods chapter therefore 

describes general information regarding participants, data collection and 

analyses. The specific experimental design and protocols used for each study 

are detailed in the respective methods section in each chapter.  

 

3.1. Participants  

All participants were informed of the procedures and requirements for each 

study in writing and then written informed consent was obtained prior to 

inclusion. All participants were screened by the principal researcher prior to 

testing using an adapted health screening questionnaire based on the Physical 

Activity Readiness Questionnaire (PAR-Q; Adams, 1999). Participants were 

screened for exclusion criteria including: use of medication known to influence 

the cardiovascular and cerebrovascular system, smoker, BMI >35 or <18 kg∙m-

2, use of hormone-based contraception and diagnosis of cerebrovascular, 

cardiovascular or metabolic disease. Participants were desk-based workers 

who worked full-time, typically in an office environment.  

 

3.2. Experimental Conditions  

The experimental protocols in Chapters 5, 6 and 7 were conducted in a 

temperature controlled (20-22 °C) laboratory at the Research Institute for Sport 

and Exercise Sciences at Liverpool John Moores University. For multiple 

laboratory visits, participants attended at the same time of day between 7.00-

9.00 am. Prior to experimental visits, participants were instructed to avoid 

strenuous exercise for 24 hours, complete an overnight fast and a 12-hour 
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abstinence from caffeine and alcohol. Women were assessed in the follicular 

phase of the menstrual cycle (days 1-7). For Chapter 4 data collection occurred 

either at Liverpool John Moores University or at the participants’ workplace. In 

the case of the latter, testing was conducted in a private, quiet room without any 

external disturbances. All study procedures were approved by the Liverpool 

John Moores University Ethics Committee and adhered to the Declaration of 

Helsinki. 

  

3.3. Anthropometrics  

For each participant, anthropometric measures of stature and body mass were 

acquired. Stature was measured to the nearest 0.1 cm using a portable 

stadiometer (SECA, Hamburg, Germany) with the participants’ head in the 

Frankfort Plane. In minimal clothing and without shoes, body mass was 

measured to the nearest 0.1 kg using an electronic scale (SECA 799, Hamburg, 

Germany). BMI was subsequently calculated (mass/stature2). 

 

3.4. Data Acquisition  

Physiological data measurements were continuously acquired at 50 Hz using an 

analogue-to-digital convertor (PowerLab ML880, ADInstruments, Colorado 

Springs, Colorado, USA) and displayed in real time on a computer with 

commercially available software (LabChart Version 7.0, ADInstruments; 

Figure 3-1). 
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Figure 3-1: Screenshot of a LabChart data collection during the acquisition of physiological measures: breath-by-breath carbon dioxide (CO2), 

left and right middle cerebral artery blood flow velocity (MCAv), blood pressure (BP) and the partial pressure of end tidal carbon dioxide 

(PETCO2). 
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3.5. Partial Pressure of End-Tidal Carbon Dioxide 

The partial pressure of end-tidal carbon dioxide (PETCO2) is the partial 

pressure or maximal concentration of CO2 at the end of an exhaled breath, 

which is expressed as a percentage of CO2 or mmHg. In this thesis, a gas 

analyser containing an infrared CO2 sensor was used to measure PETCO2 

(ML206, ADInstruments, Colorado Springs, Colorado, USA). Expired gases 

were sampled at the mouth, with an expiratory sample line connecting a mouth 

piece to the gas analyser. A pump within the gas analyser draws the sample 

into the transducer and the percentage of inspired and expired CO2 is then 

measured using an infrared transducer, which works on the principle of 

absorption spectroscopy. An infrared light is projected through the gas sample 

and any gas molecules that are the same size as the infrared light wavelength 

(in this case CO2) are absorbed. Close to the end of the sampling tube there is 

an optical filter, which absorbs all wavelengths of light except that of CO2. At the 

end of the sample tube, there is an infrared detector that records the amount of 

light that was not absorbed by the CO2 molecules or optical filter. The difference 

in the amount of light projected and absorbed is proportional to the number of 

CO2 molecules in the sample. Prior to each testing session, the gas analyser 

was calibrated with known oxygen and CO2 gas concentrations (5% CO2, 21% 

oxygen and nitrogen balance) from a gas cylinder. During data collection, 

breath-by-breath CO2 was sampled using the calibrated gas analyser at a flow 

rate of 200 ml/min. Peak PETCO2 was calculated in LabChart, using the peak 

cyclic CO2 value for each breath, with correction for the daily barometric 

pressure.  
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3.6. Continuous Assessment of Blood Pressure: Finger 

Photoplethysmography 

Finger photoplethysmography utilises a finger cuff to provide the continuous 

non-invasive assessment of finger BP. The use of a finger cuff was first 

developed by Penaz (1973) and utilises the principle of the ‘unloaded arterial 

wall’ (Ogedegbe and Pickering, 2010) and volume-clamp technique (Hodgson 

and Choate, 2012). Commonly, a Finometer (Finapress Medical Systems B.V.) 

is used for continuous measurement of finger arterial pressure (Guelen et al., 

2003). Compared to BP measured using a mercury sphygmomanometer, 

reconstructed brachial BP measures obtained using the Finometer are within 

the American Association for the Advancement of Medical Instrumentation 

(AAMI) and British Hypertension Society (BHS) validation criteria (Guelen et al., 

2003; Schutte et al., 2004). 

 

The Finometer features three main components: a finger cuff containing an 

inflatable air bladder and infrared plethysmograph; a servo-controller system; 

and a main unit containing an air pump. Blood flow at the level of the finger is 

detected using the infrared photoplethysmograph whereby infrared light is 

emitted into the finger and absorbed by the blood flowing through the artery, 

with the remaining light signal sensed by a detector (Nijboer et al., 1981). 

Changes in the amount of blood flowing through the artery due to pulsations 

therefore cause variations in the intensity of the detected light (Nijboer et al., 

1981). Using this information, the artery is ‘clamped’ at a certain diameter (set 

point) despite changes in arterial pressure during each cardiac cycle. Increases 

in the light signal intensity, such as that occurring during systole, are sent as a 
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signal to the servo-controller system which compares the signal to that of the 

set point. Differences between this signal and that of the set point are in turn 

sent to the control system containing the air pump. The control system can 

increase air delivery to the air bladder at the finger cuff, therefore increasing the 

cuff pressure and preventing any change in arterial diameter. This therefore 

keeps the pressure of the cuff equal to that of arterial pressure (Hodgson and 

Choate, 2012). Consequently, cuff pressure provides an indirect measure of 

intra-arterial pressure at the finger. This pressure reading is then filtered and 

reconstructed using an algorithm which corrects for the pressure gradient 

between the finger and the upper arm, in order to form a reconstructed brachial 

artery BP (Guelen et al., 2003).  

 

To ensure accurate measurements, defining the correct unloaded diameter of 

the artery is essential, however this can be influenced by changes in 

haematocrit, stress and the tone of the smooth muscle in the arterial wall. 

Consequently, the unloaded diameter is usually not constant during a 

measurement and has to be verified at intervals (Bogert and van Lieshout, 

2005). The Finometer features an inbuilt Physiocal algorithm which allows for 

this (Wesseling et al., 1995). Physiocal applies a brief period of constant 

pressure to analyse the plethysmography signal, derive the unloaded diameter 

of the finger and adjust the finger cuff accordingly (Bogert and van Lieshout, 

2005). 
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3.6.1. Assessment of Continuous Blood Pressure  

Participants were fitted with a photoplethysmographic cuff on the index or 

middle finger of the right hand (Finometer model 1, Finapres Medical Systems 

BV, Amsterdam, The Netherlands). Stature, weight, sex and age were input into 

the Finometer and the hydrostatic height correction was used to correct for 

position changes of the hand with respect to heart level (Figure 3-2). The height 

correction unit comprises of a liquid-filled tube with one end attached to 

reference component and one end to a transducer. While participants rested in 

a supine position, the reference component and transducer were both placed on 

the photoplethysmographic cuff and ‘nulled’ to ‘zero’ the transducer to the 

hydrostatic reference. The transducer was then secured to the cuff and the 

reference component was attached at heart level. Prior to collecting data, the 

Finometer was left measuring until the intervals between Physiocal (Wesseling 

et al., 1995) were greater than 30 seconds, indicating a stable BP reading. 

Arterial pressure was recorded using BeatScope software, which enables beat-

to-beat analysis of the ‘raw’ arterial pressure waveform, from which height 

correction can be applied. This enables systolic BP and diastolic BP to be 

obtained and from this MAP is calculated as: 1/3 systolic BP + 2/3 diastolic BP.  
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Figure 3-2: Continuous measurement of blood pressure using Finometer with 

hydrostatic height correction. 
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3.7. Cerebrovascular Measurements   

3.7.1. Cerebral Blood Flow 

Most recently the use of transcranial Doppler ultrasound (TCD) has been used 

for the assessment of CBF (Willie et al., 2011). TCD was first used by Aaslid in 

1982 and represents a non-invasive tool that can assess the haemodynamic 

characteristics of the major cerebral arteries in normal and pathological 

conditions (Aaslid et al., 1982). Using TCD, the MCA, PCA and ACA can be 

assessed, in addition to the basilar artery (BA) and the vertebral arteries (VA) 

(Stroobant and Vingerhoets, 2000; Figure 3-3).  

 

 

Figure 3-3: The middle (MCA), anterior (ACA with A1 and A2 segments) and posterior 

(PCA with P1 and P2 segments) cerebral arteries that can be assessed using 

transcranial Doppler ultrasound. The basilar arteries (BA) and vertebral arteries (VA) 

can also be measured (adapted from Stroobant and Vingerhoets, 2000). 

 

 

 

 

 

 

The image originally presented here cannot be made freely available via LJMU E-

Theses Collection because of copyright. The image was sourced at: Stroobant, N. 

and Vingerhoets, G. (2000), Transcranial Doppler ultrasonography monitoring of 

cerebral hemodynamics during performance of cognitive tasks: a review, 

Neuropsychology Review, 10(4), pp.213–31. 
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The method relies on the Doppler shift effect, which describes the difference in 

frequency between an emitted and received signal. TCD ultrasound is pulsed, 

meaning a pulse of ultrasound is emitted and followed by a period of ‘listening’. 

The time between the pulse emission and receiving the reflected pulse 

determines the depth at which the Doppler frequency shift is detected (Moppett 

and Mahajan, 2004). Ultrasonic beams can cross the skull at points known as 

‘windows’ and are reflected by the blood cells of all blood vessels flowing in its 

path (Moppett and Mahajan, 2004; Stroobant and Vingerhoets, 2000). Once 

positioned at a window, the Doppler probe emits an ultrasonic wave which 

passes through the skull and is emitted into the cerebral vessel of interest. The 

wave contacts the red blood cells within this vessel and is then reflected back to 

the transducer by these moving red blood cells. The difference between the 

transmitted signal and the signal received back from the red blood cell is the 

Doppler shift and is calculated as: 2 x V x Ft x cosθ/C. Where V is the velocity 

of the reflector (red blood cells), Ft is the transmitted frequency (2 MHz), C is 

the speed of sound in soft tissue (1,540 m·s-1) and cosθ is the correction factor 

based on the angle (θ) of insonation (Moppett and Mahajan, 2004).   

 

A critical factor when using TCD is the angle of insonation. As the transmitted 

frequency and the speed of sound in soft tissues are constant variables, the 

Doppler shift frequency depends on the blood flow velocity and the angle of 

insonation of the TCD probe. The observed velocity is inversely proportional to 

the cosine of the angle of incidence between the ultrasound beam and the 

blood vessel (Moppett and Mahajan, 2004). The angle of insonation should 

therefore be kept constant during measurements to ensure accurate measures. 
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At an angle of insonation of 15° the cosine of this angle is 0.96, indicating that 

96% of the frequency shift within the signal is being transmitted back to the 

receiver and within this range any error caused by a change in insonation angle 

is less than 4% (Moppett and Mahajan, 2004). However, at insonation angles 

>60° there is less than 50% of the signal being received and at 90° no signal 

will be recorded. For optimal signal quality the angle of insonation should be 

between 0 and 30 degrees (cosine range of  1.00 to 0.87) (Moppett and 

Mahajan, 2004); however, as long as the insonation angle is below 60 degrees 

(cosine of 0.50) the signal is deemed adequate for assessment (Taylor and 

Holland, 1990). When insonating the MCA, if the middle portion of the temporal 

window (see Figure 3-5) is used then the insonation angle is virtually inline (<15 

degrees) with the probe and this low angle helps create optimal signal quality. 

The PCA can also be acquired with a low angle of insonation from the anterior 

portion of the temporal window.  

 

Compared to other techniques utilising tracer methodologies, TCD has a 

greater temporal resolution, enabling the continuous assessment of changes in 

blood flow (Willie et al., 2011). Moreover, as a non-invasive technique, this 

heightens its practicality and usefulness in both clinical and research settings 

(Stroobant and Vingerhoets, 2000; Willie et al., 2011). A limitation of TCD 

however, is that it measures cerebral blood flow velocity (CBFv) as opposed to 

actual CBF (Willie et al., 2011). When assessing other vascular beds, the use of 

Duplex ultrasound enables the combined measurement of blood velocity and 

arterial diameter and subsequent formulation of blood flow. To date, this 

technology is not available for TCD, meaning that CBFv is used as a surrogate 
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for CBF (Willie et al., 2011). The measurement is thus based on the assumption 

that the diameter of the cerebral vessel remains constant despite changes in BP 

or PaCO2 (Ogoh and Ainslie, 2009; Willie et al., 2011).  

 

The validity of TCD to measure CBFv is consequently based on this assumption 

of a constant arterial diameter. Data from Serrador et al. (2000) demonstrated 

no change in MCA diameter assessed using magnetic resonance imaging 

during both hypercapnia (+8 mmHg PETCO2) and hypocapnia (-13 mmHg 

PETCO2), and this has been widely used as validation of TCD for CBFv 

assessment (Ainslie and Hoiland, 2014). Indeed, a range of studies have shown 

the MCA diameter does not change over a range of partial pressures of carbon 

dioxide or arterial pressures (Moppett and Mahajan, 2004). However, this 

common assumption has been recently challenged as when using magnetic 

resonance imaging to measure MCA diameter a ~1.5% and ~7% increase in 

diameter were observed during elevations of PETCO2 by 7.5 and 5 mmHg 

respectively (Verbree et al., 2014). Despite this, changes in PETCO2 over a 

smaller range (±5 mmHg) are suggested to have negligible effect on the 

discrepancy between blood flow and blood flow velocity (Ainslie and Hoiland, 

2014; Figure 3-4). TCD has been shown as a reproducible method during 

repeated measurements on a single day and on the following day with intra-

observer coefficients of variation for mean middle cerebral arteries blood flow 

velocity (MCAv) of 7.5% and 13.2% respectively (Maeda et al., 1990). Good 

correlations have also been shown between two TCD measurements, 

separated by one hour, for peak and mean MCA, PCA and ACA blood flow 

velocities, with correlation coefficients ranging from 0.78 to 0.96 (Totaro et al., 
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1992). Collectively, this supports the use of TCD as a reliable and reproducible 

technique to examine CBFv, although some limitations must be taken into 

consideration when planning scientific studies and interpreting data. 

 

Figure 3-4: Previously reported changes in middle cerebral artery (MCA) diameter and 

the calculated impact on the discrepancy between flow and velocity measures during 

changes in end-tidal partial pressure of carbon dioxide (PETCO2). Changes in PETCO2 

±5% likely have negligible effect on the discrepancy between flow and velocity 

(adapted from Ainslie and Hoiland, 2014). 

 

There are three TCD approaches based on the principal acoustic windows: the 

transtemporal approach, the transocular approach and the suboccipital or 

foramen magnum approach  (Willie et al., 2011). The assessment of the MCA, 

PCA and ACA can be achieved using one of these three TCD approaches: the 

transtemporal approach (Stroobant and Vingerhoets, 2000; Willie et al., 2011; 

Figure 3-5a). This approach features three acoustic windows (anterior, middle 

and posterior) from which the vessels can be insonated, as these regions of the 

cranium are thin enough to enable the penetration of the ultrasonic waves. 

Based on this, the assessment of CBFv with TCD is limited to the major 

 

 

 

 

The image originally presented here cannot be made freely available via LJMU E-

Theses Collection because of copyright. The image was sourced at: Ainslie, P.N. 

and Hoiland, R.L. (2014), Transcranial Doppler ultrasound: Valid, invalid, or both?, 

Journal of Applied Physiology, 117(10), pp.1081–1083. 
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cerebral vessels meaning local blood flow is not captured and data is limited to 

global blood flow responses (Willie et al., 2011). The anterior window is located 

above the anterior process of the zygomatic arch, the posterior window is 

immediately anterior to the ear above the zygomatic arch, while the middle 

window is located between the anterior and posterior windows (Willie et al., 

2011). The insonation of the Circle of Willis via the anterior window requires the 

probe to be aimed posteriorly, while for the posterior window the probe is aimed 

anteriorly. For the medial window, direct medial insonation of the MCA is 

possible (Figure 3-5b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5: (a) The three transcranial doppler ultrasound approaches to measuring 

cerebral blood flow velocity (b) The acoustic windows used from the transtemporal 

approach: a- anterior; m- middle; p- posterior (adapted from Willie et al., 2011a). 
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The image originally presented here cannot be made freely available via LJMU 

E-Theses Collection because of copyright. The image was sourced at: Willie, 

C.K., Colino, F.L., Bailey, D.M., Tzeng, Y.C., Binsted, G., Jones, L.W., 

Haykowsky, M.J., et al. (2011), Utility of transcranial Doppler ultrasound for the 

integrative assessment of cerebrovascular function, Journal of Neuroscience 

Methods, 196(2), pp.221–37. 
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3.7.1.1. Identification of Cerebral Arteries  

Accurate assessment of CBFv using TCD is reliant on the correct identification 

of the MCA, PCA and ACA; which requires knowledge of cerebral anatomy and 

typical blood velocity values and patterns in order to differentiate between the 

other cerebral vessels (Table 3-1). Parameters used for vessel identification 

include the depth of the Doppler signal, the direction of blood flow relative to the 

ultrasound probe, the spatial relationship to the MCA/ACA bifurcation, and the 

signal response to compression (Willie et al., 2011).  

 

Table 3-1: Typical parameters for the identification of cerebral arteries. 

Artery Window Depth (mm) Direction 
Mean Flow 

Velocity (cm·s-1) 

MCA Temporal 25 to 50 Toward probe 55-60 

ACA Temporal 60 to 70 Away from probe 50  

PCA Temporal 60 to 70 Bidirectional 40-44  

MCA- middle cerebral artery; ACA- anterior cerebral artery; PCA- posterior 
cerebral artery. (Modified from Kassab et al., 2007; Willie et al., 2011).  

 

Typically, the MCAs are used to assess CBF and cerebrovascular function as 

they account for 70-80% of the brain’s total perfusion, and also they possess 

the highest baseline velocity and have the closest proximity to the temporal 

window (Skow et al., 2013). The MCA is usually viewed at a depth of between 

25-50 mm and exhibits the highest velocity, typically around 60 cm·s-1 (Panerai, 

2009). The direction of flow is towards the ultrasound probe, until the bifurcation 

with the ACA, which causes forward and backward flow patterns (Panerai, 

2009; Willie et al., 2011). Compression of the common carotid artery (CCA) can 

provide confirmation of the MCA, as a reduction in velocity should occur at the 

ipsilateral vessel (Panerai, 2009). The vessel is best insonated using the 
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anterior window as this provides a near-zero insonation angle (Willie et al., 

2011). The MCA supplies blood to the frontal, temporal and parietal brain 

regions. It is assumed measures taken in the MCA are representative of other 

cerebral vessels (Ainslie and Duffin, 2009); however this has recently been 

challenged with differences in the reactivity of the posterior and anterior 

circulations observed (Skow et al., 2013).   

 

The PCA is typically found at a depth of between 60-70 mm and is therefore 

posterior to, and deeper than, the MCA (Phillips et al., 2016; Willie et al., 2011). 

Compared to the MCA, blood flow velocity is always smaller in the PCA, with a 

typical blood flow velocity of 44 cm·s-1 (~26% lower than the MCA) (Willie et al., 

2011). Insonation of the PCA is best achieved using the anterior window, with 

the probe directed posteriorly (Phillips et al., 2016). Blood flow for the proximal 

part of the PCA (P1 segment) is directed towards the probe, while blood flow for 

the proximal part of the PCA (P2 segment) is directed away from the probe 

(Phillips et al., 2016; Willie et al., 2011a). The PCAs supply the occipital lobe in 

addition to the inferior part of the temporal lobe, so identification of the PCA can 

be confirmed by performing a visual stimulation task (such as opening and 

closing the eyes) which should elicit a hyperaemic response (Phillips et al., 

2016).  

 

Finally, the ACA is found at a depth of between 60-70 mm and has a typical 

blood flow velocity of 50 cm·s-1 (Willie et al., 2011). Blood flow is directed 

towards the probe and the vessel is best insonated from the posterior window  

(Willie et al., 2011). The ACAs supply blood to the frontal, temporal and parietal 
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brain regions. However within research the evaluation of the ACA using TCD is 

rare, partially because hypoplasia or aplasia (the complete or incomplete 

underdevelopment of a tissue, respectively) is frequent in the ACA (Kwon and 

Lee, 2005).  

 

3.7.1.2. Assessment of Cerebral Blood Flow  

MCAv was used as a surrogate measure for CBF as the MCA accounts for 70-

80% of the brain’s total perfusion (Skow et al., 2013). Following a 20 minute 

supine rest, resting CBFv of the left and right MCA was measured using 

continuous bilateral TCD (ST3, Spencer Technologies, Redmond, WA, USA). 

To identify a vessel, a 2-MHz Doppler probe was positioned over the temporal 

window, located above the zygomatic arch and was secured using an 

adjustable headband (Marc 600 Headframe, Spencer Technologies; Figure 

3-6). The MCA was identified bilaterally based on the signal depth, peak and 

mean blood velocity as previously described (Willie et al., 2011). Once optimal 

signals had been obtained, the transducers were secured into position and the 

depth, peak and mean blood velocities of each vessel were recorded to ensure 

within-subject consistency between tests. Additionally, photographs were taken 

to ensure consistent probe positioning between test visits. The sonographer had 

a between-day coefficient of variation of 7.8% for the MCAv.   
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Figure 3-6: Measuring cerebral blood flow velocity (CBFv) using transcranial Doppler 

ultrasound (TCD), with a Doppler probe held in position using an adjustable headband. 

 

Once an MCA was detected, frequency data were captured based on the shift 

in frequency from the ultrasonic beam emitted from the transducer and the 

received signal reflected back to the transducer from the red blood cells. This 

Doppler shift was processed using fast Fourier transformation (FFT) which 

converts the data from the frequency domain (ultrasonic waves) into the time 

domain, expressed visually as a velocity trace. FFT analysis provides a visual 

way of presenting the three-dimensional Doppler data in two dimensions. On 

the vertical axis velocity (or frequency) is displayed, on the horizontal axis is 

time, while signal intensity (amplitude) is displayed as the brightness of a point. 

An envelope curve is then drawn on the visual FFT display and this line 

corresponds to the maximum velocity of the cardiac cycle (Figure 3-7). This line 

follows the maximum velocities of every cardiac cycle and it is from this 

envelope curve that mean velocity of the MCA was calculated (Stroobant and 

Vingerhoets, 2000).  
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Figure 3-7: Example of transcranial Doppler ultrasound (TCD) data collection showing 

the fast Fourier transformation (FFT) and envelope tracing to obtain mean cerebral 

blood flow velocity (CBFv) values.  

 

Data were acquired in LabChart where mean blood flow velocity was calculated 

from the envelope of the velocity tracing using a weighted mean (1/3 maximum 

+ 2/3 minimum) to account for the relative time spent in systolic and diastolic 

pressures (Skow et al., 2013). When two MCAs were insonated, the mean of 

these vessels was calculated. In circumstances were only one MCA signal was 

identified or one had inadequate signal quality, only one value was used. 

Cerebrovascular conductance (CVC) was then calculated by dividing mean 

blood flow velocity by MAP (mean blood flow velocity / MAP).  

 

3.7.2. Cerebrovascular Function  

The complete assessment of cerebrovascular function includes three 

components: CVR, CA and NVC (Willie et al., 2011). 
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3.7.2.1. Cerebrovascular Reactivity  

CVR describes the regulation of CBF in response to changes to a vasoactive 

stimulus (Fierstra et al., 2013; Regan et al., 2014). Three types of vasoactive 

stimuli have been used: reduction in MAP, chemical injections and manipulating 

PaCO2 (Fierstra et al., 2013). In a recent review the latter method was 

suggested to be the most appropriate due to its ability to be standardised and 

greater practicality (Fierstra et al., 2013).  

 

Elevations in PaCO2 (hypercapnia) increases CBF via cerebral arteriole 

vasodilation, while a decline in PaCO2 (hypocapnia) leads to vasoconstriction 

and a subsequent decrease in CBF; thereby functioning to maintain stable CO2 

and pH levels within the cerebral tissues (Ainslie and Duffin, 2009). The 

subsequent change in arteriole diameter in response to the manipulation of CO2 

levels leads to changes in CBF velocity at the main conduit vessels such as the 

MCA (McDonnell et al., 2013; Skow et al., 2013) and this can in turn be 

assessed using TCD (Willie et al., 2011). CVR is subsequently calculated as the 

ratio of change in CBF compared to the change in PETCO2 (Regan et al., 2014; 

Willie et al., 2011).  

 

The assessment of CVR therefore provides an index of the cerebral 

vasculature’s dilation or constriction in response to the CO2 stimulus (Ainslie 

and Duffin, 2009; Willie et al., 2011). Typically, CO2 levels are manipulated 

using either a pharmaceutical stimulus or by ventilatory alterations of PaCO2 

(Willie et al., 2011). The latter represents a cheaper and non-invasive technique 

and is commonly achieved by using either steady state or rebreathing 
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respiratory tests (Fierstra et al., 2013; Skow et al., 2013). Rebreathing 

previously exhaled gas is a traditional method to increase PaCO2 (Fierstra et al., 

2013). As this exhaled gas has already equilibrated with the blood, the 

rebreathed portion of the breath does not contribute to alveolar ventilation, 

therefore there is a steady accumulation of CO2 in the blood. This approach is 

advantageous since no external CO2 source is required however, the technique 

has restrictions which limits its usefulness to assess CVR. During rebreathing it 

is not possible to control the rate at which CO2 increases or to maintain 

constant oxygen levels, requirements when assessing CVR. Additionally 

rebreathing does not result in a CO2 plateau since a subject will always produce 

CO2 therefore continually elevating PaCO2 (Fierstra et al., 2013). Figure 3-8 

depicts the typical response observed during a rebreathing CVR protocol, with a 

continuous rise in PaCO2 and concomitant increase in CBF (assessed at the 

PCA).  

 

 

Figure 3-8: Representative partial pressure of carbon dioxide (PCO2) and posterior 

cerebral artery blood flow velocity (PCAv) data during a cerebrovascular reactivity 

rebreathing protocol. A two minute baseline period (A) is followed by voluntary 

hyperventilation (B), which lowers both PETCO2 and PCAv. A period of hyperoxic 

rebreathing follows (C), increasing PETCO2 and PCAv, before a final recovery period 

(D) where values return to baseline (adapted from Skow et al. 2013). 

 

 

 

The image originally presented here cannot be made freely available via LJMU 

E-Theses Collection because of copyright. The image was sourced at: Skow, 

R.J., MacKay, C.M., Tymko, M.M., Willie, C.K., Smith, K.J., Ainslie, P.N. and 

Day, T.A. (2013), Differential cerebrovascular CO2 reactivity in anterior and 

posterior cerebral circulations, Respiratory Physiology and Neurobiology, 

189(1), pp.76–86. 
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To overcome the limitations of the CVR rebreathing technique, a specialised 

rebreathing method which allows changes in PaCO2 but keeps PaO2 constant 

has been developed, often called the ‘Duffin rebreathing test’  (Duffin, 2011), 

which is suitable for CVR measurements using TCD (Fierstra et al., 2013). In 

this method, a hyperventilation-induced decrease in PETCO2 leads to a decline 

in CBF which is then followed by a period of hypercapnic breathing via a 

rebreathing circuit, which elevates CBF (Skow et al., 2013; Willie et al., 2011). 

This method allows the PETCO2 and PaCO2 to be equivalent, by supplying a 

flow of gas into the rebreathing circuit equal to the PETCO2 of the previous 

breath and providing a sufficient supply of oxygen to maintain constant PaO2 

(Battisti-Charbonney et al., 2011).  

 

An alternative approach to the rebreathing method is to assess responses in 

CBF to steady state changes in PETCO2 (Brothers et al., 2014). Using this 

technique, a brief period of voluntary hyperventilation lowers PETCO2 which is 

then followed by a participant breathing a predetermined level of higher CO2 

content gas for several minutes. Typically a 5 or 7% CO2 gas concentration is 

used (Fierstra et al., 2013), which causes a gradual stepwise increase in 

PETCO2 until a plateau is reached (Boulet et al., 2016). A criticism of this 

approach is that the cerebrovascular vasoconstriction that occurs during the 

period of hyperventilation may attenuate the vasodilatory response of the 

vasculature to subsequent CO2 inhalation (Brothers et al., 2014). Figure 3-9 

depicts the typical response observed during a steady state CVR protocol, with 

a rise in PETCO2 and concomitant increase in CBF until a plateau is reached.  
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Figure 3-9: Representative partial pressure of end-tidal carbon dioxide (PETCO2) and 

cerebral blood flow velocity (CBFv) data during a steady state cerebrovascular 

reactivity rebreathing protocol of 5% CO2 exposure. CBFv progressively increases to a 

peak with the increase in PETCO2 and is then maintained at this level (adapted from 

Ainslie and Duffin, 2009). 

 

3.7.2.1.1. Assessment of Cerebrovascular Reactivity  

While resting in a supine position, participants were instrumented with a mouth 

piece (MLA1026, ADInstruments, Colorado Springs, Colorado, USA) with a two-

way non-rebreathing valve (MLA1028). A Douglas bag filled with a 5% CO2 

mixture and fitted with a three-way valve, enabled the breathing circuit to be 

alternated between ambient air and the contents of the Douglas bag (Figure 

3-10). Breath-by-breath CO2 was sampled using a calibrated gas analyser 

(ML206, ADInstruments) and peak PETCO2 was calculated in LabChart, using 

the peak cyclic CO2 value for each breath, with correction for the daily 

barometric pressure as described in section 3.5. 

 

The image originally presented here cannot be made freely available via LJMU 

E-Theses Collection because of copyright. The image was sourced at: Ainslie, 

P.N. and Duffin, J. (2009), Integration of cerebrovascular CO2 reactivity and 

chemoreflex control of breathing: mechanisms of regulation, measurement, and 

interpretation, American Journal of Physiology. Regulatory, Integrative and 

Comparative Physiology, 296(5), pp.R1473-95. 
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Figure 3-10: Assessment of cerebrovascular CO2 reactivity (CVR) using a voluntarily 

hyperventilation protocol. 

 

MCAv, acquired using TCD as described in section 3.7.1.2, was measured 

throughout. Baseline PETCO2 and MCAv were acquired for one minute, whilst 

participants breathed ambient air. Subsequently, participants were coached 

through a voluntarily hyperventilation protocol for a maximum of three minutes 

or until PETCO2 was reduced to 20 mmHg (whichever was achieved first). 

Immediately afterwards the valve on the Douglas bag was switched so that 

participants would inhale the 5% CO2 mixture. Simultaneously, participants were 

instructed to return to their normal respiratory rate and breathed from the 5% 

CO2 mixture for three minutes (Figure 3-11).  
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Figure 3-11: Representative middle cerebral artery blood flow velocity (MCAv) data in 

LabChart during the cerebrovascular carbon dioxide reactivity (CVR) assessment. Data 

shows: (a) one-minute baseline, (b) a voluntarily hyperventilation period and (c) three 

minutes breathing a 5% carbon dioxide gas mixture. CO2- carbon dioxide; BP- blood 

pressure.  

 

Data were analysed in LabChart. Baseline PETCO2 and MCAv were calculated 

as the mean of the one minute prior to hyperventilation, while data during 5% 

CO2 breathing was collected as ten second averages for the entire three-minute 

period. Data were then exported to Excel (Microsoft). Absolute and relative 

MCAv were then plotted against PETCO2 for each 10 seconds of 5% CO2 

breathing and quantified by linear regression by adding a linear regression line 

onto the plotted data. A linear regression line has an equation: Y = bX + a, 

where X is the explanatory variable, Y is the dependent variable, the slope of 

the line is b, and a is the intercept. The value for the slope of the line (b) was 

used to represent the rate of change in MCAv per mmHg increase in PETCO2. 

These slopes were compared statistically and their respective R2 values were 

reported. Relative MCAv was calculated as the difference between baseline and 

5% CO2 MCAv divided by baseline MCAv (([5% CO2 MCAv-baseline MCAv]/ 

baseline MCAv) x 100%).  
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Simultaneously, during the baseline and CO2 breathing measurements, arterial 

diameter and blood flow of the left CCA were acquired using a 10-MHz multi-

frequency linear array probe, attached to high-resolution ultrasound machine as 

described in detail in section 3.10.1. Using ultrasound to assess the dilation of 

larger extracranial neck vessels during CO2 alterations provides another means 

to monitor reactivity and vessel dilation not assessable using TCD (Ainslie and 

Hoiland, 2014; Willie et al., 2012). The extracranial arteries supplying the brain 

are also sensitive to changes in CO2 levels and therefore contribute to 

cerebrovascular CO2 regulation. Indeed, increases in PaCO2 causes greater 

dilation and increased blood flow in the internal carotid artery and vertebral 

artery compared to the velocity in the MCA and PCA. The difference between 

blood flow in these intracranial vessels and their respective downstream arteries 

suggest an underestimation of flow using TCD (Willie et al., 2012). 

Consequently, at high extremes of PaCO2 this suggests that the MCA dilates, 

therefore challenging the assumption of using TCD to assess MCAv that 

diameter remains constant despite changes in PaCO2 (Willie et al., 2012). 

Consequently, by monitoring the reactivity of the CCA in this thesis, possible 

changes in MCA diameter undetectable by TCD could be monitored. Indeed, 

hypercapnia (4.5-6% CO2) causes dilation and increased blood flow of the CCA 

(Carter et al., 2016), internal carotid and vertebral arteries (Smith et al., 2017).  

 

Images were acquired and optimised in accordance with methodological 

guidelines (Thomas et al., 2015). To reduce any influence of turbulent flow on 

vascular responsiveness, the CCA was imaged at least two centimetres below 

the point of bifurcation. All ultrasound measurements were completed by the 
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same sonographer, who has a between-day intraobserver coefficient of 

variation of 3.5% for the CCA, in line with methodological guidelines (Thomas et 

al., 2015). CCA blood flow and diameter data were analysed as described in 

detail in section 3.10.1. Baseline PETCO2, CCA blood flow and diameter data 

were calculated as the mean of the one minute prior to hyperventilation, while 

data during 5% CO2 breathing was collected as 10 second averages for the 

entire three-minute period. Data were then exported to Excel (Microsoft). 

Absolute and relative CCA blood flow and diameter data were then plotted 

against PETCO2 for each 10 seconds of 5% CO2 breathing and quantified by 

linear regression by adding a linear regression line onto the plotted data. The 

value for the slope of the line was used to represent the rate of change in CCA 

blood flow and diameter per mmHg increase in PETCO2. These slopes were 

compared statistically and their respective R2 values were reported. Relative 

CCA blood flow was calculated as the difference between baseline and 5% CO2 

CCA blood flow divided by baseline CCA blood flow (([5% CO2 MCAv-baseline 

CCA blood flow]/ baseline CCA blood flow) x 100%). This same formula was 

used to calculate relative CCA diameter.  

 

3.7.2.2. Cerebral Autoregulation  

A large range of methods have been used to examine dynamic CA (Claassen et 

al., 2016). Dynamic CA can be assessed by inducing rapid fluctuations in BP, 

such as using suprasystolic thigh cuffs, the use of vasoactive drugs (The Oxford 

Technique) or completing squat to stand manoeuvres (Claassen et al., 2016; 

Willie et al., 2011). The latter represents a simple but also ecological method 

that is typical of daily activities (Claassen et al., 2009; Sorond et al., 2009) and 
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can produce substantial BP fluctuations, as merely moving from sitting to 

standing or to a squat position can induce around a 35 mmHg change in BP 

(Willie et al., 2011).  

 

Different frequencies of squat-stand manoeuvres have been utilised: 0.0025 Hz 

(20 second squat with 20 seconds standing), 0.05 Hz (10 second squat with 10 

seconds standing), and 0.1 Hz (5 second squat with 5 seconds standing) 

(Claassen et al., 2009), with each protocol typically performed for 5 minutes in 

duration (Claassen et al., 2009). These squat-stand manoeuvres create 

oscillations in both BP and CBF (van Beek et al., 2008), which can be captured 

due to the high temporal resolution of photoplethysmography and TCD 

respectively (van Beek et al., 2008). Figure 3-12 shows typical BP and CBFv 

responses observed during two different frequency squat-stand manoeuvres. 

CA is more effective at low compared to high frequencies, therefore these 

squatting protocols are recommended as they are performed at a low 

frequency, but result in high amplitude signals (Claassen et al., 2009). This 

subsequently results in a greater coherence value, making the statistical 

computation of CA using transfer function analysis (TFA) more reliable 

(Claassen et al., 2009). 
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Figure 3-12: Representative mean arterial pressure (MAP) and middle cerebral artery 

blood velocity (MCAv) data at rest (Baseline) and during (A) a 5 second repeated 

squat-stand manoeuvre (0.05 Hz) and (B) a 10 second repeated squat-stand 

manoeuvre (0.1 Hz) (adapted from Willie et al., 2011). 

 

There is no gold standard method to quantify CA (Claassen et al., 2016), 

however a popular approach is to use TFA (Claassen et al., 2009, 2016). TFA 

views CA as a linear control system (Claassen et al., 2016). In a linear control 

system, sinusoids at the input are transformed into sinusoids at output of the 

same frequency, however with a different amplitude and shifted in time 

(Claassen et al., 2016). In the case of CA, BP is the input and CBF the output, 

with CA as the regulator between the two (van Beek et al., 2008). The change 

in amplitude is referred to as the gain, whilst the shift in time is described as the 

phase shift (Claassen et al., 2016). The calculation of gain and phase is 

computationally straightforward, however to ensure the statistical reliability of 

 

 

 

 

The image originally presented here cannot be made freely available via LJMU 

E-Theses Collection because of copyright. The image was sourced at: Willie, 

C.K., Colino, F.L., Bailey, D.M., Tzeng, Y.C., Binsted, G., Jones, L.W., 

Haykowsky, M.J., et al. (2011), Utility of transcranial Doppler ultrasound for the 

integrative assessment of cerebrovascular function, Journal of Neuroscience 

Methods, 196(2), pp.221–37. 
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these values a coherence function is used (Claassen et al., 2016). Coherence 

tests the linearity of the relationship between input and output and can be used 

to indicate whether data is reliable (van Beek et al., 2008; Claassen et al., 

2016). A coherence threshold is set based on the 95% confidence limit (i.e. 5% 

critical value) of the null hypothesis that input and output are not related, 

theoretically corresponding to zero coherence (Claassen et al., 2016). This 

threshold also accounts for the number of independent observations used in the 

calculation (degrees of freedom). In order to improve the standardisation of TFA 

within research, a set of coherence thresholds have been published, which 

researchers are advised to adhere to and, if data are below this coherence level 

it should be rejected (Claassen et al., 2016). 

 

TFA therefore describes CA in three parameters: gain, phase and coherence 

(van Beek et al., 2008). Gain describes the damping effect of CA on the 

magnitude of BP oscillations, or simply how the changes in BP are transmitted 

into CBF (Claassen et al., 2009). Therefore, gain provides a measure of the 

efficiency of the regulator, namely CA (van Beek et al., 2008). Low values of 

gain are indicative of efficient autoregulation as it indicates that oscillations in 

CBF in response to changes in BP are buffered by active changes in 

cerebrovascular resistance and/or by increases in steady-state cerebrovascular 

resistance (Claassen et al., 2009). Increased gain consequently corresponds to 

a reduced efficiency of CA (van Beek et al., 2008). Phase describes the 

synchronicity of two waveforms. Waveforms that are in synchrony are referred 

to as ‘in phase’, while if these waveforms are displaced from each other it 

describes a phase shift. Oscillations in CBF and BP are not in sync, as changes 
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in CBF recover faster than BP. Due to this, oscillations in CBF appear to lead 

oscillations in BP and this displacement of waveforms is referred to as phase 

lead (van Beek et al., 2008). During normal autoregulation, CBFv usually 

precedes BP by 40–60°, with impaired autoregulation assumed when the phase 

is 0° or near 0° (Müller and Osterreich, 2014). The phase shift is considered a 

surrogate measure for the time delay of the autoregulatory response, with 

increases in phase indicating a more efficient CA (van Beek et al., 2008). 

Coherence tests the linearity of the relation between BP and CBF, with a 

coherence value approaching one indicating a linear relationship (van Beek et 

al., 2008). Assessment of coherence is essential to determine the validity and 

reliability of estimates of gain and phase (Claassen et al., 2016). 

 

3.7.2.2.1. Assessment of Cerebral Autoregulation   

Participants completed a series of squat-stand tests, differing in the pace and 

number of the squats completed, in order to induce oscillations in BP (Figure 

3-13). This involved repeated cycles of either: the 0.05 Hz protocol (10 seconds 

squat with 10 seconds standing), or the 0.1 Hz protocol (5 seconds squat with 5 

seconds standing) all for a duration of five minutes (Claassen et al., 2009). 

Participants were coached by the researcher to ensure correct timing and were 

advised to keep their squat technique consistent throughout all tests. MCAv, 

PETCO2 and BP were continuously assessed during each squat-stand protocol 

and acquired in LabChart (Figure 3-13).  
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Figure 3-13: Assessment of cerebral autoregulation (CA) using a squat-stand protocol.  

 

 

 

 

 

 

Figure 3-14: Representative middle cerebral artery blood flow velocity (MCAv), blood 

pressure (BP) and carbon dioxide (CO2) data in LabChart during the squat-stand 

protocol. 
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Data were analysed using TFA in accordance with standardised guidelines 

(Claassen et al., 2016). First, data were analysed in LabChart. For each five-

minute squat-stand protocol, data were screened to ensure it were free from 

excessive noise or artefact. Linear interpolation was used to replace short 

periods of strong artefact (up to three heart beats), data with longer segments of 

artefact were excluded. Following this, beat-to-beat data were extracted (the 

mean CBFv, BP and PETCO2 for each heart beat) and exported to Excel 

(Microsoft) to be reformatted to a compatible format for analysis using the 

recommended MATLAB (MathWorks-Inc., Natick, MA) code, as provided by the 

Cerebral Autoregulation Research Network (Claassen et al., 2016). Data were 

then ran through the MATLAB code. The code first performs a spline 

interpolation of the data to create equidistant time intervals between the data 

points (a requirement of TFA). Data were then resampled at a reduced rate to 

smooth the data and reduce the noise in the signal, with Welch’s algorithm 

applied to smooth the data and improve the precision of the estimates. 

Furthermore, data were windowed using the recommended Hanning window to 

prevent spectral leakage. This divides the data into five successive windows 

that overlap by 50%.  

 

FFT is then used to obtain estimates of auto- and cross-spectra. The 

subsequent output produces values of gain, phase and coherence for each of 

the three frequency domains: very low frequency (VLF: 0.02-0.07 Hz), low 

frequency (LF: 0.07-0.2 Hz) and high frequency (HF: 0.2-0.5 Hz). TFA is a 

frequency-dependent phenomenon and these domains are within the frequency 

range CA is thought to operate. CA is viewed as a high-pass filter as the 
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regulation of CBF is effective in the LF range of BP oscillations, but not in the 

HF range due to the time delay in initiating cerebrovascular adaptations to the 

changes in perfusion pressure. CA therefore allows rapid BP changes to be 

transmitted to CBF, whereas slow BP changes are filtered (van Beek et al., 

2008). As a consequence, the three frequency ranges have different responses 

and are likely controlled by different mechanisms (Zhang et al., 1998). 

Coherence values were used to accept the validity of gain and phase estimates, 

with cut-off values for inclusion set at 0.4 in accordance with published 

guidelines (Claassen et al., 2016). Analyses yielding coherence values lower 

than this cut-off value were excluded. Data that showed evidence of phase-

wrap around (negative values for phase in the VLF and LF) were also excluded. 

As recommended, gain was normalised to control for possible baseline 

differences in BP and MCAv between conditions, therefore normalised gain was 

used for the interpretation of data (van Beek et al., 2008; Claassen et al., 2016). 

  

3.7.2.3. Neurovascular Coupling  

Despite the inability for TCD to measure blood flow to specific brain regions, its 

high temporal resolution means it provides a suitable assessment method for 

NVC (Phillips et al., 2016; Willie et al., 2011; 2014). NVC can be assessed 

using the presentation of sensory, motor or emotional stimuli or by carrying out 

cognitive tasks, all of which evoke neural activity, which subsequently mediates 

a stimulatory effect on CBF, termed functional TCD (Phillips et al., 2016). This 

can include visual stimulatory tasks, such as reading, opening and closing the 

eyes, or identifiying a light source (Phillips et al., 2016; Willie et al., 2011), all of 

which cause increases in neural activity and, subsequently, CBF (Willie et al., 
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2011). For example, 40 second cycles of reading printed text caused an 

absolute increase in the PCA blood flow velocity (PCAv) of ~8 cm·s-1 (Willie et 

al., 2011). Indeed, the response varies between the cerebral vessels and is 

dependent on the region of the brain the vessels supply. Typically in healthy 

individuals a 10-20% increase in PCAv occurs, whilst there is a 5-8% increase 

in the MCAv (Phillips et al., 2016; Figure 3-15).  

 

Recently the publication of new guidelines has aimed to standardise the 

assessment of NVC using a simple visual stimulation task (Phillips et al., 2016). 

The visual stimuli involves a period of eyes-open whilst viewing a bright visual 

stimuli followed by a period of eyes shut. This is combined with the continuous 

assessment of the CBFv of the PCA and MCA. Recommendations state 5-10 

cycles should be repeated whereby one cycle consists of a 20-30s eyes-closed 

period followed by a 20-30s eyes open period (Phillips et al., 2016).  

 

Figure 3-15: Example of neurovascular coupling (NVC) in the (a) posterior cerebral 

artery (PCA) and (b) middle cerebral artery (MCA) using an established standardized 

eyes-open/eyes-closed protocol. Grey lines indicate healthy control group, black bars 

indicate high-level spinal cord injured group. Thick black bar indicates 30-s of eyes-

open reading, being immediately preceded by eyes-closed. Smaller boxes represent 5-

s bins which were averaged (adapted from Phillips et al., 2016). 

 

 

 

The image originally presented here cannot be made freely available via LJMU 

E-Theses Collection because of copyright. The image was sourced at: Phillips, 

A.A., Chan, F.H., Zheng, M.M.Z., Krassioukov, A. V and Ainslie, P.N. (2016), 

Neurovascular coupling in humans: Physiology, methodological advances and 

clinical implications, Journal of Cerebral Blood Flow and Metabolism, 36(4), 

pp.647–64. 
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3.7.2.3.1. Assessment of Neurovascular Coupling    

While rested in a supine postion, participants completed a visual stimulation 

task in accordance with recently published guidelines (Phillips et al., 2016). The 

visual stimuli involved a period of eyes-open whilst viewing a bright visual 

stimulation screen, followed by a period of eyes shut. First, participants 

completed two minutes of eyes closed followed by two minutes of eyes open to 

act as a baseline for each respective condition. Participants subsequently 

performed five visual stimuli cycles whereby one cycle consisted of 30 seconds 

of eyes-closed followed by 30 seconds of eyes-open (Figure 3-16). PCAv and 

MCAv were measured continuously using TCD as described in 3.7.1.2. The 

side (left or right) that each vessel was located was kept consistent for any 

repeated measures. PETCO2 and BP were continuously assessed during the 

procedure as described in sections 3.5 and 3.6.1 respectively.  

 

 

Figure 3-16: Representative posterior cerebral artery blood flow velocity (PCAv), 

middle cerebral artery blood flow velocity (MCAv), blood pressure (BP) and carbon 

dioxide (CO2) data in LabChart during an eyes-open (O), eyes-closed (C) protocol to 

assess neurovascular coupling (NVC). 
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Data were analysed using automated software in accordance with 

recommended guidelines (Phillips et al., 2016). First, data were analysed in 

LabChart. Data were inspected and interpolation was used to replace short 

periods of strong artefact (for example if signal noise occurred due to participant 

movement), while data with longer segments of artefact were excluded. 

Following this, beat-to-beat data were extracted (PETCO2; systolic, diastolic, 

and mean arterial pressure; peak, minimum, and mean MCAv and PCAv) and 

exported to Excel (Microsoft). Data were then reformatted to a compatible 

configuration for analysis using the recommended automated MATLAB 

(MathWorks-Inc., Natick, MA) code. Data were then ran through the MATLAB 

code. The software automatically combines all cycles from one participant into 

one average contour for each outcome measure for an eyes-closed and eyes-

open period (Figure 3-17). The absolute and percentage change in PCAv and 

MCAv from pre-visual stimulation and the time to this peak blood flow response 

were used to quantify the NVC response.  

 

Figure 3-17: Example of neurovascular coupling (NVC) analyses completed in 

MATLAB showing the mean posterior cerebral artery blood flow velocity (PCAv) 

response during a thirty-second eyes-open cycle.  
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3.8. Cognition  

A battery of computer-based cognitive function tests were completed assessing 

three cognitive components: the Stroop Colour-Word Test to measure executive 

function, the Attention Network Test (ANT) to assess attention, and the N-Back 

Task to assess working memory. All tests were conducted using E-Prime 

software (Version 2.0 Professional, Psychology Software Tools, Pittsburgh, PA) 

which logs participants’ responses and variables such as reaction time (RT) and 

response accuracy. The E-Prime software was loaded onto a computer and 

participants completed the tests while seated in a silent room, with only the 

experimenter present. Therefore, there were no audible or visual distractions 

during testing. Prior to each test, participants were provided with written 

instructions and given the opportunity to ask questions. For each test, 

participants were told to respond as quickly and accurately as possible to each 

stimulus. 

 

3.8.1. Stroop Colour-Word Test 

The Stroop Colour-Word Test originated from the research of Stroop in his 

studies of attention and interference (Stroop, 1935). It is now a widely used test 

of inhibitory processing and executive function (Cothran and Larsen, 2008; 

Homack and Riccio, 2004). Due to the development of many variations of the 

Stroop Test, there is no recognised standard version (Homack and Riccio, 

2004). Despite this, the basic model of the test remains, whereby performance 

on a basic task is compared with performance on a similar task but where a 

habitual response is supressed by an incongruent interference (Van der Elst et 

al., 2006). The time taken to complete the latter task is greater compared to the 
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basic task, and this is described as Stroop Interference or the Stroop 

Interference Effect (Van der Elst et al., 2006). The Stroop Interference Effect is 

viewed as a measure of an individual’s cognitive flexibility and executive 

functioning ability (Van der Elst et al., 2006; Homack and Riccio, 2004).  

 

3.8.1.1. Administration of the Stroop Colour-Word Test 

In a standardised order, participants completed the three tasks that form the 

Stroop Colour-Word Test: the Word Task, the Colour Task and the Colour-Word 

Task (Homack and Riccio, 2004). For each task, participants were instructed to 

name the colour of the ink in which the text was written and to respond as 

quickly and accurately as possible by pressing on the keyboard the letter that 

corresponded to that colour. In the Word Task participants were presented with 

the words ‘red’, ‘blue’, ‘yellow’ or ‘green’ in a congruous ink colour (e.g. the word 

‘red’ was written in red ink). In the Colour Task a series of four letter X’s were 

displayed (XXXX) in either red, blue, yellow or green ink. For the Colour-Word 

Task the names of these four colours were presented in an incongruent ink 

colour (e.g. the word ‘red’ was written in blue ink). 

 

Participants were instructed to place their left and right middle and index fingers 

on the letters on the keyboard corresponding to the four colour options and to 

keep them there throughout all tasks. A practise task of 16 trials was given to 

ensure participants were familiarised with the test protocol. Following this, the 

three tasks were completed. Each task was formed of 32 trials, therefore 

totalling 98 trials across the entire test. A break was given in between each 

task. For each trial first a fixation (*) was displayed in the centre of the screen 

for 250 ms. Following this, the stimulus was presented. The stimulus was 
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presented in the centre of a white screen, in Arial font, size 18. The stimulus 

remained on the screen for a maximum time of 10000 ms, during which the 

participant was required to make their response, if not a ‘no response’ was 

logged. Following this a visual feedback screen was displayed, informing the 

participant whether their response was correct.  

 

For each task, the percentage of correct responses was determined and the 

mean RT for correct responses calculated. An Interference Score was 

calculated by subtracting the mean time needed to complete the Colour and 

Word tasks from the time needed to complete the Colour-Word task 

(Interference = Colour-Word task – [(Word task + Colour task) / 2] (Valentijn et 

al., 2005). 

 

3.8.2. Attention Network Test  

The Attention Network Test (ANT) was developed by Fan et al. (2002) to 

assess three different attentional networks: alerting, orientating and executive 

control. These networks are suggested to be functionally and anatomically 

independent but together form the human attentional system (Fan et al., 2002, 

2005). The alerting network refers to achieving and maintaining an alert and 

vigilant state, the orientation network describes the selection of information from 

sensory input, while executive control is the ability to resolve conflict between 

expectation, stimulus and response (Fan et al., 2002; Macleod et al., 2010). 

Importantly, the validity of the test has been confirmed as neuroimaging 

research has shown regions of the brain associated with these networks are 

activated while completing the test (Fan et al., 2005). Furthermore, the ANT is 
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viewed as having good face validity, as it is formed from two well established  

measures of attention (Macleod et al., 2010): the cued reaction time task 

(Posner, 1990) and the flanker task (Eriksen and Eriksen, 1974). 

 

3.8.2.1. Administration of the Attention Network Test 

Participants were presented with a stimulus in the form of a central arrow and 

were required to indicate the direction (left or right) of this arrow by clicking with 

the computer mouse in the corresponding direction. The central arrow was 

flanked by one of three different types of flankers: two arrows each side pointing 

in the same direction as the central arrow (congruent condition), two arrows 

each side pointing in the opposite direction of the central arrow (incongruent 

condition), or two straight lines each side of the central arrow (neutral 

condition). Prior to the presentation of the stimuli, participants were shown one 

of four cue (*) types: a central cue, a double cue, a spatial cue, or no cue. The 

central and double cues indicated to the participant that the stimuli would be 

presented soon, while the spatial cue additionally provided an indication of 

where the stimuli would be presented. The ‘no cue’ provided participants with 

none of this information. For each trial, first a fixation (+) was displayed in the 

centre of the screen for 400 ms. Following this, one of the four different cue 

types were presented for 100 ms. A second fixation was displayed for 400 ms, 

followed by one of the stimuli types (Figure 3-18). The fixation, cue and stimulus 

were presented in the centre of a white screen, in Arial font, size 18. The 

stimulus remained on the screen for a maximum time of 1,700 ms, during which 

the participant was required to make their response, if not a ‘no response’ was 

logged.  



   

98 

  

 

Figure 3-18: The Attention Network Test (ANT) experimental protocol. The sequence 

of events in one trial is shown in the left column, and all possible stimuli associated with 

each event are presented in the right column (adapted from Macleod et al., 2010). 

 

Participants were told to respond as quickly and accurately as possible to each 

stimulus and instructed to keep their hand on the computer mouse throughout 

the task. A practise task of 24 trials with feedback was given to ensure 

participants understood the test protocol. Following this, participants completed 

three experimental blocks of trials, without any feedback given. Each block 

consisted of 96 trials. A break was given in between each experimental block. 

 

The efficiency of the three attentional networks was assessed by determining 

how the alerting cues, spatial cues and flankers influenced response times (Fan 

et al., 2002). Mean RT for correct trials was calculated as a function of cue or 

flanker condition for each participant. To calculate the effect of an alerting cue 

on response times, the mean RT of the double cue trials was subtracted from 
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The image originally presented here cannot be made freely available via LJMU 

E-Theses Collection because of copyright. The image was sourced at: Macleod, 

J.W., Lawrence, M.A., McConnell, M.M., Eskes, G.A., Klein, R.M. and Shore, 

D.I. (2010), Appraising the ANT: Psychometric and theoretical considerations of 

the Attention Network Test, Neuropsychology, 24(5), pp.637–651. 
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the mean RT of the no cue trials (Fan et al., 2002). To calculate the orienting 

effect, the mean RT of the spatial cue trials was subtracted from the mean of 

the central cue trials (Fan et al., 2002). The executive function effect was 

calculated as the mean RT of the congruent flanker conditions subtracted from 

the mean RT of the incongruent flanker conditions (Fan et al., 2002). 

 

3.8.3. N-Back Task 

The N-Back Task is widely used and popular test of working memory (Conway 

et al., 2005) that was developed from the work of Kirchner (1958). It is a type of 

working memory span task, which is recognised as a reliable and valid measure 

of working memory (Conway et al., 2005). The N-Back Task itself is viewed as 

having face validity to assess working memory (Kane et al., 2007).  

 

3.8.3.1. Administration of N-Back Task 

Participants were required to complete four separate test conditions: zero-back, 

one-back, two-back and three-back. The condition was manipulated to alter the 

work memory task demand (Jaeggi et al., 2010). For all conditions a series of 

letters were presented on the screen and the participants had to respond 

whether this letter was a target or a non-target. In the zero-back condition 

participants had to respond each time a specified target letter (‘x’) was 

presented. In the one-back condition, the target was any letter identical to the 

letter that immediately preceded it. In the two-back condition, the target was any 

letter that was identical to the one presented two letters back. Whilst in the 

three-back condition, the target was any letter that was identical to the one 

presented three letters back (Figure 3-19). 
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Figure 3-19: N-Back Task protocol. 

 

To log their response, participants were required to click with the computer 

mouse either left for a target letter or right for a non-target letter. Participants 

were instructed to keep their hand on the mouse throughout the task. Each 

letter was presented in the center of a white screen, in Arial font, size 18 until 

the participant made their response. A blank screen was displayed for 3,000 ms 

in between each letter. For each condition, a practise task of 20 trials was given 

to ensure participants understood the test protocol. Following this, participants 

completed two experimental blocks. Each block consisted of 30 trials, of which 

33% of the letters displayed were targets and the first three trials were never a 

target. A break was given in between each experimental block and between test 

conditions. For each condition, the percentage of correct responses was 

determined and the mean RT for correct responses calculated. Typically, as the 

working memory demand increases in each condition, so in turn does RT and 

the number of errors (Jaeggi et al., 2010). 

 



   

101 

  

3.9. Mood  

3.9.1. Positive and Negative Affect Schedule 

The Positive and Negative Affect Schedule (PANAS) is a 20-item self-report 

measure of affect developed by Watson et al. (1988). PANAS provides two 

overall scores that represent positive and negative affect. Positive affect refers 

to the extent to which an individual feels enthusiastic, alert and active; whilst 

negative affect reflects subjective distress and unpleasurable engagement 

(Watson et al., 1988). PANAS is formed of two 10-item mood scales.  

Individuals are required to rate on a 5-point scale the extent to which they have 

experienced each particular emotion within a specified time period (for example 

that day or over the last week). The scale points are: 1 ‘very slightly or not at 

all’, 2 ‘a little’, 3 ‘moderately’, 4 ‘quite a bit’ and 5 ‘extremely’ (Crawford and 

Henry, 2004; Watson et al., 1988). Values are then totalled to give separate 

positive and negative affect scores ranging from 10-50. 

 

The PANAS is a valid and reliable measurement tool (Crawford and Henry, 

2004; Watson et al., 1988). Initial work showed good reliability results, when 

participants were asked to respond with consideration to several specific time 

periods. For the positive affect items, the Cronbach’s alpha coefficient was 0.86 

to 0.90; while for the negative affect items it ranged from 0.84 to 0.87 (Watson 

et al., 1988). More recent work supports these finding as Cronbach’s alpha 

coefficients were 0.89 for positive affect and 0.85 for negative affect (Crawford 

and Henry, 2004). Furthermore, over an 8-week time period, test-retest 

correlations were 0.47-0.68 for positive affect items and 0.39-0.71 for negative 

effect items (Watson et al., 1988). The correlations results were found to 
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increase as the time frame is which participants were required to recall also 

increased (e.g. at that moment in time compared to over the past week). 

However, this is expected as longer periods of recall lead to the averaging of 

emotions over a greater time period and stability of responses rises with 

increasing time over which feelings are accumulated (Watson et al., 1988). 

 

3.9.2. Bond-Lader Mood Rating Scale 

The Bond-Lader Mood Rating Scale (Lader and Bond, 1998) is a visual 

analogue scale that assesses three mood factors. The scale is formed of 12 

individual visual analogue scales featuring bipolar end-points for different mood 

dimensions. Each scale is formed of a 100 mm line anchored at each end by 

antonyms. Individuals are required to mark on each scale where they feel at 

that moment. Each scale is scored from 0 to 100 based on the position the mark 

from the negative mood dimension. These scores are then combined to form 

three mood factors: alert, calm and contented; with each mood factor calculated 

as an average of the scores from the relevant mood scales (Lader and Bond, 

1998).  
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3.10. Endothelial Function: Flow-Mediated Dilation 

Flow-mediated dilation (FMD) provides a non-invasive assessment of 

endothelial function by measuring a vessel’s vasodilator capacity (Corretti et al., 

2002; Harris et al., 2010; Thijssen et al., 2011). The technique was introduced 

by Celermajer et al. (1992) and is now the most widely used in vivo method 

within clinical research (Greyling et al., 2016; Thijssen et al., 2011). This is 

largely due to the independent prognostic information FMD can provide, as 

FMD is predictive of cardiovascular events in both asymptomatic individuals and 

those with cardiovascular diseases (Thijssen et al., 2011). Meta-analyses have 

shown that brachial FMD is inversely associated with CVD incidence (Inaba et 

al., 2010; Ras et al., 2013) and that a 1% decrease in FMD is associated with a 

13% higher risk of a future cardiovascular event (Inaba et al., 2010). The 

principle of FMD utilises a rapid increase in blood flow and subsequently shear 

stress to stimulate vasodilation (Pyke and Tschakovsky, 2007). The method 

involves the placement of a cuff around a limb which is then inflated for five 

minutes to occlude this vascular bed. The deflation of this cuff results in a rapid 

re-introduction of blood flow (reactive hyperaemia), elevating shear stress, 

which in turn promotes arterial vasodilation (Corretti et al., 2002; Thijssen et al., 

2011; Figure 3-20).  

 

The physiological basis of the FMD assessment is that peripheral conduit 

arteries regulate their vascular tone in response to blood flow (Tousoulis et al., 

2005). Elevations in flow subsequently increase the shear stress against the 

endothelium of the vessel wall, which functions as a stimulus to enact a 

signalling cascade involving the hyperpolarisation of the endothelial cell via 
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opening of ion channels (Moens et al., 2005). This in turn increases calcium 

entry which activates endothelial NO synthase leading to the formation of NO 

and subsequent vessel dilation (Corretti et al., 2002; Moens et al., 2005). 

Endothelial dysfunction presents as impaired ability for vascular dilation, and 

thus attenuated FMD (Corretti et al., 2002; Moens et al., 2005; Thijssen et al., 

2011). 

 

 

Figure 3-20: The flow-mediation dilation (FMD) protocol including a one minute  

baseline measurement, five minutes of distal cuff occlusion and three minutes of 

reactive hypereamia (adapted from Weissgerber, 2014).  

 

 

 

 

 

 

 

 

 

The image originally presented here cannot be made freely available via LJMU 

E-Theses Collection because of copyright. The image was sourced at: 

Weissgerber, T.L. (2014), Flow-mediated dilation: can new approaches provide 

greater mechanistic insight into vascular dysfunction in preeclampsia and other 

diseases?, Current Hypertension Reports, 16(11), pp.1–10. 
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3.10.1. Assessment of Endothelial Function  

The use of Doppler ultrasound has become the prominent method to assess 

endothelial function using the FMD technique, mainly due to its non-invasive 

protocol (Harris et al., 2010). The use of Duplex mode ultrasound is preferred 

as this enables two-dimensional imaging of the vessel of interest to assess 

vessel diameter (B-mode), whilst Doppler is used for the determination of blood 

velocity (Harris et al., 2010). Using a high-resolution ultrasound probe, a 

longitudinal image of the vessel is acquired, enabling the borders of the vessel 

to be determined.  

 

Assessment of brachial and femoral artery endothelial function was performed 

according to published guidelines (Thijssen et al., 2011). A rapid inflation and 

deflation pneumatic cuff (D.E. Hokanson, Bellevue, WA, USA) was positioned 

either around the right thigh, above the patella or around the left forearm with 

the proximal border adjacent to the medial epicondyle (Harris et al., 2010; 

Thijssen et al., 2011).  To image the vessels a 10-MHz multi-frequency linear 

array probe, attached to high resolution ultrasound machine (T3000; Terason, 

Burlington, MA, USA) was used. Images were acquired proximal to the 

occlusion cuff (Figure 3-21). For the acquisition of arterial diameters, ultrasound 

parameters were adjusted to optimise the B-mode image of the lumen-arterial 

wall interface. Once a satisfactory image was obtained, the probe was held 

consistently in this position. Arterial blood flow velocity was simultaneously 

assessed via Doppler ultrasound using the same ultrasound machine with a 

consistent insonation angle of 60° for each assessment (Figure 3-22). Baseline 

arterial diameter and blood flow velocity were recorded for one minute. 
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Following this, the cuff was inflated to 220 mmHg for five minutes to induce 

local ischemia. After cuff deflation, arterial diameter and blood flow velocity 

recordings were continued for a further three minutes.  

 

 

Figure 3-21: Assessment of brachial and femoral artery endothelial function using the 

flow-mediated dilation (FMD) method. 

 

 

Figure 3-22: Acquisition of brachial arterial diameter using B-mode imaging and 

simultaneous arterial blood flow using Doppler ultrasound. 
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FMD data were analysed using custom designed automatic edge-detection and 

wall-tracking software, a reproducible and valid method (Green et al., 2002; 

Woodman et al., 2001) which is largely independent of investigator bias 

(Woodman et al., 2001). The software enables regions of interest (ROI) to be 

selected from the initial frame of each data file for the B-mode image and 

Doppler waveform. To analyse arterial diameter, a ROI is selected based on the 

clarity of the B-mode image and the distinction between the arterial wall-lumen 

interface. Within this ROI a pixel-density algorithm automatically identifies the 

angle-corrected near and far-wall e-lines for every pixel column (Black et al., 

2008). A second ROI is selected to encompass the Doppler waveform, which 

then automatically detects the peak of the waveform (Figure 3-23; Black et al., 

2008). Each frame is then subsequently analysed at a rate of 30 Hz, enabling 

synchronised arterial diameter, blood velocity, blood flow (the product of arterial 

cross sectional area and blood velocity) and SR (four times blood velocity 

divided by arterial diameter) data to be acquired (Figure 3-24; Black et al., 

2008).  
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Figure 3-23: Analysis of flow-mediated dilation (FMD) data using custom designed 

automatic edge-detection and wall-tracking software. The yellow boxes represent 

regions of interest (ROI) that have been selected to identify the arterial wall-lumen 

interface and the Doppler waveform. 

 

 

Figure 3-24: Output from the analysis of flow-mediated dilation (FMD) data using 

custom designed automatic edge-detection and wall-tracking software. The top box 

provides continuous arterial diameter data, the middle box provides shear rate (SR) 

data, the lower box provides blood flow data (calculated from diameter and velocity). 
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The validity and reproducibility of this analysis software has been previously 

shown using three validation studies (Woodman et al., 2001). Firstly, compared 

to phantom arteries with known diameters, there was only a 0.011 mm 

difference between the manual measurement and that using the software. The 

reproducibility of the analysis software was also greater compared to a 

traditional manual calliper method; with intra-observer coefficients of variations 

significantly lower for FMD using the software analysis (6.7% vs. 24.8%). 

Furthermore, the between-visit reproducibility of FMD using the software 

analysis was shown to be 14.7% (Woodman et al., 2001).  

 

Baseline arterial diameter, blood flow and SR were determined as the mean of 

the data acquired one minute prior to cuff inflation. Following cuff deflation, peak 

vessel diameter was automatically calculated using the custom designed 

software. This process involves an algorithm which identifies the maximum 

bracket of data using a moving window smoothing function (Black et al., 2008). 

The median value of 100 consecutive samples is calculated, before the window 

shifts to the next bracket of data, which has a 20% overlap with the preceding 

bracket. The maximum value from all median values is automatically 

determined as peak vessel diameter. From these data, FMD was calculated as 

the percentage increase in arterial diameter from baseline arterial diameter, and 

is an observer independent calculation  (Black et al., 2008).  
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3.11. Sedentary Behaviour  

In this thesis, SB was measured both subjectively, using questionnaires, and 

objectively, using an inclinometer.  

 

3.11.1. Subjective Measurement: International Physical Activity 

Questionnaire   

The International Physical Activity Questionnaire (IPAQ) was developed by a 

consensus group of PA assessment experts under the premise of creating a 

valid and reliable questionnaire to measure daily, health enhancing PA 

(Hagströmer et al., 2006). The IPAQ considers PA across four domains: during 

transportation, at work, during household and gardening tasks, and during 

leisure time; and two version of the IPAQ can be used: the short form or the 

long form. Despite being primarily designed to assess PA levels across multiple 

domains, the questionnaire also includes items considering sitting time. In both 

the short and long versions of the IPAQ participants are instructed to recall the 

time they have spent sitting at work, at home, while doing course work, and 

during leisure time. They are asked to estimate the total number of hours and 

minutes per day they spend sitting for a weekday and for a weekend day. The 

sitting items on the IPAQ have been shown to be a valid and reliable 

assessment of SB (Rosenberg et al., 2008). IPAQ reported total sitting time was 

significantly correlated to objectively measured SB using accelerometry both for 

the long (r=0.33) and short (r=0.34) forms of the questionnaire (Rosenberg et 

al., 2008). 
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3.11.2. Subjective Measurement: Workforce Sitting Questionnaire  

The Workforce Sitting Questionnaire (WSQ; Chau et al., 2011) allows the 

assessment of domain-specific sedentary time. The questionnaire was adapted 

from the Marshall Sitting Questionnaire (Marshall et al., 2010) which found that 

sitting time across all domains was more reliably and validly recalled for 

weekdays than weekend days (Chau et al., 2011; Marshall et al., 2010). It was 

suggested this was due to difficulty recalling time spent in less structured 

activities, such as at a weekend, compared to weekday structured routines, 

such as work (Marshall et al., 2010). The WSQ is version of the Marshall Sitting 

Questionnaire designed for a working population and therefore specifically asks 

participants to recall their SB on a work day and a non-work day. Participants 

report their time spent sitting while: travelling, at work, watching television, using 

a computer at home, and doing other leisure activities. Participants are required 

to recall this for a typical workday and a non-workday over the last seven days. 

Total sitting time on a workday and on a non-workday is defined as the sum of 

all domains for each respective day. Participants also report the number of days 

they were at work over the last seven days, which is used to calculate average 

total sitting time per work day and non-work day (Chau et al., 2011). The WSQ 

has been shown to be a valid and reliable measure of SB (Chau et al., 2011). 

The validity of the questionnaire was compared to objectively measured sitting 

time using accelerometery over one week and showed sufficient criterion 

validity (r=0.45), whilst the test-retest reliability was good (Intraclass Correlation 

Coefficient (ICC)=0.63) (Chau et al., 2011). The questionnaire has been 

previously used in other research assessing workplace sitting time (Chau et al., 

2014; De Cocker et al., 2014).  
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3.11.3. Objective Measurement: activPAL  

The activPAL is a small activity monitor (5×3.5×0.7 cm) weighing 20 g which is 

worn on the anterior mid-line of the right thigh (Figure 3-25). It is attached using 

a waterproof dressing, enabling it to be worn continuously throughout an 

assessment period (Ryan et al., 2006). The activPAL contains a tri-axial 

accelerometer which responds to gravitational acceleration in addition to 

acceleration due to segmental movement (Grant et al., 2006; Ryan et al., 2006). 

Consequently, when the device is attached to the thigh, the monitor uses the 

position of the thigh to infer posture and in turn classify between sitting/lying, 

standing or walking (Grant et al., 2006; Ryan et al., 2006). The monitor can also 

determine step count and step cadence during walking activities, and sit-to-

stand transitions. Data is collected at a sampling frequency of 20 Hz and a 

proprietary algorithm is used in manufacturer specific software to convert 

signals into measures of body posture in 15-second epochs (Kim et al., 2015).  

 

The activPAL has been shown to be a valid and reliable measure of sedentary 

time (Grant et al., 2006). An initial validation study compared the time spent 

during sitting, standing, walking and while completing different activities of daily 

living between data from activPAL monitor and a synchronised video recording 

(Grant et al., 2006). The ICC for inter-observer reliability was >0.97 for all 

activities and postures, while inter-device reliability ICC was >0.99 for all 

postures and activities except walking (ICC=0.79) (Grant et al., 2006). Bland-

Altman plots also demonstrated good agreement between the activPAL and 

direct observation for the time spent during each activity (Grant et al., 2006).  
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More recent research has further confirmed the validity of the activPAL device 

to measure SB when compared to direct observation (Kim et al., 2015; Kozey-

Keadle et al., 2011). In particular, it has been shown that the activPAL is able to 

accurately detect purposeful reductions in sitting time (Kozey-Keadle et al., 

2011), important for behaviour change research. Due to its reliability and 

validity, alongside is unobtrusive design, simple application and no need for 

user calibration, the activPAL has been widely used in SB research (Grant et 

al., 2006). Additionally, the activPAL monitor has been used to specifically 

examine SB within a workplace environment (Healy et al., 2013; Ryan et al., 

2011; Smith et al., 2015).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-25: (a) The activPAL monitor used to objectively measure sedentary 

behaviour (SB). (b) The activPAL monitor positioned on a participant’s leg. 

 

(a) (b) 
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3.11.3.1. Assessment of Sedentary Behaviour Using activPAL 

For each participant, the activPAL was initialised, waterproofed and secured 

onto the anterior mid-line of their right thigh. The activPAL was waterproofed 

using a small flexible sleeve to cover the monitor and then secured to the leg by 

the principal researcher using a waterproof medical grade adhesive dressing 

(Tegaderm). Waterproofing the device permitted participants to wear the 

monitor continuously for the entire assessment period, which can increase wear 

time compliance (Edwardson et al., 2016). Additional waterproof dressings and 

attachment instructions were given to participants in case the monitor became 

detached during the assessment period to allow for reattachment, or they were 

advised to contact the principal researcher. Participants were instructed to wear 

the activPAL monitor continuously over five working days and two weekend 

days (i.e. Saturday and Sunday). Monitoring for seven days is recommended to 

produce valid data (Edwardson et al., 2016). To delineate between workplace 

and leisure time SB, participants were given a log book to record the time they 

started and finished work each day. Additionally, participants recorded the time 

they woke up and went to bed on each day to allow for only waking hours to be 

included in analyses. Participants were provided with written and verbal 

instructions regarding how to wear the device and use the log book.  

 

Data were downloaded using activPAL software (version 7.2.32) and saved in 

24-hour periods in 15 second epochs. Data were then exported into Excel for 

analyses. First, the seven-day monitoring period was divided into individual 

Excel worksheets, one for each day of the week. Based on a participants’ log 

book, these days were then identified as either a work day or a weekend day. 
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For each day, total step count, sit-to-stand transitions, stand-to-sit transitions, 

and the time spent sedentary, upright and stepping were calculated for waking 

hours, defined using the participants’ logbook. For each variable, this involved 

summing the values in the cell reference range from the self-reported wake up 

time to the self-reported bed time. Time spent sedentary, upright and stepping 

were then calculated as a percentage of total wake time. After analysing all 

seven days, mean values were determined for each variable to represent a 

working day and a weekend day. Participants’ log book recording of their 

working hours were used to determine the time spent at work. An identical 

process was used to calculate the same variables, however instead using the 

cell reference range that corresponded to the self-reported time a participant 

began work and the self-reported time they finished work. Time spent 

sedentary, upright and stepping were then calculated as a percentage of total 

work hours. After analysing all work days, mean values were determined for 

each variable to represent a working day. 
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3.12. Work Productivity 

This thesis included tests of work productivity, which although were unvalidated 

methods to assess work performance domains, they were included as 

ecologically important measures representative of an office workers’ tasks. 

 

3.12.1. Typing Performance 

Participants were required to copy nontechnical material of moderate difficulty 

(syllabic intensity of 1.3) using specialized, split-screen display typing software 

(Typemaster Pro, Typemaster Finland, Helsinki, Finland). The top window 

contained the text to be copied, which was typed by participants and appeared 

in the bottom window (Figure 3-26). All scripts used were of equal syllabic 

intensity. Participants were instructed to type as fast and as accurately as they 

could for two minutes and errors could only be corrected while typing the same 

word. Gross and net typing speed (words per minute) and accuracy were 

subsequently calculated. 

 

Figure 3-26: Screenshot of the Typemaster Pro software used for the typing 

performance test. 
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3.12.2. Reading and Correcting Task 

Participants silently read a generic text from a screen for three minutes. The 

text featured one character rotations (e.g. “hlelo” instead of “hello”) after 

approximately every 50 words and participants were required to identify and 

correct these character rotations. The numbers of characters read and 

percentage of missed character rotations were recorded.  

 

3.12.3. Mouse Dexterity  

Participants completed a Random Circles test (Hillcrest Freespace 

MotionStudio Version 3.4.0) which is based on Fitts' Law (Fitts, 1954). Fitts’ Law 

predicts that the time required to rapidly move to a target area is a function of 

the ratio between the distance to the target and the width of the target 

(MacKenzie, 1989). A total of 100 dots of different sizes appeared randomly on 

the computer screen which participants were required to click on as fast as 

possible (Figure 3-27). RT (the interval between the appearance of a dot and 

the participant clicking the dot) and a performance score (combining accuracy 

and movement speed) were recorded.  

 

Figure 3-27: Screenshot of the Random Circles test to assess mouse dexterity. 
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4. Relationship between 

workplace sedentary 

behaviour, cognition and mood 

in healthy workers
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4.1. Introduction 

The importance of workplace physical inactivity was first demonstrated with the 

observation that active bus conductors had lower CVD incidence compared to 

‘inactive’, or as they would now be classified, sedentary, bus drivers (Morris and 

Crawford, 1958). The workplace has since been identified as a key setting 

where adults accrue high amounts of SB, with office workers spending 65–75% 

of their work hours sitting, typically in prolonged bouts (Buckley et al., 2015). 

Importantly, a significant proportion of the week is spent at work, thus exposing 

workers to high levels of SB. Considering this, recent guidelines suggest 

reducing workplace SB could improve employee health and wellbeing, as well 

as their productivity (Buckley et al., 2015). However, there is little evidence from 

workplace intervention studies to support these recommendations; a fact that 

has been recently criticised (Stamatakis et al., 2018). 

 

Cognition is related to work performance due to its influence on workers’ ability 

to learn and execute the skills needed to carry out work-specific tasks (Fisher et 

al., 2017). Indeed, cognitive ability is negatively associated with 

counterproductive work behaviours (Dilchert et al., 2007) and employees with 

greater cognitive capabilities perform more work tasks (Morgeson et al., 2005). 

Pertinently, associations between cognition and SB have been observed.  

Cross-sectional and prospective studies in older adults indicate that SB is 

negatively associated with cognition (Edwards and Loprinzi, 2017a, 2017b; 

Falck et al., 2017). However, such research excludes the working-age 

population, an important and potentially at risk cohort since some aspects of 

cognitive performance start declining from the age of 20 years (Salthouse, 



   

120 

  

2009). Additionally, mood influences work productivity (Kaplan et al., 2009; 

Shockley et al., 2012), as workers in a positive mood are more efficient and 

effective within their job roles (Miner and Glomb, 2010; Rothbard and Wilk, 

2011). Furthermore, positive affect is positively related to task performance and 

negatively related to counterproductive work behaviours, with opposite 

associations observed for negative affect (Kaplan et al., 2009; Shockley et al., 

2012). Mood decreases following up to two weeks of experimentally increasing 

free-living SB (Edwards and Loprinzi, 2016a; Endrighi et al., 2016), however 

whether SB accrued specifically during working hours contributes to this mood 

disturbance is unknown.    

 

Although less sedentary individuals may have increased cognitive performance 

and mood, it is not known what has displaced SB to achieve these benefits, for 

example standing or stepping. Importantly, guidelines to reduce sitting in the 

workplace recommend progressing towards two hours of standing and light-

activity during working hours (Buckley et al., 2015). However, the 

recommendation of light-intensity PA and standing is based on previous 

research showing improved blood glucose and insulin concentrations when 

breaking up prolonged sitting (Bailey and Locke, 2015; Dunstan et al., 2012; 

Thorp et al., 2014). Consequently, whether light-intensity PA can have 

beneficial effect on factors influencing work productivity, such as cognition and 

mood, is unknown. Accordingly, this study aimed to firstly assess the 

relationship between cognition, mood and objectively measured time spent 

sitting, stepping or standing whilst at work as well as during a weekday and a 

weekend. Secondly, this study aimed to assess the relationship between 
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cognition, mood and light-, moderate-, and vigorous-intensity PA at work and 

during a weekday and weekend. It was hypothesised that greater time spent 

sitting at work would be associated with impaired cognition and mood and, 

based on current workplace guidelines (Buckley et al., 2015), it was 

hypothesised that light-intensity PA at work would be positively associated with 

cognition and mood. 
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4.2. Methods 

4.2.1. Participants  

Eighty-four healthy, full-time workers (33 male) volunteered and written 

informed consent was obtained prior to inclusion. Participants were screened 

prior to testing for exclusion criteria including: use of medication, smoker, BMI 

>35 or <18 kg∙m-2 and diagnosis of cerebrovascular, cardiovascular or 

metabolic disease. Study procedures were approved by the Liverpool John 

Moores University Ethics Committee and adhered to the Declaration of Helsinki. 

From the originally recruited sample size, nine participants were excluded due 

to incomplete data (either incomplete log books or non-valid wear time for the 

activity monitors), thus the final sample size used for analyses was seventy-five.  

 

4.2.2. Study Design and Procedures 

Data collection occurred either at Liverpool John Moores University or at the 

participants’ workplace in a private, quiet room without any external 

disturbances. Participants completed two test visits. During visit one, 

participants were fitted with two activity monitors and given a wear-time log-

book to complete. Following this, participants continuously wore the monitors for 

the next seven consecutive days. The second visit occurred between 7.00-9.00 

am the day after participants finished wearing the monitors. During this visit 

participants completed a battery of computer-based cognitive performance tests 

and two mood questionnaires (Figure 4-1). 
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Figure 4-1: Study design. SB- sedentary behaviour; PA- physical activity; ANT- attention network test; PANAS- positive and 

negative affect schedule. 
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4.2.3. Measurements 

The measurement of SB, cognition and mood are described in detail in Chapter 

3. General Methods, hence here only specific features of this study are outlined. 

4.2.3.1. Physical Activity  

PA was assessed using the SenseWear Pro 3 (BodyMedia, Inc., Pittsburgh, PA, 

USA), a multisensory body monitor that is a valid method to assess energy 

expenditure and in turn PA (Casiraghi et al., 2013). Each armband was 

initialised based on participants’ stature, body weight, sex and age. Participants 

then wore the armband around the upper right arm, in accordance with 

manufacturer guidelines. Participants were instructed to wear the armband 

continuously for seven days, only removing for showering or other water-based 

activities. Data were downloaded from the armband and analysed using 

SenseWear professional software (version 7.0, BodyMedia, Inc.), which uses 

algorithms developed by the manufacturer to determine MET values for one 

minute epochs. For each day data were considered valid if the monitor was 

worn ≥10 hours per day and if wear time corresponded with the participant’s 

self-report wear time diary. Based on this criteria, a participants’ data was used 

in analyses if three weekdays and two weekend days were considered valid 

(Scheers et al., 2012). These data were then exported to Excel (Microsoft) for 

further analyses. For each day, the time spent in different categories of PA was 

determined based on recognised METs values: light-intensity PA 1.5-3.0 METs, 

moderate-intensity PA 3.1-6.0 METs and vigorous-intensity PA >6.0 METs 

(Ainsworth et al., 2011). Minute-by-minute data for each category were then 

summed to determine the total time spent in each intensity of activity per day for 

waking hours. These values were then summed to calculate total PA per day for 
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waking hours. Data were then expressed as a percentage of waking hours. 

Mean values were then determined for each variable for a weekday (WEEK) 

and a weekend day (WEEKEND). Participant log-book recording of their 

working hours were used to determine time spent at work. The same variables 

were then calculated for daily working hours using these self-report times 

(WORK). Total values for the week (TOTAL) were calculated using a weighted 

mean to account for the disproportionate time spend in weekdays compared to 

weekend days across a week (WEEK x 0.71 + WEEKEND x 0.29). Variables for 

leisure time during the weekday (WEEKLEISURE) were calculated by 

subtracted WORK data from WEEK data, therefore removing any activity during 

the time spent at work.   

 

4.2.3.2. Sedentary Behaviour  

SB was assessed using the activPAL, as described in detail in section 3.11.3.1, 

hence here only specific features of this study are outlined. Data were 

considered a valid day if the monitor was worn ≥10 hours per day and if wear 

time corresponded with the participant’s self-report wear time diary. The latter 

was achieved by visually inspecting the activPAL graphical data and event file 

outputs following analyses to assess if self-report wake up and bed time 

corresponded with activPAL data. When assessing working hours, it was 

required that the monitor was worn for 100% of work time. Furthermore, data 

were only included if a valid activPAL wear day had a corresponding valid 

SenseWear wear day, thus both SB and PA data were valid for the same day 

(i.e. if the participant only wore one of the monitors this day was excluded). 
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Based on these criteria, activPAL data was only included if there were a 

minimum of three valid weekdays and two valid weekend days.  

 

For each day, the time spent in sitting, standing and stepping were determined 

using the method described in section 3.11.3.1. Data were then expressed as a 

percentage of waking hours (%SIT, %STAND, %STEP). Mean values were 

then determined for each variable for a weekday (WEEK) and a weekend day 

(WEEKEND). Participant log-book recording of their working hours were used to 

determine time spent at work. The same variables were then calculated for daily 

working hours using these self-report times (WORK). Total values for the week 

(TOTAL) were calculated using a weighted mean to account for the 

disproportionate time spend in weekdays compared to weekend days across a 

week (WEEK x 0.71 + WEEKEND x 0.29). Variables for leisure time during the 

weekday (WEEKLEISURE) were calculated by subtracted WORK data from 

WEEK data, therefore removing any activity during the time spent at work.   

 

4.2.4. Statistical Analyses  

Data were analysed using statistical software (SPSS Version 23.0, IBM 

Corporation, Somers, NY, USA), with significance accepted as p<0.05. Results 

are presented as means±standard deviation (SD). Data were assessed for 

normal distribution using Shapiro-Wilk tests. Pearson’s bivariate correlation 

(parametric data) and Spearman’s correlation (non-parametric data) were used 

to assess the relationship between %SIT, %STAND and %STEP during 

weekdays, the weekend and during work hours and all cognition and mood 

variables. Owing to the age-related changes in cognition (Salthouse, 2009) and 
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mood (Stanley and Isaacowitz, 2011), bivariate correlations were ran between 

age and all cognition and mood outcomes. Where significant correlations were 

observed, age was subsequently used as a covariate in subsequent analyses. 

To assess the independent influence of %SIT, %STAND and %STEP on any 

relationships, partial correlations were conducted with covariate control for the 

percentage of time spent in all other activity categories across all domains. To 

assess if the intensity of PA was associated with cognition and mood, 

correlation analyses were conducted between light-, moderate- and vigorous-

intensity PA and all cognitive performance and mood variables with covariate 

control for all other activity categories across all domains. Finally, activity 

monitor wear time was used as a covariate in all analyses to account for 

differences in wear time between participants. 
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4.3. Results 

Participants were a mean age of 33.6±10.4 years, with a body mass of 

71.8±14.2 kg, stature of 169.3±9.4 cm and a body mass index of 25.0±3.8 kg∙m-

2. Mean sitting, standing, stepping and PA time for work hours, weekdays and 

weekends are shown in Table 4-1. During work hours participants on average 

spent 66.1±14.3% of their time sitting, 23.0±10.8% of their time standing and 

10.9±6.5% of their time stepping. During weekdays participants on average 

spent 61.0±10.1% of their waking hours sitting, 26.1±7.6% of their waking hours 

standing and 13.0±4.7% of their waking hours stepping. During weekends 

participants on average spent 56.2±14.5% of their waking hours sitting, 

30.2±10.6% of waking hours standing and 13.6±5.5% of their waking hours 

stepping. Age was significantly associated with the orienting network score (r=-

0.401, p<0.01) and the executive control score (r=0.273, p=0.019), therefore 

age was used as a covariate for the analyses of these cognitive outcomes. No 

other significant associations were observed between age, cognition and mood 

(p>0.05).  
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Table 4-1: Objectively measured mean sitting, standing, stepping and physical activity 

(PA) time of participants (n=75; mean±SD).  

 Time 
% of Waking 
Wear Time 

Work Hours   

Sitting Time (minutes) 325.6±86.3 66.1±14.3 

Standing Time (minutes) 117.9±62.4 23.0±10.8 

Stepping Time (minutes) 55.0±36.4 10.9±6.5 

Light-Intensity PA (minutes) 142.2±59.3 28.7±10.9 

Moderate-Intensity PA (minutes) 40.9±35.2 8.2±6.3 

Vigorous-Intensity PA (minutes) 1.8±3.5 0.4±0.7 

MVPA (minutes) 42.7±36.0 8.6±6.4 

Total PA (minutes) 184.9±80.0 37.3±13.9 

Weekdays   

Sitting Time (minutes) 581.5±98.2 61.0±10.1 

Standing Time (minutes) 250.1±78.7 26.1±7.6 

Stepping Time (minutes) 124.6±47.9 13.0±4.7 

Light-Intensity PA (minutes) 286.4±83.8 31.6±8.6 

Moderate-Intensity PA (minutes) 94.1±58.0 10.3±6.2 

Vigorous-Intensity PA (minutes) 9.8±10.6 1.1±1.1 

MVPA (minutes) 103.9±62.6 11.4±6.7 

Total PA (minutes) 390.3±114.8 43.0±11.6 

Weekends    

Sitting Time (minutes) 500.8±125.3 56.2±14.5 

Standing Time (minutes) 272.6±99.9 30.2±10.6 

Stepping Time (minutes) 123.1±54.1 13.6±5.5 

Light-Intensity PA (minutes) 304.2±106.3 36.7±11.8 

Moderate-Intensity PA (minutes) 90.0±66.0 11.0±8.2 

Vigorous-Intensity PA (minutes) 8.0±13.9 0.9±1.6 

MVPA (minutes) 98.0±72.9 11.9±8.9 

Total PA (minutes) 402.2±132.9 48.6±14.2 

Whole Week    

Sitting Time (minutes) 556.2±88.3 59.7±9.4 

Standing Time (minutes) 255.6±72.5 27.2±7.1 

Stepping Time (minutes) 123.7±43.0 13.2±4.3 

Light-Intensity PA (minutes) 283.0±87.4 32.8±8.0 

Moderate-Intensity PA (minutes) 90.3±54.4 10.5±6.1 

Vigorous-Intensity PA (minutes) 9.0±10.0 1.0±1.1 

MVPA (minutes) 99.3±59.5 11.5±6.5 

Total PA (minutes) 387.5±108.6 44.4±10.7 

PA- physical activity; MVPA- moderate-to-vigorous physical activity. 
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4.3.1. Work Hours  

Table 4-2 presents correlation analyses between WORK%SIT, WORK%STAND 

and WORK%STEP and all cognition and mood variables, with covariate control 

for all other activity categories across all domains. WORK%SIT was negatively 

associated with the calm mood state (p=0.027). A negative association was 

observed between WORK%STAND and the alerting network score (p=0.033), 

indicating shorter RTs with increased time spent standing. Positive correlations 

were observed between WORK%STEP and positive affect (p=0.023), and the 

calm (p=0.010) and content (p=0.022) mood states. No other significant 

associations were observed between variables in this domain (p>0.05). 

 

Table 4-3 presents correlation analyses between WORK light-, moderate- and 

vigorous-intensity PA and total PA and all cognition and mood variables with 

covariate control for all other activity categories across all domains. WORK 

moderate-intensity PA was positively associated with accuracy on the two back 

(p=0.006) and three back (p=0.009) trials on the N-Back task. WORK TOTAL 

PA was positively associated with executive control score (p=0.043), indicating 

longer RTs with increased time spent engaging in PA. No other significant 

associations were observed between variables in this domain (p>0.05).  
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Table 4-2: Associations between cognition, mood, and the percentage of time spent sitting (SIT), standing (STAND) and stepping (STEP) 

during work hours, with statistical covariate control for the percentage of time spent in all other activity categories across all domains. 

RT- reaction time. * Significant association (p<0.05). 
$Controlling for monitor wear time, WEEKLEISURE%SIT, WEEKEND%SIT, TOTAL%STEP, TOTAL%STAND and TOTAL%PA 
+Controlling for monitor wear time, WEEKLEISURE%STAND, WEEKEND%STAND, TOTAL%STEP, TOTAL%SIT and TOTAL%PA 

^Controlling for monitor wear time, WEEKLEISURE%STEP, WEEKEND%STEP, TOTAL%STAND, TOTAL%SIT, WEEKLEISURE%Total PA and 

WEEKEND% Total PA 

 SIT (% of time) controlling for all 

other activity categories$ 

STAND (% of time) controlling for all 

other activity categories+ 

STEP (% of time) controlling for all 

other activity categories^ 

 r-value p-value r-value p-value r-value p-value 

Stroop Colour-Word Test       

Interference Score (ms) 0.209 0.090 -0.211 0.087 -0.157 0.222 

Attention Network Test       

Alerting Network (ms) 0.224 0.068 -0.261 0.033* -0.119 0.356 

Orientating Network (ms) -0.171 0.172 0.133 0.290 0.055 0.675 

Executive Control (ms) -0.018 0.885 0.041 0.744 -0.122 0.355 

N-Back Task       

One Back Accuracy (%) 0.067 0.594 -0.046 0.717 -0.116 0.372 

One Back RT (ms) 0.084 0.505 -0.138 0.268 0.023 0.861 

Two Back Accuracy (%) 0.111 0.377 -0.079 0.530 -0.045 0.732 

Two Back RT (ms) 0.017 0.891 0.019 0.878 -0.067 0.607 

Three Back Accuracy (%) 0.132 0.291 -0.131 0.295 -0.118 0.364 

Three Back RT (ms) 0.014 0.912 -0.037 0.770 0.016 0.904 

Mood       

Positive Affect -0.198 0.108 0.129 0.298 0.288 0.023* 

Negative Affect -0.049 0.691 0.132 0.286 -0.166 0.197 

Alert -0.109 0.453 0.020 0.890 0.238 0.116 

Calm -0.312 0.027* 0.245 0.087 0.378 0.010* 

Content -0.240 0.093 0.122 0.400 0.340 0.022* 
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Table 4-3: Associations between cognition, mood, and the percentage of time spent in light-, moderate-, vigorous-intensity and total physical activity 

(PA) during work hours, with statistical covariate control for the percentage of time spent in all other activity categories across all domains. 

RT- reaction time. * Significant association (p<0.05). 
$Controlling for monitor wear time, WEEKLEISURE%Light-PA, WEEKEND%Light-PA, TOTAL%Moderate-PA, TOTAL%Vigorous-PA, TOTAL%SIT and TOTAL%STAND 
+ Controlling for monitor wear time, WEEKLEISURE%Moderate-PA, WEEKEND%Moderate-PA, TOTAL%Light-PA, TOTAL%Vigorous-PA, TOTAL%SIT and TOTAL%STAND 

^ Controlling for monitor wear time, WEEKLEISURE%Vigorous-PA, WEEKEND%Vigorous-PA, TOTAL%Light-PA, TOTAL%Moderate-PA, TOTAL%SIT and TOTAL%STAND 
# Controlling for monitor wear time, WEEKLEISURE%Total PA, WEEKEND%Total PA, TOTAL%SIT and TOTAL%STAND 

 Light-intensity PA (% of time) 

controlling for all other activity 

categories$ 

Moderate-intensity PA (% of 

time) controlling for all other 

activity categories+ 

Vigorous-intensity PA (% of 

time) controlling for all other 

activity categories^ 

Total PA (% of time) controlling 

for all other activity categories# 

 r-value p-value r-value p-value r-value p-value r-value p-value 

Stroop Colour-Word Test         

Interference Score (ms) 0.038 0.765 0.004 0.976 0.149 0.244 0.052 0.683 

Attention Network Test         

Alerting Network (ms) -0.064 0.616 0.071 0.581 0.094 0.462 -0.017 0.893 

Orientating Network (ms) 0.080 0.542 0.006 0.961 0.142 0.274 0.104 0.416 

Executive Control (ms) 0.219 0.090 0.162 0.213 0.043 0.742 0.255 0.043* 

N-Back Task         

One Back Accuracy (%) -0.176 0.172 0.015 0.909 -0.211 0.099 -0.130 0.307 

One Back RT (ms) 0.062 0.632 0.075 0.564 0.094 0.466 0.052 0.684 

Two Back Accuracy (%) 0.008 0.953 0.346 0.006* -0.049 0.703 0.178 0.159 

Two Back RT (ms) 0.054 0.674 -0.104 0.419 -0.019 0.883 -0.023 0.858 

Three Back Accuracy (%) 0.002 0.989 0.327 0.009* 0.112 0.345 0.123 0.331 

Three Back RT (ms) -0.033 0.798 -0.070 0.590 -0.003 0.983 -0.100 0.431 

Mood         

Positive Affect 0.147 0.250 0.132 0.304 -0.012 0.926 0.221 0.077 

Negative Affect 0.005 0.967 -0.044 0.732 -0.089 0.488 -0.026 0.840 

Alert 0.018 0.906 0.044 0.772 0.114 0.452 0.124 0.400 

Calm -0.045 0.764 -0.273 0.067 0.033 0.830 -0.028 0.848 

Content -0.102 0.501 -0.174 0.247 -0.002 0.990 0.080 0.591 
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4.3.2. Weekday 

Table 4-4 presents correlation analyses between WEEK%SIT, WEEK%STAND 

and WEEK%STEP and all cognition and mood variables with covariate control 

for all other activity categories across all domains. WEEK%STEP was positively 

associated with positive affect (p=0.034) and the calm mood state (p=0.008). A 

negative association was observed between WEEK%STEP and the executive 

control score (p=0.041), indicating shorter RTs with increased time spent 

stepping. No other significant associations were observed between variables in 

this domain (p>0.05). 

 

Table 4-3 presents correlation analyses between WEEK light-, moderate- and 

vigorous-intensity PA and total PA and all cognition and mood variables with 

covariate control for all other activity categories across all domains. WEEK light-

intensity PA was positively associated with the orienting network score 

(p=0.024), suggesting longer RTs with increased time spent in light-intensity 

PA. WEEK moderate-intensity PA was negatively associated with the Stroop 

interference score (p=0.021), indicating shorter RTs with increased time spend 

in this intensity of PA, and positively associated with accuracy on the two back 

trial of the N-Back task (p=0.001). No other significant associations were 

observed between variables in this domain (p>0.05). 
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Table 4-4: Associations between cognition, mood, and the percentage of time spent sitting (SIT), standing (STAND) and stepping (STEP) during 

weekdays, with statistical covariate control for the percentage of time spent in all other activity categories across all domains.   

RT- reaction time. * Significant association (p<0.05). 
$Controlling for monitor wear time, WEEKEND%SIT, TOTAL%STEP, TOTAL%STAND and TOTAL%PA 
+Controlling for monitor wear time, WEEKEND%STAND, TOTAL%STEP, TOTAL%SIT and TOTAL%PA 

^Controlling for monitor wear time, WEEKEND%STEP, TOTAL%STAND, TOTAL%SIT and WEEKEND%Total PA 

 SIT (% of time) controlling for all 

other activity categories$ 

STAND (% of time) controlling for all 

other activity categories+ 

STEP (% of time) controlling for all other 

activity categories^ 

 r-value p-value r-value p-value r-value p-value 

Stroop Colour-Word Test       

Interference Score (ms) 0.643 0.057 -0.103 0.404 -0.115 0.366 

Attention Network Test       

Alerting Network (ms) 0.116 0.344 -0.116 0.345 -0.149 0.239 

Orientating Network (ms) -0.104 0.404 0.071 0.569 0.221 0.085 

Executive Control (ms) 0.063 0.613 -0.026 0.836 -0.260 0.041* 

N-Back Task       

One Back Accuracy (%) 0.127 0.306 -0.128 0.302 -0.034 0.798 

One Back RT (ms) 0.202 0.102 -0.235 0.056 -0.135 0.290 

Two Back Accuracy (%) 0.078 0.529 -0.052 0.679 -0.074 0.562 

Two Back RT (ms) 0.005 0.968 0.035 0.776 -0.081 0.526 

Three Back Accuracy (%) 0.132 0.286 -0.123 0.322 -0.039 0.763 

Three Back RT (ms) -0.070 0.576 0.065 0.599 0.043 0.740 

Mood       

Positive Affect -0.151 0.220 0.042 0.734 0.265 0.034* 

Negative Affect -0.049 0.690 0.174 0.155 -0.132 0.300 

Alert -0.067 0.638 0.007 0.959 0.175 0.240 

Calm -0.240 0.090 0.185 0.193 0.385 0.008* 

Content -0.233 0.099 0.075 0.603 0.237 0.109 
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Table 4-5: Associations between cognition, mood, and the percentage of time spent in light-, moderate-, vigorous-intensity and total physical activity 

(PA) during weekdays, with statistical covariate control for the percentage of time spent in all other activity categories across all domains. 

RT- reaction time. * Significant association (p<0.05). 
$Controlling for monitor wear time, WEEKEND%Light-PA, TOTAL%Moderate-PA, TOTAL%Vigorous-PA, TOTAL%SIT and TOTAL%STAND 
+ Controlling for monitor wear time, WEEKEND%Moderate-PA, TOTAL%Light-PA, TOTAL%Vigorous-PA, TOTAL%SIT and TOTAL%STAND 

^ Controlling for monitor wear time, WEEKEND%Vigorous-PA, TOTAL%Light-PA, TOTAL%Moderate-PA, TOTAL%SIT and TOTAL%STAND 
# Controlling for monitor wear time, WEEKEND%Total PA, TOTAL%SIT and TOTAL%STAND 

 Light-intensity PA (% of time) 

controlling for all other activity 

categories$ 

Moderate-intensity PA (% of 

time) controlling for all other 

activity categories+ 

Vigorous-intensity PA (% of 

time) controlling for all other 

activity categories^ 

Total PA (% of time) controlling 

for all other activity categories# 

 r-value p-value r-value p-value r-value p-value r-value p-value 

Stroop Colour-Word Test         

Interference Score (ms) -0.073 0.567 -0.289 0.021* 0.051 0.690 -0.173 0.164 

Attention Network Test         

Alerting Network (ms) 0.046 0.716 0.085 0.505 0.149 0.238 0.061 0.627 

Orientating Network (ms) 0.286 0.024* 0.009 0.942 0.091 0.481 0.219 0.082 

Executive Control (ms) 0.134 0.300 -0.233 0.069 0.147 0.256 0.120 0.344 

N-Back Task         

One Back Accuracy (%) -0.051 0.693 0.198 0.119 0.033 0.794 0.080 0.527 

One Back RT (ms) -0.008 0.952 -0.063 0.623 -0.019 0.881 -0.068 0.593 

Two Back Accuracy (%) -0.079 0.536 0.423 0.001* -0.134 0.297 0.111 0.378 

Two Back RT (ms) 0.104 0.416 0.001 0.991 0.113 0.380 0.046 0.716 

Three Back Accuracy (%) 0.113 0.379 0.151 0.237 0.050 0.698 0.163 0.194 

Three Back RT (ms) 0.032 0.805 0.157 0.219 0.039 0.764 0.057 0.654 

Mood         

Positive Affect 0.104 0.413 0.234 0.062 -0.071 0.575 0.214 0.084 

Negative Affect 0.090 0.479 -0.046 0.718 0.068 0.592 0.096 0.445 

Alert -0.082 0.584 0.055 0.711 0.044 0.769 0.029 0.841 

Calm -0.143 0.339 -0.054 0.718 -0.134 0.368 -0.085 0.562 

Content -0.190 0.202 0.034 0.818 -0.079 0.596 -0.185 0.203 
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4.3.3. Weekend 

Table 4-6 presents correlation analyses between WEEKEND%SIT, 

WEEKEND%STAND and WEEKEND%STEP and all cognition and mood 

variables, with covariate control for all other activity categories across all 

domains. No significant associations were observed between any variables in 

this domain (p>0.05).   

 

Table 4-7 presents correlation analyses between WEEKEND light-, moderate- 

and vigorous-intensity PA and total PA and all cognition and mood variables 

with covariate control for all other activity categories across all domains. 

WEEKEND light-intensity PA was positively associated with accuracy on the 

one back trial of the N-Back task (p=0.024), while WEEKEND moderate-

intensity PA was negatively associated with RT on the one back trial (p=0.025), 

suggesting shorter RTs with increased time spent in this intensity of PA. No 

other significant associations were observed between variables in this domain 

(p>0.05). 
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Table 4-6: Associations between cognition, mood, and the percentage of time spent sitting (SIT), standing (STAND) and stepping (STEP) during 

weekends, with statistical covariate control for the percentage of time spent in all other activity categories across all domains.   

RT- reaction time.  
$Controlling for monitor wear time, WEEK%SIT, TOTAL%STAND, TOTAL%STEP and TOTAL%PA 
+Controlling for monitor wear time, WEEK%STAND, TOTAL%SIT, TOTAL%STEP and TOTAL%PA 

^Controlling for monitor wear time, WEEK%STEP, TOTAL%SIT, TOTAL%STAND and WEEK%PA 

 SIT (% of time) controlling for all 

other activity categories$ 

STAND (% of time) controlling for all 

other activity categories+ 

STEP (% of time) controlling for all other 

activity categories^ 

 r-value p-value r-value p-value r-value p-value 

Stroop Colour-Word Test       

Interference Score (ms) 0.069 0.577 -0.082 0.508 -0.014 0.908 

Attention Network Test       

Alerting Network (ms) -0.051 0.682 -0.050 0.688 0.046 0.711 

Orientating Network (ms) -0.074 0.554 0.102 0.414 -0.007 0.958 

Executive Control (ms) 0.115 0.358 -0.150 0.230 -0.018 0.889 

N-Back Task       

One Back Accuracy (%) -0.123 0.320 0.141 0.254 0.073 0.555 

One Back RT (ms) -0.109 0.381 0.132 0.288 0.029 0.814 

Two Back Accuracy (%) -0.093 0.452 0.031 0.801 0.084 0.498 

Two Back RT (ms) -0.002 0.984 -0.004 0.976 -0.071 0.567 

Three Back Accuracy (%) -0.091 0.466 0.062 0.616 0.069 0.578 

Three Back RT (ms) -0.131 0.290 0.166 0.178 0.016 0.901 

Mood       

Positive Affect -0.015 0.901 0.072 0.561 -0.024 0.847 

Negative Affect 0.004 0.972 -0.050 0.685 0.033 0.792 

Alert 0.040 0.778 -0.010 0.945 -0.016 0.910 

Calm 0.058 0.688 -0.090 0.529 0.004 0.975 

Content -0.194 0.172 0.197 0.167 0.129 0.366 
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Table 4-7: Associations between cognition, mood, and the percentage of time spent in light-, moderate-, vigorous-intensity and total physical activity 

(PA) during weekends, with statistical covariate control for the percentage of time spent in all other activity categories across all domains. 

RT- reaction time. * Significant association (p<0.05). 
$Controlling for monitor wear time, WEEK%Light-PA, TOTAL%Moderate-PA, TOTAL%Vigorous-PA, TOTAL%SIT and TOTAL%STAND 
+ Controlling for monitor wear time, WEEK%Moderate-PA, TOTAL%Light-PA, TOTAL%Vigorous-PA, TOTAL%SIT and TOTAL%STAND 

^ Controlling for monitor wear time, WEEK%Vigorous-PA, TOTAL%Light-PA, TOTAL%Moderate-PA, TOTAL%SIT and TOTAL%STAND 
# Controlling for monitor wear time, WEEK%Total PA, TOTAL%SIT and TOTAL%STAND 

 Light-intensity PA (% of time) 

controlling for all other activity 

categories$ 

Moderate-intensity PA (% of 

time) controlling for all other 

activity categories+ 

Vigorous-intensity PA (% of 

time) controlling for all other 

activity categories^ 

Total PA (% of time) controlling 

for all other activity categories# 

 r-value p-value r-value p-value r-value p-value r-value p-value 

Stroop Colour-Word Test         

Interference Score (ms) -0.001 0.993 0.207 0.101 -0.015 0.907 0.088 0.483 

Attention Network Test         

Alerting Network (ms) 0.125 0.324 -0.022 0.860 -0.181 0.153 0.098 0.432 

Orientating Network (ms) -0.062 0.631 0.058 0.656 -0.139 0.281 -0.032 0.799 

Executive Control (ms) -0.054 0.677 0.187 0.145 0.095 0.464 0.089 0.487 

N-Back Task         

One Back Accuracy (%) 0.284 0.024* 0.014 0.914 -0.013 0.919 0.162 0.197 

One Back RT (ms) 0.148 0.248 -0.283 0.025* 0.160 0.211 -0.019 0.881 

Two Back Accuracy (%) -0.122 0.342 -0.144 0.259 -0.120 0.348 -0.063 0.616 

Two Back RT (ms) 0.106 0.408 -0.105 0.415 -0.056 0.664 0.129 0.306 

Three Back Accuracy (%) -0.099 0.440 -0.039 0.763 -0.014 0.911 -0.203 0.106 

Three Back RT (ms) -0.104 0.416 -0.168 0.189 -0.082 0.522 -0.132 0.295 

Mood         

Positive Affect -0.061 0.631 -0.109 0.391 0.016 0.902 -0.078 0.535 

Negative Affect -0.028 0.827 0.005 0.968 0.103 0.416 -0.013 0.915 

Alert 0.108 0.469 0.076 0.611 -0.107 0.476 0.091 0.533 

Calm 0.103 0.492 0.209 0.158 -0.006 0.970 0.134 0.360 

Content 0.065 0.665 0.057 0.705 -0.137 0.358 0.096 0.513 

 



    

139 

 

 

4.4. Discussion  

This study assessed, for the first time, whether sitting during work hours is 

associated with cognition and mood. Interestingly, we found that the time spent 

sitting during work hours was negatively associated with the calm mood state. 

Furthermore, time spent at work in a non-sedentary posture, namely standing or 

stepping, was associated with improved aspects of cognition and mood. 

Moderate-intensity PA was the only intensity of PA to be positively associated 

with cognitive outcomes during work hours. This relationship also persisted 

across weekdays and weekends, suggesting daily moderate-intensity PA in all 

domains may be important for cognitive performance. Collectively, these 

findings indicate reducing sitting during work hours and encouraging PA may 

contribute to heightened productivity, which further research should explore 

experimentally. 

 

A less sedentary workplace has been suggested to be more productive 

(Buckley et al., 2015), and cognition and mood likely play a role in employee 

productivity. In support of this statement, we found that the percentage of time 

spent sitting during work hours was negatively associated with the calm mood 

state, indicating the more time spent sitting during work hours, workers were 

less calm. Calmness can be used to assess psychological stress reactivity; the 

magnitude of an individual’s response to a stressor (Klaperski et al., 2013). 

Those that are less calm may therefore exhibit a heightened stress response. 

Importantly, chronic work stress is related to increased risk of CVD morbidity 

and mortality (Chandola et al., 2006; Kivimäki et al., 2002; Kivimäki and 

Kawachi, 2015) and mental health conditions (Harvey et al., 2017). In the long 
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term, sitting at work may therefore have negative implications for employee 

health and well-being through its effect on mood, which further research should 

explore.  

 

It has been recommended that sitting during work hours should be replaced 

with standing or light-intensity PA and that adopting this approach may improve 

workers’ productivity (Buckley et al., 2015), however there is no previous 

evidence to support that using these modalities to break up sitting can improve 

factors that contribute to work productivity. Our results show that the time spent 

standing at work was negatively associated with the alerting network attentional 

network score, suggesting improved RTs, and therefore attention, with more 

time spent standing. Additionally, moderate-intensity PA was positively 

associated with aspects of working memory. Collectively, this indicates that 

replacing sitting at work with either standing or PA, could improve aspects of 

workers’ cognitive performance. Additionally, the time spent stepping during 

work hours was positively associated with positive affect and the calm and 

content mood states. Importantly, workers who are in a positive mood have 

enhanced work performance and productivity (Miner and Glomb, 2010; 

Rothbard and Wilk, 2011), indicating being more active during work hours could 

be beneficial for the output of the workforce. The known benefit of PA on mood 

(Biddle, 2016) may contribute to these associations. However, standing during 

work hours was not associated with mood indicating that standing may not be a 

sufficient intensity to enhance mood and that ambulation is required. In support, 

in healthy adults, breaking up sitting with walking but not standing improved 
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postprandial glycemia, possibly due to the lower-intensity PA stimulus (Bailey 

and Locke, 2015).  

 

By objectively monitoring PA we were able to assess if differing intensities of PA 

were associated with cognition and mood. Across all domains, greater time 

spent in moderate-intensity PA was associated with improved cognition. During 

work hours, moderate-intensity PA was positively associated with accuracy on 

the two- and three-back n-back tasks, indicating improved working memory with 

more time spent in this intensity of PA. Furthermore, during weekdays and 

weekends increased moderate-intensity PA was associated with greater 

executive function and working memory performance. Collectively, our data 

suggests that moderate-intensity PA may be needed to enhance aspects of 

cognition. In support, existing research shows the intensity of the activity can 

influence cognitive outcomes, with higher intensities providing larger 

improvements in cognition than lower intensities (Mandolesi et al., 2018). This 

finding does not align with current workplace activity guidelines, which 

recommend light-intensity PA may improve workers’ productivity (Buckley et al., 

2015). Consequently, this may indicate that recommending low-intensity PA will 

not elicit improvements in workers’ cognition and their subsequent productivity. 

 

The finding that neither work hours, weekday or weekend sitting was associated 

with cognition contrasts previous work showing relationships between SB and 

cognition (Edwards and Loprinzi, 2017a, 2017b; Falck et al., 2017). However, 

such research has assessed older populations who experience an accelerated 

rate of age-related cognitive decline compared to younger adults (Salthouse, 
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2009), and in this study we have assessed young, working-age adults. 

Furthermore, in our cohort, age was only associated with two of our cognitive 

outcomes, the orienting and executive control networks of attention, and, after 

statistically controlling for age in our analyses of these variables, this had no 

influence on the relationships observed. Whilst sitting was not associated with 

cognition in this cohort, this study only assessed three domains of cognitive 

functioning and others may be more susceptible to the deleterious effects of 

sitting. Indeed, previous work has assessed cognitive domains such as 

processing speed and organisation and planning (Falck et al., 2017). 

Furthermore, The National Institutes of Health have identified executive 

function, episodic memory, language, processing speed, working memory, and 

attention as the cognition subdomains most important for health, success in 

school and work, and independence in daily functioning (Weintraub et al., 

2013); which were not all assessed in our study, thus future research should 

consider these domains.  

 

4.4.1. Limitations  

This study is strengthened by the objective assessment of sitting, standing and 

stepping and different intensities of PA over an entire week which provided a 

complete picture of our participants’ habitual SB and PA levels across various 

time domains. Nonetheless, we assessed a small number of cognitive domains 

and mood states that could influence workers’ productivity, therefore others may 

be associated with sitting which should be explored. We did not control for 

factors such as sleep, stress and diet, which are important determinants of 

cognition and mood. The influence of the number or the length of breaks from 

sitting on cognition and mood were not considered, factors which are known to 
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have an important effect on cardiometabolic health markers (Healy et al., 2008). 

Furthermore, we did not measure or control for fidgeting during sitting, which 

attenuates the association between sitting and mortality risk (Hagger-Johnson 

et al., 2016). Nonetheless there is currently no evidence to suggest that 

fidgeting would influence the association between sitting, cognition, mood and 

work performance. It is possible that seasonality may have influenced 

participants’ PA and SB levels, since levels can vary depending on the season 

when the assessment occurs (O’Connell et al., 2014). Some participants were 

employed in the same workplace which may increase the homogeneity of our 

data, owing to similar behaviour patterns during work hours. However, our 

sample appears representative of the typical English workers since weekday 

sitting (61.0%), standing (26.1%) and stepping (13.0%) time was similar to that 

previously reported by Smith et al. (2015) in English workers (weekday sitting 

66.2%, standing 23.3% and stepping 10.5%). Finally, the cross-sectional study 

design means inferences about causality cannot be determined, results should 

therefore be interpreted with caution. A follow-up or interventional study design 

would provide more insight into the influence of the repeated exposure to sitting 

during work hours on cognition and mood, however this was beyond the scope 

of this study. 

 

4.5. Conclusion  

This study demonstrates that in healthy workers, sitting during work hours is 

negatively associated with the calm mood state. The time spent standing or 

stepping is however positively associated with aspects of mood and cognition, 

indicating that reducing sitting and taking regular PA breaks throughout the 
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workday may have beneficial effects on mood. Moderate-intensity PA was the 

only intensity of PA that was positively associated with cognitive outcomes 

across all domains. Further research is needed to determine whether increasing 

moderate-intensity PA during work hours positively influences cognition. 

Additionally, the influence of workplace sitting on other domains of cognition 

and mood and over a long-term follow up should be explored.  
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5. Acute effects of prolonged 

sitting on cerebrovascular 

function, cognition and mood
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5.1. Introduction 

It has recently been suggested that sitting-induced changes in cerebrovascular 

function may contribute to cognitive decline (Wheeler et al., 2017), however this 

hypothesis is yet to be tested. A recent systematic review concluded that 

increased SB was associated with lower cognitive function (Falck et al., 2017), 

yet the studies included in the review used subjective measures of SB and were 

not experimental designs, so were unable to elucidate the physiological 

mechanisms underlying this relationship. Increasing SB for up to two weeks 

also decreases mood (Edwards and Loprinzi, 2017b; Endrighi et al., 2016), 

however once again the mechanisms underlying this link are unknown, but may 

also relate to impaired cerebrovascular function. Consequently, whether sitting-

induced impairment in cerebrovascular function results in decrements to 

cognition and mood is currently unclear.  

 

This study therefore explored the acute effects of a prolonged, uninterrupted 

sitting period on cerebrovascular function, cognition, mood and work 

productivity. Secondly, this study assessed if any observed alterations in 

cerebrovascular function were associated with any changes in measures of 

cognition, mood and work productivity. We hypothesised that prolonged sitting 

would impair cerebrovascular function and that this decline would result in acute 

impairments in cognition, mood and work productivity.  
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5.2. Methods 

5.2.1. Participants 

Twenty-five healthy desk workers (18 male) volunteered and written informed 

consent was obtained prior to inclusion. Participants were screened prior to 

testing for exclusion criteria including: use of medication, smoker, BMI >35 or 

<18 kg∙m-2, use of hormone-based contraception and diagnosis of 

cerebrovascular, cardiovascular or metabolic disease. Study procedures were 

approved by the Liverpool John Moores University Ethics Committee and 

adhered to the Declaration of Helsinki. 

 

5.2.2. Study Design 

Participants attended the laboratory on two occasions. Visit one was a 

familiarisation session, whereby participants were given the opportunity to 

practise a battery of computer-based cognitive performance and work 

productivity tests. The second experimental visit occurred on the following day. 

Participants arrived at the laboratory between 7.00-9.00 am and rested in the 

supine position for 20-min. This was followed by assessments of supine MCAv 

and CVR. Participants then moved to a seated position and underwent 

measures of seated MCAv and CA. Following this, the same battery of cognitive 

performance and work productivity tests as in the familiarisation visit were 

completed, in addition to two mood questionnaires. Following these tests (PRE) 

participants completed a continuous uninterrupted sitting period for 6-hr. The 

measurement of seated MCAv was repeated immediately after the 6-hr 

intervention. MCAv was assessed while seated to examine the posture of 

interest, sitting, and to prevent the effects of moving to a supine posture altering 
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hemodynamics. Participants then returned to a supine posture and all other 

measurements were repeated (POST). During the sitting period MAP and heart 

rate (HR) were assessed every 1-hr (Figure 5-1).  
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Figure 5-1: Study design for the experimental visit. MCAv- middle cerebral artery blood flow velocity; CVR- cerebrovascular carbon dioxide 

reactivity; CA- cerebral autoregulation; ANT- attention network test; PANAS- positive and negative affect schedule; BP- blood pressure; HR- 

heart rate. 

BP and HR 
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5.2.3. Study Procedures 

5.2.3.1. Visit 1: Familiarisation Visit 

Participants completed the battery of cognitive performance and work 

productivity tests that would be used during the experimental visit to reduce any 

learning effects. During this visit participants were given the opportunity to ask 

questions to ensure full comprehension of each test. In preparation for the 

experimental visit on the following day, participants were given a standardised 

meal to take away with them. Participants were instructed to consume this meal 

in the morning, two hours prior to their scheduled arrival time (Figure 5-1). The 

meal consisted of 50g of porridge oats prepared with water (187kcal, 31.2g 

carbohydrate, 2.9g fat, 7.5g protein) and a banana (~100kcal, ~27.0g 

carbohydrate, ~0.3g fat, ~1.0g protein).  

 

5.2.3.2. Visit 2: Experimental Visit 

Prior to the experimental visit, participants were instructed to avoid strenuous 

exercise for 24-hr, and to abstain from caffeine and alcohol. Women were 

assessed in the follicular phase of the menstrual cycle (days 1-7). In the 2-hr 

between participants consuming the standardised meal and arriving at the 

laboratory, participants were asked to keep PA to a minimum. On arrival, 

participants completed the Workforce Sitting Questionnaire (WSQ) to assess 

sitting time on a working day and a non-working day (Chau et al., 2011). 

Participants were asked to verbally confirm they had consumed the 

standardised meal prior to arrival and the time at which this occurred. 

Participants were given this same low calorie, low fat, meal 2-hr prior to any 

POST measurements were taken, ensuring the time between food consumption 

and physiological measurements were matched between PRE and POST 
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assessments (Figure 5-1). Water was available to drink ad libitum throughout 

the testing session. During the uninterrupted sitting period, participants 

remained seated at a desk for 6-hr and were permitted to perform low 

cognitively demanding desk-based activities such as reading and watching 

television. The duration of sitting was selected based on previous research 

which observed reduced mood following 6-hr of uninterrupted sitting 

(Bergouignan et al., 2016). Participants were prevented from standing, walking 

or making vigorous movements during this period, limb movements were 

otherwise uncontrolled (i.e. fidgeting was permitted). Participants were wheeled 

to the bathroom if needed (on average participants visited the toilet once during 

the sitting period). Participants were continuously supervised to ensure these 

conditions were adhered to. 

 

5.2.4. Measurements 

The measurement of MCAv, CVR, CA, PETCO2, BP, cognition, mood and work 

productivity are described in detail in Chapter 3. General Methods, hence here 

only specific features of this study are outlined. During data acquisition, supine 

and seated MCAv were acquired for a 2-min period. CVC was calculated by 

dividing MCAv by MAP. Participants were fitted with a photoplethysmographic 

cuff on the index or middle finger of the right hand (Finometer model 1, Finapres 

Medical Systems BV, Amsterdam, The Netherlands) and a 3-lead 

electrocardiogram to continuously assess MAP and HR throughout 

measurements. During the uninterrupted sitting period, MAP and HR were 

measured with an oscillometric cuff at the left brachial artery (Carescape V100, 

Dinamap, GE Healthcare, UK) every 1-hr. The battery of computer-based 
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cognitive performance and work productivity tests were completed in a 

randomised order between participants but not within an experimental visit. 

Participants were randomly assigned to the order in which they completed the 

tests using computer-generated random numbers.  

 

5.2.5. Statistical Analyses 

Data were analysed using statistical software (SPSS Version 23.0, IBM 

Corporation, Somers, NY, USA), with significance accepted as p<0.05. Results 

are presented as means±SD. Data were assessed for normal distribution using 

Shapiro-Wilk tests. Paired samples t-tests were used to compare the difference 

between PRE and POST for all outcome parameters, whilst Wilcoxon signed 

rank tests were used for any non-parametric data. Changes in HR and MAP 

during uninterrupted sitting were assessed using a one-way within-subjects 

ANOVA. Post-hoc analyses were performed using the least significant 

difference (LSD) method. Where significant changes were observed in our data 

following sitting, Pearson’s bivariate correlation analysis (parametric data) and 

Spearman’s correlation (non-parametric data) were used to assess the 

relationship between the change (POST-PRE) in these outcomes.  
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5.3. Results 

All 25 participants completed the study and were included in analyses. 

Participants self-reported sitting for 12.1±3.3 hours during work days and 

10.0±3.3 hours during non-work days. Full descriptive characteristics are shown 

in Table 5-1.  

 

Table 5-1: Descriptive characteristics and self-reported sitting time of participants 

(n=25).  

 Mean±SD 

Age (years) 28.3±7.5 

Body Mass (kg) 74.3±12.4 

Stature (cm) 175.0±7.0 

Body Mass Index (kg∙m-2) 24.2±3.3 

Sitting Time Per Work Day (Hours) 12.1±3.3 

Sitting Time Per Non-Work Day (Hours) 10.0±3.3 

 

5.3.1. Cardiorespiratory and Haemodynamic Measures 

HR in the supine (p=0.022) and seated (p=0.003) postures were significantly 

reduced at POST compared to PRE (Table 5-2). There was also a significant 

reduction in seated MAP (p=0.001) between PRE and POST, but not for supine 

MAP (p=0.966; Table 5-2). There was no significant difference between PRE 

and POST supine (p=0.365) or seated (p=0.306) PETCO2 (Table 5-2). During 6-

hr of uninterrupted sitting HR was significantly decreased at all but one time 

point (5-hr, 62±9.2 bpm p=0.059), compared to baseline (Baseline: 66±10.1 

bpm, 1-hr: 61±10.1 bpm, 2-hr: 56±13.9 bpm, 3-hr: 58±10.1 bpm, 4-hr: 58±9.7 

bpm, 6-hr: 62±10.4 bpm, p<0.05). MAP was also significantly reduced at all time 

points compared to baseline (Baseline: 90±9.8 mmHg, 1-hr: 86±9.3 mmHg, 2-

hr: 87±8.4 mmHg, 3-hr: 86±8.6 mmHg, 4-hr: 87±8.4 mmHg, 5-hr: 85±8.0 

mmHg, 6-hr: 85±8.4 mmHg, p<0.05). 
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Table 5-2: Cardiorespiratory measures prior to (PRE) and following (POST) 6-hr of 

uninterrupted sitting (mean±SD).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
MAP- mean arterial pressure; HR- heart rate; PETCO2- pressure of end-tidal carbon 

dioxide. 
* Significantly different to PRE (p<0.05). 

 

5.3.2. Cerebral Blood Flow 

Uninterrupted sitting for 6-hr significantly reduced seated MCAv (PRE: 58.2±7.3 

cm·s-1, POST: 54.8±7.1 cm·s-1, p=0.001), however there was no significant 

change in seated CVC (PRE: 0.65±0.12 cm·s-1·mmHg-1, POST: 0.65±0.11 cm·s-

1·mmHg-1, p=0.950; Figure 5-2a). In the supine posture, significant reductions in 

MCAv (PRE: 63.5±8.1 cm·s-1, POST: 60.6±9.0 cm·s-1, p=0.012) and CVC (PRE: 

0.77±0.15 cm·s-1·mmHg-1, POST: 0.74±0.15 cm·s-1·mmHg-1, p=0.018) were 

observed (Figure 5-2b). 

 PRE POST 

Supine position 

MAP (mmHg) 84±8.2 84±7.8 

HR (bpm) 62±11.6 57±9.4* 

PETCO2 (mmHg) 38.4±2.9 38.8±3.6 

Seated position 

MAP (mmHg) 90±9.8 85±8.4* 

HR (bpm) 66±210.1 61±10.7* 

PETCO2 (mmHg) 36.6±3.0 36.8±3.9 
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Figure 5-2: Middle cerebral artery blood flow velocity (MCAv) and cerebrovascular 

conductance (CVC) in (a) seated and (b) supine postures prior to (PRE) and following 

(POST) 6-hr of uninterrupted sitting. Error bars= ±SD. * Significantly different to PRE 

(p<0.05).  
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5.3.3. Cerebrovascular Carbon Dioxide Reactivity  

Absolute and relative MCA CVR R2 values (values are the same for both) of 

linear regression were PRE: R2=0.84±0.08 and POST: R2=0.84±0.09. There 

was no significant difference between absolute or relative MCA CVR at PRE 

(Absolute 3.12±0.65 cm·s-1·mmHg-1, Relative 4.82±0.86 cm·s-1·mmHg-1) 

compared to POST (Absolute 3.12±0.79 cm·s-1·mmHg-1, Relative 4.13±1.23 

cm·s-1·mmHg-1, p=0.992 and p=0.198 respectively). Similarly, no significant 

differences were observed between absolute CCA diameter CVR (PRE: 

0.002±0.002 cm·s-1·mmHg-1, POST: 0.003±0.003 cm·s-1·mmHg-1, p=0.235) or 

relative CCA diameter CVR (PRE: 0.33±0.28 cm·s-1·mmHg-1, POST: 0.39±0.38 

cm·s-1·mmHg-1, p=0.904). Finally, there were no significant differences between 

absolute CCA blood flow CVR (PRE: 0.32±0.31 ml·min-1·mmHg-1, POST: 

0.41±0.25 ml·min-1·mmHg-1, p=0.164) or relative CCA blood flow CVR (PRE: 

2.42±2.17 ml·min-1·mmHg-1, POST: 3.18±1.99 ml·min-1·mmHg-1, p=0.122).  

 

5.3.4. Cerebral Autoregulation 

Table 5-3 presents values for phase, gain, normalised gain and coherence for 

each frequency domain. In the VLF, there was a significant increase in 

normalised gain following 6-hr of uninterrupted sitting (p=0.016). There were no 

significant changes for any other parameters in any of the frequency domains 

(p>0.05).  
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Table 5-3: Values of phase, gain, normalised gain (Gainn) and coherence before (PRE) 

and after (POST) 6-hr of uninterrupted sitting (mean±SD). 

 
 

VLF- very low frequency; LF- low frequency; HF- high frequency 

* Significantly different to PRE (p<0.05). 

 VLF 

 PRE POST 

Phase (degrees) 
 

41.0±16.7 42.1±13.9 

Gain (cm·s-1·mmHg-1) 0.50±0.13 0.65±0.17 

Gainn (%·mmHg-1) 0.86±0.20 1.09±0.29* 

Coherence 0.5±0.08 0.5±0.11 

LF 

PRE POST 

Phase (degrees) 24.4±18.5 23.0±13.3 

Gain (cm·s-1·mmHg-1) 0.79±0.18 0.85±0.23 

Gainn (%·mmHg-1) 1.28±0.25 1.39±0.33 

Coherence 0.6±0.11 0.6±0.11 

HF 

PRE POST 

Phase (degrees) 10.6±34.8 12.4±21.2 

Gain (cm·s-1·mmHg-1) 0.83±0.34 0.80±0.27 

Gainn (%·mmHg-1) 1.34±0.51 1.32±0.39 

Coherence  0.4±0.12 0.4±0.13 
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5.3.5. Cognition and Work Productivity  

Following 6-hr uninterrupted sitting, there was no significant change in any 

measures of cognition (p>0.05; Table 5-4), however changes in work 

productivity parameters were observed. There were significant increases in both 

gross (PRE: 45.8±8.9 wpm, POST: 47.9±9.7 wpm, p=0.035) and net (PRE: 

40.6±9.3 wpm, POST: 43.7±9.4 wpm, p=0.005) typing speed; however there 

was no significant change in typing accuracy (PRE: 88.6±9.8%, POST: 

90.4±7.7%, p=0.065). Performance score for the mouse dexterity test 

significantly improved (PRE: 1031.7±53.6, POST: 1070.3±62.2, p<0.001), as 

did RT (PRE: 749.2±86.9 ms, POST: 678.7±88.5 ms, p<0.001). For the reading 

and correcting task, there was no significant difference in the number of 

characters participants read (PRE: 2791.8±929.7, POST: 3086.5±955.3, 

p=0.117), however the percentage of spelling errors missed significantly 

increased (PRE: 35.0±20.6%, POST: 41.6±20.4%, p=0.048). 

 



    

159 

 

 

 

 

 

 

 

 

Table 5-4: Cognition outcomes prior to (PRE) and after (POST) 6-hr of uninterrupted 

sitting (mean±SD). 

RT- reaction time. 

 

 

 

 

 

 

 

 

 

 PRE POST p-value 

Stroop Colour-Word Test    

Interference Score (ms) 184.5±120.1 170.6±132.6 0.425 

Attention Network Test    

Alerting Network (ms) 13.0±21.2 15.1±17.3 0.638 

Orientating Network (ms) 14.6±28.1 17.6±18.2 0.584 

Executive Control (ms) 73.4±21.5 75.3±24.3 0.647 

N-Back Task    

Zero Back Accuracy (%) 98.0±2.9 97.4±2.9 0.467 

Zero Back RT (ms) 538.8±90.5 537.2±112.7 0.924 

One Back Accuracy (%) 93.8±8.6 93.0±6.0 0.192 

One Back RT (ms) 598.7±120.9 605.2±168.8 0.737 

Two Back Accuracy (%) 92.8±10.3 85.6±21.3 0.153 

Two Back RT (ms) 876.8±348.9 836.8±294.4 0.437 

Three Back Accuracy (%) 80.8±17.2 75.8±20.7 0.112 

Three Back RT (ms) 1325.9±810.9 1377.1±987.3 0.586 
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5.3.6. Mood 

There were significant decreases in positive affect (PRE: 27.1±7.2, POST: 

22.5±7.9, p<0.001), and the alert (PRE: 53.6±15.0, POST: 43.0±18.5, p=0.002) 

and content (PRE: 67.7±13.7, POST: 60.3±15.5, p=0.006) mood states. 

Negative affect (PRE: 12.5±3.3, POST: 12.1±2.3, p=0.610) and the calm mood 

state (PRE: 48.2±10.6, POST: 45.9±8.9, p=0.392) did not significantly change.  

 

5.3.7. Relationship Between Cerebrovascular Function, Mood and 

Work Productivity  

There were no significant relationships between the change in seated or supine 

MCAv and the changes in mood or work productivity (p>0.05). Furthermore, the 

change in VLF normalised gain was not significantly associated with the 

observed changes in mood or work productivity (p>0.05).  
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5.4. Discussion 

This study demonstrates for the first time that prolonged, uninterrupted sitting 

for six hours acutely decreases MCAv and impairs aspects of dynamic CA in 

healthy desk workers. In addition, prolonged sitting caused significant 

decreases in positive affect and alert and content mood states; although we 

demonstrate for the first time that the changes in mood were not related to 

changes in MCAv and dynamic CA. Finally, in line with previous findings 

(Bergouignan et al., 2016; Wennberg et al., 2016), we observed no changes in 

cognition in response to prolonged sitting. Our results indicate that prolonged, 

uninterrupted sitting acutely impairs cerebrovascular function and mood, but 

that acute impairments in cerebrovascular function do not appear to be 

associated with this lowered mood state. Nonetheless, mood and 

cerebrovascular function are important predictors of cerebrovascular health and 

mental health (Honda et al., 2014; Sabayan et al., 2012; Videbech, 2000; 

Wolters et al., 2017), therefore whether acute changes in these variables have 

implications for long-term mental and physical health of individuals who are 

repeatedly exposed to periods of uninterrupted sitting warrants further 

investigation. 

 

Uninterrupted sitting for six hours reduced MCAv by 3.4 cm·s-1 while seated. 

Furthermore, there is an age-related decline in MCAv of 0.76 cm·s-1 per year 

(Ainslie et al., 2008), suggesting the reductions in MCAv observed following a 

one-off bout of uninterrupted sitting may equate to 2-4 years of age-related 

decline, albeit likely transient. Further research is needed to explore if the 

repeated reduction in MCAv of this magnitude would translate to long-term 
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impairment in CBF. Importantly, the decline in MCAv following sitting unlikely is 

the result of the daily circadian variation of CBF. Previous data indicate that 

CBF closely tracks the rhythm of core body temperature and is therefore lower 

during the morning than in the afternoon or evening (Conroy et al., 2005). Since 

our data shows a reduction in MCAv from baseline (am) to post test (pm), this 

decline most likely relates to prolonged sitting rather than a circadian rhythm. 

Seated CVC, was unchanged following six hours of sitting, indicating the 

observed reduction in MAP contributed to this decline in MCAv. In contrast, 

there was no change in supine MAP over the six-hour sitting period thus both 

supine MCAv and CVC were decreased, suggesting that mechanisms other 

than BP are involved in lowering supine CBF. Increased sympathetic activity 

causes cerebral vasoconstriction (Seifert and Secher, 2011) and progressive 

sympathoexcitation is suggested to contribute to age-associated decreases in 

CBF (Ainslie et al., 2008). As prolonged sitting elevates muscle sympathetic 

nerve activity (Ray et al., 1993) this heightened neural activity may therefore 

also induce vasoconstrictor effects on the cerebral vasculature.  

 

In addition to CBF, aspects of dynamic CA were also impaired following 

uninterrupted sitting. Normalised gain, a measure of how changes in BP are 

transmitted into CBF, was significantly increased indicating a less efficient CA 

(i.e. greater changes in CBF for a given change in BP) (Claassen et al., 2009). 

Although the mechanisms of CA are not fully elucidated, it is suggested that 

sympathetic activity, endothelial NO production and myogenic factors all 

contribute (Tzeng and Ainslie, 2014). In peripheral vessels, sitting-induced 

impairments in vascular function are suggested to be partly due to reduced 
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blood flow and endothelial NO production (Carter et al., 2017). It is therefore 

possible that similar mechanisms contribute to the impaired CA observed in this 

study. Alternatively, sitting did not affect CVR. As CO2 is considered the main 

regulator of CBF (Willie et al., 2011), it is plausible that the cerebrovasculature 

may exhibit an enhanced capability to preserve this function and resist any 

deleterious effects of sitting.  

 

Collectively, our data showing prolonged sitting acutely impairs cerebrovascular 

function may have importance for long-term disease risk. Many cohorts of the 

population are highly sedentary, including UK office workers who spend 60-65% 

of their work time sitting (Clemes et al., 2014, 2016), and adults aged over 60 

years, who spend on average 9.4 hours a day sedentary, equating to 65-80% of 

their waking day (Harvey et al., 2015). These populations are therefore at risk of 

a myriad of health issues related to sedentary behaviour (Young et al., 2016) 

and if evidence from this study can be replicated in the long-term, this may also 

include reduced cerebrovascular function. Chronic reduction in CBF is a risk 

factor for cognitive impairment (Wolters et al., 2017) and is associated with 

cerebrovascular diseases such as Alzheimer’s disease and dementia (Sabayan 

et al., 2012; Wolters et al., 2017). Furthermore, impaired CA is observed in 

patients with Alzheimer’s disease (den Abeelen et al., 2014). Consequently, 

long-term repeated exposure to sitting-induced decreases in CBF and CA could 

cause chronic impairment to cerebrovascular function and therefore have 

implications in the development of such diseases in highly sedentary cohorts.  
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Uninterrupted sitting also resulted in significant reductions in the alert and 

content mood states and positive affect. Improvements in mood have been 

observed previously when SB is reduced. Pleasantness increased after four 

days following a free-living ‘sit less’ strategy compared to four days of free-living 

SB (Duvivier et al., 2017), while breaking up six hours of uninterrupted sitting 

with hourly treadmill walking bouts improved measures of vigour and fatigue 

(Bergouignan et al., 2016). Our study also shows decreases in mood in 

response to an acute prolonged sitting period, and we are the first to highlight 

that these detriments do not appear to be correlated with reductions in MCAv or 

CA, indicating cerebrovascular function may not be a mechanism explaining 

mood alterations. This is unexpected since impaired cerebrovascular function is 

associated with mood disorders such as depression (Honda et al., 2014; Nobler 

et al., 2002; Videbech, 2000), but this is likely the result of chronic alterations, 

suggesting other mechanisms underlie our findings. Acutely elevating 

inflammatory markers in healthy participants increases negative mood (Wright 

et al., 2005), it has therefore been suggested that heightened inflammation may 

contribute to sitting-induced decreases in mood (Endrighi et al., 2016). Indeed, 

SB is associated with higher levels of C-reactive protein (Howard et al., 2015). 

Whilst this association is based on longer-term exposure to prolonged sitting, 

acutely reducing sitting time in adolescents improved apoB/apoA-1 ratio, a 

marker of inflammation (Penning et al., 2017), suggesting similar inflammatory 

responses may occur acutely in adults. Markers of inflammation are implicated 

in mood disorders (Rosenblat et al., 2014), consequently, sitting-induced 

inflammation may have contributed to the observed decreases in mood in this 

study, however further research is needed to test this hypothesis. Finally, the 
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reduction in mood following sitting may relate to the laboratory setting used for 

testing and participant boredom, which cannot be ruled out as potential 

contributing factors. In the long-term, repeated sitting-induced decreases in 

mood may be pertinent for mental health and well-being. A systematic review 

and meta-analyses demonstrated associations between SB and anxiety 

(Teychenne et al., 2015) and depression (Zhai et al., 2015). The mechanisms 

underlying these associations are understudied (Hallgren et al., 2016), but a 

chronically decreased mood state could contribute. 

 

It has been hypothesised that hypoperfusion of the brain due to prolonged 

sitting contributes to cognitive decline (Wheeler et al., 2017), but despite sitting-

induced decreases in MCAv observed in this study, this did not translate to 

changes in cognitive performance. This supports previous work showing no 

change in cognitive performance following up to six hours of uninterrupted 

sitting (Bergouignan et al., 2016; Wennberg et al., 2016). Chronically, 

decrements in CBF decrease oxygen and nutrient delivery, causing a 

breakdown of the blood brain barrier, neuronal damage (Wheeler et al., 2017) 

and slowing amyloid β clearance (Miners et al., 2018). Progressively, this 

results in amyloid β accumulation which may be a cause of neurodegeneration 

and cognitive impairment in dementia and Alzheimer’s disease (Wheeler et al., 

2017). A single, acute exposure to sitting would not have manifested such 

structural and function alterations, which may explain the lack of change in our 

cognitive outcomes. Whether chronic exposure to the transient reductions in 

CBF observed acutely in this study results in impaired cognition should be 

explored further.  
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This study also included tests of work productivity that represented an office 

worker’s typical daily tasks, since impairments in these indices may impact 

overall work performance. After uninterrupted sitting for six hours, typing speed 

increased, with no change in typing accuracy, while mouse dexterity 

performance and RT both improved. In contrast, after sitting participants missed 

more spelling errors, despite reading the same number of characters. These 

changes in work productivity do not appear to be correlated with reductions in 

MCAv or CA, indicating cerebrovascular function may not be a mechanism 

explaining these results. However, caution must be taken with these findings 

since the tests of work productivity were not validated methods to assess these 

performance domains but were included as ecologically important measures 

representative of office workers’ tasks. As such, these data provide preliminary 

evidence to support further research using validated productivity tests exploring 

whether prolonged sitting has a negative impact on markers of work 

productivity.  

 

5.4.1. Limitations 

By experimentally assessing prolonged sitting we inherently removed the 

habitual PA participants would perform during their work hours. However, 

recruited participants were desk workers and were minimally active during their 

work hours, therefore reductions in PA would have been minimal. Nonetheless 

the removal of activity may have contributed to the observed reduction in CBF. 

The lack of change in cognitive performance measures may indicate the tests 

were not sensitive enough to detect an effect of sitting, or that we assessed 

domains of cognition that are not influenced by sitting. However, we assessed 
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only the responses to an acute sitting period, therefore future work should 

examine the influence of chronic sitting. Additionally, it is also possible a 

learning effect may have occurred for the cognitive or work performance tests, 

however the inclusion of a familiarisation visit was used to reduce learning 

effects. The activities that participants completed during sitting were not 

controlled for, therefore it is possible that they may have differentially influenced 

cerebrovascular, cognitive and mood responses. However, the MCAs supply 

many of the brain regions involved in cognitive processing tasks (Li et al., 

2014), therefore even if different tasks were performed during sitting, variation 

in cerebrovascular responses could be minimal. Furthermore, we did not 

measure or control for fidgeting during sitting, which attenuates the association 

between sitting and mortality risk (Hagger-Johnson et al., 2016), therefore may 

also influence the effect of sitting on cerebrovascular function and cognition. 

Due to the length of the experimental protocol, measurements could not be 

completed in a fasted state as is usual best practice. In an attempt to overcome 

the postprandial impact on outcome measures, the timing and content of the 

meals prior to each measurement time-point were matched so any influence on 

outcomes measures would be similar. Markers of inflammation were not 

assessed, which would have allowed for the exploration of the possibility that 

heighted inflammation contributed to the reduction in mood observed following 

sitting. The use of TCD to assess MCAv and cerebrovascular function is 

associated with known limitations, including the inability to measure actual 

blood flow (Willie et al., 2011), the assumptions that measures from the MCA 

are representative of other cerebral vessels and that MCA diameter is unaltered 

during varying levels of CO2 (Skow et al., 2013). By recording the signal 
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parameters and photographically recording the TCD probe placement, it was 

ensured as closely as possible the probe was in the same location; small 

variations may have occurred, however our coefficient of variation was 7.8% 

indicating good reproducibility. Finally, the analysis of CA using TFA is a 

developing method and lacks references values, however we have collected 

and analysed data based on current guidelines (Claassen et al., 2016). 

 

5.5. Conclusion 

This study demonstrates that in healthy desk workers, prolonged, uninterrupted 

sitting for six hours acutely reduces CBF and impairs aspects of dynamic CA 

and mood, but does not result in decrements to cognition. The sitting-induced 

decline in cerebrovascular function was not related to changes in mood, 

suggesting other mechanisms underlie sitting-induced mood alterations. Further 

research is needed to understand how SB may impact cerebrovascular disease 

risk, mood and mental health in the long-term. 
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6.1. Introduction  

As observed in Chapter 5, prolonged sitting for six hours acutely reduces CBF 

and aspects of CA. Maintaining cerebrovascular function appears critical for 

cognitive functioning (Bertsch et al., 2009; Marshall et al., 2001), mood state 

(Evans et al., 2017), and the long-term prevention of neurodegenerative 

disease development (Wolters et al., 2017); thus identifying interventions to 

prevent sitting-induced impairments in cerebrovascular function is essential. 

Breaking up sitting with short bouts of low-intensity PA can prevent sitting-

induced detriments to peripheral vascular health and metabolic control (Dunstan 

et al., 2012; Peddie et al., 2013; Thosar et al., 2015). Whether a PA break 

strategy could also attenuate impairments in cerebrovascular function due to 

prolonged sitting is unknown.  

 

Furthermore, the frequency of the PA breaks used to break up sitting appears to 

be an important modulator of these responses, as regularly breaking up 

prolonged sitting with short PA bouts is more effective than a single PA bout at 

lowering postprandial glucose and insulin concentrations (Peddie et al., 2013). 

Cerebrovascular function increases during exercise (Murrell et al., 2013; Ogoh 

and Ainslie, 2009; Querido and Sheel, 2007) and short duration low-intensity 

walking bouts (Greene et al., 2017; Nedeltchev et al., 2001). Furthermore, 

following chronic exercise training both CBF and CVR are improved at rest and 

during exercise (Murrell et al., 2013). Accordingly, regularly breaking up sitting 

with PA breaks may have beneficial effects on aspects of cerebrovascular 

function. 
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This study therefore explored the acute effects of a prolonged, uninterrupted 

sitting period on cerebrovascular function and assessed whether breaking up a 

period a prolonged sitting with short bouts of light-intensity PA influenced 

cerebrovascular function. We hypothesised that, as observed in Chapter 5, 

prolonged sitting would impair cerebrovascular function, but this would be 

attenuated with light-intensity PA breaks and that, in line with previous work, a 

more frequent PA break strategy would be more effective at preventing any 

impairment in cerebrovascular function.  
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6.2. Methods 

6.2.1. Participants 

Fifteen (10 male) healthy desk workers employed in office and administrative 

jobs volunteered and written informed consent was obtained. Participants were 

recruited via advertising emails and posters which were distributed to University 

mailing lists, and by using newspaper advertisements. Participants were 

screened for exclusion criteria including: taking medication, smoker, BMI >35 or 

<18 kg∙m-2, use of hormone-based contraception and diagnosis of 

cerebrovascular, cardiovascular or metabolic disease. Study procedures were 

approved by Liverpool John Moores University Ethics Committee and adhered 

to the Declaration of Helsinki. 

 

6.2.2. Study Design 

Participants attended the temperature controlled (20-22 °C) laboratory at the 

same time of day (7.00-9.00 am) on three separate occasions. Testing 

procedures were the same across each test day (Figure 6-1). After arrival and 

20-min supine rest, MCAv and CVR were assessed. Participants were then 

seated and underwent measures of seated MCAv and CA. Following baseline 

measurements participants completed, in a randomised order: a) 4-hr 

uninterrupted sitting (SIT), b) 4-hr sitting+2-min light-intensity treadmill walking 

breaks every 30-min (2WALK) or, c) 4-hr sitting+8-min light-intensity treadmill 

walking breaks every 120-min (8WALK). Participants were randomly assigned 

to the order in which they completed conditions using computer-generated 

random numbers. The measurement of seated MCAv was repeated 

immediately after each 4-hr intervention. MCAv was assessed while seated to 
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examine the posture of interest, sitting, and to prevent the effects of moving to a 

supine posture altering hemodynamics. Participants then returned to a supine 

posture and supine MCAv and CVR were assessed, followed by CA. HR and 

MCAv were recorded immediately prior to and during each walking break.  

 

6.2.3. Study Procedures 

Prior to each visit, participants were instructed to avoid strenuous exercise for 

24-hr, to complete an overnight fast and abstinence from caffeine and alcohol. 

Women were assessed in the follicular phase of the menstrual cycle (days 1-7). 

Participants completed the International Physical Activity Questionnaire (Long 

form, IPAQ; Booth, 2000) to determine habitual PA (Craig et al., 2003) and SB 

(Rosenberg et al., 2008). Given the duration of testing, participants were given 

low calorie, low fat, standardised snacks at specified time points (Figure 6-1). 

Following baseline tests, participants were given a breakfast cereal bar (Belvita 

Milk and Cereal Breakfast Biscuits, 220kcal, 33.6g carbohydrate, 7.2g fat, 3.6g 

protein) and a banana after 2-hr (~100kcal, ~27.0g carbohydrate, ~0.3g fat, 

~1.0g protein). Water was available to drink ad libitum.  
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Figure 6-1: Experimental design for the three test conditions, completed in a randomised order, on three separate days. a) 4-hr uninterrupted 

sitting, b) Sitting with 2-min treadmill walking breaks every 30-min, c) Sitting with 8-min treadmill walking breaks every 120-min. MCAv- middle 

cerebral artery blood flow velocity; CVR- cerebrovascular carbon dioxide reactivity; CA- cerebral autoregulation. 
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6.2.4. Interventions 

Uninterrupted sitting (SIT). Participants remained seated at a desk for 4-hr and 

were permitted to perform low cognitively demanding desk-based activities such 

as reading, watching television, surfing the internet or completing simple work 

tasks on a computer. Participants were prevented from standing or walking, with 

the exception of visiting the toilet (walking distance of ~7.5 m; on average 

participants visited the toilet once during each intervention), and from making 

vigorous movements. Participants were supervised at all times to ensure these 

conditions were adhered to.  

2-min walking breaks (2WALK). Sitting was interrupted every 30-min with a 2-

min light-intensity treadmill walking break. Consequently, eight breaks were 

completed, totalling 16-min of activity. This break strategy was selected based 

on recommendations from The Sedentary Behaviour and Obesity Expert 

Working Group (2010) which advises taking a break from sitting every 30-min. 

Walking was performed on a treadmill with no gradient (Run XT, Technogym, 

Italy) at a self-selected, habitual walking speed to represent an ecologically 

valid PA break that could be performed in a working environment. Walking 

speed was determined during a familiarisation session prior to the first 

experimental trial began and this speed was kept consistent for all walking 

breaks. Walking intensity was assessed during each PA bout using the rating of 

perceived exertion (RPE) and HR.  

8-min walking breaks (8WALK). Sitting was interrupted every 120-min with an 8-

min light-intensity walk, using the same walking speed as previously described. 

Consequently, two breaks were completed, totalling 16-min of activity. 

Therefore, the total duration of PA performed in both walking break conditions 
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was identical. This less frequent break strategy was based on 

recommendations that interventions to break up sitting must be feasible (Benatti 

and Ried-Larsen, 2015), which a high frequency breaks strategy may not be 

when translated into practise.  

 

6.2.5. Measurements 

The measurement of MCAv, CVR, CA, PETCO2 and MAP are described in 

detail in Chapter 3. General Methods, hence here only specific features of this 

study are outlined. During data acquisition, supine and seated MCAv were 

acquired as a 1-min average. During the 1-min prior to each walking break (pre-

walk) and throughout each subsequent walk, MCAv was continuously 

measured. CVC was calculated by dividing MCAv by MAP. Participants were 

fitted with a photoplethysmographic cuff on the index or middle finger of the 

right hand (Finometer model 1) and a 3-lead electrocardiogram to continuously 

assess MAP and HR throughout measurements.  

 

6.2.6. Statistical Analyses 

Data were analysed using statistical software (SPSS Version 22.0, IBM 

Corporation, Somers, NY, USA), with significance accepted as p<0.05. Results 

are presented as means±SD. For each condition, the change in all outcomes 

parameters was calculated (4-hr–baseline, Δ). To assess differences between 

conditions, parameters were analysed using one-factor general linear mixed 

model with baseline values as a covariate. Differences in MCAv and HR 

between pre-walk and during each walk were analysed using paired samples t-

tests. Post-hoc analyses were performed using the least significant difference 

(LSD) method. As no previous data was available assessing the 
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cerebrovascular responses to prolonged sitting to inform a sample size 

calculation, our sample size was based on previous work showing significant 

changes in superficial femoral artery endothelial function following uninterrupted 

sitting and interrupting sitting with PA breaks using a sample of 12 healthy 

adults (Thosar et al., 2015). 
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6.3. Results 

All 15 participants completed the study and were included in analyses. 

Participants self-reported sitting for 8.2±2.2 hours during weekdays and 6.0±1.9 

hours during weekend days. Full descriptive characteristics are shown in Table 

6-1.  

 

Table 6-1: Descriptive characteristics, self-reported physical activity (PA) scores and 

total sitting time of participants (n=15). 

 Mean±SD 

Age (years) 35.8±10.2 

Body Mass (kg) 74.5±11.9 

Stature (cm) 170.8±8.9 

Body Mass Index (kg·m-2) 25.5±3.2 

Physical Activity Score (MET-minutes/week) 4524.3±2098.7 

Sitting Time Per Week Day (Hours) 8.2±2.2 

Sitting Time Per Weekend Day (Hours) 6.0±1.9 

Sitting Time Per Week (Hours) 53.2±12.4 

 

 

6.3.1. Intervention Effects  

6.3.1.1. Cardiorespiratory and Haemodynamic Measures 

There were no significant main effects for the change in supine (p=0.78) or 

seated (p=0.33) MAP or the change in supine (p=0.90) or seated (p=0.82) HR 

(Table 6-2). Additionally, no differences in the change in supine (p=0.30) or 

seated (p=0.61) PETCO2 were observed (Table 6-2).  
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Table 6-2: For each intervention, middle cerebral artery blood flow (MCAv) and cardiorespiratory measures at baseline, four hours and the 

overall change (∆) with statistically adjusted baseline covariate control (Mean±SD). 

SIT- uninterrupted sitting; 2WALK- 2-min walking breaks; 8WALK- 8-min walking breaks; MCAv- middle cerebral artery blood flow velocity; 
CVC- cerebral vascular conductance; MAP- mean arterial pressure; HR- heart rate; PETCO2- pressure of end-tidal carbon dioxide.  
# Delta change values expressed with statistically adjusted baseline covariate control.  
* Significantly different to 2WALK (p<0.05). 

 SIT                     2WALK 8WALK 

Baseline   4 Hours ∆# Baseline 4 Hours ∆# Baseline  4 Hours ∆# 

Supine position   

MCAv (cm·s-1) 58.8±7.4 55.5±7.5 -3.2±4.2* 58.6±9.5 59.2±9.7 0.6±5.4 58.4±9.8 57.3±7.8 -1.2±3.5 

CVC (cm·s-

1·mmHg-1) 
0.72±0.12 0.67±0.11 -0.06±0.07 0.73±0.12 0.71±0.12 -0.02±0.07 0.73±0.15 0.70±0.14 -0.03±0.07 

MAP (mmHg) 83±10.0 84±9.2 2.3±6.6 80±7.0 84±8.2 2.6±6.5 81±8.2 83±10.4 1.8±8.3 

HR (bpm) 59±11.8 56±8.4 -2.2±5.7 58±9.0 55±11.9 -3.1±10.5 56±7.9 55±7.2 -2.2±7.2 

PETCO2 
(mmHg) 

41.6±4.8 40.7±5.6 -0.9±2.8 42.6±5.6 41.3±6.1 -1.2±4.2 41.0±5.4 41.5±4.6 0.4±3.2 

Seated position    

MCAv (cm·s-1) 55.4±8.4 53.8±6.4 -1.4±6.1* 56.4±7.6 56.3±8.3 1.1±8.1 53.7±8.3 54.3±9.2 -0.8±8.9* 

CVC (cm·s-

1·mmHg-1) 
0.62±0.11 0.59±0.09 -0.04±0.07* 0.65±0.10 0.64±0.12 0.01±0.10 0.61±0.11 0.62±0.14 -0.01±0.10 

MAP (mmHg) 90±7.9 92±9.4 2.8±6.5 88±9.4 89±9.0 0.9±5.5 89±8.9 90±8.5 0.7±5.9 

HR (bpm) 57±9.2 58±8.2 0.6±7.1 57±9.4 58±11.5 1.0±9.3 56±8.0 56±8.5 -0.4±8.6 

PETCO2 
(mmHg) 

37.6±4.9 37.8±5.1 -0.9±4.0 38.4±6.4 37.4±4.6 -0.8±2.5 38.2±5.9 37.1±5.0 -1.0±3.4 
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6.3.1.2. Cerebral Blood Flow 

Values for MCAv are presented in Table 6-2. A significant main effect was 

observed for the change in supine MCAv (p=0.048), with post hoc analysis 

revealing a greater change in MCAv during SIT compared to 2WALK (p=0.02; 

Figure 6-2a), but not between SIT and 8WALK (p=0.14). Supine CVC however 

showed no significant main effect (p=0.09; Figure 6-2c). Seated MCAv showed 

a significant main effect (p=0.01), with significantly reduced MCAv observed in 

both SIT (p=0.01) and 8WALK (p=0.047) compared to 2WALK (Figure 6-2b). 

Seated CVC also differed significantly between conditions (p=0.01), with post 

hoc analysis revealing the change in 2WALK was significantly different 

compared to SIT (p=0.03; Figure 6-2d).  
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Figure 6-2: Change in middle cerebral artery blood flow velocity (MCAv) and 

cerebrovascular conductance (CVC) in the supine (a, c) and seated (b, d) positions 

measured at baseline and after four hours of each experimental condition with control 

for baseline blood flow and conductance. SIT- uninterrupted sitting; 2WALK- 2-min 

walking breaks; 8WALK- 8-min walking breaks. Error bars= ±SD. * Significant 

difference between conditions (p<0.05). 
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6.3.1.3. Cerebrovascular Carbon Dioxide Reactivity  

MCA and CCA CVR data are presented in Table 6-3. Significant main effects 

were observed for the change in absolute (p=0.020) and relative (p=0.007) 

MCA CVR. For absolute MCA CVR, post hoc analysis revealed a greater 

change during 2WALK (p=0.007) and 8WALK (p=0.033) compared to SIT. This 

response was replicated for relative MCA CVR, with a greater change during 

2WALK (p=0.006) and 8WALK (p=0.002) compared to SIT. Significant main 

effects were also observed for the change in absolute (p=0.013) and relative 

(p=0.012) CCA blood flow CVR. Post hoc analyses revealed a greater change 

during 2WALK compared to SIT for absolute (p=0.013) and relative (p=0.019) 

CCA blood flow. Similarly, there was a greater change during 8WALK compared 

to SIT for absolute (p=0.008) and relative (p=0.008) CCA blood flow. Finally, no 

significant main effects were observed for the change in absolute (p=0.925) and 

relative (p=0.926) CCA diameter CVR.  
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Table 6-3: Cerebrovascular carbon dioxide reactivity (CVR) for each intervention at baseline, four hours and the overall change (∆) with 

statistically adjusted baseline covariate control (Mean±SD). 

Relatively high R2 values confirm the linearity of the response. R2 values of linear regression of absolute and relative MCA CVR are the same 

for both. 

SIT- uninterrupted sitting; 2WALK- 2-min walking breaks; 8WALK- 8-min walking breaks; MCA- middle cerebral artery; CCA- common carotid 

artery. 

# Delta change values expressed with statistically adjusted baseline covariate control. 

* Significantly different to SIT (p<0.05). 

 

 SIT 2WALK 8WALK 

          Baseline 4 Hours ∆# Baseline 4 Hours ∆# Baseline 4 Hours ∆# 

MCA CVR (R2) 0.83±0.11 0.83±0.10 0.00±0.07 0.80±0.13 0.79±0.12 -0.02±0.09 0.81±0.12 0.84±0.12 -0.03±0.10 

Absolute MCA 
CVR  

(cm·s-1·mmHg-1) 
2.10±0.54 2.59±0.95 -0.01±0.57 1.97±0.60 2.60±0.73 0.66±0.51* 2.21±1.17 2.28±0.85 0.56±0.57* 

Relative MCA CVR 
(cm·s-1·mmHg-1) 3.83±1.37 4.71±1.58 0.88±0.98 3.68±1.60 4.76±1.20 2.01±0.98* 3.96±1.98 4.16±1.63 2.17±0.98* 

Absolute CCA 
Diameter CVR 
(cm·s-1·mmHg-1) 

0.001±0.003 0.001±0.006 0.000±0.007 0.001±0.004 0.000±0.003 0.000±0.003 -0.002±0.006 -0.001±0.004 0.000±0.003 

Relative CCA 
Diameter CVR 
(cm·s-1·mmHg-1) 

0.17±0.46 0.12±0.88 0.04±0.96 0.19±0.70 0.05±0.48 -0.02±0.45 -0.24±0.84 -0.09±0.55 -0.09±0.64 

Absolute CCA 
Blood Flow CVR 
(ml·min-1·mmHg-1) 

0.30±0.30 -0.10±0.41 -0.33±0.35 0.33±0.19 0.23±0.31 -0.03±0.33* 0.15±0.31 0.30±0.19 -0.01±0.34* 

Relative CCA 
Blood Flow CVR 
(ml·min-1·mmHg-1) 

2.45±2.51 -0.89±3.25 -2.82±3.30 2.80±1.69 2.23±2.71 -0.18±0.2.47* 1.69±2.41 2.59±1.52 0.20±1.81* 
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6.3.1.4. Cerebral Autoregulation 

Mean values for coherence for each of the frequency domains were: VLF 0.5; 

LF 0.6; HF 0.4. Table 6-4 presents values for phase, gain and normalised gain 

for each domain. A significant main effect was observed in the VLF for the 

change in phase (p=0.047) and gain (p=0.001). For phase, post hoc analyses 

showed the change in SIT was significantly lower than the change in 2WALK 

(p=0.02). For gain, the change in 8WALK was significantly less compared to the 

change in 2WALK (p=0.01). In the LF the main effect for normalised gain 

approached significance (p=0.05). No significant main effect was observed in 

the HF for any parameters (p>0.05). 
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Table 6-4: For each intervention, cerebral autoregulation (CA) estimates of phase, gain and normalised gain (Gainn) at baseline, four hours and 

the overall change (∆) with statistically adjusted baseline covariate control (Mean±SD). 

SIT- uninterrupted sitting; 2WALK- 2-min walking breaks; 8WALK- 8-min walking breaks; VLF- very low frequency; LF- low frequency; HF- high 

frequency.  

# Delta change values expressed with statistically adjusted baseline covariate control. 

* Significantly different to SIT (p<0.05).  
$ Significantly different to 2WALK (p<0.05).

 SIT 2WALK 8WALK 

 Baseline 4 Hours ∆# Baseline 4 Hours ∆# Baseline 4 Hours ∆# 

VLF Phase  

(degrees) 
39.16±15.38 35.83±18.89 -3.38±8.91 41.93±21.46 46.91±26.99 4.47±12.9* 48.40±18.12 42.82±18.80 -2.03±25.9 

VLF Gain  

(cm·s-1·mmHg-1) 
0.52±0.13 0.49±0.08 -0.04±0.10 0.54±0.17 0.47±0.15 -0.10±0.16 0.47±0.12 0.49±0.10 -0.02±0.11$ 

VLF Gainn  

(%·mmHg-1) 
0.91±0.28 0.88±0.16 -0.02±0.22 1.04±0.30 0.86±0.28 -0.23±0.24 0.86±0.21 0.91±0.16 -0.04±0.18 

LF Phase  

(degrees) 
24.34±8.24 24.94±11.48 -1.18±15.23 23.52±11.37 22.78±15.57 -2.67±15.40 25.26±9.15 28.66±17.18 1.37±15.23 

LF Gain  

(cm·s-1·mmHg-1) 
0.69±0.13 0.66±0.11 -0.05±0.09 0.78±0.20 0.76±0.23 0.04±0.17 0.71±0.22 0.86±0.36 0.17±0.36 

LF Gainn  

(%·mmHg-1) 
1.21±0.29 1.20±0.21 -0.12±0.31 1.43±0.30 1.36±0.40 0.04±0.33 1.27±0.29 1.52±0.69 0.30±0.59 

HF Phase 

(degrees) 
12.58±16.80 8.22±20.41 -2.39±21.51 5.95±12.92 9.52±23.19 6.58±19.42 8.04±12.34 10.15±18.17 -0.69±18.31 

HF Gain  

(cm·s-1·mmHg-1) 
0.70±0.15 0.69±0.10 0.01±0.12 0.78±0.21 0.72±0.21 0.02±0.14 0.68±0.28 0.86±0.38 0.13±0.18 

HF Gainn  

(%·mmHg-1) 
1.20±0.19 1.24±0.20 0.05±0.21 1.44±0.33 1.29±0.30 -0.03±0.23 1.22±0.39 1.53±0.57 0.27±0.50 

 
 

 

 

 

 

 

 

The chapter originally presented here cannot be made freely available via LJMU E-Theses Collection because 

of copyright. The chapter was based on the publication in the Journal of Applied Physiology, 2018, ‘Regular 

walking breaks prevent the decline in cerebral blood flow associated with prolonged sitting.’ 125(3):790-798. 

DOI: 10.1152/japplphysiol.00310.2018. 



    

186 

 

6.3.2. Physiological Responses During Walking Breaks 

Mean treadmill speed for each condition and every walking break was 3.6±0.9 

km/h at an RPE of 8.6±0.9.  

 

6.3.2.1. 2WALK 

Walking breaks increased MCAv in seven out of the eight breaks (Figure 6-3a). 

The increased MCAv was only significant at 60-min, with MCAv during walking 

1.91 cm·s-1 higher than prior to the walking bout (Pre Walk: 55.7±8.2 cm·s-1; 

Walking: 57.8±8.1 cm·s-1, p=0.02). HR also significantly increased during each 

walking break, with an average increase of 33 bpm (Pre Walk: 61±10 bpm; 

Walking: 94±10 bpm, p<0.001).  

 

6.3.2.2. 8WALK 

Both walking breaks significantly increased MCAv (Figure 6-3b). At 120-min 

MCAv increased by 1.96 cm·s-1 (p=0.02) while at 240-min a larger increase of 

2.23 cm·s-1 was observed (p=0.004). Each break also significantly increased 

HR, with an average increase of 37 bpm (Pre Walk: 69±11 bpm; Walking: 

96±21 bpm, p<0.001).  
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Figure 6-3: Middle cerebral artery blood flow velocity (MCAv) measured prior to (Pre 

Walk) during (Walking) each walking break condition (a) 2WALK- 2-min walking 

breaks; (b) 8WALK- 8-min walking breaks. Error bars= ±SD. * Significant difference 

between MCAv before and during each walk (p<0.05). 

 

(a) 

(b) 

*  

*  *  

 

 

 

 

 

 

 

 

 

The chapter originally presented here cannot be made freely 

available via LJMU E-Theses Collection because of copyright. 

The chapter was based on the publication in the Journal of 

Applied Physiology, 2018, ‘Regular walking breaks prevent the 

decline in cerebral blood flow associated with prolonged sitting.’ 

125(3):790-798. DOI: 10.1152/japplphysiol.00310.2018. 



    

188 

 

6.4. Discussion 

This study demonstrates that in healthy desk workers, prolonged, uninterrupted 

sitting causes a decrease in MCAv. Importantly, short duration, regular walking 

breaks (2WALK), rather than less frequent, longer duration walking breaks 

(8WALK), prevented the impairment of MCAv associated with uninterrupted 

sitting. Similarly, the frequent walking break strategy improved aspects of CA 

compared to uninterrupted sitting. In contrast, both walking break strategies 

maintained a greater CVR compared to prolonged sitting. Our results indicate 

that prolonged uninterrupted sitting acutely impairs cerebrovascular function, 

whilst taking regular PA breaks has positive effects on both CBF and aspects of 

CA. The promotion of active break strategies for those who engage in long 

periods of sitting may therefore have important clinical implications.  

 

Uninterrupted sitting for four hours induced a decline in MCAv of 1.4 cm·s-1. 

This supports data in Chapter 5, showing following six hours of uninterrupted 

sitting, MCAv decreased by 3.4 cm·s-1. Taken together these data indicate a 

potential dose-response relationship between the duration of uninterrupted 

sitting and impairment in MCAv. This is an important, novel finding of our work 

and highlights the need to reduce the exposure to prolonged sitting periods to 

maintain CBF. Furthermore, translating this observation to the age-related 

decline in MCAv of 0.76 cm·s-1 per year (Ainslie et al., 2008), this suggests the 

reductions observed following a one-off bout of uninterrupted sitting may equate 

to 2-4 years of age-related decline, albeit likely transient. Nonetheless, repeated 

exposure to this type of SB may have important implications for long-term 

cerebrovascular health. Indeed, chronically sedentary males (not regularly 

 

 

 

 

 

 

 

 

 

The chapter originally presented here cannot be made freely 

available via LJMU E-Theses Collection because of copyright. 

The chapter was based on the publication in the Journal of 

Applied Physiology, 2018, ‘Regular walking breaks prevent the 

decline in cerebral blood flow associated with prolonged sitting.’ 

125(3):790-798. DOI: 10.1152/japplphysiol.00310.2018. 



    

189 

 

physically active) exhibit a 9.1 cm·s-1 lower mean MCAv compared to their 

endurance trained counterparts (Ainslie et al., 2008). Interestingly, this 

observation aligns with our finding, in that breaking up sitting with frequent, 

short duration walking breaks (2WALK) prevented the sitting-induced decline in 

MCAv. This benefit was not observed in the less frequent, longer duration 

walking break condition (8WALK) despite larger increases in MCAv during the 

walking breaks. Taken together this implies the frequency of the breaks may be 

more important than the magnitude of the increase in MCAv during the breaks. 

This finding supports previous work showing, when directly compared to a 

single activity bout, regular activity breaks during sitting enhances postprandial 

glycaemia and insulinemia (Peddie et al., 2013). Furthermore, in healthy adults, 

self-report PA frequency is a predictor of aspects of cerebrovascular function 

(Guiney et al., 2015). The importance of the frequency rather than the duration 

of PA is therefore replicated in our results. 

 

Frequent walking breaks to interrupt sitting also enhanced aspects of dynamic 

CA. Our results indicate the 2WALK condition significantly improved aspects of 

dynamic CA, as the change in VLF phase was greater compared to 

uninterrupted sitting, implying enhanced buffering capacity of CA with frequent 

activity breaks. This adds further support to the hypothesis that the frequency of 

breaking up sitting is more important than the break duration. The acute effects 

of PA breaks on dynamic CA has not been previously assessed, however some 

research has explored the effects of exercise. Static handgrip exercise for two 

minutes did not affect dynamic CA (Ogoh et al., 2010); whilst exhaustive cycling 

impairs dynamic CA (Ogoh et al., 2005). These findings indicate that different 
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modalities, intensities and durations of exercise have varied effects on dynamic 

CA. Whilst the light-intensity walking breaks in our study are not directly 

comparable to exercise, our findings show that dynamic CA can be modified by 

low-intensity PA and that this response is influenced by the frequency of this 

activity.   

 

CVR also differed across the three conditions. In contrast, to observations for 

MCAv and CA, both walking break interventions maintained a higher MCA CVR 

and CCA CVR compared to SIT. Previous work has shown acute improvements 

in CVR following both moderate and strenuous intensity cycling for 50-min 

(Rasmussen et al., 2006). This therefore indicates that even light-intensity, short 

duration PA interventions rather than exercise per se, may be a large enough 

stimulus to alter CVR. Furthermore, it appears the frequency or duration of 

these breaks from sitting does not influence this response. Following SIT, 

relative MCA CVR did slightly increase, therefore it cannot be stated that 

prolonged sitting impairs CVR, instead it appears taking PA breaks during 

sitting can enhance CVR further. Consequently, despite the decrease in MCAv 

following uninterrupted sitting, this did not manifest into a dysfunction in CVR, 

as also observed in Chapter 5. Furthermore this contrasts observations in the 

peripheral vasculature where decreases in blood flow following prolonged sitting 

causes impaired peripheral vascular function (Thosar et al., 2015). This 

suggests the cerebrovasculature may have a greater functional capacity to 

resist the deleterious vascular effects of sitting and that more pronounced 

changes in CBF are required to mediate changes in response to SB. Indeed, 
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this may be expected based on the greater importance of the brain as an organ 

compared to the periphery (Phillips et al., 2016).  

 

There was no difference in the change in MAP between sitting and 2WALK, 

thus in line with MCAv, CVC was significantly higher following 2WALK 

compared to prolonged sitting, demonstrating changes in BP do not impact our 

findings. Instead, the neural stimulation of the cerebrovasculature may explain 

our cerebrovascular function results. The cerebrovasculature is extensively 

innervated by sympathetic fibres (Ogoh and Ainslie, 2009) and the progressive 

sympathoexcitation with ageing is suggested to contribute to age-associated 

decreases in CBF (Ainslie et al., 2008). Prolonged sitting elevates muscle 

sympathetic nerve activity (Ray et al., 1993), which may induce systemic 

vasoconstrictor effects, in turn inducing cerebral vasoconstriction and lower 

blood flow. The preservation of function with frequent walking breaks may relate 

to cholinergic activity as cerebral blood vessels are also innervated by 

cholinergic fibres (Willie et al., 2014). In animals, cholinergic fibres are 

stimulated during walking, contributing to increased CBF (Seifert and Secher, 

2011; Toda et al., 2000). Evidence in humans also supports that cholinergic 

vasodilation contributes to increased CBF during exercise, as acetylcholine 

blockade abolishes the exercise-induced increase in MCAv (Seifert et al., 

2010). It is therefore possible that in this study the more frequent walks led to a 

more sustained cholinergic activation, maintaining cerebral vasodilation and 

subsequently MCAv.   
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An alternative explanation for the decline in MCAv after uninterrupted sitting 

may relate directly to the function of cerebrovascular endothelial cells, which 

contribute to the regulation of CBF (Toda, 2012). Elevated levels of tissue 

plasminogen activator and Von Willebrand factor, markers of endothelial 

dysfunction, are associated with reduced CBF in older adults (Sabayan et al., 

2014). Acute uninterrupted sitting induces peripheral endothelial dysfunction 

(Restaino et al., 2015, 2016; Thosar et al., 2015) therefore a similar process 

may be present in cerebral arteries. Changes in cerebral glycaemic regulation 

may also contribute to sitting-induced reductions in MCAv, as the brain is highly 

sensitive to perturbations in circulating glucose levels (Wheeler et al., 2017). 

Prolonged sitting increases postprandial glycemia (Dunstan et al., 2012; Peddie 

et al., 2013), which can cause microvascular damage, impair endothelial 

function and reduce CBF (Wheeler et al., 2017). In this study, prolonged sitting 

may have elevated circulating glucose levels, subsequently reducing MCAv; 

whilst the frequent walking breaks may have prevented this hyperglycaemia, in 

turn maintaining MCAv. Future studies are warranted to understand the 

underlying mechanisms of decreased CBF during prolonged sitting and how PA 

breaks prevent these effects.  

 

6.4.1. Workplace Application 

As 65-75% of office workers’ hours are spent sitting, the workplace has been 

identified as a key setting to reduce SB. However, as outlined by Buckley et al. 

(2015), many health promotion and PA interventions aim to reduce SB by 

targeting moderate-to-vigorous PA, which is unlikely to be achievable within the 

constraints of a workplace. The frequent, light-intensity walking break strategy 
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used in our study is in line with recent workplace guidelines advising increasing 

light activity during working hours and regularly breaking up seated work 

(Buckley et al., 2015). Importantly, accumulating evidence suggests that light-

intensity PA is beneficially associated with biomarkers of cardiometabolic health 

and may reduce mortality risk (Füzéki et al., 2017). Collectively this indicates 

that sedentary individuals should be encouraged to engage in PA of low 

intensities to confer improvements to health; such as by using the strategy 

employed in this study by interrupting prolonged sitting with light-intensity 

walking breaks.   

 

6.4.2. Implications 

This study demonstrates that in healthy desk workers prolonged, uninterrupted 

sitting impairs MCAv but these reductions are offset when frequent, short 

duration walking breaks are incorporated. These observations may have clinical 

importance for both cognition and disease risk. Acutely cognitive performance 

declines following transient carotid artery occlusion that decreases CBF 

(Marshall et al., 2001), but increases following pharmacologically elevated CBF 

(Duschek et al., 2007). Given that UK office workers report sitting at work for 

6.3-hr (Munir et al., 2015), reductions in CBF may have important ramifications 

for workers’ productivity. More importantly, chronic reductions in CBF is a risk 

factor for cognitive impairment (Ruitenberg et al., 2005), is associated with 

cerebrovascular diseases such as Alzheimer’s disease and dementia (Sabayan 

et al., 2012; Schuff et al., 2009; Wolters et al., 2017; Yew and Nation, 2017) and 

correlates with cognitive dysfunction in Alzheimer’s disease (Roher et al., 2012). 

Consequently, in the long-term the repeated exposure to sitting-induced 
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decreases in CBF could cause chronic downregulation of CBF and therefore 

have large implications in the development of such diseases; which has 

previously been suggested (Wheeler et al., 2017). The high prevalence of SB in 

these cerebrovascular disease populations further highlights the relevance of 

our findings. The maintenance of CBF using frequent walking breaks to interrupt 

sitting therefore represents a protective mechanism against disease risk. 

Indeed, in a nondemented cohort, greater CBF was associated with a 

decreased chance of dementia development and less cognitive decline over a 

6.5 year follow-up (Ruitenberg et al., 2005). Future work is needed to better 

understand the potential relation between SB and development of 

cerebrovascular diseases. 

 

6.4.3. Limitations 

Our study assessed the responses to a short sitting period, however of greater 

ecological interest would be examining the chronic responses to sitting. Whilst 

within an experimental visit we controlled the activities that participants 

completed during sitting so that they were of a low-cognitive demand, these 

activities were not matched between visits. It is therefore possible that the 

activities they performed while seated differed between visits which may have 

influenced cerebrovascular responses. Furthermore, we did not measure or 

control for fidgeting during sitting, which attenuates the association between 

sitting and mortality risk (Hagger-Johnson et al., 2016), therefore may also 

influence the effect of sitting on cerebrovascular function. As no previous data 

was available assessing the cerebrovascular responses to prolonged sitting, our 

sample size was based on previous work showing significant changes in 
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superficial femoral artery endothelial function when using walking bouts to break 

up prolonged sitting (Thosar et al., 2015), however it could be possible that a 

larger sample size is required to detect differences in aspects of 

cerebrovascular function. The use of TCD to assess MCAv and cerebrovascular 

function is associated with known limitations, including the inability to measure 

actual blood flow (Willie et al., 2011), the assumptions that measures from the 

MCA are representative of other cerebral vessels (Ainslie and Duffin, 2009), 

and that MCA diameter is unaltered during varying levels of CO2 (Skow et al., 

2013). By recording the signal parameters and photographically recording the 

TCD probe placement, it was ensured as closely as possible the probe was in 

the same location and at the same angle for each visit; small variations may 

have occurred, however our coefficient of variation was 7.8% indicating good 

reproducibility. The analysis of CA using TFA is a developing method and lacks 

references values (Claassen et al., 2016). Therefore whilst current assessment 

and analysis guidelines were adhered to (Claassen et al., 2016), future 

research is required to fully understand the clinical value of our results. 

 

6.5. Conclusion  

This study demonstrates that prolonged, uninterrupted sitting in healthy desk 

workers reduces MCAv, however this is offset when frequent, short-duration 

walking breaks are incorporated. Alternatively, when less frequent, longer 

duration walking breaks are used to interrupt sitting, MCAv is still reduced. 

These data suggest that the frequency at which sitting time is broken up is more 

important than the duration of the activity bout to preserve MCAv. Further 
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research is needed exploring the long-term impact of breaking up sitting with 

activity bouts on cerebrovascular function and disease risk. 
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7. Effects of a workplace 

intervention to break up sitting 

time on cerebrovascular 

function, cognition and mood: 

A pilot study
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7.1. Introduction 

The workplace is where most adults accumulate high amounts of SB (Parry and 

Straker, 2013; Ryan et al., 2011). Since SB is an established independent risk 

factor for cardiovascular morbidity and mortality (Young et al., 2016), workers 

are frequently exposing themselves to this potentially hazardous behaviour. 

Consequently, recent guidelines highlight the need to change workplace activity 

patterns by regularly breaking up seated work by replacing sitting with at least 

two hours of standing and light activity per work day. It is suggested that such a 

behaviour change would benefit workers’ cardiometabolic health and also 

potentially enhance their productivity and overall performance (Buckley et al., 

2015). However, there is little evidence from workplace intervention studies to 

support these recommendations; a fact that has been recently criticised 

(Stamatakis et al., 2018).  

 

Cognition has been established as one of the best predictors of work 

performance across a range of professions (Fisher et al., 2017). Indeed, 

cognitive ability is negatively associated with counterproductive work 

behaviours (Dilchert et al., 2007) and employees with greater cognitive 

capabilities perform more work-related tasks (Morgeson et al., 2005). Workers’ 

mood also influences task performance. During periods of pleasant mood, 

workers are more efficient and effective in their job role (Miner and Glomb, 

2010; Rothbard and Wilk, 2011). Furthermore, positive affect is positively 

related to task performance and negatively related to counterproductive work 

behaviours, whilst opposite associations are observed for negative affect 

(Kaplan et al., 2009; Shockley et al., 2012).  
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Using PA breaks to interrupt sitting has however shown mixed effects on 

cognition and mood. Interrupting an acute sitting period with walking breaks had 

no effect on cognition (Bergouignan et al., 2016; Wennberg et al., 2016) but did 

enhance mood state (Bergouignan et al., 2016). Furthermore, no differences in 

cognition were observed following four days of a free-living ‘sit’ strategy 

compared to a ‘sit less’ strategy, but  pleasantness increased (Duvivier et al., 

2017). However, these studies were only acute assessments, consequently 

there is a need to investigate the long-term effect of reducing SB on cognition 

and mood, especially in a high SB environment, such as the workplace.  

 

A range of workplace interventions to reduce SB have been examined, with 

meta-analyses and reviews concluding interventions using active workstations 

are an effective strategy to reduce workplace sitting time (Commissaris et al., 

2015; Neuhaus et al., 2014; Torbeyns et al., 2014). However, despite workplace 

interventions reducing sitting time and increasing PA, no changes in work 

productivity have been observed (Brakenridge et al., 2016; Carr et al., 2015). 

Nonetheless, no workplace intervention study has directly assessed cognition or 

mood. Importantly, as shown in Chapter 6, breaking up SB with frequent 

walking bouts can prevent an impairment in cerebrovascular function that is 

otherwise observed. Since cerebrovascular function contributes to the 

maintenance of cognitive functioning (Bertsch et al., 2009; Wolters et al., 2017) 

and mood (Evans et al., 2017), this indicates that a workplace intervention to 

maintain or improve cerebrovascular function could in turn enhance cognition, 

mood and work performance.  
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More recently, the need to examine workplace interventions that are low-cost to 

consider workplaces with limited financial resources has been highlighted  

(Shrestha et al., 2018). One such alternative low-cost method to reduce 

workplace SB is using prompting devices to encourage workers to take a break 

from sitting. Exertime is a computer-based prompting software that has been 

previously used as a workplace intervention to break up sitting, increasing 

standing time during working hours by up to 7.99 minutes per day by performing 

activity breaks from sitting 4.95 to 6.28 times per day (Mainsbridge et al., 2014, 

2016; Pedersen et al., 2014). In turn this has resulted in increases in self-

reported health and wellbeing (Mainsbridge et al., 2016), energy expenditure 

(Pedersen et al., 2014) and reductions in MAP (Mainsbridge et al., 2014). 

Whether such an intervention can improve other aspects of health and 

wellbeing, such as cerebrovascular function, cognition and mood is unknown.  

 

This study therefore aimed to assess changes in SB and PA levels, 

cerebrovascular function, cognition, mood and work productivity following an 8-

week intervention designed to break up prolonged sitting at work. A secondary 

aim was to assess changes in peripheral artery endothelial function, since 

previously an eight-week intervention using sit-stand workstations significantly 

reduced sitting time and led to likely beneficial improvements in brachial artery 

endothelial function (Graves et al., 2015). Hence this study aimed to assess 

whether breaking up workplace sitting could produce systemic improvements to 

vascular health. Finally, owing to the influence of sleep on cognition and mood 

(Walker, 2009), this study also aimed to assess changes in sleep following the 

8-week intervention. It was hypothesised that, firstly, following the 8-week 
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intervention to break up sitting at work, sitting time at work would be reduced 

and the time spent walking would increase. Secondly, it was hypothesised that 

following the intervention cerebrovascular and peripheral vascular function, 

cognition and mood would be improved.  
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7.2. Methods 

7.2.1. Participants 

Office-based workers from one University (Liverpool John Moores University, 

Liverpool, UK) were recruited. Departmental managers were contacted to gain 

consent for employee recruitment and participation in the study protocol, of 

which 17 approved (Figure 7-1). Staff within these departments were contacted 

via email with a study overview and those who expressed an interest received a 

participant information sheet and were screened for exclusion criteria including: 

aged >65 years, use of medication, smoker, BMI >35 or <18 kg∙m-2, use of 

hormone-based contraception and diagnosis of cerebrovascular, cardiovascular 

or metabolic disease, or a mental health condition. Following this, ten healthy 

desk workers (4 male) were enrolled into the study and written informed 

consent was obtained prior to inclusion.  
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Figure 7-1: Consort flow diagram of enrolment, allocation and follow-up. 
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7.2.2. Study Design and Procedures  

 

Study procedures were approved by the Liverpool John Moores University 

Ethics Committee and adhered to the Declaration of Helsinki. The study was 

conducted between September 2017 to May 2018. The study was a 

randomised crossover trial design, consisting of two conditions: intervention and 

control. Each condition lasted 8-weeks and conditions were separated by a 6-

week wash-out period. Participants were randomly assigned to the order in 

which they completed conditions using computer-generated random numbers. 

During the intervention, participants used a computer-based prompting software 

designed to break up their workplace sitting, whilst in the control period 

participants did not have access to the software and were asked to maintain 

their normal workplace activity patterns. Participants and researchers were not 

blinded to group allocation. 

 

Participants attended the laboratory on four separate occasions; before (PRE) 

and after (POST) each condition. Prior to each laboratory visit, participants were 

instructed to avoid strenuous exercise for 24-hr, and to abstain from caffeine 

and alcohol. Women were assessed in the follicular phase of the menstrual 

cycle (days 1-7). Anthropometric measures of stature and body mass were 

acquired at the start of each visit. After a 20-min supine rest, baseline measures 

of HR, BP, cardiovascular (brachial and femoral artery FMD) and 

cerebrovascular (CBF, NVC, CVR, CA) function were obtained. Participants 

were then given a 15-min break and a standardised snack to consume (a 

banana ~100kcal, ~27.0g carbohydrate, ~0.3g fat, ~1.0g protein and a cereal 

bar 192kcal, 27.1g carbohydrate, 7.2g fat, 3.4g protein). Following this, a 
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battery of computer-based cognitive performance (Stroop Colour-Word Test, 

Attention Network Test, N-Back Task) and productivity tests (Typing 

Performance, Reading and Correcting, Mouse Dexterity) were conducted and 

participants completed a mood questionnaire (PANAS) and a work performance 

questionnaire (Health and Work Questionnaire). Participants were then fitted 

with three monitors to measure habitual SB, PA and sleep which were worn for 

the next seven consecutive days. Following this, the 8-week trial began. At the 

start of the final week of the trial (week 7), SB, PA and sleep were assessed. All 

other measures were then repeated after the 8-week period (Figure 7-2). 
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Figure 7-2: Study design. SB- sedentary behavior; PA- physical activity; HR- heart rate; BP- blood pressure; FMD- flow-mediated dilation; 

CBF- cerebral blood flow; NVC- neurovascular coupling; CVR- cerebrovascular carbon dioxide reactivity; CA- cerebral autoregulation; 

ANT- attention network test; HWQ- health and work questionnaire; PANAS- positive and negative affect schedule. 
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7.2.3. Intervention: Exertime  

The intervention utilised a computer-based software programme called 

‘Exertime’ which was installed onto the participant’s work computer. Participants 

were instructed to install the software the morning after the seven-day baseline 

habitual SB, PA and sleep monitoring period was complete. This was confirmed 

via emailing the participant and monitoring the Exertime administrator online 

portal which tracks participants’ use of the software. Exertime is designed to 

prompt employees to interrupt long bouts of sitting by standing up to engage in 

a brief bout of non-purposeful movement periodically during work hours 

(Mainsbridge et al., 2016; Pedersen et al., 2014). Based on data from Chapter 

6, participants’ activity selection was limited to only a walk during their breaks 

from sitting. The Exertime software was initiated every 45 minutes as a prompt 

bubble appearing on the bottom right hand side of the participant’s computer 

screen (Figure 7-3). The prompting time was selected based on a combination 

of existing research using Exertime software and the results from Chapter 6. In 

previous studies using Exertime, the prompting time has been based on 

Australian national guidelines for office employees which specifies all computer-

based employees should remove themselves from a sedentary position for a 

short period every hour (Worksafe Australia, 1996). Data from Chapter 6 

demonstrated taking a break from sitting every 30 minutes attenuated sitting-

induced reductions in MCAv. Collectively this indicates that a break frequency 

of between 30 minutes to one hour is required, hence, a 45 minutes prompt 

frequency was chosen as a trade-off between the two.   
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Figure 7-3: (a) Screenshot of the Exertime prompt at the bottom of the computer screen. (b) Close-up of the Exertime prompt.  
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The Exertime prompt indicated it was time for participants to take a break from 

sitting. Participants could choose to either engage with or postpone the prompt. 

If engage was selected, the Exertime software was activated and displayed 

across the whole computer screen. The software could not be shut down, 

forcing the participants to click onto the Exertime software before being able to 

regain control of their computer screen. If postpone was selected, it enabled 

participants to temporarily delay the prompt for a selected time period (5, 10 or 

15 minutes) before it then reappeared. This function could only be activated for 

a maximum time of 15 minutes, after which the Exertime was automatically 

activated. The inclusion of the postpone function accounted for occasions 

where participants may be in a situation, such as a phone conversation or 

meeting, whereby they needed important access to their computer. When 

Exertime was activated, participants were required to select the ‘Take a Hike’ 

option to signify the beginning of their walking break and to then stand up and 

commence their walk. This started a clock which timed the duration the 

participant was away from their computer (Figure 7-4). The break duration was 

self-selected, however participants were advised to take a 2-min walking break 

based on the data from Chapter 6. Upon returning, the participant clicked to 

stop the timer, logging the total duration of their non-sedentary time. Once 

participant’s data was recorded the Exertime sequence terminated and the 

participant regained control over their computer screen. 
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Figure 7-4: Screen shot of the activation of Exertime software. (a) The screen where 

participants select the ‘Take a Hike’ option. (b) The timer recording the duration of the 

activity break.   
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Prior to the start of the intervention, participants were given an educational 

booklet which included videos and information about the importance of reducing 

SB and how to install the software onto their work computer (Appendix 1: 

Participant Educational Booklet). Previous studies utilising Exertime software 

have included this prior to beginning the intervention period (Mainsbridge et al., 

2014, 2016; Pedersen et al., 2014) and importantly, a pre-educational session 

combined with Exertime was more effective at decreasing prolonged sedentary 

periods and increasing workday movement compared to using the Exertime 

software alone (Smith et al., 2013). Participants were contacted via email to 

check they had watched the video and read the booklet. During the 8-week 

intervention, participants’ use of the software was monitored by the research 

team using the online portal for Exertime administrators. If a participant was not 

logging activities, they were contacted via email by the principal researcher to 

check the software was working correctly and were prompted to use the 

software. To increase participants’ motivation to engage with Exertime, 

participants also received a weekly email from the principal researcher at the 

start of each new week using the software which detailed the number of breaks 

and activity minutes they had logged in the previous week. Additionally, each 

week this email contained a suggestion as to how they could break up their 

sitting with walking breaks (Appendix 2: Email Suggestions for Participants to 

Break Up Their Sitting). The use of weekly emails was based on previous 

studies using Exertime that have phoned participants during the intervention to 

remind them to accurately report their activities and engage with the software 

(Cooley and Pedersen, 2013; Mainsbridge et al., 2014).  
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7.2.3.1. Exertime Analysis 

Exertime usage data was recorded and accessible using the Exertime 

administrator online portal. For each participant, the date, time and duration of 

each break logged over the 8-week intervention period was extracted. This was 

subsequently broken down into weekly averages for the number of breaks taken 

and the duration of each break. Exertime data are based on the participants’ 

self-report activity and is unable to determine if participants actually take a 

break from sitting. Consequently, to objectively validate the Exertime software, 

activPAL data for all weekdays from the final week (week 8) of the intervention 

trial were compared to data from the Exertime software log for this 

corresponding time period. Participants were not aware their monitor data was 

being compared with their Exertime data. This was achieved using the Exertime 

data output for the time when each break ended and the duration of this break. 

For each break, the time when the break ended was matched to the time in the 

activPAL data file. Based on the duration of the break logged in the Exertime 

file, the corresponding time duration in the activPAL data file was examined 

prior to the time the break ended. It was then determined firstly, if the participant 

actually took a break from sitting and, secondly, whether the duration of this 

break accurately matched that in the Exertime output. This was initially 

achieved using the ‘sedentary to upright’ and ‘upright to sedentary’ data output 

from activPAL, which provides a marker when a participant has transitioned 

from a sitting to standing or standing to sitting position. If it was confirmed that a 

participant had taken a break it was identified as a valid break and the epochs 

during the time period between these transitions were summed to calculate the 

time that was spent standing or stepping. If the participant had not taken a 

break at this time point, it was identified as a missed break. Using this 



    

213 

 

approach, it allowed the total logged break time to be compared between 

Exertime and activPAL to calculate any difference between the methods. This 

comparison was completed for total breaks (i.e. all breaks logged in Exertime 

(missed and validated breaks)), and validated breaks (i.e. only Exertime breaks 

with corresponding validated activPAL data). The compliance of taking a break 

when prompted was also determined by comparing the number of breaks 

reported in the Exertime output to the number of breaks actually achieved 

based on the activPAL output.    

 

7.2.4. Measurements 

The measurement of CBF, NVC, CVR, CA, PETCO2, brachial and femoral 

artery FMD, SB, BP, cognition, mood, and work productivity are described in 

detail in Chapter 3. General Methods, hence here only specific features of this 

study are outlined. The battery of computer-based cognitive performance and 

work productivity tests were completed in a randomised order between 

participants but not within experimental visits. Participants were randomly 

assigned to the order in which they completed the tests using computer-

generated random numbers.  During data acquisition, supine MCAv and PCAv 

were acquired as a 2-min average. CVC was calculated by dividing MCAv by 

MAP. Participants were fitted with a photoplethysmographic cuff on the index or 

middle finger of the right hand (Finometer model 1) and a 3-lead 

electrocardiogram to continuously assess MAP and HR throughout 

measurements.  
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7.2.4.1. Health and Work Questionnaire 

Participants completed the Health and Work Questionnaire (HWQ; Shikiar et al., 

2004) which assesses workplace productivity in relation to worker health. The 

questionnaire is formed of 24 questions which then create subscales for: work 

productivity, concentration/focus, work satisfaction, non-work satisfaction, 

supervisor relations, impatience/irritability and stress (Shikiar et al., 2004). The 

HWQ is also designed to reduce social desirability bias by including questions 

that require an individual to rate their work quality, quantity, and efficiency from 

their supervisor’s and their co-worker’s perspective, as well as their own. 

Participants were required to rate each item in the questionnaire on a ten-point 

scale, with the end points of the scale tailored to each specific question. 

Subscale scores were then derived by averaging items within a subscale. The 

internal consistency of these scores, assessed using Cronbach's alpha, has 

been shown to be high (α 0.84-.096) (Shikiar et al., 2004). The HWQ has also 

been shown to significantly correlate to call agents’ objective work performance 

(Shikiar et al., 2004).  

 

7.2.4.2. Physical Activity 

PA was objectively measured using the Actigraph GT3X monitor (Actigraph, 

Pensacola, Florida), a tri-axial accelerometer that assesses movement over 

three axes. The Actigraph reliably measures adult PA levels under free-living 

conditions (Aadland and Ylvisåker, 2015) and is widely used in research to 

assess PA levels (Aguilar-Farías et al., 2014). For seven consecutive days, 

participants wore the Actigraph GT3X accelerometer on an elastic waist belt 

positioned on the right hip. They were instructed to wear the monitor during all 

waking hours, removing only for water-based activities such as showering. Each 
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participant was allocated their own Actigraph monitor, using the monitor’s 

unique serial number. This ensured the same monitor was used for each 

separate 7-day monitoring period. Participants were instructed to complete a log 

sheet detailing the times the monitor was removed and replaced each day. Data 

were downloaded at 60 second epochs and analysed using ActiLife software 

(Version 6.2, Actigraph). Raw accelerometery data were presented in counts 

per minute (counts·min-1). Non-wear time was defined as 90 consecutive 

minutes of zero counts·min-1 (Choi et al., 2011) and this was excluded from all 

analyses. PA intensity was determined using the cut points: light-intensity 

(≤2689 counts·min-1), moderate-intensity (≤6166 counts·min-1), and vigorous-

intensity (>6167 counts·min-1); which are validated cut points for healthy, normal 

or overweight adults (Sasaki et al., 2011), thus suited to the population 

assessed in this study. Participant’s data were only included for analyses if the 

following criteria were met: ≥10 hours of wear time per day, for a minimum of 

four days, including one weekend day (Trost et al., 2005). For each day the time 

spent in each category of activity was determined and then mean values were 

calculated for each variable for a working day and a weekend day. Participant 

log-book recording of their working hours were used to determine time spent at 

work. By applying filters in the ActiLife software to correspond to these reported 

work hours, activity intensities were then calculated for working hours for each 

work day. 

 

7.2.4.3. Sedentary Behaviour  

SB was assessed using the activPAL, as described in detail in section 3.11.3.1, 

hence here only specific features of this study are outlined. For each separate 

7-day monitoring period it was ensured the same activPAL monitor was worn be 
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each participant. This was achieved by allocating each participant a specific 

monitor using the monitor’s unique serial number. Data were considered a valid 

day if the monitor was worn ≥10 hours per day and if wear time corresponded 

with the participant’s self-report wear time diary. The latter was achieved by 

visually inspecting the activPAL graphical data and event file outputs following 

analyses to assess if self-report wake up and bed time corresponded with 

activPAL data. When assessing working hours, it was required that the monitor 

was worn for 100% of work time. Furthermore, data were only included if a valid 

activPAL wear day had a corresponding valid Actigraph wear day, thus both SB 

and PA data were valid for the same day (i.e. if the participant only wore one of 

the monitors this day was excluded). Based on these criteria, activPAL data 

was only included if there were a minimum of four valid wear days, including 

one weekend day.  

  

7.2.4.4. Sleep 

Sleep was assessed using the Actiwatch 4 (Cambridge Neurotechnology Ltd, 

Cambridge, UK), a small, light-weight wrist accelerometer which has been 

shown to have acceptable performance compared to the gold standard 

measures of sleep (polysomnography) for all sleep measures, except for sleep 

onset latency (Tonetti et al., 2008). The Actiwatch was worn on participants’ 

non-dominant wrist continuously for seven days, as recommended to reliably 

measure sleep (Sadeh and Acebo, 2002), with an epoch length set to one 

minute. Participants pressed a marker button on the Actiwatch for two seconds 

upon lights out and repeated this process the following morning upon lights on 

to indicate bedtime and wake up time. In combination with the Actiwatch, 

participants completed the Consensus Sleep Diary (Carney et al., 2012), as 
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recommended in conjunction with actigraphy to prevent periods of non-wear 

time being incorrectly classed as sleep (Sadeh and Acebo, 2002). The 

Consensus Sleep Diary is the recommended sleep diary as it was generated in 

order to standardise sleep diaries within sleep research (Carney et al., 2012). 

Participants were instructed to fill in the consensus sleep diary immediately after 

getting out of bed, which asked questions relating to bedtime, wake up time, 

number of awakenings and sleep quality. From the Actiwatch and the 

consensus sleep diary, the principal investigator was able to manually 

determine bedtime, time of sleep onset (sleep start), wake up time (sleep end) 

and get up time so that sleep behaviour could be automatically calculated using 

Actiwatch software (Sleep Analysis 5.24, Cambridge Neurotechnology Ltd).  

Data were analysed using the default medium sensitivity, where an integrated 

activity count equal to or greater than 40 within a one minute epoch is 

designated as being awake. Each night of sleep was analysed using the 

Actiwatch software for the following sleep parameters: sleep duration, sleep 

latency, sleep efficiency and fragmentation index. Fragmentation index provides 

a measure of restlessness during sleep, using the percentage of epochs where 

activity is >0, while sleep efficiency describes the percent of time sleeping whilst 

in bed defined by the bedtime and get-up time by the participant.  

 

7.2.5. Statistical Analyses 

Data were analysed using statistical software (SPSS Version 22.0, IBM 

Corporation, Somers, NY, USA), with significance accepted as p<0.05. Results 

are presented as means±SD. To assess for condition, time and any interaction 

effect, parameters were analysed using linear mixed models. Femoral and 
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brachial FMD were also analysed using an allometric approach that controls for 

changes in baseline diameter (Atkinson and Batterham, 2013). Paired samples 

t-tests were used to compare the difference between Exertime and activPAL 

break data. Post-hoc analyses were performed using the least significant 

difference (LSD) method. 
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7.3. Results 

From the originally recruited sample size of 10, eight participants completed the 

study and were included in analyses. As shown in Figure 7-1, one participant 

withdrew after the PRE assessment due to a change of job and another 

participant withdrew during the washout period due to pregnancy. Full 

descriptive characteristics are shown in Table 7-1. 

 

Table 7-1: Participant descriptive characteristics (n=8, 3 male). 

 Mean±SD or n of group 

Age (years) 43.4±11.6 

Body Mass (kg) 70.5±11.9 

Stature (cm) 168.8±7.8 

Body Mass Index (kg∙m-2) 24.6±3.0 

White British 8 

Married 6 

Job Category  

Manager/Director 0 

Clerical/Services/Other 8 

Time at Current Workplace  

< 1 year 1 

1-3 years 4 

>3 years 3 

Work Hours (per week) 38.1±9.8 

Work Hours (per day) 8.0±1.7 

Number of People in Office  

0 0 

1-3 People 3 

>3 People 5 

Occupational Transport  

Car 3 

Train 4 

Bus 1 
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7.3.1. Exertime 

Week-by-week Exertime data for the number and duration of activity breaks 

recorded by participants from the automated software log are shown in Figure 

7-5. There were no significant differences between weeks for the number or 

duration of activity breaks completed (p>0.05). Over the 8-week intervention, 

the automated Exertime software logged that participants recorded a daily 

average of 7.6±3.5 minutes taking breaks from sitting, as assessed by time 

standing or stepping, which was achieved by logging an average of 6.1±1.4 

breaks per day. This equated to 175.4±66.8 minutes taking breaks from sitting 

per week, achieved by taking 24.7±7.9 breaks. The corresponding activPAL 

data indicated that participants actually took a break from sitting for 73.6% of 

the breaks that they logged in Exertime. For total weekly breaks (validated and 

missed breaks) there was no significant difference between Exertime 

(159.4±94.2 minutes/week) or objective break data (143.3±56.6 minutes/week, 

p=0.497). Hence, there was a 16.1 minute/week overestimation by the Exertime 

software. For only validated breaks (Exertime breaks with corresponding 

objective activPAL data) there was no significant difference between Exertime 

(149.9±85.6 minutes/week) or objective break data (p=0.722), hence there was 

a 6.6 minute/week overestimation by the Exertime software.  
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Figure 7-5: Weekly Exertime self-report data for (a) the number of activity breaks 

recorded, and (b) the duration of the activity breaks (Mean±SD).   

 

 

(b) 

(a) 



    

222 

 

7.3.2. Sedentary Behaviour and Physical Activity 

SB and PA data for work hours are presented in Table 7-2, for weekdays in 

Table 7-3 and for the weekend in Table 7-4. There were no significant main 

effects for any domain of PA or SB for work hours, weekdays or the weekend 

(p>0.05).  
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Table 7-2: Time spent sitting, standing and stepping and in light-, moderate- and vigorous-intensity physical activity (PA) during work hours at 

the start (PRE) and following (POST) the 8-week Control and Exertime trials (Mean±SD).  

 Control Exertime p-value 

 PRE POST PRE POST Condition Time  Interaction 

Work Hours        

Sitting time (min) 325.9±93.9 375.1±75.5 357.9±43.6 315.7±64.5 0.659 0.883 0.331 

Standing time (min) 116.9±79.0 106.1±73.5 78.6±36.4 92.3±42.6 0.179 0.911 0.480 

Stepping time (min) 50.1±16.1 63.4±35.9 54.1±19.0 51.9±26.5 0.551 0.545 0.165 

Sitting time  
(% of work hours) 

66.2±17.0 70.1±9.6 73.2±8.2 69.0±13.1 0.517 0.962 0.271 

Standing time  
(% of work hours) 

23.7±16.0 18.6±7.3 15.9±6.7 19.9±8.5 0.224 0.889 0.109 

Stepping time 
(% of work hours) 

10.1±3.2 11.3±4.0 10.9±3.5 11.1±5.3 0.738 0.502 0.428 

Light-intensity PA  
(min) 

117.1±44.7 115.2±30.4 110.4±45.8 105.7±34.2 0.350 0.743 0.825 

Moderate-intensity PA 
(min) 

23.5±13.0 29.4±15.6 26.8±12.3 26.6±14.7 0.909 0.414 0.217 

Vigorous-intensity PA 
(min) 

4.5±5.8 5.0±6.0 7.0±8.0 4.6±6.8 1.00 1.00 1.00 

Light-intensity PA 
(% of work hours) 

24.3±8.9 22.9±6.3 22.9±9.1 22.9±7.8 0.629 0.634 0.511 

Moderate-intensity PA 
(% of work hours) 

4.8±2.6 5.9±3.0 5.5±2.4 5.8±3.2 0.612 0.356 0.463 

Vigorous-intensity PA 
(% of work hours) 

0.9±1.2 1.0±1.3 1.4±1.6 0.9±1.3 0.495 0.283 0.057 
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Table 7-3: Time spent sitting, standing and stepping and in light-, moderate- and vigorous-intensity physical activity (PA) during weekdays at 

the start (PRE) and following (POST) the 8-week Control and Exertime trials (Mean±SD).  

 Control Exertime p-value 

 PRE POST PRE POST Condition Time  Interaction 

Weekday        

Sitting time (min) 590.6±103.0 586.3±137.2 620.1±62.6 621.8±166.0 0.366 0.969 0.944 

Standing time (min) 255.2±86.6 201.6±64.6 209.4±36.2 226.7±45.5 0.456 0.443 0.183 

Stepping time (min) 123.5±35.5 111.8±35.0 121.3±35.2 126.7±30.1 0.399 0.541 0.290 

Sitting time  
(% of waking hours) 

60.8±10.0 65.6±4.8 65.2±5.7 63.2±8.4 0.546 0.389 0.260 

Standing time  
(% of waking hours) 

26.5±9.6 21.9±3.8 22.1±4.1 23.5±5.7 0.487 0.372 0.193 

Stepping time 
(% of waking hours) 

12.7±3.2 12.4±2.2 12.7±3.6 13.3±3.6 0.359 0.809 0.410 

Light-intensity PA  
(min) 

270.9±44.7 267.5±33.6 256.0±27.1 267.3±52.1 0.536 0.655 0.509 

Moderate-intensity PA 
(min) 

56.8±30.9 56.8±22.7 56.7±32.8 63.0±20.7 0.382 0.555 0.307 

Vigorous-intensity PA 
(min) 

9.0±8.3 10.4±11.2 11.0±8.8 8.7±8.8 0.950 0.743 0.064 

Light-intensity PA (% of 
waking hours) 

30.3±6.3 28.2±3.4 28.6±4.9 29.4±6.4 0.782 0.389 0.378 

Moderate-intensity PA 
(% of waking hours) 

6.2±3.1 6.0±2.3 6.2±3.4 6.9±2.2 0.089 0.721 0.298 

Vigorous-intensity PA 
(% of waking hours) 

1.0±0.9 1.1±1.1 1.2±1.0 1.0±1.0 0.754 0.597 0.200 
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Table 7-4: Time spent sitting, standing and stepping and in light-, moderate- and vigorous-intensity physical activity (PA) during the weekend at 

the start (PRE) and following (POST) the 8-week Control and Exertime trials (Mean±SD).  

 Control Exertime p-value 

 PRE POST PRE POST Condition Time  Interaction 

Weekend        

Sitting time (min) 451.3±86.9 452.5±76.6 429.6±99.6 462.9±111.4 0.828 0.562 0.638 

Standing time (min) 309.8±55.0 302.6±67.4 332.2±94.9 304.3±95.5 0.534 0.427 0.672 

Stepping time (min) 121.3±31.3 130.3±32.3 131.5±56.9 129.9±34.4 0.580 0.785 0.548 

Sitting time  
(% of waking hours) 

51.0±8.3 51.1±8.0 48.6±12.6 51.6±12.3 0.715 0.626 0.665 

Standing time  
(% of waking hours) 

35.2±6.2 34.2±7.5 36.8±9.2 34.0±10.6 0.734 0.430 0.737 

Stepping time  
(% of waking hours) 

13.8±3.8 14.7±3.4 14.6±5.7 14.4±3.6 0.809 0.804 0.586 

Light-intensity PA  
(min) 

326.4±84.8 361.1±70.7 322.0±108.7 335.1±102.2 0.540 0.261 0.381 

Moderate-intensity PA 
(min) 

46.8±27.6 47.3±34.4 46.1±48.6 53.6±25.2 0.849 0.824 0.794 

Vigorous-intensity PA 
(min) 

5.4±10.8 4.9±10.9 3.3±8.8 4.9±11.4 0.292 0.822 0.546 

Light-intensity PA 
(% of waking hours) 

41.3±10.2 42.2±9.0 40.9±7.7 43.0±9.1 0.822 0.455 0.733 

Moderate-intensity PA 
(% of waking hours) 

6.0±3.6 5.5±4.4 5.7±5.7 7.2±3.4 0.636 0.795 0.474 

Vigorous-intensity PA 
(% of waking hours) 

0.7±1.4 0.5±1.1 0.4±1.1 0.8±1.9 0.752 0.838 0.343 
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7.3.3. Cardiorespiratory and Haemodynamic Measures 

No significant main effects were observed for resting HR (Control PRE: 

60.7±10.1 bpm, Control POST: 59.6±9.0 bpm, Exertime PRE: 56.3±10.2 bpm, 

Exertime POST: 59.6±9.2 bpm, p>0.05). Similarly, there were no significant 

main effects for resting MAP (Control PRE: 83.5±4.8 mmHg, Control POST: 

85.5±8.6 mmHg, Exertime PRE: 83.6±10.5 mmHg, Exertime POST: 83.0±7.5 

mmHg, p>0.05). No significant main effects were also observed for PETCO2 

(Control PRE: 37.9±4.2 mmHg, Control POST: 39.6±3.1 mmHg, Exertime PRE: 

38.1±4.1 mmHg, Exertime POST: 38.3±3.2 mmHg, p>0.05). 

 

7.3.4. Cerebrovascular Function 

CA data are presented in Table 7-5 and MCAv, PCAv, NVC, CVR data are 

presented in Table 7-6. For CA, in the 10-sec squat protocol a significant 

interaction effect was observed for phase in the VLF domain (p=0.042), with 

post hoc analyses revealing at POST the Exertime condition had a higher 

phase compared to the control condition (p=0.010). There was also a significant 

main effect for time in the LF domain for gain (p=0.033), with gain higher at 

POST (0.84±0.18 cm·s-1·mmHg-1) compared to PRE (0.76±0.15 cm·s-1·mmHg-

1). No other significant main effects were observed for other CA parameters in 

the 10-sec squat protocol (p>0.05). In the 5-sec squat protocol there were no 

significant main effects for any parameter in each of the frequency domains 

(p>0.05). For NVC, there was a significant main effect for time for the absolute 

change in PCAv (p=0.047), with PCAv higher at POST (11.97±2.10 cm·s-1) 

compared to PRE (7.20±3.01 cm·s-1). No other significant main effects were 

observed for NVC outcomes (p>0.05). Absolute and relative MCA CVR R2 

values (values are the same for both) of linear regression are presented in 
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Table 7-6. No significant main effects were observed for absolute or relative 

MCA CVR (p>0.05). Similarly, no significant main effects were observed for 

absolute or relative CCA CVR for both CCA diameter or CCA blood flow 

(p>0.05). Finally, no significant main effects were observed for MCAv or PCAv 

(p>0.05). 
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Table 7-5: Measures of cerebral autoregulation (CA) at the start (PRE) and following (POST) the 8-week Control and Exertime trials (Mean±SD). 

 Control Exertime p-value 

 PRE POST PRE POST Condition Time Interaction 

CA: 5-sec Squats        
VLF Phase (degrees) 47.36±17.90 45.93±14.95 45.07±14.34 50.96±14.20 0.980 0.834 0.262 

VLF Gain (cm·s-1·mmHg-1) 0.66±0.16 0.68±0.20 0.72±0.27 0.65±0.13 0.979 0.912 0.889 

VLF Gainn (%·mmHg-1) 1.13±0.25 1.10±0.24 1.15±0.24 1.06±0.23 0.928 0.996 0.578 

VLF Coherence 0.46±0.10 0.50±0.06 0.51±0.10 0.45±0.11 0.660 0.823 0.090 

LF Phase (degrees) 25.78±6.17 18.90±9.43 27.99±19.96 20.89±7.96 0.907 0.263 0.587 

LF Gain (cm·s-1·mmHg-1) 0.86±0.22 0.87±0.10 0.81±0.28 0.97±0.28 0.465 0.156 0.585 

LF Gainn (%·mmHg-1) 1.44±0.25 1.42±0.18 1.30±0.30 1.57±0.41 0.988 0.054 0.156 

LF Coherence 0.63±0.10 0.64±0.08 0.68±0.11 0.60±0.08 0.821 0.221 0.212 

HF Phase (degrees) 2.99±11.83 3.68±14.93 -2.16±15.13 3.09±11.17 0.433 0.448 0.107 

HF Gain (cm·s-1·mmHg-1) 0.65±0.20 0.65±0.13 0.61±0.19 0.84±0.28 0.372 0.071 0.185 

HF Gainn (%·mmHg-1) 1.11±0.30 1.12±0.35 1.00±0.24 1.37±0.37 0.655 0.242 0.212 

HF Coherence 0.43±0.08 0.44±0.03 0.46±0.10 0.40±0.05 0.638 0.311 0.111 

CA: 10-sec Squats        
VLF Phase (degrees) 40.82±15.08 37.12±7.40 45.21±21.81 48.38±17.88* 0.241 0.611 0.042 

VLF Gain (cm·s-1·mmHg-1) 0.66±0.25 0.79±0.22 0.70±0.27 0.76±0.17 0.800 0.159 0.457 

VLF Gainn (%·mmHg-1) 1.14±0.38 1.26±0.31 1.16±0.28 1.27±0.28 0.736 0.138 0.877 

VLF Coherence 0.82±0.18 0.88±0.08 0.87±0.12 0.88±0.08 0.896 0.154 0.913 

LF Phase (degrees) 19.10±15.77 16.19±7.47 23.63±28.83 20.88±13.57 0.376 0.515 0.991 

LF Gain (cm·s-1·mmHg-1) 0.74±0.23 0.81±0.22# 0.76±0.18 0.87±0.20# 0.422 0.033 0.898 

LF Gainn (%·mmHg-1) 1.33±0.43 1.31±0.33 1.26±0.15 1.47±0.34 0.628 0.198 0.327 

LF Coherence 0.63±0.15 0.64±0.16 0.63±0.10 0.64±0.11 0.776 0.979 0.651 

HF Phase (degrees) 0.11±4.68 3.11±10.67 17.06±32.25 1.63±7.13 0.373 0.498 0.327 

HF Gain (cm·s-1·mmHg-1) 0.69±0.22 0.76±0.27 0.64±0.11 0.67±0.09 0.726 0.393 0.919 

HF Gainn (%·mmHg-1) 1.22±0.41 1.121±0.40 1.09±0.12 1.14±0.17 0.605 0.633 0.633 

HF Coherence 0.55±0.10 0.49±0.05 0.50±0.14 0.48±0.08 0.835 0.447 0.509 

CA- cerebral autoregulation; VLF- very low frequency; LF- low frequency; HF- high frequency; Gainn- normalised gain.   

* Significant interaction effect (p=0.042), significantly different to Control at POST (p=0.010).  
# Significant main effect for time (p=0.033), with POST higher than PRE.  

 



    

229 

 

2
2
9

 

Table 7-6: Measures of cerebrovascular function at the start (PRE) and following (POST) the 8-week Control and Exertime trials (Mean±SD). 

 Control Exertime p-value 

 PRE POST PRE POST Condition Time Interaction 

Resting CBF        

MCAv (cm·s-1) 65.2±15.2 66.9±8.6 68.0±16.9 66.7±9.9 0.663 0.924 0.616 

PCAv (cm·s-1) 54.0±17.1 53.0±11.2 50.4±11.8 51.7±12.0 0.587 0.802 0.734 

NVC        

Absolute Peak PCAv (∆cm·s-1) 10.0±4.2 18.7±2.7# 4.4±3.7 7.3±6.2# 0.380 0.047 0.376 

Relative Peak PCAv (%) 20.7±10.7 38.7±10.6 9.3±6.7 16.6±16.4 0.057 0.084 0.543 

Absolute Peak MCAv (∆cm·s-1) 8.6±3.8 2.9±0.6 3.1±2.5 6.0±1.8 0.756 0.654 0.252 

Relative Peak MCAv (%) 10.3±7.6 5.0±0.6 5.0±4.2 9.7±4.4 0.652 0.486 0.723 

CVR        

MCA CVR (R2) 0.90±0.01 0.87±0.03 0.86±0.01 0.90±0.02 0.970 0.554 0.152 

Absolute MCA CVR  
(cm·s-1·mmHg-1) 

3.02±1.07 3.21±1.17 3.47±1.24 3.31±0.75 0.363 0.921 0.613 

Relative MCA CVR  
(cm·s-1·mmHg-1) 

4.63±1.06 4.73±1.49 5.29±1.82 5.23±1.14 0.371 0.854 0.937 

Absolute CCA Diameter CVR 
(cm·s-1·mmHg-1) 

0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001 0.675 0.492 0.502 

Relative CCA Diameter CVR 
(cm·s-1·mmHg-1) 

0.12±0.15 0.11±0.09 0.19±0.18 0.12±0.18 0.491 0.567 0.594 

Absolute CCA Blood Flow CVR 
(ml·min-1·mmHg-1) 

0.24±0.20 0.32±0.29 0.25±0.27 0.21±0.29 0.718 0.797 0.411 

Relative CCA Blood Flow CVR 
(ml·min-1·mmHg-1) 

1.81±1.53 2.84±2.99 2.02±2.08 1.98±2.62 0.955 0.756 0.767 

CBF- cerebral blood flow; MCAv- middle cerebral artery blood flow velocity: PCAv- posterior middle cerebral artery blood flow velocity; NVC- 

neurovascular coupling; CVR- cerebrovascular carbon dioxide reactivity; CCA- common carotid artery. 

# Significant main effect for time (p=0.047), with POST higher than PRE.  
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7.3.5. Cognition and Work Productivity 

There were no significant main effects observed for any measures of cognition 

(Table 7-7) or work productivity (p>0.05; Table 7-8). However, a significant main 

effect for time was observed for the impatience subscale of the HWQ (p=0.027), 

with the impatience score higher at PRE (4.2±2.2) compared to POST 

(2.8±1.6). No other significant main effects were observed for the other 

subscales of the HWQ (p>0.05).  

 

7.3.6. Mood 

No significant main effects were observed for positive affect (Control PRE: 

38.0±6.7, Control POST: 36.3±6.5, Exertime PRE: 35.9±7.0, Exertime POST: 

37.4±5.6, p>0.05) or negative affect (Control PRE: 16.1±6.4, Control POST: 

14.3±2.5, Exertime PRE: 16.4±8.5, Exertime POST: 14.9±4.5, p>0.05).   
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Table 7-7: Measures of cognition at the start (PRE) and following (POST) the 8-week Control and Exertime trials (Mean±SD). 

 Control Exertime p-value 

 PRE POST PRE POST Condition Time Interaction 

Stroop Colour-Word Test        

Interference Score (ms) 84.0±89.7 116.5±59.0 97.5±74.8 129.5±69.3 0.525 0.197 0.989 

Attention Network Test        

Alerting Network (ms) 8.7±22.0 9.5±26.6 16.7±24.2 29.0±20.2 0.122 0.238 0.419 

Orientating Network (ms) 7.0±24.1 23.8±27.5 16.4±29.3 9.8±13.7 0.705 0.345 0.092 

Executive Control (ms) 74.2±33.4 71.2±23.2 57.7±32.3 67.0±30.6 0.187 0.601 0.201 

N-Back Task        

Zero Back Accuracy (%) 96.9±2.6 96.9±4.6 98.1±2.6 98.9±2.3 0.106 0.718 0.763 

Zero Back RT (ms) 590.5±82.3 581.0±102.7 589.2±124.5 581.6±108.0 0.982 0.294 0.972 

One Back Accuracy (%) 93.1±5.3 93.8±5.8 89.4±9.4 90.0±16.6 0.496 0.722 1.00 

One Back RT (ms) 664.0±100.2 654.7±117.2 676.0±109.1 685.1±132.9 0.416 0.997 0.671 

Two Back Accuracy (%) 90.6±7.8 78.8±24.2 83.8±18.7 78.1±16.0 0.530 0.076 0.571 

Two Back RT (ms) 1072.2±368.6 1116.5±189.8 988.8±370.7 1086.4±424.0 0.469 0.476 0.779 

Three Back Accuracy (%) 75.6±25.7 67.5±24.1 64.4±30.9 69.4±24.6 0.268 0.703 0.133 

Three Back RT (ms) 1515.0±939.9 1156.7±383.0 1225.9±517.3 1183.5±677.2 0.275 0.112 0.415 

RT- reaction time. 
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Table 7-8: Measures of work productivity at the start (PRE) and following (POST) the 8-week Control and Exertime trials (Mean±SD). 

 Control Exertime p-value 

 PRE POST PRE POST Condition Time Interaction 

Typing Performance         
Gross Speed (wpm) 41.8±8.3 42.0±9.8 42.4±10.6 44.0±12.1 0.547 0.561 0.596 

Net Speed (wpm) 38.9±7.6 39.3±9.1 38.9±9.3 40.6±10.1 0.659 0.449 0.492 

Accuracy (%) 92.8±3.0 93.4±5.4 91.6±4.4 92.1±3.0 0.296 0.590 0.957 

Mouse Dexterity         

Performance Score 1099.4±111.9 1115.1±89.2 1108.3±102.7 1124.1±116.0 0.530 0.088 0.996 

Reaction Time (ms) 678.9±130.0 626.6±105.9 646.3±118.1 637.9±116.1 0.512 0.056 0.197 

Reading and Correcting         

Number of Characters Read 2359.6±778.8 2825.5±644.3 2703.0±1031.7 2787.9±881.3 0.583 0.051 0.091 

Percent of Errors Missed (%) 36.9±24.9 31.9±30.4 25.4±18.1 33.1±30.6 0.253 0.811 0.249 

HWQ        

Productivity 7.5±1.9 7.3±1.5 7.3±1.6 7.5±1.8 0.953 0.985 0.412 

Concentration/Focus 4.3±2.6 3.8±2.6 4.4±2.7 4.1±2.5 0.496 0.137 0.831 

Impatience/Irritability  4.0±2.5# 3.2±2.2 4.5±3.1# 2.5±1.4 0.833 0.027 0.366 

Work Satisfaction  7.5±1.7 6.7±2.0 7.0±2.0 7.7±1.6 0.500 0.863 0.184 

Stress 5.6±2.8 4.6±2.4 5.6±2.9 4.4±2.2 0.825 0.104 0.866 

Supervisor Relations 6.9±3.0 7.2±2.7 6.6±3.2 7.0±2.8 0.675 0.589 0.944 

Non-work Satisfaction 8.5±1.4 8.5±1.1 8.3±1.4 8.0±1.9 0.205 0.462 0.590 

HWQ- health and work questionnaire. 

# Significant main effect for time (p=0.027), with PRE higher than POST. 
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7.3.7. Brachial and Femoral Flow-Mediated Dilation 

When analysed using general linear mixed models, a significant main effect for 

time was observed for femoral artery relative FMD (p=0.020), with FMD higher 

at POST (8.57±3.43%) compared to PRE (5.84±2.63%). However, after 

allometric modelling this main effect for time was no longer significant 

(p=0.062). There were no significant main effects observed for femoral artery 

baseline diameter, absolute FMD, or SR area under the curve (AUC) (p>0.05; 

Table 7-9). When analysed using both general linear mixed models and 

allometric modelling, there were no significant main effects observed for 

brachial artery baseline diameter, absolute or relative FMD, or SR AUC (p>0.05; 

Table 7-9).  

 

7.3.8. Sleep 

No significant main effects were observed for any parameters of sleep (p>0.05; 

Table 7-10). 
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Table 7-9: Brachial and femoral artery flow-mediated dilation (FMD) at the start (PRE) and following (POST) the 8-week Control and Exertime 

trials (Mean±SD).  

 Control Exertime p-value 

 PRE POST PRE POST Condition Time Interaction 

Brachial Artery         

Baseline Diameter 
(cm) 

0.32±0.08 0.33±0.08 0.33±0.06 0.32±0.06 0.753 0.717 0.358 

FMD (%) 6.5±3.2 8.0±4.2 8.4±3.7 7.5±4.6 0.361 0.817 0.329 

FMD (%) allometric 
modelling 

6.1±3.5 7.6±3.5 8.0±3.5 7.1±3.5 0.495 0.883 0.448 

Absolute FMD (cm) 0.02±0.01 0.02±0.01 0.03±0.01 0.02±0.01 0.204 0.932 0.218 

SR AUC (s-1 x 103) 22.53±13.92 26.50±10.58 28.00±19.10 27.47±14.33 0.279 0.730 0.575 

Femoral Artery         

Baseline Diameter 
(cm) 

0.59±0.16 0.60±0.13 0.61±0.13 0.59±0.13 0.680 0.260 0.886 

FMD (%) 7.0±2.6 7.4±4.9# 5.1±3.0 9.7±6.7# 0.812 0.020 0.363 

FMD (%) allometric 
modelling 

6.5±4.3 7.6±4.0 4.7±4.0 9.6±4.0 0.943 0.062 0.210 

Absolute FMD (cm) 0.04±0.02 0.04±0.02 0.03±0.01 0.05±0.03 0.908 0.069 0.121 

SR AUC (s-1 x 103) 19.05±11.53 15.90±6.54 17.00±12.98 18.02±13.43 0.951 0.817 0.495 

SR- shear rate; AUC- area under the curve. 

# Significant main effect for time (p=0.020), with POST higher than PRE. 

 

 



    

235 

 

2
3
5

 

 

 

 

 

Table 7-10: Measures of sleep at the start (PRE) and following (POST) the 8-week Control and Exertime trials (Mean±SD). 

 Control Exertime p-value 

 PRE POST PRE POST Condition Time Interaction 

Weekdays        

Sleep Duration 
(hrs:mins) 

06:41±00:45 06:46±00:47 06:45±00:35 06:46±00:48 0.707 0.839 0.444 

Sleep Latency 
(hrs:mins) 

00:11±00:07 00:08±00:05 00:11±00:05 00:11±00:04 0.229 0.365 0.248 

Sleep Efficiency (%) 85.7±6.2 86.6±5.3 84.9±7.0 85.2±5.8 0.193 0.361 0.866 

Fragmentation Index 24.4±11.1 28.3±9.5 27.4±10.8 26.0±9.1 0.814 0.714 0.166 

Weekend        

Sleep Duration 
(hrs:mins) 

07:16±01:13 07:07±01:02 07:38±01:17 06:42±01:08 0.913 0.151 0.251 

Sleep Latency 
(hrs:mins) 

00:26±00:29 00:08±00:07 00:09±00:04 00:13±00:06 0.238 0.284 0.077 

Sleep Efficiency (%) 81.6±9.2 83.6±8.1 85.2±6.7 83.2±7.2 0.278 0.978 0.300 

Fragmentation Index 23.5±10.3 28.8±16.1 24.5±11.5 27.8±9.4 0.995 0.341 0.783 
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7.4. Discussion 

This study assessed, for the first time, whether using Exertime, a computer-

based prompting software to break up workplace sitting, could alter 

cerebrovascular function, cognition, mood and work productivity in healthy, 

university-based office workers. We have shown that workplace sitting was 

reduced after using Exertime, albeit it not a statistically significant reduction, 

and was replaced predominantly by increased time spent standing. We 

observed improvements in aspects of dynamic CA, but no changes in other 

measures of cerebrovascular function, cognition, mood or work productivity. 

These data provide preliminary support for further examination of the use of 

Exertime to reduce workplace sitting and improve some markers of 

cerebrovascular health. Whether longer-term use of Exertime has an impact on 

workers’ physical and mental health and wellbeing should be further explored in 

more diverse populations of office workers.   

 

This study was the first to use objective measures of SB and PA when using 

Exertime to assess the influence of the software on workplace activity patterns. 

Following the Exertime trial there was an average 42.2 minute reduction in 

sitting time during work hours, which equated to a 4.2% reduction in sitting 

when expressed as a percent of total work hours. Despite not reaching 

statistical significance, a reduction in sitting time of this magnitude may be 

clinically meaningful at a population health level. Additionally, by using objective 

PA and SB monitoring, we have been able to characterise the type of break 

participants used to break up their sitting. The observed reduction in sitting 

appears to have been replaced with increased standing rather than walking, 
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since there was a 4% increase in standing time following the trial, but only a 

0.2% increase in stepping time. This apparent increase in standing time is 

slightly surprisingly considering participants were instructed to take a walk when 

the Exertime software initiated. This may indicate that participants’ work 

environments were not suited to take walking breaks and they instead opted to 

stand. Furthermore, standing potentially allowed participants to stay in the 

vicinity of their desk, which may be less disruptive to work tasks such as using 

the phone.  

 

Participants completed 73.6% of the breaks logged in Exertime. When using 

Exertime, participants reported an average 7.6 additional minutes per day 

taking breaks from sitting, which was achieved by an average of 6.1 activity 

breaks per work day. This is comparable to previous studies using Exertime 

with office workers which report an additional 7.51-7.99 minutes of additional 

activity per work day achieved by taking breaks 4.95 to 6.28 times per day 

(Mainsbridge et al., 2014, 2016; Pedersen et al., 2014). Importantly, the 

comparison between Exertime data and objective postural monitor data showed 

there were no significant differences between the duration of recorded breaks 

time. Collectively, these data suggest Exertime software may be a valid and 

effective method to reduce workplace sitting, which larger scale, longer-term 

studies should explore.  

 

The reductions in time spent sitting at work using Exertime appear to have 

enhanced aspects of cerebrovascular function. The Exertime condition had a 

higher phase compared to the control condition following the trial period, 
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indicating enhanced buffering capacity of CA (Panerai, 2009). This is in line with 

data from Chapter 6, showing frequent walking breaks from sitting leads to 

enhanced phase compared to uninterrupted sitting. The improvement in phase 

in this study is likely due to increased standing time rather than walking, 

highlighting that simply a postural change from sitting when taking a break, 

rather than the mode of activity during the break, may be the important aspect 

to improve markers of cerebrovascular function, however further research is 

needed to confirm this hypothesis. The mechanisms underlying the increase in 

phase are unclear. Changes in CBF precede changes in BP, termed phase 

lead, as a protective mechanism to minimise the acute effects of a change in 

posture (van Beek et al., 2008). Hence, as participants were altering their 

posture more frequently by standing up to break up their sitting, the 

cerebrovasculature may have enhanced its ability to respond to the 

corresponding change in BP. It is also proposed that autonomic nervous activity 

contributes to CA, since phase lead decreases following ganglion blockade 

(Zhang et al., 2002). Heightened sympathetic nervous system activity during 

standing or walking breaks may have therefore enhanced phase.    

 

In Chapter 6, increases in CBF were observed when four hours of sitting was 

regularly interrupted with walking breaks. The lack of change in CBF in this 

current study suggests this does not translate into a longer-term effect over a 

period of months. Nonetheless, the 8-week time-frame used in this study is not 

representative of a full-time workers annual exposure to prolonged sitting, 

hence a long-term intervention may still elicit chronic changes in CBF. 

Alternatively, since participants appear to have predominantly increased their 
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standing time to break up their sitting this may suggest ambulation is needed to 

positively affect CBF. The lack of chronic change in CBF despite acute 

improvements observed in Chapter 6, could also provide indication of the 

cerebrovascular regulatory mechanisms adapting to the activity break stimuli. 

Indeed, in the peripheral vasculature, despite initial improvements in artery 

function across the first weeks of exercise training, this improvement in function 

returns towards baseline, most likely due to subsequent arterial remodelling and 

chronic adaptation to the exercise stimuli (Tinken et al., 2008, 2010). A similar 

response could be present in the cerebrovasculature, with initial improvements 

in CBF returning to baseline following an adaptation to the PA breaks. Indeed, 

CBF did not increase following a 6-month aerobic exercise training in chronic 

stroke patients (Ivey et al., 2011), whilst in healthy young and old adults, CBF 

remained unchanged following a 12-week aerobic exercise training programme, 

with a reported increase only occurring after correcting data for post-training 

hypocapnia (Murrell et al., 2013).   

  

The lack of effect on CVR is in line with results from Chapter 5 and Chapter 6 

demonstrating no change in CVR following acute sitting. However, in Chapter 6  

breaking up this time with walking breaks did acutely improve MCA and CCA 

CVR compared to sitting and such a beneficial effect of PA was not observed in 

this study. In the longer term, a 12-week aerobic exercise training programme 

also increased CVR (Murrell et al., 2013). This difference in our results may 

relate to the intensity of the activity, since when using Exertime participants 

appear to have broken up their sitting with standing, which is of a much lower 

intensity than the exercise used in these previous studies. Exercise and 
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training-induced improvements in CVR are suggested to be in part due to 

increased NO production, since exercise elevates its bioavailability (Green et 

al., 2004) and cerebrovascular vasodilatation in response to increased CO2 is 

partially dependent upon NO (Murrell et al., 2013). Increased blood flow 

stimulates NO production (Green et al., 2004), hence breaking up sitting with 

low-intensity standing, as in this study, may not have caused a large enough 

blood flow response to augment sufficient amounts of NO to enhance CVR.  

 

Despite the Exertime trial appearing to enhance aspects of cerebrovascular 

function, cognition and mood were unchanged. Previous studies have also 

observed no effect on cognition when using PA breaks to interrupt sitting 

(Bergouignan et al., 2016; Duvivier et al., 2017; Wennberg et al., 2016), 

however these have been acute in design, lasting a maximum of four days. In 

contrast, our study shows that eight weeks of reducing workplace sitting also 

has no influence on cognition. This suggests the magnitude of the improvement 

in cerebrovascular function may not have been a large enough stimulus, or that 

eight weeks is still a too acute period to alter cognition. Additionally, it may 

indicate that other factors linked to cognition, such as diet (Spencer et al., 

2017), have a stronger influence on cognitive performance. In contrast, previous 

acute studies have observed increased mood state using PA to break up sitting 

periods (Bergouignan et al., 2016; Duvivier et al., 2017). However, in these 

studies walking has predominantly been used as the PA intervention, either by 

using treadmill breaks or by increasing total walking time. As participants in our 

study mainly substituted sitting with standing, it may indicate the intensity was 

not a large enough to stimulus to enhance mood.   
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Exertime also had no influence on markers of cardiovascular health, with FMD, 

HR and MAP all unchanged compared to the control trial. Previously, following 

a thirteen week intervention using Exertime, MAP was significantly reduced 

compared to a control group (Mainsbridge et al., 2014). Our cohort of workers 

however had a baseline MAP nearly 20 mmHg lower than in Mainsbridge et al. 

(2014), therefore the health status of our population may explain this disparity in 

our findings. The lack of a statistically significant change in femoral FMD 

following Exertime compared to the control trial contrasts previous work 

showing breaking up 3-hrs of sitting with walking bouts acutely enhances 

femoral endothelial function (Thosar et al., 2015), however the acute study 

design rather than chronic intervention as in our study may explain this 

difference. Furthermore, since participants appear to have stood up rather than 

walked to break up their sitting, it may contribute to this disparity in findings. 

Nonetheless, the 4.6% improvement in femoral FMD observed following 

Exertime, although statistically not significant, may have important health 

implications since a 1% decrease in FMD is associated with a 13% higher risk 

of a future cardiovascular event (Inaba et al., 2010). Whilst likely beneficial 

improvements in brachial FMD were observed after office workers used a sit-

stand workstation for 8-weeks (Graves et al., 2015), in this study, a slight 

reduction in brachial FMD was observed following the Exertime intervention, 

albeit not statistically significant. Sit-stand workstations permit an individual to 

continue working whilst standing, such as using a computer, whilst in our study 

when participants stood, this would not have been possible. Upper limb 

movements during sitting are suggested to prevent sitting-induced impairment 



    

242 

 

in endothelial function (Thosar et al., 2014), hence the absence of such 

movements when standing may explain the lack of improvement in our study. 

Collectively, this indicates that standing alone may be sufficient to elicit 

improvements in artery function, but the activities performed during the standing 

may contribute to this response. 

 

Recently the dearth of research assessing breaking up sitting and its influence 

on sleep has been highlighted (Vincent et al., 2017). Short sleep is associated 

with negative changes to many of the cardiometabolic markers that are 

positively influenced by breaking up sitting, emphasising sleep should be 

controlled for so not to confound findings (Vincent et al., 2017). Importantly in 

this study, sleep was assessed prior to and at the end of each trial period and 

no significant differences were observed in sleep duration. A small body of work 

has begun to examine the influence of breaking up sitting on sleep quality, 

however only in sleep restricted individuals (Vincent et al., 2018). Improvements 

in sleep quality have been observed when sitting is broken up with walking 

breaks, however this had no influence on cognition (Vincent et al., 2018). 

Although sleep quality was unchanged in our population of healthy sleepers, 

using Exertime with a larger sample size, over longer intervention period, or 

with a population of sleep-restricted workers such as shift workers, may alter 

sleep parameters, and this should be explored.  

 

7.4.1. Limitations 

The small sample size in this study is a limitation, however the work was pilot in 

nature since it was the first use of Exertime software in a UK workforce. 
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Furthermore, the data presented in this thesis is a sub-sample of the final study 

population, since participants were still completing the Exertime intervention at 

the time of thesis submission. The population assessed were all employees 

from a University, meaning the use of the Exertime software and compliance 

may differ in different worksites and professions. For the purpose of this thesis, 

the activity that participants could select to complete when using the Exertime 

software was limited to taking a walk, whereas full use of Exertime includes a 

range of activity modalities. Despite, instructing participants to take a walk, the 

increased standing time observed following the Exertime intervention suggests 

this was not achievable or adhered to by all participants, however we do not 

have the qualitative data to elucidate the reasons behind this. The lack of 

activity break choice may have reduced participant engagement with the 

software. It is also possible that seasonality may have influenced participants’ 

PA and SB levels, since levels can vary depending on the season when the 

assessment occurs (O’Connell et al., 2014). The use of TCD to assess MCAv 

and cerebrovascular function is associated with known limitations, including the 

inability to measure actual blood flow (Willie et al., 2011), the assumptions that 

measures from the MCA are representative of other cerebral vessels and that 

MCA diameter is unaltered during varying levels of CO2 (Skow et al., 2013). By 

recording the signal parameters and photographically recording the TCD probe 

placement, it was ensured as closely as possible the probe was in the same 

location; small variations may have occurred, however our coefficient of 

variation was 7.8% indicating good reproducibility. Finally, the analysis of CA 

using TFA is a developing method and lacks references values, however we 
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have collected and analysed data based on current guidelines (Claassen et al., 

2016). 

 

7.5. Conclusion  

This pilot study demonstrates using a computer-based prompting software for 

eight-weeks may reduce workplace sitting in a cohort of university desk 

workers. Furthermore, aspects of dynamic CA were improved after using the 

software, but there was no influence on cognition, mood or work productivity. 

Workplace sitting was replaced with increased standing time rather than 

walking, suggesting the intensity of the breaks from sitting may not have been 

large enough to enhance these parameters. Further research with a larger 

sample size and longer intervention period is needed to examine if longer-term 

use of Exertime has an impact on workers’ sitting time, cerebrovascular 

function, cognition, mood and work productivity. 
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8. Synthesis of Findings
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8.1. Aims and Objectives 

The main aims of this thesis were to explore the acute effects of prolonged, 

uninterrupted sitting on cerebrovascular function, cognition and mood, and 

whether breaking up prolonged sitting with short bouts of light-intensity PA 

could alter these parameters in healthy but sedentary adults. Additionally, this 

thesis aimed to assess the relationship between workplace SB, cognition and 

mood, and to investigate whether an 8-week intervention designed to break up 

prolonged sitting in an office-based workplace would affect cerebrovascular 

function, cognition and mood.  

 

8.2. Major Findings  

8.2.1. Workplace Sedentary Behaviour, Cognition and Mood 

Given that office workers spend 65–75% of their work hours sitting, recent 

guidelines suggest reducing workplace SB could improve employee health and 

wellbeing, as well as their productivity (Buckley et al., 2015). However, there is 

currently no data supporting these guidelines to suggest that workplace SB 

influences or is correlated with factors contributing to productivity, such as 

cognition and mood. Consequently, Chapter 4 assessed if there was a 

relationship between cognition, mood and the time spent sitting, stepping or 

standing whilst at work as well as during a weekday and a weekend. Results 

showed that sitting whilst at work was not associated with cognition (attention, 

working memory and executive function), and this result also extended to 

weekdays and the weekend. Workplace sitting was however negatively 

associated with the calm mood state. Individuals that are less calm may exhibit 

a heightened stress response (Klaperski et al., 2013). Chronic work stress is 
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related to increased risk of CVD morbidity and mortality (Chandola et al., 2006; 

Kivimäki et al., 2002; Kivimäki and Kawachi, 2015) and mental health conditions 

(Harvey et al., 2017). In the long term, sitting at work may therefore have 

negative implications for employee health and well-being. In contrast, increased 

time spent standing and stepping at work were associated with improved mood 

and cognitive performance. Importantly, workers who are in a positive mood 

have enhanced work performance (Miner and Glomb, 2010; Rothbard and Wilk, 

2011), indicating PA during work hours could be beneficial for work productivity. 

Further analyses revealed that during work hours only moderate-intensity PA 

was positively associated with working memory and attention, suggesting this 

intensity of PA is needed to positively influence cognitive performance. This 

observation is important since current workplace guidelines recommend 

replacing SB with light activity to improve workers’ health and productivity 

(Buckley et al., 2015). This may indicate that low-intensity PA during work hours 

may not have a beneficial effect on cognition and that recommending moderate-

intensity PA may be the most effective way to elicit improvements in workers’ 

cognitive performance and their subsequent productivity. However, whether it 

would be feasible for sedentary workers to complete this intensity of PA within 

the constraints of their work environment is unclear. Further research is 

therefore required investigating differing intensities of PA breaks on cognition 

and mood, especially in a work environment, which can then provide evidence 

to support or modify guidelines for a healthy workplace. 
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8.2.2. Prolonged Sitting, Cerebrovascular Function, Cognition and 

Mood 

8.2.2.1. Prolonged Sitting and Cerebrovascular Function 

Previous research indicates that acute periods of prolonged sitting causes 

peripheral artery endothelial dysfunction (Restaino et al., 2015; Thosar et al., 

2015), however whether other vascular beds are also influenced by prolonged 

sitting is currently unknown. Since the delivery of CBF is vital for normal brain 

function and survival (Willie et al., 2011), effective cerebrovascular function is 

essential for maintaining constant cerebral perfusion (Willie et al., 2014), 

preventing cognition decline (Wolters et al., 2017) and impaired mood (Evans et 

al., 2017). Owing to this critical role in preserving brain health and function, 

understanding the potential impact of SB on cerebrovascular function is 

needed. Hence in Chapter 5 and Chapter 6, the aim was to examine whether 

acute, prolonged sitting impairs cerebrovascular function.   

 

For the first time, this thesis presents data showing that CBF is acutely reduced 

following four and six hours of uninterrupted sitting (Chapter 6 and Chapter 5). 

Interestingly, a dose-response effect of sitting appears to occur, with the 

reduction in CBF increasing in magnitude as sitting time increases. Following 

four hours of uninterrupted sitting, MCAv was decreased by 1.4 cm·s-1, whilst 

uninterrupted sitting for six hours reduced MCAv by 3.4 cm·s-1. If these data are 

compared to the age-related decline in MCAv of 0.76 cm·s-1 per year (Ainslie et 

al., 2008), it indicates the transient reduction observed following a single 

uninterrupted sitting period may equate to 2-4 years of age-related decline. 

Importantly, transient reductions in CBF impairs cognitive performance 

(Marshall et al., 2001), demonstrating the findings in this thesis may have acute 
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implications for individuals who sit for prolonged periods. However, further 

research is required to assess whether this transient reduction in CBF may 

contribute to a chronic reduction, as this would have meaningful implications for 

the development of cerebrovascular diseases.  

 

Exploring the mechanisms underlying the sitting-induced reduction in MCAv 

were beyond the scope of this thesis but may relate to the sympathetic nervous 

system. Prolonged sitting elevates muscle sympathetic nerve activity (Ray et 

al., 1993) and heightened sympathetic activity causes cerebral vasoconstriction 

(Seifert and Secher, 2011), therefore sitting may induce transient global 

vasoconstrictor effects on the vasculature. Alternatively, changes in cerebral 

glycaemic regulation may also contribute to sitting-induced reductions in MCAv, 

as the brain is highly sensitive to perturbations in circulating glucose levels. 

Indeed, prolonged sitting increases postprandial glycemia (Dunstan et al., 2012; 

Peddie et al., 2013), which can cause microvascular damage, impair endothelial 

function and reduce CBF (Wheeler et al., 2017). Furthermore, the decline in 

MCAv may relate directly to the function of cerebrovascular endothelial cells, 

which contribute to the regulation of CBF (Toda, 2012), since elevated levels of 

tissue plasminogen activator and Von Willebrand factor, markers of endothelial 

dysfunction, are associated with reduced CBF in older adults (Sabayan et al., 

2014).   

 

A common observation across both Chapter 5 and Chapter 6 was that CVR was 

unaffected following acute prolonged sitting periods. Since CO2 is considered 

the main regulator of CBF (Willie et al., 2011), it is plausible that the 
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cerebrovasculature may exhibit an enhanced capability to preserve this function 

and resist any deleterious effects of sitting. Impairments in CVR are observed in 

Alzheimer’s disease patients, however the mechanisms underlying this 

decrease likely relate to factors such as β-amyloid  accumulation in the brain, 

atherosclerosis and anatomical changes to the microvasculature (Glodzik et al., 

2013). These factors develop chronically, thus would not be evident following an 

acute period of prolonged sitting in healthy adults. Therefore, if sitting does 

impair CVR, it may only be evident after chronic exposure to prolonged sitting.   

Nonetheless, this thesis presents data showing for the first time that aspects of 

dynamic CA are impaired following uninterrupted sitting. In Chapter 6, following 

four hours of uninterrupted sitting, an acute reduction in phase, the 

synchronicity between BP and CBF responses, in the VLF range was observed 

indicating a less efficient CA. In Chapter 5, after six hours of uninterrupted 

sitting an increase in normalised gain, the damping effect of CA on the 

magnitude of BP oscillations, in the VLF range was observed, indicating 

impaired CA. These data present two interesting observations; firstly, different 

parameters of CA were impaired depending on the period of uninterrupted 

sitting, and secondly, both impairments were only observed in the VLF range of 

CA.  

 

The differential impairment in CA parameters between the duration of the 

uninterrupted sitting period may relate to a potential progressive impairment of 

CA. It is suggested that impairment of autoregulation first affects phase, or the 

latency of response, before affecting gain, or the efficiency of the response 

(Tiecks et al., 1995; Wright et al., 2018). In support, following a concussion 



    

251 

 

injury, phase is impaired up to two weeks following the injury, with no change in 

gain during this time period (Wright et al., 2018). Whilst in this thesis the time 

difference between the sitting periods in Chapter 5 and Chapter 6 is only two 

hours, the reduction in phase after four hours of sitting and the reduction in 

normalised gain after six hours may further support that the impairment of CA is 

based on the duration of the exposure to the negative stimuli.  

 

The lack of changes observed in the low and high frequency ranges of CA is in 

line with previous data examining the effects of high altitude exposure on 

dynamic CA which observed reduced phase and increased gain but only in the 

VLF range (Iwasaki et al., 2011). It is suggested that dynamic CA in the VLF is 

partially modulated by the autonomic nervous system (Zhang et al., 2002), 

since gain increased and phase decreased in the VLF but not at the higher 

frequency ranges following ganglion blockade. Furthermore, although several 

other mechanisms are suggested to contribute to CA, such as myogenic and 

cholinergic factors, it is has been shown that neurogenic influences are mainly 

responsible for the homeostatic maintenance of the relationship between BP 

and CBF (Hamner and Tan, 2014). It must however be noted that when 

modelling the relative contributions of the mechanisms underlying CA, 38% 

remained unexplained, suggesting a potential role for other physiological 

mechanisms such as NO production contributing to CA (Hamner and Tan, 

2014). In peripheral vessels, sitting-induced impairments in vascular function 

are suggested to be partly due to reduced blood flow and endothelial NO 

production (Carter et al., 2017). Hence, a similar mechanism may have been 

present in the cerebrovasculature with the reductions in CBF observed in 
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Chapter 5 and Chapter 6, reducing SR and the release of local vasodilators 

such as NO, which in turn contributed to the subsequent impairment in CA.  

 

8.2.2.2. Prolonged Sitting and Cognition 

Based on previous suggestions that sitting is a risk factor for cognitive decline 

due to impairments in CBF (Wheeler et al., 2017), Chapter 5 aimed to assess if 

an acute, prolonged sitting period impaired cognition and, if changes in 

cognition were observed, whether these were related to changes in 

cerebrovascular function. However, following six hours of uninterrupted sitting, 

cognition (attention, working memory and executive function) was not acutely 

impaired, despite concurrent reductions in CBF and dynamic CA. This supports 

the cross-sectional observations in Chapter 4, where SB was not associated 

with cognition in any domain. Collectively these data indicate that in young 

healthy adults, SB does not impact cognition, however the cross-sectional and 

acute study designs used in this thesis do not provide sufficient data to 

conclude this. Chronically, decrements in CBF lead to a breakdown of the blood 

brain barrier, neuronal damage and amyloid β accumulation which may cause 

neurodegeneration and cognitive impairment (Wheeler et al., 2017). The 

suggestion that sitting is a risk factor for cognitive decline (Wheeler et al., 2017) 

may therefore be the result of the repeated exposure to acute reductions in 

CBF, which over time lead to structural changes in the brain, subsequently 

impairing cognition. Hence, whether chronic exposure to the transient 

reductions in CBF observed acutely in Chapter 5 and Chapter 6, result in 

impaired cognition should be explored further.  

 



    

253 

 

8.2.2.3. Prolonged Sitting and Mood 

Recent guidelines suggest reducing workplace SB may improve employee 

productivity (Buckley et al., 2015) and worker mood is related to work 

performance and work efficiency (Kaplan et al., 2009; Shockley et al., 2012). 

Importantly, experimentally increasing SB decreases mood (Edwards and 

Loprinzi, 2017b; Endrighi et al., 2016), however the mechanisms underlying this 

are unknown, but may relate to cerebrovascular function owing to its own 

relationship with mood  (Evans et al., 2017; Honda et al., 2014; Nobler et al., 

2002; Videbech, 2000). Consequently, Chapter 5 aimed to investigate if an 

acute, prolonged sitting period impaired mood and, if changes in mood were 

observed, whether this was related to any observed changes in cerebrovascular 

function.  

 

Following uninterrupted sitting for six hours, positive affect and the alert and 

content mood states were decreased. This is an important finding since a six-

hour time period could replicate an adult’s working day and may therefore have 

implications for worker productivity, since when workers’ mood is lowered their 

work-specific task performance reduces (Miner and Glomb, 2010). Furthermore, 

in the long-term, repeated sitting-induced decreases in mood may have 

repercussions for workers mental health and well-being, a suggestion supported 

by previous research indicating that SB is associated with anxiety (Teychenne 

et al., 2015) and depression (Zhai et al., 2015). However, these data contrast 

with results from the cross-sectional observations in Chapter 4 showing 

workplace sitting was not associated with these mood outcomes. This disparity 

in findings may be explained by the single day assessment period in a 

laboratory setting in Chapter 5 whilst in Chapter 4 participants SB was 
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assessed over five days of work, thus could be more susceptible to other 

external factors influencing mood state.  

 

Interestingly the observed reduction in mood in Chapter 5 was not related to the 

concurrent impairments in cerebrovascular function, indicating that other 

mechanisms underlie acute sitting-induced mood impairments. It has been 

suggested that heightened inflammation may contribute to sitting-induced 

decreases in mood (Endrighi et al., 2016). Indeed, SB is associated with higher 

levels of C-reactive protein (Howard et al., 2015) and other markers of low-

grade inflammation (Yates et al., 2012). Importantly, markers of inflammation 

are implicated in mood disorders (Rosenblat et al., 2014) and negative mood 

state (Wright et al., 2005). Indeed, it is suggested that that inflammatory 

markers, such as interleukin-6 and tumour necrosis factor, act on multiple levels 

to induce mood symptoms, including deceasing serotonin levels and activating 

microglia cells leading to synaptic pruning and neuronal death (Rosenblat et al., 

2014). Consequently, further research is needed examining prolonged sitting, 

mood and inflammation. Alternatively, other reasons for the reduction in mood 

following sitting observed in this thesis may relate to the laboratory setting used 

for testing and participant boredom. Future research in an environment more 

representative of an office would explore this theory.   

 

8.2.3. Breaking Up Sitting, Cerebrovascular Function, Cognition and 

Mood 

8.2.3.1. Breaking Up Sitting and Cerebrovascular Function 

Based on the findings in Chapter 5, showing sitting acutely impairs 

cerebrovascular function, Chapter 6 investigated if walking breaks to interrupt 
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prolonged sitting periods could attenuate this reduction in function. Furthermore, 

two different walking break strategies were assessed: frequent, short duration 

walks (two-minute walking break every thirty minutes) and less frequent, longer 

duration walks (eight-minute walking break every two hours). For the first time, 

this thesis presents data showing that short duration, regular walking breaks, 

rather than less frequent, longer duration walking breaks prevented the acute 

reduction in MCAv and the impairment of the VLF phase metric of dynamic CA 

that otherwise occurred during uninterrupted sitting for four hours. This implies 

the frequency of the breaks may be more important than the duration of the PA 

to maintain aspects of cerebrovascular function. In contrast, both walking break 

strategies caused a larger increase in CVR compared to prolonged sitting. This 

indicates that, for this aspect of cerebrovascular function, any duration or 

frequency of PA may have acute benefits.  

 

Following on from these acute observations, Chapter 7 investigated whether an 

eight-week intervention designed to break up sitting over a longer time period, 

thus a more ecological representative of adults’ typical exposure to sitting, could 

enhance cerebrovascular function. Furthermore, the intervention took place in 

office workplaces, where SB is typically accrued. Using a computer-based 

prompting software called Exertime, participants were prompted to take a break 

from sitting every 45-minutes during their work hours. Based on the results from 

Chapter 6, participants were encouraged to complete two minutes of walking 

during these breaks.  
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Interestingly, analysis of participants’ usage of the Exertime software showed 

that there was a non-significant, but potentially clinically meaningful, reduction 

in workplace sitting which appeared to be replaced by a non-significant increase 

in the time spent standing rather than walking. In support of the results from 

Chapter 6, the VLF phase metric of CA improved following the use of Exertime 

software compared to the control condition. Intriguingly, although the intensity of 

the standing activity was less than that of the walking breaks used in Chapter 6, 

VLF phase still improved. This suggests it is the frequency at which sitting it 

broken up rather than the type or intensity of PA used that is important for 

maintaining this aspect of cerebrovascular function. This observation is in line 

with previous research showing the pattern in which SB is accumulated impacts 

a range of cardiometabolic risk factors. Individuals who accumulate their SB in 

long, uninterrupted bouts have a worse cardiometabolic risk factor profile than 

individuals with the same total SB, but who regularly interrupt this sedentary 

time with PA bouts (Healy et al., 2008; 2011). In contrast to the acute 

observations in Chapter 6, CVR was not improved following the use of Exertime 

software. In this study, participants appeared to replace their sitting time with 

standing, whereas in Chapter 6, participants completed walking breaks to 

interrupt sitting. This may indicate higher intensity activities are needed to 

improve this aspect of cerebrovascular function.  

 

Breaking up sitting influenced only the phase metric of dynamic CA in Chapter 6 

and Chapter 7 and not gain. Improved phase indicates enhanced buffering 

capacity of CA to changes in BP (Panerai, 2009). Hence, as participants were 

altering their posture more frequently by either standing up or walking to break 
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up their sitting, the cerebrovasculature may have enhanced its ability to respond 

to the corresponding change in BP. Since it is suggested that impairments in 

phase occur before gain (Tiecks et al., 1995; Wright et al., 2018), a similar 

pattern of response may occur for improvements in these parameters of CA. 

Therefore, the duration of the intervention periods in Chapter 6 (four hours) and 

Chapter 7 (eight weeks) may not have been long enough for improvements in 

gain to occur. There is a dearth of research examining interventions to improve 

CA that can support this hypothesis, therefore future research is needed 

examining this possibility.  

 

In contrast, the acute improvement in MCAv observed in Chapter 6 using 

regular walking breaks to interrupt sitting was not replicated in Chapter 7, as 

there was no change in MCAv following the Exertime intervention compared to 

the control trial. This indicates that ambulatory breaks or a longer intervention 

period may be required to result in a chronic improvement in CBF. It could also 

be possible that the cerebrovasculature may have adapted to the PA break 

stimuli. In the peripheral vasculature, despite initial improvements in artery 

function across the first weeks of exercise training, this improvement then 

returns towards baseline, possibly due to subsequent arterial remodelling and 

chronic adaptation to the exercise stimuli (Tinken et al., 2008, 2010). A similar 

response could be present in the cerebrovasculature, with initial improvements 

in CBF returning to baseline following an adaptation to the PA breaks. Indeed, 

following 12-week and 6-month aerobic exercise training programmes, CBF 

was not increased in stroke patients (Ivey et al., 2011) and healthy young and 
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old adults (Murrell et al., 2013). Further research is therefore needed to explore 

this hypothesis.   

 

8.2.3.2. Breaking Up Sitting and Cognition 

In Chapter 6 acutely breaking up sitting increased aspects of cerebrovascular 

function. Since cerebrovascular function influences cognitive performance 

(Bertsch et al., 2009; Marshall et al., 2001), Chapter 7 investigated whether 

breaking up sitting over a period of 8-weeks could improve cognition. However, 

following the Exertime software intervention no improvements in cognition 

(attention, working memory and executive function) were observed. This 

indicates that relatively small increases in standing may be insufficient to impact 

cognition. Previous studies have also observed no effect on cognition when 

using PA breaks to interrupt sitting (Bergouignan et al., 2016; Duvivier et al., 

2017; Wennberg et al., 2016), however these have been acute in design, lasting 

a maximum of four days. Since an 8-week intervention also had no influence on 

cognitive function it suggests changes to cognition may occur over longer time 

periods. In support, improvements in CBF and cognition have been observed 

following short-term exercise training (Chapman et al., 2013), however this was 

12-weeks in duration and used walking or cycling, thus a greater activity 

stimulus than standing.  

 

8.2.3.3. Breaking Up Sitting and Mood 

Improvements in mood have been previously observed when SB is acutely 

reduced (Bergouignan et al., 2016; Duvivier et al., 2017). Cerebrovascular 

function contributes to the maintenance of mood (Evans et al., 2017) and, as 

observed in Chapter 6, breaking up sitting can improve cerebrovascular 
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function. Consequently, interventions to reduce sitting may also increase mood 

via enhancing cerebrovascular function. Hence, Chapter 7 investigated whether 

breaking up sitting over a period of 8-weeks could improve mood. However, no 

changes in mood were observed following the Exertime intervention, implying 

replacing sitting time with standing is insufficient to effect mood. This finding is 

supported by the cross-sectional observations in Chapter 4 assessing 

relationships between sitting, standing, stepping and mood. Work hours 

stepping was positively associated with positive affect and the calm and 

contented mood states, whilst standing was not related to any aspects of mood. 

Collectively, data indicates that sitting may represent a risk factor for decreased 

mood and that engagement in PA is needed when breaking up sitting to 

potentially ameliorate this risk. However, whether it would be feasible for 

sedentary workers to complete PA within the constraints of their work 

environment is unclear. 
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8.3. Implications of Findings 

8.3.1. Workplace Sedentary Behaviour and Work Productivity  

A less sedentary workplace has been suggested to increase worker productivity 

(Buckley et al., 2015), yet there is no data to support this recommendation. In 

Chapter 4 the time spent stepping at work was associated with increased mood, 

whilst in Chapter 5 an acute prolonged sitting period, replicating office workers’ 

typical daily exposure, impaired mood. Since workers’ mood influences their 

performance (Kaplan et al., 2009; Miner and Glomb, 2010; Rothbard and Wilk, 

2011; Shockley et al., 2012), these data provide some initial evidence to 

support further exploration of the hypothesis that the promotion of PA during 

work hours and the reduction of SB may increase worker mood and potentially 

productivity. If proven correct, this indicates that employers could look to 

encourage their workforce to reduce their SB by taking PA breaks and consider 

developing a work environment and work culture that allows this to occur. 

 

Current workplace SB guidelines recommend replacing sitting with standing and 

light-intensity PA to improve worker’s health and productivity (Buckley et al., 

2015). Data from this thesis however suggest this may not be the optimal 

intensity to improve cognition. Chapter 4 showed that moderate-intensity PA 

was positively associated with cognition and not light-intensity PA. Furthermore, 

standing during work hours was not associated with any aspects of mood. In 

support of this, in Chapter 7, standing to break up workplace sitting did not 

result in any changes in mood. However, whether is it feasible for workers in 

highly sedentary professions to perform moderate-intensity PA at work needs to 

be considered due to restrictions in work environments, such as contact centre 
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employees who are not permitted to leave their desk, or perceptions about 

being active in front of colleagues, for example in shared office spaces. In 

contrast, results from Chapter 6 and Chapter 7 suggest it is the frequency at 

which sitting is broken up, rather than the type or intensity of PA used, that is 

important for maintaining cerebrovascular function, since using both standing 

and walking to interrupt sitting were effective break modalities. Hence, in work 

environments where performing moderate-intensity PA is not suitable, this 

indicates it could be encouraged to break up sitting with any type of PA as this 

may still confer health benefits to the cerebrovasculature. Collectively, less 

generic workplace SB guidelines may be required to factor in the differential 

intensities and frequencies of PA needed to promote worker health and mental 

wellbeing.  

 

To gain the potential health benefits of breaking up sitting demonstrated 

throughout this thesis, an effective intervention strategy is needed. In Chapter 7 

Exertime software was used as the workplace intervention, designed to prompt 

workers to take a break from sitting at their desk every 45-minutes. Prior to this 

thesis, Exertime software had previously been used successfully in Tasmania to 

reduce workplace SB (Cooley and Pedersen, 2013; Mainsbridge et al., 2014, 

2016; Pedersen et al., 2014). This thesis therefore demonstrates Exertime 

software may also contribute to reducing sitting in UK workplaces within a 

University setting. The number and duration of breaks recorded using Exertime 

were comparable to previous studies using the software in Tasmanian 

workplaces (Mainsbridge et al., 2014, 2016; Pedersen et al., 2014). By, for the 

first time, objectively assessing participants’ SB prior to and when using the 
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Exertime software, a 42.2 minute or 4.2% reduction in workplace sitting was 

observed. Whilst this was not statistically significant, this provides promising 

data to indicate Exertime may contribute to reducing sitting time at work. 

Importantly, a systematic review and meta-analyses of workplace intervention 

strategies observed a pooled intervention effect of 40-minute reductions in 

sitting time per day, which is in line with our Exertime data (Chu et al., 2016). 

Furthermore, multi-component interventions have been shown to be particularly 

effective at reducing workplace sitting (Chu et al., 2016), likely due to the 

ecologic model of SB which outlines there are multiple levels of influence on SB 

including individual, social and environmental (Owen et al., 2011). Exertime was 

a multi-component intervention, combining the computer-based prompting 

software with a pre-intervention educational booklet and videos, and weekly 

motivational emails, thus targeting different levels of influence. However, as 

previously outlined, since participants appeared to stand to break up their sitting 

rather than the walking as was suggested, it could indicate Exertime does not 

consider environmental factors within a workplace that can determine workers’ 

SB and their ability to reduce this behaviour. Altogether, this thesis provides 

preliminary evidence for Exertime to be employed in other workplaces in the UK 

and further afield, and future larger-scale studies should investigate the 

effectiveness of Exertime as a workplace intervention. 

 

8.3.2. Sedentary Behaviour as a Cerebrovascular Health Risk Factor  

Prior to this thesis, research had only focused on the influence of SB on the 

peripheral vasculature (Restaino et al., 2015; Thosar et al., 2015). This thesis 

shows, for the first time, that prolonged sitting also has a deleterious effect on 
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cerebrovascular function (Chapter 5 and Chapter 6), which may have clinical 

importance for both cognition and disease risk. Owing to the relationship 

between cerebrovascular function and neurodegenerative diseases (Gommer et 

al., 2012; Roher et al., 2012; Wolters et al., 2017), this indicates SB may be a 

risk factor for cerebrovascular health and therefore may have implications for 

the prevention of diseases such as dementia and Alzheimer’s disease. This is 

of critical importance since the prevalence of dementia is increasing worldwide. 

Deaths due to dementia more than doubled between 2000 and 2016, making it 

the 5th leading cause of global deaths in 2016, compared to 14th in 2000 (World 

Health Organization, 2018). Hence, identifying interventions to decrease the risk 

of dementia is imperative, and reducing sitting time could represent a potential, 

low cost option to contribute towards this, and further prospective research is 

needed to explore this.  

 

8.3.3. Sedentary Behaviour Guidelines  

Recently, it has been stated that the current SB evidence base is 

underdeveloped to provide quantitative guidelines regarding sitting less and 

breaking up prolonged sitting periods, and that further research is required 

before research-informed guidelines are produced (Stamatakis et al., 2018). 

Data from Chapter 6, provides a small contribution to this by showing that more 

regular, shorter duration PA breaks compared to less regular, longer duration 

PA breaks are needed to prevent sitting-induced impairments in 

cerebrovascular function; a hypothesis supported by previous findings 

examining the influence of break frequency on cardiometabolic health risk 

factors (Healy et al., 2008; 2011). Further data would be needed showing a 

regular break strategy improves long-term cerebrovascular health and function 



    

264 

 

before inclusion in guidelines, but this initial work provides a basis for further 

research.  
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8.4. Future Research  

8.4.1.  Mechanistic Research  

Whilst this thesis presents data showing impairments in cerebrovascular 

function with sitting and improvements when this sedentary time is broken up 

with PA breaks, the underlying mechanisms for these observed results are 

unclear. The decrease in CBF following sitting observed in Chapter 5 and 

Chapter 6 could possibly relate to increase sympathetic nerve activity, hence 

studies including measures of sympathetic activation, such as 

microneurography, circulating levels of plasma noradrenaline, or heart rate 

variability could explore this further. Alternatively, in Chapter 6 it is suggested 

that endothelial dysfunction of cerebral vessels or impaired glycaemic regulation 

may also contribute to reductions in CBF. Experimental work combining 

measures of CBF alongside blood glucose concentrations and makers of 

endothelial dysfunction, such as markers of inflammation, tissue plasminogen 

activator and Von Willebrand factor, would investigate these theories.  

 

The improvements in CBF seen after breaking up sitting in Chapter 6 may relate 

to sustained cholinergic activity due to the frequency of the walking breaks. 

Acetylcholine blockade abolishes exercise-induced increases in CBF (Seifert et 

al., 2010), therefore a similar study could be conducted investigating the impact 

of acetylcholine blockade during regular walking breaks to interrupt sitting. The 

mechanisms underlying the improvement in the phase metric of dynamic CA 

after breaking up sitting time in Chapter 6 and Chapter 7, and the increase in 

normalised gain in Chapter 5 should also be explored. It is suggested that 

sympathetic activity, endothelial NO production and myogenic factors all 
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contribute to CA (Tzeng and Ainslie, 2014; Xiong et al., 2017), consequently 

studies either measuring or manipulating these variables could assess these 

theories.  

 

In Chapter 5, a single, period of prolonged sitting decreased aspects of mood 

and this reduction was not related to the observed impairments in CBF and 

dynamic CA, suggesting other mechanisms were involved, possibly relating to 

inflammatory markers. Hence future research should assess changes in mood 

following prolonged sitting and include markers of inflammation. Previously SB 

has been associated with higher levels of C-reactive protein (Howard et al., 

2015) and adipokines linked to low-grade inflammation (Allison et al., 2012; 

Yates et al., 2012), suggesting these markers should be assessed.  

 

8.4.2. Physical Activity Break Modality   

Chapter 6 demonstrated using walking PA breaks to interrupt prolonged sitting 

could enhance aspects of cerebrovascular function. Walking breaks were 

chosen based on previous research showing this break modality was effective 

at improving other cardiometabolic health parameters, such as enhancing 

glucose and insulin concentrations (Bailey and Locke, 2015; Dunstan et al., 

2012). However, whether this can be translated from a controlled, laboratory 

setting to real-world workplaces is unclear. Indeed, as evidenced in Chapter 7, 

even though participants were instructed to take a walking break when using 

the Exertime prompting software, it appears they instead replaced their sitting 

with standing. This indicates either their workplace was not suitable to take 

walking breaks, or they wanted to remain near their desk. However, in this 
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Chapter, this apparent increase in time spent standing did enhance aspects of 

dynamic CA indicating ambulation may not be needed to improve 

cerebrovascular function. Consequently, other break modalities that require less 

movement away from a workers’ desk environment should be explored, such as 

simply standing up, the use of active workstations, or the full version of the 

Exertime software, which includes many exercises that can be performed in the 

vicinity of the desk. Research should investigate, firstly, if these interventions 

are effective at reducing SB at work, secondly, if different PA modalities can still 

elicit improvements in cerebrovascular function, and finally, whether they can be 

practically applied into a workplace environment.  

 

8.4.3. Long-Term Research 

A limitation to the studies in this thesis, and that of most of the existing SB 

literature, is that only acute time periods have been assessed, either in the form 

of a day (Chapter 5 and Chapter 6) or a few months (Chapter 7), which is not 

representative of the typical SB exposure of most working adults. Consequently, 

more ecologically valid research is needed assessing individuals over longer 

time periods, such as six months to one year. Throughout this thesis there were 

no changes in cognition either following prolonged sitting (Chapter 5) or 

breaking up sitting time (Chapter 7), furthermore during cross-sectional 

analyses sitting was not associated with cognition (Chapter 4). Whether chronic 

exposure, such as six-months or a year, to the transient reductions or 

elevations in CBF observed acutely in this thesis (Chapter 5 and Chapter 6) 

could result in changes to cognitive functioning should be explored further. 

Furthermore, research should consider populations who are at higher risk for 
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cognitive decline, such as older adults, who spend 65-80% of their waking day 

sedentary (Harvey et al., 2015). Finally, as discussed in Chapter 7, the lack of 

translation of the acute improvement in CBF observed following regular walking 

breaks (Chapter 6) to a longer-term improvement after using the Exertime 

software could be be due to the adaptation of the cerebrovasculature to the PA 

break stimuli. As has been conducted when assessing the peripheral 

vasculature’s response to exercise training (Tinken et al., 2008, 2010), the CBF 

responses to activity breaks from sitting should be examined regularly over a 

period of weeks to profile the time course of any changes in CBF.  

 

In Chapter 5 and Chapter 6 it is suggested that sitting-induced impairments in 

cerebrovascular function may contribute to the development of cerebrovascular 

diseases such as vascular dementia and Alzheimer’s disease. Furthermore, in 

Chapter 6 is it implied that the improvement observed in cerebrovascular 

function using frequent walking breaks could have implications in the prevention 

of such diseases. Consequently, longitudinal research is needed assessing SB, 

cerebrovascular function and cognition, alongside utilising clinical tests for the 

development of dementia, such as the mini mental state examination and the 

Addenbrooke’s cognitive assessment (Cooper and Greene, 2005).  
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8.5. Summary  

The primary aims of this thesis were to investigate the effects of sitting on 

cerebrovascular function, cognition and mood. The main findings from this 

thesis with reference to the known and potential interactions between SB, 

cerebrovascular function, cognition and mood are summarised in Figure 8-1. 

Cross-sectional analyses specifically focusing on the workplace showed sitting 

during work hours was negatively associated with the calm mood state, but not 

cognition. However, increased time spent standing and stepping at work was 

positively associated with aspects of mood and cognition. Using controlled 

laboratory experiments, this thesis presents data showing for the first time that 

periods of prolonged sitting acutely impair aspects of cerebrovascular function, 

namely CBF and dynamic CA. However, interrupting this sitting time with 

frequent, short duration walking breaks, rather than longer duration, less 

frequent walking breaks can attenuate this impairment. Prolonged sitting also 

acutely impairs mood, which was unrelated to the observed decrements in 

cerebrovascular function; whilst cognition was not acutely affected by prolonged 

sitting. This thesis also assessed the effect of a longer-term intervention 

designed to reduce workplace sitting on cerebrovascular function, cognition and 

mood. Using Exertime, a computer prompting software designed to break up 

workplace sitting, for 8-weeks resulted in statistically non-significant but a 

potentially clinically meaningful reduction in the time workers spent sitting, 

which appeared to be replaced with increased time spent standing. Following 

this intervention, dynamic CA but not CBF was improved, and no changes in 

mood or cognition were observed. Taken together this thesis provides the first 

evidence that SB negatively effects cerebrovascular function and demonstrates 
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that breaking up sitting can prevent this deleterious outcome. Future research is 

needed examining the chronic influence of sitting to assess whether these acute 

impairments translate into cerebrovascular disease risk.   
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Figure 8-1: A summary of the major findings in this thesis with reference to the known and potential interactions between sedentary 

behaviour, cardiometabolic, cardiovascular and cerebrovascular disease; cerebrovascular function; cognition and mood. Orange lines 

indicate data from this thesis suggest a potential influence; dashed lines indicate a potential influence; red lines indicate negative influence; 

green lines indicate positive influence.  
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10.1. Appendix 1: Participant Educational Booklet 
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10.2. Appendix 2: Email Suggestions for Participants to Break 

Up Their Sitting 

 

Week of Intervention Suggestion 

1 

A tip for taking a two-minute walking break is to 

use the toilets a floor higher or lower than the 

one you work on 

2 
A tip to frequently break up your sitting is to use 

a smaller drinks bottle, so you have to get up 

and fill it up more regularly 

3 A simple way to take a break from sitting is to go 

speak to a colleague rather than send an email 

4 
To walk more at work why not move the bin to 

the other side of your office so you have to get 

up and walk to use it 

5 

A simple way to take a two-minute walking break 

is to get up and a do a lap of your corridor, try 

even incorporating going up and down some 

stairs!  

6 Going for a coffee break? Rather than sit with a 

colleague have a walking coffee break 

7 
If you can, use a printer in a different room or 

floor to the one you work on so you have to walk 

to collect your printing  

8 
Get some fresh air! If you’ve been inside all day, 

take a walk outside your building to get some 

fresh air! 

 


