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The liver is not only involved inmetabolism and detoxification, but also participate in innate

immune function and thus exposed to frequent target Thus, they are the frequent target

of physical injury. Interestingly, liver has the unique ability to regenerate and completely

recoup from most acute, non-iterative situation. However, multiple conditions, including

viral hepatitis, non-alcoholic fatty liver disease, long term alcohol abuse and chronic use

of medications can cause persistent injury in which regenerative capacity eventually

becomes dysfunctional resulting in hepatic scaring and cirrhosis. Despite the recent

therapeutic advances and significant development of modernmedicine, hepatic diseases

remain a health problem worldwide. Thus, the search for the new therapeutic agents to

treat liver disease is still in demand. Many synthetic drugs have been demonstrated to

be strong radical scavengers, but they are also carcinogenic and cause liver damage.

Present day various hepatic problems are encountered with number of synthetic and

plant based drugs. Nexavar (sorafenib) is a chemotherapeutic medication used to treat

advanced renal cell carcinoma associated with several side effects. There are a few

effective varieties of herbal preparation like Liv-52, silymarin and Stronger neomin phages

(SNMC) against hepatic complications. Plants are the huge repository of bioactive

secondary metabolites viz; phenol, flavonoid, alkaloid etc. In this review we will try to

present exclusive study on phenolics with its mode of action mitigating liver associated

complications. And also its future prospects as new drug lead.

Keywords: gene network, hepatoprotection, phenolics, liver disease, in silico analysis,mechanism, natural product

INTRODUCTION

The liver is labeled as the biggest glandular organ that controls diverse physiological and chemical
processes in human body. In other words, it plays a central role in metabolic control and
detoxification involving metabolism of lipids, carbohydrates, alcohol, and a wide range of drugs
as well as toxins (Aseervatham et al., 2018). The liver also participates in innate immune function
(Gao et al., 2008). Interestingly, the liver has the unique ability to regenerate and completely

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2019.00509
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2019.00509&domain=pdf&date_stamp=2019-05-24
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:anupam@bioinfoaus.ac.in
https://doi.org/10.3389/fphar.2019.00509
https://www.frontiersin.org/articles/10.3389/fphar.2019.00509/full
http://loop.frontiersin.org/people/562687/overview
http://loop.frontiersin.org/people/163925/overview


Saha et al. Role of Natural Phenolics in Hepatoprotection

recoup from most acute, non-iterative situations (Mosedale and
Watkins, 2017; Oliva-Vilarnau et al., 2018). However, multiple
conditions, e.g., hepatitis, chronic alcohol consumption, frequent
use of antibiotics associated medications, and also even non-
alcoholic fatty liver disease, can affect the regenerative efficacy of
the hepatocytes which become totally dysfunctional (Forbes and
Newsome, 2016), generally witnessed by visible hepatic scaring,
apoptosis and entering into the most severe cirrhosis. The liver,
when witness to such atrocities, ultimately loses its vitality and
thus imbalances the normal metabolic phenomenon, leading
to many other fatal conditions (Branco et al., 2016; Defronzo
et al., 2016). Despite considerable amounts of research which
have been carried out aiming at cure various hepatic ailments
across the world, limitations still exist in finding more effective
hepatoprotective drugs than the currently available medications.
Moreover, fewer medications promise restoration effects.

The Mediterranean-style diet which covers the immense
geographical area adjoining the Mediterranean Sea focuses on
the use of root legumes, vegetable, fruits, nuts and seeds
predominantly (Tuck and Hayball, 2002). Presently there is an
arising concern or interest, rather, n exploring the positive effects
of a plant-based diet for mitigating various chronic diseases
including several hepatic ailments like hepatic cirrhosis, hepatic
ulcerative syndrome and fibrosis. It is noteworthy that the
Mediterranean diet, which has been allied with many health
benefits, is characterized by a high intake of fruits, vegetables
and nuts containing several bioactive natural products of plants.
One such dietary component common in plant-based diets are
natural phenolics, which are particularly plentiful not only in
fruits, whole grains, vegetables, and legumes but equally in coffee,
tea, cocoa, and also in red wine.

Phenolics are a bulky and heterogeneous group of
phytochemicals containing phenol rings, and are divided
into several groups, viz; phenolic acids, flavonoids and lignin.
Fruits such as pears, grapes, apples, and a range of berries
naturally contain good amounts of polyphenols (250–400mg
in 100 g). The most frequent phenolic acids are ferulic acid and
caffeic acid of which the major phenolic compounds in coffee and
cereals, respectively, are comprised. The most studied stilbene is
resveratrol, found in red wine and grape products (Veberic et al.,
2008). Other main dietary sources of natural phenolics comprise
of chocolate, green tea, and whole grains. Polyphenol contains
abundant antioxidants in the diet and these act as natural
scavengers for toxic elements and, thus, their intake has been
directly connected with a reduced frequency of several hepatic

FIGURE 1 | Statistical representation of mortality (in percentage) from various

diseases in human (Finkelstein et al., 2012).

ailments, particularly hepatocellular carcinoma in humans
(Turati et al., 2014). Phenolics also exhibit anti-inflammatory
effects and influences hepatotoxicity through alteredmechanisms
discussed in detail in the subsequent paragraphs.

Thus, herbal approach, an alternative to the conventional
protocol with a touch of a therapeutic essence, remains a valid
option. These strategies, in most cases, not only target the
disease but also contain minimal side effects. The majority
of the available synthetic drugs for liver diseases are found
to be strong pro-oxidant scavengers, but their long-term uses
may cause inflammation (Rani et al., 2016; González-Ponce
et al., 2018) and cancer. A noteworthy instance is the use of
tiopronin, which increases the risk of liver injury ten-fold with
its long-term treatment (Tang et al., 2014; Wan and Jiang, 2018).
Another well-illustrated detrimental combination is ribavirin
and interferon-α (IFN-α), a common medication in liver-related
diseases, which is seen to affect hepatitis C patients. Taking into
consideration such complications and the high cost of available
medicines, researchers are inclined to utilize natural product-
based alternative medications for liver diseases, which will
have better efficacy, cost-effectiveness, and lower or no toxicity
(Zhang et al., 2013; Seeff et al., 2015).

It is evident from the reports of the WHO (WHO 2016)
that non-communicable diseases were the cause of 68% of all
global death in 2012 (Figure 1), rising from 60% in 2000. Hepatic
complications have turned out to be multifactorial diseases that
affected a population of around almost 600 million in 2014
(Figure 2), and it is likely to amplify by about 33% over the next
two decades (Finkelstein et al., 2012; Dhilleswara Rao et al., 2017).

Hepatic ailment results in anomalous hypertrophy, expressed
phenotypically with surplus adiposity, body fatness and brawny
genetic correlation, while its constituent to basal metabolic index
and associated health hazard of obesity have also been reported
(Locke et al., 2015; Stender et al., 2017).

Various hepatic problems are encountered with a number
of synthetic as well as plant-based drugs. Nexavar is a
chemotherapeutic drug generally prescribed for complex renal
carcinoma (Ravaud et al., 2016; Decker et al., 2017). It is
additionally used to treat liver carcinoma. Known adverse effects
of Nexavar include dry skin, itching, skin rash, nausea, vomiting,
diarrhea, patchy hair loss, loss of appetite, stomach pain, dry

FIGURE 2 | Occurrence and prevalence of various liver diseases worldwide.
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FIGURE 3 | Structures of various groups of phenolic compounds (Hussain,

2016; Mandal et al., 2017; Xi et al., 2018).

mouth, hoarseness, and tiredness (Schmidinger and Bellmunt,
2010). Sorafenib is the first multi-kinase inhibitor (TKI)
approved for the treatment of advanced hepatocellular cancer
(HCC)metastatic renal cell cancer (RCC), and well-differentiated
radioiodine-resistant thyroid cancer (DTC) (Monsuez et al.,
2010). It demonstrates targeted activity on several families of
receptor and non-receptor tyrosine kinases that are involved in
angiogenesis, tumor growth and metastatic progression of cancer
(Adnane et al., 2006). Sorafenib is a well-known antihepatotoxic
drug available in market but the product of its metabolism has
been seen to be toxic, affecting other parts of the body with long-
term exposure resulting in renal and pancreatic failure (Randrup
Hansen et al., 2017; Balderramo et al., 2018).

A few efficient varieties of herbal preparation like Liv-52,
silymarin (Kolasani et al., 2017) and Stronger neomycin phages
(SNMC) are in attendance against hepatic complications. All the
candidates come up with notable complications. Silymarin is not
found effective against chronic liver disease as it fails to modulate
the metabolic condition of the liver along with cellular recovery.
An effective Japanese preparation like SNMC (Ghiliyal and Bhatt,
2017) also fails to improve the clinical status of liver cirrhosis
despite its prominent anti-inflammatory and cytoprotective
efficacy. It is successfully used against hepatocellular carcinoma
(Luo et al., 2015). Liv-52 is used quite effectively against hepatic
damages (Stickel and Hellerbrand, 2015). However, it also fails
to demonstrate clinical efficacy in alcoholic liver damages.
Various research involving techniques with increasing efficacy
of the phytochemicals like nanotechnology, proteomics, and
transcriptomics are evident, and efforts being made with herbal
preparations are somewhat successful too (Patil et al., 2018).
Following the lead of these interesting results, further attempts
should be initiated to overcome all the odds of existing drugs,
and an initiative may proceed with plant-based natural products.
The plants are an enormous repository of bioactive secondary
metabolites viz; alkaloids, flavonoids, phenol, etc (Figure 3). This
review presents an account of studies on phenolics, with an
emphasis on its mechanisms toward hepatotoxicity. Emphasis
have been given to understand various pathways through which
phenolics exihibit their efficacy. Furthermore, a gene networking
model has been constructed in order to gain a clear concise idea
of the ways in which natural phenolics contribute to mitigating
various hepatic ailments.

METHODS

With an aim to evaluate the actual sceneries of phenolic
compounds for the treatment of various hepatic diseases, a

search on the metabolic disease Library and PubMed has been
performed matching the keywords “hepatic disease inhibitors
treatment,” “target therapy,” and “Hepatic carcinoma,” limited to
the English written literature, but with no restriction of time. It
was examined and the titles of 202 relevant papers were retrieved.

While performing the search of abstracts and full-text research
papers, all unrelated and less important ones were discarded. A
selection of the most recent, well-illustrated, full-text, and cited
articles were considered regarding similar types of research work
from the same institutes at different points in time. We have
tried not counting the research papers, whose abstract or full-
text is not obtainable. The references for significant and relevant
papers have been further sought for other pertinent articles. After
such an illustrative survey, around 160 latest bioactivity reports
of phenolic compounds mitigating hepatic diseases were brought
into light, and around 38 clinical trials have been retrieved
gratifying the indispensable criteria for analysis.

The gene networking model and connectivity model were
developed by analyzing all the available reports on the
hepatoprotective activity of the natural phenolics using the online
software Cirrcon and Cytoscape version 3.6.1.

NATURAL MOLECULES AS POTENT
ANTIHEPATOTOXIC AGENT

Plant secondary metabolites are well-known for their efficacy in
the treatment, as well as prevention, of various fatal diseases.
Plant phenolics, e.g., coumarins, flavonoids, lignans, stilbenoids,
and tannins, have been studied extensively to provide scientific
rationale behind their potential usage against various human
ailments. Phenolics are the target group for this review article
and subsequent discussions will revolve around exploring the
chemical nature and modes of action of these compounds
(Smith, 2017; Stander et al., 2017).

Phenolics constitute a major portion of all secondary plant
metabolites discovered to date, and there are about 8,000 of
such compounds, in both conjugated and free-form, which are
distributed in all parts of the plant. Phenolics are generally
biosynthesized from acetyl CoA, shikimate, and amino acids
(Cseke et al., 2016; Saltveit, 2017). Plant phenolics include
simple phenols, phenolic acids, coumarins, lignans, flavonoids,
diaryl-alkanoids, stilbenoids, proanthocyanins, tannins, and
anthocyanins some alkaloids (Figure 4).

Natural products have been an integral part of medicine since
ancient times where around 400 different species of plant and
animal origins were then listed. According to the WHO, plant-
based therapies are regularly used in places where minerals,
plants are common and easily available. Such therapies are used
by around 88% of the world’s population, who depend on natural
products for their primary health care regime. Though the term
“drug discovery” sounds contemporary, the story and origin of
drug discovery dates back many centuries. Thus, present day
uses of plants for both “lead molecule” discovery, which confirms
their activity as active natural molecules, and for their structural
analog, proves them to be an ideal drug candidate.

Natural products drug discovery is a hot topic as of
recent years, with a comeback in mainstream drug discovery
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FIGURE 4 | Flowchart showing various descendants of the phenolic groups.

protocols. Such comeback is welcomed by academics and
pharma companies, mainly due to inherent chemical diversities
in natural products, and ease in identification and separation
techniques. Noteworthy among natural products are alkaloids,
carbohydrates, glycosides, and terpenoids. Phenolics are most
studied due to their antioxidant activities. The phenolic moiety
is responsible for various pharmacological effects (Sarker and
Nahar, 2007).

Phenolic acids aremainly represented as derivatives of benzoic
acid and cinnamic acid. The methyl ester of the phenol ring
imparts a pharmacophore, which is responsible for interacting
with various protein targets present in cell membranes. Gallic,
ellagic, vallic, procatecutic, procoumaric, and caffeic acids are
important representatives of hydroxyl benzoic acid and hydroxyl
cinnamic acid, which are the product of the condensation
reaction of phenols under sunlight (Ahmad et al., 2016; De
Beer et al., 2017). Flavonoids on the other hand, biosynthesised
from cinnamic acids, have two benzene rings (ring A and
ring B), and an apyrrole ring (ring C). Plant flavonoids are
generally classified into flavan, flavanone, flavanol, flavone, and
flavonols (Sarker and Nahar, 2007). Often there are prenylations,
glycosidations and conjugation with other ring systems or natural
skeletons, as well as dimerisations and oligomerisations which
diversify flavonoid structures and provide new pharmacophores.
Quercetin, hesperidin, diosmetic, myrectin, and kaempferol are
just a few notable examples imparting biological properties
(Hussain, 2016; Brodowska, 2017).

Anthocyanidins and anthocyanins are normally
plant pigments. Anthocyanidins are grouped into 3-
hydroxyanthocyanidins, 3-deoxyanthocyanidins, and
O-methylated anthocyanidins. On the other hand, anthocyanins
are in the forms of anthocyanidin glycosides and acylated
anthocyanins (Sarker and Nahar, 2007). The most common
types of anthocyanidins are cyanidin, delphinidin, pelargonidin,
peonidin, petunidin, and malvidin (Figures 5, 6) (Wallace

and Giusti, 2015; Chorfa et al., 2016; Mäkilä et al., 2016;
Stein-Chisholm et al., 2017). The site of glycosylation in
anthocyanidins is usually at C-3 (Kay et al., 2017; Rodriguez-
Amaya, 2018; Zhang et al., 2018).Acylated anthocyanins are
presented with p-coumaric acid, ferulic acid and caffeic acid with
attached sugar molecules, in addition to simple acetyl groups
(Sigurdson et al., 2017; Zhao et al., 2017).

PHENOLS ARE IMPORTANT AS
PROSPECTIVE DRUG LEADS

Phenolic compounds are known for their diverse chemical
structures, common antioxidant and specific anti-inflammatory
actions. They offer protection against oxidative damages
by donating hydrogen or electron to free radicals and
thus, in this process, they aid in stabilizing cell membrane
networks and inhibiting the formation and expression of
inflammatory cytokines like tumor necrosis factor alpha (TNF-
α), Transforming Growth Factor beta (TGF-β) and varieties of
interleukins (IL-6, IL-2, IL-8) (Parhiz et al., 2015; Taofiq et al.,
2015; Zhang and Tsao, 2016; Zhen et al., 2016).

To exert any pharmacological or biological actions, phenolic
compounds are initially absorbed in the gastrointestinal tract
(GIT) and thus make it bioavailable to circulating system. In
the case of inadequate or no absorption through the GIT, they
undergo biotransformation in the colon with the help of resident
microbiota culture (Figure 7) (Filannino et al., 2015; Heleno
et al., 2015; Gómez-Juaristi et al., 2018). Phenolic compounds
offer health benefits including treating cancer, oxidative damage
and inflammation. Literature supports their effectiveness against
chronic pathogenic conditions like neurodegenerative and
cardiovascular diseases (Heleno et al., 2015; Rangel-Huerta et al.,
2015; Domínguez-Avila et al., 2017).
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FIGURE 5 | Structures of some bioactive phenolics acting as hepatoprotective compounds.
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FIGURE 6 | Structures of some bioactive phenolics acting as hepatoprotective compounds.

DETAILED MECHANISM OF
HEPATOPROTECTION

When the liver is exposed to alcohol, drugs, and pollutants, its
progression toward damage initiates hepato steatosis, fibrosis,
and cirrhosis. This exposure results in the death of hepatocytes
and, as a consequence, the level of various liver enzymes and
metabolites are altered, indicating the anomaly (Sheriff et al.,
2017; Balderramo et al., 2018; Hu et al., 2018). Hepatocytes may
be injured in various circumstances such as a toxic environment,
alcohol, virus, fatty acid metabolism, or chronic antibiotics
exposure. Transaminases and glutathione are reported to be
prime candidates’ marker in the line-up metabolism of bile
when hepatocytes are damaged. The clinical condition of the
hepatic environment can further bemeasured by levels of alkaline
phosphatase (a key hepatic enzyme) in the serum (Culver, 2016).

Under these surroundings, scarring tissues try to replace the
damages, and thus compromise vital liver functions like drug
detoxification, secretion of the protein, albumin production,
etc. (Anand and Garg, 2015; Baker, 2015). Metabolism,

detoxification, and clearing of many drugs are blocked by the
impaired liver (Bhattacharyya et al., 2014; Sheriff et al., 2017).
Although there are several cited important bioactivity of phenolic
compounds, the current discussion will primarily circle around
the exploration of detailed mechanisms of actions, and further
contributions of phenolics against various liver damages.

Oxidative Stress and Hepatotoxicity
The liver, being a keen partner and prime neighbor of the
GIT, is usually exposed to toxicity arising from a broad range
of drugs, xenobiotics, and the stress mediated by reactive
radicals formed during uncontrollable oxidation processes. Being
a frequent target of such complex substances, and possessing
a unique metabolism system, it hampers itself in the process
of breaking them into simpler ones (Cederbaum, 2017). For
instance, the large amount of bile acid produced during
the oxidation of ethanol produces hepatocellular apoptosis
by exciting Fas, an apoptotic element, expressing it from in
the plasma membrane, which triggers apoptosis, resulting in
cholestatic disease (Cederbaum, 2017). The liver also efficiently
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FIGURE 7 | Metabolism of phenols in the living system. The metabolism of the dietary components rich in phenols is easily absorbed by various part of the animal

body where the small intestine process and deviates the potent part to hepatic cells and remains are hydrolysed in colon and excreted via feces. Simultaneously, a

part of it is methylated in kidney through liver and the last remains are excreted through urination. The red arrows mark is used to show the various route of

metabolism of phenols.

expresses main cytochrome P450 isoforms in response to various
xenobiotics. CYP2E1 is one such that generates a reactive oxygen
family, activates toxicologically central intermediates, andmay be
the critical alleyway by which these toxic chemical groups cause
oxidative stress. Furthermore, kupffer cell, a specialized cell in the
liver is activated in this process of metabolism. Both Kupffer cell
activation and infiltration of neutrophil release reactive oxygen
species (ROS), a range of inflammatory chemokines increasing
the fold of hepatotoxicity (Figure 8) (Wang, 2015; Ahadpour
et al., 2016).

In vivo and in vitro studies have demonstrated the promising
preventative and therapeutic effects of plant phenolics in a
range of liver diseases. Translational studies are extremely
vital and indispensable for the application of phenolics in
humans with liver diseases. Although literature in the PubMed
database about clinical trials of phenolics in liver diseases are
limited, encouraging beneficial effects of these phenols have
been demonstrated, particularly in Non-Alcoholic Fatty Liver
Disease (NAFLD). When working with the high fed diet, the
AKT signal molecule responsible for fat metabolism is mutated
in the model systems, placebo-inhibited trial of a purified form
of anthocyanin in NAFLD patients, treating with the fixed
amount of purified anthocyanin for 3 months significantly
improved insulin resistance, in liver injury (Zhang et al., 2015a),
and clinical evolution in such patients (Bischoff et al., 2018).
In another double-blind clinical trial, dihydromyricetin, the
main active ingredient of Ampelopsis grossedentata, improved

glucose and lipid metabolism and showed anti-inflammatory
effects in NAFLD (Chen et al., 2015b; Hou et al., 2015).
When working with the hepatotoxic model system, the mice
cohort which was treated with thioamino acetic acid showed
significant recovery in its MAPK and AMPK level, the two
important pathways, which impart cAMP and are a source of
energy to the hepatocytes. This recovery was witnessed when a
most studied flavonoid, curcumin, was administered at a dose
of 118 µg/kg b.wt.

Alcohol and Hepatotoxicity
Alcohol hinders the functional aspects of various tissue
components and hepatocytes in particular. Alcohol diffuses,
crossing the membrane barrier, and is distributed throughout the
cell and tissue system, interacting with the major proteins and
cellular component present in it (Li et al., 2016). Development
of toxic molecules like reactive oxygen species (ROS) is
another negative upshot of alcohol. In addition to ROS, it
also produces acetaldehyde and nitric oxides, an extremely
reactive and toxic by-product that chip into tissue damage
(Madrigal-Santillán et al., 2015; Marshall, 2016). Nitric oxide
(NO) is recognized as managing mitochondrial respiration and
biogenesis amongst organelle. Under conditions of alcohol-
mediated hepatic complications, mitochondrial respiration was
hindered and, in turn, hypoxia occured. Simultaneously, nuclear
factor-kappa β (NF-κβ), a transcription factor activation, takes
place, in which it binds to iNOS promoter, an important
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FIGURE 8 | Detailed Mechanism of generation of hepatotoxicity. When the elicitors like alcohol, CCl4, enter the cell membrane they instigate various metabolic

reactions activating the CYP systems viz; activating the endogenous glutathione enzyme, hydrogen peroxide. Formation of the reactive oxygen species are

responsible for the lipid peroxidation reaction. A conjugation reaction takes place alongside this resulting in the deterioration in the ATP levels and elevation in the

caspases levels. This clinical manifestation leads to the building up of hepatotoxicity and induces apoptosis. The nucleus also takes part in such build up by

upregulating various transcription factors associated with inflammation. The adhesion molecules present in the cell membrane further create a hepatic fibrotic

response by coupling with various reactive oxygen species. The activated Kupffer cells, on the other hand, further activate the prostaglandin by COX-2 and thus

increases the cytokines level in the blood. These reactions are catalyzed by arachidonic acid. Such atrocities give rise to associated diseases with inflammation and

further fibrogenesis. Hepatic necrosis is another condition imparted by the activated neutrophil which, though inactive during a normal state, increase in number when

the cytokine level increases in the blood. The fatal condition, hepatic cirrhosis, is also encountered from hepatotoxicity, which is the additive effect of the prolonged

inflammation and interaction with the ROS generation.

NO, and aggravates the expression of iNOS (Figure 9) (Iwakiri
and Kim, 2015; Starkel et al., 2016). Together, this entire
environment amplifies the expression of inducible nitric oxide
synthase (iNOS). iNOS joins hands in inducing hepatic fibrosis
and the expression of inflammatory cytokines (Tacke and
Zimmermann, 2014; Cassini-Vieira et al., 2015). iNOS increases
two other factors in this process. Hypoxia-inducible factor-1
and its gene expression aid various connected hepatic anomalies
viz; inhibition of mitochondrial respiration, impairment of
mitochondrial fatty acid β-oxidation, and mitochondrial DNA
damage (Chang et al., 2015; Suraweera et al., 2015).

Phenolics possess immense potentials in regulating the
inflammatory cytokines, which are expressed in clinical
conditions such as alcoholic liver diseases (Wan and Jiang,
2018; Xu et al., 2018). Puerarin, a known isoflavone, can excite
the AMP-activated protein kinase (AMPK) phosphorylation
in H4IIE cell lines suppressing the (m TOR) target proteins
and 4E-binding protein (Zhao et al., 2016). This strategy aids
in ameliorating the alcohol-based hepatotoxicity. Puerarin can
also alleviate the hepatic necrosis due to its role in the AMPK

pathway activation, scavenging activity, and lipid peroxidation
inhibition (Wang et al., 2018a).

Hepatotoxicity and Non-alcoholic Liver
Disease
A majority of the metabolic disorders and their physiology
related to hepatotoxicity have been studied over the years.
Where sharp and clear possible elements that are responsible
for chemical-induced toxicity, enzymes and protein-induced
complications are considered, yet a fair amount of diseases
related to metabolism remain unidentified. Such prognostic
parameters include blood pressure, abdominal obesity, or
potentially hyperglycaemia. They are collectively termed as the
non-alcoholic fatty liver diseases (NAFLD) (Chalasani et al.,
2018).This clinical situation is one of the most familiar and
dormant forms of liver diseases, which accounts for the
preliminary stage, but when left untreated this results in
inflammation and, subsequently, can even lead to serious fibrosis
and hepatocellular carcinoma (HCC), with high rates of mortality
(Chen et al., 2015a).
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FIGURE 9 | Alcohol mediated Hepatotoxicity. Hepatotoxicity caused by increased production of ROS; due to alcohol damages antioxidant defenses and

mitochondrial function as well as structure. It leads to liver inflammation, fibrosis and steatosis. Cellular responses, which are sturdily involved in Kupffer cell may also

activated due to action of ROS which contribute to an increase of inflammatory responses, resulting liver injury. Furthermore, activated Kupffer cells release ROS and

cytokines that are crucial for HSC activation and inducing the pro-fibrogenic pathway.

Until now, the main drugs for the treatment of NAFLD in
clinics are lipid regulating agents such as statins, which are not
only toxic, but also aggravate the deposition of lipids in the liver,
leading to serious liver injury (Arguello et al., 2015). Phenolics
such as baicalin, epicatechin, and apigenin (Figure 5) have been
reported to protect the liver from NAFLD, which are associated
with their effects on insulin resistance and for signaling the
way to anti-inflammation as well as antioxidant action (Sen and
Chakraborty, 2017; Wan and Jiang, 2018).

Phenolic compounds can significantly regulate these NAFLD
conditions. Apigenin, a flavone, is a well-studied phenolic
compound that can check the lipid accumulation and oxidative
stress induced by high-fat diet. It can abridge the inflammatory
mediators but can simultaneously amplify various endogenous
antioxidative enzymes actions like superoxide dismutase and
glutathione peroxidase in the liver (Feng et al., 2017; Vergani
et al., 2017). Dihydromyricetin, another important phenolic,
exhibits its therapeutic effect on the improvement of glucose
and lipid metabolism in patients with NAFLD, by blocking
the phosphatidyl inositol 3-kinase, NF-κβ signaling pathway
(Chen et al., 2015b).

Hepatotoxicity and Inflammation
Liver inflammation is a state of the reaction in which the liver
tissues send a constant stimulus, whether acute or chronic, in
response to extrinsic and intrinsic factors hampering the liver
status. Acute inflammation is a localized affair, where the liver

tries to regain its previous configuration. It is the first line of
defense, but when the liver cannot check these associated level
of lymphocytes, vascular proliferation and tissue destruction
become chronic and ultimately lead to fibrotic condition (Pawlak
et al., 2015; Leyva-López et al., 2016).

During such chronic conditions, specialized cells such as
macrophages recruit more of the inflammatory mediators
including interleukins and tumor necrosis factor (TNF)-α (Seki
and Schwabe, 2015; Williams et al., 2016). This amplification
altogether results in such a complex state that it leads to
many degenerative diseases including severe cirrhosis and
hepatic carcinoma (Czaja, 2014). For this reason, slowing
down the inflammation process becomes essential. Initially,
non-steroidal anti-inflammatory drugs (NSAIDs) are prescribed
but the associated side effects include mild gastritis, renal
failure and at times allergy due to hypersensitivity (Figure 10)
(Pawlak et al., 2015).

Recent information on hepatic inflammation demonstrated
the role of phenolics in protecting such inflammation. Phenolic
compounds like hesperidin can act against inflammation by
downregulating liver enzyme biomarkers such as aspartate
amino transferase (AST) and alanine aminotransferase (ALT)
primarily. It can also hold back oxidative stress and activation
of T cells, which is a prime instigator of inflammation (Li
et al., 2014). Hesperidin, a common Citrus flavonoid, further
aids in the management of various proinflammatory recruiters
viz; NF-κβ and α smooth muscle actin (α-SMA). Another

Frontiers in Pharmacology | www.frontiersin.org 9 May 2019 | Volume 10 | Article 509

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Saha et al. Role of Natural Phenolics in Hepatoprotection

FIGURE 10 | Protective effect of phenols in various metabolic pathways in liver diseases. The upward arrow indicating upregulation and down arrow indicating

downregulation of the enzymes.

well-known flavone, silymarin, is also a subclass of the family of
phenolic compounds that works in patients with chronic hepatic
carcinoma (González-Gallego et al., 2014).

REGULATION OF GENE EXPRESSION BY
PHENOLICS

The chemical nature, physical properties, and dose ratio of
a particular drug, along with an individual’s gene expression
profile, antioxidant status, and the capacity for regeneration are
also crucial for cell injury. Several mechanisms are involved in
the initiation of liver cell damage and aggravate ongoing injury
processes (Guan et al., 2014; Ju and Tacke, 2016). Dysfunction
of these vital cell organelles results in the impairment of
dynamic equilibrium in homeostatic condition, thus resulting
in intracellular oxidative stress with excessive formation of
reactive oxygen species (Cannistrà et al., 2016; Ramachandran
et al., 2018). Major causes of the hepatotoxic reactions by drugs
are elevated ROS generation, oxidative stress and suppressed
immune responses. Hepatotoxicity remains amajor cause of drug
withdrawal from the market. Recent examples in the USA and
Europe are ximelagatran, nefazodone, nimesulide, ebrotidine,
trovafloxacin, troglitazone, bromfenac, and so forth.

Gene-metabolic networks are an advanced mode to construct
a network with genes and metabolites specifically deregulated
in different liver disease phenotypes. It compactly gives an

overview of genes of interest, representative gene subsets that
were involved in regulated signaling pathways, including tumor
necrosis factor (TNF), P53, NF-κB, chemokine, peroxisome
proliferator activated receptor (PPAR) and Toll-like receptor
(TLR) signaling pathways associated with the physiology of
various hepatic disease. Detailed information for the clinical
status and associated genes in the hepatotoxicity are summarized
in gene networking model Figures 11, 12. Gene regulation of a
few bioactive phytocompounds is discussed below in Tables 1, 2.

Apiginin
Apigenin, a plant flavone, can improve hepatic health
during severe liver disease conditions by down-regulating
Nrf2-signaling and up-regulatingBCL-2 apoptotic pathway
(Tsaroucha et al., 2016).

Caffeic Acid
It is chemically 3,4-dihydroxycinnamic acid that occurs in a
diet of fruits, green tea, wine, and coffee bean components.
Caffeic acid showed potential antioxidant and anti-inflammatory
properties and is effective in treating major liver hitches (Kim
et al., 2018). It can modulate the expression of kelch-like ECH-
associated protein-1 (Keap1), a hepatic carcinoma factor, by
interacting with Nrf2 binding site and restraining it from binding
to Keap1 and elevating the expressions of vital antioxidative
signals like HO-1 (Yang et al., 2017).
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FIGURE 11 | Gene networking showing hepatotoxicity mediated gene expression and subsequent mode of action of various natural products. This network was

generated by a software Cytoscape version 3.6.1.

Catechin
Catechin from green tea extracts, selective seeds, and fruits.
It is categorized by the presence of a hydroxyl moiety at C3,
C5, and C7 position of at A ring, and again in C3 and C4 of
the B ring. Catechin with anti-hyperlipidemic property helps in
treating diverse clinical conditions associated with non-alcoholic
fatty liver diseases where abnormalities in protein and lipid
metabolism play the prime role in pathophysiology of the liver
(Sun et al., 2015; Pezeshki et al., 2016).

Curcumin
It exerts its protective and therapeutic effects in oxidative coupled
liver diseases by suppressing proinflammatory cytokines, lipid
peroxidation products, hepatic stellate cells, and Akt activation.
Curcumin ameliorates oxidative stress induced expression of
Nrf2, SOD, CAT, and GSH. Curcumin acts as a free-radical
scavenger over the activity of different kinds of ROS via its
active phenolic pharmacophore, β-diketone and methoxy group
(Nabavi et al., 2014).
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FIGURE 12 | Gene-modeling showing various hepatic diseases and associated genes with it. A tool named Circus on shiny Circos server generated this image. The

blue band is showing various genes responsible for pathophysiological conditions, the green showing various hepatic complications and the red band shows the

bioactive natural compounds possessive hepatoprotective activity. Various shades indicating the degree of relatedness between the various bands.

Epicatechin
It is a flavan-3-ol found in edible plant products like
cocoa and other varieties of plant foods. Epicatechin
plays an important role in lipid metabolism in fatty liver
condition and hypercholesterimia (Cordero-Herrera et al.,
2015). It can down-regulate important liver enzymes
like SGPT and SGOT, which increases its liver anomalies
(Shanmugam et al., 2017).

Ferulic Acid
It is the most abundant phenolic acid in plants that has
potent antioxidant ability to freeze the activity of the free
radicals like NO, O−

2 . It exhibits prevailing anticholestatic
action against liver cholestasis by inhibiting extracellular matrix
related gene expression and also by disruption of the Smad
signaling pathways and extracellular signal-regulated kinases
(Gerin et al., 2016). It sometimes activate the AMPK or the
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TABLE 1 | List of a few potent natural phenolics and their mode of action imparting hepatoprotective activity.

Sl No. Compound

name

Sub

category

Type of liver

disease

Structure Mode of action References

1 Apigenin Flavone Hepatic

ischemia/reperfusion

Up regulating BCL-2 levels (Tsaroucha et al.,

2016)

2. Caffeic acid Phenolic

acids

Diabetic Liver injury Lipid peroxidation and

antioxidant enzymes

(Yilmaz et al., 2004)

3. Catechin Flavonols Hepatic tissue injury Antifibrotic and antioxidative (Kobayashi et al.,

2010)

4. Curcumin Curcuminoids Non-alcoholic

steatohepatitis

Immunomodulatory (Nafisi et al., 2009)

5. Epicatechin Flavonoids Diabetic liver injury Lipid peroxidation and

antioxidant enzymes

Effects of (–)epicatechin, a

flavonoid on lipid peroxidation

and antioxidants

streptozotocin-induced diabetic

liver, kidney and heart.

(Terao et al., 1994)

(Continued)
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TABLE 1 | Continued

Sl No. Compound

name

Sub

category

Type of liver

disease

Structure Mode of action References

6. Ferulic acid Phenolic

acids

Carbon tetrachloride

(CCl4)-induced

acute liver injury

Antioxidant, anticancer, and

anti-inflammatory

(Kim et al., 2011)

7. Hyperoside Flavonol Liver injury Enhancement of APAP clearance (Choi et al., 2011)

8. Icariin Prenylated

flavonol

glycoside

(Flavonoid)

Hepatic fibrosis Anti-angiogenic and

anti-autophagic

(Algandaby et al.,

2017)

9. Magnolol Neo-lignan Immune-related liver

fibrosis

Anti-inflammatory and

antioxidant effects

(Ogata et al., 1997;

Lin et al., 2001)

10. Morin Flavonoid Hepatic fibrosis Suppressing canonical

NF-κBsignaling.

(Sivaramakrishnan

and Niranjali Devaraj,

2009; Madankumar

et al., 2014)

(Continued)
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TABLE 1 | Continued

Sl No. Compound

name

Sub

category

Type of liver

disease

Structure Mode of action References

11. Naringenin Flavanone Hepatic

inflammation

Activation of an Nrf2-mediated

pathway

(Totta et al., 2004;

Yen et al., 2009)

12. Resveratrol Stilbenoid Alcoholic fatty liver Inhibition of sirtuin 1 (SIRT1) and

AMP-activated kinase (AMPK)

(Frémont, 2000;

Baur and Sinclair,

2006)

13. Wogonoside Flavonoid Hepatic fibrosis Antifibrotic (Yang et al., 2013)

MAPK signaling pathway by enhancing lipid metabolism (Cheng
et al., 2018). Several reports also confirmed the mode of action
of ferulic acid is mediated by regulating the expression of
several physiological factors viz; PPAR-α, CPT-1α toward lipid
oxidation and this action is very important in treating fatty liver
diseases (Kim et al., 2011).

Hyperoside
It is a significant flavonoid that can fuel up the expression of
diverse endogenous antioxidant enzymes and can quench free
radicals formed during the metabolism of xenobiotics in the
liver. Further, the capacity of hyperoside to regulate detoxifying
enzymes phase II makes it potent as these enzymes are the
prerequisite for liver during the initial round of oxidation. It
helps in mitigating liver fibrosis by activating the Nrf2 signaling
pathway, meant for neutralizing oxidants, when studied in
CCl4−induced hepatotoxicity (Wang et al., 2016; Xie et al., 2016;
Zou et al., 2017).

Iccarin
It is reported from genus Epimedium and has been shown to delay
the fibronectin and collagen accumulation in renal interstitial
tissues and mesengial cells of rat model (Algandaby et al.,
2017). Several published reports confirmed its protective role
in inflammation blocking TNF-α and IFN-γ signaling pathway

(Sinha et al., 2016). Other important protective actions of iccarin
comprises of modulating expression of toll-like receptor and
inhibition of the mitogen activated protein kinase (MAPK)
(Mochizuki et al., 2002).

Magnolol
Magnolol from Magnolia officinalis is an important phenolic
compound that maintains the oxidative balance during
hepatotoxicity in galactosamine-injured mice models. Magnolin,
another phenolics from same plant was reported to have
ameliorating activity in lipid build up, insulin resistance and also
in hepatic inflammation, when hepatocytes are exposed to free
fatty acid in vitro (Tian et al., 2018).

Morin
Morin, is a naturally occurring 2′,3,4′5,7-penta-hydroxyflavone,
present in mulberry, tartary buckwheat, jackfruit, green tea,
orange, and in many dietary plants. It exerts beneficial effects on
metabolism by suppressing canonical NF-Kβ signaling (Caselli
et al., 2016; Sinha et al., 2016).

Naringenin
Naringenin, a natural flavonoid, possesses antioxidant,
anticancer and anti-inflammatory activity (Chtourou et al.,
2015). Naringenin exhibits very little antioxidant action
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directly as a scavenger, yet it helps in upregulating of Nrf2
pathways and thus upholds the normal redox of the cell
even in clinical conditions where prooxidants and reactive
oxygens are formed as a of damage mechanism in hepatocytes,
(Esmaeili and Alilou, 2014).

Resveratol
Resveratrol, a 3,5,4′-trihydroxystilbene polyphenolic compound,
is available in edible plants and selected fruits like grapes. It
can control a specialized mammalian homolog, sirtuins (SIRT)
(Andrade et al., 2014). Over expression of this homolog helps
in treating non-alcoholic related fatty liver disease by regulation
lipogenesis. Resveratrol is associated with considerable reduction
in various liver enzymes, cytokines, and also transcriptional
factors like nuclear factor κB. It alleviates the nuclear factor-
κB (NF-κB) expression following the stimulation of its inhibitor
IκBα (Zhang et al., 2015b).

Wogoloside
It is another flavone that imparts hepatoprotective activity via
different facilitating lipid metabolism by increasing oxidation
process. AMPK signaling to bestow its effectiveness by various
modules (Wang et al., 2015).

COMPUTATIONAL STUDY FOR BIOACTIVE
PHENOLIC COMPOUNDS

In silico appraisal presently happens to be a pronounced
method of evaluation in various biological research these
days. It has the benefit of low cost, fast execution, and
the most constructive face of such study is to diminish the
animal usage in various toxicity screening. PASS prediction
assay (Lagunin et al., 2000), which is highly studied these
days, is based on primarily structure-activity relationships
investigation of the training set, that generally contains more
than 200,000 compounds showing at least 3,700 type of
biological actions that interestingly allows to estimate if a
phytochemical compound has a particular effect (Dei et al.,
2013). Lipinski’s Rule of Five (Lipinski, 2004) is another
method that can be applied to all the phenolic compounds
to evaluate their drug likeness and pharmacological properties.
Such information is very helpful in accessing the phenolic
compounds as potential drug leads that can act as natural
therapeutics. Only the compounds satisfying the Lipinski’s
criteria are further considered for additional computational
operations. Compounds that cleared the Lipinski’s barrier were
prepared for docking studies by their energy minimization in
Marvin Sketch. Receptor-ligand interaction study using the Hex
docking tool (Macindoe et al., 2010) are also another mode
of interaction study. Various amino acids of the target protein
interaction with the lead compound are studied with respect
to their bond length and bond angle. Hence, the reported
phenolic compounds can thus be studied as good prospective
options for their use as medicine that targets various proteins
for hepatic treatment. Reports of phosphorylated flavonoids
i.e., iccartin is extensively studied for the potent target TGF-
β, where the score of molecular docking was reported 0.28

which was more than the marketed standard ursidiol 0.23
(Wheng et al., 2016).

Insilico studies have its implication in various pharmacological
studies. From the initial protein, study to gene expression analysis
related to any diseases can be carried out by the concept of
pharmacogenomics. Phenolic compounds as hepatoprotective
have been reported in the work of Kaveri, 2017, with
insilico approach. The work was carried out on a group of
newly synthesized acetylated phenolics. A good number of
target proteins of hepatic anomaly have been reported when
target fishing was performed (Liu et al., 2017); which not
only predicted the probable important target but directed
the study of those prospective targets in understanding the
mechanism of that disease. This mode thus supports the
traditional uses for hepatic disorders and thus can suggest
major bioactive phenolic compounds as contributors to produce
ethnopharmacological effect.

FUTURE PROSPECTS

Natural products and specially plant phenolics have become a
promising therapeutic alternative and prospective replacement
of conventional marketed drug in practice due to their
effectiveness, minimal side effects, and protective properties.
Furthermore, their dietary nature and availability is a bonus,
and gives all the more reason to decline those generally available
drugs that also cause toxicity to cells. Remarkable phenolics
like curcumin and resveratrol are pharmacologically tested
chemoprotective agents against treatment of hepatic carcinoma.
Though widely held natural products evaluated until now are
generally non-toxic in nature, a few studies on toxicity regarding
certain natural products are also highlighted these days. As a
result, appropriate selection of the natural based drug is also
obligatory. All the important phenolics with their derivatives,
though studied and well reported for, have not yet been fully
analyzed for their immense therapeutic usage, as there are not
enough studies available regarding them. Components of such
compounds in the diet varies with temperature and cultivation
process. Furthermore, variation in the physicochemical
properties could result from different modes of production
of such plants, including agricultural and environmental
factors. Many pharmacological reports have demonstrated
that phenols have a variety of therapeutic effects, including
anti-cancer, anti-diabetic, anti-obesity, immunomodulatory,
cardioprotective, hepatoprotective, and neuroprotective effects
through antioxidant and anti-inflammatory activities. However,
additional studies are required to understand biological
functions and compositions of many phenols, such as iccartin
and morin, in more detail. Understanding biological function,
composition, and therapeutic effects could help prevent adverse
effects from long-term administration of phenolic compounds,
and develop health promoting properties. It is envisaged
from this presented review that plant based phenolics will
not only reduce the risk of hepatopathy, but will also endow
a sure substitute that can be used for various hepatotoxicity
mediated diseases.
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