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Abstract

The paper addresses an important issue of cloaking transformations for fourth-order
partial differential equations representing flexural waves in thin elastic plates. It is shown
that, in contrast with the Helmholtz equation, the general form of the partial differential
equation is not invariant with respect to the cloaking transformation. The significant result
of this paper is the analysis of the transformed equation and its interpretation in the frame-
work of the linear theory of pre-stressed plates. The paper provides a formal framework
for transformation elastodynamics as applied to elastic plates. Furthermore, an algorithm
is proposed for designing a square cloak for flexural waves, which employs a regularised
push-out transformation. Illustrative numerical examples show high accuracy and efficiency
of the proposed cloaking algorithm. In particular, a physical configuration involving a per-
turbation of an interference pattern generated by two coherent sources is presented. It is
demonstrated that the perturbation produced by a cloaked defect is negligibly small even
for such a delicate interference pattern.

Keywords: cloaking, transformation elastodynamics, plates, invisibility

1 Introduction

Transformation optics, as introduced by Leonhardt [1] and Pendry [2], has proven to be a use-
ful tool in the design and fabrication of invisibility cloaks for electromagnetic waves (see [3–6],
among many others). Prior to cloaking, the ideas of transformation optics were used as a compu-
tational tool [7] to aid in simulations involving several length scales or complex geometries. The
cornerstone of transformation optics is the invariance of Maxwell’s equations under coordinate
transformations [8]. In essence, the design of invisibility cloaks via transformation optics involves
deforming a region of space such that a disc is mapped to an annulus. Electromagnetic waves

∗Author for correspondence: mbrun@unica.it
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then propagate around the annulus as if it were a disc and, in this sense, any object placed inside
the inner annulus is said to be invisible. The ideas behind transformation optics have also been
successfully applied to systems that are governed by equations isomorphic to Maxwell’s equa-
tions, such as acoustics [9–12], thermodynamics [13–15], and out-of-plane elastic waves [16–18].
Metamaterials have also found broad application in a wide range of physical settings [19].

However, in general, the partial differential equations governing physical systems are not
invariant under coordinate transformations. In particular, the elastodynamic wave equation
is not invariant under a general mapping [20, 21]. Norris & Shuvalov [21] showed that the
transformed equation requires either non-symmetric stress or tensorial density. However, Milton
et al. [20] demonstrated that, for a particular choice of gauge, a more general constitutive model
(the so-called Willis model [22]) remains invariant under an arbitrary coordinate transformation
yielding symmetric stress but tensorial density. Brun et al. [23] applied a cloaking transformation
to the Navier equations for isotropic linear elasticity and found that the transformed equations
correspond to non-symmetric constitutive relations where only major symmetry is preserved.
More recently Norris & Parnell [24] showed that it is possible to obtain the constitutive equations
required for elastodynamic cloaking by the application of a finite pre-strain. However, using this
approach there is a limit on the relative size of the cloaked region and regularisation parameter
used to create the near cloaks.

Transformation elastodynamics has also been used in the design of invisibility cloaks for
flexural waves in thin elastic plates [25,26] with corresponding experiments recently performed by
the group led by Wegener [27]. The equations governing the motion of flexural waves in thin plates
are not, in general, invariant under coordinate transformations. Nevertheless, Farhat et al. [25]
found that the transformed equation can be identified with a thin plate if one assumes strains of
the von-Kármán form (see, for example, [28,29]). However, as demonstrated by Ciarlet [30] and
Blanchard & Ciarlet [31] the theory of von-Kármán corresponds to the leading order behaviour
of a thin elastic plate under moderate deformation provided that the applied loads and/or the
elastic moduli have a specific dependence on the thickness of the plate.

The present paper is concerned with the construction of a transformation theory for the
dynamic equations of flexural deformations in Kirchhoff-Love plates. In contrast to the elasto-
dynamic case [20,21,23,24] and previous work on plates [25,26], it is shown that it is possible to
construct an invisibility cloak for flexural waves in thin plates without recourse to non-symmetric
stresses, tensorial densities, or non-linear theories. In particular, it is shown that by the applica-
tion of appropriate in-plane forces it is possible to construct an exact invisibility cloak for flexural
waves within the framework of linear Kirchhoff-Love plate theory. This result could lead to a
refinement of the experimental implementation of invisibility cloaks for flexural waves yielding
an improvement of the experimental results reported in [27].

The structure of the paper is as follows. After the introduction, a formal framework for
transformation elastodynamics applied to Kirchhoff-Love plates is developed. The material pa-
rameters in the transformed system are given explicitly in terms of the deformation gradient. In
§2, a general coordinate transformation is applied to the equation, which governs the flexural
displacement of a Kirchhoff-Love plate. It is demonstrated that, in general, the bi-harmonic
operator is not invariant under a cloaking transformation. However in §2.1, it is shown that
a sensible physical interpretation can be given to the transformed equation corresponding to a
pre-stressed linear anisotropic inhomogeneous Kirchhoff-Love plate. The natural and essential
interface conditions are discussed in §2.2. A regularised cloaking push-out transformation [18]
is discussed in §3. The material parameters of the cloak and the applied pre-stresses are given
explicitly in §3.1, where it is shown that it is possible to reduce the fully anisotropic plate to a
locally orthortropic plate. A series of illustrative simulations are presented in §3.2, along with
a comparison with the corresponding problem for the membrane in §3.2.1. The efficiency of
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the cloak is examined in §3.2.2 while the quality of the cloaking effect is demonstrated using a
delicate interference pattern in §3.2.3. The paper concludes with some remarks in §4.

2 Transforming Kirchhoff-Love plates

In the absence of applied in-plane forces, the equation governing the time-harmonic out-of-
plane displacement amplitude w(x) of an isotropic homogeneous Kirchhoff-Love plate under
pure bending is [28,29] (

∇4
X −

Ph

D(0)
ω2

)
w(X) = 0, X ∈ χ ⊆ R2 (1)

where D(0), P, and h are the flexural rigidity, density, and thickness of the plate respectively;
and ω is the radian frequency. Consider an invertible transformation F : χ 7→ Ω and x = F(X).
By a double application of [11, Lemma 2.1] equation (1) in new coordinates may be expressed as(

∇ · J−1FFT∇J∇ · J−1FFT∇− Ph

JD(0)
ω2

)
w(x) = 0, x ∈ Ω, (2)

where ∇ = ∇x, F = ∇Xx is the deformation gradient and J = detF is the Jacobian. For ease of
exposition in what follows it is convenient to work in Cartesian coordinates. The differentiation
in the equations below is applied with respect to the vector variable x in the transformed domain.
Using the Einstein summation convention the transformed equation (2) expressed in Cartesian
coordinates is

JGijGk` w,ijkl + 2 (JGijGk`),i w,jk`

+
[
Gij(JGk`),ij + 2Gjk (JGi`,i),j +Gij,i(JGk`),j + JGik,iGj`,j

]
w,k`

+
[
Gij,i (JGk`,k),j +Gij (JGk`,k),ij

]
w,` −

Ph

JD(0)
ω2w = 0, (3)

where the symmetric tensor
Gij = J−1FipFjp (4)

has been introduced and subscript commas followed by indices indicate differentiation with re-
spect to spatial variables. It is emphasised that the governing equation for flexural vibrations in
a thin elastic plate is not invariant under coordinate transformation as can be seen from (3).

Hence, there is a difference, compared to a similar procedure applied to the transformation of
the Helmholtz equation, as used in models of invisibility cloaks in acoustics or electromagnetism
(see, for example, [1, 2, 10, 11]). In particular, the transformed Helmholtz equation, with the
appropriate choice of the gauge, can be interpreted as the governing equation for time-harmonic
waves in an inhomogeneous anisotropic medium. There was no need for the introduction of any
additional external fields in such models. In contrast, equation (3) is not the standard form for an
anisotropic inhomogeneous plate. Namely, as in [29], the equation of anisotropic inhomogeneous
plate, of flexural rigidities Dijk`(x), has the form

Dijk`w,ijk` + 2Dijk`,iw,jk` +Dijk`,ijw,k` − hρω2w = 0. (5)

Whereas the first two terms in (5) have the same structure as in (3), there is a discrepancy in the
structure of the remaining terms involving first and second-order derivatives of w in the above
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equations (3) and (5). This discrepancy cannot be rectified by any choice of elastic constants or
inertia in the transformed domain.

In this paper, it is shown that a physical interpretation can be given to the transformed equa-
tion (3), subject to the introduction of an appropriate pre-stress. Furthermore, this approach will
be used to construct an invisibility cloak for flexural waves within the framework of anisotropic
pre-stressed plate theory.

As in [11, 18, 21], the transformations considered in the present paper is assumed to be in-
vertible. Perfect cloaks require that the transformation be singular on the inner boundary of the
cloak, which leads to cloaks with singular material properties. However, a regularisation proce-
dure can lead to construction of near cloaks as introduced by Kohn et al. [32]. The regularisation
parameter ε can be taken as small as desired in order to achieve the required accuracy of the
cloak.

2.1 Governing equations in the presence of in-plane forces

The following discussion provides the physical interpretation of equation (3) in the transformed
domain. In the presence of in-plane forces, the time-harmonic flexural deformation of a Kirchhoff-
Love plate is governed by the following equation (see [28,29,33])

Mij,ij +Nijw,ij − Siw,i = −hρω2w, (6)

where w is the out-of-plane displacement. Here the plate is subjected to membrane forces (Nij)
and in-plane body forces (Si). Additionally, the membrane and in-plane body forces are con-
strained to satisfy the equilibrium equation

Nij,j + Si = 0. (7)

Using the constitutive equation for a linearly elastic Kirchhoff-Love plate, Mij = −Dijk`(x)w,k`,
the equation of motion becomes

Dijk`w,ijk` + 2Dijk`,iw,jk` + (Dijk`,ij −Nk`)w,k` + S`w,` = hρω2w, (8)

where Dijk` are the flexural rigidities. Using equation (8), the terms in the transformed equa-
tion (3) may be identified with physically meaningful quantities. In this manner, the transformed
equation governing the flexural displacement of a Kirchhoff-Love plate under an arbitrary coor-
dinate mapping may be interpreted as a generalised plate. It is emphasised that the generalised
model remains within the framework of linear Kirchhoff-Love theory. In particular, the flexural
rigidities of the transformed plate are immediately identified

Dijk` = D(0)JGijGk`, (9a)

as are the in-plane body forces

S` = D(0)
[
Gjk (JGil,i),j

]
,k

, (9b)

and the transformed density

ρ =
P

J
. (9c)

It is clear that the flexural rigidities (9a) possess the expected major and minor symmetries.
Hence, in general, there are six independent elastic parameters required to define a platonic
cloak. In addition to the above, the transformed equation (3) should also satisfy two additional
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constraints. Firstly, the coefficients of the third order terms in (3) must match the derivatives of
the flexural rigidities, that is, Dijk`,i = D(0)(JGijGk`),i.

Secondly, the membrane forces Nk` must be chosen such that the second order terms in (3)
match those in (8). Further, the membrane and in-plane body forces must also satisfy the
equilibrium equation (7). The membrane forces appear only in terms involving the second order
derivative and it is assumed that w is sufficiently smooth to allow the order of differentiation to
be interchanged. These forces are obtained by integrating the stresses through the thickness of
the plate

Nk` =

h/2∫
−h/2

σk` dz,

whence Nk` = N`k is required for symmetric stress. The desired symmetry is obtained by taking
Nk` in the form

Nk` = D(0)
[
(JGklGij,i − JGj`Gik,i),j −Gjk (JGil,i),j

]
. (9d)

It is now straightforward to verify that the membrane and body forces satisfy the in-plane
equilibrium equation (7).

It has thus been demonstrated that, under a general coordinate mapping, the equation gov-
erning time-harmonic flexural vibrations of a linear isotropic homogeneous Kirchhoff-Love plate
transforms to an equation corresponding to a linear anisotropic inhomogeneous Kirchhoff-Love
plate in the presence of in-plane loads. It is emphasised that these loads depend only on the
coordinate mapping (via the deformation gradient) and are not functions of displacement nor
time. In this sense, the membrane forces Nk` can be interpreted as a pre-stress together with
appropriate body forces S` to ensure equilibrium. This formalism represents a general frame-
work in which transformation elastodynamics for Kirchhoff-Love plates can be investigated. The
distinguishing feature of this interpretation is that, although a generalised plate model is intro-
duced, the framework is entirely linear and all terms are identified with well understood physical
quantities.

A further notable feature of the new framework, as above, is that it ensures that the stiffnesses
have both major and minor symmetries, the stresses are symmetric and the transformed density is
scalar. This is in contrast to the case of cloaks for vector three- and two-dimensional elasticity [21]
where there is either a non-symmetric stress [23] or tensorial mass density and dependence of
stress on velocity [20]. It is also appropriate to mention the use of pre-stress in problems of control
of elastic waves for anti-plane and in-plane wave motion in hyperelastic materials [16,17,24] and
interface incremental problems of vector elasticity with finite pre-stress [34, 35]. In the latter
case, the emphasis is on the modelling and control of Floquet-Bloch waves in a surface elastic
layer subjected to a finite pre-stress and localisation near defects, rather than re-routing of elastic
waves around an obstacle.

2.2 Interface conditions

Field equations (2) or (8) are accompanied by transmission conditions on the interface boundary
between transformed and untransformed domains. The interface conditions can be deduced
by applying the principle of virtual displacement (see [28] among others) and extending the
result to anisotropic media. The essential interface conditions are the continuity of transverse
displacement and its normal derivative on the interface between two domains:

[[w]] = 0,

[[
∂w

∂n

]]
= 0, on ∂Ω, (10)
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χ(0) χ(1)

χ(2)

χ(3)

χ(4)

χ+

Γ(1)

Γ(2)

Γ(3)

Γ(4)

Ω(0) Ω(1)

Ω(2)

Ω(3)

Ω(4)

Ω+

Γ(1)

Γ(2)

Γ(3)

Γ(4)

F

Figure 1: The map F transforms the undeformed region χ =
(
∪4

i=1χ
(i)
)
∪χ+ to the deformed configu-

ration Ω =
(
∪4

i=1Ω(i)
)
∪Ω+. The exterior of the domain remains unchanged by the transformation such

that Ω+ = χ+. The cloak is shaded in dark grey in the deformed configuration.

where [[.]] denotes the jump and n is the unit normal on the interface ∂Ω. The natural interface
conditions correspond to the continuity of the vertical forces and of the normal component of
the bending moment across the domain interface. They can be expressed in term of w(x) in the
form[[(

Nij w,j − (Dijklw,kl),j −
∂

∂s
(Dijklw,klsj)

)
ni

]]
= 0, [[Dijklw,kl njni]] = 0, on ∂Ω, (11)

where s is the anti-clockwise unit tangent on ∂Ω.

3 A push-out transformation: the square cloak

This section is devoted to the construction of a square cloak for flexural waves in a Kirchhoff-
Love plate. Square cloaks have already been constructed for electromagnetic [36] and out-of-
plane elastic [18] waves; the cloak presented here is based on the coordinate transformation
as in [18]. Geometrically, the coordinate transformation deforms a small square χ(0) = {X :
|X1|/a < ε, |X2|/a < ε} together with the surrounding four trapezoids χi, into a larger square
Ω(0) = {x : |x1| < a, |x2| < a} and four narrower trapezoids Ω(i) as illustrated in figure 1.
The invisibility cloak is then formed from the four deformed trapezoids Ω− = ∪4i=1Ω(i) and
surrounds the cloaked region Ω(0). The map transforms the original domain χ =

(
∪4i=0χ

(i)
)
∪χ+

to the deformed configuration Ω = Ω+ ∪ Ω− in such a way that leaves the exterior of the cloak
unchanged, that is, F(χ+) = χ+ = Ω+ and F(Γ(i)) = Γ(i).

The mapping is defined in such a way that F(X) = F (i)(X) for X ∈ χ(i) (i = 1 . . . 4) and is
the identity on χ+ = Ω+. In particular, the mapping, the deformation gradient and the Jacobian
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for the regions Ω(1), Ω(3) are

F (1,3) =

(
α1X1 ± α2

α1X2 ± α2X1/X2

)
, F(1,3) =

 α1 0

x2α1α2

x1(α2 ∓ x1)

x1α1

x1 ∓ α2

 , J (1,3) =
x1α

2
1

x1 ∓ α2
,

where α1 = b/(a + b − ε), α2 = (a + b)(a − ε)/(a + b − ε), and b is the thickness of the cloak.
Similarly, for Ω(2), Ω(4),

F (2,4) =

(
α1X1 ± α2X2/X1

α1X2 ± α2

)
, F(2,4) =

( x2α1

x2 ∓ α2

x1α1α2

x2(α2 ∓ x2)
0 α1

)
, J (2,4) =

x2α
2
1

x2 ∓ α2
.

3.1 Material parameters and pre-stress for the cloak

The corresponding material parameters and forces are obtained from the general formalism (9).
For the right hand side of the cloak, the six independent components of flexural rigidity are

D
(1)
1111 = α2

1

(
1− α2

x1

)
D(0), D

(1)
2222 =

α2
1

(
α2
2x

2
2 + x41

)2
(x1 − α2)

3
x51

D(0), D
(1)
2211 =

α2
1

(
α2
2x

2
2 + x41

)
(x1 − α2)x31

D(0),

D
(1)
1212 =

α2
1α

2
2x

2
2

(x1 − α2)x31
D(0), D

(1)
1112 = −α2

1α2
x2
x21
D(0), D

(1)
2212 = −

α2
1α2x2

(
α2
2x

2
2 + x41

)
(x1 − α2)

2
x41

D(0),

The remaining components can be deduced from the major and minor symmetries of D. The
membrane and body forces are

N
(1)
11 =

2α2
1α2

x21 (x1 − α2)
D(0), N

(1)
12 =

2α2
1α2x2 (3x1 − 2α2)

(x1 − α2)
2
x31

D(0),

N
(1)
22 = −

2α2
1α2

(
x41 + 8α2x

2
2x1 − 3α2

2x
2
2

)
x41 (x1 − α2)

3 D(0),

S
(1)
1 = 0, S

(1)
2 =

24α2
1α2x2

(x1 − α2)
3
x21
D(0).

Finally, the density is

ρ(1) =
P (x1 − α2)

α2
1x1

.

The corresponding physical quantities for the remaining three sides of the cloak are provided
in appendix A. The material on the interior of the cloak corresponds to an inhomogeneous
anisotropic Kirchhoff-Love plate with inhomogeneous and anisotropic pre-stress. All material
parameters and forces are finite for ε > 0.

3.1.1 Principal directions of orthotropy

At each point of the plate, one can introduce a system of coordinates, which coincides with
the principal directions of orthotropy of the plate. To this end, a local angle of rotation θ is
introduced. The rotation is considered local in the sense that the angle of rotation θ = θ(x) is a
function of position. For convenience, the following reduced flexural rigidities are introduced

D
(i)
11 = D

(i)
1111, D

(i)
12 = D

(i)
1122, D

(i)
16 = D

(i)
1112,

D
(i)
22 = D

(i)
2222, D

(i)
26 = D

(i)
2221, D

(i)
66 = D

(i)
1212.
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The reduced flexural rigidities D
(i)
16 and D

(i)
26 , sometimes called auxiliary rigidities, vanish in the

principal directions of the plate (see [28, 29] among others). Consider a local rotation of the
coordinate system G : x 7→ x̃. In this new coordinate system, the auxiliary rigidities may be
expressed as

D̃
(i)
16 =

1

2

[
D

(i)
22 sin2 θ −D(i)

11 cos2 θ +
(
D

(i)
12 + 2D

(i)
66

)
cos 2θ

]
sin 2θ

+D
(i)
16 cos2 θ

(
cos2 θ − 3 sin2 θ

)
+D

(i)
26 sin2 θ

(
3 cos2 θ − sin2 θ

)
,

D̃
(i)
26 =

1

2

[
D

(i)
22 cos2 θ −D(i)

11 sin2 θ −
(
D

(i)
12 + 2D

(i)
66

)
cos 2θ

]
sin 2θ

+D
(i)
16 sin2 θ

(
3 cos2 θ − sin2 θ

)
+D

(i)
26 cos2 θ

(
cos2 θ − 3 sin2 θ

)
,

(12)

where the dependence of θ and D
(i)
jk on x has been omitted but is understood. The appropriate

local angles of rotation θ(x), which satisfy the above system of transcendental equations yields
the local principal directions of rigidity. These principal directions for the square push-out
transformation applied to the equations governing the flexural displacement of a Kirchhoff-Love
plate are shown in figure 2. For the membrane cloaking problem, the principal directions of
stiffness are given by the eigenvectors of G, defined in (4) (see [18] for details). Hence, for the
corresponding membrane problem, the local angle of rotation is known in closed form in terms
of the eigenvectors u(i) of G and the standard Cartesian basis vectors e(i)

θ(x) = arccos

(
u(i) · e(i)

‖u(i)‖

)
where, without loss of generality, x has been restricted to the first quadrant such that (x1,x2) ≥
(0, 0) and the eigenvectors are chosen and ordered such that 0 ≤ u(i) · e(j) ≤ u(i) · e(i). Again,
the dependence of the eigenvectors on x has been suppressed. Substituting the above expression
for θ(x) for the square push-out transformation and appropriate values for the reduced flexural
rigidities into (12) yields a system of algebraic equations, the right hand side of which, vanish
identically. Hence, the principal directions of stiffness for the membrane cloaking problem are
identically those for Kirchhoff-Love cloaking problem.

If D
(i)
16 = D

(i)
26 = 0, then the system of coordinates is already aligned with principal directions

of orthotropy (θ = 0). If additional non-zero rotation is needed (θ 6= 0), then equations (12) can
be written in the form :

D̃
(i)
16 + D̃

(i)
26 =

1

2

(
D

(i)
22 −D

(i)
11

)
sin 2θ +

(
D

(i)
16 +D

(i)
26

)
cos 2θ,

D̃
(i)
26 − D̃

(i)
16 =

1

2

(
D

(i)
11 +D

(i)
22 − 2D

(i)
12 − 4D

(i)
66

)
sin 2θ cos 2θ +

(
D

(i)
26 −D

(i)
16

) (
cos2 2θ − sin2 2θ

)
,

(13)
which have to be set equal to zero in order to find the principal direction angle θ ∈ (0,π/2].
Substituting the solution of the first equation in (13)

sin 2θ = 2
D

(i)
16 +D

(i)
26

D
(i)
11 −D

(i)
22

cos 2θ, (14)

into the second one, leads to

cos 4θ = −

(
D

(i)
11 +D

(i)
22 − 2D

(i)
12 − 4D

(i)
66

)(
D

(i)
16 +D

(i)
26

)
(
D

(i)
11 +D

(i)
22 − 2D

(i)
12 − 4D

(i)
66

)(
D

(i)
16 +D

(i)
26

)
+ 2

(
D

(i)
11 −D

(i)
22

)(
D

(i)
26 −D

(i)
16

) . (15)
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Figure 2: The principal directions of the flexural rigidity tensor for the square cloak in a Kirchhoff-Loveplate.

It is also observed that, for this angle of rotation, the rigidity component D̃
(i)
66 vanishes.

This local orthotropy gives further important physical meaning to the material parameters
of the cloak. In particular, the sign of some flexural rigidities changes across the symmetry lines
in the global coordinate system. This change in sign can now be interpreted as simply a change
in orientation of the principal axes of the material.

3.2 Implementation of the cloak for the flexural plate

In order to simulate a cloak around a scatterer in an infinite Kirchhoff-Love plate, perfectly
matched layers are used in the vicinity of the exterior boundary of the computational domain.
The implementation uses a bespoke algorithm developed for the push-out cloaking transformation
in the finite element software COMSOL Multiphysics®. Unless otherwise stated, for the purposes
of these simulations the following parameter values were chosen: D(0) = 1, P = 1, h = 1,
a = b = 0.5, ω = 200, and ε = 0.001. Figure 3a shows the flexural displacement generated
by a cylindrical source in a Kirchhoff-Love plate with a square void. Figure 3b shows the
corresponding field when the void is surrounded by a square cloak, constructed as described in
section 3. Figure 3c shows the fields for plots 3a and 3b together with Green’s function for an
infinite Kirchhoff-Love plate along the line passing through the source and centre of the cloak.
Here, the Green’s function represents the unperturbed field in the absence of the void and cloak.
it is observed that, outside the cloaked region, the cloaked field and unperturbed field are almost
coincident. Figure 3 clearly illustrates the effectiveness of this platonic cloak.

3.2.1 Green’s functions and comparison with cloaking for the Helmholtz operator

It is clear from the transformed equation (3) that, in general, cloaks for Kirchhoff-Love plates
cannot be decomposed into Helmholtz and modified-Helmholtz parts. Physically this means
that, within the cloak, propagating and evanescent modes couple. However, if the ambient plate
on the exterior of the cloak is homogeneous one would expect propagating modes, corresponding
to solutions of the Helmholtz equation, to dominate outside the immediate neighbourhood of
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Figure 3: The flexural displacement w(x) generated by a point source in the presence of an uncloaked(a) and cloaked (b) void. Figure (c) shows the flexural displacement for cases (a) & (b) together with theGreen’s function for a Kirchhoff-Love plate along the line passing through the source and centre of thecloak. The non-dimensional radian frequency ω = 200.
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the cloak. The corresponding problem for the membrane (Helmholtz operator) and a square
cloak was recently considered by Colquitt et al. [18] and in the context of electromagnetism by
Rahm et al. [36]. In Cartesian coordinates the transformed Helmholtz equation, which governs
the out-of-plane displacement of a membrane, may be expressed as

Giju,ij +Gij,iu,j +
Pω2

Jµ(0)
u = 0,

where µ(0) is the stiffness (permittivity) of the untransformed membrane (dielectric medium).
It is immediately apparent that, in general, solutions of the transformed Helmholtz equation
will not satisfy the transformed equation for a plate (3). Nevertheless, if the exterior medium is
homogeneous, one would expect solutions of the “corresponding” membrane problem to dominate
in the plate solution at infinity. The Green’s function for equation (1), which governs the flexural
displacement of a Kirchhoff-Love plate, is [37]

gP (x) = i
H

(1)
0 (iβ|x|)−H

(1)
0 (β|x|)

8β2D(0)
, (16)

where β4 = ω2Pph/D
(0). The Green’s function for the two-dimensional Helmholtz equation,

which governs the out-of-plane displacement of a membrane, is

gH(x) = −iH
(1)
0 (k|x|)
4µ(0)

, (17)

where k2 = ω2Pp/µ
(0). For large argument, the Hankel function H

(1)
0 has the following asymp-

totic representation [38]

H
(1)
0 (z) ∼

√
2

πz
ei(z−

π
4 ),

as z →∞ in −π + δ ≤ arg(z) ≤ 2π − δ, where 0 < δ � 1. Using the above representation yields
the following expressions for the Green’s functions at infinity,

gP (x) ∼ − i

8β2D(0)

√
2

πβ|x|
ei(β|x|−

π
4 ) and gH(x) ∼ − i

4µ(0)

√
2

πk|x|
ei(k|x|−

π
4 ),

whence is clear that β = k is required for the two fields to share the same phase in the far field
and choosing 2β2D(0) = µ(0) gives equal amplitudes. Thus, for the cloaking problem for the plate
and Helmholtz equation to have the same solution in the far field at the same frequency, the
material parameters should be chosen such that Pm = 2Pph and µ(0) = ω

√
2PphD(0), where Pm

is the density of the membrane. It is in this sense that the cloaking problem for the membrane
is said to “correspond” to the cloaking problem for the plate.

Figure 4 shows the solution of the cloaking problem for the corresponding membrane problem
(see [18]), and the difference between the fields for the plate and membrane. In figure 5a, the two
solutions for the two cloaking problems (plate and membrane) are plotted along the line passing
through the source and centre of the cloak. Figure 5b shows the difference between the two
solutions along the same line. The reader’s attention is drawn to the different scales in figures 3,
4 and 5. It is also emphasised that the Green’s function for the membrane problem (Helmholtz
operator) (17) is singular at the origin whereas the fundamental solution for the plate equation
is regular (16), hence the large discrepancy in the vicinity of the source in figures 3, 4 and 5. It is
observed that, away from the source and outside the cloak, the difference between the solutions
for the plate problem and corresponding problem for the membrane is small. However, this
difference is significant on the interior of the cloak, particularly close to the inner boundary of
the cloak.
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Figure 4: (a) The solution for the corresponding membrane cloaking problem, (b) The difference be-tween the solution for the cloaking problem for plates and the corresponding membrane problem.

3.2.2 The quality of cloaking

In order to better asses the efficacy of invisibility cloaks, it is desirable to have a quantifiable
measure of the quality of the cloaking effect. As remarked in [18], it is not obvious what quality
means with respect to a cloak. Some authors use a scattering cross-section to assess the cloaking
effect (see, for example, [24]). Experimental studies such as [27] have used an L2 norm computed
directly from the measured fields in order to quantify the efficiency of the cloak. For the present
work, the scattering measure introduced in [18] will be used as a tool to quantify the effectiveness
of the cloak:

E(u1,u0,R) =

∫
R

|u1(x)− u0(x)|2 dx

∫
R

|u0(x)|2 dx

−1 , (18)

where R ⊂ R2 is some region outside the cloak, u1(x) = <w(x) is the real part of the measured
field, and u0(x) = <gP (x) is the real part of Green’s function for the unperturbed problem
and represents the ideal field. Thus, perfect cloaking corresponds to a vanishing E . For the
illustrative simulations shown in figure 3, the region R is chosen to be the entire computational
domain, excluding the cloak and a small disc enclosing the point source. It is emphasised that
this choice of R yields an extremely strict measure of the efficacy of the cloak; with not only
forward and backward scattering effects accounted for, but also significant near field effects in
the immediate neighbourhood of the cloak. The scattering measure for the uncloaked field shown
in figure 3a is E(wu,u0,R) = 0.109, whereas the scattering measure for the cloaked field shown
in figure 3b is E(wc,u0,R) = 5.05 × 10−4. The difference between the two scattering measures
serves to emphasise the efficiency of the cloak.
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Figure 5: Figure (a) shows the solution when considering the cloaking problem for plates and the corre-sponding membrane problem. Figure (b) shows the difference between the solutions when consideringthe cloaking problem for plates and the corresponding membrane problem. In figures (a) & (b), the fieldsare plotted along the line passing through the source and centre of the cloak. The reader’s attention isdrawn to the different scales in figures (a) & (b).
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3.2.3 Measuring cloaking quality for interference patterns

Recently, interferometry has been proposed as a possible method through which the quality of
cloaks may be assessed. In particular, Colquitt et al. [18] illustrated the efficacy of a square
cloak for Helmholtz waves using a Young’s double-slit interferometer. In [18] the stability of the
interference pattern was examined as a cloaked and uncloaked object were successively placed
over one of the apertures. It was demonstrated that there is virtually no perturbation to the
interference fringes when an aperture is covered with a cloaked object, whereas the uncloaked
object severely distorts the interference pattern.

In the present paper the effectiveness of the cloak is examined by a similar method. Figure 6
shows the results of an interferometry simulation were the stability of the interference pattern
generated by two coherent cylindrical sources is examined. Figure 6a shows the interference
pattern generated by two coherent cylindrical sources in an infinite homogeneous plate. Figure 6b
shows the perturbation to the interference pattern when a void is introduced, while figure 6c
shows the interference pattern when the void is coated with a cloak. The interference patterns
seen on the observation screen (dashed lines in figures 6a–6c) for all three cases are shown in
figure 6d. It is observed that the interference patterns for the homogeneous plate and cloaked
void are virtually identical, whereas the presence of the uncloaked void significantly perturbs
the interference pattern. It is emphasised that this is not a low-frequency response and the
dimensions of cloak and inclusion are not small compared to the wavelength.

It is remarked that, conceptually, the interferometry simulation presented in the present paper
is equivalent to the classical Young’s double-slit interferometer employed in [18]. In both cases,
the interference pattern is very sensitive to perturbations and hence makes a good tool in the
measurement of cloaking quality.

4 Concluding remarks

A formal framework for transformation elastodynamics as applied to Kirchhoff-Love plates has
been developed. The material properties of the transformed system and the applied pre-stresses
and body loads are given explicitly in terms of the deformation gradient in equations (9). It has
been demonstrated that the bi-harmonic equation governing the flexural deformation of a linear
homogeneous and isotropic Kirchhoff-Love plate is not invariant under a general coordinate
mapping. Nevertheless, all terms in the transformed equation, (2) or (3), can be interpreted
in terms of well understood physical quantities within the framework of linear Kirchhoff-Love
plate theory. It is emphasised that the flexural rigidities of the transformed system possess the
expected major and minor symmetries, the stresses are symmetric and the density is a scalar
function of the Jacobian.

An example transformation for a square push-out cloak complements the formal framework. It
is shown that, for this particular transformation, it is possible to reduce the fully anisotropic plate
to a locally orthotropic material. The analytical work is accompanied by illustrative numerical
simulations demonstrating the quality of the cloaking effect, via both numerical measures and
interferometery.

The precise physical interpretation of the additional terms in the transformed equation (3)
may lead to a refinement of the experimental implementation yielding an improvement of results
reported in [27] and further developments in the practical implementation of broadband cloaks
and metamaterial devices for plates.
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chanics and Analysis 73, 349–389.

[31] Blanchard D, Ciarlet P. 1983 A remark on the von karman equations. Computer Methods
in Applied Mechanics and Engineering 37, 79–92.

[32] Kohn R, Shen H, Vogelius M, Weinstein M. 2008 Cloaking via change of variables in electric
impedance tomography. Inverse Problems 24, 015016.

[33] Leissa AW. 1969 Vibration of plates. Technical Report NASA-SP-160, Scientific and Tech-
nical Information Division, NASA, Washington, DC.

[34] Bigoni D, Gei M, Movchan A. 2008 Dynamics of a prestressed stiff layer on an elastic
half space: filtering and band gap characteristic of periodic structural models derived from
long-wave asymptotics. Journal of the Mechanics and Physics of Solids 2146, 2494–2520.

[35] Gei M, Movchan A, Bigoni D. 2009 Dynamics of a prestressed stiff layer on an elastic
half space: filtering and band gap characteristic of periodic structural models derived from
long-wave asymptotics. Journal of Applied Physics 105, 063507.

17



[36] Rahm M, Schurig D, Roberts DA, Cummer SA, Smith DR, Pendry JB. 2008 Design of
electromagnetic cloaks and concentrators using form-invariant coordinate transformations
of Maxwell’s equations. Photonics and Nanostructures-Fundamentals and Applications 6,
87–95.

[37] Evans D, Porter R. 2007 Penetration of flexural waves through a periodically constrained
thin elastic plate in vacuo and floating on water. Journal of Engineering Mathematics 58,
317–337.

[38] Olver FW, Lozier D, Boisvert R, Clark C, eds. 2010 NIST handbook of mathematical func-
tions. Cambridge University Press.

A Material parameters and pre-stress for the cloak

The material parameters and pre-stresses for the remaining three sides of the cloak are as follows:
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