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Abstract

The identification of historic and contemporary barriers to dispersal is central to the
conservation of endangered amphibians, but may be hindered by their complex life
history and elusive nature. The complementary information generated by mitochon-
drial (mtDNA) and microsatellite markers generates a valuable tool in elucidating pop-
ulation structure and the impact of habitat fragmentation. We applied this approach to
the study of an endangered montane newt, Euproctus platycephalus. Endemic to the
Mediterranean island of Sardinia, it is threatened by anthropogenic activity, disease,
and climate change. We have demonstrated a clear hierarchy of structure across ge-
netically divergent and spatially distinct subpopulations. Divergence between three
main mountain regions dominated genetic partitioning with both markers.
Mitochondrial phylogeography revealed a deep division dating to ca. 1 million years
ago (Mya), isolating the northern region, and further differentiation between the cen-
tral and southern regions ca. 0.5 Mya, suggesting an association with Pleistocene se-
vere glacial oscillations. Our findings are consistent with a model of southward range
expansion during glacial periods, with postglacial range retraction to montane habitat
and subsequent genetic isolation. Microsatellite markers revealed further strong pop-
ulation structure, demonstrating significant divergence within the central region, and
partial differentiation within the south. The northern population showed reduced ge-
netic diversity. Discordance between mitochondrial and microsatellite markers at this
scale indicated a further complexity of population structure, in keeping with male-
biased dispersal and female philopatry. Our study underscores the need to elucidate
cryptic population structure in the ecology and conservation strategies for endan-
gered island-restricted amphibians, especially in the context of disease and climate

change.
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1 | INTRODUCTION

A global decline in amphibians has been in evidence for more than
25 years (Beebee & Griffiths, 2005). The first Global Amphibian
Assessment (GAA) found 32.7% of amphibian species to be catego-
rized as threatened (IUCN 2001), including 427 species listed as being
critically endangered, and 122 as possibly extinct (Stuart et al., 2004).
Threats such as habitat loss or exploitation are well recognized, and
thus potentially reversible, but the declines of nearly half of the species
assessed had no clearly identifiable cause. In these cases, epidemic
disease on a background of climate change is likely to be contributory
(Pounds et al., 2006). However, the study of amphibians is hindered
by their complex life history, their typical requirement for both aquatic
and terrestrial habitat, and their often elusive nature. Genetic meth-
ods provide a powerful tool in the ecology and conservation of such
species, for which accurate counts and measurement of dispersal rates
are difficult to achieve using classic field ecology approaches (Beebee,
2005; Jehle & Arntzen, 2002). The identification of cryptic diversity is
essential to characterize biodiversity and to elucidate underlying evo-
lutionary processes. The assessment and monitoring of genetic vari-
ability in threatened populations also provides important information.
Small population size and reproductive isolation exacerbate the loss
of genetic variability through drift and inbreeding, which may impair
the ability of threatened species to respond actively to disease and cli-
mate change (Allentoft & O’Brien, 2010; Luquet et al., 2012; Pearman
& Garner, 2005).

Historically, mitochondrial DNA (mtDNA) has been the most
widely used molecular marker in nonmodel species, largely due to
the availability of primers with interspecific cross-reactivity (Kocher
et al., 1989). The study of mtDNA haplotypes has provided import-
ant insights into the biogeographical history of amphibians, including
the dominance of the Pleistocene glacial cycles in shaping migration
and genetic partitioning of temperate amphibian species (reviewed
by Hewitt, 2011). The identification of “historical impediments to
dispersal” (Avise, 2009) is of relevance to current and future habitat
management, especially in the face of climate change. The concept of
phylogenetic distinctiveness (Faith, 1992), weighted by conservation
urgency, has been proposed for priority-setting in the conservation
of Evolutionarily Distinct and Globally Endangered taxa (Isaac, Turvey,
Collen, Waterman, & Baillie, 2007).

Recent advances in genomic sequencing have facilitated the
characterization of microsatellite loci in amphibians (Drechsler et al.,
2013), previously limited by the complexity of amphibian genomes,
and by limited microsatellite cross-species amplification (Hendrix,
Hauswaldt, Veith, & Steinfartz, 2010). In contrast to mtDNA markers,
microsatellites provide insight into more recent population genetic
processes. Their application thus generates more contemporary in-
formation at the level of the individual, allowing the identification of
current populations and metapopulations, and the inference of con-
nectivity (Allentoft & O’Brien, 2010) and of barriers to gene flow at a
microgeographical scale (Jehle & Arntzen, 2002). The complementary

information generated by mtDNA and microsatellites markers thus
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makes their combined use a valuable tool in population genetics. In ad-
dition, the concordance of results from multiple loci reduces the risk of
erroneous inferences, as stochastic processes may cause idiosyncratic
phylogenetic breaks at a single locus even in the absence of historic
barriers to dispersal (Kuo & Avise, 2005; Templeton, 2004).

In this study, we investigate the population structure of the
Sardinian brook newt, Euproctus platycephalus (Gravenhorst, 1829), a
threatened amphibian species (IUCN Red List, 2014) that is difficult
to study ecologically, and thus an ideal candidate for this approach
(Beebee, 2005). Euproctus platycephalus is endemic to Sardinia, a
Mediterranean island of area 24,090 km?, situated 200 km to the west
of the Italian peninsula, from which it is separated by the Tyrrhenian
Sea. In marked contrast to the Mediterranean mainland, which has
very high amphibian species diversity, Sardinia hosts a limited number
of amphibian species (Cox, Chanson, & Stuart, 2006; Cuttelod, Garcia,
Malak, Temple, & Katariya, 2009; Grill, Casula, Lecis, & Menken, 2007).
Only three genera of Urodela occur on the island, including E. platy-
cephalus as the sole salamandrid. E. platycephalus is found in the main
mountain systems of eastern Sardinia, where it typically breeds in
streams at altitudes of 400-1,200 m (Lecis & Norris, 2003; Sindaco,
Doria, Mazzetti, & Bernini, 2006; Sotgiu et al., 2010).

The Mediterranean forest landscape of Sardinia (Bacchetta et al.,
2009) has been subjected to large-scale anthropogenic disruption
including deforestation, mining, and water abstraction for tourism
and agriculture (Corsale, 2011; Rooy & Stumpel, 2003). The island
has been the focus of a reforestation initiative (Puddu, Falcucci, &
Maiorano, 2012), and much of the surviving habitat is included within
protected national and regional parks. However, Euproctus habi-
tat continues to be threatened by recurrent severe drought causing
summer desiccation of ponds (Pinna, Fonnesu, Sangiorgio, & Basset,
2004). In addition, chytrid infection (Batrachochytrium dendrobatidis)
has been documented in E. platycephalus (Bielby et al., 2013; Bovero
et al., 2008; Tessa et al., 2013), an indication of the additional ongoing
threat of disease.

The geographical isolation of the genus Euproctus is considered to
date from the split of the Corsica-Sardinia microplate from the French-
Iberian massif, ca. 25 Mya. The subsequent separation of Sardinia
from Corsica, ca. 15-9 Mya (Boccaletti et al., 1990), is generally used
to infer the timing of the divergence of E. platycephalus from Euproctus
montanus, the only other surviving member of the genus, which is en-
demic to Corsica (Caccone, Milinkovitch, Sbordoni, & Powell, 1997;
Carranza & Amat, 2005; Miaud et al., 2009; Steinfartz, Veith, & Tautz,
2000; Zhang, Papenfuss, Wake, Qu, & Wake, 2008). Despite its long
isolation, there is no morphological evidence for subspeciation of
E. platycephalus. It appears remarkably consistent throughout the is-
land, with the exception of a geographical influence on sexual size
dimorphism and on timing of life history stages, recently reported by
Angelini et al. (2015), which differentiates the southern populations
from those of the center and north. Lecis and Norris (2004b), using
mitochondrial DNA markers, described intraspecific genetic structure
in E. platycephalus, broadly partitioning according to the three main
mountain regions of Sardinia (Lecis & Norris, 2004b). However, more
complex patterns of fragmentation, demographic change, genetic
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diversity, or gender bias cannot be elucidated by the use of mtDNA as
the sole genetic marker (Godinho, Crespo, & Ferrand, 2008).

We have applied the complementary combination of newly char-
acterized microsatellite markers and mtDNA sequencing to investigate
the population structure and connectivity of E. platycephalus, taking
advantage of a comprehensive archive of samples generated during
a survey of chytrid infection on the island (Bielby et al., 2013; Bovero
et al., 2008). We used coalescence simulation to infer the patterns and
timing of divergence and demographic change, based on approximate
Bayesian computation (ABC; Beaumont, Zhang, & Balding, 2002). Our
results are consistent with both deep genetic divisions and contem-
porary barriers to gene flow, providing evidence that both historical
and more recent factors underpin the current genetic structure. These
findings will be of value in the ongoing conservation management of
this endangered amphibian, especially in the context of disease and
climate change, with the potential of extrapolation to other island
endemics.

2 | MATERIALS AND METHODS

2.1 | Samples

Euproctus platycephalus samples, comprising skin swabs (Midiller,
Lenhardt, & Theissinger, 2013), toe clips (Arntzen, Smithson, &
Oldham, 1999) or larva tail tips (Polich, Searcy, & Shaffer, 2013), were
collected between 2005 and 2012 as part of a survey of B. dendro-
batidis infection (Bielby et al., 2013; Bovero et al., 2008). DNA was

extracted using DNeasy Blood and Tissue kit (Qiagen), with the ad-
dition during the tissue lysis step of 0.5-mm Zirconia/silica beads
(BioSpec Products) for swabs and 3-mm tungsten carbide beads
(Qiagen) for toe clips. A total of 227 DNA samples were included in
the study, from 13 GPS-defined sampling sites, spanning the three
main mountain ranges of Sardinia to ensure coverage of the geo-
graphical range of the species. Results were analyzed for 168 success-

fully genotyped individuals (detailed in Table 1).

2.2 | Genotyping

2.2.1 | Mitochondrial DNA

A D-loop mtDNA sequence was selected to be comparable with the
study of Steinfartz et al. (2000), who estimated a substitution rate
of 0.74%-0.86% per My in a phylogeny of D-loop sequences across
Salamandra. MtDNA was amplified using primers L-pro-ML and E.
platy-H (Steinfartz et al., 2000) in 20 pl volumes with 50-200 ng
DNA, 10 ul HotStarTag Plus mastermix (Qiagen) and 5 pmol/L
primers, with initial denaturation 95°C 5 min, 40 cycles of 94°C
305, 58°C 905, 72°C 90 s, and final extension 72°C 10 min. PCR
products were purified by precipitation with 2.5 mol/L NaCl/20%
PEG8000 (Teknova Inc). Sanger sequencing in each orientation,
using L-pro-ML, and an internal primer, SarEul-H (Lecis & Norris,
2004b), was undertaken commercially by GATC Biotech (Zurich).
Electropherograms were visualized with Sequence Scanner Software

2 (Applied Biosystems).

TABLE 1 Demographics of Euproctus platycephalus genotyped samples included in the study, showing coordinates and altitude of sampling

sites, and year(s) of sampling

Code Site Region Lat N Long E
1 HP Historical Pool North 40.856 9.142
2 BIA Fica Bianca North 40.842 9.114
AFF Affluente North 40.862 9.143
Pisciaroni
4 MO Monte Olia North 40.744 9.363
BP Bacu su Palu Central 40.18 9.559
6 PGC Grotta dei Central 40.172 9.491
Colombi
7 SES Riu Serra e Central 39.974 9.495
Scova
8 PF Perdas de Fogu Central 39.603 9.491
MAR Rio Marani South 39.348 9.441
10 LNR Late Night South 39.352 9.447
Return
11 GUN Rio su South 39.301 9.406
Gunventu
12 MAI Rio Maidopis South 39.302 9.404
13 CER Rio sa Ceraxa South 39.272 9.442

Alt m

asl Year n M H nk L mtDNA
905 2010/12 23 6 5 0 12 10
983 2007 14 9 2 3 0 10
787 2009/11 6 0 0 2 0 4
461 2009 1 0 0 1 0 1
337 2009 16

597 2010 2 0 0 2 0 0
854 2010/11 17 8 5 4 0 9
480 2007 15 7 8 0 0 8
162 2007 20 10 8 2 0 10
279 2007 14 9 5 0 0 11
421 2010/11 15 8 4 1 2 10
715 2005 6 4 2 0 0 6
535 2007 19 10 8 1 0 8

The nine main sites used in cluster analysis are shown in bold, and the additional smaller sites in italic. Lat N, latitude north; long E, longitude east; alt m asl,
altitude meters above sea level. n, number of individuals per site typed with microsatellite markers (total = 168); mtDNA, number of individuals also typed
with mitochondrial DNA; M, adult or juvenile male; F, adult or juvenile female; nk, adult or juvenile, gender not known; L, larva; MO, Monte Olia.



BALL ET AL.

2.2.2 | Microsatellites

Microsatellite markers were developed from E. platycephalus se-
quences by Ecogenics GmbH (Switzerland) using high-throughput se-
quencing as described by Abdelkrim, Robertson, Stanton, and Gemmell
(2009). In brief, 7 ug of genomic DNA was analyzed on a Roche 454
GS-FLX platform. Of 48,848 reads with an average length of 294 base
pairs (bp), 106 were found to contain a microsatellite insert with a
minimum of six repeats for a tri- or tetranucleotide unit, or 10 repeats
for a dinucleotide unit. Primers were designed by Ecogenics GmbH for
36 microsatellite inserts and tested using 15 individual E. platycepha-
lus DNA samples from the Institute of Zoology archive. After further
preliminary studies, eight polymorphic loci were selected for geno-
typing. Loci were amplified in simplex under conditions optimized for
each primer pair, as preliminary studies had shown a high incidence of
secondary products with multiplex PCR, which impeded allele scor-
ing. PCR was performed in 10 pl volumes with 20-100 ng DNA, 5 pl
mastermix (HotStarTaq Plus or Multiplex; Qiagen), 5 pmol/L unlabeled
reverse primer and 5 pmol/L fluorophore-labeled forward primer
(Applied Biosystems). Amplification was performed in a G-Storm GS1
thermal cycler (Gene Technologies), with initial denaturation 95°C
5 min, 45 cycles of 94°C 30 s, 57-59°C 90's, 72°C 90 s, and final ex-
tension 72°C 10 min. Primer sequences and locus-specific PCR con-
ditions are summarized in Table 2. Amplified products were resolved
by capillary electrophoresis on a 3130xl Genetic Analyser (Applied
Biosystems) with a LIZ-500 size standard (Applied Biosystems). Alleles

were scored manually, using PeakScanner 1.0 software (Applied
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Biosystems). Scoring was performed blind to the identification of in-
dividual samples to reduce subjective bias. If the allele bands could
not be unequivocally differentiated from stutter bands, split bands or
nonspecific peaks, the PCR was classed as having failed, and repeated.
Genotypes were tested for scoring errors using MICROCHECKER (van
Qosterhout, Hutchinson, Wills, & Shipley, 2004).

2.3 | mtDNA data analysis

Consensus 491-bp sequences of noncoding D-loop mtDNA were
aligned using ClustalW (Larkin et al., 2007) implemented in BioEdit
v7.2.0 (Hall, 1999). Haplotype diversity, nucleotide diversity and
genetic differentiation between populations were computed in
DNasp v5 (Librado & Rozas, 2009) using 1,000 permutations.
Nucleotide substitution models (Nei & Kumar, 2000) were com-
pared in MEGAS5 (Tamura et al., 2011). The Tamura three-parameter
model with gamma distribution (T92 + G; Tamura, 1992) and the
Hasegawa-Kishino-Yano (HKY) model with gamma distribution and a
proportion of invariable sites (Hasegawa, Kishino, & Yano, 1985) gave
the lowest values of Akaike information criterion, corrected (AICc)
and were used in subsequent analyses as indicated.
Maximum-likelihood tree topology was inferred in MEGAS5,
with the inclusion of a homologous D-loop sequence for E. mon-
tanus (GenBank EU880316; Zhang et al., 2008). Triturus cristatus
(GenBank EU880336; Zhang et al., 2008) was used as the outgroup
sequence, being within the clade of European newts encompassing
Euproctus (Weisrock et al., 2006; Zhang et al., 2008), but outside

TABLE 2 Characteristics of the eight microsatellite loci used in the study

Locus Sequence 5'-3' PCR Repeat A Size bp H, H, H,

EP1 F: TGG TGC CTCATG TGTTCCG 57° ACAT 18 146-218 0.686 0.665 0.838
R: GTG GCG GAT GGA AGC AAA G

EP7 F: TCC AGG TTG GCT TGG ATG G 57° ATGT 11 244-285 0.389 0.428 0.705
R: AGA ACA GGC CAC AACAGA G

EP8 F: TCT TTC TAA GAT TAT GGA ACG CC 57° TGAA 9 168-204 0.44 0.536 0.692
R: TTC GCA GTC CCA GATAGCC

EP16 F: GCT ATG TAT CTGTGC GTG C 57° AAAT 10 164-208 0.369 0.405 0.438
R: GGT TTC ACT GCCCGCTTAC

EP21 F: GCACTCCACTGCCTTTTG G Multi 58° ACAT 12 164-215 0.574 0.785 0.87
R: TAT GAATTG CCC AGT GCC

EP29 F: ACG AAT CGG CAG TGT CCA G 59°Mg 3.0 AAT 14 180-231 0.402 0.513 0.758
R: AGC TTG TGT CAG TCT GGT TTG

EP31 F: ACT GGA AAAAGC TAATTG ATAGAT G 57° AGAT 31 159-299 0.596 0.859 0.924
R: TTG CTT ATG TAA ATT GGA AAT GTT

EP33 F: GTG CAC CCA GTC AAT CAC AC 59°Mg25 AATC 12 187-223 0.662 0.726 0.778

R: ACT GAA TCG CAG ACC CAG

PCR, primer-specific PCR conditions including annealing temperature; multi, Qiagen Multiplex mastermix (all others in Qiagen HotStarTaqPlus mastermix);
Mg, final concentration of MgCl, (mmol/L) if supplemented. F, forward; R, reverse.A, total number of alleles in 168 individuals from 13 sampling locations;
size: range of allele sizes; bp, base pairs. Nei's diversity statistics (Nei, 1973) were calculated in FSTAT jackknifed across populations, using nine populations
comprising 14-32 individuals, H, observed heterozygosity; H,, expected heterozygosity under HWE within subpopulations; H, expected heterozygosity in

total population.
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the monophyletic Euproctus in-group (Sanderson & Shaffer, 2002).
Topology was tested by bootstrap resampling (1,000 replicates).

Molecular dating was performed in BEAST v2.1.3 (Bouckaert
et al.,, 2014), with mtDNA sequences reduced to haplotypes, and a
calibrated Yule tree model. HKY was used as the site substitution
model (Hasegawa et al., 1985). A monophyly prior was used to con-
strain the E. platycephalus-E. montanus node to allow for calibration.
This had no effect on topology and node support as shown by com-
parison with a tree without constraints (not shown). To test the as-
sumption of a constant rate of nucleotide substitution, log-likelihood
(InL) values of trees including with and without molecular clock con-
straints were compared using MEGAS. The null hypothesis of equal
evolutionary rate throughout the tree was not rejected (with clock
InL = -1039.21, without clock InL = -1023.49, p = .1411). This is in
keeping with the rate constancy reported in interspecific studies of
salamandrids (Caccone et al., 1997; Weisrock et al., 2006). In the ab-
sence of independent evidence to inform the calibration of a relaxed
clock model (Arbogast, Edwards, Wakeley, Beerli, & Slowinski, 2002),
a strict molecular clock was therefore used. For the analysis of pop-
ulation data and in closely related species, as in our study, this can
be considered a “good approximate of reality” (dos Reis, Donoghue,
& Yang, 2016). An arbitrary prior age of 12 My was specified on the
E. platycephalus-E. montanus divergence node, selected to reflect the
midpoint of the estimated time of separation of Corsica and Sardinia
ca. 15-9 Mya (Boccaletti et al., 1990). A normal distribution was used
to reflect bidirectional calibration uncertainty (mean 12 My and sigma
1.5, giving a central 97.5% range of 9-15 My). The program was run
with 10 Markov chain Monte Carlo cycles, with 20% burn-in. Chain
convergence and measures of effective sample sizes were assessed in
Tracer v1.6 (Rambaut, Suchard, Xie, & Drummond, 2014). Files from
three independent runs were combined with LogCombiner in BEAST
v2.1.3. TreeAnnotator was then used to determine the maximum clade
credibility tree. Trees were edited in FigTree v1.4 (Rambaut, 2012).

To further analyze the intraspecific mtDNA genealogy, a hap-
lotype network (Posada & Crandall, 2001) was constructed in
NETWORK v4.6.1 (www.fluxus-engineering.com) using the median-
joining method (Bandelt, Forster, & Ro6hl, 1999). TCS software
(Clement, Posada, & Crandall, 2000) was used to implement the par-
simony method (Templeton, Crandall, & Sing, 1992), to complement
NETWORK results, and to identify the likely ancestral or root haplo-
type. We estimated evolutionary divergence (D, ) between the ances-
tral haplotype and the other haplotype sequences using the Tamura
3-parameter model in MEGAS to calculate the number of base sub-
stitutions per site between sequences. The rate variation among sites
was modeled with a gamma distribution (shape parameter = 0.3). This
was used to derive the rate of nucleotide substitution (r) and time (T)
of divergence between haplogroups, according to T = D, /2r (Hughes
& Verra, 2001), using values of T derived from calibration in BEAST, or
a mtDNA D-loop mean mutation rate (r) in salamanders of 0.8%/My,
as estimated by Steinfartz et al. (2000).

We investigated potential population size changes in DNAsp v5
(Librado & Rozas, 2009) using mismatch distribution analysis and de-
termining raggedness r (Harpending, 1994), D* and F* (Fu & Li, 1993)

and R, (Ramos-Onsins & Rozas, 2002) statistics. The observed distri-
bution of pairwise differences was compared with the distribution ex-

pected for a model of sudden expansion (Rogers & Harpending, 1992).

2.4 | Microsatellite data analysis

Microsatellite loci were tested for linkage disequilibrium in FSTAT
v 2.9.3.2 (Goudet, 2001). FSTAT was also used to test allele rich-
ness, corrected for sample size, and estimators of F statistics (Weir
& Cockerham, 1984) across loci and populations. Relatedness was
estimated as for Queller and Goodnight (1989). The inbreeding co-
efficient F (Frankham, Ballou, & Briscoe, 2010) was estimated using
the inbreeding function of the adegenet package, version 2.0.0
(Jombart, 2008) implemented in R, version 3.2.2 (R Development
Core Team, 2015). A Wilcoxon rank-sum test, implemented in R,
was used to compare the means of estimated F values between dif-
ferent regions. Differentiation between populations was tested by
pairwise F¢; in FSTAT, with 1,000 permutations and Bonferroni cor-
rection (Rice, 1989). Populations were compared with respect to al-
lele richness and F statistics in FSTAT, using 1,000 permutations. An
unrooted neighbor-joining tree (Saitou & Nei, 1987) was generated
with the method of Fitch (Fitch & Margoliash, 1967) in PHYLIP v3.695
(Felsenstein, 1993), based on the pairwise microsatellite genetic dis-
tance matrix generated in FSTAT.

STRUCTURE v2.3 (Falush, Stephens, & Pritchard, 2003; Pritchard,
Stephens, & Donnelly, 2000) was used to infer genetic clustering ac-
cording to microsatellite allele frequencies. The nine sampling sites
containing more than 10 individuals were included, using the admixture
model to allow for the possibility of mixed ancestry. Sampling location
was included as locprior (Hubisz, Falush, Stephens, & Pritchard, 2009).
Ten replicate runs were performed for different numbers of clusters
(K), for K =1-9, with MCMC 1,000,000 after burn-in 50,000. Mean
log-likelihood values for each value of K were computed in Structure
Harvester (Earl, 2012), which also derived values of deltaK, based on
the rate of change in log probability for different values of K, detect-
ing the uppermost hierarchical level of structure (Evanno, Regnaut,
& Goudet, 2005). The highest log-likelihood posterior probability
was seen at K = 6 (shown in Section 3). To assign probabilistically the
proportion of individual membership to each of the six STRUCTURE-
defined clusters for individuals from the smaller sampling sites not
included in the original analysis, STRUCTURE was rerun for K =6
including all samples. Cluster membership coefficients from replicate
runs were permuted in CLUMPP (Jakobsson & Rosenberg, 2007).

Hierarchical clustering was further investigated using discriminant
analysis of principal components (DAPC; Jombart, Devillard, & Balloux,
2010) in the adegenet package, version 2.0.0 (Jombart, 2008; Jombart
& Ahmed, 2011) implemented in R, version 3.2.2 (R Development Core
Team, 2015). The find.clusters function of adegenet was initially applied
to individuals from the nine main sampling sites and then to subgroups
of the main sites, grouped according to region. The optimal number of
clusters was determined by examining the curves of Bayesian informa-
tion criterion (BIC) values as a function of the number of clusters (k) for
each case. The dapc function was then applied to the same groupings
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of sites, using cross-validation and a-score functions to determine the

optimum number of principal components to retain in each analysis.

2.5 | Approximate Bayesian computation

In this study, we used ABC implemented in DIYABC version 2.1.0
(Cornuet et al., 2014). The underlying process of DIYABC (Beaumont
et al., 2002; Cornuet et al., 2008) is to simulate datasets for scenarios,
drawing parameters from prior distributions based on observed ge-
netic structure. The simulated datasets with summary statistics clos-
est to those of the observed dataset are then used to identify the
model scenario that best fits the data. While this approach cannot
confirm the “right” model and generates broader confidence intervals
and less accurate parameter estimates than full-likelihood methods
(Robert, Cornuet, Marin, & Pillai, 2011), it provides a useful basis to
assess the likelihood of plausible alternative scenarios. ABC will not
distinguish between complicated models if the expected values for
the summary statistics do not differ (Wakeley, 2003). We therefore
adopted the approach of using competing scenarios to address spe-
cific questions and then to generate a final model in which to infer
posterior parameters for the model. Replicates of basic scenarios
were used to establish the range of core parameters and assess the
consistency of results. The timing, duration and magnitude of changes
in population size were evaluated in models based on supported
scenarios.

The mtDNA dataset was used to investigate the divergence of
the northern clade, including screening for bottlenecks, and for the
population expansion suggested by mtDNA pairwise nucleotide mis-
match analysis, using evolutionary scenarios and priors informed by
BEAST and NETWORK results. The microsatellite dataset was used
to infer evolutionary processes occurring between the partial central/
southern divergence shown on mtDNA haplotype analysis, and the
current status based on the hierarchical population structure shown
by STRUCTURE and DAPC, and to estimate effective population size
and more recent demographic changes. Independent simulations were
performed for mtDNA and microsatellite genetic datasets because of
observed mtDNA/microsatellite discordance, and results suggesting
microsatellite homoplasy (see Section 3).

For mtDNA, the HKY mutation model (Hasegawa et al., 1985)
was adopted, with parameters informed by the best fitting model
in MEGAS5 (proportion of invariant sites 61%, shape of the gamma
0.78). Log prior distributions were used for mean mutation rate and
mean coefficient, with default settings other than for the minimum
mean mutation rate (set at 1.00E-8) and for the maximum mean co-
efficient (set at 50). Individual loci were set to take the same value
(=mean). Default settings were used for the microsatellite mutation
priors, based on the generalized stepwise model (Di Rienzo et al.,
1994; Estoup, Jarne, & Cornuet, 2002). The mutation model default
priors are consistent with the microsatellite mutation rate observed
in the eastern tiger salamander (Bulut et al., 2009). All loci were
treated as a single group. A minimum of 10° simulations was per-
formed per scenario. Scenarios were compared using linear discrim-

inant analysis of summary statistics with logistic regression analysis
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(Beaumont, 2008; Fagundes et al., 2007) for estimation of posterior
probability with 95% confidence intervals (Cornuet et al., 2008). A
total of 500 pseudo-observed datasets (pods) were simulated under
each scenario to estimate error and assess confidence in scenario
choice (Cornuet, Ravigné, & Estoup, 2010). Parameters were esti-
mated from the posterior parameter distributions of the 1% simu-
lated datasets closest to the observed, using logit transformation.
Precision and bias of posterior parameters were assessed using pods
with parameter values drawn from the posterior distribution for the
relevant scenario. Models were also evaluated for goodness of fit and
potential discrepancies (Gelman, Carlin, Stern, & Rubin, 1995), with
the inclusion of a range of summary statistics that had not been used
for the original simulation process (Cornuet et al., 2010). ABC meth-
ods including prior settings and summary statistics used for simula-
tion and for model checking are further detailed in the Supporting

information.

3 | RESULTS

3.1 | Quality of DNA

Poor amplification, irrespective of the primer set used, was observed
in 59 DNA samples (26% of total), all of which had been extracted
from swab samples. This failure rate reflects both low yield, and a
DNA extraction method which had been optimized for the detection
of B. dendrobatidis spores. These samples were not included in subse-

quent analysis.

3.2 | Mitochondrial DNA

A D-loop fragment was amplified and sequenced in 96 individuals, in-
cluding a minimum of eight from each of the nine main sampling sites
(Table 1). The final alignment was 491 bp, including 16 variable sites,
13 being parsimony informative. Fifteen different haplotypes were
identified, of which six were unique to single individuals.

Figure 1 presents the consensus posterior probability phyloge-
netic tree inferred in BEAST 2 from haplotype sequences, including
E. montanus, and rooted with T. cristatus. Maximum-likelihood topol-
ogy and bootstrap support for trees computed with MEGA 5 yielded
equivalent results (not shown). All trees showed a very strongly sup-
ported node with clear divergence of a clade comprising haplotypes
from northern populations from a clade encompassing both south
and central regions. Both the northern and the south/central clades
showed further divergence with strong nodal support, generating par-
tial separation of central and south haplotypes.

Deep division was also apparent in the median-joining haplotype
network implemented in NETWORK (Figure 1), in which northern
haplogroups were separated from central haplogroups by a mini-
mum of five mutations. By contrast, the network showed incomplete
resolution between central and southern regions; haplotype C1 was
shared between six individuals from central populations, and one
from the south. The E. montanus sequence was positioned in the net-
work at 63 mutations from the central E. platycephalus haplotypes.
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FIGURE 1 Deep divergence revealed by mtDNA sequencing. Left: Bayesian phylogenetic tree of Euproctus platycephalus mtDNA haplotypes
implemented in BEAST, using a strict molecular clock model. The tree was rooted with Triturus cristatus (not shown on figure for clarity). An
arbitrary prior node age of 12 My was specified on the E. platycephalus-Euproctus montanus divergence node (starred). Values for posterior
probabilities of >0.75 are shown at the relevant nodes. The inset table shows the inferred ages and 95% highest posterior density (HPD)
intervals for the numbered nodes. The vertical bars to the right of the tree show clustering of haplotypes into north (blue), central (green), and
south (orange) haplogroups. Right: Median-joining haplotype network, implemented in NETWORK. Circle sizes are proportional to haplotype
frequency and colored according to the region of origin of each individual with that haplotype. Numbers represent the number of nucleotide
differences between haplotypes, where no number is shown lines between circles represent a single difference. Unrepresented intermediate
nodes are shown as an open circle. The E. montanus sequence (not shown for clarity) is positioned in the network at 63 mutations from its
closest E. platycephalus sequence, C2, and thus 64 from C1, the presumed ancestral haplotype

Equivalent topology was seen in the network yielded using the par-
simony method in TCS software (not shown) although the E. mon-
tanus sequence could not be connected in the same network as
E. platycephalus.

The table in Figure 1 shows the estimated ages with highest prob-
ability density intervals for the well-supported nodes in the haplotype
phylogenetic tree, calibrated according to a 12 Mya split between
E platycephalus and E. montanus. By this approach, the divergence of
the northern clade from the central/south was estimated at 1.13 Mya.
Further divergence within the north was dated to 0.56 Mya, similar to
the onset of divergence within the central and southern haplogroups
(0.58 Mya). Based on the maximume-likelihood genetic distance be-
tween E. montanus and the C1 haplotype, identified in TCS as the likely
ancestral haplotype, the nucleotide substitution rate was calculated to
be 0.5% per million years.

Pairwise mismatch distribution analysis of the combined southern
and central groups, but not for the northern group, showed a single
peak at a mismatch value of 1-2 nucleotides, with a distribution vi-
sually similar to that predicted under a sudden expansion model
(Figure 2). Values of Fu's D* and F* neutrality statistics (Fu & Li, 1993)
for the combined center-south group were significantly negative, in

keeping with demographic expansion.

3.3 | Microsatellites

3.3.1 | Diversity

We generated microsatellite genotypes for a total of 168 individu-
als sampled at 13 GPS-defined sites. Successful amplification across
all eight loci was achieved in 145 individuals (86.4%), with failure to
amplify at a single locus in 17 (10.1%), and at 2 loci in 6 (3.5%). There
was no association of failure to amplify with individual loci or popula-
tions and no significant linkage disequilibrium between any pairs of
loci. Polymorphism was apparent at all loci in all populations, with
allele numbers ranging from 9 to 31 for individual loci (Table 2). All
individual genotypes were different, indicating that no individual had
been sampled more than once. No more than two allelic bands were
recorded per individual, making it unlikely that skin cells derived more
than one individual had been inadvertently sampled, a potential risk
associated with the use of external swab samples (Miiller et al., 2013).
While there was deviation from Hardy-Weinberg equilibrium (HWE;
p < .001), the results did not suggest the presence of null alleles affect-
ing specific loci or populations (Tables 2 and 3). Simulators of F statis-
tics were significantly greater than zero (99% confidence intervals F ;
.22-43; F¢; .095-.316; F ¢ .056-.265), allowing the null hypothesis of
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FIGURE 2 Demographic expansion: pairwise nucleotide mismatch distribution. The graphs show the frequency of observed individual
pairwise nucleotide site differences in the mtDNA D-loop sequence (circles/dotted lines) in comparison with the pattern expected for a sudden
expansion model (solid smooth line). The curves for the combined south/central regions show a good visual fit, with a peak at 1-2 nucleotides.
The significantly negative values for the neutrality statistics D* and F*, shown in the table, are also consistent with demographic expansion in the
south/central region, but not in the northern. all, All individuals; individuals from northern region; south/central, pooled individuals from south
and central regions; n: number of individuals; D* & F*: Fu’s neutrality statistics (Fu & Li, 1993); R,:R, test for neutrality (Ramos-Onsins & Rozas,
2002); r: raggedness index (Harpending, 1994); Statistically significant values are shown in bold italics

TABLE 3 Summary of microsatellite

genotyping results in Euproctus Site
platycephalus Total All
Regions North
Central
South
Populations
1 HP
2 BIA
5 BP
7 SES
8 PF
9 MAR
10 LNR
11 GUN
13 CER

Number A H, H, Fis Fsr

168 2.376 0.511 0.613 166 .185
37 2.693 0.361 0.581 .378 .009
48 2.764 0.501 0.564 111 A1
68 3.05 0.597 0.666 .104 .031
23 2.852 0.385 0.619 .378 .000
14 2481 0.325 0.52 .376 .001
16 2.883 0.515 0.563 .084 .069
17 2.798 0.442 0.57 225 .000
15 2.612 0.55 0.56 .019 .000
20 3.068 0.591 0.665 112 .000
14 2.912 0.597 0.637 .063 .051
15 3.225 0.694 0.683 .000 .002
19 3.005 0.526 0.673 218 .000

Allele richness (A,), observed (H,), and expected (H,) heterozygosity, and fixation statistics (F 5 and F¢p;
Nei & Chesser, 1983) were calculated in FSTAT, with bootstrapping across all eight loci. The top row
shows results for the total 168 samples. Results for regions and populations include the nine popula-
tions with 214 individuals. Negative estimates of F¢; and FIS are shown as zero.

panmixia to be rejected. Population structure thus provides the likeli-
est explanation for the observed deviation from HWE.

The two northern populations (HP and BIA) had significantly lower
genetic diversity than those from the center or south, as measured
by allele richness (p < .05), observed heterozygosity (p < .01), related-
ness (p <.05), and F s (p <.01). An estimated inbreeding coefficient

(F) value of >.5, the equivalent of three generations of full-sib mating

(Frankham et al., 2010), was observed in 11 of 37 (29.7%) individuals
in the north, six of 48 (12.5%) in the center, and seven of 68 (10.3%)
in the south. The mean inbreeding coefficient was also significantly
higher for individuals from the northern region than from the south
or central regions (mean [SD] for north 0.4114 [0.178]; center 0.2882
[0.145]; south 0.2745 [0.143], p values for north vs. central and

north vs. south <.001). There was no significant difference in genetic
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diversity between south and central regions. There was no significant
difference in relatedness, F ¢ or mean inbreeding coefficient between
males (n = 41) and females (n = 26) pooled from all southern sampling
sites (not shown). In the north and central regions, the number of indi-
viduals of known gender was insufficient to allow comparison.

3.3.2 | Hierarchy of genetic clustering

To investigate patterns of genetic structuring across the island, the
nine sites with the highest number of individuals (range 14-23) were
used, comprising two from the north, three central, and four from the
south (Table 1). The largest pairwise F¢; values tended to be between
sites from different regions, while the values between the pairs of
sites from the same region tended to be lower (Table 4). There was
also significant pairwise divergence between the three sites from the
central region and in the south between one site (LNR) and the other
three sites from the region. A neighbor-joining tree, based on pairwise
differences between the nine populations (Figure 3), illustrates the hi-
erarchy of genetic structure, strongest between regions and between
the individual central populations, with a lower level of divergence
between the southern populations.

In STRUCTURE, the peak value of deltaK was associated with
K = 2, but the log-likelihood posterior probability was highest at K = 6
(Figure 4). When the number of clusters was set at K = 3, the three
main regions were clearly differentiated on barplots (Figure 3). At
K = 6, the strong regional pattern was still apparent, but there was also
clear demarcation between the three central sites, and weaker differ-
entiation between LNR and the other southern locations (Figure 3).
Microsatellite STRUCTURE results for the smaller populations at K = 6
strongly resembled those of their closest regional neighbors (Figure 5).

An equivalent hierarchical structure was identified using DAPC.
When the individuals from the nine main sampling sites were analyzed
together, the BIC value declined sharply to a cluster value of 3, then
a more gradual decline to K = 6 (Figure 4). A DAPC scatterplot of the
first two principal components showed clear demarcation between
the three regions (Figure 3). When individuals from the three central

sites were analyzed separately, the BIC plot showed a sharp elbow at

K = 3 (Figure 4), and the scatterplot showed clear genetic differenti-
ation between the three sites (Figure 3). Intraregional differentiation
was also apparent in the southern samples when analyzed separately,
distinguishing individuals from the LNR sampling site from those of
the other southern sites. The two northern sampling sites showed no
intraregional clustering with DAPC or with STRUCTURE, even when

analyzed separately from central and southern sites (not shown).

3.4 | Discordance between mtDNA and
microsatellite markers

Figure 5 presents the frequency distribution of mtDNA haplotypes
for the different sampling sites in comparison with the corresponding
microsatellite STRUCTURE-derived bar charts, showing the propor-
tion of membership assigned probabilistically to each of K = 6 clusters.
Consistent with the strong regional grouping shown in the median-
joining network, mtDNA haplotypes were shared between sites from
the same region but not across regions, with the exception of a cen-
tral haplotype (C1) observed in a single individual from the south.
However, striking differences were apparent in the pattern of distri-
bution of mtDNA haplotypes between individual sampling sites from
within the same region. This mtDNA/microsatellite discordance is also
illustrated by the differences in genetic distance between populations
for mtDNA in comparison with microsatellite markers (Table 5).

The most common pattern of discordance was one of divergent
mtDNA haplotypes between sites despite almost identical microsat-
ellite patterns, most clearly illustrated by the two main northern sam-
pling sites (HP and BIA; Figure 5). In addition, mtDNA haplotypes for
two of the four individuals from the smaller northern site (AFF) were
not shared with any of the 20 individuals of the two main sites with
the same microsatellite pattern. A unique haplotype was also found in
the single individual sampled at the Monte Olia site. A similar pattern
of mtDNA/microsatellite discordance was apparent in the southern
populations, where the less common S2 haplotype was found to pre-
dominate in individuals from MAR, in contrast to the predominant S1
haplotype in the other southern populations despite their having very

similar microsatellite patterns.

TABLE 4 Matrix of pairwise genetic distances between main populations, grouped according to region

MAR CER LNR GUN
South MAR 8.45 0.68 6.03
CER 0.0223° 8.91 4.47
LNR 0.0799 0.0693 6.68
GUN 0.02332 0.0150° 0.0397
Central  BP 0.2303 0.2185 0.2765¢ 0.2092
PF 0.2626 0.2497 0.2952 0.2470
SES 0.2053 0.2272 0.2665 0.2283
North HP 0.2298 0.2085 0.2440 0.2032
BIA 0.2824 0.2645 0.2973 0.2613

BP PF SES HP BIA
93.09 28.69 69.78 169.65 168.49
101.49 37.06 78.22 178.03 176.79
92.60 28.17 69.31 169.29 168.14
98.64 34.38 75.25 174.42 173.20
64.44 23.55 83.05 82.69
0.1661 41.27 142.49 142.57
0.1195 0.1332 102.56 101.80
0.2174 0.2023 0.1906 2.82
0.2788 0.2192 0.2152 0.0117?

Pairwise F¢; values are shown below the diagonal, with Euclidean distance in km between the sampling sites above the diagonal. All values significant at p <.001
after Bonferroni correction except a; ns, b; p < .05, c; p < .01. All values significant at p < .001 after Bonferroni correction except a; ns, b; p <.05,¢; p <.01
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FIGURE 3 Hierarchical population genetic structure of Euproctus platycephalus revealed by microsatellite genotyping. (a) Unrooted neighbor-
joining tree, based on pairwise genetic distance, showing strongly separated regional clades, with intraregional differentiation between the
central populations, and partial differentiation between the southern. Branches are colored according to region (blue: north, green: central,
orange: south). (b) STRUCTURE results for different values of K. The barplot columns represent the Bayesian assignment of individuals to each
of K genetic clusters, for K= 3 and K = 6. The probability of membership to each shown as the height of the relevant colored segment. There

is clear demarcation between genetic clusters coincident with the spatially defined population groups, consistent with the pairwise F¢; results.
(c) DAPC scatterplots of first two principal components, showing individuals as points, and inertia ellipses for populations defined according

to the nine main sampling sites. Points are color-coded for region of origin (blue: north, green: center, red: south). The top panel shows the
results when all nine groups are included, with clear separation according to region. The lower two panels show results from separate analysis of

populations from the central and southern sites

A different pattern of discordance was apparent in the central re-
gion. BP differed from the other two main central sites (SES and PF)
with respect to both mtDNA and microsatellite patterns. By contrast,
the mtDNA haplotype distribution in SES and PF was very similar, de-
spite strong microsatellite divergence. Unfortunately, there was insuf-
ficient DNA to allow sequencing of mtDNA haplotypes in the smaller
site (PGC) in the central region.

3.5 | Approximate Bayesian computation

3.5.1 | Simulations using mtDNA datasets

We used ABC of mtDNA datasets to infer the timing and demograph-
ics of the divergence of the northern population of E. platycephalus.
Model scenarios were informed by the mtDNA phylogeny results in-
dicative of an early split of the northern population from an ancestral
central (center-south) population, with later onset of divergence of
the center and south. The model scenarios used and their posterior

probabilities are detailed in Figure S1. As predicted, a scenario of early

divergence of the north from an ancestral center-south population,
with subsequent divergence of the center and south, was strongly
supported over an alternative scenario of simultaneous divergence
of all three regions. A third scenario including an unsampled or ex-
tinct population was not supported. The timing of the northern diver-
gence, inferred from the posterior distribution of parameters for the
supported scenario, was around 3 million generations ago and that
of the center-south split around 0.5 million generations ago (Figures
S1and 6).

Scenarios incorporating change in effective population size (N,)
were used to screen for bottlenecks at the time of divergence of the
northern clade, which might underlie its observed reduction in ge-
netic diversity, as well as for demographic expansion affecting the
center-south population, suggested by pairwise mismatch distribu-
tion (Figure 2). Methods and results are detailed in the Figs S2 and
S3. Results were consistent with a bottleneck affecting not only the
northern population, but also the center-south ancestral population
around the time of their divergence. There was also support for post-
bottleneck demographic expansion affecting the diverged northern
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population as well as the ancestral center-south population, with re-
covery of both to predivergence levels. ABC results were also in keep-
ing with an equivalent pattern of bottlenecks affecting both center and

south populations at their later divergence (Figures 6, S2 and S3).

3.5.2 | Simulations using microsatellite datasets

We used microsatellite datasets in DIY ABC to infer events in the
center and south, bridging the gap between the partial split be-
tween the south and center apparent on mtDNA analysis, and the
complete divergence of the central region populations indicated by

Humber of clustens

5 6 7

8
BP PGC SES PF

1l

MAR LNR GUN MAI CER

FIGURE 4 Estimation of number of
genetic clusters in microsatellite dataset.
Top panel: Variation in posterior probability
and deltaK for different numbers of clusters
(K) in STRUCTURE. The mean posterior
probability L(K), based on 10 replicate runs,
increases sharply up to K = 3, reaching a
maximum at K = 6. At values of K above
this level, the probability decreases, with
higher variance. DeltaK values (Evanno
et al., 2005) most strongly support K = 2.
Bottom panels: BIC values for different
o numbers of clusters (k) using clustering
algorithm in adegenet. The curve for
! individuals from all nine sampling sites (left)
mirrors the L(K) results. When analyzed
separately, the central region (center)
shows a clear elbow at k = 3, and the
southern (right) at k = 2
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BIA  AFF MO

FIGURE 5 Geographical distribution
of mtDNA haplotypes and microsatellite
genetic clusters, showing mitochondrial-
microsatellite discordance at intraregional
level. Left panel: Pie charts showing
patterns of mtDNA haplotype frequency
distribution for sampling sites, grouped
according to region. The haplotype for
the individual from Monte Olia (MO) is
shown as a small circle. Right panel: Bar
charts showing the proportion of group
membership assigned probabilistically to
each of K = 6 clusters in STRUCTURE for
each sampling site. For the single sample
from Monte Olia, the individual result is
shown (marked *, site 4). The nine major
sampling sites are shown in bold and the
supplementary sites in italic. See Figure 6
for map of Sardinia showing the locations
of the sampling sites

13

Microsatellite

microsatellite markers. Competing model scenarios and posterior
probabilities are shown in Fig. S4.

The supported scenarios are in keeping with early divergence of
the south and center and subsequent intraregional divergence. The
scenario of a sequential process underlying central intraregional di-
vergence received the highest posterior support (Figures 6 and S4A),
consistent with a model of southerly spread and subsequent loss of
connectivity. This was endorsed by the comparison of scenarios in-
corporating admixture, the best-supported model showing a low level
of admixture (inferred proportion 0.189), between the northernmost
central population (BP) and the geographically intermediate (SES), and
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TABLE 5 Discordance between mtDNA and microsatellites
according to region

mtDNA Microsatellite

North

HP:BIA ’ ns
Central

BP:SES ’

BP:PF "

PF:SES ns
South

MAR:CER v ’

MAR:GUN ns

MAR:LNR

CER:GUN ns

CER:LNR ns

GUN:LNR ns "

Comparison of levels of significance for pairwise genetic distances be-
tween sites with mtDNA and microsatellite markers, showing contrasting
patterns of discrepancy between mitochondrial and microsatellite markers
according to region. ns; nonsignificant (p > .05).

*p < .05; **p < .01; ***p < .001 (after Bonferroni correction).

a high level (inferred proportion 0.811) between SES and the southern-
most (PF), with minimal support for a scenario of admixture between
BP and PF (Fig. S4B). For the origin of LNR, the genetically distinct pop-
ulation in the southern region, the highest posterior support was for a
simple split from the rest of the south, with no support for a model of
admixture with an unsampled “ghost” population (Fig. S4D). A compos-
ite model was generated to incorporate the above supported scenarios
(Figure 6), not including admixture for clarity. Parameters derived from
posterior distributions of replicate simulations are in keeping with the
divergence of the center and south from a common ancestral popula-
tion 1-2 x 10* generations ago, with differentiation within the central
region dating from 3-5 x 10° generations ago.

Inclusion of northern region in microsatellite dataset model

The scenario of separation of the north from a center-south common
ancestor predictably received the highest posterior support (Fig. S6A),
consistent with the mtDNA-based model. However, the model check
showed a less good fit for this scenario (Fig. S6B) than for the compos-
ite center-south scenario, without the northern population but other-
wise identical (Fig. S6C). In addition, parameters inferred the posterior
distributions were inconsistent with the mtDNA-supported phylog-
eny in that the divergence of the north from the center-south ances-
tor appeared to be more recent than that of the center and south.
There were also discrepancies apparent in the timing of intraregional
divergence of the south and center. (Fig. S6C). These results may be
explained by differences in the inferred mtDNA mutation rate in sce-
narios incorporating the north. While the posterior mutation rate was
equivalent for scenarios with only the north microsatellite dataset and
for those including the center and south, all scenarios including north
with the center and south had a significantly lower inferred mutation
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rate (Fig. S6D). This is in keeping with the time of coalescence being
influenced by the occurrence of homoplasy, in which populations
share alleles identical in size but not by descent (Estoup et al., 2002).
This is a predictable risk with the microsatellite model of mutation
used, especially for ancient events (Cornuet et al., 2010) and distantly
related populations (Nauta & Weissing, 1996), and therefore consist-
ent with the historic isolation of the northern population from those

in the central and southern regions.

Demographic changes inferred from microsatellite datasets
Inferred values for stable N, were similar across all six STRUCTURE-
defined populations, in the range 10°-10 (Fig. S7B). The supported
central/south scenario, not including the northern population, was
used as the basic model in which to screen for bottlenecks around the
inter- and intraregional splits. Posterior support was shown for a bottle-
neck scenario at the time of the center-south split, affecting both the
south and central ancestral populations, but not for bottlenecks around
the later intraregional divergence events (Figure S7). To prevent dis-
tortion caused by homoplasy, the northern microsatellite dataset was
screened separately for demographic change. To ensure comparability
with results from the full scenario, this approach was initially applied to
the separate south and central mtDNA datasets. Results supported the
occurrence of bottlenecks 1-2 x 10* generations ago, affecting both
south and central regional populations. This timing is similar to that
inferred for the center-south split in the full scenario. A bottleneck
affecting the north population was also supported. The inferred timing
appeared more recent, around 5 x 10° generations ago, but with con-
fidence intervals overlapping those of the center and south (Fig. S7E).
Individual regional datasets were also used to screen for popula-
tion expansion. There was good support for demographic expansion
events affecting the center and south. Posterior distributions for the
expansion models were in keeping with very similar timing of expan-
sion for both center and south regions, predating the divergence of
the center and south. For the north dataset, the expansion scenario
received lower support, but with a good fit on model checking, in-
cluding no outliers in distributions of summary statistics. The inferred
timing for expansion was equivalent to those for the center and south.
Posterior probabilities were close to zero for scenarios with expansion

occurring more recently than the center-south split (not shown).

4 | DISCUSSION

We have demonstrated a clear hierarchy of structure between ge-
netically divergent and spatially distinct subpopulations of the en-
dangered E. platycephalus across its range of distribution. With more
extensive sampling, we have been able to build on and extend the
mtDNA results of Lecis and Norris (2004b). In addition, the combined
use of mitochondrial and microsatellite markers has demonstrated
further complexity of genetic structure at the microgeographical level
and has allowed the application of ABC to address hypotheses relat-
ing to the historic and contemporary processes underlying the ob-
served patterns of genetic structure.
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4.1 | mtDNA analysis: deep genetic divisions dating
to the Pleistocene

A deep phylogenetic split distancing the northern populations from
those from the center and south was the most striking finding in our

study with respect to mtDNA haplotypes, in keeping with the results
of Lecis and Norris (2004b). This was shown by the strongly supported
monophyletic northern clade in the phylogenetic tree and endorsed by
the isolation of the northern haplogroups in the mtDNA haplotype net-
works. Our results indicate that the northern clade of E. platycephalus
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became isolated ca. 1.13 Mya. Divergence between the southern and
central populations began later, ca. 0.58 Mya, with very similar tim-
ing to the onset of divergence within the northern clade. Bisconti,
Canestrelli, Salvi, et al. (2013) found comparable phylogenetic divi-
sions in their mtDNA study of the closely related Corsican endemic
E. montanus, in which they also used the E platycephalus-E. montanus
split for node calibration, applying similar caution to avoid overpreci-
sion. They estimated that deep intraspecific divergence of E. montanus
dated to early Pleistocene and terminal haplogroup divergence to late
Pleistocene (Bisconti, Canestrelli, Salvi, et al. 2013). Divisions dating
to early/mid-Pleistocene have also been described in the popula-
tion structure of the Corsican painted frog Discoglossus montalentii,
another Corsican endemic which occupies a similar montane habitat
(Bisconti, Canestrelli & Nascetti, et al., 2013). More distant taxa pro-
vide additional evidence of the importance of this period in Tyrrhenian
phylogeography. Phylogeny of two Corso-Sardinian endemic lizards,
Algyroides bedriagae and Algyroides fitzingeri, also shows deep divisions
dating to around 1-2 Mya, depending on the substitution rate used
for calibration (Salvi, Harris, Bombi, Carretero, & Bologna, 2010; Salvi,

Harris, Perera, Bologna, & Carretero, 2011).

4.2 | Microsatellite analysis: more recent genetic
differentiation

There was clear alignment between the historic divisions identified
with mtDNA sequencing and the contemporary genetic partitioning
between regions shown by microsatellite analysis. The dominance of
these deep regional divisions partially obscured structure at a finer
geographical scale. However, when the regions were analyzed sepa-
rately, further differentiation could be discerned. The most striking
finding was that of significant divergence within the central region to
form three distinct populations, reflecting the higher power of micro-
satellite datasets to detect more recent patterns of restricted gene
flow. The validity of our results is endorsed by their consistency with
the different approaches used to detect clustering. The observation of
homoplasy does not invalidate these findings, although the pairwise
genetic distance between the northern populations and those of the
center and south is likely to have been underestimated as a result. This
does, however, provide an explanation for why the highest value of
deltaK in STRUCTURE was two rather than three, as might have been
predicted from regional partitioning.

No significant further differentiation could be discerned within the
northern region on microsatellite analysis. This may be explained by
the close geographical proximity of the sites in this study, consistent
with the high gene flow expected at a microgeographical spatial scale,
within the usual dispersal radius of the species (Richardson, Urban,
Bolnick, & Skelly, 2014). Our results also suggest extensive gene flow
between the sampling sites within the southern region, with the ex-
ception of partial but significant divergence between a single site
(LNR) and the other southern populations. The ancient divisions be-
tween mountain ranges and the clustered sampling of closely neigh-
boring populations across geographically distant sites preclude Mantel
testing of isolation by distance (Mantel, 1967; Wright, 1943) across
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the entire dataset (Meirmans, 2012). Within the common movement
range, Euclidean geographical distance is likely to play a less import-
ant role than environment in influencing the dispersal of amphibians
(Angelone, Kienast, & Holderegger, 2011; Oromi, Amat, Sanuy, &
Carranza, 2014; Sexton, Hangartner, & Hoffmann, 2014).

4.3 | ABC: bridging the gap between mtDNA and
microsatellites

Mitochondrial markers provide insight into historic phylogenetic
events and microsatellites into contemporary population structure
(Wang, 2011). However, there remains in effect a temporal gap be-
tween them, illustrated in our study by the lack of information on
events occurrence between the partial divergence of the central and
south ca. 0.5 Mya, shown on mtDNA analysis, and the striking intrare-
gional differentiation of the central populations, shown on microsatel-
lite analysis. We therefore used ABC to infer intermediary processes,
including changes in population size.

Approximate Bayesian computation is approximate by defini-
tion, and the accuracy of parameter estimates is lower than for full-
likelihood methods (Robert et al., 2011). Estimates of time parameters
are additionally influenced by the mutation model adopted and by es-
timates of the generation time. In the absence of a unified model of
mutation applicable to all microsatellite loci (Balloux & Lugon-Moulin,
2002; Ellegren, 2004), we adopted the generalized stepwise model (Di
Rienzo et al., 1994; Estoup et al., 2002). Estimates of mtDNA and mi-
crosatellite mutation rates were broadly compatible with the limited
reference ranges available (Bulut et al., 2009; Steinfartz et al., 2000). In
this study, our observations of mtDNA-microsatellite discordance and
microsatellite homoplasy precluded the incorporation of both mtDNA
and microsatellite datasets into the same scenario. However, poste-
rior distributions for mutation model parameters for both mtDNA and
microsatellite markers were consistent between supported scenar-
ios of the relevant datasets, with the exception of those affected by
homoplasy, allowing the comparison of relative times in generations.
Although results for timing and effective population size were not di-
rectly comparable across the markers, it was still possible to compare
mtDNA and microsatellite scenarios with respect to events around the
divergence of the central and southern regions, as mtDNA-microsat-
ellite discordance was only apparent at the finer intraregional scale.

The time to sexual maturity may be used as an approximation of
the generation time, defined as the age at which members of given
cohort are expected to reproduce (Lande, 1982). The study of Angelini
et al. (2015) reported a mean age to sexual maturity of 2-5 years
across the island. However, this was influenced by temperature, with a
shorter time to sexual maturity in the south than in the north (Angelini
et al., 2015). A constant generation time therefore cannot be assumed
for our study; during glacial phases, it is likely to have been longer
than during interglacial or postglacial phases. This is unlikely to impact
on the inferred topology of regional and intraregional divergence, but
may further reduce the accuracy of temporal estimates.

The results of screening for changes in population size were less
clear-cut than for the comparison of scenarios of competing topology,
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but again there was consistency in the timing of bottlenecks and ex-
pansion events between full scenarios and separate regional popula-
tions, and between mtDNA and microsatellite datasets with respect
to changes around the center-south split. This consistency in timing
across separate regional populations, with differing patterns of inter-
nal population structure, makes it unlikely that the presence of popu-
lation structure had generated a false signature of population decline
(Chikhi, Sousa, Luisi, Goossens, & Beaumont, 2010). A potential dis-
advantage to the analysis of individual population datasets is that
the number of available summary statistics is low, with loss of power
of resolution between scenarios, and in model checking. However,
the consistency across regions again endorses the plausibility of the
results.

4.3.1 | Composite biogeographical model

Caveats aside, the ABC approach generated very interesting results,
allowing the inference of intermediary events, and providing further
insights into historical processes. Analysis of demographic change in-
dicated that the early divergence of the northern clade was likely to
have been associated with a sharp population decline affecting both
the north and the center-south ancestral populations, rather than the
north alone, as might otherwise have been predicted from its lower
genetic diversity. Similarly, in contrast to the results of pairwise mis-
match analysis, there was support for a postbottleneck expansion af-
fecting the north, as well the center-south ancestral population. The
similarity of timing of bottlenecks and expansions relative to the time
of divergence is in keeping with a common event impacting on the
whole ancestral population, associated with a sharp population de-
cline, and leading to isolation and subsequent expansion of the newly
diverged north and center-south populations. This reduces the plau-
sibility of an alternative model of a peripatric origin for the northern
population, arising from the migration of founder individuals from the
northern margin of the ancestral population.

A common event is also likely to underlie the later divergence of
the center and south regions, again indicated by a sharp population
decline affecting both diverged populations with equivalent timing
relative to the split. Although there was also support for a bottleneck
affecting the north, with broadly similar timing, it is not clear whether
this reflects a common or an independent process. A predivergence
expansion event inferred from microsatellite ABC scenarios for each
of the three regions is likely to mirror the rebound expansion inferred
from mtDNA scenarios.

According to ABC results, intraregional differentiation occurred
independently in the diverged south and central regions. For the cen-
tral populations, we hypothesize a process of southward expansion,
and sequential isolation of the three main central populations, as indi-
cated by the supported topology and admixture scenarios. There was
no evidence for rapid expansion following intraregional divergence. It
is therefore not clear whether there was gradual full recovery to the
prebottleneck population size, followed by a decline to current levels,
or a partial recovery followed by population stability, a distinction with
clear implications for conservation.

4.4 | Inference of historical processes

The identification of a strong intraspecific genealogical structure al-
lows inferences to be drawn with respect to the interaction of geog-
raphy and climate with population structure (Avise, 2009; Avise et al.,
1987; Hickerson et al., 2010). Concordance in the temporal pattern
of genetic differentiation across diverse geographically codistributed
taxa is in keeping with common vicariance events (Avise, 2000; Riddle
et al., 2008). The estimated timing of the more terminal haplogroup
divergence in the north, and the onset of differentiation between the
central and southern regions, fits with that of the severe glacial cycles
of early to mid-Pleistocene (0.9-0.4 Mya; Kahlke et al., 2011; Webb
& Bartlein, 1992). Euproctus platycephalus is likely to have been rela-
tively protected during glacial maxima, Sardinia being situated south
of glaciation permafrost lines (Frenzel, 1992), on a latitude equiva-
lent to that of the Mediterranean peninsula glacial refugia (Hewitt,
2004; Taberlet, Fumagalli, Wust-Saucy, & Cosson, 1998; reviewed
by Schmitt, 2007). As a continental island, Sardinia would have been
further protected by marine buffering of climatic oscillations (Cronk,
1997; Médail & Diadema, 2009). There is evidence that it served as
a glacial refugium for temperate species (Médail & Diadema, 2009;
Vogel, Rumsey, Schneller, Barrett, & Gibby, 1999). However, even
within refugia, it is likely that glacial oscillations influenced species
distribution and fragmentation by a differential effect on environmen-
tal niches and habitats (Cimmaruta, Lucente, & Nascetti, 2015; Gémez
& Lunt, 2007; Provan & Bennett, 2008). While glacial maxima tend to
drive range retraction for low elevation temperate species, montane
species are more likely to expand their range to lowlands during glacial
periods (Hewitt, 2011; Stewart, Lister, Barnes, & Dalén, 2010). The ef-
fect of glacial periods on the range of E. platycephalus may thus have
been permissive, promoting connectivity of habitats and facilitating
extension of a central population to the southern mountain range of
Sardinia, with subsequent postglacial range contraction and restric-
tion to the major mountain systems. Our results relating to the tim-
ing of intraregional divergence and the likely southward expansion of
the central and southern populations would be consistent with this
hypothesis. An equivalent model has been proposed for the dispersal
of the sky island salamander Plethodon ouachitae across the Ouachita
Mountain range during the climatic fluctuations of the Pleistocene
(Shepard & Burbrink, 2008). Glacial phase demographic expansion
is also considered to underlie the intraspecific genetic structure of
the Tyrrhenian tree frog Hyla sarda, endemic to Corsica, Sardinia
and neighboring islands (Bisconti, Canestrelli, Colangelo, & Nascetti,
2011).

By contrast, the earlier genetic isolation of the northern population
of E. platycephalus is likely to predate the onset of the severe glacial
oscillations. While the Corso-Sardinian block has generally been con-
sidered to have been tectonically stable since around 7 Mya (Mariani,
Braitenberg, & Antonioli, 2009), recent data provide evidence for sig-
nificant reactivation of faults along the East-Sardinian margin within
the time period of the northern isolation (Gaullier et al., 2014; Giresse,
Pascucci, Lymer, Gaullier, & Thinon, 2014). Tectonic events thus

provide a plausible biogeographical process for the isolation of the
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northern populations of E. platycephalus, whether directly by rifting, or
indirectly, for example by marine ingression. Sea is a very effective bar-
rier to the dispersal of freshwater-dependent salamanders, illustrated
by the findings of Hauswaldt et al. (2014) who investigated the diver-
gence of spectacled Salamanders endemic to the Apennine peninsula.
The range of their estimate of divergence between Salamandrina per-
spicillata in the north, and the southern S. terdigitata, is coincident with
that of the recurrent marine submersion of the Volturno-Calore River
drainage basin, which lasted into early Pleistocene (Hauswaldt et al.,
2014).

Anthropogenic habitat loss and fragmentation over the last cen-
tury may have influenced the population size and connectivity of
E. platycephalus across its range. Sardinia has been the site of major
hydrological modifications, including the construction of thirty dams
from 1920 to 1960, for electricity generation and water supply
(Corsale et al., 2011). Neutral genetic divergence may also occur as the
indirect result of local adaptation, in which natural selection against
immigrants limits gene flow (Wang & Bradburd, 2014).

4.5 | Mitochondrial-microsatellite discordance at the
intraregional level

In contrast to the observed alignment of genetic divisions between
the regions identified by mtDNA and microsatellite markers, at a finer
geographical scale, there was mitochondrial-microsatellite discord-
ance. Within the central region, the occurrence of divergent micro-
satellite genotypes in the presence of a shared pattern of mtDNA
haplotypes can be ascribed to the higher power of microsatellites in
detecting more recent obstacles to gene flow. However, within the
northern and southern regions, a contrasting pattern of mitochondrial-
microsatellite discordance was apparent. Despite the populations
having near-identical results on microsatellite analysis, and mtDNA
haplotypes from the appropriate regional haplogroup, there was sig-
nificant asymmetry in the frequency distribution of mtDNA haplo-
types across sites. Potential explanations for mitochondrial-nuclear
discordance in the face of gene flow include mtDNA introgression
following hybridization with related taxa, human-mediated introduc-
tions, or selective advantage conferred by specific mtDNA haplotypes
(reviewed by Toews & Brelsford, 2012). More than one mechanism
may apply; introgression between sister species accounts for mitonu-
clear discordance in the mole salamander, but with a geographical dis-
tribution of mtDNA haplotypes suggestive of a selective advantage in
association with levels of precipitation (Denton, Kenyon, Greenwald,
& Gibbs, 2014). However, the historic isolation of E. platycephalus
from closely related species argues against an equivalent mechanism
of mitochondrial introgression (Chatfield, Kozak, Fitzpatrick, & Tucker,
2010; Garcia-Paris, Alcobendas, Buckley, & Wake, 2003). Similarly
there here has been no program of human-mediated release of E. plat-
ycephalus to support the occurrence of anthropogenic-mediated hy-
bridization. Environmental differences leading to the selection and
fixation of a variant mtDNA at specific sites (Cheviron & Brumfield,
2009; Irwin, 2012) are also unlikely, given the lack of association
with a specific mtDNA haplotype and the microgeographical scales
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involved, especially between the two main northern sites, as well the
finding of a similar pattern of discordance in both north and south.
This observed pattern of discordance is thus more likely to be related
to the matrilineal pattern of inheritance of mtDNA in association with
sex-biased dispersal and demographic asymmetry between sites. The
finding of a restricted pattern of mtDNA haplotypes at particular
sampling sites could reflect female philopatry to specific pools in a
metapopulation pattern of organization that is well recognized in am-
phibians with a combined aquatic and terrestrial lifestyle (Cushman,
2006; Marsh & Trenham, 2001; Smith & Green, 2005).

Although E. platycephalus does not have a physically distinct sex
chromosome (Bucci-Innocenti, Lascialfari, Ragghianti, & Mancino,
1978) to enable direct comparison between patrilineal and matrilineal
markers, sex-biased dispersal may be indirectly inferred from differ-
ences in between philopatric and dispersing genders with respect to
markers of diversity and relatedness (Cano, Makinen, & Merila, 2008;
Goudet, Perrin, & Waser, 2002; Prugnolle & de Meeds, 2002). We did
not find a gender difference in the southern region, but we would pre-
dict that, in the presence of high gene flow between the sites, a much
higher number of samples would be required to show a difference.
There is also a clear need to develop a panel of nuclear markers for
E. platycephalus, including sex-linked markers, to further address such
questions.

Our study provides an estimate of effective population size, an-
other advantage of the use of microsatellite markers (Luikart, Ryman,
Tallmon, Schwartz, & Allendorf, 2010), which provide a more reliable
estimate of contemporary population size than mtDNA (Cornuet et al.,
2010). These results are remarkably consistent across the different
populations, the two smallest relating to the two most recently iso-
lated populations. This is difficult to interpret in the southern popula-
tion of LNR, which may form part of a metapopulation. The sampling
in our study was not restricted to a specific season, and demographic
details for the sampling sites are incomplete. It will be interesting to
determine whether results vary in relation to the season of sampling,
as might occur in the context of a metapopulation structure.

4.6 | Islands within an island: implications for
conservation

A conservation program should ideally retain all ecological processes
relevant to the taxon, reflecting site-specific population structure and
terrestrial migration. The combination of a pattern of genetic diver-
sity associated with genetic isolation and adaptive evolution under-
lies the definition of an evolutionarily significant unit (ESU; Moritz,
2002), proposed by Ryder (1986). While purely genetic methods to
define units of conservation below the level of the species are limited
in scope (May, Medley, Johnson, & Hoffman, 2011), in the context of
cryptic diversity it is otherwise difficult to achieve the aim of ensuring
preservation of both adaptive and evolutionary processes across the
whole range of the species.

In this study of E. platycephalus, the northern region best fulfills
the criteria for an ESU, being geographically discrete, and showing re-
ciprocal monophyly for mtDNA (Moritz, 1994), as first indicated by
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the study of Lecis and Norris (2004b). We have now demonstrated
concordant divergence with respect to both nuclear and mitochondrial
markers, a further criterion for the stringent classification of an ESU
(Moritz, 1994). The importance of the northern region in conserva-
tion efforts is additionally highlighted by our finding of a significant
reduction in microsatellite genetic diversity and a high level of esti-
mated inbreeding in the northern populations in comparison with the
other groups. This loss of genetic variability is likely to be genomewide;
there is generally correlated loss between microsatellites, represent-
ing neutral genomic markers, and MHC variation (Sutton, Nakagawa,
Robertson, & Jamieson, 2011). This reduced diversity may result from
the historic isolation and recurrent bottlenecks affecting the north-
ern region, exacerbated by low dispersal rates and site philopatry.
Population declines caused by habitat loss and other threats may re-
sult in continuing genetic erosion, with potential ecological implica-
tions (Hughes, Inouye, Johnson, Underwood, & Vellend, 2008). This is
of particular relevance to the higher risk in the north of infection with
the chytrid B. dendrobatidis (Bielby et al., 2013; Longcore, Pessier, &
Nichols, 1999; Tessa et al., 2013). A screening program across Sardinia
from 2006 to 2010 showed the prevalence of chytrid infection to be
concentrated in populations from the Limbara mountain range in the
north of the island (Bielby et al., 2013). This could be an indirect ef-
fect of the environment, explained by the climatic requirements of
the causative fungal agent (Piotrowski, Annis, & Longcore, 2004; Ron,
2005). However, low genetic diversity may in itself render the north-
ern populations less resilient to infection (Allentoft & O'Brien, 2010;
Luquet et al., 2012; Pearman & Garner, 2005). A positive genetic-
fitness correlation has been reported in the majority of studies of am-
phibians, although there may be a reporting bias (reviewed by Allentoft
& O'Brien, 2010). Genomic diversity is likely to be especially important
in population recovery. In a manipulative field experiment in which sea
grass was exposed to near lethal water warming, microsatellite diver-
sity was associated with enhanced recovery by a process of genotypic
complementarity, rather than by the selection of robust genotypes
(Reusch, Ehlers, Himmerli, & Worm, 2005).

The concept of ecological and genetic exchangeability within units
of conservation (Crandall, Bininda-Emonds, Mace, & Wayne, 2000) is
especially applicable to the management of isolated declining popu-
lations, for which translocation or genetic rescue may be considered.
In the absence of gene flow, new variation can only occur in isolated
populations as a result of mutation, providing the rationale for genetic
rescue in conservation. The risk of outbreeding depression is highest
when immigrants are “geographically distinct and genetically diver-
gent” relative to the inbred population (Whiteley, Fitzpatrick, Funk,
& Tallmon, 2015). Frankham et al. (2011) found that risk factors in
outbreeding depression included a lack of gene exchange in the past
500 years between collection and restoration sites. Screening for such
risk factors forms an important part of the management of genetic res-
cue attempts (Frankham, 2015). The need for caution extends to ex
situ conservation activity; careful documentation of the geographical
origin of individuals used to establish breeding colonies is essential.
While the central and southern regions do not meet the stringent crite-
ria to be classified as independent ESUs, the deep genetic divisions we

have identified suggest that they too should not be considered genet-
ically interchangeable. The likely metapopulation organization of the
southern populations suggests that they could be treated as a single
management unit, despite the apparent divergence of the LNR popula-
tion. However, the issue of niche exchangeability is more difficult with
respect to the three central populations, endorsing the need to define

conservation units using both genetics and ecology (May et al., 2011).

4.7 | Current and future status

Although E. platycephalus is protected under Italian Regional Law
and the EU Natural Habitats Directive (92/43/EEC), and much of its
habitat is now included in Sardinian National and Regional Parks, the
consequences of historical fragmentation of habitat and loss of con-
nectivity between component parts of metapopulations may already
be critical (Cushman, 2006; Ficetola & De Bernardi, 2004; Marsh &
Trenham, 2001). An effect of the warmer and semiarid habitat of the
southern populations is already apparent in their smaller size and ear-
lier sexual maturity (Angelini et al., 2015). For the south in particular,
continuing loss of ponds through water abstraction and drought re-
mains a threat which is likely to be exacerbated by climate change.
It will be necessary to continue to monitor the distribution of E. plat-
ycephalus in association with measurements of habitat quality, includ-
ing ambient and water temperature (Lecis & Norris, 2003, 2004a).
Genetic monitoring and further elucidation of the population struc-
ture and the impact of anthropogenic and geographical barriers to dis-
persal will play an important part in conservation of this endangered
species (Manel, Schwartz, Luikart, & Taberlet, 2003; Storfer, Murphy,
Spear, Holderegger, & Waits, 2010).

Our study has demonstrated a complex hierarchical genetic struc-
ture in E. platycephalus, with a degree of microendemicity that might
not otherwise have been anticipated. There remains a still unexplored
complexity of metapopulation structure, including sex-biased philo-
patry and migration, indicated by our combined use of microsatellite
and mtDNA markers. The statement that “any model that endeavours
to explain island-wide patterns must necessarily be complex,” made in
reference to the distribution of herpetofauna in Madagascar (Brown,
Cameron, Yoder, & Vences, 2014), is equally applicable to Sardinia, a
continental island both ten times younger and twenty times smaller.
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