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ABSTRACT 

One of the most important challenges in the analysis of high-throughput genetic 

data is the development of efficient computational and statistical methods to 

identify statistically significant single nucleotide polymorphisms (SNPs). 

Genome-wide association studies (GWAS), are the state-of-the-art in 

identifying genetic variants for complex disorders, such as obesity. However, 

GWAS use single-locus analysis where each SNP is independently tested for 

association with some phenotype. The limitation of genetic variants identified 

by GWAS is its inability to explain the underlying genetic variation in complex 

diseases. Consequently, alternative approaches are required that are capable of 

modelling the intricate relationships between SNPs and phenotypes. 

The approach presented in this thesis extends GWAS and explores the use of 

deep learning stacked autoencoders (SAE) and association rule mining (ARM) 

to identify epistatic interactions between SNPs. This is achieved using a case-

control dataset containing 2,193 observations (962 cases and 1,231 controls) 

each with 594,034 genetic markers.  

A statistical filtering strategy is adopted to reduce the large number of SNPs 

to a more manageable set suitable for machine learning tasks. Several 

experiments have been conducted to explore epistasis among the filtered subset 

(2,465 SNPs) and are compared with results obtained using the industry 

standard logistic regression via a Generalised Linear Model (GLM). These 

include a multi-layer feedforward artificial neural network (MLP), SAE and a 

combination approach using SAE and ARM. Functional enrichment analysis is 
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adopted to biologically validate association rules mined by the proposed 

method. 

Baseline classification results are initially conducted using standard logistic 

regression (GLM) with SNPs input derived from several P-value thresholds 

(1x10-5, 1x10-4, 1x10-5, and 1x10-2). The second experiment is carried out using 

an MLP trained using the same input features. In subsequent experiments, 

epistasis is investigated using SAE to extract nonlinear SNP-SNP interactions 

and pre-train a fully connected MLP layer. Features are extracted using four 

single layer autoencoders (AEs) stacked (containing 2,000-1,000-500-50 

hidden units respectively). The initial results show that it is possible to gain an 

AUC = 85% (SE = 78% and SP = 80%) using 50 hidden neurons. The findings 

are encouraging; however, it is not possible to identify which information from 

the 2,465 SNPs is retained in the final AE layer (50 nodes) to initialise and train 

the MLP. Consequently, ARM is introduced to extend the SAE approach to 

provide interpretability regarding what SNPs more closely influence the 

phenotype and the interactions that exist between them. Interestingness 

measures, support, confidence, lift and chi-square test (𝜒2) are utilised to rank 

and determine correlated rules, under a support-dependence framework. The 

SNPs from the top rules (top 300, 200, 100 and 50 rules) are used with a SAE 

and fully connected MLP to measure their discriminant capacity in 

distinguishing between case-control observations. Graph-based visualization 

methods are utilised to show the interactions between SNPs as identified by the 

top rules. While classifier performance metrics are utilised to assess classifier 

performance. 
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The SNPs contained in the set of top rules are used as input to different SAEs 

configurations to compress the features (retain only the salient information) 

through progressively smaller hidden layers. The final hidden layer is then used 

to initialise the learnable parameters of a fully connected MLP before it is fine-

tuned for classification tasks. The results show that it is possible to achieve an 

AUC = 77%, SE = 77% and SP = 68%. More importantly, in parallel, it is 

possible to explore which of the 2,465 SNPs and their epistatic interactions are 

most strongly associated with obesity. This provides a significant novel 

contribution to the field of computational biology and is the first study of its 

kind to combine deep learning epistatic analysis using SAEs and ARM to 

classify case-control observations and provide an interpretation of the final 

trained classification model. The level of accuracy required is fully tuneable, 

i.e. it is possible to increase/decrease the results obtained by the SNPs in 

classification tasks by increasing/decreasing the rule mining support and 

confidence parameters, defined in the rule generation stage.  

Additional experiments were conducted as a proof of concept to support the 

use of a statistical filtering approach to reduce the dimensionality of the data 

before investigating epistasis. Gene set enrichment analysis was utilised via the 

i-GSEA4GWAS web tool. Enriched gene sets were then used as input features 

for classification experiments using an MLP and their performance reported. 

Although this approach is based on biological knowledge, that is, genetic 

variants are filtered based on biological pathways, classification results did not 

outperform those achieved by SAERMA. This, thus, justifies the use of 

statistical filtering within the proposed algorithm. 
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I, therefore, claim the approach posited in this thesis is foundational in 

character and is the first study of its kind that combines GWAS quality control 

and logistic regression with association rule mining and deep learning stacked 

autoencoders to study epistatic interactions between SNPs in polygenic obesity 

GWAS.  
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 EXTENDED ABSTRACT AND SCOPE OF 

THE THESIS 

1.1 Preamble 

According to the World Health Organization (WHO), the occurrence of obesity 

and overweight worldwide doubled between 1980 and 2014 (World Health 

Organization 2014). In 2016 more than 1.9 billion adults were overweight and 

650 million were obese (World Health Organization 2018). The condition was 

initially recognized as a disease in 1948 by the WHO (James 2008) and since 

then its prevalence has continued to increase making it a global phenomenon 

and one of the main contributors to poor health. It is considered one of the most 

difficult clinical and public health challenges worldwide (Yang et al. 2007; 

Hruby & Hu 2015). Obesity is a major risk and the leading cause for many other 

diseases such as Type 2 Diabetes (T2D), cardiovascular disease, premature 

death, hypertension, osteoarthritis, stroke and certain cancers (Walley et al. 

2006; Bhaskaran et al. 2014; Yang et al. 2007). Consequently, it is high on the 

political agenda of many countries (Vallgårda et al. 2015). 

1.2 Polygenic Obesity 

The predisposition to obesity in humans is referred to as polygenic obesity and 

is considered a complex and multifactorial disease caused by interactions 

between genetic, behavioural and environmental factors. While obesity tends to 

exist within families, the way it is inherited does not correspond to known 

patterns. Numerous studies have shown that an individual’s predisposition to 
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obesity is more similar among genetically related individuals than those that are 

not. The phenotypes associated with obesity exhibit significant additive 

heritability (h2, the proportion of the variability of a trait that is attributable to 

genetic factors) (Min et al. 2013). In the case of Body Mass Index (BMI), family 

and twin studies have shown that between 40 and 70 percent of the inter-

individual variation in obesity can be attributed to genetic differences in the 

population (Wardle et al. 2008; Zaitlen et al. 2013; El-Sayed Moustafa & 

Froguel 2013). The remaining percentage is associated with other factors, such 

as lifestyle and environmental.  

1.3 Genome Wide Association Studies  

Understanding polygenic obesity is complex and it does not exhibit a typical 

Mendelian pattern of transmission. There is evidence derived from Genome-

wide Association Studies (GWAS) that suggest single nucleotide 

polymorphisms (SNPs) in certain genes are associated with obesity risk factors 

and BMI. Examples of these SNPs include those associated with fat mass and 

obesity (FTO) and the melanocortin 4 receptor genes (MC4R) (Wang et al. 

2011; Xi et al. 2011; Corella et al. 2012; Loos 2012). Additional studies have 

reported that certain genes, including those mentioned, have a strong link with 

energy consumption in the nervous system when the hypothalamus part of the 

brain is stimulated (Willer et al. 2009).  

Although GWAS have successfully discovered numerous genetic loci 

affecting complex diseases, the molecular pathways connecting genetic variants 

to complex traits remain poorly understood. This is mainly due to a large 

proportion of disease-associated signals (SNPs) being in non-coding regions of 



 

3 

 

the genome, which introduce the necessity of additional means for interpreting 

and validate GWAS results (Anon 2010). Performing gene set enrichment 

analysis (GSEA), pathways analysis or incorporating biological information 

such as expression quantitative trait loci (eQTL) have contributed to provide 

functional interpretation of many trait-associated SNPs in a biological context 

(discussed later in this thesis). This has opened opportunities for characterising 

functional sequence variation while improving understanding of basic processes 

of gene regulation and interpretation of GWAS. Therefore, an essential task to 

systematically disentangle the molecular mechanisms underlying complex 

diseases, is via the identification of complex interplays among multiple genes 

in a genome-wide context, using functional genomics (Mattson & Liang 2017). 

Additionally, it has been suggested that common forms of diseases are not 

the result of single gene changes affecting a single outcome. Instead, complex 

diseases are most likely the result of complex relationships between gene 

networks which are modelled by complex genetic and environmental 

interactions. Hence, identifying interactions between two or more genes 

affecting disease susceptibility, namely epistasis, will help to provide a better 

understanding of diseases such as common obesity (De et al. 2015). This is 

regarded as a much more intuitive approach given that complex diseases cannot 

be reduced to single univariate SNP-phenotype interactions. Epistasis can be 

conducted from a biological and statistical viewpoint (Jiang et al. 2011). While 

biological epistasis investigates physical interactions occurring at molecular 

level, statistical epistasis represents the effect of the interactions between 

multiple genetic variants on the phenotype that cannot be estimated by 

individual loci exhibiting weak marginal effects. Both aspects of epistasis need 
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to be considered in order to provide a complete evaluation of the results. Once 

statistical epistasis has been identified, the biological implication of the 

interactions can be investigated using, for example, pathway analysis. 

Advances in Human Genomics have provided significant opportunities in 

genetic studies and research has suggested that it might be possible to quantify 

an individual’s susceptibility to obesity from an early age and thus, manage risks 

as individuals progress through life (Loos 2012). Given that sequencing the 

human genome is possible, and new genotyping and sequencing technologies 

are available, it is possible to analyse whole genetic sequences and detect 

diseases and associated traits (Pirmohamed 2011). Initiatives such as the 

100,000 Genomes Project1, conducted by Genomics England, aim to sequence 

100,000 genomes from 70,000 NHS patients to provide treatments for those 

with rare diseases and cancer (Griffin et al. 2017). The information will be used 

to create a genomic medicine service for the NHS to enable new scientific 

discovery and provide medical insights. Therefore, combining personalised 

medicine with genetic information and integrating it into medical care and 

person specific risk assessments will help us to mitigate the long-term effects 

of obesity and its associated co-morbidities (Mardis 2008). This is being made 

possible through advances in bioinformatics (Sung 2012; Samish et al. 2014), 

data science (Higdon et al. 2013; Rudin et al. 2014) and advanced machine 

learning algorithms (Deo 2015).  

                                                 

1 http://www.genomicsengland.co.uk/ 
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1.4 Computational Biology 

The availability of advanced analytical tools and a deeper understanding of the 

biology of genomes are necessary if we are to decipher, interpret, and optimize 

the clinical utility of variation in the human genome. To successfully identify 

genetic features for disease and health prediction using a genome-wide 

approach, several significant challenges must be addressed (Moore & White 

2007). Traditional statistical methods such as logistic regression have shown 

limited power in modelling high-order nonlinear interactions between genetic 

variants (Gilbert-Diamond & Moore 2011). Hence, better data mining and 

machine learning approaches are required to statistically model relationships 

between DNA sequence variations and disease predisposition. Additionally, the 

high dimensionality present in genomic data makes it computationally difficult 

to exhaustively evaluate all SNP combinations. This is indeed, a well-known 

computational challenge referred to as the “curse of dimensionality” in the field 

of computer science (Altman & Krzywinski 2018). Therefore, filtering genetic 

variants or features plays an important role in genomic studies.  

Performing SNP selection based on arbitrary significance threshold (i.e. 

some predefined P-value) can help to reduce computational complexity by 

calculating a test statistic for each marker separately and evaluating all possible 

interactions in the filtered subset (Hoh et al. 2000; Marchini et al. 2005). In this 

approach, the data is processed statistically to assess the quality or relevance of 

each SNP with an associated phenotype, which can then be evaluated using 

classification techniques. Although not ideal, this approach allows reducing 
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genome-wide datasets to a more manageable dimension, which eases the study 

of epistasis without any prior knowledge about the disease under investigation. 

Finally, it is important to interpret gene-to-gene interactions in the context of 

human biology before any results can be translated into specific 

recommendations and treatment strategies. However, making etiological 

inferences from computational models has been considered the most relevant 

but difficult challenge (Moore & Williams 2005). In this thesis, results from the 

proposed method (SAERMA) are validated via functional analysis. This allows, 

for example, to prove that the interactions identified by association rules 

represent true epistasis in case items in the rules are mapped to a biological 

pathway. 

1.5 Scope of Research 

The research question is to investigate whether complex interactions between 

SNPs (epistasis) can explain obesity predisposition in humans. Following 

traditional GWAS quality control and association analysis, the most significant 

SNPs are selected and used in subsequent analysis to investigate epistasis. 

Stacked autoencoders are implemented as a feature extraction technique to 

capture epistatic interactions between SNPs based on variants identified through 

association rule mining (ARM). When these two techniques are combined in 

this configuration, it is possible to control the classification results produced in 

the final fully connected MLP layer of the stacked autoencoder by manipulating 

the interestingness measures, support and confidence, in the rule generation 

process. This direct correlation between the SAE and the ARM provides an 

interpretation of the proposed architecture. Additionally, pathway analysis 
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based on the variants within the rules identified by ARM was used as a 

biological validation of epistasis. Candidate variants and their interactions 

identified by this approach provide new evidence, widening the potential of 

genetically supported early diagnosis and prevention of obesity and obesity-

related conditions. 

1.6 Research Aims and Objectives 

In this thesis, obesity aetiology through the effective use of bioinformatics and 

machine learning algorithms is investigated. Through the course of this 

research, it is expected to redefine the established upper bound to support early 

prediction of individuals at risk of becoming obese, demonstrating that artificial 

intelligence paradigms can bring a fundamental shift in capability to this field. 

The research aims to investigate:  

1. Individual genetic variants (SNPs) or groups of variants associated with 

obesity susceptibility using a genetic dataset. This is conducted using 

best practice quality control and association analysis via PLINK to 

ensure data quality prior to epistatic analysis. 

2. Statistical filtering using GWAS to select SNPs for epistatic analysis 

based on modified P-value thresholds. 

3. Interactions between SNPs (epistasis) and machine learning modelling 

to classify obesity from case-control observations. To explore a novel 

approach to perform and validate epistasis (SAERMA). 

4. Model interpretation using association rule mining. To approximate a 

set of SNPs that represents the best features extracted by the SAE. 

5. Post-analytical interrogation of the results. To report information on 

overlapping or nearest genes using open source tools. 
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The proposed methodology could ultimately contribute to the development 

of new strategies to mitigate the effects of obesity and related comorbidities, 

providing the research community with candidate genetic variants that can be 

used in further studies of obesity. 

1.7 Novel Contribution 

Genetic variant interactions or epistasis discovery has become a subject of 

active development in the fields of statistics, machine learning and biology. The 

challenge undertaken in this research is, therefore, to examine how intelligent 

systems combined with standard bioinformatics approaches (association 

analysis and quality control) can be applied to identify complex interactions 

between genetic variants while increasing the effectiveness and efficiency of 

obesity risk prediction. A novel strategy to detect epistatic interactions in 

obesity is proposed and described as SAERMA: Stacked Autoencoders Rule 

Mining Algorithm. Each of the novel contributions claimed in this document 

are discussed in turn in the following subsections. 

1.7.1 Stacked Autoencoders 

Stacked autoencoders is a powerful unsupervised feature extraction technique 

based on a deep learning architecture which has been vaguely explored in the 

bioinformatics field, with exception to high dimensional gene expression 

profiles (Danaee et al. 2017) and organ detection in heterogeneous magnetic 

resonance imaging (MRI) (Hoo-Chang Shin et al. 2013). In this thesis, using 

SAE as a feature extraction technique combined with GWAS for epistasis is the 

first study of its kind in the investigation of obesity as a complex disease. 
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• Stacked autoencoders have been used as a proven alternative to 

traditional epistatic analysis approaches and to the best of our 

knowledge is the first comprehensive study of its kind (Fergus, Curbelo 

et al. 2018; Curbelo, Fergus, Chalmers, et al. 2018). 

1.7.2 Association rule mining 

The Apriori algorithm is an unsupervised machine learning algorithm 

commonly utilised to identify patterns in large datasets. Although it was 

originally designed to solve problems in domains such as market basket analysis 

(transactional databases), its use has been extended to the area of bioinformatics. 

Particularly, the Apriori algorithm has been utilised to extract frequent itemsets 

to investigate epistasis in case-control data. However, this technique has not 

been previously used to generate rules in GWAS for subsequent SAE feature 

extraction and fine-tuned classification modelling in polygenic obesity studies. 

• In this thesis, the Apriori algorithm is utilised, but extended beyond 

other works to generate rules from GWAS, which are later combined 

with SAEs to learn epistatic interactions between SNPs. 

1.7.3 SAERMA 

SAERMA combines GWAS, ARM and SAE, to provide a tight correlation 

between SNPs in generated rules (compressed by an SAE to capture epistasis), 

and a fully connected MLP classification model (weights initialised using the 

final layer in SAE) that is fine-tuned to classify case-control observations. 

While GWAS analysis filters the SNPs for dimensionality reduction, changing 

the interest measures support and confidence in ARM directly affects the 
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classification results produced. Using an application specific set of performance 

metric thresholds during model training and test set validation, it is possible to 

use the ARM model to interpret the deep classification model structures and 

approximate what SNPs are important and the epistatic interactions between 

them using the association rules. 

1.7.4 Discover tool for new genetic candidate variants 

SAERMA is a first step discovery method that allows bioinformaticians to 

create network plots from association rules configured to provide the best 

classification results when distinguishing between case-control observations. 

The most significant rules represent SNP interactions formed by SNPs that often 

co-occur, with an indication of the direction of the rule. Experts in the field of 

genetics and medicine can use the outcome of these interactions as candidate 

variants to facilitate clinical management and better therapies.  

To the best of our knowledge this is the first time deep learning SAE and 

ARM have been combined and used with obesity GWAS data to classify case-

control observations with machine learning model interpretation. 

1.8 Structure of the thesis 

Following this Introduction, Chapter 2 provides background information on 

obesity as a condition and its occurrence. The chapter also provides an overview 

of the genetic aspects underlying obesity, which forms the foundation for this 

research. To complement this, the analytical aspects of genetic analysis are 

described, with emphasis on how GWAS is conducted and the common data 

format as required by the bioinformatics tool PLINK. Several key findings made 
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by GWAS are also presented. Furthermore, the chapter describes epistasis and 

introduces current approaches within the scope of this research. The discussion 

investigates how SNP-to-SNP interactions are identified via statistical 

approaches which typically require dimensionality reduction stages, also 

described in this chapter. A general overview of epistasis is followed by an 

introduction to promising and less explored techniques considered in studies on 

epistasis. These include, association rule mining, neural networks, deep learning 

and stacked autoencoders. A description of functional analysis available for 

GWAS hits interpretation are discussed before the concept of systems medicine 

is introduced as the theoretical framework of this thesis, to close this chapter. 

Chapter 3 describes the proposed SAERMA methodology. A complete 

description of the pipeline that comprises SAERMA is presented. The approach 

is decomposed into several stages, namely genomic analysis (QC and 

association analysis), epistasis (ARM and SAE), and classification (MLP). The 

first stage considers two different aspects: (1) the identification and elimination 

of variants and/or individuals that introduce bias or erroneous data into the 

analysis, and (2) statistical filtering for dimensionality reduction using common 

GWAS techniques. The second stage identifies SNP-to-SNP interactions by, 

combining ARM and SAEs. This analytical process is evaluated using an MLP 

trained using the identified SNPs and the interactions between them, to classify 

case-control instances. The architecture of the proposed network is also 

presented in this chapter. 

In Chapter 4, the results are reported using several experiments and a real 

case-control dataset obtained from dbGaP. The results obtained in the QC and 
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association analysis stages are presented first as the gold standard approach in 

GWAS and as a statistical filtering strategy. Next, baseline logistic regression 

(GLM) classification results using the filtered SNPs (different P-value 

threshold) are also reported to demonstrate the use of industry standard models 

before carrying out experiments with more advanced machine learning 

techniques. The baseline results with GLM is followed by the results obtained 

from an MLP trained on the SNPs filtered by different P-value thresholds. This 

experiment is extended to include an SAE and a final fully connected MLP to 

investigate epistasis. Although using SAEs is novel and powerful, a final 

experiment is constructed to provide model interpretability, an inherent 

limitation of SAEs. This is achieved by combining ARM and SAE models, to 

generate rules for deep feature learning using the SAE. The correlation between 

the two models provides a base understanding for the classification results that 

captures important SNPs and the epistatic relationships that exist between them. 

Chapter 5 discusses the results obtained in each of the experiments conducted 

in this thesis. Experimental evidence shows that SAEs perform well in 

identifying non-linear interactions between SNPs and provide good 

classification performance with a substantially reduced number of input 

features. Adding ARM to the proposed methodology decreases the results, 

however it provides an interpretation of the model, which is not the case for any 

of the other experiments presented in this thesis. 

In order to validate the rules identified by SAERMA from a biological point 

of view, functional analysis was conducted and relevant pathways mapping 

items in the rule were reported in Chapter 6. This chapter represents a proof of 
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concept analysis to demonstrate that the identified rules are an indication of true 

epistasis and not mere chance. 

Finally, the thesis is concluded in Chapter 7. This chapter provides an 

overview of what was presented in the thesis and summarises the research 

findings. While the thesis made several novel contributions and the results were 

encouraging there is still room for improvement. Consequently, further 

directions are also included as future work. In particular, it highlights how SNP 

filtering is less than ideal as many important but less influential features that 

may hold key information needed to fully understand polygenic obesity could 

be eliminated.  

Overall though, the methodology in this thesis to the best of our knowledge 

is a world first. The approach provides researchers with a new tool in the quest 

to better understand epistatic interactions between SNPs in GWAS data.   
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 INTRODUCTION 

2.1 Introduction 

This thesis is a multidisciplinary project. Hence, an overview of several 

concepts from different areas of study is provided in this chapter. 

The chapter is organised into eleven main sections. The chapter begins by 

describing the obesity problem and the effect it has on society. This is followed 

by a discussion on the genetic perspectives of obesity and an explanation of the 

core terminology used. The state-of-the-art methods for the analysis of genome-

wide data is presented before an overview of the findings achieved by GWAS 

are discussed. The chapter continues introducing the term epistasis and 

multivariate approaches for the investigation of obesity epistasis are discussed. 

Finally, a summary of the chapter is provided. 

2.2 Obesity Epidemic 

Obesity prevalence has been increasing for several decades and has now reached 

epidemic proportions (James 2008; Mehlhorn 2010; Hall 2018; Lobstein et al. 

2004). This has had a significant impact on morbidity and mortality rates (Flegal 

et al. 2007; Hirko et al. 2015). According to the World Health Organization 

(WHO), in 2014, overweight and obesity prevalence worldwide was more than 

two times higher than in 1980 (World Health Organization 2014). The 

occurrence of obesity has been typically associated with high-income countries 

but nowadays, it is also a rising problem in low and middle-income countries 

(Li, Zhao, Luan, Ekelund, et al. 2010; Gortmaker et al. 2011). If current trends 
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continue, obesity prevalence will fail to meet the global non-communicable 

disease (NCD) targets (World Health Organization. Department for Prevention 

of Noncommunicable Diseases 2017) by 2025, with global prevalence projected 

to be slightly higher in women than in men (NCD Risk Factor Collaboration 

(NCD-RisC) 2016). 

According to the WHO, overweight and obesity is the fifth leading risk factor 

for mortality, resulting in approximately 2.8 million deaths globally every year 

(WHO 2009). Obesity is a known contributor of numerous complications 

(Segula 2014) which include T2D, cardiovascular disease, and certain types of 

cancer (Borrell & Samuel 2014; Lifestyles statistics team. Health and Social 

Care Information Centre 2014; Renehan et al. 2008). Furthermore, overweight 

and obesity can significantly limit life expectancy (Peeters et al. 2003). In fact, 

the effects of obesity are so grave that it reduces life expectancy on average by 

3 years – in cases of severe obesity this can vary between 8 and 10 years (Bello 

et al. 2013; Borrell & Samuel 2014). Consequently, governments and 

organizations from the public and private sector all have a role to play in 

contributing to obesity prevention (Hilton et al. 2012).  

The United Kingdom (UK) is currently ranked as one of the most obese 

nations in Europe where obesity rates have nearly doubled between 1993 and 

2016 (National Clinical Guideline Centre 2014; Carl Baker 2018). Data 

extracted from the Health Survey for England (HSE) in 2015 revealed that 41% 

of men and 31% of women were overweight whilst 27% of adults (men and 

women) were obese, with a body mass index (BMI) equal to 30 kg/m2 or higher 

(Department of Health 2016). The morbid obesity figures, although lower, 
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indicate a greater prevalence in women compared to men (4% for woman and 

2% for men). However, in cases of overweight and obesity, statistics tend to be 

higher in men than in women, 65.7% and 57.1% respectively. Although 

attention is usually centred on overweight and obesity, it can be noted that 

morbid obesity cases in adults, in England, increased from 0.8% to 2.9% 

between 2005 and 2015. A 2016 survey revealed that for every one hundred 

adults in England, more than a quarter (twenty six adults) were obese, of which 

three were morbidly obese. Obese and overweight comprised a total of 61.4% 

of all adults with 2.9% being morbidly obese. In Figure 2-1, an increment in the 

prevalence of obese adults, both men and woman, can be observed between 

1975 and 2014, with especial interest in North America and Europe, Oceania 

and Latin America and the Caribbean. The figure depicts the prevalence of 

obesity in adults aged 18 years and older in different regions, measured as the 

percentage of adults (both male and female) with a BMI ≥ 30 kg/m2. 

 

Figure 2-1: Prevalence of obesity in adults by region between 1975 and 2014 

Source: UN Food and Agricultural Organization/WHO (Ritchie & Roser 

2019). 
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The annual direct cost of obesity and its consequences to the National Health 

Service (NHS) was approximately £5.1 billion between 2006 and 2007 

(Scarborough et al. 2011). Although calculations of the exact economic cost of 

obesity is difficult to ascertain, prominent reports, such the one issued by the 

UK Government’s Foresight Programme in 2007, estimated that the NHS costs 

attributed to overweight and obesity was forecasted to rise to £6.3 billion in 

2015, £8.3 billion in 2025 and £9.7 billion in 2050 (Butland et al. 2007). 

Furthermore, it has also been reported that by 2030, there will be 11 million 

more obese adults in the UK. This represents an estimated combined medical 

cost for treatment of associated diseases at £1.9-2 billion per year (National 

Clinical Guideline Centre 2014). 

In general, global obesity rates tend to be higher in adults than in children. 

However, childhood overweight and obesity is also a major public health 

problem in economically developed countries as well as in urbanised 

populations (Shawky & Sadik 2012; Wang & Lobstein 2006). As derived from 

Figure 2-2, it can be observed that childhood obesity is a serious problem 

particularly in the United States. The graph shows the overweight trend in a 

number of countries around the world. 
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Figure 2-2: Snapshot of the increasing number of overweight children in several 

countries 

Source: Government Office for Science. 

Childhood overweight and obesity prevalence increased from 4.2% to 6.7% 

between 1990 and 2010 worldwide and estimated projections for 2020 predict 

a rise from 6.7% to 9.1% (de Onis et al. 2010). In England, data extracted from 

the HSE in 2012 revealed obesity prevalence levels increasing from 11% and 

12% to 17% and 16% in boys and girls respectively between 1995 and 2011, 

reaching peaks of 18% and 19% among boys and girls around 2005 (The NHS 

Information Centre Lifestyle Statistics 2011). More recent estimations reveal 

that approximately one in five children in Reception are classified as obese or 

overweight, while one in three children are identified as obese or overweight in 

Year 6 (Statistics Team NHS Digital 2017). Obese children are more likely to 

become obese adults, with associated health problems and consequential costs 

to the NHS (Whitaker et al. 1997).  

The dramatic rise of obesity 

An energy imbalance between caloric intake and caloric expenditure leads to an 

increase in body weight. In other words, obesity arises in excessive absorption 
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and storage of energy constituents such as carbohydrates and fats, when energy 

intake surpasses energy expenditure (Pang et al. 2014).  

One of the most frequently used quantitative measures of adiposity is the 

BMI. Body fatness measures can be classified as direct and indirect (Lobstein 

et al. 2004). BMI is an indirect measure of body fatness although it is not the 

only one; measures such as skin-fold thickness, waist circumference or waist-

to-hip ratio (WHR) are also examples of indirect measures. Conversely, 

examples of direct measures of body fatness are underwater weighing, magnetic 

resonance imaging (MRI), computerized tomography (CT), Dual-Energy X-ray 

Absorptiometry (DEXA) or bioelectrical impedance analysis (BIA) among 

others. People with a very muscular physique (i.e. athletes) can have a high BMI 

but not necessarily excess fat. In these cases, BMI cannot be used to diagnose 

obesity conclusively. Despite this limitation, BMI is a convenient population-

level indicator of whether someone is in healthy weight, overweight or obese 

since it is a cheap non-invasive index of relative adiposity that is widely 

accepted (Value et al. 2016).  

BMI is formally defined as weight in kilograms (kg) divided by the square 

of the height in metres (m2), as indicated in Equation 2-1:  

 2

kg
BMI

m
=  2-1 

The BMI classification for the general population recognised by the WHO 

and other organisations is shown in Table 2-1 (Bjorntorp et al. 2000; Jensen et 

al. 2014; U.S. Department of Health and Human Services 1998). This 
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classification is the same for both sexes, but it may differ in different 

populations because of differences in body proportions. 

Classification BMI (kg/m2) Risk of comorbidities 

Underweight < 18.5 Low 

Normal weight 18.5 - 24.9 Average 

Overweight 25 – 29.9 Increased 

O
b

es
e 

Class I 30.0 - 34.9 Moderate 

Class II 35.0 - 39.9 Severe 

Class III ≥ 40 Very severe 

Table 2-1: BMI classification for adults according to the WHO 

Source: World Health Organisation 

Therefore using (Table 2-1), someone is considered clinically overweight or 

obese if his/her BMI is higher or equal to 25 kg/m2 and 30 kg/m2 respectively. 

Since the risk of comorbidities increases with BMI values of 25 kg/m2 or higher, 

BMI levels in adults should be sustained within the range 18.5−24.9 kg/m2 to 

maintain optimal health. BMI cases of obesity class III, are termed morbidly 

obese (BMI ≥ 40 kg/m2) and, are at the highest risk of morbidity and mortality 

(World Health Organization 2014). 

Physical activity and homeostatic metabolic processes are mechanisms 

through which energy is consumed in the human body (Pang et al. 2014), 

although several other factors play a significant role in the development of 

obesity. Among these factors, genetic predisposition, physical activity, caloric 

intake (diet) and socioeconomic factors are included (Smith & Smith 2016). 

While an imbalance between energy intake and expenditure drives obesity, its 

aetiology is complex and multifactorial. Thus, providing a conclusive 
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explanation of the causes behind the obesity epidemic is not an easy task (Hall 

2018). 

The ubiquitous availability of low-cost hypercaloric food combined with an 

increasingly sedentary lifestyle and other environmental factors have played a 

fundamental role in the development of the obesity epidemic. This is true since 

the prevalence of obesity has drastically risen while changes in the genes are 

unlikely to have happened so rapidly. Surprisingly, not every individual 

exposed to such environments, also known as obesogenic environments (Jones 

et al. 2007), becomes obese. As stated earlier, the aetiology of obesity is 

multifactorial, indicating that lifestyle and environmental factors may interact 

with multiple genes, thus causing this disorder. This is further supported by 

twin, adoption, and family studies which found that variation in BMI was 

largely due to heritable genetic differences, with heritability (Min et al. 2013) 

(the proportion of the variability of a trait/phenotype that is attributable to 

additive genetic factors among individuals in a given population) estimates in 

adults ranging between 40 and 70 percent (Maes et al. 1997; Walley et al. 2006; 

Vogler et al. 1995; Schousboe et al. 2003; Malis et al. 2005). Nevertheless, due 

to differences in study types, populations, and the age group targeted, these 

estimates have broadly fluctuated across studies. Hence, it is believed that 

obesity risk is higher among those individuals genetically predisposed to gain 

weight and who are exposed to obesogenic environments where gene-

environment interactions occur.  
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Current management strategies 

Managing the obesity epidemic can be costly as obesity places a significant 

financial burden on the healthcare system in most countries (Withrow & Alter 

2011). However, overweight, obesity and their related comorbidities are 

preventable. In this sense, governments and communities are best placed to 

promote healthy diets and regular physical activity. Intervention options for 

obesity may include non-surgical and surgical treatment. Non-surgical 

treatment often involves calorie reduction via dietary changes, behaviour 

modification, physical activity, and when necessary, pharmacotherapy or 

psychological support. Pharmaco-therapeutic and bariatric surgery approaches 

are examples of ways to deal with obesity (Gautron et al. 2015). Although if the 

genetic predisposition to this disease is identified, health services from many 

countries will save money, using interventions at a much earlier stage in life. 

Greater awareness of the causes of obesity would benefit the planning and 

development of international collaborations and programs to solve this growing 

public health crisis. Consequently, early detection and prevention strategies are 

more suitable options for all affected countries that differ from traditional, 

physician centred, diagnosis and treatment models (Kirk & Penney 2013).  

2.3 Genetics of Obesity 

Over the past century, obesity has been comprehended differently, with 

different theories supporting its aetiology. It was at the end of the 1980s and 

during the early 1990s when the first twins and adoption studies revealed 

genetic factors with robust implications in body weight regulation (Jou 2014). 
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Twins studies allowed the relative contributions of genetics to be unravelled 

as opposed to the environment, for a variety of human traits. In these studies, 

monozygotic (MZ or identical) and dizygotic (DZ or fraternal) twin pairs are 

compared to evaluate the impact genetic and environmental influences have on 

specific traits under investigation. For a given trait or condition in one of the 

twins, the idea is to find what the likelihood is that the other twin possesses the 

same trait or condition. Hence, it is said that genetic differences are present if 

MZ twins show more similarities on a given trait compared to DZ twins. In 

contrast, environmental factors are more likely to influence the trait if MZ and 

DZ twins share a trait equally. 

In 1986, Albert J. Stunkard et al. conducted one of the most convincing twin 

studies in obesity, where they proved that an individual’s weight could be 

governed by the individual’s parentage (Stunkard et al. 1986). The authors 

investigated data from 540 adult Danish adoptees and their biological and 

adoptive parents, to measure the relationship between BMI of both parents and 

adoptees. Their findings revealed that adoptees’ BMI were similar to those of 

their biological parents instead of their adoptive parents, even though adoptees 

shared the environment with adoptive parents. Consequently, the authors 

concluded that for most adoptees, obesity was inherited from their biological 

parents, suggesting that the family environment on its own has no clear effect 

in the development of obesity.  

In 1990, a group of researchers including Albert J. Stunkard, conducted an 

adoption study using a Swedish twin registry to investigate genetic weight 

regulation further (Stunkard et al. 1990). Twins that were raised by their 
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biological parents and twins who were raised by an adoptive family were 

compared. The authors confirmed, one more time, that for identical twins their 

weight was practically identical to their biological parents regardless of the 

environment where they grew up. More recently, a meta-analysis of the 

heritability of human traits conducted using information from fifty years of twin 

studies, provided a good overview of the relative contribution genes and the 

environment have on specific traits (Polderman et al. 2015). The results revealed 

that all the investigated traits were heritable. 

In addition to twin studies, hypothesises such as the ‘thrifty gene’ proposed 

by Neel in the 1960s, suggested that in populations that experience frequent 

periods of starvation, genes that predispose them to obesity had a selective 

advantage (Neel 1962). This, combined with today’s obesogenic environments, 

might cause a disproportion of body weight for those who carry these genes. 

However, this theory has been considered controversial (Speakman 2007). A 

more plausible theory called ‘predator release hypothesis’ argues that the lack 

of predation risk in modern societies might justify the distribution of obese 

individuals in the population, since negative pressure on genetic variants no 

longer impacts modern day living in developed countries (Speakman 2007). 

Family, twin and adoption studies as well as natural selection hypothesis 

have provided solid evidence to justify moderate to high heritability of BMI. 

Although twin studies suggest that certain disorders or traits have a genetic 

component, this does not provide information about the gene or genes involved 

and their location.  
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2.3.1 Central Dogma of Molecular Biology 

To better understand the context of the data analysed in this thesis, a brief 

introduction to the central dogma of molecular biology and the basic genetic 

concepts utilised in this thesis is provided. For a more in depth discussion of the 

topic, the reader can refer to (Watson et al. 2014; Alberts et al. 2014; Alberts et 

al. 2015). 

The DNA or Deoxyribonucleic Acid is a double-stranded macromolecule 

formed by two long polynucleotide chains (DNA strands) running in opposite 

directions, which enclose all the biological instructions to build and maintain an 

organism (Alberts et al. 2015). Fundamentally, DNA encodes a sequence of four 

building blocks named nucleotides, abbreviated as A (Adenine), G (Guanine), 

T (Thymine) and C (Cytosine) which, combined, specify most of the amino acid 

sequences of proteins. In Figure 2-3, a DNA molecule composed of two 

antiparallel strands and its building blocks is depicted, where the arrowheads at 

the end of each strand represents the polarities. These nucleotides can be seen 

as letters in a four-letter alphabet which allows for the spelling of biological 

messages. Hence, differences between organisms are due to differences in the 

nucleotide sequences in their respective DNA molecules, which represent 

different biological messages.  

C G A T

3'

3'

5'

5'

 

Figure 2-3: DNA chain internal structure 
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A very large number of different genetic messages can be produced (virtually 

infinite) with only four nucleotides (4N, for N nucleotides in the sequence). 

The long chain of DNA is separated into smaller biological segments or 

functional units known as genes, that contribute to manifestation of phenotypes 

(Alberts et al. 2014). In fact, the most relevant function of DNA is to carry those 

genes which contain information to specify all the proteins and RNA molecules 

that constitute an organism. The whole human genome, that is the totality of 

genetic information belonging to our species, is divided into a number of genes 

and distributed over 23 different pairs of chromosomes, where the position of a 

gene within the genome is called locus. Following the publication of the full 

human DNA sequence (Lander et al. 2001), the knowledge about gene 

distribution along each chromosome was improved. In Figure 2-4, an example 

of how genes are organised on a human chromosome is depicted (Alberts et al. 

2015). The example is based on one of the smallest chromosomes, chromosome 

22, which represents about 1.5 per cent of the human genome. Figure 2-4 (2) 

represents a segment of chromosome 22 where known and predicted genes are 

indicated in brown and rose respectively, whereas an expanded section of Figure 

2-4 (2) with 3 genes is shown in Figure 2-4 (3). Finally, Figure 2-4 (4) shows 

an exon-intron arrangement of a representative gene, where exons (rose) are 

sections of DNA (or RNA) that code for proteins whilst introns (grey) are non-

coding sections of an RNA transcript or the DNA encoding it. 
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10% 0f chromosome arm ~ 35 genes

~1% of chromosome arm containing 3 genes

One gene of 3.4x104 nucleotide pairs 

Regulatory DNA 
sequences

Exon Intron

(2)

(3)

(4)

Heterochromatin

(1)

RNA

Protein

Folded Protein

 

Figure 2-4: Example of organisation of genes on a human chromosome 

Coined in the early days of modern biology by Francis Crick, the central 

dogma has been accepted as the biological pathway where information flows 

from gene to protein in a unidirectional way (Alberts et al. 2014). It focuses on 

how proteins are synthesized from DNA, according to the flows of information 

from DNA to Ribonucleic Acid (RNA) and RNA to protein as shown in Figure 

2-5. Genes encode amino acid chains, the building blocks of proteins, which 

have specific functions in the organism (Alberts et al. 2015). From top to 

bottom, the arrow encircling DNA in Figure 2-5 means that DNA governs its 

own replication; the process represented by the arrow between DNA and RNA 
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(transcription) indicates that the synthesis of RNA is controlled by a DNA 

template that rewrite the DNA sequence in a similar RNA alphabet (in 

eukaryotes cells, RNA becomes messenger RNA); whereas in the translation 

process, where proteins are synthetized, the messenger RNA (mRNA) is 

decoded to specify the amino acid sequence of a polypeptide. In this biological 

flow of genetic information, the possibility of RNA to be determined by proteins 

or DNA to be made on RNA templates has been neglected. Not all genes specify 

proteins, instead they can provide the instructions to build functional RNA 

molecules that play roles in translation (i.e. transfer RNAs and ribosomal 

RNAs) (Watson et al. 2014). 

“The ‘Central Dogma’ is the process by which the instructions in DNA are 

converted into a functional product.” 2 

                                                 

2
 http://www.yourgenome.org 
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DNA

RNA

Protein

DNA replication
DNA → DNA

Transcription
DNA → RNA

Translation
DNA → Protein

 

Figure 2-5: Illustration of the central dogma of molecular biology 

Although the overall structure of the central dogma (DNA→ RNA→Protein) 

has remained intact over the past century, this fundamental biological law as an 

absolute principle has been questioned as it seems to be more complex than 

previously thought (Koonin 2012). In addition to serving as intermediate 

carriers of genetic information, RNA molecules are responsible for many 

critical tasks in the cell. The obsolete protein-centred version of the central 

dogma treated genomic regions transcribed into non-coding RNAs (ncRNAs) 

as ‘junk’ with no biological meaning (Ling et al. 2015). Although many human 

transcripts are not translated into protein, many of these are functional. When 

DNA is transcribed into both coding and non-coding RNA, a subsequent 

translation of the coding RNA is produced into protein while a concurrent 

regulation of these steps is controlled by non-coding RNA. Figure 2-6 depicts a 

most up to date version of the central dogma taking the role of ncRNAs into 
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consideration (Marques et al. 2015). Therefore, there is a special interest in how 

ncRNA transcripts modulate gene expression and their role as epigenetic 

modifiers. 

DNA

RNA

Protein

DNA replication
DNA → DNA

Transcription
DNA → RNA

Translation
DNA → ProteinSmall and mid-sized 

ncRNAs

Long ncRNAs

miRNAs
piRNAs
tiRNAs

lncRNAs
circRNAs
T-UCRs

snoRNAs
PROMTs

TSSa-RNAs
PARS

 

Figure 2-6: Role of ncRNA in a more up to date version of the central dogma 

The regulation of gene expression in the absence of a change in the 

underlying nucleotide sequence is known as epigenetics (Waterland & Michels 

2007). Epigenetic changes are typically reversible, are associated to chemical 

modifications to DNA and can alter the way transcription of genes is controlled. 

This has the potential to promote pathologies by deactivating specific genes or 

by aberrantly expressing others. Classical epigenetics mechanisms are governed 

by DNA methylation or posttranslational modification of histones although 

gene expression can vary based on the function of RNA molecules as well as 

their interactions with DNA and/or proteins. While DNA methylation correlates 

with transcriptional suppression, histone modifications activate or repress gene 
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expression depending on modification type (acetylation, phosphorylation, 

methylation and others) and locus (Gasperskaja & Kučinskas 2017). 

To date, a class of small ncRNAs termed microRNAs (miRNAs) are the most 

widely studied (He & Hannon 2004), although it is believed that many other 

contribute to the development of many human disorders (Esteller 2011). These 

can be contextualised according to their varying sizes of non-coding transcripts: 

short ncRNAs (miRNA and piRNAs) below 40 nucleotides (nt) in length, mid-

sized ncRNAs (snoRNAs) between 60-300 nt, and long ncRNAs (lncRNAs) 

that are at least 200 nt in length. Of these, long ncRNAs have attracted much 

attention as they are large in number and due to their functional relevance in 

complex disorders (Ling et al. 2015). These type of ncRNA wield changes in 

gene expression throughout different mechanisms highlighted by Peschansky & 

Wahlestedt (2014), necessary for appropriately targeting of histone modifying 

complexes or play a role in DNA methylation. 

Non-hypothesis-driven studies based on large scale genotyping from 

population-based samples (i.e. GWAS), commonly used for disease and trait 

gene association, have provided valuable information for investigating the 

genetic architecture of human disease. As discussed later in this thesis, such 

approaches do not provide a clear molecular link between genetic markers and 

the phenotype under investigation, owing to the fact that most of these disease-

related genetic variants are located in intergenic or non-coding regions of the 

genome. Therefore, it is of critical importance to consider the genetic context 

for a more comprehensive functional annotation in the investigation of complex 

diseases. 
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This has the real potential to find better ways to treat and prevent diseases 

through early detection and prevention strategies, personalized drugs and 

tailored therapies. The completion of the human genome has made a significant 

contribution in achieving this, principally because researchers can now 

understand how species function and how phenotypes and diseases are made. 

2.3.2 Glossary 

Several relevant technical terms will be listed and defined in this section. Uses 

of these terms in the remainder of this thesis are described in Watson et al., 

(2014) and listed below. 

• DNA: deoxyribonucleic acid (DNA) is a double-stranded macromolecule 

which consists of two long polynucleotide chains composed of four types of 

nucleotide bases. 

• Gene: segment of the DNA chain that includes the nucleotides needed to 

encode the amino acid sequence of a protein. It is the fundamental unit of 

heredity. 

• Chromosome: long linear DNA molecule associated with proteins. Its most 

important function is to carry genes. 

• Locus/Loci (plural): position of a gene in the genome. 

• Genetic marker: defines a genomic region, i.e. a segment of DNA that varies 

among individuals.  

• Allele: one of the two or more versions of a given gene that can exist at a 

single locus. 

• Trait: an attribute of a phenotype. 
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• Phenotype: individual’s physical appearance or biochemical characteristic. 

• Genotype: genetic makeup of an organism. Actual alleles of an individual.  

• Homozygous: having two identical alleles on a pair of chromosomes at a 

given locus. 

• Heterozygous: having two different alleles on a pair of chromosomes at a 

given locus. 

• Minor allele: it refers to the second most frequent allele. 

• Amino acids: building blocks for proteins. 

• Linkage Disequilibrium: the occurrence of some genes together, more often 

than would be expected by chance. 

• Protein: specific sequence of amino acids, responsible for body structures. 

• Association: Statistically significant correlation between a 

biological/genetic marker and a disease or phenotype. 

The definitions provided in this section are intended to aid the reader to 

understand the context of this thesis. However, a full genetic background is not 

provided since it is not the main topic of this multidisciplinary research project. 

2.3.3 Human Genetic Variations 

Approximately 99.9% of the base pairs (nucleotides) in the human genome are 

identical between any two individuals (Gonzaga-Jauregui et al. 2012). This 

level of similarity defines us as species. Hundreds of complex phenotypic traits 

contribute to our appearance and behaviour, as well as to our predisposition to 

certain diseases (differences in the remaining 0.1 percent hold important 

evidences about the causes). Complex phenotypes are thought to be 
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characterized by a combination of hereditary factors in the form of genetic 

variants, as well as environmental influences. During the past several decades, 

the main challenge has been to determine which genetic variants are behind 

inherited phenotypic components. 

Human genetic variants are usually classified as common, low-frequency or 

rare variants, depending on whether the minor allele frequency (MAF – 

discussed below) in a given population is higher than 5%, between 1-5% or less 

than 1% respectively (Bomba et al. 2017). Common variants tend to have a very 

weak effect on the phenotype while low-frequency and rare variants have small 

to modest effects. Based on this classification, common variants are typically 

referred to as polymorphisms whilst rare variants are termed mutations (Karki 

et al. 2015). Furthermore, depending on their nucleotide composition, genetic 

variants are separated into two classes: single nucleotide variants (SNVs) and 

structural variants (SVs) (Kidd et al. 2008). 

For the purpose of this PhD, only single nucleotide variants are considered. 

2.3.4 Single Nucleotide Polymorphism - SNP 

Single nucleotide polymorphisms or SNPs (Gray 2000; Dunnen & Antonarakis 

2000) are the most common type of genetic variation among humans, and have 

become the genetic marker of choice in the genetic mapping of complex traits, 

including obesity and diabetes, to name only a few (Dudoit & van der Laan 

2008). DNA sequences are constituted by a chain of four building blocks or 

nucleotides as discussed earlier: A, G, C, and T. The human genome contains 

over 3 billion base pairs (nucleotides). The sequence of these chemical bases 
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determines the biological instructions contained in DNA, for building and 

maintaining an organism. A genetic variation is classified as an SNP when at 

least 1% of a given population does not carry the same nucleotide at a specific 

position in the DNA sequence. Hence, each SNP represents a variation in a 

single building block or nucleotide in the DNA sequence. Consider the 

following example depicted in Figure 2-7, where two sequenced DNA segments 

from different individuals include a variation in a single base (nucleotide). Since 

the two DNA fragments ACTTGCGA and ACTTGTGA contain a difference at 

the same locus, it is likely that there is an SNP at this position of the genome. 

Furthermore, SNPs can be identified in both coding and non-coding regions of 

the DNA, for example, in a regulatory region or between genes respectively. 

SNPs within a gene or in a regulatory region near a gene may have functional 

significance with a direct role in disease.  

 

Figure 2-7: Example of a SNP representation 

Within a population, SNPs are generally diallelic (i.e. have two alleles at a 

site within a loci), e.g. C or G. Note that, while locus is used to refer to the 

location of a gene in the genome, site refers to the location of alleles of a SNP 
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within a loci or within the region of a locus (Elston et al. 2012). Furthermore, 

the SNP frequency is given in terms of the MAF (the less common allele), so 

that an SNP with minor allele (C) frequency equal to 0.30 means that 30% of 

the population has the C allele while the 70% of the population carries the, more 

common, major allele. 

SNP data has been used in different study approaches aiming to elucidate the 

underlying causes of common and rare diseases and is proving to be very 

important in the study of human health. This has contributed to the investigation 

and identification of genes with significant roles in obesity aetiology.  

2.3.5 Genetic architecture of Obesity (Types) 

Up to now, research has provided substantial evidence about the heritability of 

obesity through twin and adoption studies, as discussed earlier in this chapter. 

However, molecular approaches have contributed to the discovery of the first 

human genes and syndromes associated with obesity (Mutch & Clément 2006). 

Based on its aetiology, human obesity has been historically classified into 

monogenic, syndromic and polygenic obesity (common obesity) (Cummings & 

Schwartz 2003). Next, each type of obesity is briefly described. 

2.3.5.1 Monogenic obesity (Non-syndromic) 

Single gene alterations can lead to monogenic obesity (Farooqi 2008). Rodent 

mouse experiments have made it possible to identify most of the monogenic 

forms of obesity in humans, with many genes involved in the regulation of 

appetite via the leptin-melanocortin pathway (Farooqi 2008). The first evidence 

of a single-gene causing severe obesity in humans was the Leptin (LEP) gene, 



 

37 

 

reported in the late 1990s by C. Montague, I. Farooqi, J. Whitehead et al. 

(Montague et al. 1997). The authors examined two severely obese children of a 

highly consanguineous family, where leptin deficiencies where found by 

sequencing the LEP gene, indicating a strong influence in energy balance. The 

leptin protein acts in the hypothalamus part of the brain, which controls eating 

behaviour and plays a crucial role in regulating body weight by inhibiting food 

intake and stimulating energy expenditure. Extreme obesity treatment has been 

successful in cases of leptin insufficiency in children, where injections of 

recombinant human leptin has led to a reduction in body weight and fat mass 

(Farooqi et al. 2002). In addition to LEP and its receptor (LEPR), other 

mutations in the melanocortin 4 receptor (MC4R), pro-opiomelanocortin 

(POMC) and proprotein convertase subtilisin/kexin-type 1 (PCSK1) genes have 

been shown to cause monogenic forms of obesity (Nordang et al. 2017). 

Findings from studies on monogenic disorders leading to human obesity have 

been reviewed and summarised elsewhere (Muñoz Yáñez et al. 2017; O’Rahilly 

2009; Chung 2012). 

These mutations have led to cases of obesity observed from a very early stage 

in childhood and have very strong biological effects. However, these monogenic 

disorders are rare and therefore insufficient for justifying current levels of 

obesity in the population. 

2.3.5.2 Syndromic obesity  

Syndromic forms of obesity, also known as pleiotropic syndromes, have also 

provided additional insights into the mechanisms causing obesity (Milani et al. 

2014). These relatively rare forms of obesity, also caused by discrete genetic 
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defects or chromosomal abnormalities, are additionally accompanied by 

neurological disease (i.e., mental retardation and/or intellectual disability), 

dysmorphic features and developmental abnormalities. A syndrome is defined 

as a cluster of signs and symptoms persistently appearing together. Several 

syndromic forms of obesity have been recognised (Shawky & Sadik 2012; 

O’Rahilly 2009; Chung 2012). Among the most well-known syndromes where 

obesity is one of the main phenotypes (clinical feature), Prade-Willi syndrome 

(PWS) and Bardet-Biedl syndrome (BBS) can be highlighted (Farooqi 2008).  

2.3.5.3 Polygenic obesity “Common obesity” 

Early obesity studies were predominantly driven by research into monogenic 

and syndromic obesity (Walley et al. 2006). The knowledge provided by this 

research has contributed enormously to the understanding of the physiology 

underlying appetite and feeding behaviour facilitating, in some rare cases, the 

treatment of affected individuals. 

Polygenic (common) obesity represents the third subgroup which affects 

most obese cases in the general population (Herrera & Lindgren 2010). While 

monogenic obesity is produced by mutations in a single gene with a major effect 

on the development of severe obesity, polygenic forms of obesity are 

determined by the cumulative effect of environmental factors and multiple 

common genetic variants or SNPs, each with modest effects on the phenotype 

(Li, Zhao, Luan, Luben, et al. 2010). 

The idea that common obesity is likely influenced by genetic variation that 

is also common in the general population (disease-predisposing alleles with 

relatively high frequencies), is supported by the common disease-common 
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variant (CD-CV) hypothesis (Reich & Lander 2001). Alternative hypothesis, 

such as common disease-rare variant (CD-RV) argue that the main contributors 

to genetic susceptibility underlying common diseases are rare variants with 

relatively high penetrance (disease-predisposing alleles with lower frequencies 

in the population) (Schork et al. 2009). These hypotheses might not be mutually 

exclusive, so a combination of both rare and common variants can predispose 

individuals to complex or common diseases. Figure 2-8 extracted from 

McCarthy et al., (2008); Manolio et al., (2009) represents a visual map where 

the rare and common variants are conceptualised based on allele frequency and 

effect size (the strength of genetic effect). Mendelian disorders with highly 

penetrant alleles (the likelihood of manifesting a trait given a specific genotype 

or combination of genotypes is high) are extremely rare and have large effect 

sizes (top left in Figure 2-8) whereas variants identified in common diseases 

tend to have small effect sizes and higher frequency (lower right in Figure 2-8). 
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Figure 2-8: Visualisation of allele frequency vs effect size variant definition spectrum 
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Common obesity has been chosen in this PhD as the main phenotype of 

interest. Hence, the rest of this thesis will be based on this subgroup only, with 

particular interest in the study of common variants. In the following sections, 

the main approaches utilised to discover SNPs associated with polygenic 

obesity will be introduced. 

2.3.6 Identifying genetic loci for common obesity 

In 2004, the National Human Genome Research Institute (NHGRI) started a 

funding program aimed at reducing the cost of human genome sequencing to 

$1,000 or less (Schloss 2008). Figure 2-9 shows how the cost of sequencing a 

human genome has been significantly reduced since 2001. This is primarily due 

to advances in sequencing techniques (Wetterstrand KA 2018) where prices 

between 2001 and 2007 are for Sanger sequencing, whereas from 2008 onwards, 

costs are based on next-generation sequencing (NGS). A disruption in the 

human genome sequencing cost was observed around 2007 after the first 

individual human diploid sequence obtained by Sanger sequencing, followed by 

the first complete individual human genome sequenced with new revolutionary 

genomic tools (i.e. NGS) (Zhang et al. 2011).  
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Figure 2-9: Cost of human genome sequencing according to the NHGRI 

This has resulted in a plethora of sequencing methods designed to determine 

the order of nucleotide bases that make up a molecule of DNA (Grada & 

Weinbrecht 2013). The first generation of sequencing, known as Sanger 

sequencing, was developed by Frederick Sanger and his team in the 1970s and 

it has been widely used for nearly 30 years due to its reliability. This led to 

biology’s first large-scale project, the Human Genome Project (Green et al. 

2015; Lander et al. 2001). The Human Genome Project has transformed biology 

by providing a platform and tools to decipher genes in a reliable and 

reproducible manner. Nevertheless, Sanger approaches are limited in terms of 

scalability, time and resources, resulting in faster, higher throughput and 

cheaper technology.  

Sanger sequencing has now been replaced with second-generation 

sequencing also known as NGS technologies which provide high throughput 

and cheaper DNA sequencing alternatives at unprecedented speeds (Shendure 

& Ji 2008; Rabbani et al. 2014). They permit large scale studies to be conducted 
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and for faster sequencing of entire genomes, which have revolutionised the 

study of genomics and molecular biology. One of the first NGS platforms to 

become commercially available as a product was the 454 system (454 

pyrosequencing), although other platforms such as Solexa/Illumina sequencing 

and Sequencing by Oligo Ligation Detection (SOLiD) were also available 

(Shendure & Ji 2008). Some examples of well-known sequencing companies 

are Illumina, Roche, and Life Technologies among others. Illumina is currently 

one of the most prominent NGS platforms, offering the highest throughput and 

lowest per-base cost (Van Dijk et al. 2014). Sequencing of the first human 

genome, co-published in Nature (Lander et al. 2001) and Science (Venter et al. 

2001) in 2001, took 15 years and approximately 3 billion US dollars. In contrast, 

Illumina with the HiSeqX™ machines released in 2014, sequenced more than 

45 human genomes per day at a cost of ~ $1000 per genome (Van Dijk et al. 

2014). This has shown significant advancement over the last 20 years or so, 

reaching the $1000 milestone set by the NHGRI. 

Although NGS continues to be the preferred approach, third-generation 

sequencing technologies, based on single molecule detection and real-time 

sequencing, are gaining significant interest (Schadt et al. 2010). It is reported 

that third-generation sequencing technologies will provide significantly longer 

sequence read lengths over a much shorter period of time and with lower costs. 

Examples of third generation sequencing technologies are provided by Pacific 

Biosciences’ (PacBio) and Oxford Nanopore Technologies, although other 

approaches do exist or are under current development (Schadt et al. 2010). 

Oxford Nanopore Technologies released a commercially available portable 

sequencer, the MinIONTM nanopore sequencer, which enables single molecule 



 

43 

 

sequencing in real-time. Nanopore argue that performing whole-genome 

sequencing (WGS) in humans is hypothetically possible using a single portable 

MinIONTM sequencer, although several challenges are still present, including 

high error rates in sequencing reads (Jain et al. 2018).  

These advances being made in genetic knowledge and genotyping 

technology, along with sequencing cost reduction, has contributed to the 

development of powerful tools and approaches for gene discovery. Linkage and 

candidate gene studies have been successful in identifying loci associated with 

rare single gene disorders (i.e. monogenic or syndromic obesity), but less 

successful in identifying genetic variants that affect common diseases. 

However, more modern, methodologies such as genome-wide association 

studies (GWAS, discussed below) have been used to study the genetic basis of 

both monogenic and common obesity with more success (Bailey-Wilson & 

Wilson 2011). Most common GWAS have used microarray-based techniques 

for the identification of disease associations in the genome, interrogating 

between 500,000 and over one million SNPs per individual (Bush & Moore 

2012). However, this number is far from the 3.2 billion nucleotides present in 

the human genome. Alternatively, whole-exome sequencing (WES) and whole-

genome sequencing (WGS), have recently arisen to overcome coverage 

limitations of GWAS chips (Schwarze et al. 2018). 

Array-based Technologies 

Despite important reductions being made in the cost of WGS, the cost of 

sequencing a single individual using this technique remains a constraint. 

However, in the past years, efforts have concentrated on targeting regions of 
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interest in the genome, using selective DNA enrichment techniques, to improve 

efficiency and overall cost. Such strategies allowed, in 2011, a reduction of the 

overall cost of sequencing of a single individual to approximately $10,000 in 

comparison to $100,000 using whole-genome sequencing (Zhang et al. 2011).  

DNA microarrays represent a high-throughput and cost effective 

automatically genotyping assay, extensively used in gene expression, 

transcription factor binding and genotyping analysis (Bumgarner 2013). 

Microarray procedures rely on parallel quantitative measurement of various 

sequences in a complex mixture, where tagged nucleic acid molecules in 

solution hybridize to complementary sequences fixed on a solid substrate 

(Cummings 2000). Several microarray approaches have been developed, 

although the most commonly used are oligonucleotide and complementary 

DNA (cDNA) microarrays (Pereira et al. 2015).  

While microarrays have proved to be useful in many applications, they 

present some limitations. For example, microarrays provide an indirect measure 

of the relative concentration of different DNA or RNA, are difficult to design 

so different genes are not bind to the same probe on the array and, they are 

limited to detect sequences that the array was originally configured to detect 

(Bumgarner 2013). Despite these limitations, DNA microarray technologies 

have matured over the past decades becoming the tool of choice for numerous 

studies, as they are reliable and well-reproducible techniques when 

appropriately used (Sánchez-Pla 2014). 

SNP arrays emerge as a type of DNA microarrays used to detect SNPs within 

populations where, for each identified polymorphism, the array contains the 
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possible variations at the specific site (Sánchez-Pla 2014). Identification of 

SNPs using SNP arrays varies between companies, although the most common 

ones are those used by Affymetrix and Illumina arrays, allele discrimination by 

hybridization and, allele-specific extension and ligation to a bar-code 

oligonucleotide hybridized to a universal array respectively. The variability of 

available platforms and their specific configurations (allele calling and file 

formats) complicates the integration of information from various sources, 

especially for researches with limited bioinformatics skills (Louhelainen 2016). 

As previously mentioned, microarray-based technologies can genotype over 

one million SNPs concurrently. An example of some arrays for the human 

genome available from Affymetrix and Illumina are listed in Table 2-2, which 

has been extended from (Lamy et al. 2011; Illumina 2010).  

Affymetrix #Arrays #SNPs 

GeneChip Human Mapping 10K 2.0 Array 1 10,204 

GeneChip Human Mapping 100K Set 2 116,204 

GeneChip Human Mapping 500K Array Set 2 500,568 

Genome-Wide Human SNP Array 5.0 1 500,568* 

Genome-Wide Human SNP Array 6.0 1 906,600** 

Illumina #Samples #Markers 

HumanCytoSNP-12 DNA Analysis BeadChip 12 299,140 

Human660W-Quad v1 DNA Analysis BeadChip 4 657,366 

HumanOmniExpress BeadChip 12 730,525 

Human1M-Duo DNA Analysis BeadChip 2 1,199,187 

HumanOmni1-Quad BeadChip 4 1,140,419*** 

HumanOmni1S-8 BeadChip 8 1,185,076*** 

HumanOmni2.5-Quad BeadChip 4 2,450,000*** 

HumanOmni2.5-8 BeadChip 8 2,379,855*** 

Omni5 BeadChip 4 4,301,331*** 

*Additional 420,000 non-polymorphic probes for copy number analysis. 

** Additional 946,000 non-polymorphic probes for copy number analysis. 
*** Probes for CNVs are also included. 

Table 2-2: Example of microarray products offered by Affymetrix and Illumina  
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In this thesis, genetic data used for the experiments was genotyped using 

Illumina HumanOmniExpress BeadChip (OmniExpress) which provides 

excellent power for common-variant GWAS and high sample throughput 

(Illumina 2010).  

Public Repositories and International research 

Several international research projects and public data repositories have been 

created to share the data and discoveries achieved using high-throughput 

sequencing technologies. This has led, to an explosive growth in individual 

genome sequencing data (Duan et al. 2016). Tens of millions of DNA variants 

(SNPs) have been identified in different populations. This is revolutionising our 

understanding of the relationships that exist between genomic variation and 

phenotypes, which is considered one of the main aims in biology and medicine. 

International projects such as The 1000 Genomes Project (Durbin et al. 2010) 

and the International HapMap Project (Gibbs et al. 2003) have made it possible 

to investigate complex and multifactorial disorders using GWAS, which has 

permitted the creation of widespread catalogues for human genetic variation. 

The 1000 Genomes Project is a comprehensive public reference database of 

human genetic variation (SNPs and SVs) across multiple populations to help 

improve our understanding of the genetic contribution to human phenotypes. 

This was achieved by sequencing the genomes of at least 1,000 people (today 

approximately 2,000 individuals or more). The identification of SNPs, in 

numerous populations, has contributed to our understanding of rare and 

common variations and how they are distributed in the genome. This has 

advanced our understanding of disease biology. These variants can be used, for 
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example, for genetic imputation in GWAS and other human genetic studies 

(Gibbs et al. 2015). In a similar way, the International HapMap Project is a 

collaborative initiative designed to identify and catalogue common genetic 

variation (primarily SNPs) in different population ancestries including African, 

Asian and European. It reports information about where genetic variations occur 

across the genome and describes correlations between variants (Linkage 

Disequilibrium) and how they are distributed among individuals and their 

populations. 

The European Molecular Biology Laboratory-European Bioinformatics 

Institute (EMBL-EBI) and the National Human Genome Research Institute 

(NHGRI) Catalog, funded by the NHGRI in 2008, has collected data from the 

literature since the first published GWAS, in compliance with eligibility criteria 

(MacArthur et al. 2017). This catalogue, also known as the GWAS Catalog, is 

a manually curated and publicly available database of SNP-trait association data 

discovered via genetic association studies, which is collaboratively produced 

and maintained by the NHGRI and EMBL-EBI. Information contained in the 

catalogue can be used by experts in several fields such as bioinformatics and 

biology among others, to baseline and conduct investigations, to better 

understand disease aetiologies and develop novel therapies (Welter et al. 2014).  

Several institutions have invested heavily in data collection to gather clinical 

and genetic data within different domains. This has resulted in significant 

amounts of big data (Marx 2013) and today organisations, such as the National 

Institute of Health (NIH), which sponsors the Database of Genomes and 

Phenotypes (dbGaP), are making this data available to interested parties, subject 
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to data access agreements (Tryka et al. 2014). Researchers are required to 

submit an application for approval to get access to individual-level phenotype 

and genotype data. 

In the private sector, genetic screening services can be delivered directly to 

consumers. Individuals provide a saliva sample to a Direct-to-Consumer 

Genetic Testing (DTCGT) company and obtain genetic information without any 

healthcare provider involvement (Su 2013). Many of these DTCGT services use 

SNP identification to determine ancestry and genetic markers associated with 

specific diseases with the objective of informing clients about their health and 

how to change behaviours to improve it (Su 2013). Consumers of these services 

often share their personal genetic data with non-profit organisations such as the 

Personal Genome Project (PGP) (Ball et al. 2014). 

The PGP was created to promote the availability and use of personal health 

and genome data to accelerate the understanding of genetic variation in humans 

(Ball et al. 2012). While many object to privacy, confidentiality and anonymity 

issues, the PGP believes that sharing such data is fundamentally important to 

advance science and society. This is a view endorsed by members of the public 

who understand the risks and share their personal information. The PGP was 

initiated by the Harvard Personal Genome Project, which now hosts publicly 

shared genomic and health data from thousands of participants. In 2005 

information on 10 fully identified individuals was available; today, more than 

5,000 participants have shared their DNA with PGP3. 

                                                 

3 https://pgp.med.harvard.edu/about 
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2.3.7 Types of Studies  

Polygenic obesity studies are based on the analysis of genetic variations in DNA 

(i.e. SNPs) located within or near genes. Identifying the genes that contribute to 

diseases has been one of the primary goals in human and medical genetics. 

Consequently, this has led to studies focused on linkage, association and 

candidate gene approaches (Bailey-Wilson & Wilson 2011). Such studies are 

conducted using family members, also known as family studies (linkage 

analysis), or unrelated individuals (case-control studies) to determine possible 

associations between a gene’s allelic variation and disease traits. This section 

reviews traditional and modern approaches utilised to identify genetic variants 

associated with obesity. 

2.3.7.1 Linkage Analysis 

Linkage analysis is a well-stablished hypothesis-free approach conducted in 

related individuals and used to identify genome regions predisposed to disease 

(Dawn Teare & Barrett 2005). They are part of a larger process termed reverse 

genetics, as it starts with the trait under investigation and uses linkage analysis 

as well as other analytic approaches to map the predisposing genes (Cantor 

2013). In a broad sense, in linkage analysis, genotypes markers are tested in a 

study of pedigrees samples where statistically significant markers showing 

linkage (by exceeding a predefined threshold) pinpoint the gene to the 

chromosome segment where the markers reside. 

These types of studies have successfully identified highly penetrant genetic 

variants of large effect (very high odd ratios) in humans, which are responsible 

for many Mendelian diseases. However, the same level of success has not been 
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achieved in studies aimed at identifying genetic variants with small effect size 

in common diseases (Bailey-Wilson & Wilson 2011). Multigenerational 

pedigrees of affected individuals is often hard to collect which limits sample 

size and therefore the power of the study. Evidence indicating linkage with 

obesity related phenotypes in humans, including BMI, waist circumference and 

obesity, has been reported in (Snyder et al. 2004). Significant evidence of 

linkage on different chromosomes and genomic regions was identified in the 

different studies discussed, indicating, in some cases, evidence of parent-

specific linkage including linkage of paternally and maternally derived alleles. 

2.3.7.2 Candidate Gene Studies 

Candidate gene approaches have been used since the early 1990s to explore 

sequence variation in relatively small-scale studies with a small number of case-

control observations. Genes are selected based on previous information on the 

biology or pathophysiology of the disease. Therefore, candidate genes require a 

detailed understanding on disease aetiology. This hypothesis driven approach 

relies on the discovery of associations between a variant with or within the 

candidate gene and traits, such as obesity. 

Candidate genes considered in obesity studies for BMI variance, are selected 

based on their roles in central or peripheral pathways responsible for energy 

intake and expenditure (Hinney & Giuranna 2018). Early candidate gene 

approaches were conducted by comparing at least one carefully selected variant 

located at candidate genes in cases of unrelated obese patients relative to non-

obese patients in the control group (Herrera & Lindgren 2010). However, most 

of the genes identified in this way lacked support in replication studies across 
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different independent databases. This was due to the presence of false positive 

results derived from multiple testing in typically small and underpowered 

datasets. Additionally, knowledge limitations about the molecular mechanisms 

of common obesity in the early days of candidate gene studies made it more 

complicated to choose ideal candidate genes. More recent candidate gene 

experiments that utilise large cohorts or combined data (meta-analysis) have 

been performed to increase power in studies. By doing this, strong associations 

with variants in different genes were identified, including MC4R, PCSK1, 

adrenergic β3 receptor (ADRB3), endocannabinoid receptor 1 (CNR1) and 

brain derived neurotropic factor (BDNF) (Vimaleswaran & Loos 2010). 

Nonetheless, linkage and candidate gene studies have had limited success in 

identifying genetic variants predisposing individuals to obesity and other 

comorbidities, such as type 2 diabetes. However, the advent of GWAS has 

revolutionised the field by accelerating and improving the detection of variants 

with small effect sizes that influence common traits and diseases. 

2.3.7.3 Genome-Wide Association Studies (GWAS). 

Genome-wide association studies (GWAS) have been used in obesity research 

to identify obesity related loci. GWAS are more cost effective, have greater 

resolution and do not require pedigree data in comparison to linkage studies. 

Candidate gene and GWAS have been the two major approaches utilised to 

detect genes implicated in body weight regulation (Hinney & Giuranna 2018). 

Chip-based microarray technology (Gunderson et al. 2005) has made GWAS 

possible, providing an unbiased approach where millions of SNPs throughout 

the genome can be tested for associations with a phenotype. In situations where 
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single GWAS are underpowered, statistical results from different independent 

GWAS can be combined in meta-analysis to increase the power of the study and 

to reduce false-positive discoveries (Evangelou & Ioannidis 2013). 

Over the past decade, at least 2,400 GWAS have been conducted (Nakka et 

al. 2016) and the NHGRI Catalog contains over 3,300 GWAS publications and 

almost 60,000 unique SNP-trait associations4. More than 200 common genetic 

variants from the central nervous system, food and sensing digestion, lipid 

metabolism and many other biological pathways have been associated with 

polygenic obesity and body weight regulation (Pigeyre et al. 2016). A list of 

polygenic loci associated with obesity and other fat distribution traits have been 

provided by Pigeyre et al., (2016); Hinney & Giuranna, (2018). 

GWAS aims to reveal variants at genomic loci that are associated with 

complex traits in the population. In these studies, a large number of genetic 

variants (normally 500,000 or more SNPs) are tested for associations with the 

phenotype (i.e. disease trait) of interest, such as obesity, diabetes or coronary 

artery disease among others (Visscher et al. 2012; Hardy & Singleton 2009; Fall 

& Ingelsson 2014; Burton et al. 2007). Strong associations do not necessarily 

indicate that the SNPs are causal themselves but are likely to be in linkage 

disequilibrium (LD) with the influential SNP, a phenomenon called indirect 

association (Ramachandrappa & Farooqi 2011). 

The availability of chip-based microarray technology for assaying 

potentially millions of SNPs has favoured the introduction of GWAS. However, 

                                                 

4 https://www.ebi.ac.uk/gwas/ 
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this technology is evolving fast as discussed previously and new technologies 

are being introduced. New NGS methods provide a snapshot of all the DNA 

sequence in the genome. Powerful and unbiased approaches such as whole-

genome sequencing (WGS) and whole-exome sequencing (WES) are becoming 

more accessible and this will allow for the detection of genetic variation within 

an individual. Nonetheless, sequencing the whole genome is expensive. 

Therefore, researchers tend to focus their efforts on protein-coding regions of 

the human genome known as the exome, especially in the study of rare-disease 

causing genes. It is estimated that 85% of disease-causing mutations with large 

effects are harboured by protein-coding genes, which constitute only ~1% of 

the human genome (Majewski et al. 2011). 

2.4 Computational Analysis in GWAS 

In GWAS, the phenotype under investigation can be either qualitative (often 

binary case/control) or quantitative (continuous). In case-control studies, binary 

disease traits such as obesity are investigated to identify genetic variants 

associated with this trait, where 0 represents controls and 1 represents cases. In 

contrast, the goal of quantitative trait association studies is to identify genetic 

factors associated with continuous traits like BMI. The most common approach 

in GWAS is case-control analysis, where cases refer to a cohort affected by the 

disease while control refers to a cohort unaffected by the disease. Conversely, 

quantitative phenotypes improve the power to detect genetic effects which can 

be more interpretable. Despite these differences, both types of phenotypes can 

be used to conduct successful studies (Bush & Moore 2012). 
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Single SNP analysis is the most commonly used approach in GWAS (Shi & 

Weinberg 2011). Statistical tests applied in GWAS depend on whether the 

phenotype is qualitative or quantitative, although in both cases each SNP is 

independently tested for association with the phenotype. Common approaches 

used to analyse quantitative traits are generalised linear models (GLM) or 

Analysis of Variance (ANOVA) (He et al. 2016). In case-control studies where 

categorical phenotypes/traits are used (i.e. obese/non-obese), chi-squared (𝜒2) 

or contingency table-based tests in addition to logistic regression are generally 

adopted to test each SNP for association with the phenotype (Zeng et al. 2015).  

Single nucleotide polymorphisms are commonly biallelic, assuming alleles 

A (major allele) and a (minor allele) and possible genotypes AA, Aa and aa 

(Lewis 2002) (See Figure 2-10).  

A aA A a aA a

HeterozygousHomozygous Homozygous

AA Aa aA aa

 

Figure 2-10: Homozygous and heterozygous values of a SNP 

In GWAS, association tests can be conducted by comparing allele (allelic 

association test) or genotype (genotypic association test) frequency between 

cases and controls, where each SNP can be represented as a contingency table 

of counts of disease status using either allele or genotype count. In allelic 

association testing, disease risk increases or decreases linearly based on the 

number of risk alleles (minor allele versus major allele). Furthermore, 
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associations between one allele of the SNP and the phenotype are tested. This 

is in stark contrast to genotypic association testing where, genotypes and 

phenotype are tested. Therefore, the presence of an SNP allele may increase 

disease risk if there is an increased frequency of an SNP allele or genotype in 

cases compared with controls (Lewis 2002). Additionally, genotypic association 

testing can be organised in different models to encode the data for association 

testing: dominant, recessive, multiplicative or additive; each of them with 

different genetic effects in the data. Although several models are available, the 

additive model is often the preferred approach since in most genetic association 

studies the underlying genetic model is unknown, and it is easier to interpret 

(Sebastiani & Solovieff 2010a; Clarke et al. 2011; McCarthy et al. 2008). 

Considering two alleles for an SNP (A and a), the additive model assumes a 

linear increase of risk for each copy of the a allele so that the risk for Aa/aA is 

γ and the risk for aa is 2γ, where γ is a genetic penetrance parameter (γ >1). A 

more detailed explanation for the different standard disease models available 

can be found in (Clarke et al. 2011), where the disease penetrance for genotypes 

AA, Aa and aa and associated relative risks for the AA and aa genotypes was 

described as shown in Table 2-3. 

 Penetrance Relative Risk 

Model AA Aa aa Aa aa 

Additive 0 γ 2γ γ 2γ  

Multiplicative 0 γ γ2 γ γ2 

Recessive 0 0 γ 1 γ 

Dominant 0 γ γ γ γ 

Table 2-3: Disease penetrance and relative risk for different genetic models (a is the 

risk allele) 
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A typical GWAS setup is illustrated in Table 2-4. 

Study design Case-control study: obese cases and non-obese controls. 

Variables 
Genetic markers: Biallelic SNPs with alleles A and a. Possible 

genotypes AA, Aa and aa. 

Platform 

Affymetrix: 

GeneChip Human Mapping100K Set 

GeneChip Human Mapping500K Set 

Genome-wide Human SNP Array 5.0 Genome-wide 

Human SNP Array 6.0 

Illumina: 

HumanOmniExpress-12v1.0 

Sentrix HumanHap300 Genotyping BeadChip 

Sentrix HumanHap550 Genotyping BeadChip 

Sentrix HumanHap650Y Genotyping BeadChip 

Human1M DNA Analysis BeadChip 

Quality Control 
Crucial step in GWAS. Removal of individuals and SNPs with 

unreliable data leading to spurious results. 

Genetic Model 

Selection of genetic model (Clarke et al. 2011): 

• Dominant 

• Recessive 

• Multiplicative 

• Additive 

Table 2-4: Basic GWAS scenario example. Based on (Ziegler et al. 2008) 

2.4.1 Multiple testing 

In genetic experiments, such as those conducted in GWAS, a large number of 

hypothesis tests are performed. This implies that a large number of variants are 

expected to be deemed significant by chance. This problem, known as multiple 

comparison or multiple testing, results from statistical analysis that involves 
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multiple simultaneous statistical tests (Sedgwick 2014). For example, if 100 

statistical tests are conducted, all with null hypothesis actually true, it is 

expected around 5 of the tests to be significant at a standard P-value cut-off of 

0.05 (α = 0.05) just due to chance. The probability of making at least one false 

positive (Type I error) when m tests are performed, also termed family-wise 

error rate (FWER), is given by Equation 2-2.  

 1-(1- )
m

FWER =  2-2 

In the above example for 100 tests, Equation 2-2 indicates that, if the tests 

are statistically independent from each other, the probability of at least one 

incorrect rejection is 99.4%. Hence, estimating the significant thresholds, that 

is the proportion of false positives tolerated by a researcher, in studies involving 

a large number of genetic variants such as GWA studies is an important task 

that needs to be controlled for multiple testing (Clarke et al. 2011).  

Associations between investigated traits and SNPs are classed as having 

genome-wide significance when they have a P-value ≤ 5x10-08 (Panagiotou & 

Ioannidis 2012; Fadista et al. 2016; Dudbridge & Gusnanto 2008). Conversely, 

SNPs showing suggestive associations have P-values < 10-5 and are more likely 

to include additional true positive signals (SNPs). In these instances further 

analysis is required (Zhang et al. 2016; Below et al. 2016; Deloukas et al. 2013). 

Significant values (α) can be adjusted using Bonferroni correction, a highly 

conservative method designed to minimize type I errors in multiple testing 

studies (Dudbridge & Gusnanto 2008). Bonferroni adjusts the probability of 

rejecting the null hypothesis when it is true by the number of statistical tests 
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performed from α = 0.05 to α = (0.05/n), with n being the number of SNPs 

tested. The value of the confidence threshold for a single test α is equal to 0.05 

as historically used in many studies (Noble 2009). Hence, Bonferroni 

adjustment considers a result significant only if the corresponding P-value ≤ 

0.05/n. Although this procedure is intended to reduce the chance of false-

positive findings (Type I errors), it is too conservative. This is true since many 

SNPs are correlated due to LD which means they are not independent. This 

leads to failures identifying true results, since a large number of potentially true 

associated SNPs are omitted. Bonferroni correction is the simplest and most 

widely used approach to correct for multiple testing (Noble 2009) although not 

the only one; Benjamini-Hochberg false discovery rate (FDR) and permutation 

testing are less conservative approaches to deal with the multiple testing 

problem in GWAS (Dudbridge & Gusnanto 2008).  

2.4.2 Quality Control in GWAS 

Before conducting GWAS, certain considerations must be taken into account to 

avoid systematic bias (Teo 2008). Among these, data quality per individual and 

SNP, also known as quality control (QC), relatedness among samples, genetic 

outliers or population stratification need to be performed. 

Data quality-control (QC) is a key step taken prior to GWAS analysis 

(Clayton et al. 2005; McCarthy et al. 2008). QC is applied to individuals and 

genetic markers (SNPs) although the order of this process depends on the 

GWAS characteristics (Weale 2010). For example, standard QC protocols 

conducted in GWAS have been detailed in (Anderson et al. 2010; Laurie et al. 

2010; Turner et al. 2011), where the authors recommend conducting QC on 
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individuals first and then SNPs to maximise the number of genetic markers for 

subsequent analysis. The effect of applying QC on the data typically leads to a 

reduction in both the number of SNPs and individuals. 

The QC on individuals is typically divided into five steps: 1) sex 

inconsistencies, 2) high missing genotype rates or call rate, 3) high 

heterozygosity rates, 4) relatedness or duplicate individuals, and 5) population 

outliers. QC on genetic variants usually involves three steps: check 1) SNPs 

with elevated missing genotype rates, 2) SNPs showing substantial deviation 

from Hardy-Weinberg equilibrium (HWE) and 3) minor allele frequency. These 

steps are briefly described below and explained in detail in a number of works 

(Anderson et al. 2010; Laurie et al. 2010; Turner et al. 2011; Gondro et al. 

2013). 

2.4.2.1 Individual level quality control 

2.4.2.1.1 Sex inconsistencies 

In many studies, sex is often reported by subjects. Therefore, one of the first QC 

steps applied is to check for sex inconsistencies, where the reported sex of each 

individual is compared against the sex predicted based on genotype data from 

the X chromosome. Males and females tend to cluster differently based on X 

and Y chromosome intensities, where individuals annotated as males show 

greater Y intensity compared to those marked as females (Laurie et al. 2010). 

2.4.2.1.2 Individuals with missing genotype 

Individuals with low call rates (the proportion of SNPs with missing genotypes 

for a given individual) should be removed from further analysis since it may be 

an indication of poor DNA quality. That is, individuals with high rates of 
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missing genotype data in the typed SNPs. Recommended thresholds to prune 

individuals based on missing genotype data range between 95% and 99% 

although it can vary depending on the study (Namjou et al. 2015; Wang et al. 

2011; Willer et al. 2009). 

2.4.2.1.3 Heterozygosity 

Another good quality indicator is the distribution of mean heterozygosity 

through all individuals which may indicate DNA sample contamination or 

inbreeding (Teo 2008). Heterozygosity occurs when an individual has different 

alleles at a locus whereas homozygosity implies subjects are carrying the same 

alleles. High heterozygosity rates within an individual may indicate poor sample 

quality whereas low heterozygosity levels may indicate inbreeding. 

Heterozygosity rate can be inspected by estimating the mean (m) and 

standard deviation (SD) of the heterozygosity of all individuals and then 

pruning those outside the bounds m  3 SD. The distribution of mean 

heterozygosity across all individuals is computed as the ratio of the number of 

heterozygote genotype calls (N-O) to the number of non-missing genotypes (N), 

where O is the observed number of homozygous genotypes for a given sample: 

 
N O

N

−
 2-3 

2.4.2.1.4 Relatedness or duplicate individuals 

In population-based studies limited to unrelated individuals, such as GWAS, 

closely related subjects should be removed due to possible correlation structure 

that can lead to the introduction of false positives and/or false negative results. 

Duplicate individuals are treated as an extreme case of relatedness. The 
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identification of duplicate or related individuals is typically carried out by 

calculating the identity by descent (IBD) metric (Weale 2010). This metric 

looks at the average proportion of common alleles between two individuals. 

Using the IBD metric individuals can be classified as duplicated or monozygotic 

twins, first degree relatives, second degree relatives and third degree relatives 

for IBD values 1, 0.5, 0.25 and 0.125 respectively. It has been recommended to 

remove individuals based on an empirical threshold IBD higher than 0.1875 

which is set between second and third degree relatives, whilst an IBD > 0.98 

identifies duplicate samples (Weale 2010). It is a common practice prior to 

relatedness or duplicate analysis, to apply dimensionality reduction by pruning 

highly correlated SNPs in regions of extended linkage disequilibrium (LD) to, 

for example, improve computational efficiency (Burton et al. 2007). 

2.4.2.1.5 Population stratification (Divergent Ancestry) 

The presence of individuals with different ethnic backgrounds (multiple 

populations) in the study can also lead to systematic bias (type I and type II 

errors) in GWAS, since allele frequency differences between cases and controls 

occur due to ancestral differences as opposed to effects on disease risk (Cardon 

& Palmer 2003). For example, if a disease is more common in a population in 

one region of the world than another, genetic differences between the two 

populations will look like they are associated with disease. This phenomenon is 

known as population stratification and it is an important confounder in 

association analysis. 

Several methods have been proposed to detect and account for population 

stratification, including genomic control (GC) and principal component analysis 
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(PCA) based methods among others (Sebastiani & Solovieff 2010b; Wu et al. 

2011). However, the most commonly used method is PCA (Price et al. 2006). 

PCA produces several principal components (uncorrelated variables) from a 

data matrix of observations across several potentially correlated variables 

(observations are individuals whereas potentially correlated variables are 

SNPs). This is conducted using genotype data from known ancestry populations 

(i.e. Europe, Asia and Africa) from HapMap (Gibbs et al. 2003), which are used 

to cluster GWAS individuals into distinct ancestry groups. Generally, the top 

principal components capture the population substructure due to ancestral 

differences in the GWAS data. Using PCA to identify outliers and hidden 

population structure can be performed using freely available software such as 

EIGENSTRAT (Price et al. 2006).  

2.4.2.2 Genetic variant level quality control 

Once individual level QC is completed, individuals can be pruned, and marker 

level QC can be performed. Genetic variants (SNPs) are commonly filtered and 

used for subsequent analyses if their minor allele frequency is greater than 1-

5%, Hardy Weinberg equilibrium P-values are lower than 10-4, and call rate is 

at least 95% across all samples (Grundberg et al. 2010). Of course, these 

parameters can vary from study to study. 

2.4.2.2.1 SNPs with missing genotype 

An important QC step conducted at genetic marker level is to inspect the 

proportion of missing genotypes per SNP, which is a complement of individual 

missingness explained above. This happens when genotypes are not assigned to 

SNPs in the genotyping process for many individuals. Therefore, SNPs missing 
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a high proportion of genotypes are excluded (SNPs with low call rates). 

Problematic SNPs with low call rates are often removed using a recommended 

95% threshold which is equivalent to 5% missing genotype, although this may 

vary from study to study (Zhang et al. 2016; Turner et al. 2011). In small sample 

settings, more stringent thresholds can be used (Reed et al. 2015). 

2.4.2.2.2 Hardy-Weinberg equilibrium 

Hardy-Weinberg equilibrium (HWE) is a genetic principle utilised as a QC 

measure for the identification of systematic genotyping errors in unrelated 

samples (Wittke-Thompson et al. 2005). It describes the relationships between 

allele and genotype frequencies in a specific population. Allele and genotype 

frequencies should remain stable between generations in large, randomly 

mating, homogeneous populations. HWE assumes that any deviations from 

stable relationships between allele-genotype frequencies can be considered a 

problem in the genotyping process. To check that an SNP genotype distribution 

follows HWE, statistical tests can be used. Therefore, probabilities of the 

genotypes at a biallelic genetic variant in HWE are (1−q)2, 2q(1−q) and q2 for 

aa, Aa and AA respectively, for a given MAF q. Under the above assumption, 

these probabilities should remain stable over generations. When using HWE in 

QC processes, it is recommended to check deviation only in the control set (in 

case-control studies) and disregard SNPs from further analysis if the deviation 

test produces, for example, a P-value < 10-5 although this value has varied 

significantly between studies (Anderson et al. 2010). This is conducted typically 

in controls as deviations in cases could be an indication of true genetic 

association with the disease risk. 
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2.4.2.2.3 Minor allele frequency 

Minor allele frequency (MAF) is a common genetic variant data filtering step 

since statistical power is extremely low for rare SNPs (Morris & Zeggini 2010). 

Therefore, if the MAF is low, SNPs are typically removed. Common values for 

the MAF filter criterion varies between 1% and 5% depending on the sample 

size and study design (Himes et al. 2013; Org et al. 2009). 

2.4.3 Association Analysis 

Statistical tests to establish an association between each genetic marker and the 

phenotype under investigation can be conducted using several approaches as 

discussed earlier. Logistic regression is the most popular one used in GWAS 

(Zhang et al. 2016; Lewis et al. 2010; Whitaker et al. 1997; Gormley et al. 2016; 

Bao et al. 2016), which supports the use of covariates. In this approach, the 

logarithm of the odds of disease is the response variable, with linear (additive) 

combinations of the exploratory variables (genotype variables or any 

covariates) applied to the model as predictors. 

The primary outcome of this statistical analysis is a list of SNPs, their 

corresponding position in the chromosome, and a P-value which indicates the 

statistical significance of the association (Turner 2014). In cases where the null 

hypothesis (H0) for no association is true, large P-values for significance are 

expected from the association test. Whereas, small P-values mean the 

hypothesis must be rejected, subject to a genome-wide significant threshold 

(Fadista et al. 2016). In statistical hypothesis testing, type I errors (false 

positives) are produced when the null hypothesis is rejected when in fact it is 
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true. Contrariwise, type II errors (false negatives) are produced when the null 

hypothesis is accepted but it is actually false. 

QQ-plots are a common statistical tool to demonstrate that confounders such 

as population structure are not present in the study (Rentería et al. 2013). In 

Figure 2-11 examples of QQ-plot are depicted.  
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Figure 2-11: Examples of QQ-plot showing expected vs. observed [-log10(P-value)] 

values 

The x-axis shows the expected distribution of -log10(P-values) under the null 

hypothesis of no association. The y-axis shows the observed -log10(P-values) 

in the association analysis. P-values are generally transformed by -log10 so that 

the smallest values near zero become the larger values and are thus easier to see. 

Each dot in the plot represents an observed -log10(P-values) calculated for the 

SNP. The default lines (expected outcome) show where x = y. A solid line in 

the QQ-plot matching x = y until it starts deviating at the upper-right end of the 

plot, represents strongly associated SNPs as shown in Figure 2-11 a). 

Conversely, any early deviation from the x = y line may indicate a consistent 
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difference between cases and controls throughout the genome, suggesting bias 

such as population structure (See Figure 2-11, b).  

When conducting association analysis, it is also possible to apply genomic 

control, which assumes that the statistical test is inflated by a constant inflation 

factor λ, to evaluate if population structure still exists (Clarke et al. 2011). The 

inflation factor (λ), measures the degree of deviation from the y = x in the QQ-

plot. In a homogeneous population, λ should be equal to one, although, 

empirically, a λ < 1.05 is considered acceptable (Zeng et al. 2015).  

Manhattan plots are also used as a visual tool in association studies to 

visualise the P-values of association (Zeng et al. 2015). The x-axis presents the 

SNPs, in chromosome order and visualised using alternating colour ranges. The 

y-axis reports the -log10(P-value) of each SNP association as shown in Figure 

2-12. The red and blue lines correspond to the significance and suggestive 

thresholds respectively. Hence, the smallest P-values suggest potential disease-

related SNPs and typically need to reach one of the thresholds mentioned to be 

considered for subsequent analysis. Therefore, given that the smallest P-values 

produce the strongest associations, the -log10 of these P-values will have the 

highest height in the Manhattan plot. 
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Figure 2-12: Example of Manhattan Plot. The x-axis indicates location while y-axis 

displays the significance of the association 

2.4.4 Analytic tools for GWAS 

All QC procedures and association tests conducted in GWAS, can be performed 

using different bioinformatics tools (Sebastiani & Solovieff 2010a). However, 

many researchers commonly use the well-established and computationally 

efficient software program for analysing genotypic data, PLINK (Purcell et al. 

2007). PLINK provides a comprehensive and well-documented collection of 

commands and tools to conduct several data management and QC tasks, 

including tools for analysis, i.e. standard association analysis, IBD and sex 

checks. The software can be freely installed on Windows, Mac OS X and Unix 

machines (such as Linux) since it is open source. The main commands used in 

PLINK to conduct QC procedures and those used in this thesis can be found in 

(Purcell 2009; Purcell & Chang 2018). PLINK allows associations between 

SNPs and a binary outcome to be tested using the options --assoc or --logistic 

which perform a 𝜒2 test of association or logistic regression, respectively. 
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QC and association analysis can also be conducted using standard statistical 

software such as R (GNU Project n.d.), which additionally allows us to visualise 

the results. R is an open-source software environment for statistical computing 

and visualisation under a GNU-GPL licence. R compiles and runs on Windows, 

Mac OS X, and numerous UNIX platforms (such as Linux). R packages such as 

“qqman” provide a convenient and flexible way to generate Q-Q and Manhattan 

plots from PLINK results (Turner 2014). 

2.4.4.1 Data Format 

One of the most common data formats utilised when conducting GWAS in 

PLINK, is the linkage or pedigree file format PED/MAP (Turner et al. 2011). 

This white-space (space or tab) delimited text file format consists of two files: 

1) PED files with extension *.ped that describes individuals and associated 

genetic data. It contains one row per individual with column names family ID, 

individual ID, paternal ID, maternal ID, sex, phenotype and the genotypes (two 

columns per genotype; one for each allele). 2) The MAP file (*.map) which 

contains information about the genetic markers (SNPs). The genotype columns 

in the *.ped file are associated with SNPs in the *.map file. The available 

columns are chromosome, SNP identifier (rs#), genetic distance and physical 

position. 

Reading *.ped and *.map files can be time consuming. Thus, a compressed 

and significantly more efficient form of the pedigree file format is typically 

recommended to speed up analysis (Rentería et al. 2013). This compressed file 

format is termed the binary file (PLINK file formats BED/BIM/FAM) and is 

composed of three sub-files: 1) compressed binary file (*.bed) containing 
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genotype information, 2) a text file (*.fam) with information about the 

individuals (first six columns of the *.ped file) and, 3) a text file (*.bim) that 

contains information about the SNPs (chromosome, marker ID, genetic 

distance, physical position, allele 1, allele 2). In Figure 2-13, an overview of 

these commonly used PLINK formats is depicted.  

Chr SNP GD PP Allele 1 Allele 2

21 rs1 0 26765 C T

9 rs2 0 32380 A G

8 rs3 0 48172 A C

FID IID PAT MAT Sex P rs1_Allele1 rs1_Allele2 rs2_Allele1 rs2_Allele2

FAM1 GCD01229 0 0 2 2 A G A A

0 GCD02833 0 0 1 1 A A A C

FAM2 GCD02505 0 0 2 1 A T T T

Chr SNP GD PP

21 rs1 0 26765

9 rs2 0 32380

8 rs3 0 48172

FID IID PAT MAT Sex P

FAM1 GCD01229 0 0 2 2

0 GCD02833 0 0 1 1

FAM2 GCD02505 0 0 2 1

FID Family ID P Phenotype

IID Individual ID Chr Chomosome

PAT Paternal ID SNP SNP ID

MAT Maternal ID GD Genetic Distance

Sex Sex of subject PP Physical Position

Legend

*.ped *.map

*.fam *.bim
*.bed

Info encoded in binary 
format, not readable for 

humans.

Pedegree File Format

Binary File Format

 

Figure 2-13: Overview of common PLINK formats utilised in GWAS 

PLINK also allows us to generate a *.raw file from the binary files, which can 

then be loaded into the R environment to conduct further experiments. Genotype 

data is recoded based on the number of minor alleles. A text file is generated, 

using the function --recodeA (additive component file), with several columns 

and one row per individual. The first six columns are equivalent to the FAM file 

discussed above: FID, IID, PAT, MAT, SEX and P. These columns are followed 

by one extra column per variant with column names in the form: [Variant 

ID]_[counted allele], where variant ID is the SNP ID and counted allele is the 
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minor allele. Therefore, given a as a minor allele for a locus, the number of 

alleles is 0 if genotype is AA, 1 if genotype is Aa/aA and 2 if genotype is aa. 

In Figure 2-14, an example of the output file (*.raw) produced by the --

recodeA command in PLINK is shown. The example contains data about three 

samples and two SNPs per sample recoded in terms of additive components. 

FID IID PAT MAT Sex P rs1_G rs2_T 

FAM1 GCD02632 0 0 1 2 0 2 

FAM2 GCD03035 0 0 2 2 1 0 

FAM3 GCD01227 0 0 1 1 1 0 

Figure 2-14: Example of *.raw file produced in PLINK with the command --recodeA 

2.5 Key findings in GWAS for obesity 

Through the course of an initial literature search, a series of studies on obesity 

related GWAS have to date been found. Although the number of examples is 

not representative of the application domain as a whole, the initial results 

obtained represent a useful start.  

The study of obesity has benefited from a series of discoveries derived from 

at least four waves of large scale high-density GWAS to date (Vimaleswaran & 

Loos 2010; Loos 2012). These GWAS have identified common variants in the 

fat mass and obesity-associated gene (FTO) - the first gene associated with 

polygenic obesity. This was confirmed in various age groups and ancestry 

populations (Loos & Yeo 2014). Extensive evidence about the effect FTO has 

on body weight regulation in humans and rodent models has been reported. The 

evidence has been carefully reviewed by Speakman (Speakman 2015) who 

highlighted some of the major findings. In addition to the FTO gene, common 
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variants near the MC4R gene have also been associated with obesity risk (Loos 

et al. 2008). More recent meta-analysis of ~340,000 individuals reported 97 

Genome-wide Significance (GWS) polymorphisms associated with BMI, of 

which 56 were novel (Locke et al. 2015). The Venn-diagram in Figure 2-15 

extended from (Loos 2012), depicts obesity susceptibility genes discovered in 

different waves of GWAS and meta-analysis for waist-to-hip ratio, waist 

circumference, body fat percentage, extreme and early onset obesity, BMI and 

visceral adiposity.  
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%
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Figure 2-15: Obesity-susceptibility genes discovered in different waves of GWAS 

For a more comprehensive view of genome-wide studies of obesity, the most 

relevant studies where these genes were discovered are summarised in Table 

2-5.
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Study Design Ethnicity Traits Replicated genes References 

Type 2 diabetes case-series, case- series and 

population-based series. Adults and children 

White Europeans from the UK, Italy BMI and obesity FTO (Frayling et al. 2007) 

Family studies. Adults. European Americans, Hispanic 

Americans, and African Americans 

BMI, hip and weight FTO (Scuteri et al. 2007) 

Population-based studies, case series, obesity 

case-control studies, family study. Adults and 

children. 

White Europeans from the UK, Italy, 

Germany, USA, Sweden and Finland 

BMI and obesity FTO , near MC4R (Loos et al. 2008) 

Population-based studies. Adults. 

 

Indian Asians and white Europeans 

from the UK 

BMI, waist circumference and waist-

hip ratio, weight, and other metabolic 

traits 

near MC4R (Chambers et al. 

2008) 

Population-based studies, case-series, and 

obesity case-control studies. Adults and 

children. 

Whites from the UK, USA, Sweden, 

Finland, Italy, and The Netherlands 

BMI and obesity FTO , near MC4R, NEGR1, near 

TMEM18, near KCTD15, SH2B1, near 

GNPDA2, MTCH2 

(Willer et al. 2009) 

GIANT meta-analysis and population-based 

study. Adults. 

Whites from the UK, USA, Sweden, 

Finland, Italy, The Netherlands and 

Denmark. 

BMI and weight FTO , near MC4R, NEGR1, near 

TMEM18, near KCTD15, SH2B1, 

SEC16B, near ETV5 & DGKG, BDNF, 

near BCDIN3D & FAIM2 

(Thorleifsson et al. 

2009) 

Population-based studies, case series, and 

obesity case-control studies. Adults and 

children. 

Whites from the UK, USA, Sweden, 

Finland, Italy, The Netherlands, 

Australia, Estonia, Germany, France, 

Norway 

BMI and obesity FTO , near MC4R, NEGR1, near 

TMEM18, near KCTD15, SH2B1, near 

GNPDA2, MTCH2, SEC16B, near 

ETV5 & DGKG, BDNF, near 

BCDIN3D & FAIM2, TFAP2B, 

NRXN3, near RBJ & POMC, near 

GPRC5B, MAP2K5, QPCTL & near 

GIPR, TNNI3K, SLC39A8, near 

FLJ35779, LRRN6C, near TMEM160, 

near FANCL, CADM2, near PRKD1, 

near LRP1B, near PTBP2, MTIF3, near 

(Speliotes et al. 2010) 
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ZNF608, near RPL27A & TUB, 

NUDT3 

Population-based studies, case series, and 

obesity case-control studies. Adults. 

Whites from the UK, USA, Sweden, 

Finland, Germany and The Netherlands 

Waist circumference and WHR FTO , near MC4R, TFAP2B, near 

MSRA, near LYPLAL1 

(Lindgren et al. 2009) 

GIANT meta-analysis. Adults. Whites from the UK, USA, Sweden, 

Finland, Italy, Switzerland, Germany, 

and Iceland 

Waist circumference FTO , near MC4R, NRXN3 (Heard-Costa et al. 

2009) 

Population-based studies, case series, and 

obesity case-control studies. Adults. 

Whites from the UK, USA, Sweden, 

Finland, Italy, The Netherlands, 

Australia, Estonia, Germany, and 

France 

WHR adjusted for BMI RSPO3, near VEGFA, TBX15, near 

NFE2L3, near GRB14, near LYPLAL1, 

DNM3, near DNM3 & SSPN, near 

LY86, near HOXC13, near ADAMTS9, 

ZNRF3, NISCH, CPEB4 

(Heid 2005) 

Obesity family study with at least one 

extremely obese child or adolescent. Adults 

and children. 

White Europeans from Germany Extreme obesity FTO (Hinney et al. 2007) 

Four case-control studies and two population-

based studies. Adults and children. 

 

White Europeans from France, 

Germany, Finland, and Switzerland 

Obesity and BMI FTO, near MC4R, NPC1, near MAF, 

near PTER 

(Meyre et al. 2009) 

Two case-control studies and seven 

population-based studies. Adults and children. 

White Europeans from Germany and 

USA 

Obesity and BMI FTO, near MC4R, near MSRA (Scherag et al. 2010) 

Large scale population-based study. Adults. People living in Norwich, UK (The 

EPIC-Norfolk study) 

Obesity and BMI FTO, near TMEM18, MTCH2, SH2B1 (Li, Zhao, Luan, 

Ekelund, et al. 2010) 

Meta-analysis. Population and family-based 

versus case-control. Adults and children. 

White, African American, Asian, 

Hispanic from Europe, North America 

and Asia 

BMI, waist circumference and Body 

fat percentage 

FTO (Kilpeläinen et al. 

2011) 

Table 2-5: Summary of large-scale high-density genome-wide association studies for obesity related traits
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Wang et al. (2011) reported that they found strong links between the FTO 

gene and obesity as well as other important findings through a GWAS, where 

16 genome-wide significance signals were found within the FTO gene. The 

authors used 520 cases and 540 control subjects of non-Hispanic Caucasian 

ancestry and performed a GWAS on obesity as a binary trait. Obese cases, 

families and never-overweight controls were evaluated to perform association 

analysis on obesity and multiple quantitative phenotype measures. When 

comparing their results with respect to previously reported associations with 

obesity related traits, the authors highlighted the strong effect size of the genes 

FTO and MC4R. The results justify the identification of these genes in GWAS 

for BMI in previous studies. Therefore, the results suggest that FTO and MC4R 

are the main two genes that have a direct effect on obesity. New candidate genes 

for obesity-related traits were also identified, with special interest on the 

association of the Neurexin 3 (NRXN3) gene with body fat distribution in 

extremely obese individuals. The results of the study revealed that FTO and 

MC4R might only be the two main genes for common obesity variants in 

populations of European ancestry. Despite the association of NRXN3 with body 

fat distribution, this gene has been associated with many other traits. Identifying 

the specific causal SNPs may be complicated as NRXN3 is an extremely large 

gene, composed of ~1.5 Mb (Million bases). To conduct the association test 

between SNP genotypes and specific phenotypes of interest, the authors applied 

standard linear regression using PLINK (Purcell et al. 2007). 

In Xi et al., (2011) the authors investigated whether sedentary behaviour and 

physical activity contribute to an association between SNPs and obesity risk in 

Chinese children from Beijing. The authors selected, from recent publications 
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and known databases, 6 SNP candidates associated with obesity risk among 

white populations. In this study, 1,229 obese and 1,619 normal-weight children 

identified as cases and controls respectively, were selected. The BMI for each 

child was calculated and a blood sample was collected for genotyping. A 

validated questionnaire was used to determine their sedentary behaviour and 

physical activity level. A multiplicative genetic model was used to compare 

children with risk alleles and children with non-risk alleles. Multivariate 

unconditional logistic regression models were used in the research to show the 

association between the 6 selected SNPs and obesity risk. The results were 

modulated by sedentary behaviour and physical activity, thereby serving as a 

possible prevention strategy. However, the authors concluded that more studies 

are required to further identify gene-environment interactions in childhood 

obesity. 

In Ahmad et al., (2013) the authors replicated the findings produced in Li et 

al., (2010) which showed that the performance of physical activity outweighed 

the genetic risks of 12 loci responsible for weight gain or loss in individuals 

(obesogenic loci). These 12 loci were identified in previous GWAS, where they 

were strongly associated with increased BMI. The number of participants was 

111,421 of European ancestry. In this study, only physical activity data was 

collected using self-administered questionnaires. The authors used general 

linear models to test the association of a Genetic Risk Score (GRS) with BMI, 

and logistic regression to verify genetic associations with obesity.  

In the study conducted in Zhu et al., (2014) the authors investigated whether 

loci related to BMI were associated with traits linked to adiposity, and obesity 
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in Chinese Hans (largest Chinese ethnic group). They studied whether these 

associations were modified by performing physical activity, similar to the 

studies conducted by Xi et al., (2011);Ahmad et al., (2013); and Li et al., (2010), 

although with a considerably lower number of samples. The main objective was 

to replicate recent large-scale GWAS, predominantly, in populations of 

European descent and multiple loci associated with BMI. The authors focused 

on 36 of the 60 obesity-related well-established SNPs, according to their 

research. These 36 loci were identified in GWAS for BMI in both European and 

East Asian ancestry populations. However, only 28 SNPs were genotyped 

because 8 SNPs were monomorphic in Chinese Hans. Individually, 26 of the 28 

SNPs showed a strong link with BMI, and the association of four loci reached 

nominal significance. The observation suggested that obesity-susceptibility loci 

on BMI tend to be lower in Han Chinese than in European ancestry. Physical 

activity attenuated genetic predisposition to increase BMI in Han Chinese. 

Several studies have used multiple candidate genetic variants from GWAS 

to test their predictive capacity in complex diseases (Manolio 2010). In the case 

of obesity, SNPs associated with BMI and obesity have been combined into a 

genetic risk score (GRS) (Cooke Bailey & Igo 2016) which represents the 

number of risk alleles of the candidate SNPs selected. Hence, the genetic 

susceptibility of becoming obese increases with high GRS values. GRS has 

provided a measure of genetic predisposition to obesity in several studies 

(Belsky et al. 2013; Hung et al. 2015; Locke et al. 2015; Morandi et al. 2012) 

utilising models with 97, 56, 32 or less BMI/obesity associated SNPs and other 

predictors such as age and sex. 
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Despite all the findings provided by GWAS, identified SNPs only explain a 

small fraction of the total variation in BMI, although evidence from twin and 

family studies have shown higher heritability as discussed earlier in this chapter. 

This mismatch is a phenomenon known as “missing heritability” (Manolio et 

al. 2009). Furthermore, previously identified SNPs predisposing to obesity have 

shown poor predictive capability when compared with traditional obesity risk 

factors such as family history and childhood obesity (Loos 2012). Nonetheless, 

some of these loci are currently being used in direct to consumer (DTC) personal 

genomic profiles to estimate the risk of obesity in the lives of individuals (Loos 

2012). 

The discovered risk variants predisposing subjects to overweight and obesity 

identified in GWAS only explain a modest proportion of the genetic basis of 

obesity. This phenomenon is observed not only in obesity but in practically 

every complex disease analysed by GWAS, with some exceptions such as age-

related macular degeneration (AMD) (Klein 2005). Thus, several explanations 

for ‘missing heritability’ have been proposed (Eichler et al. 2010). These 

explanations include unaccounted effect of structural variants (deletions, 

duplications and inversions), the presence of rare variants not identified by 

previous GWAS or linkage approaches but likely to be detectable by NGS, and 

the effect of gene-gene interactions as well as gene-environment interactions. It 

has been suggested by many researchers that the contribution of many genes 

and mutations, each of them with individual small effects, results in low 

detection power in most studies conducted, but with a larger collective effect on 

the phenotype (Visscher et al. 2012). Gene-gene interactions or epistasis is one 

of the most plausible hypotheses for the ‘missing heritability’ phenomenon 
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(Manolio et al. 2009; Eichler et al. 2010) and will be the central genetic aspect 

investigated further in this thesis. 

2.6 Functional GWAS 

So far in this thesis, the importance of GWAS when identifying genetic variants 

that are associated with human complex traits has been highlighted, although 

limitations about this approach when explaining the missing heritability remains 

an issue. In addition to the aforementioned constraint, the effect of genetic 

variants identified through GWAS in the genes or DNA functional elements 

remain largely unknown, so that determining possible causal variants is still 

challenging. This is true since a large proportion of GWAS hits (~90%) are 

located in intergenic or non-coding regions (Guo et al. 2018). Therefore, it is 

believed that most risk variants identified by GWAS regulate the expression of 

genes. 

This lack of certainty about the effect of the SNPs on the causal variants 

makes it necessary to incorporate additional information for the interpretation 

and empirical validation of GWAS results. The past few years have witnessed 

the development of important contributions, particularly in the context of 

genome variation. In this sense, gene set enrichment analysis (Subramanian et 

al. 2005), pathway analysis (García-Campos et al. 2015) and, integration of 

different types of biological information such as expression quantitative trait 

loci (eQTL) (Westra & Franke 2014) have been used to provide functional 

interpretation of many trait-associated SNPs in a biological context. This has 

opened opportunities for characterising functional sequence variation while 

improving understanding of basic processes of gene regulation and 
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interpretation of GWAS. Therefore, an essential task to systematically 

disentangle the molecular mechanisms underlying complex diseases, is via the 

identification of complex interplays among multiple genes in a genome-wide 

context, using functional enrichment analysis and functional annotation tools. 

2.6.1 Gene Ontology, Enrichment Analysis, and Pathway Analysis 

Gene ontology (GO) refers to a controlled vocabulary term used to describe the 

characteristics of genes based on their function and location, intended to unify 

gene attributes across all species (Ashburner et al. 2000). The aim is to provide 

a systematic description of biological features of genes to facilitate integration, 

retrieval and computation of data, to be used by the community in gene 

annotation. GO describes gene products in three structured ontologies: 

biological process (BP), cellular component (CC), and molecular function 

(MF); which refer to the biological target of the gene or gene product, 

biochemical activity of gene product and location in the cell targeted by the gene 

product respectively (Ashburner et al. 2000). 

GO can be used for gene annotation processes where GO terms are assigned 

to gene products. Although this process provides detailed information of a gene 

product, GO terms not necessarily provide detailed insights into the 

mechanisms of expression changes for a particular disease (Zhou et al. 2017). 

To further explore the potential molecular basis of the disease under 

investigation, enrichment analysis can be used. Enrichment analysis rely on the 

fact that, for a given study, the chance of a gene set to be selected increases if 

its underlying biological process is abnormal. To do that, statistical methods are 

used to identify significantly enriched genes (Huang et al. 2009). Furthermore, 
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pathway analysis extend enrichment analysis by looking into what pathways the 

enrichment genes are involved with, minimising, therefore, the complexity of 

the analysis while providing a good approach for experimental validation (Yoon 

et al. 2018).  

Pathway-based approaches target a predetermined gene set (aggregation of 

genes or SNPs) contained in a functional unit as defined by prior biological 

knowledge databases such as the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) (Kanehisa & Goto 2000) and the Reactome Pathway Knowledbase 

(Joshi-Tope 2004) among others. Several methods to investigate pathway 

analysis can be used, including over-representation analysis (ORA), gene set 

analysis, statistical methods such as PCA or regression, and topology-based 

analysis. In these methods, discussed by Jin et al. (2014) in more details, 

information from multiple genetic loci is combined with known pathways to 

evaluate the association with a phenotype. More specifically, these 

bioinformatics methods detect enriched or over-represented gene sets (from a 

list of selected genes) that are functionally related according to current 

biological knowledge. This relationship is typically stablished based on Gene 

Ontology (GO) terms, pathways or a common link like a disease (Dennis et al. 

2003). 

Over the past decade, a plethora of software and web tools utilising the 

abovementioned databases to conduct functional-based analysis on microarray 

and GWAS data have been developed. Examples of these tools are DAVID 

(Dennis et al. 2003), Reactome (Fabregat, Jupe, et al. 2018), INRICH (P. H. Lee 

et al. 2012) and i-GSE4GWAS (Zhang et al. 2010) although many others have 
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been listed by (Jin et al. 2014). Although pathway-based analysis has served as 

a valuable tool for revealing functionalities in complex diseases, such 

approaches depend on pre-existing knowledge from gene or pathway databases. 

Consequently, knowledge-guide analysis should be interpreted with caution as 

our knowledge about existing genes or biological pathways remains incomplete 

(Khatri et al. 2012). 

2.6.2 Expression Quantitative Trait Loci (eQTL) 

Another approach utilised to understand the mechanisms underlying GWAS 

hits is to test whether GWAS signals are enriched with eQTL in specific tissues 

(Nicolae et al. 2010). In other words, eQTLs mapping methods are used to 

investigate the effects of SNPs on gene expression levels, proximally or distally 

to the gene. Therefore, genetic variants that explain a fraction of the genetic 

variance of a gene expression phenotype are known as eQTLs. When the tissue 

of expression (i.e. adipose tissue) is relevant to the disease/trait under 

investigation (i.e. obesity), incorporating eQTL analysis with GWAS can be 

used to discover genes and pathways that, when altered, are likely to cause the 

disease, providing, thus, disease candidate genes (Nica & Dermitzakis 2008). 

Project initiatives aiming at mapping regulatory annotations and connections in 

disease-relevant tissues such as the Encyclopedia of DNA Elements (ENCODE) 

(ENCODE Project Consortium 2012), Genotype-Tissue Expression (GTEx) 

(Lonsdale et al. 2013) and the NIH Roadmap Epigenomics Consortium 

(Kundaje et al. 2015), have enormously contributed to interpret non-coding 

variants responsible for most GWAS risk alleles identified so far. Moreover, 

integrative analysis tools such as Sherlock (He et al. 2013), PrediXcan 
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(Gamazon et al. 2015) and other similar approaches based on probabilistic 

assessment (Wen et al. 2017), are available to provide co-localisation of eQTL 

signals with GWAS results. 

Depending on whether the effect of eQTLs are local or distant, regulatory 

variants can be classified into cis-eQTLs or trans-eQTLs respectively (Edwards 

et al. 2013). Most of identified eQTL are cis-acting, indicating that most of the 

regulatory control occur in the vicinity of genes (within 1Mb), have relatively 

large effect sizes and can usually be detected with small sample sizes. 

Conversely, trans-eQTL regulate genes located further away or even in a 

different chromosome and their effect size is usually small, so large sample sizes 

are necessary to detect them. Despite trans-eQTL individual small effects, their 

collective importance in the variation of gene expression has been reported to 

be relevant to explain heritability of gene expression (He et al. 2013). 

The identification of target genes of regulatory variants (-cis and -trans) plays 

an important role to understand the processes by which SNPs act. However, the 

identification of eQTL to predict target genes typically provides indirect 

evidences of an association, making experimental approaches necessary to 

confirm their mechanistic relevance (Edwards et al. 2013). Unlike rare 

mutations, achieving a definitive proof of causality for an association is 

questionable (Chakravarti et al. 2013). This theory is further supported by the 

fact that causal variants are not necessarily single SNPs acting in isolation but 

a combination of them, so epistasis may be required to better explain complex 

diseases. 
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2.7 Epistasis in Complex Diseases 

In the bioinformatics field, numerous efforts have been made to understand how 

genetic changes in the DNA give rise to molecular effects that cause diseases 

and phenotypes (Fernald et al. 2011). This has resulted in an exponential growth 

in our knowledge over the past decade of genetic variants associated with 

common diseases and traits as discussed earlier in this chapter. GWAS have 

been useful in this endeavour and have become the state-of-the-art technique 

for achieving this. However, the limitation of GWAS is its inability to explain 

the intricate relationships between SNPs and associated phenotypes. 

Interactions between genetic variants increase the computational complexity 

required to process them and generate large models and search spaces. This 

leads to what is known as the “curse of dimensionality” (De los Campos et al. 

2010; Altman & Krzywinski 2018). 

Research in machine learning and data mining is underway to try and 

overcome these challenges (Niel et al. 2015). Machine learning uses algorithms 

to ‘learn’ features or patterns in training data to solve problems and enable 

predictions about outcomes in unseen data (Deo 2015; Domingos 2012). More 

importantly, specific types of machine learning algorithms are capable of 

detecting the non-linear interactions in genome-wide datasets, which is not easy 

to achieve using traditional statistical methods (McKinney et al. 2006). 

Intelligent systems can therefore, process genetic data at a much deeper level to 

allow rich information structures to be leveraged to help improve phenotype-

genotype relationship mappings. 
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The application of machine learning in bioinformatics has risen in popularity 

in studies focused on disease prediction, epistasis, and diagnosis and survival 

analysis (Kourou et al. 2015; Cole et al. 2017). Although there is no perfect 

method to detect epistatic interactions, it has been suggested that the integration 

of several machine learning methods could form an efficient framework (Koo 

et al. 2013). This could ultimately result in more efficiency and better 

interpretation of genetic and machine learning models. Additionally, once 

associations between SNPs and the phenotype have been established, 

classification analysis can be conducted using machine learning techniques to 

test the predictive capabilities of identified interactions. This will provide a tool 

to validate and measure the relative importance of genetic feature combinations 

(Kruppa et al. 2012). Building on these ideas, this chapter discusses what 

epistasis is and provides a detailed account of current research works on 

epistatic analysis. 

2.7.1 Epistasis 

Advances made in GWAS have served to improve our knowledge and 

understanding of disease genetics. As previously discussed, GWAS are based 

on single-loci analysis where each SNP is independently tested for association 

with the phenotype of interest, without considering the interactions that take 

place between loci. This is regarded as a significant limitation in GWAS, 

particularly when studying complex disorders that rely on an understanding of 

gene-gene and gene-environment interactions (Moore & Williams 2009). In 

BMI and obesity GWAS, gene-gene interactions have received little attention 

(Wei et al. 2012). It has been suggested that to explain the hidden genetic 
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variation (missing heritability) in GWAS it is necessary to examine epistasis 

alongside single SNP-phenotype interactions (Wei et al. 2014; Maher 2008). 

This approach assumes that genes do not work independently but create “gene 

networks” with major effects on the tested phenotype. Hence, identifying 

epistatic interactions can help to understand biological mechanisms and predict 

complex traits from genotype data.  

Combinatorial effects between SNPs/genes are termed epistatic interactions 

or epistasis (Phillips 1998; Phillips 2008). Different perspectives exist: 

biological (or functional epistasis) and statistical epistasis (Niel et al. 2015). 

Biological epistasis involves physical interactions at the molecular level 

between two or more proteins (and other biological components) whilst 

statistical epistasis measures the average effect of allele substitution in a given 

population (genetic variations instead of biological molecules). When using 

computational methods for the detection of epistatic interactions, Fisher’s 

(1918) definition of statistical epistasis is considered (Niel et al. 2015; Phillips 

2008). It refers to the deviation of combinations of alleles at different loci 

regarding their total contribution to the phenotype.  

Conducting experiments for biological epistasis is challenging, more 

expensive and the interpretation of the interactions is frequently less obvious. 

However, unlike statistical epistasis, it provides evidence for physical 

interacting molecules. Statistical epistasis on the other hand, is generally based 

on genetic variations where the associations do not provide evidence about 

corresponding physically interacting molecules. Despite the aforementioned 

limitations, statistical epistasis provides a suitable strategy to discover new 



 

86 

 

pathways previously ignored. This provides a foundation for new discoveries 

and testable hypotheses (Ebbert et al. 2015). Hence, by identifying epistasis, 

gene functions can be recognized, pathways can be identified, and potential drug 

targets can be discovered. 

2.7.2 Epistatic approaches 

Epistatic analysis is however computationally and statistically challenging. This 

is in part, due to the high dimensionality of the data. Investigating all 

combinations between SNPs in genome-wide studies is computationally very 

difficult since the number of tests and time necessary to perform exhaustive 

search increases exponentially with the order of interactions considered (Uppu 

et al. 2017). While the overall complexity is linear with the number of 

individuals in the study population, it becomes exponential when the order of 

the interactions increases. In Figure 2-16 an example of the number of possible 

pair-wise and three-way interactions between SNPs is provided, where the 

number of interactions grows exponentially. Consider half a million SNPs (n = 

500,000), testing all the combinations between two variant interactions (k = 2) 

produces 124,999,750,000 possible pairwise interactions whilst combinations 

between three variants interactions (k = 3) produces 2.08x1016 possible three-

way interactions as derived from Equation 2-4 (Cole et al. 2017).  
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The number of combinations to be tested for models that consider more than 

pair-wise combinations would lead to computational burden (Ritchie 2015). 
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Therefore, epistatic analysis has primarily been restricted to two locus 

interactions. In addition to computational and statistical challenges, epistasis 

also poses challenges to generalisability of genotype-phenotype results, which 

limit replication and meta-analysis studies (Cole et al. 2017). 

 

Figure 2-16: Number of possible two and three-way interactions to test for epistasis 

Dimensionality reduction in epistasis 

Different strategies have been proposed to alleviate computational constraints 

by restricting epistasis to small subsets of candidate markers. These include 

statistical filtering (filter approach), intrinsic filtering (wrapper approach) and 

extrinsic filtering based on biological knowledge (Niel et al. 2015). These 

techniques help to modify the data representation space, facilitating the 

detection of non-linear interactions among all remaining variables.  

Performing SNP selection based on arbitrary significance threshold (i.e. 

some predefined P-value) can help to reduce computational complexity by 

calculating a test statistic for each marker separately and evaluating all possible 
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interactions in the filtered subset (Hoh et al. 2000; Marchini et al. 2005). In this 

approach, the data is processed statistically to assess the quality or relevance of 

each SNP with an associated phenotype, which can then be evaluated using 

classification techniques.  

The second strategy uses intrinsic knowledge to extract SNPs from the 

dataset and thus reduce the search space for epistatic analysis. Subsets of 

features are iteratively selected for classification using either a deterministic or 

stochastic algorithm. Popular dimensionality reduction algorithms such as 

Relief and variations of it such as ReliefF (Moore & White 2007) learn 

informative features from the dataset without any a priori knowledge. The 

algorithms use a nearest neighbour approach to assess the quality of SNPs 

according to how well they distinguish individuals sharing the same phenotype. 

The principal difference between statistical filtering and intrinsic filtering is that 

the classifier plays no role when selecting which features to consider. 

Finally, the third filtering approach relies on extrinsic biological knowledge 

from external databases to filter SNPs relevant to the phenotype of interest and 

then evaluate multi-SNP combinations. Expert knowledge about protein-protein 

interactions, Gene Oncology (GO) or common disease pathways from public 

databases may be used as biological filters. This will facilitate the reduction of 

SNPs to a list of variants located in genes that encode for proteins involved in 

relevant interactions. A limitation in this approach, however, is the reliance on 

pre-existing knowledge from literature and databases, which can prevent novel 

interactions between genes being discovered. 
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Statistical approaches for epistasis 

Several statistical approaches have been proposed for the detection of epistasis 

(Howard et al. 2014; Niel et al. 2015). While regression analysis is extensively 

used to model pairwise SNP interactions, several machine learning approaches 

such as multifactor dimensionality reduction (MDR) (Gola et al. 2016), support 

vector machine (SVM) (Chen et al. 2008), neural networks (NNs) (Günther et 

al. 2009) and Random Forest (RF) (Lunetta et al. 2004), among others have 

been frequently used in several studies. Many of these methods are parametric 

and rely on large scale properties to accurately estimate the parameters in the 

model (Gilbert-Diamond & Moore 2011), whilst nonparametric methods have 

raised interest due to their ability to generate predictions and reveal the relative 

importance of genetic feature combinations (Howard et al. 2014). Among these, 

MDR and logistic regression are the most common non-parametric and 

parametric approaches currently used respectively (Ebbert et al. 2015). 

Parametric approaches find it difficult to detect epistasis in the absence of the 

main effects in the disease, whereas nonparametric methods are unsuccessful 

when the main effects are present (Günther et al. 2009). Thus, there is no single 

approach suitable for all type of epistasis. 

In the past decade, machine learning approaches such as MDR have been 

specifically designed to detect epistasis (Gola et al. 2016; Ritchie et al. 2001). 

MDR is a nonparametric feature extraction algorithm with an important 

research contribution in the detection of epistasis. MDR methods commonly 

explore relationships between binary phenotypes and a combination of 

genotypes among a set of genetic variants (SNPs). It performs exhaustive search 
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among the SNP interactions and transforms the combinations into new one-

dimensional multifactorial classes. MDR exhaustively considers every possible 

combination of SNPs to a predefined depth. However, there is an exponential 

correlation between the number of SNPs considered and the computational 

complexity as previously described. Consequently, studies using this approach 

are constrained to several hundred SNPs to manage computational overheads. 

Therefore, successful epistatic analysis currently depends on filtering 

approaches.  

In other approaches, regression has been utilised to model pairwise epistasis 

in PLINK (Purcell et al. 2007). However, due to the small sample size compared 

with genome-wide data sizes (small n large p), parameter estimation is costly 

and it introduces large standard errors, making it difficult to handle genome-

wide datasets (Ritchie et al. 2001). Alternative regression methods such as the 

least absolute shrinkage and selection operator (LASSO) or smoothly clipped 

absolute deviation (SCAD) have also been utilised to detect SNP-SNP 

interactions. Nonetheless, these techniques also suffered from an elevated false 

positive rate and are constrained to pairwise epistasis analysis (Niel et al. 2015). 

LAMPLINK is an extension of PLINK with options to identify high order 

epistasis (Terada et al. 2016). It performs case-control analysis for genome-wide 

data using Fisher’s exact test or chi-squared test. The goal is to find statistically 

significant combinations associated with a phenotype under investigation. High 

order interactions are detected using the Limitless Arity Multiple-testing 

Procedure (LAMP) (Terada et al. 2013). Although this approach can detect 

statistically valid high-order interactions from a reasonably high number of 
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SNPs (tens of thousands), it only supports dominant and recessive models (i.e. 

additive methods are not considered) which limits solving the problem of 

missing heritability as stated by Terada et al., (2016). Furthermore, statistical 

models such as regression models are not contemplated in LAMPLINK (only 

chi-square and Fisher’s exact tests are included) although the authors do report 

that it will be included in future work as well as extending the number of genetic 

models to be considered (Terada et al. 2016). 

Machine learning algorithms such as NNs, RF and Cellular Automata (CAs), 

can be integrated within feature extraction methods like MDR to detect epistasis 

(McKinney et al. 2006). In this sense, the discovery of epistasis can be 

conducted by applying a multi-step framework combining different parametric 

and non-parametric techniques as proposed by Moore et al. (Moore et al. 2006). 

The multi-step approach can be summarised in four steps: 1) Filter a subset of 

interesting SNPs from genome-wide data, 2) model epistasis, 3) use the 

attributes capturing epistasis for classification and, 4) facilitate interpretation of 

the ML models. 

Depending on how information is extracted from the data, ML models can 

be divided into supervised or unsupervised learning, although semi-supervised 

learning is also considered (Iniesta et al. 2016). Supervised methods usually 

need labelled data to search for the optimal model weights. Typically, an 

algorithm is built using a dataset of candidate predictors or features as input, 

capable of estimating a specific outcome. Supervised learning includes 

classification and regression problems. Conversely, unsupervised learning is a 

data-driven method trained using unlabelled data with no predefined outcome 
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to predict. Unsupervised learning is frequently used for clustering, feature 

extraction or dimensionality reduction. It is common sometimes to combine an 

initial training procedure for NN utilisation to identify the most relevant features 

and then employ those features for classification via a supervised learning step 

(Ravi et al. 2017). 

2.8 Association rule mining 

In the field of data mining, association rule mining (ARM) is an unsupervised 

learning method used to help find and describe relationships between items 

(variables) that often co-occur in large datasets (Agrawal et al. 1993). The 

discovery of association rules depends fundamentally on the discovery of 

frequent itemsets (sets of items), where association rules are required to satisfy 

minimum support and confidence constraints at the same time. In addition to 

the extraction of patterns, the approach relies on how patterns are subsequently 

ranked and filtered.  

Most itemset-based mining methods are a variant of the algorithm Apriori 

(Agrawal & Srikant 1994), which was originally intended to assist in the design 

of product display layouts in supermarket data mining. The algorithm states that 

if an itemset is not frequent, subsequent supersets of these items will also not be 

considered frequent. Rule mining was originally introduced by Agrawal et al. 

(1993) to explore several aspects of the database mining problem (Agrawal et 

al. 1993) although it has been broadened to solve problems in other domains 

such as bioinformatics (Naulaerts et al. 2015). This approach has also been used 

alongside statistical measures to discover binding cores in protein-DNA binding 

(Man-Hon Wong et al. 2015), associations between the regulation of gene 
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expression levels and phenotypic variations in gene expression analysis (Chen 

et al. 2015), epistasis (Ma et al. 2010; Zhang et al. 2014) and mining electronic 

health records (Li et al. 2013). ARM overcomes the limitations of machine 

learning approaches such as SVM and NN where the underlying models are not 

interpretable. Hence, ARM is more transparent, providing knowledge-based 

explanative rules and is thus regarded as a “white-box” approach (Naulaerts et 

al. 2015). 

An application of the Apriori algorithm, in the context of case-control 

association studies and epistasis analysis, is AprioriGWAS (Zhang et al. 2014). 

This tool was applied to AMD data and bipolar disorder (BD) with promising 

interactions between sensible genes being found. The approach proposed by 

(Zhang et al. 2014) uses frequent itemset mining (FIM) with Apriori to look for 

genotype patterns with different frequencies in cases and controls. Several 

parameters are set by the user (i.e. minimal support). Depending on the 

parameter settings, this influences the performance of the algorithm and affects 

the candidate search space, speed and power to detect patterns. To assess which 

patterns should be retained, the authors utilised a technique known as proportion 

test (Peter Armitage, Geoffrey Berry 2001). This is followed by Pearson’s chi-

square test to detect interactions between variants. In the experiments carried 

out with AprioriGWAS, only two-locus interaction models were considered. 

The primary benefit for using rule mining is its flexibility. This can help 

alleviate the curse of dimensionality by shrinking unnecessary dimensions of 

the feature space, thus generating more compact and significant rules. ARM will 

be discussed in more details in Chapter 3. 



 

94 

 

2.9 Multilayer Feedforward Artificial Neural Network 

Artificial Neural Networks (ANNs) are a promising approach for dealing with 

the limitations associated with modelling epistasis (Günther et al. 2009). A key 

element for their success is their ability to solve supervised and unsupervised 

problems and to deal with complex non-linear relationships between features. 

Artificial neural networks are machine learning models that imitate biological 

neurons in the human brain to conduct function approximation and pattern 

recognition from a set of samples (Manning et al. 2014). The neurons are 

arranged into layers and each layer is fully connected with neurons in the next 

layer. An important aspect of ANNs is that they are model free meaning that no 

assumptions about the genetic architecture that produce a particular phenotype 

are made, a property particularly relevant when mining high dimensional data. 

Neural networks predict the outcome based on the transformed 

representations of input features. One of the most frequently applied ANN 

architectures in bioinformatics is the feedforward ANN (FNN) also known as 

the multilayer perceptron (MLP) (Chen & Kurgan 2012). The goal of the MLP 

is to find a function f: X→Y, capable of approximating the values of output 

variables (Y) dependent on the set of input variables (X). At its most basic level, 

an MLP has an input layer, hidden layer(s), and an output layer as depicted in 

Figure 2-17.  
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Input Layer Hidden Layer Output Layer

 

Figure 2-17: Illustration of a single hidden layer NN. The edges connect the output of 

one node to the input of another 

The input layer reads data values from inputs provided by the user (i.e. a 

suitable representation of SNPs). The hidden layer is constructed from several 

nodes or neurons that carry out some mathematical operations to derive 

transformed features and forward them to the next layer in the network (hidden 

or output). The output layer then uses the transformed features in a model to 

predict the outcome. The number of neurons in the input and output layers 

depends on the number of input and output variables required to investigate the 

problem in hand. Neurons in consecutive layers within the MLP are connected 

via weighted connections where the values are adaptively updated during the 

training process. These weights represent the strength of the signal exchanged 

between two nodes/neurons. This process is referred to as feed-forward 

processing in ANNs. 
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The learning process for ANNs can be broadly summarised into three phases 

(Salari et al. 2014): 

• Calculation of the output corresponding to input – feed-forward 

phase. 

• Error calculation and propagation to previous layers – 

backpropagation phase. 

• Adjustment of network weights – adjustment phase using gradient 

descent. 

Supervised learning with an MLP for classification tasks involves a training 

stage where the network produces some output using inputs and their 

corresponding target data repeatedly. During each iteration or epoch, the 

network is presented with a new input sample and the weights of each neuron 

are adjusted using a learning algorithm that minimises the computed error. This 

error is then fed back (back propagated) to the network to adjust the weights 

until a global error is obtained. 

MLPs have been widely applied to a range of classifications and regression 

tasks in research areas such as, accounting and finance, health and medicine, 

and engineering and manufacturing among others (Paliwal & Kumar 2009). 

Different ANN architectures have also been developed for use in several 

bioinformatics scenarios (Manning et al. 2014) such as gene 

identification/prediction, protein secondary structure prediction, gene 

interaction and disease diagnoses; and applied to numerous diseases such as 

cancer (Lisboa & Taktak 2006). However, the use of ANNs in genetic studies 
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of obesity has not received the same level of interest (Disse et al. 2018; 

Valavanis et al. 2010). Yet our own research has shown the potential value for 

this approach in enhancing predictive accuracy in cases of non-linear 

interactions between features (Curbelo, Fergus, Hussain, Al-Jumeily, 

Abdulaimma, et al. 2017; Curbelo, Fergus, Hussain, Al-Jumeily, Dorak, et al. 

2017; Curbelo, Fergus, Curbelo, et al. 2018; Curbelo, Fergus, Chalmers, et al. 

2018). 

2.10 Deep Learning  

Deep learning (DL) is a type of ANN and one of the most active fields in 

machine learning. The success of DL can be attributable to the ability of ANNs 

to approximate nonlinear functions, its high number of parameters and, its 

flexibility to modify the architecture to adjust to specific problem/domains. DL 

architectures have shown a marked improvement in image and speech 

recognition, natural language understanding and most recently, in 

computational biology (Angermueller et al. 2016). DL networks are 

characterised by a deep depth of hidden layers and neurons – typically more 

than two layers. 

Several variants of DL are available, including convolutional neural 

networks (CNNs), which have shown excellent results in computer vision, and 

recurrent neural networks (RNNs), which perform well in natural language 

processing. In the field of health informatics, CNNs have had the most impact. 

Other less frequently explored DL architectures in the field of genetics include 

stacked autoencoders (SAE) which operate as deep autoencoders for automated 

feature extraction/learning. SAEs have also been applied to backbone structure 
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prediction in protein sequences (Lyons et al. 2014) and in magnetic resonance 

medical image analysis for multiple organ identification in cancer studies (Hoo-

Chang Shin et al. 2013). 

Deep learning has been used (Eraslan et al. 2016) to select regulatory SNPs 

with functional impact before association analysis is conducted (DeepWAS). 

The study focused on variants (SNPs) that alter functional regulatory elements 

(i.e. elements that control gene expression and DNA methylation) which are 

identified using a Deep Learning-based algorithmic framework: DeepSEA 

(Zhou & Troyanskaya 2015). This step is conducted before association analysis 

since GWAS by itself does not directly provide information about the 

underlying molecular mechanisms. DeepSEA utilises random information from 

the 1000 Genomes Project to calculate a threshold parameter (e-value). This 

value is used to calculate the impact of an SNP on functional reads. The authors 

used the functional genotypes from case/control GWAS data to associate SNPs 

with major depressive disorder (MDD). Instead of using standard logistic 

regression for association analysis, L1 regularised multiple (multi-SNP) logistic 

regression (LASSO) was utilised. 

2.10.1 Autoencoders 

Deep feedforward neural networks have been used for unsupervised feature 

learning and non-linear dimensionality reduction (Hinton & Salakhutdinov 

2006). These unsupervised learning architectures learn low-dimensional feature 

representations from high dimensional unlabelled data, similar to classical PCA, 

but using non-linear models instead. Autoencoders (AEs) belong to this 

unsupervised learning class of algorithms and can be used to initialise the 
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weights of complex models such as neural networks to help improve 

classification performance (Le 2015).  

In bioinformatics, stacked autoencoders have been employed in breast cancer 

detection using gene expression data (Danaee et al. 2017). In this approach, 

denoising autoencoders were stacked to extract functional features from high 

dimensional gene expression profiles. Reduced features were then evaluated 

using a supervised classification model. Researchers have also conducted 

experiments where linear representations of gene expressions were obtained 

using PCA whereas nonlinear relationships were capture using AEs, to enhance 

cancer diagnosis and classification from gene expression data (Fakoor et al. 

2013).  

2.10.2 Hyper-parameter optimisation 

In ANNs, hyper-parameters are variables that are either set a priori or 

automatically through an external model-tuning mechanism. These parameters 

are related to the functions used in feature transformation and class prediction, 

which include weight initialisation, learning rate, activation function, 

regularisation, and hidden unit configuration among others (Cook 2016; Candel 

& LeDell 2018). Identifying a suitable configuration for hyper-parameter tuning 

requires specific knowledge, intuition, but more importantly it is often based on 

trial and error testing to attain a good model (Mantovani et al. 2015). Typically, 

machine learning models are trained using a training set and validated using a 

holdout or validation set. To ensure that overfitting does not occur a test set is 

used to evaluate model performance. 
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Hyper-parameter optimization tries to find an optimal set of hyper-

parameters that minimise the generalisation error E for a given learning 

algorithm which, in turn, produces classifiers with good predictive performance 

(Bergstra & Bengio 2012). However, this can be very challenging when the 

number of parameters to be tuned is high, such as in ANNs (Bergstra et al. 

2011). Methods for optimizing hyper-parameters in machine learning 

approaches include grid search, Bayesian optimization, random search, and 

gradient-based optimisation; grid search is a common approach in the literature 

(Mantovani et al. 2015; Braga et al. 2013). 

Overfitting is a common phenomenon, when using supervised ANNs with 

overly complex structures, that needs to be considered during the training 

process (Piotrowski & Napiorkowski 2013). It occurs when models memorise 

training data but do not generalise to new cases. Several techniques are used to 

prevent overfitting from occurring or, at least reduce it. Among these 

techniques, decreasing model complexity (i.e. the number of hidden layers and 

neurons), increasing the size of the training set or using regularization are all 

valid solutions (Bishop 2006). Although, it has been suggested that using 

regularisation techniques such as dropout, early stopping and layer-wise pre-

training can help to avoid overfitting in deep neural networks (Sheehan & Song 

2016). Dropout regularisation is a technique that prevents neurons from co-

adapting, which reduces overfitting. This approach has been successful in many 

domains including object classification, speech recognition or analysis of 

biology data (Srivastava et al. 2014). Dropout achieves this by randomly 

selecting a fraction of neurons in each layer and dropping them out of the 
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training process by setting the neuron values to zero. When performing tests, no 

neurons are dropped but instead their weights are scale appropriately based on: 

 
( 1) ( 1)− −=l l

testW pW
 

2-5 

where l is the layer where the neurons are dropped with probability p (i.e. p = 

0.5 indicates that 50% of the neurons are dropped at an iteration). Thus, during 

test, the incoming weights to the layer l are scaled by p according to Equation 

2-5. If the validation performance starts to deteriorate, the training process is 

stopped, and the parameters of the best model in the validation set are chosen. 

This regularisation process is termed early stopping. Another way to reduce 

overfitting is to pre-train the layers of the network in a unsupervised manner via 

autoencoders or restricted Boltzman machines, rather than training the entire 

network right from the start (Bengio et al. 2007). 

Activation functions, such as the rectifier, tanh and maxout (Cook 2016) are 

typically used in classification tasks - these are defined in Table 2-6.  

Function Formula Range 

Rectifier Linear ( ) max(0, ) =f  ( ) + f  

Tanh ( )
 

 


−

−

−
=

+

e e
f

e e
 ( ) [ 1,1]  −f  

Maxout 1 2 1 2( , ) max( , )  =f a a  ( ) + f  

Table 2-6: Available activation functions used in this thesis (Candel & LeDell 2018) 

Finding the best activation function depends on the data, since each of them 

may outperform each other depending on the experimental setting. Therefore, it 

is recommended to try all options or use a grid search approach to determine 

which one performs better with the data used for training the models. 
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Additionally, all these activation functions can be used with dropout 

regularisation (it controls the rate at which outputs are randomly set to zero) in 

order to avoid overfitting and produce a more robust model. Table 2-7 lists some 

examples of available deep learning tuning parameters used in this study. 

Tuning Parameter Description 

Activation Activation function to be used in the network. 

Input dropout ratio Fraction of input neurons to be dropped from training. Helps 

improve generalisation. 

Hidden dropout 

ratio 

Fraction of inputs in each hidden layer to be omitted from training. 

Helps improve generalisation. 

Learning rate Learning rate at each iteration of gradient descent. 

Rate annealing Is used to reduce the learning rate to avoid getting stuck in local 

minimum. 

Rate decay It controls the modification of the learning rate across layers. 

Stopping metric Metric to decide whether to stop training early or not. 

Early stopping Stop training if model does not improve for a certain number of 

scored rounds. 

Stopping tolerance Stop training if the stopping metric has not improved as indicated by 

this value. 

Stopping rounds Number of epochs before the model stops if it has not improved as 

indicated by stopping tolerance. 

Input_dropout_ratio A fraction of features in each training row to be removed from 

training. This can improve generalization. 

L1 Lasso regularisation. Sets the value of many weights to 0. 

L2 Ridge regularisation. Sets the value of many weights to smaller 

values. 

Hidden layers Number of hidden layers. 

Neurons Size of hidden layer. 

Epochs Number of iterations over the training set. 

Table 2-7: Tuning parameter example used in this study (Candel & LeDell 2018) 
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Random search has proven to be as good as, or even better than, pure grid 

search when applied to ANNs, saving computational time (Bergstra & Bengio 

2012). This is true since random grid search can effectively search a larger, and 

often less promising, configuration space (Bergstra & Bengio 2012). 

2.11 Systems Medicine 

In recent years, the intersection between medical research and practice, and 

expertise from biology, biostatistics, informatics, mathematic and 

computational modelling has given rise to an interdisciplinary approach termed 

Systems Medicine (Wolkenhauer 2013; Kramer et al. 2018). As an extension 

and adaptation of Systems Biology (Wolkenhauer et al. 2013), systems medicine 

emerged in medical research to understand and treat diseases by studying not 

only the elements of the system, but their interactions (Gomez-Cabrero, 

Menche, et al. 2014). This concept is speeding up changes in clinical and 

translational research and healthcare by bringing investigator teams and 

expertise from different disciplines together. The potential of systems medicine 

in the study of complex diseases have been confirmed in cases of chronic 

respiratory diseases, i.e. Chronic Obstructive Pulmonary Disease (COPD) 

(Gomez-Cabrero, Menche, et al. 2014), cholesterol and glucose regulation (Shu 

et al. 2016). 

In this PhD, the investigation of obesity as a complex disease can be 

compared with a systems approach where the genetic elements contributing to 

the understanding of common obesity are identified systematically to, finally, 

investigate consequences of particular interactions, the emergent patterns or 

behaviour of the system. To achieve this, it is necessary to provide data 
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integration from different sources (i.e. sequencing technologies and external 

databases), and analysis and interpretation of this data through the combination 

of multiple statistical, computational and mathematical procedures (integrative 

workflow) in a rational and reproducible way implemented in software tools 

(Apweiler et al. 2018). Such strategies may facilitate the discovery of combined 

biomarkers with predictive power of disease (Gomez-Cabrero, Lluch-Ariet, et 

al. 2014).  

Therefore, SAERMA is presented in this thesis as a generic pipeline that 

helps leverage combined statistical patterns from GWAS, association rule 

mining and deep learning to identify relevant pathways and key drives in 

biological systems as similarly conducted in (Shu et al. 2016).  

2.12 Chapter Summary 

Identifying the genetic cause of obesity is complex. This multifactorial disease 

is caused by environmental changes, eating behaviours, physical activity and 

genetic factors. Whereas environmental and lifestyle changes have driven 

obesity prevalence to epidemic proportions, there is evidence that a substantial 

genetic component exists (h2 ~ 40-70%) supported by heritability studies. 

Although many genes that play a significant role in the development of obesity 

have already been identified, a large proportion of the heritability is still 

unexplained, making this a prominent area of research. 

As the price of genome-wide genotyping has dropped, the number of studies 

utilizing GWAS has increased dramatically (Gretarsdottir et al. 2010; Speliotes 

et al. 2010; Tryka et al. 2014; Kamitsuji et al. 2015; Frazer et al. 2009; 
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MacArthur et al. 2017). The importance of GWAS is advancing scientific 

understanding of disease mechanisms and providing starting points and 

potential opportunities for researchers to improve the development of medical 

treatments or prevention therapies (Blank & Gutzwiller 2014; Christensen & 

Murray 2007). Results from GWAS reveal SNPs that serve as candidate 

biomarkers for genes and these might provide important indicators for the 

existence of complex diseases in individuals. This approach is based on single-

locus analysis where each SNP is independently tested for association with a 

phenotype of interest, omitting the existence of interactions between loci. 

Genetic studies of obesity have mainly considered the effect of single variants 

or sets of variants previously associated with BMI and obesity related traits 

where the joint effect or epistatic interactions have also been ignored or 

investigated in less detail. 

The amount of data extracted from GWAS opens up new opportunities to 

establish and develop suitable analytical methods that help to translate 

knowledge into biological and clinical discoveries. This thesis will build on the 

significant work already done and concentrate on providing new insights into 

the genetics aspects of obesity. This field still needs further exploration and new 

techniques, such as those posited in this thesis, may help to identify new variants 

or new interactions between them by applying state of the art artificial 

intelligence techniques, particularly machine learning and the new advances 

currently being made in deep learning (discussed in more detail below). The 

discovery of interactions between genetic variants (epistasis) is currently a 

subject of active development in statistics and machine learning. 
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Gaining a better understanding about the causes of obesity and related 

comorbidities, including cardiovascular disease and type 2 diabetes mellitus 

(T2DM) is one of the main goals in genetic investigations of obesity. In this 

sense, systems medicine arises as a novel multidisciplinary approach to 

medicine, which performs a methodological pipeline consisting of quantitative 

technologies to produce data, information systems for data management as well 

as methods for analysis and interpretation of the data. Furthermore, the 

interpretation and translation of such knowledge opens up new opportunities to 

introduce personalised medicine to obese patients, enabling more specific 

diagnosis of the causal factors underlying obesity.  

When susceptibility to complex traits in diseases is analysed, epistasis 

continues to emerge as a likely explanation for missing heritability where many 

genetic factors interact simultaneously. In the case of obesity, these factors not 

only act independently but they also interact with each other and the 

environment. The computational burden however in exploring interactions 

between genetic variants in the sea of data generated in GWAS, combined with 

small to moderate sample sizes, has prevented epistasis from being the main 

focus in GWAS analyses.  

Therefore, most methods used in studies on complex diseases are based on 

traditional statistical regression models characterised by univariate tests. Here, 

the genetic variants that have independent effects on the phenotype are unable 

to capture complex interactions between multiple variants (Saeys et al. 2007). 

Nevertheless, the known limitations of traditional methods in situations where 

non-linearity and high-dimensional settings are an issue, has led to the pursuit 
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of more complex approaches such as, machine learning, which have proved to 

be more effective (Salari et al. 2014; Valavanis et al. 2010).  

Multivariate methods permit the identification of complex interactions 

between genetic and non-genetic risk factors that modulate the probability of 

developing a specific condition and its level of severity. Still, investigating 

epistasis can be extremely computationally expensive due to the high 

dimensional space and the high number of models that need to be explored. 

Autoencoders represents a flexible approach capable of dealing with 

nonlinearities in the data while allowing them to be stacked to form a deep 

network. 

While several strategies can be used to help reduce computational burden, 

no one strategy will be optimal in all cases. Different methods have advantages 

and disadvantages, indicating that they do not follow a “one fits all” criteria. 

Therefore, in the experiments presented in this thesis, a filter approach based on 

the statistical evidence of single-SNP effects has been implemented since it is 

simple, unbiased with respect to the researcher (no previous biological 

knowledge is required) and it has been shown to have high power. This thesis 

is built on existing methodologies and combines supervised and unsupervised 

machine learning methods into a single framework to investigate epistasis in 

obesity GWAS. Combined, the proposed framework includes ARM, deep 

learning SAE and an MLP, and is discussed in detail in the following chapter.  

Genetic variants identified by GWAS and subsequent analysis do not 

necessarily represent specific genes but genomic regions. This complicates the 

task of making direct biological inference from the results of statistical tests, so 
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additional information is necessary to interpret and empirically validate the 

results. Therefore, GSEA, pathways analysis and eQTL information can be used 

to provide functional interpretation of many trait-associated SNPs in a 

biological context. In this thesis, biological validation of proposed genetic 

variants identified by ARM are validated using functional analysis via 

functional annotation tools, to provide a biological interpretation of the mined 

rules prior to feature extraction and classification analysis. 
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 METHODS 

3.1 Introduction 

The proposed method described in this thesis expands GWAS analysis by 

combining techniques not used before to learn the epistatic interactions between 

SNPs to model and classify extremely obese and non-obese individuals. 

Quality control (QC) and logistic regression (LR) steps typically performed 

in GWAS are combined with association rule mining (ARM) and deep learning 

(DL) stacked autoencoders (SAE) to create a novel framework for learning 

epistatic interactions between SNPs. A multilayer feedforward artificial neural 

network classifier is initialised using SNP features and the epistatic information 

learned by a deep learning stacked autoencoder model guided by ARM to 

classify case-control samples obtained from the eMERGE MyCode dataset. The 

complete network models the epistatic effects of SNP perturbations while ARM 

provides model interpretation via network visualisation and rule inspection.  

The approach comprises six stages (Figure 3-1 illustrates the complete 

algorithm): 

1. Data file pre-processing. 

2. Quality control. 

3. Association analysis. 

4. Combination of association rule mining and stacked autoencoders. 

5. Classification using a multilayer perceptron artificial neural network. 

6. Interpretation of the results. 
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Figure 3-1: Proposed methodology 

In general terms (see Figure 3-2), the proposed algorithm investigates the 

genetic architecture of obesity by taking the interactions between genetic 

variants into account, using a case-control dataset. To achieve this, several 

machine learning methods (ARM, SAE and MLP) have been used along with 

common genetic techniques utilised in GWAS (QC and association analysis). 

The results obtained by the deep learning architecture, constituted by SAE-

MLP, were driven by ARM which allows for an interpretation of the model. 
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Finally, statistical results from ARM are also validated from a biological point 

of view via functional analysis using gene set enrichment analysis. 
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Figure 3-2: Overview of SAERMA 

3.2 Data Description 

Case-control data utilized in this study were obtained from the database of 

Genotypes and Phenotypes (dbGaP) (CHEN et al. 2012), which provides open 

and controlled access to genomic data and phenotypic information. Access to 

the following datasets was granted following a formal request to dbGaP: 

• Control: eMERGE Geisinger eGenomic Medicine (GeM) - MyCode 

Project Controls (dbGaP study accession phs000381.v1.p1). 

• Case: eMERGE Genome-Wide Association Studies of Obesity project 

(dbGaP study accession phs000408.v1.p1). 
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Participants are part of the MyCode Community Health Initiative (MyCode) 

project. This is a sophisticated platform for translational research (Carey et al. 

2016). It was created as a central biorepository to collect blood and DNA 

samples from a representative cohort of patients from the Geisinger Health 

System (GHS). This is an integrated health care delivery system that provides 

services to participants that are resident in Pennsylvania. Samples and 

molecular data generated by MyCode have been used in numerous research 

studies, including the electronic Medical Records and Genomics (eMERGE) 

Network. This network represents a collaboration between institutions with 

biobanks linked to electronic medical records (EMRs) and is supported and 

funded by The Genomics Workgroup of the NHGRI (McCarty et al. 2011). One 

of the institutions that supplies anonymised samples to the EMR is the Geisinger 

Clinic, among others (Gottesman et al. 2013). 

Cases and controls provided by dbGaP were extracted from different study 

cohorts provided by the Geisinger MyCode project. Control patients from 

eMERGE Geisinger eGenomic Medicine (GeM) - MyCode Project Controls, 

were eligible if they were primary patients of a Geisinger Clinic with non-urgent 

visits. A subset of 1,231 unique samples were genotyped using Illumina 

HumanOmniExpress-12 v1.0 arrays and used as population controls for 

eMERGE Genome-Wide Association Studies of Obesity project dataset. All 

study participants provided written consent prior to study enrolment as part of 

the MyCode DNA biobank. 

Case samples were part of a cohort of primary Caucasian patients from the 

Geisinger Clinic with extreme obesity who underwent bariatric surgery. A 
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subset of 962 unique samples with a mean BMI of 49.17 (± 8.83 SD) was 

genotyped using Illumina HumanOmniExpress-12 v1.0 arrays. The control 

group (1,231 individuals) includes 488 females and 743 males with a mean age 

of 66.74 (± 13.95 SD) while cases comprise 788 females and 174 males with a 

mean age at surgery of 46.42 (± 11.26 SD). The final dataset contains a total of 

2,193 participants of which 917 are males and 1,276 are females. The proportion 

of males and females by phenotype is illustrated in Figure 3-3. 

 

Figure 3-3: Proportion of males and females per phenotype label 

Each participant contains 594,034 markers. Furthermore, 99.5% of the 

participants belong to a white ethnic background (Caucasians) as shown in 

Table 3-1.  

  



 

114 

 

Ethnicity Case Control Total samples 

White 960 1,223 2,183 

Black or African American 1 5 6 

American Indian/Alaska Native 0 1 1 

Hispanic or Latino 0 1 1 

Native Hawaiian or other Pacific Islands 0 1 1 

Unknown 1 0 1 

Table 3-1: Case-control samples by population 

Genetic data is encoded in the pedigree file format (PED/MAP) although it 

was converted to binary format (BED/BIM/FAM) for efficiency reasons as 

discussed earlier in Chapter 2 (Section 2.4.4.1). Genotype data for all 

individuals (cases and controls) is contained in the bed file. The subject-related 

information (i.e. FID, IID, PID, Sex and phenotype) is stored in the fam file. 

Finally, the bim file contains information about all relevant SNPs used in the 

study. 

The case-control sets were merged, and the phenotype was defined before 

conducting any analysis. Phenotypes (affection status) in both datasets were 

originally set to missing (-9). Therefore, information for cases (severe cases of 

obesity) and controls (healthy individuals) was updated accordingly (-9 or 0 

missing, 1 unaffected and 2 affected). Experiments in this study have been 

conducted using the binary files (.bed, .bim, .fam). To make the merge process 

easier, phenotype values were assigned to cases and controls separately. Both 

datasets were merged to create the main dataset used for QC and association 

analysis. Thus, the fam files were updated to match the right phenotype in cases 

and controls. Sex values are coded as 1 = male, 2 = female and other = unknown. 
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In addition, the case and control datasets were supplied with clinical data. 

The control dataset (dbGaP study accession phs000381.v1.p1), provides 

medical background information about healthy patients, including general 

socio-demographic information, weight, height and BMI, blood pressure data, 

abdominal aortic aneurism (AAA), peripheral arterial disease (PAD), arterial 

dissection, bariatric surgery and information about tobacco or alcohol 

consumption. The case dataset (dbGaP study accession phs000408.v1.p1) 

provides medical background information relating to obesity prior to bariatric 

surgery, and includes information about weight, height and BMI, Hba1c, blood 

pressure data, insulin, glucose levels, and medication use, including biguanides, 

insulin, sulfonylureas, or insulin sensitizing agents. Data about tobacco and 

alcohol use, general socio-demographic information and weight 

measurements following bariatric surgery, are also included.  

Dataset balance 

Typical GWAS experiments suffer from data imbalance problems where the 

number of control samples collected from healthy individuals is greater than 

individuals with the desired trait or phenotype under investigation (Bao et al. 

2016; Zhou et al. 2018). Hence, datasets with a large number of controls and a 

small number of cases, introduce bias in association tests such as logistic, in 

favour of the dominant group (Owen 2007).  

Therefore, dataset balance is an important issue to be taken into 

consideration before performing analysis. Generally, the ideal situation to have 

the least biased performance consists in having approximately 50% of the 

individuals belonging to cases and 50% to controls. In this thesis, the MyCode 
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dataset does not pose a significant imbalance problem to warrant intervention 

and as such is not necessary in this PhD (Haibo He & Garcia 2009). 

In the remainder of this thesis, cases and controls from the Geisinger MyCode 

will be denoted as the MyCode dataset that is sufficiently balanced for further 

study. 

3.3 Quality Control (QC) 

To conduct association analyses, only those individuals reported to be 

Caucasian (white) were selected to reduce potential bias due to population 

stratification (Price et al. 2010). In addition, analysis was also conducted to 

identify problematic samples and SNPs. Thus, QC of the genotyped data and 

filtering procedures were performed on individuals and then on markers (SNPs) 

to maximise the number of remaining SNPs. It should be noted that there is no 

universally accepted QC threshold for the exclusion criteria. Therefore, all QC 

steps were performed in accordance with standard QC protocols and guidance 

from (Anderson et al. 2010; Weale 2010). The protocol written by Anderson et 

al. has been successfully applied in GWAS elsewhere (Ferrari et al. 2015).  

3.3.1 Individual Level QC 

3.3.1.1 Identification of individuals with discordant sex 

information 

The first QC step conducted on MyCode dataset was to identify and remove 

data samples with discordant sex, using genotype data from the X-chromosome. 

In PLINK, sex inconsistencies were checked using the command --check-sex. 

After identifying discordant sex information, 3 individuals were removed from 

the main dataset. 
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3.3.1.2 Identification of individuals with elevated missing data 

rates or high heterozygosity 

Using PLINK, individuals with elevated missing data rates or high 

heterozygosity were examined (--missing and --het). The plot in Figure 3-4 was 

utilised to determine appropriate thresholds. In the figure, missingness and 

heterozygosity are considered together to determine the filtering thresholds.  

 

Figure 3-4: Genotype failure rate vs. heterozygosity across all individuals in the 

study. Dashed lines denote QC thresholds selected 

Hence, individuals with a genotype failure rate  0.01 (vertical line) and 

heterozygosity rate  3 standard deviations from the mean (horizontal lines) 

were excluded. This resulted in 43 individuals being removed. 

3.3.1.3 Identification of duplicated or related individuals 

IBD was calculated for each pair of individuals based on the average proportion 

of alleles shared in common at genotyped SNPs, without considering the sex 
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chromosomes. This is then used to identify and remove duplicated or related 

individuals using IBD coefficient estimates (IBD > 0.185). 

To reduce computational complexity, SNPs from extended regions of high 

LD are excluded. This is an important quality assurance step for GWAS 

analysis, especially when performing IBD estimation or PCA, which will obtain 

better results if the SNPs are not in LD with each other (Anderson et al. 2010). 

To remove data redundancy due to LD, each individual chromosome was 

scanned using a moving window size set to 50 SNPs with a step length of 5 

SNPs. Furthermore, LD cut-off was set to 0.2. Again, these experiments were 

conducted using PLINK. This resulted in 156 individuals being removed due to 

IBD. 

3.3.1.4 Identification of individuals of divergent ancestry 

Genotypes are merged with HapMap phase 3 data from three ethnic 

populations: (Europe) CEU, (Asia) CHB+JPT and (Africa) YRI. Principal 

component analysis was performed on the case-control data to identify outliers 

and hidden population structure using EIGENSTRAT. A scatter diagram for the 

two first principal components is depicted in Figure 3-5 which is sufficient to 

cluster samples from the three populations. 
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Figure 3-5: Ancestry clustering based on GWAS data 

PC1 and PC2 thresholds were derived so that only individuals that match the 

given ancestral population are included. For populations of European descent 

this will be CEU HapMap3 individuals. Here, all individuals with a second 

principal component score less than 0.071 were excluded as shown in Figure 

3-5 (dark dash-line). Conversely, PC1 values between 0.013 and 0.018 were 

selected (orange dashed line). After performing divergent ancestry QC, 93 

samples were removed. 

3.3.2 SNP Level QC 

Following the removal of individuals failing QC, QC applied to genetic variants 

is performed. This QC step is usually composed of 3 steps including: 

identification of genetic variants (SNPs) with excessive missing data rates, 

SNPs with significant deviation from HWE and pruning of SNPs with low 

MAF. 
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3.3.2.1 Identify all markers with excessive missing data rates 

The missing genotype rate for each marker is calculated using PLINK. The 

command --geno 0.01 was used to exclude genetic variants (SNPs) with 

genotype missing data rates higher than 0.01, equivalent to a call rate of less 

than 99%. This resulted in 323,529 genetic variants being removed. 

3.3.2.2 Hardy-Weinberg equilibrium  

A Hardy-Weinberg Equilibrium P-value of 1x10-5 was used as a threshold in 

control subjects to remove SNPs failing this QC step (--hwe). However, 0 

variants were removed suggesting that there was no deviation from HWE. 

3.3.2.3 Minor allele frequency 

Genetic markers (SNPs) were excluded from analysis if the MAF was lower 

than 5%. This resulted in 28,848 SNPs being removed. 

3.4 Association Analysis 

In this study, association analysis is used to reduce the computationally large 

number of genetic variants (240,950 SNPs after QC) prior to epistatic analysis 

and machine learning tasks. Statistical association testing between individual 

SNPs and the obesity phenotype was conducted under an additive model using 

logistic regression (Li 2007). A logistic function was used to predict the 

probability of a case given a genotype class although other genetic models are 

available (Bush & Moore 2012). Covariates help to explain some of the 

phenotypic variation, which can help to improve the power of statistical testing 

in linear models and logistic regression analyses of quantitative traits (Pirinen 

et al. 2012). However, association analysis in this thesis is used as a statistical 



 

121 

 

filtering approach to reduce the dimensionality of the data. Therefore, 

association analysis with logistic regression was conducted without taking into 

consideration any covariates.  

Genotypes are grouped into an additive model. Given a, a uniform, linear 

increase in risk for each copy of the a allele is assumed. For example, if the risk 

is γ for Aa/aA, then there is a risk of 2 γ for aa. Let i be the individuals (i = 1, 2, 

…, n), Yi the phenotype for individual i and Xi the genotype of individual i at a 

particular SNP. Let Y ∈ {0,1} be a binary phenotype for case/control status and 

X ∈ {0,1,2} be a genotype at the typed SNP, where 0, 1 and 2 represent 

homozygous major allele 𝐴𝐴, heterozygous allele 𝐴𝑎, and homozygous minor 

allele 𝑎𝑎 respectively. Let pi represent the expected value of a phenotype Yi, 

given a genotype Xi, 

 ( )|i i ip   E Y   X  =  3-1 

Logistic regression modelling is therefore defined as (Wang et al. 2016): 
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however, it can also be given as a linear predictor function:  

 ( ) 0 1~i ilogit p   X +  3-3 

PLINK was utilised to test the association between SNPs and obesity as a 

binary trait, where the default option format for the phenotype was considered: 

1 = unaffected, 2 = affected and 0 or -9 to represent a missing phenotype. To 
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test for association, the option --logistic was utilised. Population stratification 

was assessed, and standard errors were adjusted using the genomic inflation 

statistic (λ). Quantile-quantile (Q-Q) and Manhattan plots were generated to 

visualise the GWAS results (Turner 2014).  

Utilising logistic regression, while not ideal, enables the number of SNPs 

with insignificant marginal effects to be reduced to meet the computational 

needs required for epistatic analysis and machine learning tasks. An advantage 

of applying this filtering technique is that it greatly reduces the number of 

combinations that need to be evaluated in subsequent machine learning 

experiments, thus reducing the chance of overfitting (Moore & Andrews 2015). 

The remaining SNPs capture the significant linear associations between SNPs 

and the phenotype. 

The results of all association tests with P-values lower than 1x10-2 were 

considered in this thesis to allow epistatic interactions to be detected and 

minimise computational overheads. This threshold was selected based on 

empirical results obtained in our previous work (Curbelo, Fergus, Hussain, Al-

Jumeily, Dorak, et al. 2017; Curbelo, Fergus, Curbelo, et al. 2018). This 

approach has been adopted in other previous studies of epistasis in obesity (S. 

Lee et al. 2012) and T2D studies (Gül et al. 2014) where P-value < 1x10-1 and 

P-value < 1x10-3 were considered respectively.  

3.5 Association Rule Mining (ARM) 

In bioinformatics, association rules can be utilized to reveal biologically 

relevant associations between different SNPs. The guiding principles are that if 
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attributes frequently appear together, there must be an underlying relationship 

between them. Studies based on SNP data have described large datasets with 

limited focus on plausible interactions between genetic variants. Therefore, 

exploring the intrinsic relationships in the data and extracting rules to better 

understand SNP behaviour and their subsequent interactions between each other 

are important tasks that can be performed using frequent pattern mining (FPM). 

This technique extracts all the frequent itemsets from a dataset, which are then 

used to generate association rules. In the proposed methodology, the idea is to 

extract important rules identified in cases and controls separately.  

The biological extrapolation in this study is to identify frequently occurring 

SNPs as items, in different individuals in the form of transactions. Applied to 

GWAS, the individuals are transactions, SNPs are items, and SNP combinations 

are itemsets. Single SNPs tend to have small effect sizes in polygenic diseases. 

Therefore, by looking at the joint effect of multiple SNPs, explanatory power 

can be increased.  

SNP genotypes recoded in terms of additive components, following logistic 

regression analysis, are translated into transaction data. To do so, SNPs are first 

coded into numeric values: 0, 1 and 2, using the PLINK command --recodeA. 

This produces a single column for genotype data in terms of minor allele 

numbers, in the format [Variant ID]_[counted allele]. The number of alleles is 

0 if the genotype is AA, 1 if genotype is Aa/aA and, 2 if genotype is aa. Once 

completed, the recoded dataset is partitioned into cases and controls to extract 

rules for each group separately. Hence, in the rule mining experiments 

(described later in this thesis), each item (SNP) in each transaction (individual) 
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is labelled as dominant (D), heterozygous (H) or recessive (R) according to 0, 1 

and 2 respectively. An example SNP identified in the study has the following 

format rs322132_A_D, where A refers to the counted allele and D indicates that 

is dominant.  

ARM is one of the main techniques used to detect and extract useful 

information from large scale transaction data. This step is conducted after 

itemset mining to allow appropriate rules to be derived from itemsets. Many 

ARM algorithms, including the Apriori algorithm (Agrawal & Srikant 1994), 

assume a common strategy for decomposing mining problems into two principal 

subtasks: 1) Frequent itemset generation and, 2) rule generation. In the case of 

frequent itemset generation the aim is to identify all the itemsets that satisfy a 

minimum support threshold. While rule generation extracts all the high-

confidence rules from the frequent itemsets that satisfy a minimum confidence 

constraint.  

ARM is therefore formally defined as: 

Definition 1 (Items): Let I = {i1, i2,..., im} be a set of m attributes called 

items.  

Definition 2 (Transaction): Let a transaction database T = {t1, t2,…, tn} 

be a set of n subset of items called transactions. Each transaction in T 

identifies a subset of items in I. 

In this work, items represent SNPs while transactions represent individual 

samples.  

Definition 3 (Itemset): A subset X= {i1, i2,..., ik} ⊆ I is referred to as an 

itemset, or k-itemset with k items. 
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Itemsets are sets of k-items where k starts with 1 to infinity. Unnecessary 

itemset candidates are produced if at least one of its subsets is infrequent. Hence, 

the frequent itemset generation is equipped with pruning steps in which it 

eliminates some of the k-itemset candidates based on a minimum support 

threshold. Support is the number of transactions that contain a particular itemset 

as defined in Definition 4. 

Definition 4 (Support of an Itemset): Support(X), or support of an 

itemset X, refers to the number of transactions in T that contains the itemset 

X. Support(X) is defined as follows: 

 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋) = |{𝑡 ∈ 𝑇, 𝑋 ⊆ 𝐼}| 3-4 

Definition 5 (Frequent Itemset): Given a set of 𝑖𝑡𝑒𝑚𝑠 𝐼 =

 {𝑖1, 𝑖2, . . . , 𝑖𝑚} and a set of 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑇 =  {𝑡1, 𝑡2, … , 𝑡𝑛}, a subset 

of 𝐼, 𝑋 ⊆  𝐼, is considered a frequent 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 if 𝑋 occurs in a percentage of 

all transactions in 𝑇 that exceeds a minimum support threshold 𝜎, with 0 ≤

𝜎 ≤ |𝑇|. 

In this work, frequent itemsets are independent sets of SNPs in the Geisinger 

MyCode dataset whose support is greater than or equal to a given minimum 

support threshold 𝜎, as defined in Definition 5. Itemsets whose support count is 

lower than the minimum 𝜎, are pruned (eliminated). This strategy for reducing 

the exponential search of frequent itemsets based on the support measure is 

termed support-based pruning, which diminishes the number of candidate 

patterns. 

Once frequent itemsets have been obtained, the generation of association 

rules is performed. Frequent itemset I > 1 is divided into two itemsets, X and Y, 

representing the elements of a rule. The rules are created if its support and 
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confidence values exceed a given threshold. Rules are generated from each of 

the frequent k-itemsets. Hence, the total candidate association rules generated is 

2k–2, excluding those that are null in the antecedent (X) or consequent (Y) (Zaki 

2000). 

Definition 6 (Association Rule): An association rule is defined as an 

implication of the form X→Y, where X, Y ⊆ I and X ∩ Y = ∅. X refers to the 

left-hand side (LHS) or antecedent of the rule while Y is the right-hand side 

(RHS) or consequent. 

Association rule mining allows us to discover associations among a subset 

of SNPs extracted from the MyCode dataset. The approach discovers SNPs that 

frequently occur together in the MyCode dataset (cases and controls separately) 

and creates a relationship between those SNPs in the form X →Y. As stated in 

Definition 6, this relationship implies that when X occurs it is likely that Y also 

occurs. Such a relationship is called an association rule.  

The significance of the association rules is measured in terms of their support 

and confidence although other interest measures such as lift or Chi-Square can 

be used to validate rules. The support of a rule is the probability that the samples 

in a dataset contain both X and Y. Rules with very low support may occur by 

chance, therefore, support is an important measure that can be used to eliminate 

unimportant rules. The confidence of a rule, on the other hand, is the probability 

that a case contains Y given that it contains 𝑋. It provides an estimate of the 

conditional probability of Y given X. The probability representations for the 

support and confidence of a rule are defined as: 

 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 𝑃(𝑋 ∩ 𝑌), 3-5 
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and 

 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 𝑃(𝑌|𝑋) =
P(X ∩ Y)

P(X) 
 3-6 

Definition 7 (Support of a Rule): The support of an association rule 

X→Y with regard to a transaction set T is given by the support of X ∪ Y: 

 𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 → 𝑌) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪ 𝑌)

|𝑇|
 3-7 

Definition 8 (Confidence of a Rule): The confidence of a rule X→Y with 

regard to a transaction set T is given by: 

 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪ 𝑌)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)
 3-8 

In the rule generation phase, only confidence is considered since support is 

contemplated when mining frequent itemsets. Hence, the usual filtration is 

based on the user-defined minimum support and confidence values. Once 

specified, Apriori looks for rules satisfying the condition as indicated in 

Definition 9.  

Definition 9 (Association Rule Discovery). Given a set of transactions 𝑇, 

search for all the rules with support ≥ 𝜎 and confidence ≥ 𝛿 where 𝜎 and 𝛿 

are the corresponding minimum support and confidence thresholds. 

3.5.1 Apriori algorithm 

The generation of association rules is conducted using the Apriori algorithm 

(Agrawal & Srikant 1994). The algorithm was proposed by Agrawal and Srikant 

in 1994 and is one of the oldest, simplest and most popular frequent itemset 

mining algorithms. The name Apriori is based on the fact that the algorithm 
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benefits from prior knowledge of frequent itemset properties. The Apriori 

algorithm performs a breadth-first search (BFS), enumerating every single 

frequent itemset by iteratively generating candidate itemsets (Hipp et al. 2000). 

Candidate itemsets of length k are generated from k-1 itemsets. The support of 

every candidate itemset is calculated iteratively where itemsets with support 

values under a defined threshold are disregarded. For a transaction T and support 

threshold 𝜎, the pseudo code for the Apriori algorithm is given in Algorithm 

3-1, which has been extracted from (Agrawal & Srikant 1994). Christian 

Borgelt’s Apriori implementation is applied in this study using the R package 

arules (Hahsler et al. 2005; Hahsler et al. 2018; Hahsler et al. 2011), to search 

for partial dependencies in the filtered set of SNPs. 

Apriori Algorithm 

1: 𝐀𝐩𝐫𝐢𝐨𝐫𝐢 (T, σ) 

2: L1 = {large 1 − itemsets} 

3: 𝐟𝐨𝐫(k = 2; Lk−1  ≠ 0; k + +) 𝐝𝐨 𝐛𝐞𝐠𝐢𝐧 

4: Ck  =  apriori − gen(Lk−1); // New candidates 

5: 𝐟𝐨𝐫𝐚𝐥𝐥 transactions t ∈ T 𝐝𝐨 𝐛𝐞𝐠𝐢𝐧 

6:               Ct = subset(Ck, t); //Candidates contained in t 

7: 𝐟𝐨𝐫𝐚𝐥𝐥 candidates c ∈  Ct 𝐝𝐨 

8: c.count++; 

9: 𝐞𝐧𝐝 

10: Lk ={ c ∈ Ck | c. count ≥ σ} 

11: 𝐞𝐧𝐝 

12: Answer = ∪k Lk 

Algorithm 3-1: Apriori algorithm 

To manage the very large number of association rules, the patterns are 

filtered, grouped and organized. This is a crucial step to focus on the most 

interesting association rules discovered. Nearly all search algorithms rely on 

support-based pruning. If an itemset X is not frequent (given a minimum 

support), then none of its supersets Y ⊃ X can be frequent. This property is 
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known as anti-monocity of the frequency. Furthermore, if the support value is 

set too low (close to 0), a large number of spurious rules are generated (type I 

errors). This makes the problem computationally intractable. Conversely, if the 

value for support is too high (close to 1), a very small number of rules, if any, 

are extracted, which means that several significant rules can be missed (type II 

errors). To reduce the aforementioned errors, the traditional support-confidence 

framework used in rule mining is replaced by a support-dependence framework. 

Standard minimum support and confidence measures set by the user are 

employed by the algorithm to prune uninterested association rules. However, 

the minimum frequency and confidence requirements do not guarantee 

statistical dependence or significance. Hence, it is also possible to add 

additional objective interest measures to each rule, e.g. P-value thresholds 

computed using the Chi-square test or Fisher’s exact test to evaluate the 

significance of the rules. 

3.5.2 Additional Interest Measures 

Limitations of the support-confidence based rule mining framework (Tan et al. 

2005; Ahn 2012) have given rise to the use of other interestingness measures to 

evaluate the quality of the patterns identified. Examples of these measures are 

lift, P-value thresholds computed using the Chi-square test or Fisher’s Exact 

test, and a collection of other objective symmetric and asymmetric 

interestingness methods (Tan et al. 2005; Hahsler et al. 2005). In this study, 

those described previously are used in addition to lift and Chi-squared to 

determine significant rules, as they allow us to measure which rules are more 

correlated. 
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Lift or interest (Brin et al. 1997), is a symmetric measure which divides the 

rule’s confidence by the support of the itemset in the rule consequent as shown 

in Equation 3-9. It can be used to analyse the relativity of association rules 

mined and for measuring how many times more frequently X and Y occur 

together than expected under statistically independent conditions. Lift indicates 

a positive correlation between X and Y when its value is greater than one, 

negative correlation when its value is lower than one, and independence when 

lift is equal to one. As an example, a lift(X→Y) > 1 indicates that the appearance 

of X promotes the appearance of Y, resulting in a positive correlated rule. Thus, 

the higher the lift, the stronger the positive correlation and the more dependent 

the SNPs are. In this study, only positive correlated rules are of interest. 

Definition 10 (Lift of a rule): The lift of an association rule X→Y is 

defined as the ratio of the observed support for this association rule, to the 

expected support if X and Y were independent.  

 𝑙𝑖𝑓𝑡(𝑋 → 𝑌) =  
𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑌)
=

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋 ∪ 𝑌)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑋)𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝑌)
 3-9 

Finding measures that can be used with lift to make the best selection of rules 

is crucial. Despite the numerous alternatives for expressing the dependence 

between the antecedent and the consequent of an association rule, the classic 

Chi-square test statistic (𝜒2), is extensively used to assess the significance of 

dependencies and determine the statistical significance level of association rules 

(Liu et al. 1999). Rules can then be pruned in cases of independency, meaning 

that the itemsets (SNPs in this study) in the rule are not correlated. 𝜒2 helps to 

decide whether items in the rules are independent of each other, however it is 

not useful for ranking purposes by itself. 
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Definition 11 (Chi-square test): Let f0 be an observed frequency, and f be 

an expected frequency. The Chi-squared test statistic (𝜒2) value is defined as: 

 𝜒2 = ∑
(𝑓0 − 𝑓)2

𝑓
 3-10 

𝜒2 is a summed normalized square deviation of the observed values from the 

expected values. A 𝜒2 value equal to 0 implies that the elements of the rule are 

statistically independent. An important fact regarding the Chi-square test is that 

it can be used to calculate the P-value to determine the significance level of the 

rule (Tan & Kumar 2000). For instance, if the P-value of the rule is lower than 

a significance threshold 0.05, that is a 𝜒2 value higher than 3.84, we can 

conclude that X and Y are significantly dependent (the independence assumption 

is rejected) and, therefore, the rule X→Y can be considered in subsequent 

analysis (Liu et al. 1999). This is one way to identify the direction of a rule when 

summarising unpruned rules, i.e. by the type of correlation the rules have, as 

similarly performed by lift (positive correlation, negative correlation or 

independence). To some extent, 𝜒2 improves the traditional framework of the 

interestingness measure provided by lift. 

Association rules are generally considered statistically significant if their 

occurrence is not due to random chance. A combination of different interest 

measures is necessary to assess the strength and the dependency of the 

antecedent and consequent of the rules. Discovered associations are pruned to 

remove non-significant rules, and then a special subset of unpruned associations 

forms a summary of the discovered associations which represent candidates for 

epistatic interactions. 
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3.5.3 Redundancy 

Redundancy elimination tasks can be beneficial to reduce complexity by 

identifying smaller sets of more general rules which are easier to interpret than 

larger complex, and frequently overlapping rules. Rules are considered 

redundant, if a more general rule or rules with the same or higher confidence 

values are present (Zaki 2000). Formally, for X’ subset of X, a rule X →Y is 

redundant if, 

 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋′ → 𝑌) ≥ 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝑋 → 𝑌). 3-11 

The idea is to find statistically significant rules after support and confidence 

pruning, in addition to redundant rule elimination. For this reason, several 

assumptions have been considered to rank the rules. First, the rules must be 

common in, at least, 60% of the individuals. Second, the higher the confidence 

the more likely it is for Y to be present in transactions that contain X. According 

to this, a support value of 0.6 and a confidence value of 0.8 were used to 

generate rules in this thesis. This states that 60% of individuals carry the SNPs 

in the LHS and RHS of a particular rule together, and those who have the SNPs 

in the LHS also have the SNPs in the RHS 80% of the time. 

3.5.4 Rule visualisation 

After significant rules are selected, they can be visualized using tools or 

packages such as the arulesViz package in R (Hahsler & Chelluboina 2011), 

which uses graph-based visualization (Klemettinen et al. 1994) to construct a 

genetic interaction network. This network is used to characterise epistatic 
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interactions within the network. Utilising networks provides an intuitive and 

interpretable framework for studying and visualising complex relationships 

between large numbers of biological features (Strogatz 2001). In other words, 

network plots provide an alternative way of inspecting the rules in a graphical 

way. It helps, for example, to see which rules form clusters when sharing 

common SNPs. 

The rules are linked together forming a large graph consisting of vertices or 

nodes with various sizes and colours, and edges with the items label. Unlike the 

normal graph where the node is usually the item and edges are the relationship 

between items, this graph has a different notation. Nodes represent the rule 

X→Y while items or SNPs are labelled and represented by an arrow (edge), 

indicating the direction of the association. Items (SNPs) are connected to nodes 

via: 1) an outward arrow if they are the antecedents of the rule X→Y; 2) an 

inward arrow if they are the consequent. In addition to this outward and inward 

notation, edges are represented in distinct colours, where a soft purple arrow 

indicates antecedent and a red arrow indicates the consequent of the rule. The 

size of the node indicates the support value of rule X→Y while the colour 

indicates the lift value of rule X→Y. Bigger nodes indicate a higher support 

value while red darker nodes indicate higher lift values. In other words, more 

frequent rules present bigger nodes or vertices, whereas rules with higher lift 

values are represented with more intense red colours.  

In Figure 3-6, examples of graph-based visualization for a rule based on the 

above notation is depicted. Figure 3-6 (a) shows the simplest representation of 

a rule while Figure 3-6 (b) depicts a graph-based visualisation with two rules. 
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In this study, the SNP-SNP interactions are represented using this graph 

notation. Significant association rules are visualized in an epistatic network. The 

graph allows us to conclude on potential pathways which are not just limited to 

SNP name, but also information about risk allele. However, this scheme can 

generate very large and complex graphs when the number of interactions is 

large. Thus, it is recommended to select a reduced number of possible 

interactions in the network graph (i.e. top 10 rules) to reduce the complexity of 

the network graph. 

Rule

Item Item

Rule

Item

Item Item

NodeEdge Edge

a)

b)  

Figure 3-6: (a) Rule notation. (b) Basic example of graph-based visualisations 

3.6 Multilayer Perceptron Neural Network (MLP) 

In this study, a multi-layer feedforward neural network is implemented based on 

the formal definitions in (Ng 2011), for classification analysis. This section 

begins with a discussion on feed forward ANN and backpropagation before 

discussing how autoencoders are used in this study. 

MLPs in this study use labelled training samples (x(i), y(i)) from case-control 

genetic data to train the network for supervised learning tasks. A complex non-
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linear hypothesis hW,b(x) is defined using a feed forward ANN, with parameters 

W,b fitted to the data. Taking a set of labelled samples {x1, x2,…xn} and a bias 

unit b (+1 intercept term) as input, single computational units or neurons output 

 ( ), 1
( ) ( )

nT

W b i ii
h x f W x f W x b

=
= = +  3-12 

where f: ℝ ↦ ℝ represents the activation function. Figure 3-7 provides a simple 

example for a single neuron with the elements described above. Each input is 

connected to an output node by a weighted link. Activation functions, such as 

the sigmoid function, hyperbolic tangent (tanh) and rectifier linear unit (ReLU) 

are common activation functions used in many neural network configurations. 

However, rectifier functions have shown faster learning compared to sigmoid 

or tanh (Glorot et al. 2011). In the experiments conducted in this thesis, the 

selection of activation functions is determined using random search 

optimization methods to simplify model configuration (Bergstra & Bengio 

2012).  

hw,b(x)

x1

x2

xn

+1

...

W,b

 

Figure 3-7: Single computational unit or neuron 

By connecting multiple single neurons, an ANN architecture can be 

constructed so that the output of a neuron becomes the input to another one. An 
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example of such an architecture used in classification tasks is depicted in Figure 

3-8.  

L2L1 L3

L4

x1

(4)

, 1( )w bh x a=

(4)

, 2( )w bh x a=

(1)

ij nW x

...

(2)

ia
(3)

ia

 

Figure 3-8: MLP network with an input layer L1, two hidden layers L2 and L3 and an 

output layer L4 with two output units 

Therefore, input, hidden and output layers make up the network structure 

where nl represents the total number of layers and Ll a particular layer (i.e. L1 

the input layer and Lnl the output layer). Several parameters are described in the 

network and summarised in Table 3-2. The parameter Wij
(l)

 denotes the weight 

of the connection between the jth neuron in layer l, and the ith neuron in layer 

l+1. The bias unit bi
(l)

, associated with neuron i in layer l+1, is introduced to 

counteract the problem associated with input patterns that are zero. The number 

of nodes in a particular layer (Ll) is denoted by sl without taking bi
(l)

 into 

consideration. 
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Parameter Description 

nl Total number of layers in the network. 

l Denotes a layer. 

Ll 
A particular layer, i.e. L1 is the input layer and Lnl the 

output layer. 

Wij
(l)

 
Denotes the weight of the connection between neuron j 

in layer l, and neuron i in layer l+1. 

bi
(l)

 
Bias or intercept term associated with neuron i in layer 

l+1. 

sl 
Number of neurons in layer l (not including the bias 

unit)  

ai
(l)

 Activation of unit i in layer l. 

Table 3-2: Network parameters description 

 Additionally, the activation or output value of node i in layer l, denoted as 

ai

(l)
, is equal to the total weighted sum of inputs (including the bias term), 

represented as 𝑓(𝑧i

(l)
) and is defined as: 

 ( )( ) ( ) ( ) ( )
1

nl l l l
i ij j ij

a   f W a b
=

= +  3-13 

 
( ) ( )( )l l

i ia   f z=  3-14 

It is possible then to rewrite Equation 3-13 in a matrix form using a weight 

matrix W l for each layer, l. The activation vector al is also defined using 

activation components ai

(l)
. Given that the values from inputs are denoted by 

𝑎(1) = 𝑥 and the activation for layer l is 𝑎(𝑙), the activation in the output layer 

(l+1) can be computed. Thus, a more compact vectorised form of Equation 3-13 

can be defined as: 
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 ( 1) ( ) ( ) ( )l l l lz   W a b  + = +  3-15 

 ( 1) ( 1)( )l la   f z+ +=  3-16 

Equations 3-15 and 3-16 can be used to compute the output of the network, 

successively calculating all the activations in layer L2, then L3 and so on up to 

the output layer Lnl. Learning using the proposed FNN-based model (MLP) is 

performed by adjusting the connection weight values to minimise the prediction 

error on training data. An example of how to compute activations in a neural 

network is presented in Appendix A for explanatory purposes. 

The neural network hypothesis is defined as hW,b(x) based on a given set of 

fixed parameters W,b. The neural network is trained using training samples (x(i), 

y(i)) where y(i) ∈ ℝ2. The parameter x is a vector of input features representing 

individuals while outputs for the two class labels (obese or non-obese in this 

study) are represented using y. The weight and bias parameters can be learned 

by minimising the cost function using gradient descent. For a single training 

sample (x,y), the cost function is defined as one-half of the squared differences 

between hW,b(x) and y: 

 ( )
2

,;
2

(i) (i)

W b

1
J(W,b x , y ) h x y= −  3-17 

Therefore, given a training set {(x(1), y(1)),…, (x(m), y(m))} of m samples, the 

neural network is trained using gradient descent and the overall cost function is 

defined as: 
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where the first term is an average sum of squared errors and the second, a weight 

decay or regularization term that helps prevent overfitting by reducing the 

magnitude of the weights. Hence, relative importance of the first and second 

terms is controlled by the weight decay parameter λ.  

The idea is to minimise J(W,b) as a function of W and b. Parameters Wij
(l)

 and 

bi
(l)

 are randomly initialised to values close to zero to train the ANN, as this helps 

prevent hidden layer neurons learning the same function of the input. Following 

random initialization, gradient descent updates of W,b are achieved as follows: 

 

( ) ( )

( )

( ) ( )

( )

: ( , ),

: ( , )

l l

ij ij l

ij

l l

i i l

i

W W J W b
W

b b J W b
b






= −




= −


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where α is the learning rate. 

The adjustment of connection weights is conducted using a backpropagation 

algorithm, based on the amount of error associated with the outputs of the 

network in comparison with the expected result (cost function). The goal of the 

backpropagation algorithm (see Algorithm 3-2) is to efficiently compute the 

partial derivatives 
∂

∂Wij
(l) J(W,b;x,y) and 

∂

∂bi
(l) J(W,b;x,y) of the cost function 

J(W,b;x,y) for a single sample with respect to any weight or bias in the network 

(Rumelhart et al. 1986). 
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Algorithm 3-2: Backpropagation algorithm 

The backpropagation algorithm starts by performing a feed-forward pass to 

compute all the activations ai

(l)
, including the output hW,b(x), across the network. 

An error term δi
(l)

 is calculated for each node i in layer l to quantify the node’s 

contribution to errors in the output. The error term δi

(nl) for an output node (nl is 

the output layer), measures the difference between the activation and the true 

target value for an output node of the network. Conversely, hidden units compute 

δi
(l)

 by means of a weighted average of the error terms of the nodes that use ai

(l)
 

as input. 

The derivatives for the overall cost function can be calculated once the partial 

derivatives have been computed. Hence: 

Backpropagation 

1: Perform a forward pass and compute activations for L2, …, Lnl 

2: for output unit i in layer ,ln  do 

3: 
l l l

l

i

(n ) (n ) (n )2
i W,b i i i(n )

z

1
δ ||y h (x)|| (y a ) f'(z ) 

2
 


− = − − =



 

4: end for 

5: for 1 ll n= − , …, 2, do 

6: for node i in layer l, do 

7: lS +1

(l) (l) (l 1) (l)
i ji j i

j=1

( W )f'(z )    +=   

8: end for 

9: end for 

10: Compute the desired partial derivatives: 

11: 
( )

(l) (l+1)
j il

ij

J(W,b;x,y) a δ
W


=


 

12: 
( )

(l+1)
il

i

J(W,b;x,y) δ
b


=


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where weight decay affects W but not b. 

Next, the gradient descent algorithm is described (see Algorithm 3-3), where 

ΔW(l) is a matrix with dimension equal to W(l), and Δb(l) is a vector with 

dimension equal to b(l). Gradient descent uses the derivatives to compute the 

adjustments to be made to the weights of the network. Gradient descent is used 

repeatedly to reduce the cost function J(W,b) when training the neural network 

used in this study for classification purposes. 

 

Algorithm 3-3: Gradient Descent algorithm 

Gradient Descent 

1: Set : 0(l)W = , : 0(l)b =  (matrix/vector of zeros) for all l. 

2: for 1,i = …, m, do 

3: 
Use backpropagation to compute (l)

W
J(W,b;x,y)  

and (l)b
J(W,b;x,y)  

4: Set : (l)
( ) ( )

W

ll J(W,b;x,y)W W +=  

5: Set : (l)
( ) ( )

b

ll J(W,b;x,y)b b +=  

6: end for 

7: Update the parameters: 

8: 
:(l) (l) (l) (l)1

W W α ( ΔW ) λW
m

 
= − + 

 
 

9: 
:(l) (l) (l)1

b b α Δb
m

 
= −  

 
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The learning process is made using the back-propagation algorithm which 

uses gradient descent to adjust the connection weights between neurons. This is 

performed to reduce the value of the error function. Predicted and actual values 

are compared to compute the value of the predefined error function. This 

information is supplied to the network and the connection weights are adjusted. 

Finally, this process is repeated according to the number of epochs until the error 

rate is sufficiently small. 

Since binary classification is conducted, the output layer in the network will 

have two neurons, where each output value represents a probability value 

between 0 and 1. Therefore, two neurons will compose the output layer since 

classification of obese and non-obese individuals is performed in this thesis.  

Classification tasks carried out in this thesis using an MLP model required 

different network configurations depending on the experiment conducted. In 

this sense, the performance produced in different classification tasks is obtained 

using a variable number of input neurons. The number of hidden layers was 

fixed to two with a variable number of neurons. The output layer comprises two 

output nodes. These configurations will be discussed in more detail in the results 

chapter. Hyper-parameters in this thesis were selected using random search 

optimization methods to simplify model configuration. 

3.7 Stacked Autoencoders (SAE) 

Based on the previous definition of a multilayer feedforward ANN, AE and SAE 

are used in this study to learn the epistatic relationships between filtered SNPs 

in the rules and produce a significant smaller input feature space to initialise the 
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weights of a multi-layer feedforward ANN (MLP) classifier. This latent 

information is representative of the epistatic interactions that occur between 

SNPs. 

A basic AE is a three-layered neural network that applies backpropagation 

to learn an output x̂ that is similar to the input x. Hence, an AE tries to learn a 

function hW,b(x) ≈ x, given a set of unlabelled training samples {x(1)
, x

(2)
, x

(3)
, …}, 

where x(i) ∈ ℝn. An example of a single layer AE is illustrated in Figure 3-9, 

where the first and the third layers are the input and the reconstruction or output 

layer with 5 units, respectively. The second layer or hidden layer aims to 

generate the deep features by minimizing the error between the input vector and 

the reconstruction vector. Thus, an AE is a neural network with a single hidden 

layer composed by two parts, an encoder and a decoder. 

DecoderEncoder

hW,b(x) 

Input Layer Output Layer

Hidden Layer
z

x x̂ 

x  1

 

Figure 3-9: Single layer Autoencoder. The model learns a hidden feature z from input 

x by reconstructing it on x̂ 

The output of the encoder z is a reduced representation of x used by the 

decoder to reconstruct the original input x. An autoencoder with a code 
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dimension lower than the input dimension is termed undercomplete 

(Goodfellow et al. 2016). This forces the autoencoder to capture the most 

prominent features of the training data. First, the encode phase maps input data 

into a feature vector z so that, for each sample x(i) from the input set {x(1)
, x

(2)
, 

x(3)
, …}, we have  

 (1) ( ) (1)( )
( )

ii
z f W bx= +  3-21 

while in the decode phase, the decoder reconstructs the input x, producing a 

reconstructed space x̂ defined by 

(2) ( ) (2)( )
( )

ii
x f W bz= +  3-22 

where W(1) and W(2) represent the input-to-hidden and the hidden-to-output 

weights respectively, b(1) and b(2) represent the bias of hidden and output 

neurons, whereas f(·) denotes the activation function. As indicated in the 

previous section, several alternatives for f(·) exist, including the sigmoid, tanh 

and rectifier linear functions. In this thesis, the best activation function was 

selected by a random search according to each experiment conducted. 

Parameters W(1), W(2), b(1) and b(2) in the AE can be learned by minimising 

the reconstruction error  

( )
2

,;
2

W b

1
J(W,b x,x ) h x x= −  3-23 

This is a measurement of discrepancy between input x and reconstructed x̂ 

with respect to a single sample. For a training set of m samples, the cost function 

of an autoencoder is as shown below: 
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2

l l l
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(i)(i) l

ji

(i)(i) l

W b ji

n s sm 2

i= l= i= j=

n s sm 2

i= l= i= j=

J W b W,b x ,x W

h x x W

J +
m

1
= +

m





− +

− +

 
=  

 

  
−  

  

   

   

 3-24 

where m denotes the overall training set size and the square error is used as the 

reconstruction error for each training sample. The second term remains as 

explained in the previous section and represents a weight decay term introduced 

to decrease the magnitude of the weights and aid to prevent overfitting. Equation 

3-24 can be minimised using stochastic gradient descent as described in the 

previous section (see Section 3.6). 

The AE will learn any structure present in the data. Basic AEs typically learn 

a low-dimensional representation as similarly performed by principal 

component analysis (PCA). The hidden layer is forced to summarise the data, 

to compress it. After training an AE, the output layer (reconstruction) and its 

parameters are discarded, and the learned reduced features remain in the hidden 

layer which can then be used for classification or as the input of an extended 

network to extract deeper features. The strength of AEs lies in this type of 

reconstruction-oriented training that only uses information in the hidden layer 

which represents learned features from the input. Therefore, the learned non-

linear transformation, defined by weights and biases, describes a feature 

extraction step. 

By stacking a sequence of AEs layer by layer, an SAE can be constructed 

(Bengio et al. 2007). Once a single layer AE has been trained, a second AE can 

be trained using the hidden layer from the first AE as shown in Figure 3-10. By 

repeating this procedure, it is possible to create SAEs of arbitrary depth. The 
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first single layer AE maps inputs into the first hidden vector. Once the first layer 

AE is trained, its reconstruction layer is removed, and the hidden layer becomes 

the input layer of the next AE.  

x  1

Input Output

Features I

Autoencoder I Autoencoder II

a2

W(1),b(1)
W(2),b(2)

a 1

Output

Features II

b2

W(1),b(1)
W(2),b(2)

Features I

Filtered 

SNPs

 

Figure 3-10: Example of SAE formed by two single AEs 

In this study, AEs are stacked to enable greedy layer-wise learning where the 

lth hidden layer is used as input to the l+1 hidden layer in the stack. The results 

produced by the SAE are utilised to pre-train the weights for a proposed MLP, 

rather than randomly initialising the weights to small values to classify extreme 

cases of obesity and normal individuals. Greedy layer-wise pre-training helps 

the model initialise the parameters near to a good local minimum and transform 

the problem space to a better form of optimisation (Bengio et al. 2007). By 

adopting this approach, it is expected to achieve smoother convergence and 

higher overall performance in the classification task (Danaee et al. 2017).  

An SAE with 2,000, 1,000, 500 and 50 hidden neurons in each hidden layer 

was considered in the experiments conducted in this thesis (See Figure 3-11). 

Consequently, selected layers are used as input features for classification using 

an MLP. In Figure 3-11 an instance of the SAE proposed in this thesis connected 

with an MLP is depicted. The classification scheme represented is composed of 

8 layers: one input layer, four hidden layers from AEs, two hidden layers from 
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the MLP, and an output layer. This represents the network configuration where 

SNPs are compressed progressively from 2,465 to 50 neurons. 

6

... ...

50

5

...

Input:

Filtered 

SNPs

MLP Classifier

1 2 3 4 5

2000 units 1000 500 50

Layer

Stacked Autoencoder: Four AEs

... ... ... ... ...

Output:

Class 

Labels

87

2

-- --

 

Figure 3-11: Instance of proposed SAE connected with an MLP 

The goal of the proposed SAE architecture is to extract a mapping that 

decodes the input (set of SNPs) as closely as possible without losing significant 

SNP-SNP patterns. The encoder decreases the dimensionality of the original 

data (SNP set) stack by stack, leading to a reduction in noise while preserving 

important information patterns (Bengio et al. 2007). Consequently, AEs are 

used in this study to gradually extract deep features representative of obesity 

epistasis. 

3.8 Performance Assessment 

3.8.1 Model validation 

For classification model assessment, a three-way data split procedure is utilised 

(training, validation and test) - 60% for training, 20% for validation and 20% 

for model testing. The dataset is thus partitioned based on 3:1:1 ratio, using a 

60/20/20 split as recommended in (Lever et al. 2016). This resulted in 1,198 

samples to be used for training, 399 for validation and 399 for testing. The 

training set is used to calculate the optimal weights and bias in the network using 
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the backpropagation algorithm and the validation set is used to identify optimal 

hyper-parameters to minimise overfitting. If performance using the training 

dataset increases but performance using the validation dataset decreases, it is 

likely that overfitting is occurring, and the training process should stop. Early 

stopping strategies can be adopted to stop training when training and validation 

losses begin to diverge. Introducing weight penalties such as L1 and L2 

regularisation can also help to reduce overfitting. Finally, the test set is 

employed to assess the performance of the final model. The testing process is 

conducted only after model tuning and regularization parameters have been 

optimised using the model with the best performance on the validation set. The 

steps necessary to train, validate and test a classifier can be summarised 

according to (Dougherty 2013): 

a) Split available data into training, validation and test sets. 

b) Architecture and training parameter selection. 

c) Model training using training set. 

d) Model evaluation using validation set. 

e) Repeat steps (b)-(d) testing different architectures and training 

parameters. 

f) Best model selection. 

g) Best model assessment with test set. 

These steps are valid if the selection of hyper-parameters is manually 

managed. Since a random search has been considered in this thesis, step (e) from 

the procedure proposed by (Dougherty 2013) is replaced by optimal hyper-

parameter selection using random search.  
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3.8.2 Binary class performance evaluation 

Model performance in this thesis is measured using a range of numerical and 

graphical approaches (Salari et al. 2014; Fergus, Curbelo et al. 2018). 

The performance metrics for binary classification are derived from a 2x2 

contingency table (matrix) to calculate sensitivity (SE) and specificity (SP) - 

among other metrics - where rows in the table indicate the actual class and 

columns the predicted class, as shown in Table 3-3.  

  Predicted class  

  Positive Negative  

A
ct

u
a
l 

cl
a
ss

  Positive TP FN TPR 

Negative FP TN TNR 

  PPV NPV   

Table 3-3: Conventional data layout for the 2x2 confusion matrix 

The confusion matrix has four terms: true positive (TP), false positive (FP), 

true negative (TN) and false negative (FN); which are utilised to compare the 

class labels assigned by a classifier, against the desired correct class labels. 

From this notation, TP and TN represent the number of positive and negative 

cases that are classified correctly, whereas the positive and negative cases 

falsely classified are denoted by FP and FN. In obesity prediction, an individual 

can be classified as obese or normal. This results in four possible combinations. 

Predicting obese when the individual is obese (TP) and predicting non-obese 

when he/she is not obese (TN). If the prediction says obese when the individual 

is healthy, it is considered an FP (Type I error in statistics), while predicting 
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someone is healthy when they are obese is considered an FN (Type II error). 

Below, several performance metrics (Hoens & Chawla 2013) are presented 

using the confusion matrix: 

 
Accuracy (Acc) ;

TP TN

N

N TP TN FP FN

+
=

= + + +

 3-25 

 Sensitivity (SE) Recall
TP

TPR
TP FN

= = =
+

 3-26 

 Specificity (SP)
TN

TNR
TN FP

= =
+

 3-27 

 (1 )
FP

FPR Specificity
FP TN

= − =
+

 3-28 

 
FN

FNR
FN TP

=
+

 3-29 

 Precision
TP

PPV
TP FP

= =
+

 3-30 

 
TN

NPV
FN TN

=
+

 3-31 

 1

PPV TPR
F 2

PPV TPR


= 

+

 
 
 

 3-32 

In this study, SE or true positive rate (TPR) is used to quantify how 

effectively the classifiers correctly recognise actual positive cases (i.e. obese 

individuals), whilst SP or true negative rate (TNR) represents the classifier’s 

ability to correctly recognise actual negative cases (i.e. non-obese individuals). 

Moreover, the proportion of actual negatives predicted as positives is termed 
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false positive rate (FPR) while a false negative rate (FNR) is the proportion of 

items wrongly identified as negative out of total true positives. The proportion 

of predicted positives that are actual positives is called precision or positive 

predictive value (PPV). Conversely, a negative predictive value (NPV) is the 

proportion of predicted negatives that are actual negatives. Classification 

accuracy is commonly utilised to evaluate the quality of predictive models (it 

represents the percentage of total items correctly classified). However, this 

performance measure could be misleading particularly in large class imbalance 

datasets, since overall accuracy varies with class frequency (Hoens & Chawla 

2013; Salari et al. 2014).  

The receiver operating characteristic (ROC) curve is a standard technique 

used as a graphical performance measure to summarise the predictive 

performance of binary classification models (Hoens & Chawla 2013; Fawcett 

2004). The ROC curve plots the TPR against false positive rate (FPR) 

measurements produced by a classification model, where each point on the ROC 

curve corresponds to a classifier, as depicted in Figure 3-12.  
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Figure 3-12: ROC curve example 

Therefore, an ideal predictive model should have an ROC curve closer to the 

top left corner of the ROC space (see Figure 3-12), which indicates that the 

model is able to accurately classify both positive and negative classes. In 

contrast, models with predictive performance close to the ROC curves diagonal 

line represent classifiers that classify randomly. 

Additionally, the ROC is commonly summarised by a single measure known 

as the area under the ROC curve (AUC). AUC measures the probability that test 

values from a randomly selected pair of case-control samples are correctly 

ranked and is thus a convenient global measure for the quantification of 

classification accuracy. For a classifier that perfectly classifies, the AUC will 

be 1, whereas a classifier that randomly assigns labels, will be 0.5 (de Ridder et 

al. 2013). 
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The F1 metric, also known as the F-score or F-measure, takes precision and 

recall into account and represents the harmonic mean between the two (See 

Equation 3-32).  

Other performance measures such as Logarithmic Loss (logloss), mean 

square error (MSE) and Gini coefficient (Gini) are also utilised to provide an 

objective classification measure of performance (Fergus, Curbelo et al. 2018; 

Curbelo, Fergus, Curbelo, et al. 2018), in addition to those introduced above 

(SE, SP, AUC and ROC). Logarithmic loss (logloss) is a classification loss 

function which provides a quantification of accuracy for a classifier by 

penalising false classifications. Minimising the logloss is correlated with 

accuracy; as one increases the other decreases. The logloss for a binary class 

classifier is defined by: 

  
1

1
Logloss log( ) (1 ) log(1 )

N

i i i i
i

y p y p
N =

= − + − −  3-33 

where N is the number of samples, pi is the probability of the ith sample 

belonging to class C1 and yi is the actual label of the ith sample, which could be 

either 0 or 1. In the case of misclassifications, logloss values are progressively 

larger, whereas logloss for models that classify all instances correctly will be 0. 

Thus, the robustness of the model increases by minimising the logloss value. 

A common performance metric utilised to measure the average sum of the 

square difference between actual values and predicted values is the mean 

squared error (MSE). The standard definition of MSE is defined as: 
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( ) ( ) 2

1

1
ˆMSE ( )

n
i i

i

y y
n =

= −  3-34 

where 
ˆ(i) (i)(y y )−

is termed the residual, and the aim of the MSE is to minimise 

the residual sum of squares. MSE values close to 0 indicate that the model 

correctly classifies all class instances. Progressively larger values of MSE 

indicate the proportion of misclassifications that occur. Hence, the lower the 

MSE value the better. 

The Gini coefficient is occasionally used in binary classification studies and 

represents the area between the diagonal line and the ROC curve:  

 Gini 2 AUC 1=  −  3-35 

The Gini coefficient quantifies dispersion among values of a frequency 

distribution. Gini values close to 1 indicate a good model, whereas a coefficient 

of 0 indicates that the features (SNPs) have no predictive capacity. 

3.9 SNP to Gene Context 

To report the context of the SNPs identified, the SNPnexus tool is utilised 

(Dayem Ullah et al. 2012; Dayem Ullah et al. 2013; Dayem Ullah et al. 2018) 

although others are available (Hinrichs et al. 2016). It was developed to 

facilitate the selection of functionally relevant SNPs in large-scale genotyping 

studies of multifactorial diseases, via single or batch queries using dbSNP 

identifiers or genomic coordinates. This tool uses the ensemble gene annotation 

system as a reference to conduct the annotation for gene-overlapped and 

intergenic variants, through a query and output interface freely accessible on the 

web (Dayem Ullah et al. 2018). Variant-centric functional annotations are 
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reported from different sources (primary annotations datasets) for 

GRCh38/hg38, GRCh37/hg19 and, NCBI36/hg18 assemblies. However, in the 

consultations made in this thesis, the GRCh37/hg19 assembly was used as it 

matches with the characteristics of the MyCode dataset. In addition to genomic 

mapping or gene annotation, SNPnexus also reports phenotype and disease 

association, retrieved from the queried SNPs and several databases (Dayem 

Ullah et al. 2018), including The Genetic Association Database (Becker et al. 

2004). This can be used to mine any disease or phenotype related information 

about the queried SNPs that have been reported in the literature. 

SNPnexus is thus used to map genes to SNPs identified in the experiments 

conducted in this thesis to help understand the functional role of SNPs and their 

impact on health and disease. 

3.10 Chapter Summary 

In this chapter, a novel methodology has been described. First, a subset of SNPs 

after QC and association analysis is selected. Epistatic analysis of the filtered 

set of genetic variants is explored using ARM and deep learning SAE, where 

ARM provides model interpretation for the extracted features using an SAE. 

Finally, classification analysis is performed using an MLP neural network to 

evaluate the discriminatory capacity of identified features. Thus, standard 

GWAS analysis has been combined with the novel approach presented to extract 

the epistatic interactions between SNPs in obesity case-control observations 

(identified by ARM) using a deep learning SAE. These two techniques 

combined form a tight correlation such that the manipulation of support and 

confidence parameters affects SAE layers and the level of epistatic information 
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extracted, which in turn affects the classification accuracy of case-control 

classification tasks. The different techniques utilised have been combined to 

produce SAERMA - an algorithm for the analysis and interpretation of 

interactions between SNPs in case-control GWAS.  

In the proposed methodology, the use of association rule mining provides an 

intuitive framework for studying and visualizing complex relationships between 

a large number of biological entities. In contrast, AE is applied for layer-wise 

training while SAE is adopted as the corresponding deep neural network 

architecture. AEs are a powerful approach capable of extracting both linear and 

non-linear relationships inherent in the input data. It has been proved that by 

reducing dimensionality gradually, a multi-layered architecture using SAEs 

may extract valuable patterns from data without losing important information 

(Bengio et al. 2007). Features extracted using the SAE are then used to pre-train 

an MLP in different scenarios which will be reported in the next chapter. 

Finally, detailed annotations, from SNPs identified by association analysis 

and rule mining experiments, are obtained utilising the SNPnexus tool while 

functional validation is provided via gene set enrichment analysis. 
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 RESULTS 

4.1 Introduction 

This chapter implements the methodology previously discussed and presents the 

results obtained. The results are reported in six experimental sections: 

1. Quality control. 

2. Association analysis (Statistical filtering). 

3. Logistic regression classification (Gold Standard) using SNPs with P-

value < 10-2. 

4. MLP classification using SNPs with P-value < 10-2. 

5. SAE-based classification using non-linear SNP-SNP interactions. 

Again, using P-values < 10-2. 

6. The proposed SAERMA approach posited in this thesis.  

The results for each of the steps conducted in the proposed methodology are 

presented in this chapter and discussed later in Chapter 5. 

4.2 Quality Control 

This section includes the results after applying QC to the MyCode data. Quality 

control results and processes presented in this thesis have been published in 

several high quality conference and journal papers (Curbelo, Fergus, Hussain, 

Al-Jumeily, Dorak, et al. 2017; Curbelo, Fergus, Hussain, Al-Jumeily, 

Abdulaimma, et al. 2017; Curbelo, Fergus, Curbelo, et al. 2018; Fergus, Curbelo 

et al. 2018; Curbelo, Fergus, Chalmers, et al. 2018). 
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Before conducting QC analysis, the number of individuals and variants per 

individual are shown in Table 4-1. The total number of subjects reported is 

slightly higher than the number provided in the Data Description section in 

Chapter 3 (2,193). This was due to discrepancies in the binary files (particularly 

in .fam file) when merging the two datasets. In particular, mismatches in sample 

numbers due to sample duplication. This was not reported by dbGaP in the 

clinical information. 

Individuals Males Females Cases Controls 
SNPs per 

individual 

2,270 942 1,328 1,006 1,264 594,034 

Table 4-1: Number of individuals and genetic variants before QC. Information 

extracted from binary files 

The QC steps conducted for individuals, resulted in 295 individuals being 

removed. However, some of these individuals’ IDs were duplicated. Thus, 273 

unique individuals were removed from the main data frame for subsequent 

analysis. After applying individual level QC, SNP level QC was conducted. In 

this process, a total of 353,084 SNPs failed QC due to pruning steps explained 

in Chapter 2 and Chapter 3, and were thus removed from the data set. 

A summary table with samples and SNPs rejected for each QC criterion is 

given in Table 4-2: 
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Criteria n 

Individual criteria  

Sex check 3 

Missing Genotype and heterozygosity 43 

Relatedness or duplicates 156 

Population outliers 93 

SNP criteria  

Missing genotype 324,244 

HWE 0 

MAF 28,840 

Table 4-2: Summary of QC steps applied for individual and genetic variants to the 

MyCode dataset 

A total of 240,950 variants and 1,997 individuals passed subsequent filter 

analysis and QC. Among the remaining phenotypes, 879 are cases and 1,118 

are controls. The number of individuals and associated genetic variants that 

remain are summarised in Table 4-3. 

Individuals Males Females Cases Controls 
SNPs per 

individual 

1,997 840 1,157 879 1,118 240,950 

Table 4-3: Number of individuals and genetic variants passing filters and QC 

4.3 Association Analysis 

After QC, 1,997 individuals and 240,950 SNPs are used in subsequent analysis 

as indicated in Table 4-3. These are then used to conduct association analysis 

with obesity trait, as a statistical filtering strategy. 

Association tests between SNP genotypes and extreme obesity were 

conducted under an additive model using logistic regression implemented in 
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PLINK version 1.09 (Purcell & Chang 2018). Logistic regression was adjusted 

using Genomic Control (GC) to control population structure. Correction for 

multiple testing was considered using Bonferroni correction but only to 

demonstrate standard GWAS results. Hence, analysis to assess associations of 

all Illumina HumanOmniExpress-12 v1.0 arrays SNPs with the obesity 

phenotype is performed, in which the total number of SNPs tested is adjusted 

using significance cut-off P-values < 2.1x10-7 following Bonferroni’s correction 

(P-value = 0.05/240,950). The adjusted significance threshold is used here only 

to present standard results from association analysis. For epistasis, a modified 

P-value threshold that allows for a larger subset of SNPs is selected as discussed 

later. 

In Figure 4-1 a quantile-quantile (QQ) plot depicts the relationship between 

the expected distribution of P-values (null hypothesis) and the observed 

distribution of P-values for the association test. The genomic control inflation 

factor λ, which measures the degree of deviation from y = x, is λ=1.0384. A 

value close to one suggests appropriate adjustment for potential substructure. 

Thus, population stratification was assessed, and standard errors were adjusted 

using the genomic inflation statistic (λ). 
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Figure 4-1: Quantile-quantile plot for association analysis using logistic regression 

In Figure 4-2 the P-values for associations with extreme obesity are 

illustrated using a Manhattan plot. Each point represents an SNP distributed 

through the human chromosomes from left to right, whereas the heights 

correspond to the strength of the association to disease. P-values in -log10 scale 

are distributed in the y-axis while the physical position of the SNPs along 

chromosomes is represented in the x-axis. The smallest P-values suggest 

potential disease-related SNPs. The Bonferroni corrected significance threshold 

and the suggestive threshold of association are represented in Figure 4-2 using 

red and blue lines, respectively. Therefore, the red upper horizontal line 

indicates the threshold for genome-wide significance (P-value < 2x10-7) and the 

lower line indicates the threshold for suggestive association (P-value < 1x10-5). 
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Figure 4-2: Manhattan plot of association results using logistic test adjusted GC in 

MyCode dataset 

In Figure 4-3 the Manhattan plot for the Logistic test is represented with SNP 

ID annotations. 

rs726553 rs3050 rs10817737 rs1278895

rs763727

 

Figure 4-3: Manhattan plot for logistic test adjusted GC with SNP labels 

None of the SNPs identified in logistic analysis reached the Bonferroni level 

of significance (P-value < 2x10-7 – red horizontal line in Figure 4-2 and Figure 

4-3); however, five SNPs were suggestive of association (P-value < 1x10-5 – 

blue horizontal line in Figure 4-2 and Figure 4-3). All suggestive association 
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signals with P-value < 1x10-5 are shown in Table 4-4 where SNP information is 

based on the Genome Reference Consortium Human Build 37 (GRCh37) 

(Schneider & Church 2013). The information for each SNP includes risk allele, 

chromosome number, position of the SNP in the genome, SNP name, distance 

in bases (b) of the SNP to the closest gene (in case of no overlapping) and, the 

P-value of association. 

SNP Allele Chr# Position Closest Gene Distance P-value 

rs763727 A 16 83342301 CDH13 0 1.821x10-06 

rs726553 G 2 226016494 DOCK10 109,332 7.330x10-06 

rs10817737 A 9 100306267 TMOD1 0 8.319x10-06 

rs3050 A 6 150923115 PLEKHG1 0 9.061x10-06 

rs1278895 T 14 32400170 RP11-159D23.2 818 9.979x10-06 

Table 4-4: Top suggestive results (P-value < 1x10-5) obtained from association 

analysis in the MyCode dataset 

QC analysis and successive association tests were conducted using PLINK 

v1.9 (Purcell et al. 2007) and the language and environment for statistical 

computing and graphics, R (R Development Core Team 2008). A Linux Ubuntu 

version 16.04 LTS based machine, with 64GiB of Memory and an Intel® 

Core™ i7-7700K CPU @ 4.20GHz x 8, was utilized to conduct the analysis. 

4.4 Generalised Linear Model classification 

The first experiment conducted after QC and association analysis involves 

classification tasks using the filtered SNPs obtained from association analysis 

(statistical filtering). Logistic regression methods are the most commonly used 

parametric models for the analysis of binary outcome variables and are currently 

the industry standard. Thus, before conducting experiments with more complex 
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approaches such as ANNs or SAEs, classification analysis is conducted using 

an extension of traditional linear models, the generalised linear model (GLM) 

(McCullagh 1984). This is performed using H2O’s implementation of GLM 

(Nykodym et al. 2018). 

Multiple testing is a common statistical practice used in genetic association 

studies. However, it has been suggested that, when conducting multiple 

association test in case-control studies, using Bonferroni adjustments can be too 

strict and may lead to missing associations that are potentially significant. Thus, 

in the following experiments, multiple testing based solely on Bonferroni was 

not taken into consideration. Instead, the results from association tests with P-

value < 1x10-2 were considered (Perneger 1998; Harbron et al. 2014). The 

resulting outcomes may be therefore, considered as hypothesis generating. 

After QC and association analysis using logistic regression (statistical 

filtering), four different sets of SNPs were derived using different P-value 

thresholds as indicated in Table 4-5. The suggestive threshold of association 

(1x10-5) was considered, in addition to 1x10-4, 1x10-3, and 1x10-2. Therefore, 

four sets of SNPs (5, 32, 248 and 2,465 SNPs) are used to train a GLM to 

classify extremely obese and non-obese observations. MSE, Logloss, AUC, 

Gini, Sensitivity and Specificity values are used to measure the performance of 

each model. The data set is split randomly into training (60%), validation (20%) 

and testing (20%). 
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Set P-value Number of SNPs 

1 1x10-5 5 

2 1x10-4 32 

3 1x10-3 248 

4 1x10-2 2,465 

Table 4-5: Four sets of SNPs selected based on different P-value thresholds 

4.4.1 Regularisation parameter selection 

H2O supports elastic net regularisation, which combines Lasso (L1) and Ridge 

(L2) penalties parametrised by the alpha and lambda parameters. These 

penalties are introduced to the model to avoid overfitting, reduce variance of the 

predictor error, and handle correlated predictors (Cook 2016). The alpha 

parameter controls the elastic net distribution between L1 and L2 penalties 

while lambda controls the amount of regularisation applied (penalty strength). 

To get the best possible model, regularisation parameters alpha and lambda 

were tuned, and the optimal values were obtained using a random search. Based 

on empirical analysis, alpha and lambda values reported in Table 4-6 produced 

the best classification results.  

P-value Parameter Value 

1x10-5 
Alpha 0.5 

Lambda 0.00598 

1x10-4 
Alpha 0.5 

Lambda 0.00204 

1x10-3 
Alpha 0.5 

Lambda 0.00970 

1x10-2 
Alpha 0.5 

Lambda 0.00151 

Table 4-6: Regularisation parameters for classification task with GLM 
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Based on empirical analysis, these configurations produced the best results. 

4.4.2 Classifier performance 

The metric values provided in Table 4-7 and Table 4-8 describe the results for 

the four SNP configurations in Table 4-5, for the validation and test sets 

respectively. In H2O, the default confusion matrix is computed at thresholds 

that optimise the F1 score (F1-optimal threshold). 

Hence, using optimised F1 threshold values 0.3527, 0.4532, 0.3969 and 

0.6684 the results in the validation set were obtained as shown in Table 4-7 for 

5 SNPs (1x10-5), 32 SNPs (1x10-4), 248 SNPs (1x10-5) and 2,465 SNPs (1x10-

2) respectively. 

P-value SE SP Gini LogLoss AUC MSE 

1x10-5 0.8723 0.2819 0.2563 0.6619 0.6281  0.2348 

1x10-4 0.6862 0.7225 0.5010 0.5865 0.7505  0.2004 

1x10-3 0.8298 0.8194 0.8081 0.3938 0.9041  0.1261 

1x10-2 0.7606 0.9383 0.8317 0.3841 0.9158  0.1150 

Table 4-7: Performance metrics for validation set 

The performance metrics for the test set are shown in Table 4-8. These metric 

values were obtained using optimised F1 thresholds 0.2893, 0.4533, 0.2368 and 

0.4665 for 1x10-5, 1x10-4, 1x10-3 and 1x10-2, respectively. 

P-value SE SP Gini LogLoss AUC MSE 

1x10-5 0.9774 0.0909 0.2145 0.6736 0.6073 0.2404 

1x10-4 0.9548 0.2440 0.4186 0.6185 0.7093 0.2153 

1x10-3 0.9548 0.6316 0.7798 0.4119 0.8899 0.1350 

1x10-2 0.8531 0.9043 0.8725 0.3288 0.9362 0.0976 

Table 4-8: Performance metrics for test set 
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4.4.3 Model selection 

The ROC curve comparison depicted in Figure 4-4 is used as a graphical 

performance measure to summarise the predictive performance of the GLM 

models. The cut-off values for the false and true positive rates using the test set 

are shown in each of the ROC curves for the different implemented classifiers. 

In this first evaluation, there is a clear deterioration in performance as the 

number of SNPs decreases (P-value threshold increases). Note that SNPs with 

conservative P-value thresholds are an indication of how significant 

associations are. This demonstrates the limitations of the most significant SNPs 

in classifying case-control samples. The highest performance was obtained with 

2,465 NSPs whereas the lowest was achieved with 5 SNPs. 
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(c) ROC for P-val < 10-3 (d) ROC for P-val < 10-2

(a) ROC for P-val < 10-5 (b) ROC for P-val < 10-4

 

Figure 4-4: From (a) to (d) ROC curves for the test set using GLM models trained 

with different P-value thresholds 

4.5 MLP Classification using Suggestive SNPs 

Methods and results presented in this section were published in 2018 (Curbelo, 

Fergus, Curbelo, et al. 2018). Association results from GWAS were used to train 

a multi-layer perceptron neural network (MLP) framework to test the predictive 

capacity of statistically significant SNPs associated with the extremely obese 

phenotype. Various modified suggestive thresholds were considered to increase 

the number of SNPs for investigation based on our previous work (Curbelo, 

Fergus, Hussain, Al-Jumeily, Dorak, et al. 2017; Fergus, Curbelo et al. 2018). 
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These associations capture the linear interactions between SNPs and phenotype 

but not the cumulative interactions between them. H2O (Candel & LeDell 2018; 

Kraljevic 2018) is again used for classification analysis using the network 

architecture presented in Figure 3-8. 

After QC and association analysis using logistic regression, four different 

sets of SNPs (5, 32, 248 and 2,465 SNPs) were derived using different P-value 

thresholds as indicated in Table 4-5. These were used to train an MLP to classify 

extremely obese and non-obese observations. The performance of each model 

is measured using MSE, Logloss, AUC, Gini, Sensitivity and Specificity values. 

The data set is split randomly into training (60%), validation (20%) and testing 

(20%). 

4.5.1 Hyper-parameters selection 

For each implemented classifier, the network architecture and the regularization 

parameters were tuned. To achieve this, random search was utilised and a 

maximum of 200 models were generated to obtain the best parameters. Early 

stopping was adopted to avoid overfitting. The model stops when the logloss 

value fails to improve by at least 1% (stopping tolerance) for two scoring events 

(stopping rounds). The adaptive learning rate ADADELTA (Zeiler 2012) was 

used for stochastic gradient descent optimisation, with parameters rho and 

epsilon set to 0.99 and 1x10-8 respectively, to balance the global and local search 

efficiencies. In Table 4-9 these parameters are summarised. 
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Global Parameters 

Parameter Value 

Adaptive learning 
ADADELTA (rho = 0.99 and 

epsilon = 1x10-8) 

Early stopping Yes 

Stopping tolerance 0.01 

Stopping rounds 2 

Max model generated 200 

Table 4-9: Tuning parameters for classification tasks with MLP 

Model-specific tuning parameters summarised in Table 4-10 were 

considered for each model in the training phase to obtain optimal results. To 

prevent overfitting and to add stability and improve generalisation, Lasso (L1) 

and Ridge (L2) regularisation, and input dropout ratio were tuned. L1 only 

allows strong weights to survive, L2 prevents them from getting too big and 

input dropout ratio regulates the number of neurons randomly dropped in the 

input layer, whereas hidden dropout ratios do the same in hidden layers. Based 

on empirical analysis, these configurations produced the best results. 
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Input Parameter Value 

1x10-5 

Activation TanhWithDropout 

Hidden  2 

Neurons 20 

Epochs 50 

L1 6.8x10-5  

L2 5.1x10-5 

Input_dropout_ratio 0.05 

Hidden_dropout_ratios 0.5 

1x10-4 

Activation RectifierWithDropout 

Hidden  2 

Neurons 50 

Epochs 100 

L1 2.2x10-5 

L2 5.7x10-5 

Input_dropout_ratio 0.0 

Hidden_dropout_ratios 0.5 

1x10-3 

Activation TanhWithDropout 

Hidden  2 

Neurons 20 

Epochs 50 

L1 6.8x10-5 

L2 5.1x10-5 

Input_dropout_ratio 0.05 

Hidden_dropout_ratios 0.5 

1x10-2 

Activation RectifierWithDropout 

Hidden  2 

Neurons 50 

Epochs 50 

L1 8.6x10-5 

L2 4.3x10-5 

Input_dropout_ratio 0.05 

Hidden_dropout_ratios 0.5 

Table 4-10: Model-specific tuning parameters 
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4.5.2 Classifier performance 

The performance metrics for the validation set are provided in Table 4-11. These 

metric values describe the results for the four SNP configurations, 5 SNPs 

(1x10-5), 32 SNPs (1x10-4), 248 SNPs (1x10-5) and 2,465 SNPs (1x10-2) using 

optimized F1 threshold values 0.2674, 0.4463, 0.3551 and 0.8084, respectively. 

P-value SE SP Gini LogLoss AUC MSE 

1x10-5 0.9415  0.1806  0.2556 0.6606  0.6278 0.2342  

1x10-4 0.6915  0.7490  0.5117 0.5828  0.7558 0.1987  

1x10-3 0.8564  0.819383  0.8474 0.3510  0.9237 0.1120  

1x10-2 0.9628  0.9780 0.9923 0.0883  0.9961 0.0259  

Table 4-11: Validation set performance 

Table 4-12 shows the performance metrics for the test data using the trained 

models. This time, metric values were obtained using optimised F1 thresholds 

0.2675, 0.2157, 0.4312 and 0.6303 for 1x10-5, 1x10-4, 1x10-3 and 1x10-2, 

respectively. The results are generally lower than those achieved with the 

validation set but, in some cases, not by much. 

P-value SE SP Gini LogLoss AUC MSE 

1x10-5 0.9943 0.0622  0.2074  0.6750  0.6037 0.2410 

1x10-4 0.9491  0.2871  0.4331 0.6151  0.7165 0.2140 

1x10-3 0.9039 0.7942  0.8512  0.3476  0.9256 0.1094  

1x10-2 0.9548  0.9761 0.9878  0.1061  0.9938 0.0291  

Table 4-12: Test set performance 

Figure 4-5 helps to check if overfitting is appropriately managed. Epochs 

represent the inflection points where performance on the validation set starts to 

decrease while performance on the training set continues to improve as the 

model starts to overfit. The AUC plots provide useful information about early 



 

173 

 

divergence between the training and validation curves and highlight if and when 

overfitting occurs. Bearing in mind the scale of the plots in Figure 4-5, there are 

small signs of overfitting, particularly in the model trained with 248 SNPs (Plots 

(e) and (f) in Figure 4-5).  

 

Figure 4-5: From (a) to (h), Logloss and AUC plots against epochs for SNPs derived 

from P-values 1x10-5, 1x10-4, 1x10-3 and 1x10-2 respectively 

4.5.3 Model Selection 

The ROC curves in Figure 4-6 show the cut-off values for the false and true 

positive rates using the test set. In this second evaluation, there is a clear 

deterioration in performance as the number of SNPs decreases (P-value 

threshold increases). In this instance, machine learning demonstrates the limited 

predictive capacity of highly ranked SNPs when discriminating between case 

and control samples (extremely obese and non-obese individuals). 
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(c) ROC for P-val < 10-3 (d) ROC for P-val < 10-2

(a) ROC for P-val < 10-5 (b) ROC for P-val < 10-4

 

Figure 4-6: From (a) to (d) ROC curves for test set using the MLP trained with 

different P-value thresholds  

4.6 Epistatic interactions using Stacked Autoencoders 

The methodology and results shown in this section were published in 2018 

(Curbelo, Fergus, Chalmers, et al. 2018; Fergus, Curbelo et al. 2018).  

In this evaluation, only SNPs with P-values lower than 1x10-2 were 

considered for machine learning analysis. The R H2O package is used in this 

research to implement the SAE and MLP network. First, an SAE configuration 

is utilised to learn the deep features that exist in a subset of 2,465 SNPs (P-value 

< 1x10-2), to capture information about important SNPs and the cumulative 

epistatic interactions between them. A layer wise configuration is utilised by 
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stacking four single layer AEs with 2,000-1,000-500-50 hidden units, where the 

original 2,465 SNPs are compressed into progressively smaller hidden layers as 

discussed in Chapter 3. The final SAE hidden layer is then used to initialise the 

weights of an MLP. The data set is split randomly into training (60%), validation 

(20%) and testing (20%). The classifier is trained with stochastic gradient 

descent using backpropagation and fine-tuned to classify case-control instances 

in the validation and test sets. Again, four classification experiments are 

presented and evaluated using MSE, Logloss, AUC, Gini, Sensitivity and 

Specificity values to measure the performance of each model. 

4.6.1 Hyper-parameter selection 

The structure and selection of the parameters are conducted as in the previous 

section (Section 4.5) were parameters obtained from the best model were 

selected via random search. These are presented in Table 4-13 and Table 4-14. 

Global Parameters 

Parameter Value 

Adaptive learning 
ADADELTA (rho = 0.99 and 

epsilon = 1x10-8) 

Early stopping Yes 

Stopping tolerance 0.01 

Stopping rounds 2 

Max model generated 200 

Table 4-13: Tuning parameters for classification tasks in the third experiment 
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The specific parameters required for each model are presented in Table 4-14. 

Input Parameter Value 

2,000 

Activation RectifierWithDropout 

Hidden  2 

Neurons 10 

Epochs 50 

L1 4.7x10-5  

L2 2.0x10-5 

Input_dropout_ratio 0.0 

Hidden_dropout_ratios 0.5 

2,000-1,000 

Activation RectifierWithDropout 

Hidden  2 

Neurons 20 

Epochs 50 

L1 8.5x10-5 

L2 6.0x10-6 

Input_dropout_ratio 0.0 

Hidden_dropout_ratios 0.5 

2,000-1,000-500 

Activation TanhWithDropout 

Hidden  2 

Neurons 20 

Epochs 50 

L1 6.8x10-5 

L2 5.1x10-5 

Input_dropout_ratio 0.05 

Hidden_dropout_ratios 0.5 

2,000-1,000-500-50 

Activation RectifierWithDropout 

Hidden  2 

Neurons 50 

Epochs 100 

L1 4.2 x10-5 

L2 6.1 x10-5 

Input_dropout_ratio 0.0 

Hidden_dropout_ratios 0.5 

Table 4-14: Model-specific tuning parameters 

Based on empirical analysis, these configurations produced the best results. 
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4.6.2 Classifier performance 

To measure the performance, each MLP classifier was initialized using the 

different compressed units obtained using the SAE defined in the study. 

Performance metrics for the validation set are provided in Table 4-15 while 

Table 4-16 shows the performance metrics on the test data when the trained 

models are used.  

The first layer compresses the input space to 2,000 hidden units to initialize 

the weights of an MLP before the fully connected layers are fine-tuned for 

classification tasks. An optimised F1 threshold value of 0.4977 was used to 

extract the validation set metrics as indicated in Table 4-15. Successive layers 

of the SAE were used to initialise and fine-tune the remaining MLP models with 

1,000, 500 and 50 hidden units respectively. On this occasion, metrics were 

obtained using optimised F1 threshold values 0.6188, 0.4978 and 0.2701 for 

each of the remaining models respectively.  

Layers SE SP Gini LogLoss AUC MSE 

2,000 0.9202 0.9383 0.9608 0.1817 0.9804 0.0547 

2,000-1,000 0.8404 0.9383 0.9034 0.2889 0.9517 0.0848 

2,000-1,000-500 0.8670 0.8899 0.8828 0.3146 0.9414 0.0963 

2,000-1,000-500-50 0.9202 0.5771 0.6976 0.4776 0.8488 0.1593 

Table 4-15: Performance metrics for validation set 

Table 4-16 shows the performance metrics obtained using the test set. 

Optimised F1 threshold values 0.5363, 0.3356, 0.3899 and 0.4615 were used to 

obtain these metrics by training the models with 2,000, 1,000, 500 and 50 

compressed input units respectively. 
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Layers SE SP Gini LogLoss AUC MSE 

2,000 0.9491 0.9330 0.9499 0.1956 0.9750 0.0540 

2,000-1,000 0.9152 0.8756 0.9102 0.2948 0.9551 0.0875 

2,000-1,000-500 0.9096 0.8756 0.9005 0.2851 0.9502 0.0872 

2,000-1,000-500-50 0.7853 0.7990 0.7036 0.4769 0.8518 0.1563 

Table 4-16: Performance metrics for test set 

Early stopping was adopted to avoid overfitting. Model building stops when 

the logloss on the validation set does not improve by at least 1 percent for 2 

consecutive scoring epochs (stopping rounds). As shown in Figure 4-7 the AUC 

plots provide useful information about early divergence between the training 

and validation curves. In this instance, there is limited evidence to suggest 

overfitting has occurred except when 500 hidden units are used. 

(a) Logloss for compressed 

units = 2000.

(b) AUC for compressed 

units = 2000.

(c) Logloss for compressed 

units = 1000.

(d) AUC for compressed 

units = 1000.

(e) Logloss for compressed 

units = 500.

(f) AUC for compressed 

units = 500.

(h) AUC for compressed 

units = 50.

(g) Logloss for compressed 

units = 50.  

Figure 4-7: From (a) to (h), Logloss and AUC plots against epochs for 2,000-1,000-

500-50 compressed units 
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4.6.3 Model selection 

The cut-off values for the false and true positive rates in the test set are depicted 

in Figure 4-8. The ROC curves show a gradual deterioration in classifier 

performance as the initial 2,465 features (SNPs) are progressively compressed 

to 50 hidden units in the SAE. Despite the observable deterioration, the results 

remain high with 50 compressed hidden units. This is in stark contrast to the P-

value approach adopted in the previous experiments with GLM and MLP 

without SAE weight initialisation. 

(a) ROC for compressed 

units = 2000.

(b) ROC for compressed 

units = 1000.

(c) ROC for compressed 

units = 500.

(d) ROC for compressed 

units = 50.  

Figure 4-8: From (a) to (d) performance ROC curves for the test set using trained 

models with the different compressed units considered for the SAE 
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4.7 SAERMA: Stacked Autoencoder Rule Mining Algorithm for 

the Interpretation of Epistatic Interactions in GWAS of 

Extreme Obesity 

In this final experiment QC, association analysis, rule mining, SAE and MLP 

classification are combined to form the SAERMA algorithm. 

4.7.1 ARM 

In this work, SNPs are referred to as items whilst individuals are referred to as 

transactions in the MyCode dataset. The R package arules is used for the rule 

generation process (Hahsler et al. 2005; Hahsler et al. 2011; Hahsler et al. 2018). 

Table 4-17 shows a summary containing the number of rules generated using 

the Apriori algorithm in cases and controls, using support 𝜎 = 0.6 and 

confidence 𝛿 = 0.8. The time in minutes required to generate the rules and the 

maximum subset size with the maximum number of SNPs per rule is also 

reported.  

Group Total rules Time (min) Max subset size Algorithm 

Cases 208,553,621 33.5 15 Apriori 

Controls 218,816,734 34.9 15 Apriori 

Table 4-17: ARM summary 

It can be observed that the rule generation process time for controls was 

slightly higher than for cases, possibly due to the number of transactions 

(individuals) which was also higher than in cases (879 cases and 1,118 controls). 

Redundant rules were removed; hence, this resulted in a substantial reduction, 

leaving 18,250,501 rules for cases and 17,949,083 rules for controls. 
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To select and arrange the most significant rules, those with lift values higher 

than 1 and 𝜒2 values higher that 3.84 were filtered and retained. Finally, the 

rules were ranked based on the highest lift value confirmed by 𝜒2, which 

represents the lowest P-values, i.e. the most statistically significant association 

rules. Results obtained after applying this criterion are shown in Table 4-18 and 

Table 4-19 for cases and controls respectively. In each case, only the top 10 

rules identified by the Apriori algorithm and related information about the 

interestingness measures support (Supp.), confidence (Conf.), lift and 𝜒2 are 

reported. Although the number of rules identified was much higher, only the top 

10 rules were included for simplicity when presenting the results. This number 

facilitates an effective visualisation of the rules and concentrates on the most 

relevant ones. Graph-based visualisation for rule representations tend to become 

saturated and are only viable for small rule sets (Hahsler 2017).  

Rank Rule Supp. Conf. Lift 𝝌𝟐 

1 {rs12053340_C_D} => {rs1527944_T_D} 0.6075 1 1.6399 870.64 

2 {rs1046724_T_D} => {rs7448421_C_D} 0.6109 1 1.6369 879 

3 {rs13171869_T_D} => {rs1046724_T_D} 0.6064 0.9944 1.6277 849.82 

4 {rs13171869_T_D} => {rs7448421_C_D} 0.6064 0.9944 1.6277 849.82 

5 {rs2073950_A_D, rs2301621_A_D} => {rs10849949_C_D} 0.6098 0.9907 1.6248 858.18 

6 {rs2832503_G_D} => {rs977779_C_D} 0.6166 1 1.6218 879 

7 {rs12315146_A_D, rs2301621_A_D} => {rs2073950_A_D} 0.6018 1 1.6218 826.05 

8 {rs2301621_A_D} => {rs10849949_C_D} 0.6098 0.9889 1.6218 854.06 

9 {rs2073950_A_D} => {rs10849949_C_D} 0.6098 0.9889 1.6218 854.06 

10 {rs11682173_T_D} => {rs11692215_T_D} 0.6086 0.9853 1.6188 845.91 

Table 4-18: Top 10 rules identified in cases 
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Rank Rule Supp. Conf. Lift 𝝌𝟐 

1 {rs10501544_C_D} => {rs12280583_T_D} 0.6082 1 1.6369 1105.46 

2 {rs10828296_G_D, rs11593316_T_D} => {rs6482203_A_D} 0.6055 1 1.6345 1088.99 

3 {rs10828296_G_D, rs1926690_G_D} => {rs6482203_A_D} 0.6046 1 1.6345 1084.92 

4 {rs7171993_G_D} => {rs3743121_A_D} 0.6127 1 1.6297 1113.79 

5 {rs10828296_G_D} => {rs6482203_A_D} 0.6091 0.9971 1.6297 1097.06 

6 {rs11593316_T_D, rs6482203_A_D} => {rs1926690_G_D} 0.6064 0.9985 1.6273 1080.66 

7 {rs10828296_G_D, rs11593316_T_D} => {rs1926690_G_D} 0.6046 0.9985 1.6273 1072.57 

8 {rs6482203_A_D} => {rs1926690_G_D} 0.6064 0.9912 1.6154 1059.80 

9 {rs10828296_G_D} => {rs1926690_G_D} 0.6046 0.9897 1.6130 1047.57 

10 {rs2042867_T_D, rs4979935_T_D} => {rs735638_G_D} 0.6002 1 1.6040 1013.69 

Table 4-19: Top 10 rules identified in controls 

Among the top 10 rules identified in cases (see Table 4-18), no rules were 

common with those identified in controls (see Table 4-19). The most significant 

rule identified in cases, involved an interaction between two SNPs: 

{rs12053340_C_D} => {rs1527944_T_D}. This rule indicates that 61% of the 

cases had the variants rs12053340_C_D and rs1527944_T_D together, and 

those who had rs12053340_C_D also had rs1527944_T_D 100% of the time 

(confidence = 1). Furthermore, the lift value for this rule was higher than 1 

(1.6399) and the highest among all rules; and 𝜒2 (870.64) was significantly 

higher than 3.84, indicating strong positive correlation. Although the top 10 

rules were unique, some of them have SNPs in common as can be seen in Table 

4-18. Rules 2-4 as well as rules 5, 7, 8 and 9 had some SNPs in common. 

Conversely, rules 1, 6 and 10 did not share any SNPs between the top 10 rules 

in cases. Results also revealed that all the SNPs within the top 10 rules in cases, 

were labelled as D, indicating that the minor allele counting for the SNPs was 0 

(the SNPs are homozygous major alleles).  

In controls, it can be observed that the most significant rule is 

{rs10501544_C_D} => {rs12280583_T_D} as shown in Table 4-19. This rule 
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was also common in 61% of the control samples and its consequent 

(rs12280583_T_D) was always present when the antecedent 

(rs10501544_C_D) was present (confidence = 1). The lift value for this rule was 

higher than 1 (1.636896); and 𝜒2 (1105.465) much higher than 3.84, indicating 

strong positive correlation. As in cases, rules 2, 3, 5, 6, 7, 8 and 9 shared 

common SNPs. Rules 1, 4 and 10 did not share any SNPs. SNPs within the top 

10 rules in controls were also labelled as D, indicating that SNPs are 

homozygous major alleles.  

Finally, the top 10 rules were represented as a network using graph-based 

visualization techniques. Both in cases and in controls, individual rules and 

clusters can be observed. Clusters represent association rules that contain one 

or more SNPs in common. Even though lift and 𝜒2 measure dependency and 

independency in rules, high 𝜒2 values do not necessarily imply the highest lift, 

as observed in Table 4-18 and Table 4-19. Graph-based visualizations for the 

top 10 rules obtained for cases and controls are shown in Figure 4-9 and Figure 

4-10 respectively. In Figure 4-9, rule 1, 6 and 10 are the only individual rules 

depicted. Rules 2, 3 and 4 form a cluster with common SNPs rs1046724_T_D, 

rs7448421_C_D and rs13171869_T_D. Additionally, a second cluster formed 

by rules 5, 7, 8 and 9 can be observed. This represents a combination of the only 

two rules with three SNPs in Table 4-18 (rules 5 and 7) and two rules with two 

SNPs (rules 8 and 9), where the shared SNPs are rs2073950_A_D, 

rs2301621_A_D and rs10849949_C_D. Conversely, in Figure 4-10, the main 

cluster is composed by rules 2, 3, 5, 6, 7, 8, 9 and 10. In this case, the common 

SNPs in the cluster are rs10828296_G_D, rs11593316_T_D, rs6482203_A_D 

and rs1926690_G_D. This time, the cluster is a combination of rules composed 
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by three items (2, 3, 6 and 7) and two items (5, 8 and 9). Rules 1, 4 and 10 are 

individual rules with no cluster formation. Extended plots with the top 100 rules 

for cases and controls can be found in Appendix B. 

 

Figure 4-9: Rule visualisation network for the top 10 rules identified in cases 
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Figure 4-10: Rule visualisation network for the top 10 rules identified in controls 

Association rule mining tasks were conducted using Christian Borgelt’s 

Apriori implementation via the arules and arulesViz R packages. A Windows 

Server 2016 Standard 64-bit version-based machine, with 768 GiB of Memory 

and an Intel® Xeon® CPU E5-2620 v4 @ 2.10 GHz (16 CPUs), was utilized to 

conduct the analysis.  

4.7.2 SAERMA model performance 

Classification analysis was conducted in this experiment using a second feature 

selection step based on ARM. Rule mining allows us to find the most frequent 

SNPs (from the 2,465 SNPs considered) among individuals in cases and 

controls and then extract rules from them. These rules can be plotted as 
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discussed earlier, to provide insights through rule inspection. Additionally, 

items from the rules (SNPs) can be utilised as input features in our SAE for deep 

feature extraction (epistatic relationships between SNPs) and used to initialise 

the weights of an MLP before fine-tuning and classification purposes. By 

adjusting support and confidence parameters in the rule generation process, the 

number of rules can be increased or decreased. This, in turn, impacts the 

performance of the models generated for feature extraction and classification 

tasks. Hence, results presented next are derived from the SNPs contained within 

the most significant rules extracted with support 𝜎 = 0.6 and confidence 𝛿 = 0.8 

as discussed earlier. These are the lowest interest measure values which allow 

rule generation without overloading the system used in this study. 

Several classification tasks were conducted using the top 300, 200, 100 and 

50 rules from the previous ARM analysis as can be observed in Table 4-20 to 

Table 4-23. To accomplish this, the SNPs from each set of rules were 

compressed using SAEs as conducted in Section 4.6. However, this time by 

utilising three AEs instead of four (since the number of input features was 

considerably lower) with a variable number of hidden units. The number of AEs 

and hidden neurons were arbitrarily selected to gradually reduce the number of 

initial features. The final layers of the SAEs were then utilised to initialise the 

weights of the MLPs before being fine-tuned for classification tasks.  

Table 4-20 contains the classifier performance values for both the validation 

and test set using the SAE and SNPs from the top 300 rules. In this instance 204 

SNPs are compressed using the following layer configuration: 150-100-50. 
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Layer Set SE SP Gini LogLoss AUC MSE 

150 
Validation 0.7340 0.7621 0.5839 0.5508 0.7920 0.1841 

Test 0.7966 0.6268 0.5594 0.5770 0.7797 0.1952 

150-100 
Validation 0.7979 0.6476 0.5389 0.5783 0.7695 0.1964 

Test 0.7684 0.6794 0.5349 0.5769 0.7675 0.1968 

150-100-50 
Validation 0.8617 0.3921 0.3588 0.6411 0.6794 0.2252 

Test 0.7797 0.5789 0.4591 0.6125 0.7295 0.2117 

Table 4-20: Classifier results for top 300 rules 

Table 4-21 contains the classifier performance values for the validation and 

test sets using an SAE and SNPs from the top 200 rules. This resulted in 161 

SNPs that were then compressed using the following layer configuration: 125-

75-50. 

Layer Set SE SP Gini LogLoss AUC MSE 

125 
Validation 0.7766 0.6255 0.4456 0.6046 0.7228 0.2076 

Test 0.7401 0.6651 0.4715 0.6099 0.7357 0.2104 

125-75 
Validation 0.8777 0.5198 0.4509 0.6083 0.7254 0.2099 

Test 0.7006 0.6746 0.3788 0.6553 0.6894 0.2259 

125-75-50 
Validation 0.7606 0.5859 0.3394 0.6462 0.6697 0.2275 

Test 0.7853 0.4976 0.3959 0.6280 0.6980 0.2191 

Table 4-21: Classifier results for top 200 rules 

Table 4-22 contains the classifier performance values for the validation and 

test sets using an SAE and SNPs from the top 100 rules. This resulted in 124 

SNPs that were compressed using the following layer configuration: 90-50-25. 
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Layer Set SE SP Gini LogLoss AUC MSE 

90 
Validation 0.7872 0.5022 0.3738 0.6351 0.6869 0.2220 

Test 0.6949 0.6603 0.4170 0.6231 0.7085 0.2167 

90-50 
Validation 0.9361 0.2247 0.3521 0.6396 0.6760 0.2245 

Test 0.7853 0.5024 0.4065 0.6285 0.7032 0.2185 

90-50-25 
Validation 0.9202 0.2687 0.3137 0.6499 0.6568 0.2293 

Test 0.8136 0.4832 0.3674 0.6425 0.6837 0.2257 

Table 4-22: Classifier results for top 100 rules 

Finally, Table 4-23 contains classifier performance values for the validation 

and test sets using an SAE and SNPs from the top 50 rules. This resulted in 92 

SNPs that were compressed using the following layer configurations: 75-50-25. 

Layer Set SE SP Gini LogLoss AUC MSE 

75 
Validation 0.7606 0.4714 0.2898 0.6615 0.6449 0.2340 

Test 0.8305 0.4545 0.3949 0.6338 0.6974 0.2210 

75-50 
Validation 0.9149 0.2731 0.3171 0.6471 0.6585 0.2282 

Test 0.7740 0.6268 0.4529 0.6178 0.7265 0.2142 

75-50-25 
Validation 0.9681 0.1542 0.3482 0.6464 0.6741 0.2277 

Test 0.8362 0.4402 0.3735 0.6372 0.6867 0.2242 

Table 4-23: Classifier results for top 50 rules 

Logloss, AUC and ROC plots for Table 4-20 to Table 4-23 as well as tuning 

parameters used by each model are presented and summarised in Appendix C. 

As observed in previous experiments, the results utilising the four different rule 

configurations (204, 161, 124 and 92 SNPs) were all affected when the input 

features of the classifier using AEs was reduced.  

4.8 Chapter summary 

This chapter presents the results obtained following the detection of epistatic 

interactions in association studies of binary traits utilising several traditional 
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and more advanced statistical and computational methods. The results were 

reported in four different experiments following a stepwise approach. Based on 

the limitations derived from each experiment, the different components 

proposed in the methodology chapter (Chapter 3) were incorporated to 

overcome these limitations.  
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 POST ANALYTICS INTERROGATION 

Direct biological inference from the results using statistical tests is a complex 

task since statistical interactions do not automatically entail interaction at the 

biological or mechanistic level (Cordell 2002). Hits identified by GWAS 

represent genomic regions rather than specific genes. Therefore, it is important 

to identify the gene underlying associations after conducting genome-wide 

association experiments. This task is conducted using the SNPnexus tool. 

While no SNPs reached genome-wide significance levels of association in 

association analysis, five SNPs were suggestive of association as shown in 

Table 4-4. Among these suggestive SNPs, rs763727, rs10817737 and rs3050 

were identified in the genes CDH13, TMOD1 and PLEKHG1 respectively, 

while rs1278895 and rs726553 were located in intergenic regions, 818 b to the 

nearest upstream gene RP11-159D23.2 and 109,332 b to the nearest upstream 

gene DOCK10 respectively.  

In the rules 

In the rule generation process, redundant rules were removed, and a number of 

assumptions were applied to reduce and rank the most significant rules as shown 

in Table 4-18 and Table 4-19. The most significant rule identified in cases was 

{rs12053340} => {rs1527944}, composed of SNPs located within the genes 

SGOL2 and AOX1 respectively, both protein-coding genes in chromosome 2 

with risk allele C and T respectively. The remaining rules were composed by 

the following genes: rule 2, {rs1046724} => {ZNF354B}, where rs1046724 is 

located 563 b upstream of the protein-coding gene ZNF354B in chromosome 5. 
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Rule 3, {ZFP2} => {rs1046724}, with rs1046724 variant located 563 b 

upstream of the protein-coding gene ZNF354B in chromosome 5. Rule 4, 

{ZFP2} => {ZNF354B}, both protein-coding genes located in chromosome 5. 

Rule 5, {ATXN2, ATXN2} => {ATXN2}, with three variants interacting 

within the gene ATXN2, located in chromosome 12. Rule 6, {rs2832503} => 

{rs977779}. This rule is composed of two intergenic variants located in 

chromosome 21, where the closest upstream gene is GRIK1 with distances 

11,830 b and 13,187 b respectively. Rule 7, {MAPKAPK5, ATXN2} => 

{ATXN2}, involved two different protein-coding genes located in chromosome 

12. Rule 8, {ATXN2} => {ATXN2}, is composed by SNPs located in the 

protein-coding ATXN2 (chromosome 12). Rule 9, {ATXN2} => {ATXN2}, 

also composed by interactions between SNPs located in the gene ATXN2. 

Finally, rule 10, {rs11682173} => {AFF3}, where the intergenic variant 

rs11682173 is located 609 b upstream of the protein-coding gene AFF3, in 

chromosome 2. In Table 5-1 the top 10 rules identified in cases have been 

presented with the mapped genes as items. 

Rank Rule: SNPs as items Rule: Genes as items 

1 {rs12053340_C_D} => {rs1527944_T_D} {SGOL2} => {AOX1} 

2 {rs1046724_T_D} => {rs7448421_C_D} {ZNF354B} => {ZNF354B} 

3 {rs13171869_T_D} => {rs1046724_T_D} {ZFP2} => {ZNF354B} 

4 {rs13171869_T_D} => {rs7448421_C_D} {ZFP2} => {ZNF354B} 

5 {rs2073950_A_D, rs2301621_A_D} => {rs10849949_C_D} {ATXN2, ATXN2} => {ATXN2} 

6 {rs2832503_G_D} => {rs977779_C_D} {GRIK1} => {GRIK1} 

7 {rs12315146_A_D, rs2301621_A_D} => {rs2073950_A_D} {MAPKAPK5, ATXN2} => {ATXN2} 

8 {rs2301621_A_D} => {rs10849949_C_D} {ATXN2} => {ATXN2} 

9 {rs2073950_A_D} => {rs10849949_C_D} {ATXN2} => {ATXN2} 

10 {rs11682173_T_D} => {rs11692215_T_D} {AFF3} => {AFF3} 

Table 5-1: Equivalent rules with closest genes as items in the case set 
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It can be observed that rules 1, 6 and 10 were the only rules in cases that did 

not share SNPs with other rules, while rules 2, 3, 4, 5, 7, 8 and 9 were composed 

by SNPs shared between these rules (see Table 4-18). Furthermore, rules 2, 3 

and 4 showed interactions between the genes ZNF354B and ZFP2, while rules 

5, 7, 8 and 9 indicated interactions between variants in the gene ATXN2, 

although rule 7 also interacted with the MAPKAPK5 gene. 

The most significant rule in controls was {rs10501544_C_D} => 

{rs12280583_T_D}. The SNPs in this rule are located within the protein-coding 

gene DLG2 in chromosome 11, with risk alleles C and T respectively. Rule 2, 

{rs10828296_G_D, rs11593316_T_D} => {rs6482203_A_D}, is composed of 

three intergenic variants situated 6,107 b upstream of the closest pseudogene 

ADIPOR1P1, 20,245 b downstream of the closest protein-coding gene EBLN1 

and, 17,807 b downstream of the gene EBLN1 respectively, all situated in 

chromosome 10. Rule 3, {rs10828296_G_D, rs1926690_G_D} => 

{rs6482203_A_D}, combines three intergenic variants close to the pseudogene 

ADIPOR1P1 and the protein-coding gene EBLN1 ({ADIPOR1P1, 

ADIPOR1P1} => {EBLN1}) with distances 6,107 b upstream, 17,018 b 

upstream and 17,807 b downstream respectively. Rule 4, {rs7171993_G_D} => 

{rs3743121_A_D}, combines two intergenic variants situated 2,469 b upstream 

of the pseudogene RP11-83J16.3 and 387 b downstream of the protein-coding 

gene AQR respectively, both in chromosome 15. Rule 5, {rs10828296_G_D} 

=> {rs6482203_A_D}, is composed by two intergenic variants situated 6,107 b 

upstream the closest pseudogene ADIPOR1P1 and 17,807 b downstream the 

closest protein-coding gene EBLN1 respectively, both in chromosome 10. Rule 

6, {rs11593316_T_D, rs6482203_A_D} => {rs1926690_G_D}, combines 
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three intergenic variants located 20,245 b downstream the closest protein-

coding gene EBLN1, 17,807 b downstream EBLN1, and 17,018 upstream the 

pseudogene ADIPOR1P1 respectively, in chromosome 10. Rule 7, 

{rs10828296_G_D, rs11593316_T_D} => {rs1926690_G_D}, involved also 

three intergenic variants in chromosome 10, located 6,107 b upstream of the 

ADIPOR1P1 pseudogene, 20,245 b downstream of the protein-coding gene 

EBLN1, and 17,018 upstream of the pseudogene ADIPOR1P1 respectively. 

Rule 8, {rs6482203_A_D} => {rs1926690_G_D}, combines two intergenic 

variants located 17,807 b downstream of the gene EBLN1 and 17,018 upstream 

of the pseudogene ADIPOR1P1 respectively, in chromosome 10. Rule 9, 

{rs10828296_G_D} => {rs1926690_G_D}, combined two intergenic variants 

close to the pseudogene ADIPOR1P1 and the protein-coding gene EBLN1 with 

distances 6,107 b upstream and 17,018 b upstream respectively. Rule number 

10, {rs2042867_T_D, POLR3A} => {rs735638_G_D}, is formed by two 

intergenic variants and a protein-coding gene POLR3A. The variant rs2042867 

is located 8,608 b upstream of the H2AFZP5 pseudogene while the closest gene 

of rs735638 is located 2,186 b downstream of the protein-coding gene 

POLR3A. In Table 5-2 the top 10 rules identified in control samples have been 

presented with the mapped genes as items. 
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Rank Rule: SNPs as items Rule: Genes as items 

1 {rs10501544_C_D} => {rs12280583_T_D} {DLG2} => {DLG2} 

2 {rs10828296_G_D, rs11593316_T_D} => {rs6482203_A_D} {ADIPOR1P1, EBLN1} => {EBLN1} 

3 {rs10828296_G_D, rs1926690_G_D} => {rs6482203_A_D} {ADIPOR1P1, ADIPOR1P1} => {EBLN1} 

4 {rs7171993_G_D} => {rs3743121_A_D} {RP11-83J16.3} => {AQR} 

5 {rs10828296_G_D} => {rs6482203_A_D} {ADIPOR1P1} => {EBLN1} 

6 {rs11593316_T_D, rs6482203_A_D} => {rs1926690_G_D} {EBLN1, EBLN1} => {ADIPOR1P1} 

7 {rs10828296_G_D, rs11593316_T_D} => {rs1926690_G_D} {ADIPOR1P1, EBLN1} => {ADIPOR1P1} 

8 {rs6482203_A_D} => {rs1926690_G_D} {EBLN1} => {ADIPOR1P1} 

9 {rs10828296_G_D} => {rs1926690_G_D} {ADIPOR1P1} => {EBLN1} 

10 {rs2042867_T_D, rs4979935_T_D} => {rs735638_G_D} {H2AFZP5, POLR3A} => {POLR3A} 

Table 5-2: Equivalent rules with closest genes as items in the control set 

It can be noted that rules 1, 3 and 10 in controls are the only rules which do 

not share any common SNPs as can be seen in Table 4-19. A full discussion and 

interpretation of the findings in this chapter will be presented in Chapter 6. 

Although mapping variants to genes can be useful to extend the information 

about the rules, generating a list of genes does not provide any evidences about 

epistasis from a biological point of view. Retrieving a functional profile of the 

gene set to better understand the underlying biological mechanism in obesity 

represents a more insightful approach. Therefore, in this chapter, biological 

interpretation of the rules identified is provided. This will test whether the genes 

identified within the most significant rules (top 300) in cases and controls 

belong to any relevant biological pathway or not. If positive matches are 

identified, potential true biological epistasis can be discovered by ARM without 

preliminary knowledge, relying solely on statistical approaches. Finally, as a 

proof of concept approach, instead of relying on statistical filtering to preselect 

SNPs based on a P-value threshold < 10-2 , SNPs will be selected based on gene 

set enrichment analysis (GSEA) (Subramanian et al. 2005) from GWAS results 

(all SNPs and P-values after Logistic Regression), to identify the correlation 
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between pathways and the phenotype under investigation. Subsequently, ARM 

analysis will be repeated with the identified variants to explore epistasis. 

Additionally, classification analysis will be performed using MLP to measure 

the prediction capacity of genetic variants identified in the rules within the 

pathways. These experiments are intended to serve as a proof of concept in order 

to validate the results derived from this thesis from a biological perspective. 

5.1 Biological Interpretation of the Results 

A common approach to provide biological interpretation of genetic variants is 

via gene set enrichment analysis which is based on the functional annotation of 

gene sets. This approach represents an advantage especially if we want to 

identify whether a set of genes are associated with specific biological process 

/molecular function or not. Popular tools for gene set enrichment and pathway 

analysis such as DAVID, GSEA or Reactome are available and can be used for 

this purpose. 

Utilising functional enrichment strategies have the potential to increase the 

probabilities for researchers to identify biological processes more relevant to 

the disease under investigation (Huang et al. 2009). 

5.1.1 Biological Implication of Association Rules from SAERMA 

To validate the rules identified by SAERMA, we tested whether the genes 

forming the rules were involved in biological pathways or not. Any identified 

rules including more than one gene involved in a particular pathway can be 

considered potential true obesity epistasis. The DAVID Functional Annotation 

Tool (Dennis et al. 2003) was used to perform this task. DAVID stand for 
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database for annotation, visualisation and integrated discovery (DAVID) and is 

a widely used tool for functional interpretation and biological meaning of genes 

and proteins, cited in more than 6,000 scientific publications (Jiao et al. 2012).  

5.1.1.1 Results from DAVID 

A total of 132 genes were extracted from the top 300 rules in cases and controls 

and used as input in DAVID. Gene-specific functional data was obtained using 

the KEGG (Kanehisa & Goto 2000) and the Reactome pathway knowledgebase 

(Fabregat, Jupe, et al. 2018; Joshi-Tope 2004) options from the annotation 

categories in the Annotation Summary Results page, although other categories 

are available for selection (Dennis et al. 2003). Instead of selecting highly 

enriched pathways in the annotation categories, all pathways were considered 

as the main goal in this experiment is to find items in the rules matching genes 

in pathways relevant to obesity. A list with all the most relevant pathways 

identified from KEGG and Reactome for the Homo sapiens are reported in 

Table 5-3. The table includes the pathway name and information about reported 

source (KEGG/Reactome), the number of genes mapped to the pathway (count), 

the gene official names, association rules mapping the genes in the pathway and, 

finally, a list of the genes in the rules that were not found in the pathway. For 

each rule identified, CA indicates that the rule was identified in cases whereas 

CO indicates control. Additionally, the gene/s in the rules mapping genes in the 

pathways were highlighted.
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Pathway Name Source Count Genes Found Rule  
Genes in Rule not in 

Pathway 

FOXO-mediated transcription of oxidative 

stress, metabolic and neuronal genes 

Reactome 2 HDAC2, NPY CA: {HDCA2, ACAD10}=>{BRAP} 

CO: {ATXN2, NPY}=>{ATXN2} 

 ACAD10, BRAP 

Metabolism of lipids Reactome 3 SLC10A2, ACAD10, 

MTMR7 

CA: {ACAD10, RP3-462E2.3}=>{ACAD10} 

CO: {MAPKAP5, ATXN2, ACAD10, SLC10A2}=>{ATXN2} 

CO: {MTMR7}=>{MTMR7} 

 RP3-462E2.3, MAPKAP5, 

ATXN2 

GPCR ligand binding Reactome 2 NLN, NPY CO: {SYT14, NLN}=>{SYT14} 

CO: {ATXN2, NPY}=>{ATXN2} 

 SYT14, ATXN2 

Axon guidance. Reactome 6 ROBO2, COL6A3, 
NEO1, GFRA2, ITGA9, 

RGMA 

CO: {SYT14, ROBO2}=>{SYT14} 
CO: {COL6A3,GRIK1}=>{GRIK1} 

CO: {ATXN2, NEO1}=>{ATXN2} 

CO: {GFRA2, CSNK1E}=>{CSNK1E} 
CO: {ITGA9}=>{ITGA9} 

CO: {AC097713.3, RGMA}=>{AC097713.3} 

SYT14, GRIK1, ATXN2, 
CSNK1E, AC097713.3 

MAPK family signaling cascades Reactome 4 BRAP, DLG2, 
MAPKAPK5, GFRA2 

CA: {MAPKAPK5, BRAP}=>{ACAD10} 
CA: {BRAP, RP3-462E2.3}=>{ACAD10} 

CA: {BRAP}=>{BRAP} 

CA: {MAPKAPK5, ATXN2}=>{ATXN2} 
CO: {DLG2}=>{DLG2} 

CO: {BRAP, ATXN2}=>{ATXN2} 

CO: {MAPKAPK5, ATXN2, snoU13}=>{ATXN2} 
CO: {GFRA2, CSNK1E}=>{CSNK1E} 

ACAD10, ATXN2, snoU13, 
CSNK1E 

M Phase Reactome 3 SGOL2, CSNK1E, PHF8 CA: {SGOL2}=>{AOX1} 
CO: {AOX1, DOCK4}=>{SGOL2} 

CO: {DDX18, CSNK1E}=>{CSNK1E} 

CO: {PHF8, LINC00460}=>{RNA5SP38} 

AOX1, DOCK4, DDX18, 
LINC00460, RNA5SP38 

Factors involved in megakaryocyte 

development and platelet production 

Reactome 4 DOCK6, DOCK10, 

DOCK4, HDAC2 

CA: {DOCK6}=>{DOCK6} 

CA: {HDAC2, ACAD10}=>{BRAP} 

CO: {DOCK10}=>{ DOCK10} 
CO: {AOX1, DOCK4}=>{SGOL2} 

ACAD10, BRAP, AOX1, 

SGOL2 

RNA Polymerase III Transcription 

Termination 

Reactome 2 POLR3A, NFIA CO: {H2AFZP5, POLR3A}=>{POLR3A } 

CO: {NFIA, AC097713.3}=>{AC097713.3} 

H2AFZP5, AC097713.3 
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NCAM1 interactions Reactome 2 COL6A3, GFRA2 CO: {COL6A3,GRIK1}=>{GRIK1} 
CO: {GFRA2, CSNK1E}=>{CSNK1E} 

GRIK1, CSNK1E 

Netrin-1 signaling Reactome 2 NEO1, RGMA CO: {ATXN2, NEO1}=>{ATXN2} 

CO: {AC097713.3, RGMA}=>{AC097713.3} 

ATXN2, AC097713.3 

ECM proteoglycans Reactome 2 COL6A3, ITGA9 CO: {COL6A3,GRIK1}=>{GRIK1} 

CO: {ITGA9}=>{ITGA9} 

 GRIK1 

Positive epigenetic regulation of rRNA 

expression 

Reactome 2 HDAC2, TTF1 CA: {HDAC2, ACAD10}=>{BRAP} 
CA: {TTC27, TTF1}=>{TTC27} 

CO: {AC097713.3, TTF1}=>{AC097713.3} 

ACAD10, BRAP, TTC27, 
AC097713.3 

Peptide ligand-binding receptors Reactome 2 NLN, NPY CO: {SYT14, NLN}=>{SYT14} 
CO: {ATXN2, NPY}=>{ATXN2} 

SYT14, ATXN2 

Transmission across Chemical Synapses Reactome 3 DLG2, ALDH2, GRIK1 CA: {ACAD10}=>{ALDH2} 

CA: {ALDH2, RP3-462E2.3}=>{ALDH2} 
CA: {NAA25, ALDH2}=>{ALDH2} 

CA: {ALDH2, RP3-462E2.3}=>{ACAD10} 

CA: {GRIK1, GRIK1}=>{ GRIK1} 
CO: {DLG2}=>{DLG2} 

CO: {ATXN2, ALDH2, ACAD10}=>{ATXN2} 

CO: { GRIK1, GRIK1}=>{ GRIK1} 

ACAD10, RP3-462E2.3, NAA25, 

ATXN2 

Neuronal System Reactome 4 PTPRD, DLG2, ALDH2, 

GRIK1 

CA: {ACAD10}=>{ALDH2} 

CA: {ALDH2, RP3-462E2.3}=>{ALDH2} 

CA: {NAA25, ALDH2}=>{ALDH2} 
CA: {ALDH2, RP3-462E2.3}=>{ACAD10} 

CA: {GRIK1, GRIK1}=>{ GRIK1} 
CO: {PTPRD, SYT14}=>{SYT14} 

CO: {ZNF366, PTPRD}=>{ZNF366} 

CO: {PTPRD, ALPK3}=>{ALPK3} 
CO: {DLG2}=>{DLG2} 

CO: {ATXN2, ALDH2, ACAD10}=>{ATXN2} 

CO: { GRIK1, GRIK1}=>{ GRIK1} 

ACAD10, RP3-462E2.3, NAA25, 

SYT14, ZNF366, ALPK3, 

ATXN2 

Diseases of signal transduction Reactome 3 BRAP, HDAC2, 

KREMEN1 

CA: {BRAP}=>{BRAP} 

CA: {BRAP, RP3-462E2.3}=>{ACAD10} 

CA: {HDAC2, ACAD10}=>{BRAP} 
CO: {BRAP, ATXN2}=>{ATXN2} 

CO: {AC097713.3, KREMEN1}=>{AC097713.3} 

RP3-462E2.3, ACAD10, 

ATXN2, AC097713.3 
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Metabolism of RNA Reactome 4 AQR, RPPH1, 
CDKAL1, CSNK1E 

CA: {MAPKAPK5, RPPH1, HECTD4}=>{RP3-462E2.3} 
CO: {AQR}=>{AQR} 

CO: {CDKAL1}=>{CDKAL1} 

CO: {DDX18, CSNK1E}=>{CSNK1E} 

MAPKAPK5, HECTD4, RP3-
462E2.3, DDX18 

Metabolism Reactome 7 ALDH2, ENTPD4, 

SLC10A2, AOX1, 

ACAD10, MTMR7, 
HK1 

CA: {ACAD10}=>{ALDH2} 

CA: {ALDH2, RP3-462E2.3}=>{ACAD10} 

CA: {ALDH2, RP3-462E2.3}=>{ALDH2} 
CA: {MAPKAPK5, ACAD10, HECTD4}=>{ALDH2} 

CA: {NAA25, ACAD10}=>{ACAD10} 

CA: {SGOL2}=>{AOX1} 
CO: {ATXN2, ALDH2, ACAD10}=>{ATXN2} 

CO: {ENTPD4, ATXN2}=>{ATXN2} 

CO: {MAPKAPK5, ATXN2, ACAD10, SLC10A2}=>{ATXN2} 
CO: {AOX1, DOCK4}=>{SGOL2} 

CO: {ATXN2, ACAD10, HECTD4}=>{ATXN2} 

CO: {MTMR7}=>{MTMR7} 
CO: {HK1, GRIK1}=>{GRIK1} 

RP3-462E2.3, MAPKAPK5, 

HECTD4, NAA25, SGOL2, 

ATXN2, DOCK4, GRIK1 

ECM-receptor interaction KEGG 3 ITGA9, LAMB4, 

COL6A3 

CO: {ITGA9}=>{ITGA9} 

CO: {LAMB4, ALPK3}=>{ALPK3} 
CO: {COL6A3, GRIK1}=>{GRIK1} 

ALPK3, GRIK1 

Cell adhesion molecules (CAMs) KEGG 3 ITGA9, NEO1, ICOSLG CO: {ITGA9}=>{ITGA9} 

CO: {ATXN2, NEO1}=>{ATXN2} 
CO: {ALPK3, ICOSLG }=>{ALPK3} 

ALPK3, ATXN2 

Tryptophan metabolism KEGG 2 AOX1, ALDH2 CA: {SGOL2}=>{AOX1} 

CA: {ACAD10}=>{ALDH2} 
CA: {ALDH2, RP3-462E2.3}=>{ALDH2} 

CO: {AOX1, DOCK4}=>{SGOL2} 
CO: {ATXN2, ALDH2, ACAD10}=>{ATXN2} 

SGOL2, ACAD10, RP3-462E2.3, 

DOCK4, ATXN2 

Valine, leucine and isoleucine degradation KEGG 2 AOX1, ALDH2 CA: {SGOL2}=>{AOX1} 

CA: {ACAD10}=>{ALDH2} 
CA: {ALDH2, RP3-462E2.3}=>{ALDH2} 

CO: {AOX1, DOCK4}=>{SGOL2} 

CO: {ATXN2, ALDH2, ACAD10}=>{ATXN2} 

SGOL2, ACAD10, RP3-462E2.3, 

DOCK4, ATXN2 

Purine metabolism KEGG 3 POLR3A, PDE8A, 

ENTPD4 

CO: {H2AFZP5, POLR3A}=>{POLR3A} 

CO: { PDE8A, ENTPD4}=>{SLC28A1} 

H2AFZP5, SLC28A1 
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Alcoholism KEGG 3 HDAC2, NPY, CREB5 CA: {HDCA2, ACAD10}=>{BRAP} 
CO: {ATXN2, NPY}=>{ATXN2} 

CO: {AC097713.3, CREB5}=>{AC097713.3} 

ACAD10, BRAP, ATXN2, 
AC097713.3 

Lysine degradation KEGG 2 PLOD1, ALDH2 CA: {ACAD10}=>{ALDH2} 

CA: {ALDH2, RP3-462E2.3}=>{ALDH2} 

CO: {SYT14, PLOD1}=>{SYT14} 

CO: {ATXN2, ALDH2, ACAD10}=>{ATXN2} 

ACAD10, RP3-462E2.3, SYT14, 

ATXN2 

PI3K-Akt signaling pathway KEGG 4 ITGA9, LAMB4, 

COL6A3, CREB5 

CO: {ITGA9}=>{ITGA9} 

CO: {LAMB4, ALPK3}=>{ALPK3} 

CO: {COL6A3, GRIK1}=>{GRIK1} 
CO: {AC097713.3, CREB5}=>{AC097713.3} 

ALPK3, GRIK1, AC097713.3 

cAMP signaling pathway KEGG 3 ATP2B4, NPY, CREB5 CO: {ZNF366, ATP2B4}=>{ZNF366} 

CO: {ATXN2, NPY}=>{ATXN2} 
CO: {AC097713.3, CREB5}=>{AC097713.3} 

ZNF366, ATXN2, AC097713.3 

Focal adhesion KEGG 3 ITGA9, LAMB4, 

COL6A3 

CO: {ITGA9}=>{ITGA9} 

CO: {LAMB4, ALPK3}=>{ALPK3} 
CO: {COL6A3, GRIK1}=>{GRIK1} 

ALPK3, GRIK1 

Glycolysis / Gluconeogenesis KEGG 2 ALDH2, HK1 CA: {ACAD10}=>{ALDH2} 

CA: {ALDH2, RP3-462E2.3}=>{ALDH2} 
CO: {ATXN2, ALDH2, ACAD10}=>{ATXN2} 

CO: {HK1, GRIK1}=>{GRIK1} 

ACAD10, RP3-462E2.3, 

ATXN2, GRIK1 

Thyroid hormone synthesis KEGG 2 TTF1, CREB5 CA: {TTC27, TTF1}=>{TTC27} 
CO: {AC097713.3, TTF1}=>{AC097713.3} 

CO: {AC097713.3, CREB5}=>{AC097713.3} 

TTC27, AC097713.3 

Pyrimidine metabolism KEGG 2 POLR3A, ENTPD4 CO: {H2AFZP5, POLR3A}=>{POLR3A} 

CO: {ENTPD4, ATXN2}=>{ATXN2} 

H2AFZP5, ATXN2 

Adrenergic signaling in cardiomyocytes KEGG 2 ATP2B4, CREB5 CO: {ZNF366, ATP2B4}=>{ZNF366} 

CO: {AC097713.3, CREB5}=>{AC097713.3} 

ZNF366, AC097713.3 

Hippo signaling pathway KEGG 2 CSNK1E, DLG2 CO: {DDX18, CSNK1E }=>{CSNK1E } 

CO: {DLG2}=>{DLG2.3} 

DDX18 

cGMP-PKG signaling pathway KEGG 2 ATP2B4, CREB5 CO: {ZNF366, ATP2B4}=>{ZNF366} 

CO: {AC097713.3, CREB5}=>{AC097713.3} 

ZNF366, AC097713.3 

Transcriptional misregulation in cancer KEGG 2 HDAC2, SIX1 CA: {HDAC2, ACAD10}=>{BRAP} 
CO: {SIX1, PDE8A}=>{SLC28A1} 

ACAD10, BRAP, PDE8A, 
SLC28A1 
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Huntington's disease KEGG 2 HDAC2, CREB5 CA: {HDAC2, ACAD10}=>{BRAP} 
CO: {AC097713.3, CREB5}=>{AC097713.3} 

ACAD10, BRAP, AC097713.3 

Viral carcinogenesis KEGG 2 HDAC2, CREB5 CA: {HDAC2, ACAD10}=>{BRAP} 

CO: {AC097713.3, CREB5}=>{AC097713.3} 

ACAD10, BRAP, AC097713.3 

Regulation of actin cytoskeleton KEGG 2 ARHGEF4, ITGA9 CO: {AC097713.3, ARHGEF4}=>{AC097713.3} 

CO: {ITGA9}=>{ITGA9} 

AC097713.3 

Rap1 signaling pathway KEGG 2 MAGI1, DOCK4 CO: {MAGI1, ATXN2}=>{ATXN2} 
CO: {AOX1, DOCK4}=>{SGOL2} 

ATXN2, AOX1 

Biosynthesis of antibiotics KEGG 2 ALDH2, HK1 CA: {ACAD10}=>{ALDH2} 

CA: {ALDH2, RP3-462E2.3}=>{ALDH2} 
CO: {ATXN2, ALDH2, ACAD10}=>{ATXN2} 

CO: {HK1, GRIK1}=>{GRIK1} 

ACAD10, RP3-462E2.3, 

ATXN2, GRIK1 

Pathways in cancer KEGG 2 LAMB4, HDAC2 CA: {HDAC2, ACAD10}=>{BRAP} 
CO: {LAMB4, ALPK3}=>{ALPK3} 

ACAD10, BRAP, ALPK3 

Table 5-3: Relevant pathways identified in KEGG and Reactome
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As observed in Table 5-3 several genes from the top rules were identified in 

biological pathways relevant to obesity. To demonstrate the results, three of the 

relevant obesity-related pathways identified were reported: metabolism 

pathway (super pathway), metabolism of lipids (contained pathway) and 

FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes 

pathway (super pathway). The explanative information reported in the next 

sections has been extracted from Reactome reports (Fabregat et al. 2017; 

Sidiropoulos et al. 2017; Fabregat, Jupe, et al. 2018; Fabregat, Korninger, et al. 

2018), supported by the European Bioinformatics Institute, New York 

University Langone Medical Center, Ontario Institute for Cancer Research and 

Oregon Health and Science University (Joshi-Tope 2004; Croft et al. 2014). 

5.1.1.1.1 Metabolism Pathway 

A total of seven genes from the most significant rules were mapped into 

metabolic processes as shown in Table 5-3. These genes are Aldehyde 

Dehydrogenase 2 Family Member (ALDH2), Ectonucleoside Triphosphate 

Diphosphohydrolase 4 (ENTPD4), Solute Carrier Family 10 Member 2 

(SLC10A2), Aldehyde Oxidase 1 (AOX1), Acyl-CoA Dehydrogenase Family 

Member 10 (ACAD10), Myotubularin-Related Protein 7 (MTMR7) and 

Hexokinase 1 (HK1). A diagram for the metabolism pathway is depicted in 

Figure 5-1. It can be noted that those sub pathways (contained pathways) with 

mapping genes from the rules are identified by a vertical olive-green line in the 

figures. 
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Figure 5-1: Metabolism pathway (Jassal 2011) 

Metabolic processes in human cells are important as they generate energy 

via different processes (Komoda & Matsunaga 2015). They represent step-by-

step interconnected biochemical reactions that transform substrate molecule/s 

via a series of metabolic intermediates, ultimately producing a final product/s. 

Processes in metabolism pathway with mapped genes are reported and a 

diagram for each of them is provided below. 
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Metabolism of carbohydrates  

 

Figure 5-2: Metabolism of carbohydrates (D’Eustachio & Schmidt 2003) 

The gene from the rules involved in the metabolism of carbohydrates is HK1. 

Starches and sugars are major constituents of the human diet and the catabolism 

of monosaccharides, notably glucose, derived from them is an essential part of 

human energy metabolism (Dashty 2013). 
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Inositol phosphate metabolism 

 

Figure 5-3: Inositol phosphate metabolism (Williams 2011a) 

The gene from the rules involved in Inositol phosphate metabolism is MTMR7. 

Inositol phosphates (IPs) are molecules involves in signalling processes in 

eukaryotes. 

Metabolism of lipids 

 

Figure 5-4: Metabolism of lipids (Jassal, Gillespie, Gopinathrao & Peter D’Eustachio 

2007) 



 

206 

 

The genes from the rules involved in the metabolism of lipids are ACAD10, 

MTMR7 and SLC10A2. Information about this sub pathway is provided in the 

next section. 

Metabolism of nucleotides 

 

Figure 5-5: Metabolism of nucleotides (Jassal 2003) 

The gene from the rules involved in the metabolism of nucleotides is ENTPD4. 

Nucleotides and their derivatives are used in different processes, including 

short-term energy storage (ATP, GTP), intra- and extracellular signaling 

(cAMP; adenosine), as enzyme cofactors (NAD, FAD), and for DNA and RNA 

synthesis. Additionally, these processes are of major clinical interest as they are 

the means by which nucleotide analogues used as anti-viral and anti-tumor 

drugs are taken up by cells, activated, and catabolized (Welin & Nordlund 

2010). 
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Metabolism of vitamins and cofactors 

 

Figure 5-6: Metabolism of vitamins and cofactors (Jassal 2007b) 

The gene from the rules involved in the metabolism of vitamins and cofactors 

is AOX1. Vitamins belong to a diverse group of organic compounds that can be 

classified based on their solubility in water (water-soluble) or fat (fat-soluble) 

and are typically not synthesised (or synthesised in limited amounts) by human 

cells. Furthermore, in small amounts, vitamins are necessary in the diet and have 

various biochemical roles. Several processes dependent on vitamin-requiring 

reactions are associated with diverse and severe group of diseases and vitamin 

deficiencies; these include aspects of intermediary metabolism, vision, bone 

formation, and blood coagulation. 

Biological oxidations 

 

Figure 5-7: Biological oxidations (Jassal 2008) 

The gene from the rules involved in biological oxidations is ALDH2. 
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5.1.1.1.2 Metabolism of Lipids 

As mentioned earlier, three entities/genes were found in the Metabolism of 

lipids pathway: ACAD10, MTMR7 and SLC10A2. The Metabolism of lipids 

pathway is shown in Figure 5-8.  

 

Figure 5-8: Metabolism of lipids pathway 

Lipids are hydrophobic chemically diverse molecules with a wide range of 

roles in human biology. Lipids are responsible of many key roles (Vella 2008), 

including: 

• They represent a major source of energy (fatty acids, triacylglycerols, 

and ketone bodies). 

•  Are major constituents of cell membranes (cholesterol and 

phospholipids).  

• Play a major role in their own digestion and uptake (bile salts).  

• Take part in numerous signaling and regulatory processes (steroid 

hormones, eicosanoids, phosphatidylinositols, and sphingolipids).  
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Aspects of lipid metabolism with mapping genes from the rules are depicted 

below. 

Fatty acid metabolism 

  

Figure 5-9: Fatty acid metabolism (Jassal, Gillespie, Gopinathrao & P D’Eustachio 

2007) 

The gene involved in this process located in the metabolism of lipids pathway 

is ACAD10. The synthesis and breakdown of fatty acids are a central part of 

human energy metabolism (Vella 2008). Processes annotated in this module 

include the synthesis of fatty acids from acetyl-CoA, mitochondrial and 

peroxisomal breakdown of fatty acids, and the metabolism of eicosanoids and 

related molecules. 

Phospholipid metabolism 

 

Figure 5-10: Phospholipid metabolism (Williams 2011b) 

The gene involved in this process located in the metabolism of lipids pathway 

is MTMR7. Phospholipids contain a polar head group and two long-chain fatty 
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acyl moieties, one of which is generally unsaturated. These molecules are a 

major constituent of cellular membranes, where their diverse structures and 

asymmetric distributions play major roles in determining membrane properties 

(Dowhan 1997). 

Metabolism of steroids 

 

Figure 5-11: Metabolism of steroids (Jassal 2007a) 

The gene involved in this process located in the metabolism of lipids pathway 

is SLC10A2. Three groups of molecules synthesised from steroids, include 

cholesterol and bile acids and salts, steroid hormones, and vitamin D. In this 

module, pathways for the synthesis of cholesterol from HMG-CoA 

(hydroxymethylglutaryl-coenzyme A), and for its conversion to bile acids and 

salts, steroid hormones, and vitamin D are annotated, together with the SREBP-

mediated regulatory process that normally links the rate of cholesterol synthesis 

to levels of cellular cholesterol (Brown & Goldstein 2009). 
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5.1.1.1.3 FOXO-mediated transcription of oxidative stress, 

metabolic and neuronal genes 

Another important obesity related pathway where genes from the rules were 

mapped to, is the FOXO-mediated transcription of oxidative stress, metabolic 

and neuronal genes pathway (Orlic-Milacic 2018a), depicted in Figure 5-12. 

Two entities/genes from the 132 genes forming the top 300 rules in cases and 

controls were mapped to this pathway: Neuropeptide Y (NPY) and Histone 

Deacetylase 2 (HDAC2). Processes with mapping genes from the rules are 

identified by a vertical olive-green line in the figures.  

FOXO transcription factors regulate transcription of several genes whose 

protein products are secreted from hypothalamic neurons to control appetite and 

food intake: NPY gene, AGRP gene and POMC gene. At low insulin levels 

(characteristic of starvation) FOXO transcription factors bind to insulin 

responsive elements (IRES) in the regulatory regions of NPY, AGRP and 

POMC gene. FOXO1 directly stimulates transcription of the NPY gene, 

encoding neuropeptide-Y, and the AGRP gene, encoding Agouti-related 

protein, which both stimulate food intake (Kim et al. 2006; Hong et al. 2012).  

A gene involved in lipid homeostasis and regulated by FOXOs, is the 

glucokinase (GCK) gene. FOXO1, acting with the SIN3A: HDAC complex, 

directly represses the GCK gene transcription, thus repressing lipogenesis in the 

absence of insulin (Langlet et al. 2017). 
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Figure 5-12: FOXO-mediated transcription of oxidative stress, metabolic and neuronal genes pathway (Orlic-Milacic 2018a)
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FOXO1 binds NPY gene promoter 

 

Figure 5-13: FOXO1 binds NPY gene promoter (Orlic-Milacic 2018c) 

In the hypothalamic orexigenic neurons, FOXO1 binds to the insulin responsive 

elements (IREs) in the promoter of the NPY gene (Kim et al. 2006), encoding 

neuropeptide-Y. 

NPY gene expression is stimulated by FOXO1 

 

Figure 5-14: NPY gene expression is stimulated by FOXO1 (Orlic-Milacic 2018e) 

Transcription of the NPY gene is directly stimulated by FOXO1 (encoding 

neuropeptide-Y) in hypothalamic orexigenic neurons. NPY stimulates food 

intake and weight gain. Insulin and leptin, through PI3K/AKT signaling, inhibit 

FOXO1-mediated upregulation of NPY expression (Kim et al. 2006). NPY may 

act through a positive feedback loop to increase the transcriptional activity of 

FOXO1 through the PKA/CREB pathway (Hong et al. 2012). 
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FOXO1 and SIN3A: HDAC complex bind GCK gene promoter 

 

Figure 5-15: FOXO1 and SIN3A: HDAC complex bind GCK gene promoter (Orlic-

Milacic 2018b) 

Based on studies in mice, FOXO1 recruits transcriptional repressor SIN3A and 

histone deacetylases (HDACs) of the I class to the promoter of the GCK gene, 

encoding glucokinase (Langlet et al. 2017). 

GCK gene expression is inhibited by FOXO1, SIN3A and HDACs 

 

Figure 5-16: GCK gene expression is inhibited by FOXO1, SIN3A and HDACs 

(Orlic-Milacic 2018d) 
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The combination of FOXO1, SIN3A and histone deacetylases (HDACs), 

represses transcription of the GCK gene, encoding glucokinase as reported in 

studies in mice. Insulin interferes with FOXO1-mediated repression of GCK 

expression, resulting in upregulation of GCK and stimulation of lipogenesis 

(Langlet et al. 2017).  

Evidences extracted from the highlighted pathways support the potential of 

using ARM in the identification of epistasis without initial knowledge, based 

solely on statistical approaches.  

5.1.2 Biological Filtering using GSEA: Proof of Concept  

As discussed earlier in this thesis, GWAS identify genetic variants that have 

been independently tested, and it only consider a number of the most significant 

ones for subsequent experiments (i.e. statistical filtering). From a system point 

of view, this is seen as a limitation since the combined effect of less significant 

variants is overlooked. To overcome this limitation, the improved gene-set 

enrichment analysis for GWAS (i-GSEA4GWAS) web tool was utilised (Zhang 

et al. 2010). This tool performs GSEA on GWAS data using SNP label 

permutation to analyse the P-values reported by association analysis (i.e. using 

logistic regression). To ensure comprehensiveness and reliability, i-

GSEA4GWAS relies on a collection of pathways and annotated gene sets 

curated from Molecular Signatures Database (MSigDB) (Liberzon et al. 2015; 

Subramanian et al. 2005). MSigDB includes canonical pathways and gene sets 

integrated and curated from a variety of reference knowledge based sources, 

including KEGG and curated gene ontology (GO) terms (Ashburner et al. 2000) 

among other sources. By using this tool, the aim is to identify pathways or gene 
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sets correlated with obesity as a biological filtering strategy, while providing 

new insights into epistasis using ARM. This approach is presented, thus, as an 

alternative to the statistical filtering approach used in the initial method of 

SAERMA. 

Following the identification of significant pathways associated with GWAS 

results, a series of analysis were conducted using ARM for each of the pathways 

as well as the union of the genes within all pathways. The analysis concluded 

by testing a number of classifiers (using MLP) to measure the performance of 

the variants within the identified pathways when discriminating between cases 

and controls. A diagram with the steps conducted is shown in Figure 5-17. 

Pathway 1 ...

ARM

Classification
MLP

Significant genes

Pathway 2

ARM

Classification
MLP

Significant genes

Pathway n

ARM

Classification
MLP

Significant genes

All Pathways

ARM

Classification
MLP

Significant genes

 

Figure 5-17: Diagram for proposed proof of concept biological filtering approach 

In the following section, the results obtained using the steps depicted in 

Figure 5-17 are presented. 
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5.1.2.1 i-GSEA4GWAS Results 

All the variants and corresponding P-values after association analysis with 

logistic regression (240,950 SNPs) were used as input to the i-GSEA4GWAS 

web tool. Next, the identification of pathway/gene sets associated with obesity 

was conducted using the default tool parameters. 

After running i-GSEA4GWAS, four canonical pathways were identified 

based on enrichment analysis. Additionally, 164 GO terms were also found and 

reported in Appendix F. In Table 5-4, a list with the significant canonical 

pathways identified is reported. The table include the pathway name, 

description, gene set P-value, gene set false discovery rate (FDR) and the 

number of significant genes involved in each pathway. These results are 

reported as a proof of concept for future work so a deeper investigation of the 

findings will be required. 

Pathway Name Description 
Gene Set 

P-Value 

Gene Set 

FDR 

Mapped 

Genes 

WNT Signaling  Wnt Signaling genes  0.002 0.075 26 

ECM Receptor 

Interaction  

Genes involved in ECM-receptor 

interaction  

0.001 0.076 42 

Peptide GPCRS  Peptide G protein-coupled receptors 

(GPCRs) 

< 0.001 0.089 28 

Prostate Cancer Genes involved in prostate cancer 0.002 0.090 30 

Table 5-4: Canonical pathways identified by i-GSEA4GWAS 

For each of the canonical pathways identified, a table with the significant 

gene set and the pathway diagram generated by KEGG are provided below. For 

each associated gene, the SNP ID, the -log(P-value) from association analysis 

(logistic regression), the chromosome where it is located, and gene start-end 

positions are given. The figures display pathway maps with the genes 
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highlighted in red to ease biological interpretation in a network context, a 

feature provided by the DAVID Functional Annotation Tool. 

5.1.2.1.1 WNT Signaling Pathway 

In Table 5-5 the genes associated with the Wnt Signaling pathway are listed. 

Gene Name SNP ID -log(P-value) Chrom # Gene Start Gene End 

FZD5 rs10188753 4.294992 2 208627310 208634287 

WNT11 rs593241 2.74958 11 75897370 75917574 

FZD10 rs615099 2.5247648 12 130647032 130650284 

WNT7A rs13077668 2.4329736 3 13857755 13921618 

CCND2 rs7307707 2.2549253 12 4382902 4414521 

CSNK1E rs17753394 2.2016256 22 38686697 38794527 

MAPK10 rs7439032 2.1237822 4 86936276 87374296 

CTNNB1 rs442115 2.100946 3 41236328 41301587 

PRKD1 rs225987 2.08302 14 30045687 30396948 

JUN rs2764900 2.0379622 1 59246465 59249785 

MYC rs4733616 1.9792246 8 128747680 128753674 

PRKCD rs2230493 1.8843895 3 53190025 53226733 

APC rs454886 1.870955 5 112043218 112181936 

FZD6 rs6990501 1.8335699 8 104311100 104345087 

PRKCE rs6725257 1.7708303 2 45878484 46415129 

PPP2R5E rs1255771 1.7687854 14 63838075 64010092 

PRKCH rs2255146 1.740645 14 61788435 62017698 

PRKCA rs9889698 1.7110804 17 64298926 64806862 

FZD8 rs2696309 1.6639407 10 35927177 35930362 

CCND1 rs587230 1.6343249 11 69455873 69469241 

PRKCQ rs1409874 1.5793842 10 6469105 6622263 

FZD2 rs12450493 1.5554868 17 42634925 42636907 

SFRP4 rs2722279 1.501276 7 37945534 38065297 

WNT5B rs4765829 1.4882503 12 1726222 1756409 

FZD7 rs10931982 1.4625587 2 202899310 202903160 

LDLR rs2569538 1.418961 19 11200057 11244506 

Table 5-5: Significant genes in the Wnt Signaling pathway 

Figure 5-18 shows the pathway diagram for the Wnt Signaling pathway with 

the associated genes highlighted (see red stars). 
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Figure 5-18: WNT Signaling pathway 
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5.1.2.1.2 ECM Receptor Interaction Pathway 

In Table 5-6 the genes associated with the ECM Receptor Interaction pathway 

are listed. 

Gene Name SNP ID -log(P-value) Chrom # Gene Start Gene End 

VWF rs1063856 3.019951 12 6058040 6233836 

SV2C rs17564993 2.5041783 5 75379304 75621416 

ITGA9 rs4678980 2.4678829 3 37493606 37865005 

COL4A2 rs4773184 2.4429743 13 110958159 111165374 

LAMB4 rs1627354 2.4280584 7 107663993 107770801 

ITGA6 rs1076597 2.3964226 2 173292082 173371181 

ITGA2 rs3212578 2.3619103 5 52285183 52390609 

THBS4 rs2288394 2.3162327 5 79330991 79379110 

LAMC2 rs17479287 2.27311 1 183155174 183214035 

RELN rs362777 2.2685723 7 103112231 103629963 

LAMA2 rs17057233 2.252355 6 129204286 129837714 

CD36 rs1511682 2.2392006 7 79998891 80308593 

COL6A3 rs12328617 2.1219954 2 238232646 238323018 

ITGA8 rs1925809 2.0971272 10 15555948 15762124 

ITGB1 rs11009132 2.0827045 10 33189247 33294720 

ITGA1 rs4865534 2.0795636 5 52083754 52252327 

COL3A1 rs17241561 2.0243845 2 189839046 189877472 

COL5A1 rs11103417 1.9854795 9 137533620 137736686 

LAMB1 rs6943225 1.9593977 7 107564244 107643804 

TNR rs2012430 1.9262817 1 175291935 175712906 

COL6A1 rs2839086 1.924453 21 47401651 47424964 

ITGA11 rs8041354 1.9037855 15 68594050 68724492 

TNC rs1330368 1.7859514 9 117782806 117880486 

ITGA4 rs6740847 1.779892 2 182321619 182400914 

SDC2 rs6983702 1.7302536 8 97505882 97624037 

COL2A1 rs7299271 1.7272304 12 48366748 48398285 

SV2B rs7182678 1.7203331 15 91643515 91844539 

ITGA10 rs1109216 1.7153437 1 145524891 145543868 

COL1A2 rs17166182 1.7046529 7 94023873 94060544 

CD44 rs10128562 1.7020208 11 35160417 35253946 

COL11A1 rs7537288 1.6968039 1 103342023 103574052 

THBS2 rs4708599 1.6850799 6 169615875 169654139 

IBSP rs2627704 1.6627405 4 88720710 88733587 

HSPG2 rs747546 1.5295895 1 22148738 22263790 

LAMA4 rs9374352 1.4971634 6 112429134 112575849 

FN1 rs10804242 1.488384 2 216225163 216300895 

ITGA3 rs9890077 1.4320331 17 48133340 48167848 

SDC1 rs17652287 1.3715088 2 20400558 20425194 

COL6A2 rs9975613 1.3639135 21 47518011 47552763 
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COL4A1 rs2275843 1.3638132 13 110801318 110959496 

LAMA1 rs6650624 1.3352641 18 6941743 7117813 

SDC3 rs4949184 1.3220283 1 31342313 31381608 

Table 5-6: Significant genes in the ECM Receptor Interaction pathway 

Figure 5-19 shows the pathway diagram for the ECM Receptor Interaction 

pathway with the associated genes highlighted (see red stars). 

 

Figure 5-19: ECM Receptor Interaction pathway 
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5.1.2.1.3 Peptide GPCRS Pathway 

In Table 5-7 the genes associated with the Peptide GPCRS pathway are listed. 

Gene Name SNP ID -log(P-value) Chrom # Gene Start Gene End 

TSHR rs12883673 3.2008662 14 81421775 81612646 

SSTR4 rs12480596 2.8787684 20 23016057 23017314 

FSHR rs10469872 2.698319 2 49189296 49381676 

OPRM1 rs1937834 2.183825 6 154331636 154568001 

EDNRA rs1400558 2.1297717 4 148401907 148466106 

ATP8A1 rs13139219 2.1161683 4 42410390 42659122 

TACR3 rs12501131 2.09023 4 104507188 104640973 

EDNRB rs1324791 2.0281677 13 78469616 78493903 

TAC4 rs8080832 1.8127614 17 47915671 47925379 

TACR1 rs7576919 1.7654827 2 75276231 75426826 

NMBR rs6902780 1.6998395 6 142379467 142409936 

MC4R rs474112 1.6145725 18 58038564 58040001 

TRHR rs6469232 1.583859 8 110099724 110131813 

SSTR2 rs1037257 1.5492891 17 71161160 71168060 

FPR1 rs4801891 1.5422695 19 52249027 52255150 

SSTR1 rs11628551 1.5297365 14 38677204 38682268 

NPY2R rs17032433 1.4866492 4 156129781 156138227 

CCR2 rs4513489 1.4795165 3 46395225 46402419 

CCKBR rs11040816 1.4710833 11 6280966 6293357 

OPRD1 rs1485471 1.4704413 1 29138654 29190208 

CCR3 rs3136667 1.4464811 3 46205096 46308111 

CCR1 rs3136667 1.4464811 3 46243200 46249887 

AVPR1A rs12815070 1.4332091 12 63540216 63546590 

CX3CR1 rs4676487 1.4060497 3 39304985 39323186 

NTSR2 rs7578132 1.4027437 2 11798304 11810290 

BDKRB2 rs11624761 1.3831046 14 96671135 96710666 

GALR1 rs2717121 1.3497896 18 74962505 74980858 

CCR6 rs3798315 1.3431355 6 167525295 167553184 

Table 5-7: Significant genes in the Peptide GPCRS pathway 

Figure 5-20 shows the pathway diagram for the Peptide GPCRS pathway 

with the associated genes highlighted (see red stars). 
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Figure 5-20: Peptide GPCRS pathway 
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5.1.2.1.4 Prostate Cancer Pathway 

In Table 5-8 the genes associated with the Prostate Cancer pathway are listed. 

Gene Name SNP ID -log(P-value) Chrom # Gene Start Gene End 

TCF7L2 rs290475 3.1709538 10 114710009 114927437 

CREB5 rs42695 2.6987529 7 28338940 28865511 

CCNE1 rs11672342 2.5104635 19 30302901 30315216 

CREB1 rs17203016 2.4873157 2 208394461 208468155 

FGFR2 rs10510097 2.4474535 10 123237848 123357972 

TGFA rs11466212 2.184555 2 70674412 70781325 

CTNNB1 rs442115 2.100946 3 41236328 41301587 

LEF1 rs1291490 2.073092 4 108968701 109089578 

PIK3R1 rs16897333 2.0296066 5 67522462 67597649 

AKT3 rs12048930 2.0193605 1 243651535 244013430 

EGFR rs11773818 1.9892762 7 55086714 55324313 

EGF rs17041230 1.9775716 4 110834047 110933422 

IGF1R rs4966035 1.975925 15 99192200 99507759 

CREB3L2 rs273945 1.871924 7 137559725 137686813 

BCL2 rs2849379 1.8288589 18 60790579 60987361 

PIK3CD rs7518793 1.8215986 1 9711803 9788977 

E2F2 rs2075993 1.7986028 1 23832922 23857712 

KRAS rs10842514 1.7767637 12 25358182 25403854 

CHUK rs11190421 1.7039933 10 101948055 101989376 

CCND1 rs587230 1.6343249 11 69455873 69469241 

PDGFRA rs6857523 1.5221555 4 55095457 55164414 

NFKB1 rs13116385 1.4845235 4 103422486 103538459 

PTEN rs17322612 1.4076011 10 89622870 89731687 

FOXO1 rs7327621 1.3900856 13 41129817 41240734 

FGFR1 rs4739561 1.3682519 8 38268656 38326352 

RAF1 rs3730269 1.3585259 3 12625100 12705725 

PIK3R5 rs9895992 1.3391346 17 8782228 8869024 

PDGFB rs879180 1.3368647 22 39619364 39640756 

CREB3L3 rs350885 1.3213906 19 4153629 4173050 

CASP9 rs6685648 1.3139002 1 15814735 15853029 

Table 5-8: Significant genes in the Prostate Cancer pathway  

Figure 5-21 shows the pathway diagram for the Prostate Cancer pathway 

with the associated genes highlighted (see red stars). 
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Figure 5-21: Prostate Cancer pathway 

5.1.2.2 Association Rule Mining analysis of significant pathways 

The association rules presented in this section are driven by biological 

knowledge using gene set enrichment analysis. This has the potential to identify 

epistasis in biologically functional genes. 

The following table (see Table 5-9) provides a summary of the number of 

rules identified by the Apriori algorithm for each pathway in cases and controls, 

and how many of these were significant. 

Pathway # Rules CA # Rules CAO Sig. Rules CA Sig. Rules CO 

WNT Signaling  40 58 13 17 

ECM Receptor 

Interaction  
214 328 58 47 

Peptide GPCRS  23 16 12 4 

Prostate Cancer 111 161 31 44 

All Pathways 4,574 6,048 1,371 1,720 

Table 5-9: ARM summary for canonical pathways 
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Next, ARM results for each canonical pathway are presented. Moreover, 

results for the union of genetic variants within the four pathways are also 

reported. 

5.1.2.2.1 ARM for WNT Signaling Pathway 

In Table 5-10 the most significant rules identified in cases are listed. It can be 

noted that lift values are very close to 1 while chi-square values are lower than 

3.84. This indicates that elements in the rules are independent as previously 

discussed in Chapter 3. 

Rank Rule Supp. Conf. Lift 𝝌𝟐 

1 {rs2255146_A_D} => {rs12450493_A_D} 0.612 0.865 1.015 2.786 

2 {rs7307707_T_D} => {rs6990501_G_D} 0.625 0.827 1.015 2.695 

3 {rs2255146_A_D} => {rs2722279_C_D} 0.609 0.860 1.015 2.604 

4 {rs2722279_C_D,rs593241_T_D} => {rs6990501_G_D} 0.605 0.826 1.014 2.118 

5 {rs12450493_A_D,rs593241_T_D} => {rs6990501_G_D} 0.605 0.822 1.009 0.961 

6 {rs17753394_G_D} => {rs12450493_A_D} 0.629 0.860 1.009 1.194 

7 {rs6990501_G_D} => {rs12450493_A_D} 0.699 0.858 1.006 0.906 

8 {rs6990501_G_D} => {rs2722279_C_D} 0.694 0.852 1.005 0.579 

9 {rs7307707_T_D} => {rs593241_T_D} 0.656 0.869 1.005 0.440 

10 {rs6990501_G_D} => {rs593241_T_D} 0.708 0.869 1.005 0.554 

11 {rs2722279_C_D} => {rs2569538_A_D} 0.688 0.812 1.003 0.136 

12 {rs2255146_A_D} => {rs593241_T_D} 0.613 0.867 1.002 0.068 

13 {rs7307707_T_D} => {rs2722279_C_D} 0.642 0.849 1.002 0.071 

Table 5-10: Rules identified in cases for the Wnt signalling pathway 

The most significant rules identified in controls are reported in Table 5-11. 

In this occasion, although lift is not much larger than 1, the chi-square value for 

the top rule (rule 1) is higher than 3.84. This supports dependency of the rule 

{rs4733616_T_D} => {rs2569538_A_D}. 
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Rank Rule Supp. Conf. Lift 𝝌𝟐 

1 {rs4733616_T_D} => {rs2569538_A_D} 0.622 0.861 1.021 6.918 

2 {rs12450493_A_D,rs2722279_C_D} => {rs593241_T_D} 0.638 0.823 1.014 3.137 

3 {rs7439032_T_D} => {rs2722279_C_D} 0.601 0.889 1.010 1.693 

4 {rs2230493_C_D} => {rs12450493_A_D} 0.630 0.892 1.009 1.539 

5 {rs593241_T_D} => {rs2722279_C_D} 0.721 0.888 1.009 2.593 

6 {rs4733616_T_D} => {rs12450493_A_D} 0.643 0.891 1.007 1.142 

7 {rs2722279_C_D,rs7307707_T_D} => {rs2569538_A_D} 0.600 0.849 1.007 0.709 

8 {rs6990501_G_D} => {rs12450493_A_D} 0.683 0.890 1.007 1.228 

9 {rs593241_T_D} => {rs12450493_A_D} 0.723 0.890 1.006 1.307 

10 {rs2230493_C_D} => {rs2722279_C_D} 0.624 0.885 1.005 0.520 

11 {rs7307707_T_D} => {rs2569538_A_D} 0.682 0.848 1.005 0.595 

12 {rs587230_A_D} => {rs2569538_A_D} 0.605 0.847 1.004 0.281 

13 {rs17753394_G_D} => {rs12450493_A_D} 0.609 0.888 1.004 0.254 

14 {rs7439032_T_D} => {rs12450493_A_D} 0.600 0.888 1.003 0.199 

15 {rs6990501_G_D} => {rs2569538_A_D} 0.649 0.846 1.003 0.201 

16 {rs587230_A_D} => {rs12450493_A_D} 0.632 0.886 1.002 0.050 

17 {rs6725257_A_D} => {rs12450493_A_D} 0.602 0.886 1.001 0.019 

Table 5-11: Rules identified in controls for the Wnt pathway 

The network visualisation plots for the most significant rules identified in 

cases and controls for the Wnt signalling pathway are depicted in Figure 5-22 

and Figure 5-23 respectively. The visualisation indicates, in a visual way, how 

the genetic variants in the rules interact, which rules are more frequent, and their 

level of correlation based on graph-based visualization as detailed in Section 

3.5.4. 
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Figure 5-22: Rule visualisation network for the Wnt signalling pathway in cases 

 

 

Figure 5-23: Rule visualisation network for the Wnt signalling pathway in controls 

5.1.2.2.2 ARM for ECM Receptor Interaction Pathway 

In this case, the number of significant rules identified in cases was 58 while 47 

rules were identified in controls (see Table 5-9). Since the number of rules is 

large, only the top 10 were listed below. For the whole list of rules identified 

for the ECM receptor interaction pathway please refer to Appendix G. 
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Therefore, the top 10 most significant rules identified for ECM receptor 

interaction pathway in cases are listed in Table 5-12. 

Based on ARM dependence framework, only rules 1, 2, 3, 4, 5, 19 and 21 in 

cases (see Appendix G) are showing dependency (although weak) since lift > 1 

and 𝜒2 is > 3.84. 

Rank Rule Supp. Conf. Lift  𝝌𝟐 

1 {rs3212578_A_D,rs8041354_T_D} => {rs17057233_C_D} 0.654 0.906 1.023 9.375 

2 {rs17057233_C_D,rs7537288_G_D} => {rs3212578_A_D} 0.671 0.885 1.020 7.478 

3 {rs7182678_G_D} => {rs12328617_A_D} 0.613 0.889 1.018 4.370 

4 {rs12328617_A_D,rs3212578_A_D} => {rs7537288_G_D} 0.667 0.877 1.017 5.206 

5 {rs12328617_A_D,rs17057233_C_D} => {rs3212578_A_D} 0.678 0.882 1.017 5.528 

6 {rs747546_T_D} => {rs4865534_G_D} 0.644 0.814 1.017 3.783 

7 {rs17479287_A_D,rs7537288_G_D} => {rs3212578_A_D} 0.622 0.881 1.016 3.565 

8 {rs17479287_A_D,rs7537288_G_D} => {rs1627354_A_D} 0.622 0.881 1.016 3.565 

9 {rs9975613_C_D} => {rs1627354_A_D} 0.618 0.880 1.015 3.112 

10 {rs12328617_A_D,rs1627354_A_D} => {rs17479287_A_D} 0.639 0.843 1.015 2.871 

Table 5-12: Top 10 rules identified in cases for the ECM receptor interaction pathway 

Similarly, the top 10 most significant rules identified for ECM receptor 

interaction pathway in controls are listed in Table 5-13. As observed from the 

table, identified rules are independent.  

Rank Rule Supp. Conf. Lift 𝝌𝟐 

1 {rs1627354_A_D,rs7537288_G_D} => {rs362777_C_D} 0.631 0.848 1.014 3.440 

2 {rs1627354_A_D,rs17057233_C_D} => {rs8041354_T_D} 0.610 0.802 1.014 2.489 

3 {rs12328617_A_D,rs17057233_C_D} => {rs8041354_T_D} 0.611 0.801 1.012 1.811 

4 {rs6983702_T_D} => {rs362777_C_D} 0.618 0.846 1.011 1.985 

5 {rs7537288_G_D} => {rs8041354_T_D} 0.655 0.800 1.011 2.159 

6 {rs1627354_A_D,rs8041354_T_D} => {rs362777_C_D} 0.610 0.845 1.011 1.638 

7 {rs17564993_T_D} => {rs12328617_A_D} 0.627 0.920 1.010 2.592 

8 {rs3212578_A_D} => {rs7537288_G_D} 0.679 0.826 1.009 1.940 

9 {rs8041354_T_D} => {rs17057233_C_D} 0.670 0.846 1.009 1.689 

10 {rs9890077_C_D} => {rs17057233_C_D} 0.645 0.846 1.009 1.392 

Table 5-13: Top 10 rules identified in controls for the ECM receptor interaction 

pathway 
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The network visualisation plots for the most significant rules identified in 

cases and controls for the ECM receptor interaction pathway are depicted in 

Figure 5-24 and Figure 5-25 respectively. These plots include the total number 

of significant rules identified. As the number of rules depicted increases, the 

network plot become less readable. 

 

Figure 5-24: Rule visualisation network for the ECM receptor interaction pathway in 

cases 
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Figure 5-25: Rule visualisation network for the ECM receptor interaction pathway in 

controls 

5.1.2.2.3 ARM for Peptide GPCRS Pathway  

The most significant rules identified in cases for the peptide GPCRS pathway 

are listed in Table 5-14. For this pathway, 12 rules were identified with lift 

values slightly higher than 1, although only rules 1, 2, 3 and 4 had  

𝝌𝟐 values higher than 3.84. These four rules are therefore dependent.  

Rank Rule Supp. Conf. Lift 𝝌𝟐 

1 {rs8080832_C_D} => {rs6469232_A_D} 0.612 0.821 1.018 3.597 

2 {rs12883673_C_D,rs3136667_C_D} => {rs11628551_T_D} 0.625 0.935 1.017 6.121 

3 {rs12883673_C_D} => {rs11628551_T_D} 0.721 0.932 1.014 6.970 

4 {rs8080832_C_D} => {rs11628551_T_D} 0.693 0.930 1.012 3.849 

5 {rs3798315_A_D} => {rs11628551_T_D} 0.697 0.929 1.010 3.262 

6 {rs11628551_T_D,rs3136667_C_D} => {rs6469232_A_D} 0.644 0.814 1.010 1.292 

7 {rs3798315_A_D} => {rs6469232_A_D} 0.610 0.812 1.007 0.518 

8 {rs6469232_A_D} => {rs3136667_C_D} 0.697 0.865 1.005 0.625 

9 {rs12883673_C_D} => {rs3136667_C_D} 0.668 0.863 1.004 0.250 

10 {rs6469232_A_D} => {rs11628551_T_D} 0.744 0.922 1.004 0.505 

11 {rs3798315_A_D} => {rs3136667_C_D} 0.647 0.862 1.002 0.093 

12 {rs3136667_C_D} => {rs11628551_T_D} 0.791 0.919 1.000 0.001 

Table 5-14: Rules identified in cases for the peptide GPCRS pathway 
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Conversely, only one rule was identified as correlated (rule 1) in controls as 

can be observed in Table 5-15. Additionally, a small number of significant rules 

were identified in controls for this pathway. 

Rank Rule Supp. Conf. Lift 𝝌𝟐 

1 {rs6469232_A_D} => {rs12883673_C_D} 0.644 0.841 1.017 4.836 

2 {rs6469232_A_D} => {rs11628551_T_D} 0.682 0.890 1.004 0.519 

3 {rs3136667_C_D} => {rs11628551_T_D} 0.734 0.887 1.001 0.057 

4 {rs8080832_C_D} => {rs11628551_T_D} 0.619 0.887 1.001 0.015 

Table 5-15: Rules identified in controls for the peptide GPCRS pathway 

The network visualisation plots for the most significant rules identified in 

cases and controls for the peptide GPCRS pathway are depicted in Figure 5-26 

and Figure 5-27 respectively. 

 

Figure 5-26: Rule visualisation network for the peptide GPCRS pathway in cases 
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Figure 5-27: Rule visualisation network for the peptide GPCRS pathway in controls 

5.1.2.2.4 ARM for Prostate Cancer Pathway 

Only the top 10 most significant rules were reported for the prostate cancer 

pathway as the number of rules generated was large (see Table 5-9). The full 

list of rules identified for cases and controls is provided in Appendix G. No rules 

were identified as dependent in cases and controls as observed in Table 5-16 

and Table 5-17 respectively.  

Rank Rule Supp. Conf. Lift 𝝌𝟐 

1 {rs10510097_A_D} => {rs42695_A_D} 0.631 0.838 1.014 2.391 

2 {rs11672342_T_D} => {rs16897333_G_D} 0.626 0.816 1.012 1.646 

3 {rs2849379_T_D} => {rs11466212_G_D} 0.662 0.862 1.009 1.438 

4 {rs16897333_G_D,rs4739561_T_D} => {rs11190421_A_D} 0.610 0.854 1.008 0.850 

5 {rs6857523_A_D} => {rs4739561_T_D} 0.638 0.898 1.008 1.033 

6 {rs11466212_G_D,rs4739561_T_D} => {rs17041230_A_D} 0.667 0.883 1.006 0.734 

7 {rs42695_A_D,rs4739561_T_D} => {rs11190421_A_D} 0.626 0.851 1.006 0.464 

8 {rs2849379_T_D} => {rs13116385_T_D} 0.618 0.804 1.006 0.396 

9 {rs17041230_A_D,rs4739561_T_D} => {rs13116385_T_D} 0.628 0.804 1.005 0.272 

10 {rs17041230_A_D,rs2849379_T_D} => {rs4739561_T_D} 0.601 0.895 1.005 0.315 

Table 5-16: Top 10 rules identified in cases for the prostate cancer pathway 
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Rank Rule Supp. Conf. Lift 𝝌𝟐 

1 {rs587230_A_D} => {rs17041230_A_D} 0.605 0.847 1.014 2.775 

2 {rs17041230_A_D,rs42695_A_D} => {rs13116385_T_D} 0.621 0.849 1.014 2.879 

3 {rs13116385_T_D,rs4739561_T_D} => {rs17041230_A_D} 0.603 0.846 1.012 2.122 

4 {rs11190421_A_D,rs11466212_G_D} => {rs17041230_A_D} 0.602 0.846 1.012 2.033 

5 {rs10510097_A_D,rs13116385_T_D} => {rs42695_A_D} 0.606 0.886 1.012 2.422 

6 {rs11672342_T_D} => {rs2849379_T_D} 0.666 0.819 1.011 2.554 

7 {rs11190421_A_D,rs17041230_A_D} => {rs11672342_T_D} 0.609 0.822 1.010 1.493 

8 {rs17041230_A_D} => {rs13116385_T_D} 0.707 0.846 1.009 2.493 

9 {rs13116385_T_D,rs4739561_T_D} => {rs42695_A_D} 0.630 0.883 1.009 1.489 

10 {rs16897333_G_D} => {rs11466212_G_D} 0.617 0.816 1.009 1.106 

Table 5-17: Top 10 rules identified in controls for the prostate cancer pathway 

The network visualisation plots for the most significant rules identified in 

cases and controls for the prostate cancer pathway are depicted in Figure 5-28 

and Figure 5-29 respectively. 

 

Figure 5-28: Rule visualisation network for the prostate cancer pathway in cases 
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Figure 5-29: Rule visualisation network for the prostate cancer pathway in controls 

5.1.2.2.5 ARM for the Union of All Canonical Pathways 

In this section, the rules identified for the union of the four most significant 

canonical pathways are reported. A total of 191 and 112 correlated rules were 

identified for cases and controls respectively (see Appendix G). Since the 

number of generated rules is large, only the top 10 rules are listed in Table 5-18 

(cases) and Table 5-19 (controls). 

Rank Rule Supp. Conf. Lift 𝝌𝟐 

1 {rs10510097_A_D,rs17041230_A_D} => {rs17057233_C_D} 0.601 0.913 1.032 13.385 

2 {rs3212578_A_D,rs4739561_T_D} => {rs6990501_G_D} 0.647 0.839 1.030 11.947 

3 {rs10510097_A_D,rs3212578_A_D} => {rs17057233_C_D} 0.605 0.911 1.029 11.444 

4 {rs11628551_T_D,rs16897333_G_D} => {rs2722279_C_D} 0.645 0.872 1.029 11.832 

5 {rs10510097_A_D,rs11628551_T_D} => {rs17057233_C_D} 0.626 0.911 1.029 12.343 

6 {rs11628551_T_D,rs12328617_A_D,rs3212578_A_D} => {rs7537288_G_D} 0.615 0.887 1.028 10.113 

7 {rs17057233_C_D,rs2722279_C_D,rs7537288_G_D} => {rs11628551_T_D} 0.604 0.945 1.028 13.769 

8 {rs362777_C_D,rs593241_T_D} => {rs17041230_A_D} 0.612 0.901 1.027 9.978 

9 {rs11190421_A_D,rs11628551_T_D} => {rs747546_T_D} 0.629 0.812 1.027 8.342 

10 {rs17041230_A_D,rs3212578_A_D,rs4739561_T_D} => {rs17057233_C_D} 0.611 0.909 1.027 9.822 

Table 5-18: Top 10 rules identified in cases for the union of all canonical pathways 
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Rank Rule Supp. Conf. Lift 𝝌𝟐 

1 {rs12450493_A_D,rs7537288_G_D} => {rs4739561_T_D} 0.634 0.875 1.024 9.692 

2 {rs11628551_T_D,rs8041354_T_D} => {rs2569538_A_D} 0.602 0.863 1.023 7.317 

3 {rs11190421_A_D,rs11628551_T_D,rs4739561_T_D} => {rs12450493_A_D} 0.602 0.905 1.023 8.676 

4 {rs12450493_A_D,rs4739561_T_D} => {rs8041354_T_D} 0.615 0.809 1.023 6.825 

5 {rs17479287_A_D,rs362777_C_D} => {rs10510097_A_D} 0.608 0.831 1.021 6.054 

6 {rs6469232_A_D} => {rs593241_T_D} 0.635 0.829 1.021 7.145 

7 {rs11190421_A_D,rs17041230_A_D} => {rs3798315_A_D} 0.606 0.817 1.021 5.788 

8 {rs10510097_A_D,rs11628551_T_D} => {rs593241_T_D} 0.600 0.829 1.021 5.712 

9 {rs4733616_T_D} => {rs2569538_A_D} 0.622 0.861 1.021 6.918 

10 {rs12328617_A_D,rs7537288_G_D} => {rs2849379_T_D} 0.614 0.827 1.021 6.055 

Table 5-19: Top 10 rules identified in controls for the union of all canonical pathways 

The network visualisation plots for the most significant rules identified in 

cases and controls for the union of all canonical pathways are depicted in Figure 

5-30 and Figure 5-31 respectively. For each visualisation, the arulesViz package 

only plots a maximum of 100 rules (top 100) as the network visualisation 

becomes unreadable. 

 

Figure 5-30: Rule visualisation network for the union of all canonical pathways 
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Figure 5-31: Rule visualisation network for the union of all canonical pathways 

5.1.2.3 Classification analysis using pathway features 

In this section, classification analyses are conducted using MLP only. Stacked 

autoencoders are no longer needed since our feature selection is based on 

biological pathways. The idea is to demonstrate whether features based on 

biological knowledge provide better classification results than a statistical 

filtering approach or not. 

Based on methods described in Chapter 3, the performance of the different 

classifiers is reported using the SNPs within the most significant rules in each 

pathway as similarly conducted in the experiments with SAERMA. The 

network architecture and the regularization parameters were tuned as described 

in previous experiments using random search, while early stopping was adopted 

to avoid overfitting. Once more, ADADELTA was used for stochastic gradient 

descent optimisation, with parameters rho and epsilon set to 0.99 and 1x10-8 
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respectively. For each classifier, the name of the pathway, the number of 

features (SNPs) used as features and the performance metrics are provided. 

Pathway SNPs Set SE SP Gini LogLoss AUC MSE 

WNT 13 
V 0.94 0.18 0.18 0.68  0.59 0.24 

T 0.95  0.11 0.17 0.68  0.59 0.24 

EMC 17 
V 0.98 0.07 0.24 0.67 0.62 0.24 

T 1.00 0.02 0.18 0.68 0.59 0.24 

GPCRS 6 
V 0.91 0.19 0.22 0.67  0.61 0.24 

T 0.99 0.01 0.10 0.69 0.55 0.25 

Prostate Cancer 14 
V 1.00 0.035  0.15 0.68  0.58 0.25 

T 0.88 0.30 0.23  0.68  0.62 0.24 

All Pathways 47 
V 0.81 0.47 0.40 0.63  0.70 0.22 

T 0.92 0.28 0.30 0.65  0.65 0.23 

Table 5-20: Performance for classification analysis using the different canonical 

pathways and the union 

The best model performance was achieved by the combination of all 

pathways with 65% AUC in the test set. It can be noted that the sensitivities in 

all the classifiers were very low, indicating that models have difficulties to 

correctly recognise non-obese individuals. Conversely, sensitivities for all 

models are very high. In Figure 5-32, the combined ROC curves for the test set 

using trained models with the SNPs of the most significant rules from each 

pathway is depicted. In the figure, the orange ROC curve (all canonical 

pathways) represents the best performance of all classifiers. 
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Figure 5-32: Combined ROC curves for the test set using trained models with the 

SNPs of the most significant rules 

5.2 Chapter summary 

In this chapter, association rules identified by SAERMA were biologically 

validated via pathway analysis using DAVID and functional data obtained using 

the KEGG and the Reactome pathway knowledgebase. The results confirmed 

the effectiveness of ARM for the discovery of epistasis in complex diseases 

using GWAS data as several rules were identified in pathways relevant to 

obesity. To demonstrate this, three main pathways were reported: metabolism 

pathway, metabolism of lipids and FOXO-mediated transcription of oxidative 

stress, metabolic and neuronal genes pathway. 

Additionally, a proof of concept experiment was performed (therefore future 

work needs to be conducted) to filter genetic variants based on GSEA instead 

of statistical filtering. This experiment was conducted using the improved gene-

set enrichment analysis for GWAS (i-GSEA4GWAS) web tool. Results 

obtained are intended to be compared with those achieved by SAERMA in order 
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to validate the effectiveness of using different filtering methods to reduce 

genome-wide data dimensionality before conducting epistatic analysis in 

complex diseases. 
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 DISCUSSION 

In this study, bioinformatics tools and techniques were combined with deep 

learning and frequent pattern mining, as a framework to capture nonlinear 

dependencies and epistatic interactions between SNPs. GWAS has proven to be 

useful for identifying common genetic variants. However, SNPs are 

independently tested for association with a phenotype of interest, ignoring the 

possible relationships that may exist between genetic variants. Single SNP scan 

is still the most extensively used approach. Hence, a multi-stage procedure has 

been considered in this research, in which a subset of SNPs following quality-

control (QC) and association analysis was selected to explore the epistatic 

interactions between genetic variants using SAE and ARM. The information 

extracted was then used for classification analysis in various experiments and 

the rules validated using gene set enrichment analysis. 

Following QC, 1,997 individuals (879 cases and 1,118 controls) and 240,950 

genetic variants remained for subsequent analysis. This corresponds to 353,084 

SNPs, 127 cases and 146 controls pruned from the original data set. Although 

it is normal for samples and SNPs to be removed after QC filtering procedures, 

an elevated number of genetic variants are removed due to missing genotype 

and MAF as indicated in Table 4-2. Missing call rate is an indicator of data 

completeness, but it is also an indicator of genotype quality (Laurie et al. 2010). 

Thus, using a dataset genotyped with more up to date technology would have 

produced data with higher call rates. 

Genomic control was applied in association analysis to control for population 

stratification. Figure 4-1 indicates that population structure is appropriately 
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managed since there is no early deviation from y = x. This is supported by a 

genomic inflation factor value close to one (λ = 1.0384). A suggestive 

association between extreme obesity and the CDH13 protein-coding gene was 

observed in association analysis, with the most significantly suggestive marker 

being rs763727 (P-value = 1.821x10-6, allele A). The second strongest 

suggestive association was achieved by the marker rs726553 (P-value = 7.330 

x 10-6, allele G), situated in an intergenic region of the genome. The third 

suggestive SNP listed was rs10817737 (P-value = 8.319x10-6, allele A), situated 

in the TMOD1 protein-coding gene. The suggestive variant rs3050 (P-value = 

9.061x10-6, allele A) was located in the protein-coding gene PLEKHG1 and 

rs1278895 (P-value = 9.979x10-6, allele T) in an intergenic region. Using 

SNPnexus the closest genes for the intergenic variants were obtained. 

Therefore, rs726553 is located 109,332 b upstream from the DOCK10 protein-

coding gene, while rs1278895 is located 818 b upstream from RP11-159D23.2, 

which is a long intervening noncoding RNA (lincRNA) (Ulitsky & Bartel 

2013). In Figure 4-3 these five SNPs are highlighted and labelled. 

Three of the reported genes have previously been associated with obesity 

related traits. Particularly, gene CDH13 which is associated with Adiponectin 

levels (Chung et al. 2011), Hypertension (Org et al. 2009) and Coronary Artery 

Disease (CAD) (Nelson et al. 2017). PLEKHG1 has been reported to be 

associated with blood pressure in African-ancestry populations (Liang et al. 

2017). While, DOCK10 is thought to be linked with the response of 

triglycerides (TG) during regular exercise, as reported in (Sarzynski et al. 2015) 

- elevated TG is strongly associated with increased risk of cardiovascular 

disease (CVD). 
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From a clinical perspective, these findings can be seen as relevant since they 

can be used as potential candidate variants for future work on obesity, with 

previous indications of being involved in obesity related traits. From a 

methodological point of view however, these SNPs have been studied in 

isolation, without taking into consideration how they interact with other 

SNPs/genes and cumulatively lead to obesity in humans. 

6.1  Generalised Linear Model with P-values < 10-2  

The first experiment conducted following QC and association analysis tested 

the capacity of the filtered SNPs to discriminate between case and control 

samples using a GLM; the go-to method for binary classification. This 

experiment was used to establish a baseline performance for more advanced ML 

methods. 

Results presented in Section 4.4 indicate that GLM can accurately identify 

case and control individuals using 2,465 features (SNPs) with an AUC of 94% 

(SE = 85%, SP = 90%, Gini = 87%, Logloss = 0.3288 and MSE = 0.0976) when 

using the test set, as shown in Table 4-8. These performance values were 

achieved with alpha and lambda regularisation values equal to 0.5 and 0.00151 

respectively, which were introduced to avoid overfitting (see Table 4-6). 

Although AUC values remained high when 248 and 32 SNPs were used as input 

features (see Table 4-8), specificities started deteriorating when the number of 

SNPs was reduced; achieving the lowest value when only 5 SNPs were used. 

Hence, for GLM to be able to classify cases and controls in a balanced way, the 

model required an elevated number of SNPs (2,465 SNPs).  
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The major limitation however of using GLM is that it is not possible to fit 

models using nonlinear data as in the case of epistasis. Consequently, the use of 

non-linear machine learning algorithms was considered a viable alternative to 

study polygenic obesity in this thesis. 

6.2 Classification using MLP and P-values < 10-2 

The second classification experiment modelled MLP NNs, which have been 

extensively used in bioinformatics. MLPs are non-parametric models that 

provide significant advantages over GLM, including its capacity to capture 

complex non-linear relationships between dependent and independent variables 

through hidden nodes. 

Using an MLP classifier with rectifier as the activation function with dropout 

and genetic variants with P-value < 1x10-2 (2,465 SNPs) it was possible to 

obtain the results (SE = 0.9548, SP = 0.9761, Gini = 0.9878, LogLoss = 0.1061, 

AUC = 0.9938 and MSE = 0.0291). In contrast, using the 5 suggestive SNPs 

(P-value < 1x10-5) resulted in a significant performance drop (SE = 0.9943, SP 

= 0.0622, Gini = 0.2074, LogLoss = 0.6750, AUC = 0.6037 and MSE = 0.2410). 

The lowest specificity (SP = 0.0622) value achieved was also reported in the 

model with 5 SNPs (see Table 4-12), indicating that the model was unable to 

classify normal individuals correctly. In Figure 4-5 (e) and (f) signs of 

overfitting can be observed. In both cases, there is an early divergence between 

the training and validation curves. The effect of overfitting causes the model to 

perform well on the training data but not on the validation set. In other words, 

the model remembers the training samples but does not generalise well to new 

samples. In the classification experiments conducted with 32 SNPs (P-value < 
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1x10-4), SP = 75% in the validation set, SP = 29% in the test set indicated in 

Table 4-11 and Table 4-12 respectively show that the model has been closely 

fitted to the training data; i.e. the model has been overfitted.  

Acceptable results were obtained using MLPs with 2,465 and 248 SNPs as 

inputs, with high AUCs and relatively balanced SE and SP values as shown in 

Table 4-12. However, compared with the GLM classifier experiment, 

specificities started to deteriorate when the number of input features reached 32 

or less. These results reveal that MLP achieve overall better results than GLM, 

probably due to the non-linear interactions that occur between SNPs.  

The preference for MLP as a classifier is, thus, explained by the fact that 

nonlinearities are learnt which is not the case with logistic regression.  

6.3 Epistatic interactions using Stacked Autoencoders 

Following the previous experiments, an important limitation arises concerning 

the epistatic interactions between genetic variants. Despite the capacity of GLM 

and MLP models to classify case and control individuals using a maximum of 

2,465 SNPs, GLM fails to capture the non-linear interactions present in SNP-

to-SNP interactions. Whereas MLP can learn and capture epistatic information, 

yet a high number of features are required to achieve good performance. It is 

not clear to what extend those SNPs interact and what proportion of the data 

actually represents noise. Investigating this further, autoencoders were used 

here to determine if a low-dimensional representation of our input data (2,465 

SNPs) could be achieved, while retaining all relevant information. This helps to 

remove any redundant features with a particular focus on epistasis. 
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In this experiment, a set of 2,465 SNPs (P-value < 1x10-2) and four single 

layer AEs were implemented to compress SNPs through 2,000-1,000-500-50 

hidden units. AEs are stacked to enable greedy layer-wise learning following 

the network architecture defined in Figure 3-11. Each AE and associated 

compressed hidden layer force the network to only retain important information 

(features) in the data. The results produced by the SAE are utilised to pre-train 

the weights for the MLP classifier, rather than randomly initialising the weights 

to small values. This is an advantage of using greedy layer-wise pre-training, 

which helps the model initialise the parameters near to a good local minimum 

and transform the problem space to a better form of optimisation.  

The best result using the test set was obtained using 2,000 hidden units (SE 

= 95%, SP = 93%, Gini = 95%, Logloss = 0.1956, AUC = 0.97497 and MSE = 

0.054057) and a rectifier activation function with dropout. Conversely, the 

worst result was achieved when the features were compressed to 50 hidden units 

(SE = 78%, SP = 80%, Gini = 70%, Logloss = 0.476864, AUC = 85% and MSE 

= 0.156315), which are still encouraging. 

Figure 4-7 shows that there is no significant overfitting between the training 

and validation datasets, except in the subfigures (c-d) and (e-f) where the 

validation logloss tends to increase after 2 epochs, thus deviating from the 

training logloss. While the validation AUCs for 1,000 and 500 compressed units 

plummet with respect to their training AUCs. On the other hand, Figure 4-8 

from (a) to (d) shows a gradual deterioration in performance when the features 

are compressed into a smaller number of hidden units. However, the 

performance is still high even with 50 units, over 85% AUC with SE = 78% and 
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SP = 80% with no evidence of overfitting as shown in Figure 4-7. This supports 

our previous argument and shows that there is significant noise within the initial 

2,465 SNPs. This, thus, demonstrates the potential of the proposed deep 

learning methodology to abstract large, complex and unstructured data into 

latent representations capable of capturing the epistatic effect between SNPs in 

GWAS.  

In comparison with the experiments presented in Sections 4.4 and 4.5 , where 

SNPs were filtered using suggestive SNPs and Bonferroni levels of 

significance, the results are much better and highly encouraging using SAEs. 

Sensitivities and specificities are generally more balanced – for example, 

compare the results in Table 4-12, for 32 SNPs (P-value < 1x10-4), where SE = 

95% and SP = 29% with those in Table 4-16, for 2000-1000-500-50, where SE 

= 79% and SP = 80%. In addition to SE, SP and AUC values, SAEs also 

improved Gini, Logloss and MSE values when compared with models using a 

similar number of input features. Furthermore, the results obtained using SAEs 

with 50 hidden nodes are close to those achieved with 248 SNPs using GLM 

and MLP. A summary of these results is shown in Table 6-1. 

Model Features Set SE SP Gini LogLoss AUC MSE 

GLM 248 SNPs Test 0.9548 0.6315 0.7798 0.4119 0.8899 0.1350 

MLP 248 SNPs Test 0.9039 0.7942 0.8512 0.3475 0.9256 0.1094 

SAE 50 units Test 0.7853 0.7990 0.7036 0.4769 0.8518 0.1563 

Table 6-1: Result comparison for GLM, MLP and SAE using 248, 248 and 50 

features respectively 

Utilising deep learning SAE provides a more effective approach than using 

direct features from statistical approaches such as logistic regression in GWAS 
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for classification tasks, since it improves overall model performance while 

reducing the dimensional space and overfitting. 

Although deep learning is used in Eraslan et al., (2016), this approach differs 

from the approach presented in this section, in that, QC and GWAS are 

conducted using all the SNPs genotyped in the MyCode study dataset. Pre-SNP 

selection, based on functional regulatory effects from a public repository, is not 

applied since the aim of this thesis is to find epistatic interactions between SNPs. 

While DeepWAS concentrates more on biological outcomes (including 

regulatory mechanisms in GWAS), this thesis focuses on testing new algorithms 

for epistasis and classification analysis.  

The experiment reported in this section represents a novel approach with 

emphasis on the feature extraction and classification phases, using latent 

information extracted from high-dimensional genomic data for the 

identification of individuals with higher predisposition to obesity. However, 

compressing the features using SAEs makes it difficult to identify which of the 

2,465 SNPs contributes to the compressed hidden units. This is a well-known 

problem in neural networks where model interpretation is difficult to achieve 

(Manning et al. 2014). Consequently, there is a need to support the interpretation 

of any model used to fully understand the genetic influence SNPs have in the 

manifestation of phenotypes.  

In order to address this issue, the final experiment combines the strength of 

SAE for the identification of epistasis and ARM via the Apriori algorithm, to 

provide an interpretation of the deep learning networks utilised in this research.  
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6.4 SAERMA 

An advantage of ARM is that the underlying algorithms they use provide a more 

interpretable way to identify features and the interactions between them through 

the rules that ARM identifies. ARM is more transparent than other machine 

learning algorithms as it provides knowledge based explanative rules, serving 

therefore as a white-box model. Hence, this approach allows us to investigate 

relevant epistatic patterns and to determine the direction of associations between 

SNPs, while the use of SAE and MLP classification provides an objective 

performance measure for the models ARM produces. These are tightly 

correlated in that altering the interest measures (support and confidence) in 

ARM impacts on the performance metrics of the SAE and MLP models as 

discussed later.  

Generating association rules using frequent itemset results in a large number 

of rules, many of which are redundant. Therefore, in the rule generation process, 

redundant rules were removed to alleviate the high number of rules being 

generated in the rule mining process and aid with computational efficiency. 

Although lift values for all the most significant rules in cases and controls were 

slightly higher than 1, the dependency of the rules was supported by very high 

values of 𝜒2. Furthermore, the frequency of appearance of the rules (support) in 

both cases and controls was ~60%. This means that even though exclusive 

patterns were identified in cases, they were not common in all individuals 

classified as extremely obese (only in ~60% of the samples). The inference 

made by an association rule does not necessarily imply causality. Counterwise, 

it suggests a strong relationship between SNPs in the antecedent and consequent 
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of the rule. Causality, in contrast, requires certain knowledge about the cause 

and effect of attributes in the data and typically involves relationships occurring 

over time. Hence, ARM results need to be carefully interpreted. 

One of the possible reasons why obesity related variants within the genes 

FTO or MC4R were not identified in any stages of the proposed methodology, 

may be due to the effect of removing a very large number of variants by using 

stringent thresholds in the per-marker QC step. It is known that statistical power 

to detect an SNP of a given effect via GWAS increases with both sample size 

and the density of genetic variants across the genome (Spencer et al. 2009) and, 

in this study, the sample size is relatively small (1,997 individuals after QC) and 

the density of markers was also reduced considerably (240,950 SNPs after QC). 

While no variants were identified within these well-known genes, other genes 

with previously reported implications with obesity were identified, including 

CDH13, PLEKHG1 and DOCK10. These variants were identified utilising 

standard GWAS procedures with logistic regression, so, while the SNPs are 

considered individually suggestive of association, it is not clear that they 

intervene in epistatic interactions. However, epistasis was explored using the 

proposed method where several rules were identified as significant and their 

genes reported and tested for classification analysis. 

Although reporting SNP to genes mapping might provide information about 

whether they have been previously reported to be associated with obesity or not, 

this does not validate the association rules from a biological perspective. That 

is, it is not possible to know if the rules truly represent epistasis or just random 

relationship between SNPs mined by the Apriori algorithm. Therefore, using 
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functional and computational follow-up analyses, the top 300 most significant 

association rules identified by SAERMA in cases and controls were validated. 

We gained insights into rules-implicated genes and the biological pathways 

through which they influence obesity. The results revealed a relationship 

between rules identified by SAERMA and biological pathways with roles in 

metabolism (including metabolism of lipids) and neurobiology in body weight 

regulation (FOXO-mediated transcription of oxidative stress, metabolic and 

neuronal genes) which validates the potential of ARM in epistatic analysis. 

Particularly, the following rules (see Table 6-2) were identified for the main 

three pathways highlighted, although more were identified as reported in Table 

5-3. 

Path Cases Controls 

M
et

ab
o

li
sm

 

{ACAD10}=>{ALDH2} {ATXN2, ALDH2, ACAD10}=>{ATXN2} 

{ALDH2, RP3-462E2.3}=>{ACAD10} {ENTPD4, ATXN2}=>{ATXN2} 

{ALDH2, RP3-462E2.3}=>{ALDH2} {MAPKAPK5, ATXN2, ACAD10, SLC10A2}=>{ATXN2} 

{MAPKAPK5, ACAD10, HECTD4}=>{ALDH2} {AOX1, DOCK4}=>{SGOL2} 

{NAA25, ACAD10}=>{ACAD10} {ATXN2, ACAD10, HECTD4}=>{ATXN2} 

{SGOL2}=>{AOX1} {MTMR7}=>{MTMR7} 

 {HK1, GRIK1}=>{GRIK1} 

L
ip

id
s 

{ACAD10, RP3-462E2.3}=>{ACAD10} 
{MAPKAP5, ATXN2, ACAD10, SLC10A2}=>{ATXN2} 

{MTMR7}=>{MTMR7} 

F
O

X
O

 

{HDCA2, ACAD10}=>{BRAP} {ATXN2, NPY}=>{ATXN2} 

Table 6-2: Identified rules within relevant obesity pathways 

Several relevant genes were identified in the three pathways highlighted (two 

super pathways and a contained pathway), some of them with implications in 

the synthesis and breakdown of fatty acids (key in energy metabolism) and the 

control of appetite and food intake. As an example, NPY stimulates food intake 
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and weight gain, ACAD10 contribute to the beta-oxidation of fatty acids in the 

mitochondria, SLC10A2 plays a key role in cholesterol metabolism or HK1, 

which catalyses the conversion of glucose into glucose-6-phosphate, the first 

essential step of glucose metabolism. Furthermore, those genes within the 

identified rules mapped to the pathways (highlighted in Table 6-2), also interact 

with genes that have been previously linked with obesity. For example, the 

ATXN2 gene has been involved in severe early onset obesity in children 

(Figueroa et al. 2009). Moreover, loss of function mutations in this gene may 

be associated with disease susceptibility (type I diabetes, obesity and 

hypertension) as indicated by GWAS. The MAPKAPK5 gene, which has shown 

gender-dependent differences in anxiety-related processes and locomotor 

activity in mice (Gerits et al. 2007). A weak but positive association between 

anxiety and obesity in humans has been reported, although further studies were 

recommended by Gariepy et al. (2010). Furthermore, the GRIK1 gene has been 

reported as a novel obesity candidate gene that may contribute to highly 

penetrant forms of familial obesity (Serra-Juhé et al. 2017). 

These identified genes represent, thus, potential targets which could lead to 

novel and more precise approaches for the treatment of obesity. 

6.4.1 Classification analysis 

After rule mining was applied to the filtered SNPs (2,465 SNPs), several 

classifiers were pre-trained with the compressed units extracted from the top 

300, 200, 100 and 50 rules. For each set of rules, their SNPs (forming the rules) 

were used as input features for several SAEs. Then, the MLP classifiers were 
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initialised and fine-tuned with the final hidden layer of the SAE. The results are 

presented in Table 4-20 to Table 4-23. 

Top 300 rules 

In the first set of 300 rules with 204 SNPs, the best result in the test set was 

achieved when the input features were compressed to 100 units, with an AUC 

of 77%, SE = 77%, SP = 68%, Gini = 53%, Logloss = 0.5769 and MSE = 

0.1968, as shown in Table 4-20. Although a higher AUC was achieved with a 

single AE and 150 hidden units (AUC = 78%, SE = 80%, SP = 63%, Gini = 

56%, Logloss = 0.5770 and MSE = 0.1952), the specificity value was inferior. 

In these situations, it is up to the expert/clinician to decide whether it is more 

important to detect cases of obesity more accurately than normal individuals. 

However, in this thesis, the capacity of our proposed solution to detect cases 

and controls in a balanced manner has been prioritised. This means that results 

with a balanced sensitivity and specificity and high AUC were selected. 

Top 200 rules 

In the second experiment conducted using the top 200 rules (161 SNPs), and 

according to the above criteria, the best result in the test set was accomplished 

when 75 compressed units (using two AEs) were used as input for the MLP 

classifier (see Table 4-21). The classifier achieved an AUC = 69% with SE = 

70% and SP = 67% (Gini = 38%, Logloss = 0.6553 and MSE = 0.2259). 

However, the MLP trained with 125 compressed units (using a single AE) 

achieved an AUC = 73% with SE = 74% and SP = 66% (Gini = 47%, Logloss 

= 0.6099 and MSE = 0.2104). While the sensitivity in this case is 0.01% lower 
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than using 75 hidden units, the overall classification performance achieved 

represents an improvement. 

Top 100 rules 

The best result observed in Table 4-22 (top 100 rules with 124 SNPs) was 

achieved by compressing 124 SNPs down to 90 units. Performance metrics for 

this model were 71% AUC with 69% sensitivity and 66% specificity (Gini = 

42%, Logloss = 0.6231 and MSE = 0.2167). 

Top 50 rules 

Finally, the models trained with the lowest number of features (92 SNPs from 

the top 50 rules) achieved the best classification results using a 75-50 layer 

configuration (See Table 4-23). This model reached an AUC value of 73% with 

sensitivity and specificity values of 77% and 63% respectively (Gini = 45%, 

Logloss = 0.6178 and MSE = 0.2142).  

In Figure 6-1 the AUC values for the different classifiers are depicted. The 

different colours in the plot correspond to the different AEs (compression 

layers) considered in the stack, where the first, second and third layers are 

represented in blue, orange and green respectively. These results demonstrate 

that the classifier is not randomly assigning labels to the samples (AUC > 50%), 

although it struggles to classify non-obese individuals. 
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Figure 6-1: AUC values for the different classification analyses conducted for the top 

300, 200, 100 and 50 rules 

In all experiments conducted, classifiers’ sensitivities were higher than 

specificities, showing that models were able to predict samples labelled as obese 

better than those labelled as non-obese. Generally, logloss values tend to 

increase when input features were compressed into a smaller number of units, 

with some exceptions. Even though the best results were achieved in the largest 

set of SNPs (300 rules), it can be observed that some of the models were able to 

compress the features down to 50 hidden units and get over 70% AUC. 

A summary of the best results selected from each of above experiments is 

shown in Table 6-3. The results correspond to the total number of SNPs used as 

input and the compression layers utilised by the SAE. 

Top 

rules 
SNPs Layers SE SP Gini LogLoss AUC MSE 

300 204 150-100 0.7684 0.6794 0.5349 0.5769 0.7675 0.1968 

200 161 125 0.7401 0.6651 0.4715 0.6099 0.7357 0.2104 

100 124 90 0.6949 0.6603 0.4170 0.6231 0.7085 0.2167 

50 92 75-50 0.7740 0.6268 0.4529 0.6178 0.7265 0.2142 

Table 6-3: Best results selected from the different configurations with SAERMA 

using the test set 
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In Figure 6-2, the AUC, SE and SP values from Table 6-3 are depicted for 

an easy inspection. The dashed lines indicate that there is not much variation 

between the performance values (AUC, SE and SP) among classifiers despite 

the reduction in the number of SNPs and hidden units within the AEs. 
A

U
C

, 
S

E
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n
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 (
%
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Layers  
Figure 6-2: Best results AUC, SE and SP from SAERMA 

Therefore, the best overall result from the different classifiers was AUC = 

77%, attained by 100 compressed units from the top 300 rules as can be 

observed in Table 6-3. The classifier was able to classify obese individuals (SE 

= 77%) better than normal samples (SP = 68%). These results can be achieved 

with a maximum of 204 SNPs although the SAE is able to reduce noise and 

achieve that value (AUC = 77%) with 100 hidden neurons (this is a 50.99% 

reduction in the feature space). However, it is not possible to accurately 

determine which of those 204 SNPs correspond to the 100 compressed hidden 

neurons. For a more granular mapping of the interactions between SNPs, we 

can refer to the top 50 rules result (92 SNPs), where the input was compressed 

to 50 hidden units (see Table 6-3). Even though dimensionality reduction in this 

case affects the performance of the classifier with respect to the best result 

(using 204 SNPs), the SE value remains the same (77%), while SP is reduced 
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by 0.05 and AUC by 0.04. Thus, it is true to say that the 50 hidden nodes 

representing epistatic interactions can be interpreted using the 92 SNPs selected 

by ARM. Although this does not represent a full interpretation of the results 

obtained using SAEs, the approach presented in this thesis provides a close 

approximation of the epistatic interactions that likely occur in the MyCode data. 

The best overall performance was achieved by the SAE using 204 SNPs. 

Hence, utilising SNPnexus it was possible to query the 204 SNPs and report the 

overlapped or closest genes according to the GRCh37 assembly. A table 

containing genomic annotations for the 204 SNPs reported in this thesis has 

been included in Appendix D. Additionally, genetic association data from 

complex diseases and disorders was also extracted for those SNPs using The 

Genetic Association Database via SNPnexus. A full list with phenotype and 

disease association is presented in Appendix E. To limit the scope of the disease 

associations from the GAD, a filter criterion was considered, and only SNPs 

under a metabolic and cardiovascular disease class were reported. It is expected 

that these findings will help future researchers to better understand how 

epistasis in obesity occurs using genome-wide data, providing candidate SNPs 

to investigate obesity further. 

The effect of choosing the support and confidence threshold values in the 

rule generation stage of the methodology, determines the number of rules 

generated by the Apriori algorithm. In this thesis, the values 0.6 and 0.8 were 

selected for support and confidence respectively, which are the lowest 

thresholds to allow computationally feasible ARM experiments to be 

conducted. This allowed us to generate rules that represent interactions between 
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frequently occurring SNPs. To test the classification performance of these 

SNPs, several classifiers were tested and evaluated. In this approach we know 

that the SNPs are important due to ARM and these can be used in the SAE. 

However, there is no way to extract the epistatic interactions (rules) and use 

these in the SAE. Nonetheless, the assumption is that if ARM has identified the 

most significant SNPs then by using these SNPs in the SAE, the SAE should be 

able to find the epistatic interactions by pushing the SNPs through the 

autoencoder layers. While we cannot fully argue that what the SAE produces 

fully maps onto the rules generated by ARM, we can infer that there is some 

similarity between the two. It is on this basis that we are arguing in this thesis 

that we provide loose interpretation of the deep SAE layers within the neural 

network architecture. 

 The results are perhaps not as good as previous experiments. However, all 

previous experimental approaches in this thesis apart from SAERMA cannot 

identify important SNPs related to case and control and show the interactions 

that exist between them. SAERMA can achieve this. ARM selects the most 

important SNPs and their associations, and the effectiveness of the models that 

ARM generates can be objectively measured using the SAE. The results show 

that SE and SP are approximately 70% each and this is not chance. The model 

produced by ARM and the epistatic interactions extracted using SAE can 

distinguish between case and controls and get this correct 70% of the time. This 

is encouraging and grounds for more in-depth research in this area. It is on these 

grounds that we feel this work is highly novel. The approach is foundational 

and to the best of our knowledge has never been presented before in the 

academic literature. 
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The Apriori algorithm has been considered in the context of GWAS as 

AprioriGWAS, to study epistasis in age-related macular degeneration and 

bipolar disorder (Zhang et al. 2014). The authors used FIM to identify patterns 

in cases and controls by adjusting several interest measures (i.e. minimum 

support). However, the approach proposed in this final experiment differs from 

that one presented by Zhang et al. (2014) in that, logistic regression was used 

as a statistical filtering to reduce the SNP dimension prior to conducting 

machine learning experiments. Furthermore, SAE was used in combination with 

ARM, where not only frequent itemsets were identified using the Apriori 

algorithm, but rules generated from them. This allowed for a visual inspection 

of the most significant rules generated and ranked based on several interest 

measures such as support, confidence and lift. In addition to SAE and ARM, the 

top rules served as input features for binary classification analysis, which is also 

another fundamental difference from the work conducted in Zhang et al., 

(2014). While AprioriGWAS is applied to AMD and BD, the study presented 

in this thesis concentrates on obesity.  

6.4.1.1 Randomly selected samples for classification 

Since the best results achieved by SAERMA were obtained using 204 SNPs 

mined by ARM (top 300 rules), several additional classification experiments 

were conducted with subsets of 204 features (SNPs) randomly selected from the 

total 2,465 SNPs filtered from association analysis. These analysis were 

performed to demonstrate the convenience of using ARM with the proposed 

method. Therefore, this does not represent part of the proposed method but it is 

discussed here for validation purposes. 
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To validate this experiment, three random samples sets of size 204 were 

subsetted from the filtered 2,465 SNPs and used as input features in different 

MLP classifiers. As similarly conducted in previous classification experiments, 

the network architecture and the regularization parameters were tuned. To 

achieve this, random search was used, while early stopping was adopted to 

avoid overfitting. Again, adaptive learning rate ADADELTA was used for 

stochastic gradient descent optimisation, with parameters rho and epsilon set to 

0.99 and 1x10-8 respectively, to balance the global and local search efficiencies. 

Results for random samples 1, 2 and 3 are reported in Table 6-4, Table 6-5 and 

Table 6-6 respectively. 

Layer Set SE SP Gini LogLoss AUC MSE 

150 
Validation 0.8032 0.5683 0.5100 0.5869 0.7549 0.2006 

Test 0.8531 0.5598 0.5513 0.5640 0.7756 0.1929 

150-100 
Validation 0.8138 0.4053 0.3235 0.6469 0.6617 0.2277 

Test 0.8701 0.3684 0.2462 0.6844 0.623 0.2447 

150-100-50 
Validation 0.8723 0.2643 0.2357 0.6692 0.6178 0.2382 

Test 0.9435 0.1579 0.1673 0.6868 0.5836 0.2467 

Table 6-4: MLP classifier performance for random sample set 1 

Layer Set SE SP Gini LogLoss AUC MSE 

150 
Validation 0.8511 0.4846 0.5060 0.5881 0.753 0.2005 

Test 0.8136 0.5598 0.4655 0.6064 0.7327 0.2088 

150-100 
Validation 0.9415 0.1322 0.2442 0.6671 0.6221 0.2372 

Test 0.9831 0.1148 0.3056 0.6506 0.6528 0.2296 

150-100-50 
Validation 1.0000 0.0088 0.1299 0.6824 0.5649 0.2446 

Test 1.0000 0.0048 0.1135 0.6854 0.5567 0.2461 

Table 6-5: MLP classifier performance for random sample set 2 
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Layer Set SE SP Gini LogLoss AUC MSE 

150 
Validation 0.8298 0.4802 0.4620 0.6076 0.731 0.2093 

Test 0.8531 0.4880 0.4958 0.5939 0.7479 0.2038 

150-100 
Validation 0.8989 0.2819 0.3004 0.6504 0.6501 0.2298 

Test 0.9887 0.0766 0.1853 0.6808 0.5926 0.2439 

150-100-50 
Validation 0.9628 0.1454 0.2589 0.6633 0.6294 0.2354 

Test 0.9266 0.1770 0.1272 0.6910 0.5636 0.2487 

Table 6-6: MLP classifier performance for random sample set 3 

Empirical analysis conducted using the random subsets of SNPs revealed 

lower performances than those achieved by the features (204 SNPs) mined by 

ARM, reported in Table 4-20. More specifically, the performance of the 

classifiers worsened when the number of input features was gradually 

compressed into smaller hidden units in the SAE. Although this behaviour is 

somehow expected (as observed in previous experiments with SAEs), using 

random SNPs as inputs produced lower AUC values and very low specificities. 

Hence, using ARM to preselect SNPs before using SAEs improve performance 

metrics and allows to select overall better classification models with better 

AUCs and balanced SE and SP, as well as better Gini, LogLoss and MSE values. 

6.4.2 Proof of concept experiment using i-GSEA4GWAS 

In addition to the biological validation of the rules, a proof of concept 

experiment was conducted using GSEA tools and classification analysis to test 

whether using a biological filtering strategy outperformed the statistical filtering 

approach used in SAERMA. 

Results revealed enrichment of GWAS results with four canonical pathways 

(Wnt signalling, ECM Receptor, Peptide GPCRS and Prostate cancer pathways) 

and numerous GO terms listed in Appendix G. The best classification 
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performance using MLP was achieved when features from all canonical 

pathways were used. Therefore, with 47 genetic variants (features) it was 

possible to achieve 65% AUC with 92% SE and 28% SP. However, these results 

are not better than those achieved by SAERMA as can be observed in Table 6-3. 

Although the best results achieved by SAERMA were obtained with 100 

compressed units (204 input SNPs), it was possible to achieve 73% AUC, 77% 

SE and 63% SP with 50 units (92 input SNPs). This clearly demonstrates that 

using a statistical filtering approach within the proposed method SAERMA 

allows to achieve overall good results while improving specificity, without 

previous biological knowledge.  

Even though better results are obtained using SAERMA, results achieved 

using the biological filtering via GSEA are still significant and need to be 

studied further. Several genes considered less significant in association analysis 

(those with large P-values) were enriched by the i-GSEA4GWAS tool and 

revealed pathways with implications in obesity. For example, an important gene 

involved in the peptide GPCRS pathway, the MC4R gene, has been highlighted 

as a key obesity-related gene in many studies.  

6.5 SAERMA Limitations 

While the results reported by SAERMA are encouraging, a number of 

limitations remain. Although we did provide a close interpretation of the 

features extracted by the SAE, this is not a full interpretable model. Therefore, 

the solution provided in this research is not final and it is open to further 

investigation. 
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 Furthermore, ARM is computationally expensive when dealing with 

genome-wide data. Despite several filtering strategies, the minimum value for 

support and confidence in the rule generation process was empirically limited 

to 0.6 and 0.8 respectively. This constraint affected the number of rules 

produced and thus, influenced the classification performance of the SAERMA 

algorithm. This highlighted the difficulty in conducting epistatic analysis using 

high order SNP-SNP interactions. 

Last but not least, data quality has played an important role in the genetic 

variants identified. In the QC phase, a high number of SNPs were removed. This 

SNP pruning limited the number of variants being explored in the proposed 

methodology and this also hindered novel discoveries. 

6.6 Chapter Summary 

The aim of this chapter is to describe the results derived from the framework 

adopted in this thesis for the analysis and interpretation of epistasis in obesity, 

using a genome-wide dataset. The choice of the final solution, SAERMA, has 

been driven by the limitations of GLM, MLP and SAEs when they are used 

independently since non-linearity is neglected, a high number of features are 

required, and interpretability of the results is an issue. Combined, ARM, SAEs 

and MLP as well as QC and association analysis provide a more complete 

solution to study epistasis in obesity as a complex disease.  

The current study has important implications for interventions focused on 

identifying SNP interactions in complex disorders such as obesity. By 

combining omics with bioinformatics and functional studies, novel diagnostic 
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markers and therapeutic targets were identified following the emerging 

principles of systems medicine. It was found that none of the most statistically 

significance SNPs after association analysis with logistic regression (see Table 

4-4) were identified as part of the top rules generated by the Apriori algorithm. 

This indicates that GWAS does not consider the collaborative effect between 

SNPs identified, whereas ARM assumes no hierarchy of SNP risk and creates 

simple association rules between two or more SNPs. 

This thesis presents a novel approach with emphasis on the feature extraction 

and classification phases, using latent information extracted from high-

dimensional genomic data for the identification of individuals with a high 

predisposition to obesity. However, while SNP-phenotype associations can be 

obtained using logistic regression analysis, SAEs maintain performance and 

reduce overfitting while minimising the dimensional space. ARM offers more 

interpretable risk patterns in the form of rules with support, confidence, lift and 

𝜒2 as measures, while SNPs within the most significant rules also provide better 

classification performance than using random samples subsetted from the 

filtered 2,465 SNPs. Most importantly, this approach allowed us to investigate 

relevant epistatic patterns, validated via functional analysis, and to determine 

the direction of associations between SNPs. It also enabled us to identify 

candidate hidden risk SNP interactions which to the best of the author’s 

knowledge have not been reported previously in the literature. 

The results show the validity of SAERMA to detect a subset of attributes 

representing epistasis that are closely interpretable by the SNPs with the top 

rules identified by ARM. This is performed by comparing the results obtained 
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from the different classification experiments which provide an objective 

measure of the SNPs within the most relevant rules. Association rules were 

biologically validated and the results revealed a relationship between rules 

identified by SAERMA and biological pathways with roles in metabolism 

(including metabolism of lipids) and neurobiology in body weight regulation 

(FOXO-mediated transcription of oxidative stress, metabolic and neuronal 

genes) which validates the potential of ARM in epistatic analysis. The extended 

plots generated from the rules provide the user with a visual tool to see which 

genetic variants take part in epistasis. The findings reported in this study are not 

limited to the genes identified in the top 10 rules in cases and controls. An 

extended list of genetic variants utilised to achieve the best results with the 

proposed algorithm SAERMA is presented in Appendix D. 

Although the utilization of SAE, a multilayer feedforward ANN (MLP) and 

ARM have been previously considered separately in many areas of research, 

this thesis claims that this is the first time that they have been combined to study 

epistatic interactions between SNPs in GWAS of polygenic obesity and the 

results statistically and biologically validated using classification and functional 

analysis respectively. 
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 CONCLUSION AND FUTURE WORK 

Obesity is complex with numerous compounding factors, some of which have 

been highlighted in this thesis. Research is providing a deeper understanding of 

the way risk factors interact with each other to help find potential solutions to 

the obesity epidemic, which are as multileveled and complex as its causes. 

Continuous advances in sequencing technology have facilitated genetic 

analysis studies by sequencing the entire genome of individuals. This has 

resulted in a dramatic growth in the amount of data available for analysis where 

data mining and machine learning methods have become increasingly more 

important. 

Advances in molecular technology have allowed us to conduct coarse 

genomic examinations, high resolution linkage analysis, and more recently 

GWAS. Methodological advances in GWAS contribute enormously to the 

amount of results generated and the number of experiments and samples 

collected. However, generating more data is not going to solve the current 

limitations found in association analysis. Development and application of 

innovative analytic approaches and study designs that allow the detection of 

epistasis are needed. 

This thesis provides researchers with an approach for data mining in the 

application of case-control analysis for epistasis. The techniques applied were 

used to find associations between SNPs and the disease/phenotype, and 

subsequently to investigate epistatic interactions between associated SNPs. 

Although the results were not fully mapped to an SNP set in the validation 
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process, it is still possible to detect a reduced number of SNPs that are likely to 

play an important role in epistasis in the MyCode dataset. We argue that an 

interpretation (of which there are many) is provided for the proposed network 

architecture used to generate the classification results. 

The methodology presented combines existing techniques for genetic 

analysis and machine learning models to identify SNPs and the interactions that 

exist between them, providing strong interpretation of the results, statistically 

validated through case-control classification tasks and biologically validated via 

functional annotation of gene sets. The proposed SAERMA algorithm has 

revealed combinations between SNPs that have not been previously considered 

and may be used as candidates or hypothesis generators in future studies. These 

candidate genetic variants need to be studied further by doctors and experts in 

complex diseases, to discover new therapies that may help to identify obesity 

susceptibility/predisposition from early stages of life. Translating 

computational models to etiological inferences represents one of the most 

difficult challenges in the study of complex disorders. In addition to epistasis 

discovery, identified SNPs also reported reasonably good classification 

performance when discriminating between extremely obese and normal 

samples.  

Overall, the results in this thesis highlight the benefits of using deep learning 

stacked autoencoders to detect epistatic interactions between SNPs in genomic 

data and how these can be used to model MLPs to classify obese and non-obese 

observations from the eMERGE MyCode dataset. This contributes to the 

computational biology and bioinformatics field and provides new insights into 
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the use of deep learning algorithms when analysing GWAS that warrants further 

investigation. However, the minute non-linear transformations of the input 

space occur in the autoencoders, it is very difficult to trace the amount of 

variance they contribute from case-control data. This is a common problem in 

neural network modelling that seriously hinders genomic analysis. To aid with 

this issue, association rule mining was used in combination with stacked 

autoencoders. This allowed us to identify patterns in the form of rules which 

represent interactions between a filtered subset of SNPs. The benefits of 

incorporating rule mining to the proposed pipeline were twofold. First, it 

allowed us to generate significant rules and plot their interactions. Second, 

feeding the stacked autoencoders with the most significant rules allowed us to 

obtain dynamic classification performances by adjusting the number of rules 

generated in the rule mining process, serving thus as a validation and 

interpretation technique for the epistatic feature extraction in the neural network 

utilised in the study. Adjusting support and confidence coefficients to increase 

the number of rules also requires more computational complexity. Therefore, in 

this study only rules generated with support and confidence values of 0.6 and 

0.8 respectively were presented. This allowed us to empirically produce the best 

results without reaching computational overload with the resources available. 

Conversely, using higher values of support or confidence would have resulted 

in information not being captured by the rules. 

While work exists in biological analysis of variants that alter functional 

regulatory elements (i.e. elements that control gene expression and DNA) using 

deep learning methods (Eraslan et al. 2016) and epistasis analysis based on 

frequent itemset mining using the Apriori algorithm (Zhang et al. 2014), to the 
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best of our knowledge this thesis is the first comprehensive study of its kind that 

combines GWAS quality control and logistic regression with association rule 

mining and deep learning stacked autoencoders for epistatic-drive GWAS 

analysis and case-control classification. 

7.1 Future Work 

Several novel contributions have been provided using the proposed 

methodology. However, there are still areas for improvement. In this section, 

these are outlined. 

Association analysis with logistic regression helped to reduce data 

dimensionality before machine learning experiments and this aided us with 

computational complexity. However, by assuming that epistasis only occurs 

between markers that independently have some effect on the phenotype, 

potential discoveries could be missed. Thus, in future work, statistical and 

biological filtering approaches should be replaced by more efficient techniques 

capable of dealing with the curse of dimensionality present in high dimensional 

genetic data. For instance, SAEs can be applied directly to the genotype data 

after QC without using filter approaches. We intend to investigate this using an 

advanced high-performance computing platform, such as a NVIDIA DGX-25 

and their RAPIDS6 development environment. 

Only genetic features were used to evaluate an individual’s risk to obesity in 

this study. In future work, non-genetic features such as physical activity and 

                                                 

5 https://www.nvidia.com/en-gb/data-center/dgx-2/ 

6 https://developer.nvidia.com/rapids 
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clinical data such as blood pressure may be considered to increase power in 

classification analysis. 

To gain more insights into the possible role of identified rules in obesity, 

SNP-gene-pathway was analysed. By using pathway and functional enrichment 

analysis we were able to provide enough evidences to validate our results from 

a biological point of view. However, in future work the incorporation of eQTL 

analysis can be seen as a more robust approach to be used to functionally 

annotate GWAS results and prioritise the most significant SNPs, especially in 

the SNP selection stage prior to epistasis analysis with SAERMA. SNPs that 

are eQTLs in obesity-specific tissues can be used for the annotation based on 

expression data. Several tools for functional mapping and annotation of GWAS 

including FUMA (Watanabe et al. 2017) and Sherlock (He et al. 2013) are 

available and could be used for this purpose. 

For model validation, a three-way data split procedure was considered. Other 

popular resampling-based methods for model validation such as cross validation 

(CV) are available. However, it was not possible to perform this due to the 

inherent computational overheads required in neural network CV tasks. In 

future work, resampling-based methods such as CV will be considered and 

explored. 

The classifier in this research is not benchmarked against other well-known 

models since empirical analysis in previous work (Fergus, Curbelo et al. 2018) 

reported the MLP as the best classifier. However, in future work a classifier 

comparison may be considered as an extension of this research, particularly 
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using more advanced neural networking architectures such as Convolutional 

Neural Networks.  

Replication of results using a different and larger dataset is also necessary in 

future work. Appropriate validation is needed for this method to be considered 

in clinical practice (Ritchie & Van Steen 2018). The same SNPs associated in 

at least two independent datasets extracted from the same population also need 

to be observed, preferably with the same study design. 
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Appendix A: MLP activation calculation example. 

The following example represents the computation of the activation of the 

neurons in a simple NN with three layers and two output nodes. This is a small 

version of the architecture adopted in this thesis although it serves for 

explanatory purposes only.  

L1 L2

L3

x3

(3)

, 1( )w bh x a=

(3)

, 2( )w bh x a=

(1)

ij nW x

(2)

ia

 

Example of MLP network with an input layer L1, one hidden layers L2 and an output 

layer L3 with two output units. 

Following the definition of parameters summarised in Table 3-2, and given 

a fixed setting of parameters W,b, the neural network displayed above calculates 

the outputs hW,b(x) as follow: 

For each neuron: 

( ), 1
( ) ( )

nT

W b i ii
h x f W x f W x b

=
= = +  

The activation ai

(l)
 in layer 1 (L1) is: ai

(1)
=  𝑥𝑖. 

The activations of the units in the hidden layer (L2) are calculated as follow: 
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(2) (1) (1) (1) (1)

1 11 1 12 2 13 3 1

(2) (1) (1) (1) (1)

2 21 1 22 2 23 3 1

(2) (1) (1) (1) (1)

3 31 1 32 2 33 3 1

( )

( )

( )

a f W x W x W x b

a f W x W x W x b

a f W x W x W x b

= + + +

= + + +

= + + +

 

Once activations in the hidden layer are calculated, the outputs for above MLP 

can be computed: 

(3) (2) (2) (2) (2)

, 1 11 1 12 2 13 3 1

(3) (2) (2) (2) (2)

, 2 21 1 22 2 23 3 1

( ) ( )

( ) ( )

w b

w b

h x a f W a W a W a b

h x a f W a W a W a b

= = + + +

= = + + +
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Appendix B: Rule network plot for 100 rules 

In this Appendix, network plots for the top 100 rules are presented for cases and 

controls, which were derived from association analysis experiments conducted 

in this thesis. As the network grows, rules are more difficult to recognise from 

the clusters. Network plots were generated in R using the package arulesViz. 

 

Network plot for 100 rules in case set. 
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Network plot for 100 rules in control set. 
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Appendix C: Performance plots SAERMA 

Performance plots for final experiment using ARM and SAE for classification 

analysis using MLP. 

Plots corresponding to Table 4-20: 

a) 150

b) 150-100

c) 150-100-50
  

Logloss, AUC and ROC curve plots for the top 300 rules. This included 204 SNPs 

which are compressed into: 150-100-50 units 

Global parameters: 

Global Parameters 

Parameter Value 

Adaptive learning 
ADADELTA (rho = 0.99 and 

epsilon = 1x10-8) 

Early stopping Yes 

Stopping tolerance 0.01 
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Stopping rounds 4 

Max model generated 200 

Global tuning parameters for classification tasks 

Next, specific parameters for each model: 

Input Parameter Value 

150 

Activation TanhWithDropout 

Hidden  2 

Neurons 10 

Epochs 50 

L1 2.2x10-5  

L2 3.5x10-5 

Input_dropout_ratio 0.05 

Hidden_dropout_ratios 0.5 

150-100 

Activation MaxoutWithDropout 

Hidden  2 

Neurons 20 

Epochs 10 

L1 0.0 

L2 1.0x10-4 

Input_dropout_ratio 0.05 

Hidden_dropout_ratios 0.5 

150-100-50 

Activation TanhWithDropout 

Hidden  3 

Neurons 30 

Epochs 10 

L1 3.2x10-5 

L2 5.3x10-5 

Input_dropout_ratio 0.0 

Hidden_dropout_ratios 0.5 

Model-specific tuning parameters 

Based on empirical analysis, these configurations produced the best results. 

Plots corresponding to Table 4-21: 
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a) 125

b) 125-75

c) 125-75-50  

Logloss, AUC and ROC curve plots for the top 200 rules. This included 161 SNPs 

which are compressed into: 125-75-50 units 

Global parameters: 

Global Parameters 

Parameter Value 

Adaptive learning 
ADADELTA (rho = 0.99 and 

epsilon = 1x10-8) 

Early stopping No 

Stopping tolerance - 

Stopping rounds - 

Max model generated 200 

Global tuning parameters for classification tasks 

Next, specific parameters for each model: 

Input Parameter Value 
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125 

Activation TanhWithDropout 

Hidden  4 

Neurons 25 

Epochs 100 

L1 6.4x10-5  

L2 5.8x10-5 

Input_dropout_ratio 0.0 

Hidden_dropout_ratios 0.5 

125-75 

Activation TanhWithDropout 

Hidden  4 

Neurons 25 

Epochs 50 

L1 4.3x10-5 

L2 6.3x10-5 

Input_dropout_ratio 0.05 

Hidden_dropout_ratios 0.5 

125-75-50 

Activation MaxoutWithDropout 

Hidden  2 

Neurons 10 

Epochs 100 

L1 0.0 

L2 1.0x10-4 

Input_dropout_ratio 0.1 

Hidden_dropout_ratios 0.5 

Model-specific tuning parameters 

Based on empirical analysis, these configurations produced the best results. 

Plots corresponding to Table 4-22: 
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a) 90

b) 90-50

c) 90-50-25  

Logloss, AUC and ROC curve plots for the top 100 rules. This included 124 SNPs 

which are compressed into: 90-50-25 units 

Global parameters: 

Global Parameters 

Parameter Value 

Adaptive learning 
ADADELTA (rho = 0.99 and 

epsilon = 1x10-8) 

Early stopping Yes 

Stopping tolerance 0.01 

Stopping rounds 4 

Max model generated 200 

Global tuning parameters for classification tasks 

Next, specific parameters for each model: 

Input Parameter Value 
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90 

Activation MaxoutWithDropout 

Hidden  2 

Neurons 20 

Epochs 100 

L1 5.2x10-5  

L2 9.2x10-5 

Input_dropout_ratio 0.05 

Hidden_dropout_ratios 0.5 

90-50 

Activation TanhWithDropout 

Hidden  2 

Neurons 20 

Epochs 10 

L1 7.7x10-5 

L2 4.1x10-5 

Input_dropout_ratio 0.05 

Hidden_dropout_ratios 0.5 

90-50-25 

Activation RectifierWithDropout 

Hidden  2 

Neurons 20 

Epochs 50 

L1 5.5x10-5 

L2 6.7x10-5 

Input_dropout_ratio 0.0 

Hidden_dropout_ratios 0.5 

Model-specific tuning parameters 

Based on empirical analysis, these configurations produced the best results. 

Plots corresponding to Table 4-23: 
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a) 75

b) 75-50

c) 75-50-25  

Logloss, AUC and ROC curve plots for the top 50 rules. This included 92 SNPs 

which are compressed into: 75-50-25 units 

Global parameters: 

Global Parameters 

Parameter Value 

Adaptive learning 
ADADELTA (rho = 0.99 and 

epsilon = 1x10-8) 

Early stopping Yes 

Stopping tolerance 0.01 

Stopping rounds 2 

Max model generated 200 

Global tuning parameters for classification tasks 

Next, specific parameters for each model: 

Input Parameter Value 
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90 

Activation MaxoutWithDropout 

Hidden  2 

Neurons 20 

Epochs 100 

L1 5.2x10-5  

L2 9.2x10-5 

Input_dropout_ratio 0.05 

Hidden_dropout_ratios 0.5 

90-50 

Activation TanhWithDropout 

Hidden  2 

Neurons 20 

Epochs 10 

L1 7.7x10-5 

L2 4.1x10-5 

Input_dropout_ratio 0.05 

Hidden_dropout_ratios 0.5 

90-50-25 

Activation RectifierWithDropout 

Hidden  2 

Neurons 20 

Epochs 50 

L1 5.5x10-5 

L2 6.7x10-5 

Input_dropout_ratio 0.0 

Hidden_dropout_ratios 0.5 

Model-specific tuning parameters 

Based on empirical analysis, these configurations produced the best results. 
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Appendix D: SNPnexus query output 

 

SNPnexus main page screenshot  

 Source: http://www.snp-nexus.org/ 

The description for the output table provided below has been extracted from the 

SNPnexus web (Dayem Ullah et al. 2018): 
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• SNP: SNP ID as represented in genomic position format. 

• Chromosome (C): Chromosome location for mapped variant. 

• Position: Start position of the variant in the chromosome. 

• Overlapped Gene (OG): Name of the gene to which the variant is 

overlapped. 

• Type: Gene type (i.e. protein-coding, miRNA, non-coding, Pseudogene, 

snoRNA, lincRNA, etc). 

• Annotation: Summary of whether the variant overlapped with the 

coding, intronic or untranslated regions of the various transcript 

isoforms of the gene, as annotated from Ensembl gene system. 

• Nearest Upstream Gene (NUG). If a variant is not overlapped with any 

gene and, considering gene alignment on the positive strand as left to 

right, then NUG is the gene whose end position is nearest to the variant 

on the left. 

• Type of NUG: Gene type (i.e. protein-coding, miRNA, non-coding, 

Pseudogene, snoRNA, lincRNA etc). 

• Distance to NUG: distance from the end position of the nearest upstream 

gene. 

• Nearest Downstream Gene (NDG): If a variant is not overlapped with 

any gene and considering gene alignment on the positive strand as left 

to right, then NDG is the gene whose start position is nearest to the 

variant on the right. 

• Type of NDG: Gene type, e.g., protein-coding, miRNA, non-coding, 

Pseudogene, snoRNA, lincRNA etc.  

• Distance to NDG: distance from the start position of the nearest 

downstream gene. 

The table contains information on overlapped or nearest genes for the 204 

SNPs comprising the top 300 rules identified applying the proposed algorithm 

SAERMA:



 

 

 

3
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SNP Chr Pos OG Type Annotation NUG Type of NUG 
Distance 

to NUG 
NDG Type of NDG 

Distance 

to NDG 

rs11102001 1 110299691 GSTM5 protein_coding 
non-coding 

intronic 
            

rs11102001 1 110299691 RP4-735C1.4 antisense 
non-coding 

intronic 
            

rs11102001 1 110299691 EPS8L3 protein_coding 
coding 
nonsyn,3downstre

am 

            

rs11802668 1 12000670 PLOD1 protein_coding 
non-coding 
intronic,intronic 

            

rs6659392 1 178598873      RNA5SP69 rRNA 68709 RP5-1098D14.1 lincRNA 21968 

rs2761477 1 178626526      RP5-1098D14.1 lincRNA 5109 MIR4424 miRNA 20358 

rs7550394 1 199015253 RP11-16L9.4 lincRNA 
non-coding 

intronic 
            

rs322931 1 199019855 RP11-16L9.4 lincRNA 
non-coding 

intronic 
            

rs3900967 1 203583705      OPTC protein_coding 105713 ATP2B4 protein_coding 11984 

rs17015701 1 210337691      SYT14 protein_coding 55 SERTAD4-AS1 antisense 67110 

rs11119426 1 210340969      SYT14 protein_coding 3333 SERTAD4-AS1 antisense 63832 

rs3795308 1 23689083 ZNF436 protein_coding coding syn             

rs9887921 1 23700811      C1orf213 protein_coding 2479 RP5-1057J7.7 lincRNA 4062 

rs12074072 1 49054581 AGBL4 protein_coding intronic             

rs11207744 1 61931461      NFIA protein_coding 2996 AC099791.1 miRNA 163242 

rs11692215 2 100746573 AFF3 protein_coding 
intronic,non-

coding intronic 
            

rs6713524 2 100747357 AFF3 protein_coding 
intronic,non-

coding intronic 
            

rs4850920 2 100757308 AFF3 protein_coding 
intronic,non-

coding intronic 
            

rs11682173 2 100759810      AFF3 protein_coding 609 LINC01104 lincRNA 64906 

rs11123816 2 100783653      AFF3 protein_coding 24452 LINC01104 lincRNA 41063 
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rs6715763 2 118580670 DDX18 protein_coding 

intronic,non-
coding 

intronic,3downstre

am,5upstream 

            

rs13030497 2 118589029 DDX18 protein_coding 3utr,non-coding             

rs837870 2 130094203      AC079586.1 lincRNA 62782 snoU13 snoRNA 90792 

rs6727787 2 131656585 ARHGEF4 protein_coding 
non-coding 

intronic,intronic 
            

rs10204782 2 17114343      AC008069.2 pseudogene 77792 AC080094.1 lincRNA 36958 

rs6434482 2 192423103      MYO1B protein_coding 132988 NABP1 protein_coding 119691 

rs12053340 2 201412611 SGOL2 protein_coding intronic             

rs1527944 2 201456245 AOX1 protein_coding intronic             

rs7579477 2 20486117 PUM2 protein_coding intronic             

rs6717227 2 226013860      DOCK10 protein_coding 106698 AC067961.1 lincRNA 250566 

rs728654 2 226030132      DOCK10 protein_coding 122970 AC067961.1 lincRNA 234294 

rs11691744 2 235335472      AC097713.5 pseudogene 96990 AC097713.3 lincRNA 11500 

rs11686781 2 235338531      AC097713.5 pseudogene 100049 AC097713.3 lincRNA 8441 

rs12328617 2 238173270      AC112715.2 protein_coding 6951 COL6A3 protein_coding 59376 

rs762027 2 32960091 TTC27 protein_coding 
intronic,3downstre
am,5upstream 

            

rs2116588 2 32977741 TTC27 protein_coding intronic             

rs220655 2 33013756 TTC27 protein_coding 
intronic,3downstre

am 
            

rs1037626 2 33039690 TTC27 protein_coding 
intronic,3downstre

am 
            

rs17293732 2 5602284      AC073143.1 pseudogene 148017 AC107057.1 lincRNA 87628 

rs10180670 2 5607349      AC073143.1 pseudogene 153082 AC107057.1 lincRNA 82563 

rs2080390 2 71058226 CD207 protein_coding coding syn             

rs17662453 2 71061108 CD207 protein_coding coding syn             
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rs1452044 2 78945755      AC092660.1 lincRNA 119223 RNU6-827P snRNA 163818 

rs17015634 2 79001963      AC092660.1 lincRNA 175431 RNU6-827P snRNA 107610 

rs2154762 3 37663435 ITGA9 protein_coding intronic             

rs4678980 3 37665385 ITGA9 protein_coding intronic             

rs1479955 3 65228793      AC104331.1 miRNA 10135 MAGI1 protein_coding 110407 

rs17349380 3 65231027      AC104331.1 miRNA 12369 MAGI1 protein_coding 108173 

rs12486426 3 77197856 ROBO2 protein_coding intronic             

rs425222 4 167232997      AC093874.1 miRNA 84013 Y_RNA misc_RNA 1090 

rs12506355 4 167265509      Y_RNA misc_RNA 31323 RP11-217C7.1 lincRNA 44344 

rs1080788 4 167300345      Y_RNA misc_RNA 66159 RP11-217C7.1 lincRNA 9508 

rs1492533 4 167310371 
RP11-
217C7.1 

lincRNA non-coding             

rs1565650 4 167321777 
RP11-

217C7.1 
lincRNA 

non-coding 

intronic 
            

rs1367555 4 188420909      RP11-91J3.1 pseudogene 55457 RP11-237D3.1 lincRNA 16398 

rs1955311 4 30471257      RP11-174E22.2 pseudogene 461319 PCDH7 protein_coding 250780 

rs6857847 4 89514572 HERC3 protein_coding intronic,5utr             

rs17799056 4 89527323 HERC3 protein_coding intronic             

rs2869663 4 89542281 HERC3 protein_coding intronic             

rs3737488 4 89607905 HERC3 protein_coding 
coding syn,coding 

*syn 
            

rs7448421 5 178303868 ZNF354B protein_coding intronic             

rs1046724 5 178315686      ZNF354B protein_coding 563 ZFP2 protein_coding 7209 

rs13171869 5 178335516 ZFP2 protein_coding intronic             

rs2546440 5 180575250      OR2V1 protein_coding 22946 OR2V2 protein_coding 6693 

rs16894413 5 65127219 NLN protein_coding intronic             

rs10043659 5 71781839 ZNF366 protein_coding intronic             
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rs10042132 5 71789021 ZNF366 protein_coding intronic             

rs17335290 5 94200808 MCTP1 protein_coding 
intronic,3downstre
am 

            

rs17792616 6 114309165 HDAC2 protein_coding intronic             

rs17792616 6 114309165 
RP3-

399L15.3 
antisense 

non-coding 

intronic 
            

rs4897427 6 130810954      TMEM200A protein_coding 46746 Y_RNA misc_RNA 84187 

rs2876086 6 130818014      TMEM200A protein_coding 53806 Y_RNA misc_RNA 77127 

rs7765392 6 135005295      RP11-557H15.4 lincRNA 24321 RP1-287H17.1 lincRNA 21903 

rs6569962 6 135011576      RP11-557H15.4 lincRNA 30602 RP1-287H17.1 lincRNA 15622 

rs6914876 6 135014966      RP11-557H15.4 lincRNA 33992 RP1-287H17.1 lincRNA 12232 

rs259404 6 147104187 ADGB protein_coding 
intronic,non-

coding intronic 
            

rs1737319 6 163796510      RP3-495O10.1 pseudogene 12015 CAHM lincRNA 37587 

rs16894934 6 163805742      RP3-495O10.1 pseudogene 21247 CAHM lincRNA 28355 

rs4565296 6 16399647 ATXN1 protein_coding intronic             

rs2206734 6 20694884 CDKAL1 protein_coding intronic             

rs6935599 6 20717095 CDKAL1 protein_coding intronic             

rs10947072 6 30372278      UBQLN1P1 pseudogene 40221 MICC pseudogene 10214 

rs6930977 6 30435288 TMPOP1 pseudogene non-coding             

rs1627354 7 107677984 LAMB4 protein_coding 
coding 
nonsyn,5upstream,

non-coding 

            

rs7811376 7 111577642 DOCK4 protein_coding 
intronic,non-
coding intronic 

            

rs1860722 7 123037157      LYPLA1P1 pseudogene 166362 IQUB protein_coding 55297 

rs10278912 7 123037887      LYPLA1P1 pseudogene 167092 IQUB protein_coding 54567 

rs6958382 7 21498702 SP4 protein_coding intronic             

rs2711098 7 24569427      NPY protein_coding 237943 RNU6-1103P snRNA 7524 
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rs2521766 7 24772686 DFNA5 protein_coding 
intronic,non-
coding intronic 

            

rs42695 7 28430860 CREB5 protein_coding intronic             

rs2410518 8 17197888 MTMR7 protein_coding 
intronic,non-

coding intronic 
            

rs7386192 8 17209290 MTMR7 protein_coding intronic             

rs7001002 8 21485754      AC022716.1 miRNA 78159 GFRA2 protein_coding 62161 

rs2272641 8 23294761 ENTPD4 protein_coding 
5upstream,coding 

nonsyn,non-coding 
            

rs13269315 8 4231556 CSMD1 protein_coding intronic             

rs11786916 8 4232568 CSMD1 protein_coding intronic             

rs6982764 8 85276246 RALYL protein_coding intronic             

rs484932 9 135241588      SETX protein_coding 11216 TTF1 protein_coding 9420 

rs11138445 9 82609762      RP11-403N16.3 lincRNA 102840 RP11-394O9.1 lincRNA 35732 

rs10976907 9 8268343      RP11-29B9.2 lincRNA 307263 PTPRD protein_coding 45903 

rs10816047 9 9109843 PTPRD protein_coding intronic             

rs4750827 10 132547184      Y_RNA misc_RNA 243719 MIR378C miRNA 213667 

rs12570210 10 132962633 TCERG1L protein_coding 
non-coding 
intronic,intronic 

            

rs3011642 10 22394843      DNAJC1 protein_coding 102145 ADIPOR1P1 pseudogene 57078 

rs3011644 10 22397995      DNAJC1 protein_coding 105297 ADIPOR1P1 pseudogene 53926 

rs10828296 10 22460830      ADIPOR1P1 pseudogene 6107 EBLN1 protein_coding 36913 

rs1926690 10 22471741      ADIPOR1P1 pseudogene 17018 EBLN1 protein_coding 26002 

rs11593316 10 22477498      ADIPOR1P1 pseudogene 22775 EBLN1 protein_coding 20245 

rs6482203 10 22479936      ADIPOR1P1 pseudogene 25213 EBLN1 protein_coding 17807 

rs10826675 10 29952872 SVIL protein_coding 
intronic,non-

coding intronic 
            

rs9888055 10 29955649 SVIL protein_coding 
intronic,non-

coding intronic 
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rs7098565 10 29963887 SVIL protein_coding 
intronic,non-
coding intronic 

            

rs10998726 10 71099222 HK1 protein_coding 
intronic,non-

coding intronic 
            

rs2042867 10 79722242      H2AFZP5 pseudogene 8608 POLR3A protein_coding 12665 

rs735638 10 79732721      H2AFZP5 pseudogene 19087 POLR3A protein_coding 2186 

rs4979935 10 79735473 POLR3A protein_coding 3utr             

rs406671 10 90493534 LIPK protein_coding intronic             

rs396394 10 90500521 LIPK protein_coding intronic             

rs400659 10 90506027 LIPK protein_coding intronic             

rs10882256 10 95272834 CEP55 protein_coding intronic             

rs3794075 11 12282908 MICAL2 protein_coding 

intronic,3downstre

am,non-

coding,non-coding 
intronic 

            

rs10765933 11 12283928 MICAL2 protein_coding 

intronic,non-

coding,non-coding 
intronic,3downstre

am 

            

rs10765933 11 12283928 
RP11-
265D17.2 

antisense 
non-coding 
intronic 

            

rs704664 11 44787201 TSPAN18 protein_coding intronic             

rs3758650 11 616865 CDHR5 protein_coding 3utr,3downstream             

rs12280583 11 83325416 DLG2 protein_coding intronic             

rs10501544 11 83334780 DLG2 protein_coding intronic             

rs3809288 12 111652522 CUX2 protein_coding 
intronic,non-

coding intronic 
            

rs10083213 12 111654363 CUX2 protein_coding 
intronic,non-

coding intronic 
            

rs11065884 12 111818701 RP3-473L9.4 lincRNA 
non-coding 
intronic 

            

rs10849949 12 111893537 ATXN2 protein_coding 
intronic,5upstream

,non-
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coding,3utr,3down
stream 

rs2073950 12 111894072 ATXN2 protein_coding 

intronic,non-

coding 

intronic,5upstream 

            

rs2301621 12 111895272 ATXN2 protein_coding 

intronic,non-

coding 
intronic,5upstream

,non-coding 

            

rs1544396 12 112062875      RP11-686G8.2 antisense 24815 BRAP protein_coding 17075 

rs2285727 12 112093078 BRAP protein_coding 
intronic,non-
coding intronic 

            

rs632650 12 112131698 ACAD10 protein_coding 

3downstream,intro

nic,non-coding 
intronic 

            

rs640783 12 112168050 ACAD10 protein_coding 

non-coding 

intronic,intronic,3

downstream 

            

rs7962138 12 112180177 ACAD10 protein_coding 
non-coding 

intronic,intronic 
            

rs4767939 12 112206895 
RP11-

162P23.2 
protein_coding intronic             

rs4767939 12 112206895 ALDH2 protein_coding intronic             

rs4648328 12 112222788 
RP11-
162P23.2 

protein_coding intronic             

rs4648328 12 112222788 ALDH2 protein_coding intronic             

rs9971942 12 112256042      RP3-462E2.3 lincRNA 4818 AC003029.1 pseudogene 21529 

rs3177647 12 112277576 AC003029.1 pseudogene non-coding             

rs3177647 12 112277576 
MAPKAPK5-

AS1 
lincRNA 

non-

coding,3downstrea
m 

            

rs12315146 12 112323016 MAPKAPK5 protein_coding intronic,5upstream             

rs2339941 12 112490764 NAA25 protein_coding 
intronic,non-
coding intronic 

            

rs10850003 12 112571169 TRAFD1 protein_coding 
intronic,non-

coding intronic 
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rs7974383 12 112794714 HECTD4 protein_coding intronic             

rs11048320 12 26031743      RP11-443N24.3 lincRNA 44627 RP11-443N24.4 lincRNA 4145 

rs10844474 12 33269608      AC026357.1 miRNA 74853 SNORD112 snoRNA 245910 

rs10506104 12 33278996      AC026357.1 miRNA 84241 SNORD112 snoRNA 236522 

rs6488130 12 33308022      AC026357.1 miRNA 113267 SNORD112 snoRNA 207496 

rs7132180 12 49159610      LINC00935 protein_coding 41 ADCY6 protein_coding 365 

rs17184182 12 67662924      GGTA2P pseudogene 2178 CAND1 protein_coding 137 

rs12426730 12 95002540 TMCC3 protein_coding 
intronic,3downstre
am 

            

rs9300779 13 103682440      METTL21EP pseudogene 134057 SLC10A2 protein_coding 13910 

rs168518 13 106913481      RNA5SP38 rRNA 105642 LINC00460 lincRNA 115430 

rs354463 13 106914872      RNA5SP38 rRNA 107033 LINC00460 lincRNA 114039 

rs6492017 13 106928488      RNA5SP38 rRNA 120649 LINC00460 lincRNA 100423 

rs7332922 13 52134425      MIR4703 miRNA 7622 RNU6-65P snRNA 5123 

rs3093872 14 20811332 RPPH1 antisense non-coding             

rs10872856 14 21286675      RNASE1 protein_coding 15238 RP11-219E7.3 lincRNA 51762 

rs10143202 14 61124940 SIX1 protein_coding coding nonsyn             

rs7171993 15 35145065      RP11-83J16.3 pseudogene 2469 AQR protein_coding 2667 

rs3743121 15 35147345      RP11-83J16.3 pseudogene 4749 AQR protein_coding 387 

rs8029757 15 53688298      RP11-209E8.1 lincRNA 266403 WDR72 protein_coding 117640 

rs2660825 15 73557903 NEO1 protein_coding intronic             

rs306204 15 85388376 ALPK3 protein_coding intronic             

rs2289138 15 85407564 ALPK3 protein_coding 
intronic,non-

coding intronic 
            

rs896364 15 85519657      SLC28A1 protein_coding 781 PDE8A protein_coding 4014 

rs12900078 15 85523969 PDE8A protein_coding intronic,5upstream             
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rs11853328 15 93698096      RGMA protein_coding 65663 AC112693.2 protein_coding 51199 

rs8043910 16 78698238 WWOX protein_coding intronic             

rs17249591 17 31854060 ASIC2 protein_coding intronic             

rs17249607 17 31855826 ASIC2 protein_coding intronic             

rs17836850 17 31862176 ASIC2 protein_coding intronic             

rs17836850 17 31862176 RP11-31I22.4 antisense 
non-coding 
intronic 

            

rs12947624 17 71776939 LINC00469 lincRNA 
non-coding 

intronic 
            

rs7208029 17 71786783 LINC00469 lincRNA 
non-coding 

intronic 
            

rs7208029 17 71786783 AC125421.1 lincRNA non-coding             

rs9897183 17 71811006 LINC00469 lincRNA 
non-coding 
intronic 

            

rs2619980 17 71816888 LINC00469 lincRNA 
non-coding 

intronic 
            

rs3813026 17 76123528 TMC6 protein_coding 

intronic,5upstream

,non-coding 

intronic 

            

rs10432142 18 7199531      SLC25A51P2 pseudogene 63713 LRRC30 protein_coding 31592 

rs322132 19 11377939      DOCK6 protein_coding 4782 TSPAN16 protein_coding 28885 

rs322133 19 11377975      DOCK6 protein_coding 4818 TSPAN16 protein_coding 28849 

rs16970932 19 36673300 ZNF565 protein_coding 3utr,3downstream             

rs16989256 19 58313191 ZNF586 protein_coding intronic             

rs7250447 19 58319123 ZNF586 protein_coding intronic             

rs7250447 19 58319123 ZNF552 protein_coding 
intronic,3utr,3dow

nstream 
            

rs2303756 19 58331012 ZNF586 protein_coding 3utr             

rs34871518 19 58354265 
CTD-
2583A14.10 

protein_coding intronic             

rs34871518 19 58354265 ZNF587B protein_coding 
3downstream,intro

nic 
            



 

 

 

3
5
0
 

rs1047920 20 48605107 SNAI1 protein_coding 3utr             

rs6013654 20 51887837 TSHZ2 protein_coding intronic             

rs6013654 20 51887837 
RP4-

678D15.1 
antisense 

non-coding 

intronic 
            

rs1877430 20 51888122 TSHZ2 protein_coding intronic             

rs1877430 20 51888122 
RP4-

678D15.1 
antisense 

non-coding 

intronic 
            

rs467028 21 31292936 GRIK1 protein_coding 
intronic,non-

coding intronic 
            

rs465555 21 31293409 GRIK1 protein_coding 
intronic,non-
coding intronic 

            

rs466081 21 31296871 GRIK1 protein_coding 
intronic,non-

coding intronic 
            

rs458965 21 31311490 GRIK1 protein_coding 
intronic,non-

coding intronic 
            

rs1012042 21 31319562      GRIK1 protein_coding 7211 AF096876.1 lincRNA 142473 

rs2832503 21 31324181      GRIK1 protein_coding 11830 AF096876.1 lincRNA 137854 

rs977779 21 31325538      GRIK1 protein_coding 13187 AF096876.1 lincRNA 136497 

rs2832513 21 31366120      GRIK1 protein_coding 53769 AF096876.1 lincRNA 95915 

rs9977816 21 45653614 ICOSLG protein_coding intronic             

rs132323 22 29567431      KREMEN1 protein_coding 3110 RNU6-1219P snRNA 20254 

rs132366 22 29599984      RNU6-1219P snRNA 12188 EMID1 protein_coding 1856 

rs9622771 22 38675738      AL020993.1 miRNA 5308 CSNK1E protein_coding 10959 

rs17753394 22 38678387      AL020993.1 miRNA 7957 CSNK1E protein_coding 8310 

rs1884417 X 140316168      LDOC1 protein_coding 44858 SPANXC protein_coding 19428 

rs5953842 X 142554570 
GS1-
256O22.5 

antisense 
non-coding 
intronic 

            

rs12689477 X 54076358      PHF8 protein_coding 967 U3 snoRNA 14920 

rs12688331 X 54208112 FAM120C protein_coding 
intronic,non-

coding intronic 
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Appendix E: SNPnexus phenotype & disease association 

Result table with phenotype and disease association information from the 

Genetic Association Database (GAD), for the 204 SNPs identified with 

SAERMA. The following features were used to report the information for the 

SNPs indexed from GAD: 

• SNP: SNP name 

• Association: Confirmed association  

• Phenotype: Phenotype description  

• Disease_Class: Type of disease  

• Gene: Gene name  

• Pubmed: Pubmed ID of publication of the study  

The output file obtained from SNPnexus was subject to a filter criterion so 

only disease/phenotypes within metabolic and cardiovascular disease class were 

retained. Other disease classes such as vision, renal, aging, neurological, 

chemdependency, psych, haematological, developmental or immune were not 

considered relevant. The disease/phenotypes within the metabolic and 

cardiovascular class were: cholesterol (HDL), waist circumference, 

triglycerides, lipids, metabolism, obesity, cholesterol, obesity|asthma, coronary 

disease, body mass index, diabetes mellitus type 2, type 2 diabetes, 

cardiovascular diseases, diabetes mellitus, hypertension, diastolic blood 

pressure, cholesterol (LDL), coronary artery disease, diabetes mellitus type 

2|obesity, insulin, insulin resistance, blood pressure, body fat distribution, body 

weight, waist-hip ratio, body weight changes, body weight and measures, 

diabetes type 2 and triglycerides, diabetes type 2|diabetes type 1. 
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SNP Association Gene Disease Class Phenotype Pubmed 

rs10042132 Y C7orf63 METABOLIC Cholesterol, HDL 17903299 

rs10043659 Y C7orf63 METABOLIC Cholesterol, HDL 17903299 

rs10083213 Y TPH2 METABOLIC 
Waist 

Circumference 
0 

rs1012042 Y MLL3 METABOLIC Triglycerides 17903299 

rs1012042 Y NCAM2 METABOLIC Lipids 17903299 

rs1012042 Y NCAM2 METABOLIC Metabolism 0 

rs1012042 Y NCAM2 METABOLIC Obesity 21552555 

rs1012042 Y NCAM2 METABOLIC Triglycerides 0 

rs1012042 Y NCAM2 METABOLIC Triglycerides 17903299 

rs10180670 Y AFF3 METABOLIC Cholesterol 17903299 

rs10180670 Y AFF3 METABOLIC Cholesterol, HDL 17903299 

rs10204782 Y AFF3 METABOLIC Cholesterol 17903299 

rs10204782 Y AFF3 METABOLIC Cholesterol, HDL 17903299 

rs10204782 Y ROCK2 CARDIOVASCULAR 
Death, Sudden, 

Cardiac 
21658281 

rs1037626 Y AFF3 METABOLIC Cholesterol 17903299 

rs1037626 Y AFF3 METABOLIC Cholesterol, HDL 17903299 

rs1046724 Y PPP1R2P3 METABOLIC Triglycerides 0 

rs10816047 PTPRD METABOLIC obesity|asthma 20816195 

rs10816047 Y PTPRD CARDIOVASCULAR Coronary Disease 0 

rs10816047 Y PTPRD METABOLIC Body Mass Index 0 

rs10816047 Y PTPRD METABOLIC Cholesterol, HDL 17903299 

rs10816047 Y PTPRD METABOLIC 
Diabetes Mellitus, 
Type 2 

20174558 

rs10816047 Y PTPRD METABOLIC type 2 diabetes 20174558 

rs10826675 Y MPP7 CARDIOVASCULAR 
Cardiovascular 

Diseases 
17903304 

rs10826675 Y MPP7 METABOLIC Body Mass Index 17903300 

rs10826675 Y SVIL METABOLIC Diabetes Mellitus 0 

rs10849949 ATXN2 CARDIOVASCULAR 
Cardiovascular 

Diseases 
21060863 

rs10849949 ATXN2 CARDIOVASCULAR hypertension 19430479 

rs10849949 ATXN2 CARDIOVASCULAR hypertension 20542020 

rs10849949 ATXN2 METABOLIC Obesity 20016785 

rs10849949 Y ATXN2 CARDIOVASCULAR 
Diastolic blood 
pressure 

19430483 

rs10849949 Y TPH2 METABOLIC 
Waist 
Circumference 

0 

rs10850003 Y TPH2 METABOLIC 
Waist 

Circumference 
0 

rs10882256 Y ANK3 METABOLIC Cholesterol, LDL 143226392 

rs10882256 Y ANK3 METABOLIC Triglycerides 17903299 

rs10882256 Y LIPA CARDIOVASCULAR 
Coronary Artery 

Disease 
21378988 

rs10882256 Y LIPA CARDIOVASCULAR 
Coronary Artery 
Disease 

21606135 

rs10882256 Y ZNF32 METABOLIC Body Mass Index 0 

rs10998726 HK1 METABOLIC 
Diabetes Mellitus, 

Type 2 
19096518 

rs10998726 Y ANK3 METABOLIC Cholesterol, LDL 143226392 

rs10998726 Y ANK3 METABOLIC Triglycerides 17903299 

rs10998726 Y HK1 METABOLIC 
Diabetes Mellitus, 

Type 2|Obesity 
19651813 
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rs10998726 Y ZNF32 METABOLIC Body Mass Index 0 

rs11065884 Y TPH2 METABOLIC 
Waist 
Circumference 

0 

rs11102001 Y EPHB2 METABOLIC Insulin 0 

rs11102001 Y EPHB2 METABOLIC Insulin Resistance 0 

rs11102001 Y NTNG1 METABOLIC Body Mass Index 0 

rs11102001 Y Sep-10 CARDIOVASCULAR Blood Pressure 53709906 

rs11207744 Y EPHB2 METABOLIC Insulin 0 

rs11207744 Y EPHB2 METABOLIC Insulin Resistance 0 

rs11692215 Y AFF3 METABOLIC 
Body Fat 

Distribution 
0 

rs11692215 Y AFF3 METABOLIC Cholesterol 17903299 

rs11692215 Y AFF3 METABOLIC Cholesterol, HDL 17903299 

rs11786916 CSMD1 CARDIOVASCULAR hypertension 19960030 

rs11786916 Y CSMD1 CARDIOVASCULAR Blood Pressure 17903302 

rs11786916 Y CSMD1 CARDIOVASCULAR Coronary Disease 21347282 

rs11786916 Y CSMD1 METABOLIC 
Body Fat 

Distribution 
0 

rs11786916 Y CSMD1 METABOLIC Body Mass Index 0 

rs11786916 Y CSMD1 METABOLIC Diabetes Mellitus 0 

rs11786916 Y CSMD1 METABOLIC Insulin Resistance 21901158 

rs11786916 Y DEFA3 METABOLIC Cholesterol, HDL 17903299 

rs12074072 Y EPHB2 METABOLIC Insulin 0 

rs12074072 Y EPHB2 METABOLIC Insulin Resistance 0 

rs12315146 Y TPH2 METABOLIC 
Waist 
Circumference 

0 

rs12426730 Y SLC26A5 METABOLIC Triglycerides 0 

rs12426730 Y TPH2 METABOLIC 
Waist 

Circumference 
0 

rs12486426 Y LRRN1 CARDIOVASCULAR Blood Pressure 0 

rs12486426 Y LRRN1 METABOLIC Body Weight 17903300 

rs12486426 Y LRRN1 METABOLIC Cholesterol, HDL 125323093 

rs12486426 Y LRRN1 METABOLIC Triglycerides 17903299 

rs12486426 Y ROBO2 CARDIOVASCULAR Blood Pressure 0 

rs12486426 Y ROBO2 METABOLIC Cholesterol 17903299 

rs12486426 Y ROBO2 METABOLIC Cholesterol, LDL 17903299 

rs12486426 Y ROBO2 METABOLIC Diabetes Mellitus 17903298 

rs12486426 Y TKT METABOLIC 
Waist 

Circumference 
0 

rs12570210 Y LIPA CARDIOVASCULAR 
Coronary Artery 
Disease 

21378988 

rs12570210 Y LIPA CARDIOVASCULAR 
Coronary Artery 

Disease 
21606135 

rs12570210 Y TCERG1L METABOLIC 
Diabetes Mellitus, 

Type 2 
21490949 

rs12947624 Y PEMT CARDIOVASCULAR 
Coronary Artery 
Disease 

21378990 

rs13171869 Y PPP1R2P3 METABOLIC Triglycerides 0 

rs13269315 CSMD1 CARDIOVASCULAR hypertension 19960030 

rs13269315 Y CSMD1 CARDIOVASCULAR Blood Pressure 17903302 

rs13269315 Y CSMD1 CARDIOVASCULAR Coronary Disease 21347282 

rs13269315 Y CSMD1 METABOLIC 
Body Fat 

Distribution 
0 

rs13269315 Y CSMD1 METABOLIC Body Mass Index 0 
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rs13269315 Y CSMD1 METABOLIC Diabetes Mellitus 0 

rs13269315 Y CSMD1 METABOLIC Insulin Resistance 21901158 

rs13269315 Y DEFA3 METABOLIC Cholesterol, HDL 17903299 

rs1452044 Y AFF3 METABOLIC Cholesterol 17903299 

rs1452044 Y AFF3 METABOLIC Cholesterol, HDL 17903299 

rs1479955 Y LRRN1 CARDIOVASCULAR Blood Pressure 0 

rs1479955 Y LRRN1 METABOLIC Body Weight 17903300 

rs1479955 Y LRRN1 METABOLIC Cholesterol, HDL 125323093 

rs1479955 Y LRRN1 METABOLIC Triglycerides 17903299 

rs1479955 Y TKT METABOLIC 
Waist 
Circumference 

0 

rs1544396 Y TPH2 METABOLIC 
Waist 

Circumference 
0 

rs16894413 Y C7orf63 METABOLIC Cholesterol, HDL 17903299 

rs17015634 Y AFF3 METABOLIC Cholesterol 17903299 

rs17015634 Y AFF3 METABOLIC Cholesterol, HDL 17903299 

rs17184182 Y GRIP1 CARDIOVASCULAR 
Coronary Artery 

Disease 
0 

rs17184182 Y GRIP1 METABOLIC Waist-Hip Ratio 0 

rs17184182 Y SLC26A5 METABOLIC Triglycerides 0 

rs17249591 Y ACCN1 METABOLIC Body Mass Index 0 

rs17249591 Y ACCN1 METABOLIC Body Weight 0 

rs17249591 Y PEMT CARDIOVASCULAR 
Coronary Artery 
Disease 

21378990 

rs17249607 Y ACCN1 METABOLIC Body Mass Index 0 

rs17249607 Y ACCN1 METABOLIC Body Weight 0 

rs17249607 Y ACCN1 METABOLIC Body Weight 35806600 

rs17249607 Y PEMT CARDIOVASCULAR 
Coronary Artery 

Disease 
21378990 

rs17293732 Y AFF3 METABOLIC Cholesterol 17903299 

rs17293732 Y AFF3 METABOLIC Cholesterol, HDL 17903299 

rs17349380 Y LRRN1 CARDIOVASCULAR Blood Pressure 0 

rs17349380 Y LRRN1 METABOLIC Body Weight 17903300 

rs17349380 Y LRRN1 METABOLIC Cholesterol, HDL 125323093 

rs17349380 Y LRRN1 METABOLIC Triglycerides 17903299 

rs17349380 Y TKT METABOLIC 
Waist 

Circumference 
0 

rs17662453 Y AFF3 METABOLIC Cholesterol 17903299 

rs17662453 Y AFF3 METABOLIC Cholesterol, HDL 17903299 

rs17753394 Y LARGE CARDIOVASCULAR Blood Pressure 17903302 

rs17753394 Y LARGE METABOLIC Cholesterol 0 

rs17753394 Y LARGE METABOLIC Cholesterol, HDL 0 

rs17753394 Y LARGE METABOLIC Cholesterol, LDL 0 

rs17753394 Y LARGE METABOLIC Cholesterol, LDL 17903299 

rs17792616 Y RBMXP1 METABOLIC Body Mass Index 17903300 

rs17792616 Y RBMXP1 METABOLIC 
Body Weight 
Changes 

17903300 

rs17792616 Y RBMXP1 METABOLIC 
Body Weights and 

Measures 
17903300 

rs17792616 Y RBMXP1 METABOLIC Cholesterol, HDL 17903299 

rs17836850 Y ACCN1 METABOLIC Body Mass Index 0 

rs17836850 Y ACCN1 METABOLIC Body Weight 0 
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rs17836850 Y ACCN1 METABOLIC Body Weight 71613200 

rs17836850 Y PEMT CARDIOVASCULAR 
Coronary Artery 
Disease 

21378990 

rs1877430 Y TSHZ2 METABOLIC Cholesterol 0 

rs1877430 Y TSHZ2 METABOLIC Cholesterol, LDL 0 

rs1877430 Y TSHZ2 METABOLIC Triglycerides 35806598 

rs1955311 Y HTRA3 METABOLIC Cholesterol, LDL 0 

rs2042867 Y ANK3 METABOLIC Cholesterol, LDL 143226392 

rs2042867 Y ANK3 METABOLIC Triglycerides 17903299 

rs2042867 Y ZNF32 METABOLIC Body Mass Index 0 

rs2073950 ATXN2 CARDIOVASCULAR 
Cardiovascular 

Diseases 
21060863 

rs2073950 ATXN2 CARDIOVASCULAR hypertension 19430479 

rs2073950 ATXN2 CARDIOVASCULAR hypertension 20542020 

rs2073950 ATXN2 METABOLIC Obesity 20016785 

rs2073950 Y ATXN2 CARDIOVASCULAR 
Diastolic blood 

pressure 
19430483 

rs2073950 Y TPH2 METABOLIC 
Waist 
Circumference 

0 

rs2080390 Y AFF3 METABOLIC Cholesterol 17903299 

rs2080390 Y AFF3 METABOLIC Cholesterol, HDL 17903299 

rs2116588 Y AFF3 METABOLIC Cholesterol 17903299 

rs2116588 Y AFF3 METABOLIC Cholesterol, HDL 17903299 

rs2154762 ITGA9 CARDIOVASCULAR hypertension 20414254 

rs2154762 ITGA9 CARDIOVASCULAR hypertension 20479155 

rs2154762 Y LRRN1 CARDIOVASCULAR Blood Pressure 0 

rs2154762 Y LRRN1 METABOLIC Body Weight 17903300 

rs2154762 Y LRRN1 METABOLIC Cholesterol, HDL 125323093 

rs2154762 Y LRRN1 METABOLIC Triglycerides 17903299 

rs220655 Y AFF3 METABOLIC Cholesterol 17903299 

rs220655 Y AFF3 METABOLIC Cholesterol, HDL 17903299 

rs2206734 CDKAL1 METABOLIC Diabetes Mellitus 18264689 

rs2206734 CDKAL1 METABOLIC 
Diabetes Mellitus, 

Type 2 
19172244 

rs2206734 CDKAL1 METABOLIC 

Diabetes 

Mellitus|Diabetes 

Mellitus, Type 2| 

19139842 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19502414 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 18544707 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19258404 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19862325 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19324937 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19741467 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19401414 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19602701 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19794065 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 18437351 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19020323 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 18984664 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19592620 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19933996 
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rs2206734 CDKAL1 METABOLIC diabetes, type 2 19734900 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19892838 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19247372 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 18469204 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19380854 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19720844 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 18516622 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19225753 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19228808 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19008344 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 17463248 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 18461161 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19082521 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19020324 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19002430 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 19033397 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 18633108 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 18991055 

rs2206734 CDKAL1 METABOLIC diabetes, type 2 18477659 

rs2206734 CDKAL1 METABOLIC 
diabetes, type 2 
triglycerides 

17463246 

rs2206734 CDKAL1 METABOLIC Obesity 20712903 

rs2206734 CDKAL1 METABOLIC Obesity 20816152 

rs2206734 CDKAL1 UNKNOWN 
diabetes, type 2 | 

diabetes, type 1 
18426861 

rs2206734 N CDKAL1 UNKNOWN 
diabetes, type 2 | 

diabetes, type 1 
19455305 

rs2206734 Y CDKAL1 METABOLIC Body Mass Index 22344219 

rs2206734 Y CDKAL1 METABOLIC Body Mass Index 22344221 

rs2206734 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 
Type 2 

20581827 

rs2206734 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 

Type 2 
17463249 

rs2206734 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 

Type 2 
19401414 

rs2206734 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 
Type 2 

18711366 

rs2206734 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 

Type 2 
19734900 

rs2206734 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 

Type 2 
19056611 

rs2206734 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 
Type 2 

17463246 

rs2206734 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 

Type 2 
17460697 

rs2206734 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 

Type 2 
21490949 

rs2206734 Y CDKAL1 METABOLIC diabetes, type 2 18591388 

rs2206734 Y CDKAL1 METABOLIC diabetes, type 2 17460697 

rs2206734 Y CDKAL1 METABOLIC diabetes, type 2 17463249 

rs2206734 Y CDKAL1 METABOLIC type 2 diabetes 17463246 

rs2206734 Y CDKAL1 METABOLIC type 2 diabetes 17463248 

rs2206734 Y CDKAL1 METABOLIC type 2 diabetes 17460697 

rs2206734 Y CDKAL1 METABOLIC type 2 diabetes 19401414 

rs2206734 Y CDKAL1 METABOLIC type 2 diabetes 18711366 
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rs2206734 Y CDKAL1 METABOLIC type 2 diabetes 17554300 

rs2206734 Y CDKAL1 METABOLIC type 2 diabetes 17463249 

rs2206734 Y CDKAL1 METABOLIC type 2 diabetes 18372903 

rs2285727 Y TPH2 METABOLIC 
Waist 
Circumference 

0 

rs2301621 ATXN2 CARDIOVASCULAR 
Cardiovascular 

Diseases 
21060863 

rs2301621 ATXN2 CARDIOVASCULAR hypertension 19430479 

rs2301621 ATXN2 CARDIOVASCULAR hypertension 20542020 

rs2301621 ATXN2 METABOLIC Obesity 20016785 

rs2301621 Y ATXN2 CARDIOVASCULAR 
Diastolic blood 

pressure 
19430483 

rs2301621 Y TPH2 METABOLIC 
Waist 
Circumference 

0 

rs2339941 Y NAA25 METABOLIC Cholesterol, LDL 17903299 

rs2339941 Y TPH2 METABOLIC 
Waist 

Circumference 
0 

rs2410518 Y MTMR7 METABOLIC Body Mass Index 0 

rs2410518 Y MTMR7 METABOLIC Body Mass Index 17903300 

rs2410518 Y MTMR7 METABOLIC 
Body Weight 

Changes 
17903300 

rs2521766 Y DFNA5 METABOLIC Cholesterol, LDL 35806598 

rs2521766 Y EIF2AK1 METABOLIC Triglycerides 17903299 

rs2546440 Y PPP1R2P3 METABOLIC Triglycerides 0 

rs2619980 Y PEMT CARDIOVASCULAR 
Coronary Artery 
Disease 

21378990 

rs2711098 Y EIF2AK1 METABOLIC Triglycerides 17903299 

rs2832503 Y MLL3 METABOLIC Triglycerides 17903299 

rs2832503 Y NCAM2 METABOLIC Lipids 17903299 

rs2832503 Y NCAM2 METABOLIC Metabolism 0 

rs2832503 Y NCAM2 METABOLIC Obesity 21552555 

rs2832503 Y NCAM2 METABOLIC Triglycerides 0 

rs2832503 Y NCAM2 METABOLIC Triglycerides 17903299 

rs2832513 Y MLL3 METABOLIC Triglycerides 17903299 

rs2832513 Y NCAM2 METABOLIC Lipids 17903299 

rs2832513 Y NCAM2 METABOLIC Metabolism 0 

rs2832513 Y NCAM2 METABOLIC Obesity 21552555 

rs2832513 Y NCAM2 METABOLIC Triglycerides 0 

rs2832513 Y NCAM2 METABOLIC Triglycerides 17903299 

rs2876086 Y RBMXP1 METABOLIC Body Mass Index 17903300 

rs2876086 Y RBMXP1 METABOLIC 
Body Weight 

Changes 
17903300 

rs2876086 Y RBMXP1 METABOLIC 
Body Weights and 

Measures 
17903300 

rs2876086 Y RBMXP1 METABOLIC Cholesterol, HDL 17903299 

rs3177647 Y TPH2 METABOLIC 
Waist 
Circumference 

0 

rs3758650 Y CDHR5 METABOLIC Diabetes Mellitus 0 

rs3795308 Y EPHB2 METABOLIC Insulin 0 

rs3795308 Y EPHB2 METABOLIC Insulin Resistance 0 

rs3809288 Y TPH2 METABOLIC 
Waist 

Circumference 
0 

rs3813026 Y PEMT CARDIOVASCULAR 
Coronary Artery 

Disease 
21378990 

rs396394 Y ANK3 METABOLIC Cholesterol, LDL 143226392 
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rs396394 Y ANK3 METABOLIC Triglycerides 17903299 

rs396394 Y ZNF32 METABOLIC Body Mass Index 0 

rs400659 Y ANK3 METABOLIC Cholesterol, LDL 143226392 

rs400659 Y ANK3 METABOLIC Triglycerides 17903299 

rs400659 Y ZNF32 METABOLIC Body Mass Index 0 

rs406671 Y ANK3 METABOLIC Cholesterol, LDL 143226392 

rs406671 Y ANK3 METABOLIC Triglycerides 17903299 

rs406671 Y ZNF32 METABOLIC Body Mass Index 0 

rs42695 Y EIF2AK1 METABOLIC Triglycerides 17903299 

rs458965 Y GRIK1 METABOLIC Body Mass Index 17903300 

rs458965 Y GRIK1 METABOLIC Body Mass Index 22446040 

rs458965 Y GRIK1 METABOLIC Body Weight 17903300 

rs458965 Y MLL3 METABOLIC Triglycerides 17903299 

rs458965 Y NCAM2 METABOLIC Lipids 17903299 

rs458965 Y NCAM2 METABOLIC Metabolism 0 

rs458965 Y NCAM2 METABOLIC Obesity 21552555 

rs458965 Y NCAM2 METABOLIC Triglycerides 0 

rs458965 Y NCAM2 METABOLIC Triglycerides 17903299 

rs4648328 ALDH2 CARDIOVASCULAR 
Cardiovascular 
Diseases 

20541757 

rs4648328 ALDH2 CARDIOVASCULAR 
Coronary Artery 

Disease 
20417517 

rs4648328 ALDH2 CARDIOVASCULAR hypertension 20877124 

rs4648328 ALDH2 CARDIOVASCULAR hypertension 15167446 

rs4648328 ALDH2 CARDIOVASCULAR hypertension 12484509 

rs4648328 ALDH2 CARDIOVASCULAR hypertension 17785925 

rs4648328 ALDH2 CARDIOVASCULAR hypertension 11510748 

rs4648328 ALDH2 METABOLIC 
Diabetes Mellitus, 

Type 2 
18216179 

rs4648328 ALDH2 METABOLIC diabetes, type 2 9752691 

rs4648328 Y TPH2 METABOLIC 
Waist 
Circumference 

0 

rs465555 Y GRIK1 METABOLIC Body Mass Index 17903300 

rs465555 Y GRIK1 METABOLIC Body Mass Index 22446040 

rs465555 Y GRIK1 METABOLIC Body Weight 17903300 

rs465555 Y MLL3 METABOLIC Triglycerides 17903299 

rs465555 Y NCAM2 METABOLIC Lipids 17903299 

rs465555 Y NCAM2 METABOLIC Metabolism 0 

rs465555 Y NCAM2 METABOLIC Obesity 21552555 

rs465555 Y NCAM2 METABOLIC Triglycerides 0 

rs465555 Y NCAM2 METABOLIC Triglycerides 17903299 

rs466081 Y GRIK1 METABOLIC Body Mass Index 17903300 

rs466081 Y GRIK1 METABOLIC Body Mass Index 22446040 

rs466081 Y GRIK1 METABOLIC Body Weight 17903300 

rs466081 Y MLL3 METABOLIC Triglycerides 17903299 

rs466081 Y NCAM2 METABOLIC Lipids 17903299 

rs466081 Y NCAM2 METABOLIC Metabolism 0 

rs466081 Y NCAM2 METABOLIC Obesity 21552555 

rs466081 Y NCAM2 METABOLIC Triglycerides 0 
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rs466081 Y NCAM2 METABOLIC Triglycerides 17903299 

rs467028 Y GRIK1 METABOLIC Body Mass Index 17903300 

rs467028 Y GRIK1 METABOLIC Body Mass Index 22446040 

rs467028 Y GRIK1 METABOLIC Body Weight 17903300 

rs467028 Y MLL3 METABOLIC Triglycerides 17903299 

rs467028 Y NCAM2 METABOLIC Lipids 17903299 

rs467028 Y NCAM2 METABOLIC Metabolism 0 

rs467028 Y NCAM2 METABOLIC Obesity 21552555 

rs467028 Y NCAM2 METABOLIC Triglycerides 0 

rs467028 Y NCAM2 METABOLIC Triglycerides 17903299 

rs4678980 ITGA9 CARDIOVASCULAR hypertension 20414254 

rs4678980 ITGA9 CARDIOVASCULAR hypertension 20479155 

rs4678980 Y LRRN1 CARDIOVASCULAR Blood Pressure 0 

rs4678980 Y LRRN1 METABOLIC Body Weight 17903300 

rs4678980 Y LRRN1 METABOLIC Cholesterol, HDL 125323093 

rs4678980 Y LRRN1 METABOLIC Triglycerides 17903299 

rs4750827 Y LIPA CARDIOVASCULAR 
Coronary Artery 
Disease 

21378988 

rs4750827 Y LIPA CARDIOVASCULAR 
Coronary Artery 

Disease 
21606135 

rs4767939 ALDH2 CARDIOVASCULAR 
Cardiovascular 

Diseases 
20541757 

rs4767939 ALDH2 CARDIOVASCULAR 
Coronary Artery 
Disease 

20417517 

rs4767939 ALDH2 CARDIOVASCULAR hypertension 20877124 

rs4767939 ALDH2 CARDIOVASCULAR hypertension 15167446 

rs4767939 ALDH2 CARDIOVASCULAR hypertension 12484509 

rs4767939 ALDH2 CARDIOVASCULAR hypertension 17785925 

rs4767939 ALDH2 CARDIOVASCULAR hypertension 11510748 

rs4767939 ALDH2 METABOLIC 
Diabetes Mellitus, 

Type 2 
18216179 

rs4767939 ALDH2 METABOLIC diabetes, type 2 9752691 

rs4767939 Y TPH2 METABOLIC 
Waist 

Circumference 
0 

rs4850920 Y AFF3 METABOLIC 
Body Fat 
Distribution 

0 

rs4850920 Y AFF3 METABOLIC Cholesterol 17903299 

rs4850920 Y AFF3 METABOLIC Cholesterol, HDL 17903299 

rs4897427 Y RBMXP1 METABOLIC Body Mass Index 17903300 

rs4897427 Y RBMXP1 METABOLIC 
Body Weight 

Changes 
17903300 

rs4897427 Y RBMXP1 METABOLIC 
Body Weights and 

Measures 
17903300 

rs4897427 Y RBMXP1 METABOLIC Cholesterol, HDL 17903299 

rs4979935 Y ANK3 METABOLIC Cholesterol, LDL 143226392 

rs4979935 Y ANK3 METABOLIC Triglycerides 17903299 

rs4979935 Y ZNF32 METABOLIC Body Mass Index 0 

rs6013654 Y TSHZ2 METABOLIC Cholesterol 0 

rs6013654 Y TSHZ2 METABOLIC Cholesterol, LDL 0 

rs6013654 Y TSHZ2 METABOLIC Triglycerides 35806598 

rs632650 Y TPH2 METABOLIC 
Waist 
Circumference 

0 

rs640783 Y TPH2 METABOLIC 
Waist 

Circumference 
0 
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rs6569962 Y RBMXP1 METABOLIC Body Mass Index 17903300 

rs6569962 Y RBMXP1 METABOLIC 
Body Weight 
Changes 

17903300 

rs6569962 Y RBMXP1 METABOLIC 
Body Weights and 

Measures 
17903300 

rs6569962 Y RBMXP1 METABOLIC Cholesterol, HDL 17903299 

rs6713524 Y AFF3 METABOLIC 
Body Fat 

Distribution 
0 

rs6713524 Y AFF3 METABOLIC Cholesterol 17903299 

rs6713524 Y AFF3 METABOLIC Cholesterol, HDL 17903299 

rs6914876 Y RBMXP1 METABOLIC Body Mass Index 17903300 

rs6914876 Y RBMXP1 METABOLIC 
Body Weight 
Changes 

17903300 

rs6914876 Y RBMXP1 METABOLIC 
Body Weights and 

Measures 
17903300 

rs6914876 Y RBMXP1 METABOLIC Cholesterol, HDL 17903299 

rs6935599 CDKAL1 METABOLIC Diabetes Mellitus 18264689 

rs6935599 CDKAL1 METABOLIC 
Diabetes Mellitus, 

Type 2 
19172244 

rs6935599 CDKAL1 METABOLIC 
Diabetes 
Mellitus|Diabetes 

Mellitus, Type 2| 

19139842 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19502414 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 18544707 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19258404 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19862325 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19324937 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19741467 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19401414 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19602701 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19794065 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 18437351 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19020323 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 18984664 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19592620 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19933996 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19734900 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19892838 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19247372 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 18469204 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19380854 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19720844 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 18516622 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19225753 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19228808 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19008344 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 17463248 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 18461161 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19082521 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19020324 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19002430 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 19033397 
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rs6935599 CDKAL1 METABOLIC diabetes, type 2 18633108 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 18991055 

rs6935599 CDKAL1 METABOLIC diabetes, type 2 18477659 

rs6935599 CDKAL1 METABOLIC 
diabetes, type 2 
triglycerides 

17463246 

rs6935599 CDKAL1 METABOLIC Obesity 20712903 

rs6935599 CDKAL1 METABOLIC Obesity 20816152 

rs6935599 CDKAL1 UNKNOWN 
diabetes, type 2 | 

diabetes, type 1 
18426861 

rs6935599 N CDKAL1 UNKNOWN 
diabetes, type 2 | 

diabetes, type 1 
19455305 

rs6935599 Y CDKAL1 METABOLIC Body Mass Index 22344219 

rs6935599 Y CDKAL1 METABOLIC Body Mass Index 22344221 

rs6935599 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 
Type 2 

20581827 

rs6935599 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 

Type 2 
18372903 

rs6935599 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 

Type 2 
17463249 

rs6935599 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 
Type 2 

19401414 

rs6935599 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 

Type 2 
18711366 

rs6935599 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 

Type 2 
19734900 

rs6935599 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 
Type 2 

19056611 

rs6935599 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 

Type 2 
17463246 

rs6935599 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 

Type 2 
17460697 

rs6935599 Y CDKAL1 METABOLIC 
Diabetes Mellitus, 
Type 2 

21490949 

rs6935599 Y CDKAL1 METABOLIC diabetes, type 2 18591388 

rs6935599 Y CDKAL1 METABOLIC diabetes, type 2 17460697 

rs6935599 Y CDKAL1 METABOLIC diabetes, type 2 17463249 

rs6935599 Y CDKAL1 METABOLIC type 2 diabetes 17463246 

rs6935599 Y CDKAL1 METABOLIC type 2 diabetes 17463248 

rs6935599 Y CDKAL1 METABOLIC type 2 diabetes 17460697 

rs6935599 Y CDKAL1 METABOLIC type 2 diabetes 19401414 

rs6935599 Y CDKAL1 METABOLIC type 2 diabetes 18711366 

rs6935599 Y CDKAL1 METABOLIC type 2 diabetes 17554300 

rs6935599 Y CDKAL1 METABOLIC type 2 diabetes 17463249 

rs6935599 Y CDKAL1 METABOLIC type 2 diabetes 18372903 

rs6958382 Y EIF2AK1 METABOLIC Triglycerides 17903299 

rs7098565 Y MPP7 CARDIOVASCULAR 
Cardiovascular 
Diseases 

17903304 

rs7098565 Y MPP7 METABOLIC Body Mass Index 17903300 

rs7098565 Y SVIL METABOLIC Diabetes Mellitus 0 

rs7208029 Y PEMT CARDIOVASCULAR 
Coronary Artery 

Disease 
21378990 

rs735638 Y ANK3 METABOLIC Cholesterol, LDL 143226392 

rs735638 Y ANK3 METABOLIC Triglycerides 17903299 

rs735638 Y ZNF32 METABOLIC Body Mass Index 0 

rs7386192 Y MTMR7 METABOLIC Body Mass Index 0 

rs7386192 Y MTMR7 METABOLIC Body Mass Index 17903300 

rs7386192 Y MTMR7 METABOLIC 
Body Weight 

Changes 
17903300 
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rs7448421 Y PPP1R2P3 METABOLIC Triglycerides 0 

rs7579477 Y AFF3 METABOLIC Cholesterol 17903299 

rs7579477 Y AFF3 METABOLIC Cholesterol, HDL 17903299 

rs762027 Y AFF3 METABOLIC Cholesterol 17903299 

rs762027 Y AFF3 METABOLIC Cholesterol, HDL 17903299 

rs7765392 Y RBMXP1 METABOLIC Body Mass Index 17903300 

rs7765392 Y RBMXP1 METABOLIC 
Body Weight 
Changes 

17903300 

rs7765392 Y RBMXP1 METABOLIC 
Body Weights and 

Measures 
17903300 

rs7765392 Y RBMXP1 METABOLIC Cholesterol, HDL 17903299 

rs7962138 Y TPH2 METABOLIC 
Waist 

Circumference 
0 

rs7974383 Y C12orf51 CARDIOVASCULAR Blood Pressure 17903302 

rs7974383 Y C12orf51 METABOLIC Cholesterol 53709897 

rs7974383 Y C12orf51 METABOLIC Cholesterol, HDL 21909109 

rs7974383 Y C12orf51 METABOLIC Cholesterol, LDL 89516495 

rs7974383 Y C12orf51 METABOLIC Waist-Hip Ratio 19396169 

rs7974383 Y TPH2 METABOLIC 
Waist 
Circumference 

0 

rs8043910 WWOX CARDIOVASCULAR 
Cardiovascular 

Diseases 
20942981 

rs8043910 Y CDH3 METABOLIC Diabetes Mellitus 17903298 

rs8043910 Y WWOX CARDIOVASCULAR 
Cardiovascular 

Diseases 
17903304 

rs9622771 Y LARGE CARDIOVASCULAR Blood Pressure 17903302 

rs9622771 Y LARGE METABOLIC Cholesterol 0 

rs9622771 Y LARGE METABOLIC Cholesterol, HDL 0 

rs9622771 Y LARGE METABOLIC Cholesterol, LDL 0 

rs9622771 Y LARGE METABOLIC Cholesterol, LDL 17903299 

rs977779 Y MLL3 METABOLIC Triglycerides 17903299 

rs977779 Y NCAM2 METABOLIC Lipids 17903299 

rs977779 Y NCAM2 METABOLIC Metabolism 0 

rs977779 Y NCAM2 METABOLIC Obesity 21552555 

rs977779 Y NCAM2 METABOLIC Triglycerides 0 

rs977779 Y NCAM2 METABOLIC Triglycerides 17903299 

rs9887921 Y EPHB2 METABOLIC Insulin 0 

rs9887921 Y EPHB2 METABOLIC Insulin Resistance 0 

rs9888055 Y MPP7 CARDIOVASCULAR 
Cardiovascular 
Diseases 

17903304 

rs9888055 Y MPP7 METABOLIC Body Mass Index 17903300 

rs9888055 Y SVIL METABOLIC Diabetes Mellitus 0 

rs9897183 Y PEMT CARDIOVASCULAR 
Coronary Artery 

Disease 
21378990 

rs9971942 Y TPH2 METABOLIC 
Waist 

Circumference 
0 

rs9977816 Y MLL3 METABOLIC Triglycerides 17903299 

rs9977816 Y NCAM2 METABOLIC Lipids 17903299 

rs9977816 Y NCAM2 METABOLIC Metabolism 0 

rs9977816 Y NCAM2 METABOLIC Obesity 21552555 

rs9977816 Y NCAM2 METABOLIC Triglycerides 0 

rs9977816 Y NCAM2 METABOLIC Triglycerides 17903299 
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Appendix F: i-GSEA4GWAS results for GO terms  

The following table contains a list with the different GO terms correlated to 

obesity using the GWAS data, via gene set enrichment analysis.
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Gene set name GO term 
Gene set 

P-value 
Gene set FDR 

Significant 

genes 

REGULATION_OF_SECRETION GO:0051046 0.002 0.05716 16 

SPLICEOSOME GO:0005681 0.006 0.059166666 10 

DNA_CATABOLIC_PROCESS GO:0006308 0.002 0.061 9 

HELICASE_ACTIVITY GO:0004386 0.004 0.061 18 

NEGATIVE_REGULATION_OF_MULTICELLULAR_ORGANISMAL_PROCESS GO:0051241 0.002 0.06385714 13 

PROTEIN_RNA_COMPLEX_ASSEMBLY GO:0022618 0.002 0.06523077 15 

NUCLEOPLASM_PART GO:0044451 0.002 0.066296294 52 

CYCLIC_NUCLEOTIDE_MEDIATED_SIGNALING GO:0019935 0.001 0.0663 46 

CHROMOSOME__PERICENTRIC_REGION GO:0000775 0.001 0.069 14 

PROTEIN_C_TERMINUS_BINDING GO:0008022 < 0.001 0.06983333 24 

DNA_HELICASE_ACTIVITY GO:0003678 0.001 0.0714 9 

STRUCTURE_SPECIFIC_DNA_BINDING GO:0043566 0.004 0.07272223 17 

ANGIOGENESIS GO:0001525 0.004 0.0745 20 

DNA_DIRECTED_RNA_POLYMERASE_II__HOLOENZYME GO:0016591 0.003 0.07482759 17 

VIRAL_REPRODUCTIVE_PROCESS GO:0022415 0.004 0.07541176 12 

POSITIVE_REGULATION_OF_CYTOKINE_BIOSYNTHETIC_PROCESS GO:0042108 0.002 0.076 9 

PROTEIN_DIMERIZATION_ACTIVITY GO:0046983 0.002 0.0766 61 

NEUROTRANSMITTER_BINDING GO:0042165 0.004 0.077125 20 

G_PROTEIN_SIGNALING__COUPLED_TO_CAMP_NUCLEOTIDE_SECOND_MESSENGER GO:0007188 0.005 0.0776129 31 

RECEPTOR_COMPLEX GO:0043235 0.001 0.0779 25 

SECOND_MESSENGER_MEDIATED_SIGNALING GO:0019932 < 0.001 0.080133334 63 

NEUROTRANSMITTER_RECEPTOR_ACTIVITY GO:0030594 0.006 0.080484845 19 

SEQUENCE_SPECIFIC_DNA_BINDING GO:0043565 < 0.001 0.0805 24 

RNA_PROCESSING GO:0006396 0.002 0.08214285 36 



 

 

 

3
6
5
 

POSITIVE_REGULATION_OF_TRANSLATION GO:0045727 < 0.001 0.08469231 13 

G_PROTEIN_SIGNALING__COUPLED_TO_CYCLIC_NUCLEOTIDE_SECOND_MESSENGER GO:0007187 < 0.001 0.0855 46 

SYNAPSE GO:0045202 0.001 0.08645454 14 

CYTOKINE_METABOLIC_PROCESS GO:0042107 < 0.001 0.0865 15 

CYTOKINE_PRODUCTION GO:0001816 < 0.001 0.086555555 28 

CAMP_MEDIATED_SIGNALING GO:0019933 0.006 0.09071053 31 

RIBONUCLEOPROTEIN_COMPLEX GO:0030529 0.002 0.090972975 26 

REGULATION_OF_NEUROTRANSMITTER_LEVELS GO:0001505 0.001 0.09163889 13 

REGULATION_OF_MITOSI GO:0007088 0.006 0.092685714 12 

VIRAL_REPRODUCTION GO:0016032 0.003 0.0935 13 

SYNAPTIC_TRANSMISSION GO:0007268 0.001 0.09375 69 

PROTEIN_HOMODIMERIZATION_ACTIVITY GO:0042803 0.001 0.09385294 41 

M_PHASE_OF_MITOTIC_CELL_CYCLE GO:0000087 0.006 0.09446154 20 

POSITIVE_REGULATION_OF_CELL_DIFFERENTIATION GO:0045597 0.001 0.09678572 15 

MITOSIS GO:0007067 0.008 0.09795121 19 

NITROGEN_COMPOUND_CATABOLIC_PROCESS GO:0044270 0.009 0.09863637 11 

DEPHOSPHORYLATION GO:0016311 0.003 0.09890697 27 

REGULATION_OF_CYTOKINE_BIOSYNTHETIC_PROCESS GO:0042035 < 0.001 0.102 14 

DOUBLE_STRANDED_DNA_BINDING GO:0003690 0.013 0.10208333 10 

PHOSPHOPROTEIN_PHOSPHATASE_ACTIVITY GO:0004721 0.004 0.10266667 32 

G_PROTEIN_SIGNALING__ADENYLATE_CYCLASE_ACTIVATING_PATHWAY GO:0007189 0.004 0.10293999 11 

VASCULATURE_DEVELOPMENT GO:0001944 0.006 0.10334783 21 

ENDONUCLEASE_ACTIVITY GO:0004519 0.012 0.10357777 8 

REGULATION_OF_MITOTIC_CELL_CYCLE GO:0007346 0.003 0.103893615 9 

CELL_SUBSTRATE_ADHESION GO:0031589 0.006 0.10389796 16 

CYTOKINE_BIOSYNTHETIC_PROCESS GO:0042089 0.001 0.10585714 14 
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PROTEIN_COMPLEX_BINDING GO:0032403 0.007 0.106037036 21 

MITOTIC_CELL_CYCLE  GO:0000278 0.009 0.106625006 39 

NEGATIVE_REGULATION_OF_CELL_DIFFERENTIATION GO:0045596 0.005 0.10696226 16 

POSITIVE_REGULATION_OF_PROTEIN_METABOLIC_PROCESS GO:0051247 0.013 0.10732692 24 

IRAL_INFECTIOUS_CYCLE GO:0019058 0.011 0.107836366 10 

GENERATION_OF_A_SIGNAL_INVOLVED_IN_CELL_CELL_SIGNALING GO:0003001 < 0.001 0.108 16 

REGULATION_OF_MULTICELLULAR_ORGANISMAL_PROCESS GO:0051239 0.004 0.1272456 54 

POSITIVE_REGULATION_OF_CELLULAR_PROTEIN_METABOLIC_PROCESS GO:0032270 0.015 0.1275 23 

TRANSMISSION_OF_NERVE_IMPULSE GO:0019226 0.006 0.12795652 73 

RESPONSE_TO_RADIATION GO:0009314 0.014 0.12827693 15 

REGULATION_OF_CELL_CYCLE GO:0051726 0.008 0.1285625 52 

PROTEIN_HETERODIMERIZATION_ACTIVITY GO:0046982 0.013 0.12877941 28 

INTERMEDIATE_FILAMENT GO:0005882 0.013 0.1297 8 

INTERMEDIATE_FILAMENT_CYTOSKELETON GO:0045111 0.013 0.1297 8 

ANATOMICAL_STRUCTURE_FORMATION  GO:0048646 0.01 0.12980281 24 

REGULATION_OF_G_PROTEIN_COUPLED_RECEPTOR_PROTEIN_SIGNALING_PATHWAY GO:0008277 0.005 0.12987931 10 

REGULATION_OF_CELL_DIFFERENTIATION GO:0045595 0.001 0.13015872 29 

MRNA_PROCESSING_GO_0006397 GO:0006397 0.014 0.13040909 16 

CELL_CYCLE_PROCESS GO:0022402 0.016 0.13048612 42 

DNA_REPAIR GO:0006281 0.01 0.1307015 30 

CELL_MATRIX_ADHESION GO:0007160 0.014 0.13109589 15 

UBIQUITIN_PROTEIN_LIGASE_ACTIVITY GO:0004842 0.014 0.13147542 14 

MYELOID_CELL_DIFFERENTIATION GO:0030099 0.008 0.132 15 

CELL_CYCLE_PHASE GO:0022403 0.012 0.13202667 39 

REGULATION_OF_PROTEIN_METABOLIC_PROCESS GO:0051246 0.014 0.13293242 47 

SMALL_CONJUGATING_PROTEIN_LIGASE_ACTIVITY GO:0019787 0.017 0.13485526 14 
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ENDOSOME GO:0005768 0.019 0.13974118 19 

PROTEIN_AMINO_ACID_DEPHOSPHORYLATION GO:0006470 0.013 0.14083117 25 

REGULATION_OF_MAPKKK_CASCADE GO:0043408 0.025 0.141 7 

G_PROTEIN_COUPLED_RECEPTOR_ACTIVITY GO:0004930 0.016 0.14111827 71 

REGULATION_OF_TRANSFERASE_ACTIVITY GO:0051338 0.017 0.14196809 49 

M_PHASE GO:0000279 0.019 0.14215 24 

ATPASE_ACTIVITY GO:0016887 0.015 0.14228916 34 

POSITIVE_REGULATION_OF_TRANSFERASE_ACTIVITY GO:0051347 0.017 0.14235869 31 

RESPONSE_TO_LIGHT_STIMULUS GO:0009416 0.022 0.1424557 13 

RESPONSE_TO_HYPOXIA GO:0001666 0.012 0.14247435 11 

ADHERENS_JUNCTION GO:0005912 0.015 0.14265853 10 

DOUBLE_STRAND_BREAK_REPAIR GO:0006302 0.028 0.1431978 8 

ACID_AMINO_ACID_LIGASE_ACTIVITY GO:0016881 0.022 0.14374074 15 

REGULATION_OF_TRANSLATION GO:0006417 0.02 0.1446 24 

NA_SPLICING GO:0008380 0.023 0.1446628 18 

POSITIVE_REGULATION_OF_CATALYTIC_ACTIVITY GO:0043085 0.022 0.14594382 51 

HOMEOSTATIC_PROCESS GO:0042592 0.01 0.14613636 65 

ATPASE_ACTIVITY__COUPLED_TO_TRANSMEMBRANE_MOVEMENT_OF_IONS GO:0042625 0.018 0.14767815 9 

SMALL_PROTEIN_CONJUGATING_ENZYME_ACTIVITY GO:0008639 0.021 0.14805263 15 

AMINE_CATABOLIC_PROCESS GO:0009310 0.027 0.15058586 10 

TRANSCRIPTION_FACTOR_COMPLEX GO:0005667 0.02 0.15113266 22 

RESPONSE_TO_DNA_DAMAGE_STIMULUS GO:0006974 0.018 0.15113401 38 

RHODOPSIN_LIKE_RECEPTOR_ACTIVITY GO:0001584 0.015 0.1514375 47 

POSITIVE_REGULATION_OF_CELL_PROLIFERATION GO:0008284 0.016 0.15253 49 

HEMOPOIESIS GO:0030097 0.018 0.15408911 28 

GLUTAMATE_RECEPTOR_ACTIVITY GO:0008066 0.009 0.15566666 15 
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IMMUNE_EFFECTOR_PROCESS GO:0002252 0.021 0.15740776 14 

NEGATIVE_REGULATION_OF_NUCLEOBASE__NUCLEOSIDE__NUCLEOTIDE_AND_NUCLEIC_A

CID_METABOLIC_PROCESS 
GO:0045934 0.019 0.15747747 64 

REGULATION_OF_CELLULAR_PROTEIN_METABOLIC_PROCESS GO:0032268 0.022 0.15839048 44 

LIGASE_ACTIVITY GO:0016874 0.023 0.15842374 26 

CHROMOSOME_ORGANIZATION_AND_BIOGENESIS GO:0051276 0.031 0.15851402 29 

POSITIVE_REGULATION_OF_TRANSCRIPTION GO:0045941 0.02 0.15860909 51 

RESPONSE_TO_ENDOGENOUS_STIMULUS GO:0009719 0.024 0.15879807 47 

NEGATIVE_REGULATION_OF_TRANSCRIPTION GO:0016481 0.021 0.15912296 59 

POSITIVE_REGULATION_OF_NUCLEOBASE__NUCLEOSIDE__NUCLEOTIDE_AND_NUCLEIC_AC

ID_METABOLIC_PROCESS 
GO:0045935 0.021 0.15914151 54 

TRANSMEMBRANE_RECEPTOR_PROTEIN_KINASE_ACTIVITY GO:0019199 0.017 0.15919445 27 

NEURON_DEVELOPMENT GO:0048666 0.018 0.15935898 27 

LEUKOCYTE_DIFFERENTIATION GO:0002521 0.029 0.15955372 15 

ACTIN_BINDING GO:0003779 0.021 0.15972413 31 

LIGASE_ACTIVITY__FORMING_CARBON_NITROGEN_BONDS GO:0016879 0.025 0.15997247 18 

TRANSLATION GO:0006412 0.023 0.16000892 34 

NUCLEAR_ORGANIZATION_AND_BIOGENESIS GO:0006997 0.036 0.16052501 8 

HEMOPOIETIC_OR_LYMPHOID_ORGAN_DEVELOPMENT GO:0048534 0.026 0.16086957 28 

INTRACELLULAR_RECEPTOR_MEDIATED_SIGNALING_PATHWAY GO:0030522 0.03 0.1611842 7 

CELL_MIGRATION GO:0016477 0.031 0.1612353 39 

MACROMOLECULE_CATABOLIC_PROCESS GO:0009057 0.026 0.16134399 29 

AXON_GUIDANCE GO:0007411 0.022 0.1619646 13 

HUMORAL_IMMUNE_RESPONSE GO:0006959 0.024 0.16202419 13 

PROTEIN_TYROSINE_PHOSPHATASE_ACTIVITY GO:0004725 0.027 0.16292684 24 

CYTOSKELETAL_PROTEIN_BINDING GO:0008092 0.023 0.1671938 53 

RIBONUCLEOPROTEIN_COMPLEX_BIOGENESIS_AND_ASSEMBLY GO:0022613 0.033 0.1679297 15 
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RNA_POLYMERASE_II_TRANSCRIPTION_FACTOR_ACTIVITY GO:0003702 0.027 0.16915748 52 

MICROTUBULE_ORGANIZING_CENTER GO:0005815 0.032 0.16974615 17 

MRNA_METABOLIC_PROCESS GO:0016071 0.038 0.1699127 17 

SKELETAL_DEVELOPMENT GO:0001501 0.029 0.17011194 43 

NEURON_DIFFERENTIATION GO:0030182 0.024 0.170203 35 

POSITIVE_REGULATION_OF_RNA_METABOLIC_PROCESS GO:0051254 0.027 0.17060307 43 

PROTEOLYSIS GO:0006508 0.031 0.17099242 48 

HEMATOPOIETIN_INTERFERON_CLASS__D200_DOMAIN__CYTOKINE_RECEPTOR_BINDING GO:0005126 0.04 0.17252593 7 

ATPASE_ACTIVITY__COUPLED GO:0042623 0.029 0.18455148 30 

NEGATIVE_REGULATION_OF_DEVELOPMENTAL_PROCESS GO:0051093 0.025 0.18542336 59 

ENZYME_LINKED_RECEPTOR_PROTEIN_SIGNALING_PATHWAY GO:0007167 0.028 0.18664029 52 

REGULATION_OF_PROTEIN_KINASE_ACTIVITY GO:0045859 0.029 0.18673187 47 

GENERATION_OF_NEURONS GO:0048699 0.027 0.19535461 36 

AMINO_ACID_METABOLIC_PROCESS GO:0006520 0.04 0.19601429 25 

CELL_CELL_ADHESION GO:0016337 0.037 0.19835915 34 

CARBOXYLIC_ACID_TRANSPORT GO:0046942 0.043 0.20010489 14 

REGULATION_OF_KINASE_ACTIVITY GO:0043549 0.034 0.2018264 47 

REGULATION_OF_CELLULAR_COMPONENT_ORGANIZATION_AND_BIOGENESIS  GO:0051128 0.039 0.20316552 36 

CELLULAR_HOMEOSTASIS GO:0019725 0.035 0.20458218 44 

AMINE_RECEPTOR_ACTIVITY GO:0008227 0.033 0.20658107 17 

CHROMOSOMAL_PART GO:0044427 0.044 0.20923841 29 

VOLTAGE_GATED_POTASSIUM_CHANNEL_ACTIVITY GO:0005249 0.043 0.21057333 18 

ORGANIC_ACID_TRANSPORT GO:0015849 0.044 0.21136242 14 

PHOSPHORIC_ESTER_HYDROLASE_ACTIVITY GO:0042578 0.04 0.21392259 51 

REGULATION_OF_IMMUNE_SYSTEM_PROCESS GO:0002682 0.043 0.21415131 22 

POSITIVE_REGULATION_OF_TRANSCRIPTION__DNA_DEPENDENT GO:0045893 0.039 0.21422727 42 
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IMMUNE_SYSTEM_DEVELOPMENT GO:0002520 0.044 0.21430065 28 

PROTEIN_DNA_COMPLEX_ASSEMBLY GO:0065004 0.045 0.21537974 13 

POSITIVE_REGULATION_OF_TRANSCRIPTION_FROM_RNA_POLYMERASE_II_PROMOTER GO:0045944 0.04 0.21547772 23 

MICROTUBULE_CYTOSKELETON_ORGANIZATION_AND_BIOGENESIS GO:0000226 0.049 0.21563749 8 

BIOPOLYMER_CATABOLIC_PROCESS GO:0043285 0.048 0.21601887 26 

LOCOMOTORY_BEHAVIOR  GO:0007626 0.047 0.21682693 26 

NEGATIVE_REGULATION_OF_CATALYTIC_ACTIVITY GO:0043086 0.043 0.22042684 23 

AMINO_ACID_CATABOLIC_PROCESS GO:0009063 0.043 0.22118181 9 

TRANSMEMBRANE_RECEPTOR_PROTEIN_TYROSINE_KINASE_ACTIVITY GO:0004714 0.043 0.22431764 23 

TRANSCRIPTION_REPRESSOR_ACTIVITY GO:0016564 0.049 0.22598214 47 

AMINO_ACID_AND_DERIVATIVE_METABOLIC_PROCESS GO:0006519 0.047 0.2265988 30 
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Appendix G: Association rules identified in canonical 

pathways 

In this appendix, those pathways with a considerably large number of rules (> 

20) identified in Section 5.1.2.2 are listed. Particularly, the rules for ECM 

receptor interaction pathway, prostate cancer pathway and the union of all 

canonical pathways are provided. 

Rules for ECM Receptor Interaction Pathway: Cases 

Rank Rule Supp. Conf. Lift  𝝌𝟐 

1 {rs3212578_A_D,rs8041354_T_D} => {rs17057233_C_D} 0.6542 0.9055 1.0231 9.3746 

2 {rs17057233_C_D,rs7537288_G_D} => {rs3212578_A_D} 0.6712 0.8846 1.0204 7.4777 

3 {rs7182678_G_D} => {rs12328617_A_D} 0.6132 0.8894 1.0180 4.3695 

4 {rs12328617_A_D,rs3212578_A_D} => {rs7537288_G_D} 0.6667 0.8772 1.0173 5.2058 

5 {rs12328617_A_D,rs17057233_C_D} => {rs3212578_A_D} 0.6780 0.8817 1.0170 5.5284 

6 {rs747546_T_D} => {rs4865534_G_D} 0.6439 0.8144 1.0168 3.7827 

7 {rs17479287_A_D,rs7537288_G_D} => {rs3212578_A_D} 0.6223 0.8808 1.0161 3.5647 

8 {rs17479287_A_D,rs7537288_G_D} => {rs1627354_A_D} 0.6223 0.8808 1.0161 3.5647 

9 {rs9975613_C_D} => {rs1627354_A_D} 0.6177 0.8801 1.0152 3.1119 

10 {rs12328617_A_D,rs1627354_A_D} => {rs17479287_A_D} 0.6394 0.8426 1.0146 2.8712 

11 {rs12328617_A_D,rs362777_C_D} => {rs1627354_A_D} 0.6052 0.8793 1.0144 2.6049 

12 {rs1627354_A_D,rs8041354_T_D} => {rs17057233_C_D} 0.6496 0.8978 1.0144 3.6498 

13 {rs1627354_A_D,rs3212578_A_D} => {rs17057233_C_D} 0.6724 0.8968 1.0132 3.5541 

14 {rs17057233_C_D,rs17479287_A_D} => {rs3212578_A_D} 0.6394 0.8781 1.0130 2.5729 

15 {rs17057233_C_D,rs17479287_A_D} => {rs1627354_A_D} 0.6394 0.8781 1.0130 2.5729 

16 {rs1627354_A_D,rs3212578_A_D} => {rs17479287_A_D} 0.6303 0.8407 1.0123 1.9377 

17 {rs2839086_T_D} => {rs7537288_G_D} 0.6075 0.8725 1.0118 1.7677 

18 {rs3212578_A_D,rs4865534_G_D} => {rs17057233_C_D} 0.6132 0.8953 1.0116 1.9743 

19 {rs17057233_C_D} => {rs8041354_T_D} 0.7486 0.8458 1.0115 4.5372 

20 {rs17479287_A_D} => {rs1627354_A_D} 0.7281 0.8767 1.0113 3.5977 

21 {rs3212578_A_D} => {rs17057233_C_D} 0.7759 0.8950 1.0112 5.5353 

22 {rs12328617_A_D,rs4865534_G_D} => {rs1627354_A_D} 0.6121 0.8762 1.0108 1.5355 

23 {rs17057233_C_D,rs4865534_G_D} => {rs1627354_A_D} 0.6200 0.8762 1.0107 1.5986 

24 {rs6983702_T_D} => {rs17057233_C_D} 0.6155 0.8942 1.0103 1.5867 

25 {rs2275843_T_D} => {rs17057233_C_D} 0.6212 0.8936 1.0096 1.4305 

26 {rs9890077_C_D} => {rs1627354_A_D} 0.6382 0.8752 1.0096 1.4137 

27 {rs362777_C_D} => {rs8041354_T_D} 0.6644 0.8439 1.0093 1.4274 

28 {rs7537288_G_D,rs8041354_T_D} => {rs3212578_A_D} 0.6280 0.8748 1.0091 1.2120 

29 {rs3212578_A_D} => {rs7537288_G_D} 0.7543 0.8701 1.0090 2.8855 
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30 {rs1627354_A_D,rs7537288_G_D} => {rs12328617_A_D} 0.6587 0.8813 1.0087 1.3470 

31 {rs17057233_C_D,rs747546_T_D} => {rs1627354_A_D} 0.6098 0.8744 1.0086 0.9859 

32 {rs362777_C_D} => {rs1627354_A_D} 0.6883 0.8743 1.0085 1.5367 

33 {rs17479287_A_D,rs7537288_G_D} => {rs12328617_A_D} 0.6223 0.8808 1.0081 0.9713 

34 {rs4865534_G_D} => {rs1627354_A_D} 0.6997 0.8736 1.0077 1.3696 

35 {rs12328617_A_D,rs17479287_A_D} => {rs3212578_A_D} 0.6348 0.8732 1.0073 0.8166 

36 {rs4865534_G_D,rs7537288_G_D} => {rs12328617_A_D} 0.6041 0.8791 1.0062 0.5138 

37 {rs7537288_G_D} => {rs12328617_A_D} 0.7577 0.8786 1.0056 1.2021 

38 {rs9890077_C_D} => {rs8041354_T_D} 0.6132 0.8409 1.0056 0.3811 

39 {rs17479287_A_D} => {rs3212578_A_D} 0.7235 0.8712 1.0050 0.7026 

40 {rs747546_T_D} => {rs1627354_A_D} 0.6883 0.8705 1.0042 0.3749 

41 {rs1627354_A_D,rs3212578_A_D} => {rs12328617_A_D} 0.6576 0.8771 1.0039 0.2704 

42 {rs12328617_A_D,rs17057233_C_D} => {rs1627354_A_D} 0.6689 0.8698 1.0034 0.2175 

43 {rs3212578_A_D} => {rs12328617_A_D} 0.7600 0.8766 1.0033 0.4425 

44 {rs747546_T_D} => {rs17479287_A_D} 0.6587 0.8331 1.0031 0.1600 

45 {rs17057233_C_D,rs7537288_G_D} => {rs1627354_A_D} 0.6598 0.8696 1.0031 0.1710 

46 {rs747546_T_D} => {rs7537288_G_D} 0.6837 0.8647 1.0028 0.1617 

47 {rs362777_C_D} => {rs17479287_A_D} 0.6553 0.8324 1.0023 0.0817 

48 {rs4865534_G_D} => {rs8041354_T_D} 0.6712 0.8381 1.0023 0.0923 

49 {rs9890077_C_D} => {rs7537288_G_D} 0.6303 0.8643 1.0022 0.0744 

50 {rs2275843_T_D} => {rs12328617_A_D} 0.6086 0.8756 1.0022 0.0651 

51 {rs12328617_A_D,rs8041354_T_D} => {rs1627354_A_D} 0.6325 0.8688 1.0021 0.0703 

52 {rs362777_C_D} => {rs7537288_G_D} 0.6803 0.8642 1.0021 0.0906 

53 {rs17479287_A_D} => {rs12328617_A_D} 0.7270 0.8753 1.0019 0.1027 

54 {rs1627354_A_D} => {rs12328617_A_D} 0.7588 0.8753 1.0018 0.1342 

55 {rs9890077_C_D} => {rs17057233_C_D} 0.6462 0.8861 1.0012 0.0242 

56 {rs17057233_C_D} => {rs1627354_A_D} 0.7679 0.8676 1.0008 0.0300 

57 {rs362777_C_D} => {rs12328617_A_D} 0.6883 0.8743 1.0006 0.0092 

58 {rs2275843_T_D} => {rs1627354_A_D} 0.6030 0.8674 1.0006 0.0050 

Rules for ECM Receptor Interaction Pathway: Controls 

Rank Rule Supp. Conf. Lift 𝝌𝟐 

1 {rs1627354_A_D,rs7537288_G_D} => {rs362777_C_D} 0.631 0.848 1.014 3.440 

2 {rs1627354_A_D,rs17057233_C_D} => {rs8041354_T_D} 0.610 0.802 1.014 2.489 

3 {rs12328617_A_D,rs17057233_C_D} => {rs8041354_T_D} 0.611 0.801 1.012 1.811 

4 {rs6983702_T_D} => {rs362777_C_D} 0.618 0.846 1.011 1.985 

5 {rs7537288_G_D} => {rs8041354_T_D} 0.655 0.800 1.011 2.159 

6 {rs1627354_A_D,rs8041354_T_D} => {rs362777_C_D} 0.610 0.845 1.011 1.638 

7 {rs17564993_T_D} => {rs12328617_A_D} 0.627 0.920 1.010 2.592 

8 {rs3212578_A_D} => {rs7537288_G_D} 0.679 0.826 1.009 1.940 

9 {rs8041354_T_D} => {rs17057233_C_D} 0.670 0.846 1.009 1.689 

10 {rs9890077_C_D} => {rs17057233_C_D} 0.645 0.846 1.009 1.392 

11 {rs6983702_T_D} => {rs17479287_A_D} 0.646 0.884 1.008 1.436 

12 {rs12328617_A_D,rs9890077_C_D} => {rs17479287_A_D} 0.614 0.883 1.007 0.940 

13 {rs9975613_C_D} => {rs12328617_A_D} 0.682 0.917 1.007 1.635 
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14 {rs12328617_A_D,rs7537288_G_D} => {rs362777_C_D} 0.625 0.842 1.007 0.807 

15 {rs362777_C_D,rs747546_T_D} => {rs1627354_A_D} 0.629 0.914 1.007 1.170 

16 {rs9890077_C_D} => {rs17479287_A_D} 0.673 0.883 1.007 1.217 

17 {rs8041354_T_D} => {rs362777_C_D} 0.666 0.842 1.007 0.936 

18 {rs6983702_T_D} => {rs4865534_G_D} 0.622 0.851 1.006 0.680 

19 {rs7537288_G_D} => {rs362777_C_D} 0.689 0.842 1.006 1.001 

20 {rs12328617_A_D,rs3212578_A_D} => {rs17479287_A_D} 0.654 0.882 1.006 0.808 

21 {rs3212578_A_D} => {rs17479287_A_D} 0.725 0.881 1.006 1.112 

22 {rs362777_C_D,rs4865534_G_D} => {rs1627354_A_D} 0.645 0.913 1.005 0.738 

23 {rs362777_C_D} => {rs1627354_A_D} 0.763 0.912 1.005 1.339 

24 {rs8041354_T_D} => {rs1627354_A_D} 0.722 0.912 1.004 0.810 

25 {rs4865534_G_D,rs7537288_G_D} => {rs1627354_A_D} 0.623 0.911 1.004 0.304 

26 {rs9975613_C_D} => {rs17479287_A_D} 0.654 0.880 1.004 0.287 

27 {rs8041354_T_D} => {rs3212578_A_D} 0.653 0.825 1.003 0.237 

28 {rs9975613_C_D} => {rs1627354_A_D} 0.677 0.911 1.003 0.367 

29 {rs6983702_T_D} => {rs747546_T_D} 0.604 0.826 1.003 0.121 

30 {rs9975613_C_D} => {rs3212578_A_D} 0.613 0.824 1.003 0.117 

31 {rs9890077_C_D} => {rs4865534_G_D} 0.646 0.847 1.003 0.128 

32 {rs1627354_A_D,rs17057233_C_D} => {rs4865534_G_D} 0.644 0.847 1.002 0.088 

33 {rs2275843_T_D} => {rs1627354_A_D} 0.658 0.910 1.002 0.126 

34 {rs1627354_A_D,rs17479287_A_D} => {rs4865534_G_D} 0.672 0.847 1.002 0.066 

35 {rs8041354_T_D} => {rs17479287_A_D} 0.695 0.878 1.002 0.077 

36 {rs17479287_A_D,rs362777_C_D} => {rs12328617_A_D} 0.667 0.912 1.002 0.076 

37 {rs9890077_C_D} => {rs12328617_A_D} 0.695 0.912 1.002 0.088 

38 {rs17057233_C_D} => {rs4865534_G_D} 0.710 0.846 1.001 0.067 

39 {rs8041354_T_D} => {rs12328617_A_D} 0.722 0.912 1.001 0.089 

40 {rs4865534_G_D} => {rs1627354_A_D} 0.768 0.909 1.001 0.092 

41 {rs9975613_C_D} => {rs17057233_C_D} 0.624 0.840 1.001 0.022 

42 {rs9890077_C_D} => {rs3212578_A_D} 0.627 0.823 1.001 0.014 

43 {rs3212578_A_D} => {rs1627354_A_D} 0.747 0.909 1.001 0.032 

44 {rs4865534_G_D,rs747546_T_D} => {rs17479287_A_D} 0.607 0.877 1.001 0.011 

45 {rs4865534_G_D} => {rs17479287_A_D} 0.742 0.877 1.001 0.026 

46 {rs9975613_C_D} => {rs747546_T_D} 0.613 0.824 1.001 0.006 

47 {rs7537288_G_D} => {rs1627354_A_D} 0.743 0.908 1.000 0.006 

Rules for Prostate Cancer Pathway: Cases 

Rank Rule Supp. Conf. Lift 𝝌𝟐 

1 {rs10510097_A_D} => {rs42695_A_D} 0.6314 0.8384 1.0137 2.3909 

2 {rs11672342_T_D} => {rs16897333_G_D} 0.6257 0.8160 1.0117 1.6458 

3 {rs2849379_T_D} => {rs11466212_G_D} 0.6621 0.8622 1.0092 1.4377 

4 {rs16897333_G_D,rs4739561_T_D} => {rs11190421_A_D} 0.6098 0.8535 1.0084 0.8497 

5 {rs6857523_A_D} => {rs4739561_T_D} 0.6382 0.8976 1.0077 1.0326 

6 {rs11466212_G_D,rs4739561_T_D} => {rs17041230_A_D} 0.6667 0.8825 1.0062 0.7337 

7 {rs42695_A_D,rs4739561_T_D} => {rs11190421_A_D} 0.6257 0.8514 1.0059 0.4643 

8 {rs2849379_T_D} => {rs13116385_T_D} 0.6177 0.8044 1.0058 0.3964 
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9 {rs17041230_A_D,rs4739561_T_D} => {rs13116385_T_D} 0.6280 0.8035 1.0047 0.2719 

10 {rs17041230_A_D,rs2849379_T_D} => {rs4739561_T_D} 0.6007 0.8949 1.0046 0.3147 

11 {rs11190421_A_D,rs11466212_G_D} => {rs17041230_A_D} 0.6325 0.8811 1.0046 0.3334 

12 {rs17041230_A_D,rs4739561_T_D} => {rs11190421_A_D} 0.6644 0.8501 1.0043 0.3235 

13 {rs17041230_A_D,rs42695_A_D} => {rs11190421_A_D} 0.6121 0.8499 1.0041 0.2137 

14 {rs16897333_G_D,rs4739561_T_D} => {rs17041230_A_D} 0.6291 0.8806 1.0039 0.2415 

15 {rs11466212_G_D,rs16897333_G_D} => {rs17041230_A_D} 0.6018 0.8802 1.0035 0.1658 

16 {rs11466212_G_D} => {rs17041230_A_D} 0.7520 0.8802 1.0035 0.4384 

17 {rs2849379_T_D} => {rs16897333_G_D} 0.6212 0.8089 1.0028 0.0978 

18 {rs11190421_A_D} => {rs42695_A_D} 0.7019 0.8293 1.0027 0.1677 

19 {rs11190421_A_D,rs17041230_A_D} => {rs16897333_G_D} 0.6007 0.8086 1.0025 0.0637 

20 {rs13116385_T_D} => {rs17041230_A_D} 0.7031 0.8791 1.0022 0.1247 

21 {rs11190421_A_D} => {rs4739561_T_D} 0.7554 0.8925 1.0019 0.1419 

22 {rs16897333_G_D} => {rs17041230_A_D} 0.7088 0.8787 1.0018 0.0838 

23 {rs1291490_T_D} => {rs4739561_T_D} 0.6303 0.8921 1.0015 0.0382 

24 {rs16897333_G_D} => {rs11190421_A_D} 0.6837 0.8477 1.0015 0.0445 

25 {rs4739561_T_D} => {rs13116385_T_D} 0.7133 0.8008 1.0012 0.0442 

26 {rs2849379_T_D} => {rs4739561_T_D} 0.6849 0.8919 1.0012 0.0340 

27 {rs1291490_T_D} => {rs11466212_G_D} 0.6041 0.8551 1.0008 0.0082 

28 {rs11190421_A_D} => {rs17041230_A_D} 0.7429 0.8777 1.0006 0.0138 

29 {rs10510097_A_D} => {rs4739561_T_D} 0.6712 0.8912 1.0005 0.0057 

30 {rs17041230_A_D} => {rs4739561_T_D} 0.7816 0.8911 1.0003 0.0046 

31 {rs6857523_A_D} => {rs11466212_G_D} 0.6075 0.8544 1.0000 0.0000 

Rules for Prostate Cancer Pathway: Controls 

Rank Rule Supp. Conf. Lift 𝝌𝟐 

1 {rs587230_A_D} => {rs17041230_A_D} 0.6047 0.8471 1.0140 2.7745 

2 {rs17041230_A_D,rs42695_A_D} => {rs13116385_T_D} 0.6208 0.8494 1.0135 2.8788 

3 {rs13116385_T_D,rs4739561_T_D} => {rs17041230_A_D} 0.6029 0.8457 1.0123 2.1215 

4 {rs11190421_A_D,rs11466212_G_D} => {rs17041230_A_D} 0.6020 0.8455 1.0120 2.0331 

5 {rs10510097_A_D,rs13116385_T_D} => {rs42695_A_D} 0.6055 0.8861 1.0119 2.4224 

6 {rs11672342_T_D} => {rs2849379_T_D} 0.6655 0.8185 1.0111 2.5542 

7 {rs11190421_A_D,rs17041230_A_D} => {rs11672342_T_D} 0.6091 0.8215 1.0103 1.4933 

8 {rs17041230_A_D} => {rs13116385_T_D} 0.7066 0.8458 1.0092 2.4931 

9 {rs13116385_T_D,rs4739561_T_D} => {rs42695_A_D} 0.6297 0.8833 1.0087 1.4888 

10 {rs16897333_G_D} => {rs11466212_G_D} 0.6172 0.8156 1.0087 1.1059 

11 {rs11466212_G_D,rs4739561_T_D} => {rs42695_A_D} 0.6091 0.8833 1.0087 1.3171 

12 {rs2849379_T_D} => {rs10510097_A_D} 0.6646 0.8210 1.0087 1.5551 

13 {rs11466212_G_D} => {rs11672342_T_D} 0.6628 0.8197 1.0082 1.3663 

14 {rs11466212_G_D} => {rs42695_A_D} 0.7138 0.8827 1.0081 2.1699 

15 {rs11466212_G_D} => {rs17041230_A_D} 0.6798 0.8407 1.0063 0.9603 

16 {rs17041230_A_D,rs42695_A_D} => {rs4739561_T_D} 0.6288 0.8605 1.0063 0.7054 

17 {rs587230_A_D} => {rs11190421_A_D} 0.6360 0.8910 1.0062 0.8221 

18 {rs16897333_G_D} => {rs2849379_T_D} 0.6163 0.8144 1.0061 0.5501 

19 {rs10510097_A_D,rs4739561_T_D} => {rs42695_A_D} 0.6100 0.8800 1.0049 0.4349 
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20 {rs7327621_A_D} => {rs42695_A_D} 0.6154 0.8798 1.0047 0.4066 

21 {rs587230_A_D} => {rs42695_A_D} 0.6279 0.8797 1.0046 0.4156 

22 {rs10510097_A_D,rs11190421_A_D} => {rs42695_A_D} 0.6270 0.8795 1.0044 0.3833 

23 {rs2849379_T_D,rs42695_A_D} => {rs4739561_T_D} 0.6038 0.8588 1.0043 0.2893 

24 {rs11672342_T_D,rs42695_A_D} => {rs11190421_A_D} 0.6324 0.8893 1.0043 0.3916 

25 {rs13116385_T_D} => {rs42695_A_D} 0.7370 0.8794 1.0043 0.7402 

26 {rs10510097_A_D} => {rs42695_A_D} 0.7156 0.8791 1.0039 0.5348 

27 {rs11190421_A_D,rs4739561_T_D} => {rs17041230_A_D} 0.6324 0.8387 1.0039 0.2634 

28 {rs11190421_A_D} => {rs11672342_T_D} 0.7227 0.8162 1.0038 0.5476 

29 {rs10510097_A_D} => {rs17041230_A_D} 0.6825 0.8385 1.0036 0.3290 

30 {rs11672342_T_D} => {rs17041230_A_D} 0.6816 0.8383 1.0034 0.2900 

31 {rs11672342_T_D,rs42695_A_D} => {rs4739561_T_D} 0.6100 0.8579 1.0032 0.1696 

32 {rs17041230_A_D} => {rs4739561_T_D} 0.7165 0.8576 1.0029 0.2870 

33 {rs16897333_G_D} => {rs13116385_T_D} 0.6360 0.8404 1.0028 0.1381 

34 {rs11190421_A_D,rs4739561_T_D} => {rs42695_A_D} 0.6619 0.8778 1.0025 0.1450 

35 {rs17041230_A_D} => {rs11190421_A_D} 0.7415 0.8876 1.0023 0.2400 

36 {rs42695_A_D} => {rs4739561_T_D} 0.7504 0.8570 1.0022 0.2291 

37 {rs10510097_A_D} => {rs13116385_T_D} 0.6834 0.8396 1.0017 0.0765 

38 {rs16897333_G_D} => {rs11672342_T_D} 0.6163 0.8144 1.0017 0.0424 

39 {rs4739561_T_D} => {rs2849379_T_D} 0.6932 0.8107 1.0015 0.0604 

40 {rs2849379_T_D} => {rs17041230_A_D} 0.6771 0.8365 1.0012 0.0376 

41 {rs587230_A_D} => {rs4739561_T_D} 0.6109 0.8559 1.0009 0.0141 

42 {rs11466212_G_D} => {rs13116385_T_D} 0.6780 0.8385 1.0005 0.0053 

43 {rs11466212_G_D} => {rs10510097_A_D} 0.6583 0.8142 1.0003 0.0013 

44 {rs16897333_G_D} => {rs42695_A_D} 0.6628 0.8759 1.0002 0.0015 

All Canonical Pathways: Cases 

Rank Rule Supp. Conf. Lift 𝝌𝟐 

1 {rs10510097_A_D,rs17041230_A_D} => {rs17057233_C_D} 0.601 0.913 1.032 13.385 

2 {rs3212578_A_D,rs4739561_T_D} => {rs6990501_G_D} 0.647 0.839 1.030 11.947 

3 {rs10510097_A_D,rs3212578_A_D} => {rs17057233_C_D} 0.605 0.911 1.029 11.444 

4 {rs11628551_T_D,rs16897333_G_D} => {rs2722279_C_D} 0.645 0.872 1.029 11.832 

5 {rs10510097_A_D,rs11628551_T_D} => {rs17057233_C_D} 0.626 0.911 1.029 12.343 

6 {rs11628551_T_D,rs12328617_A_D,rs3212578_A_D} => 

{rs7537288_G_D} 
0.615 0.887 1.028 10.113 

7 {rs17057233_C_D,rs2722279_C_D,rs7537288_G_D} => 

{rs11628551_T_D} 
0.604 0.945 1.028 13.769 

8 {rs362777_C_D,rs593241_T_D} => {rs17041230_A_D} 0.612 0.901 1.027 9.978 

9 {rs11190421_A_D,rs11628551_T_D} => {rs747546_T_D} 0.629 0.812 1.027 8.342 

10 {rs17041230_A_D,rs3212578_A_D,rs4739561_T_D} => 

{rs17057233_C_D} 
0.611 0.909 1.027 9.822 

11 {rs17057233_C_D,rs4865534_G_D} => {rs42695_A_D} 0.601 0.849 1.026 7.068 

12 {rs11628551_T_D,rs17041230_A_D,rs3212578_A_D} => 

{rs7537288_G_D} 
0.613 0.885 1.026 8.617 

13 {rs42695_A_D,rs4739561_T_D} => {rs4865534_G_D} 0.604 0.822 1.026 6.786 

14 {rs2722279_C_D,rs7307707_T_D} => {rs11628551_T_D} 0.605 0.943 1.026 12.246 

15 {rs4739561_T_D,rs7537288_G_D} => {rs6990501_G_D} 0.637 0.836 1.026 8.431 

16 {rs2722279_C_D,rs3798315_A_D} => {rs11628551_T_D} 0.602 0.943 1.026 11.763 
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17 {rs6469232_A_D,rs8041354_T_D} => {rs17057233_C_D} 0.617 0.908 1.026 9.492 

18 {rs17041230_A_D,rs2722279_C_D,rs7537288_G_D} => 
{rs11628551_T_D} 

0.601 0.943 1.026 11.605 

19 {rs12450493_A_D,rs4739561_T_D} => {rs4865534_G_D} 0.618 0.821 1.026 7.074 

20 {rs11628551_T_D,rs17057233_C_D,rs4739561_T_D} => 

{rs8041354_T_D} 
0.622 0.857 1.025 7.627 

21 {rs1627354_A_D,rs3136667_C_D} => {rs12450493_A_D} 0.653 0.874 1.025 9.598 

22 {rs17057233_C_D,rs6990501_G_D} => {rs3212578_A_D} 0.644 0.889 1.025 9.395 

23 {rs11190421_A_D,rs17041230_A_D} => {rs747546_T_D} 0.602 0.810 1.025 5.797 

24 {rs2722279_C_D,rs3136667_C_D} => {rs16897333_G_D} 0.601 0.826 1.024 5.818 

25 {rs2569538_A_D,rs3212578_A_D} => {rs7537288_G_D} 0.620 0.883 1.024 7.663 

26 {rs11628551_T_D,rs3212578_A_D,rs8041354_T_D} => 

{rs17057233_C_D} 
0.605 0.906 1.024 7.814 

27 {rs2722279_C_D,rs3212578_A_D,rs7537288_G_D} => 
{rs11628551_T_D} 

0.601 0.941 1.024 10.062 

28 {rs13116385_T_D,rs2722279_C_D} => {rs11628551_T_D} 0.635 0.941 1.024 11.614 

29 {rs17041230_A_D,rs7537288_G_D} => {rs2569538_A_D} 0.629 0.829 1.024 6.538 

30 {rs12883673_C_D,rs2722279_C_D} => {rs11628551_T_D} 0.614 0.941 1.023 10.337 

31 {rs11628551_T_D,rs17057233_C_D,rs7537288_G_D} => 

{rs3212578_A_D} 
0.626 0.887 1.023 7.443 

32 {rs3212578_A_D,rs6469232_A_D} => {rs17057233_C_D} 0.634 0.906 1.023 8.540 

33 {rs2722279_C_D,rs7537288_G_D} => {rs11628551_T_D} 0.684 0.941 1.023 14.308 

34 {rs3212578_A_D,rs8041354_T_D} => {rs17057233_C_D} 0.654 0.906 1.023 9.375 

35 {rs2722279_C_D,rs3212578_A_D} => {rs6990501_G_D} 0.614 0.833 1.023 5.752 

36 {rs1627354_A_D,rs6990501_G_D} => {rs12450493_A_D} 0.618 0.872 1.023 6.444 

37 {rs1627354_A_D,rs4865534_G_D} => {rs12450493_A_D} 0.610 0.872 1.023 6.141 

38 {rs17057233_C_D,rs17479287_A_D} => {rs6469232_A_D} 0.601 0.825 1.023 5.109 

39 {rs11466212_G_D,rs17041230_A_D} => {rs12450493_A_D} 0.655 0.871 1.023 7.880 

40 {rs12450493_A_D,rs17479287_A_D} => {rs1627354_A_D} 0.621 0.886 1.022 6.763 

41 {rs11628551_T_D,rs6990501_G_D} => {rs2722279_C_D} 0.643 0.867 1.022 7.062 

42 {rs10510097_A_D} => {rs17057233_C_D} 0.681 0.905 1.022 10.271 

43 {rs11628551_T_D,rs3212578_A_D,rs4739561_T_D} => 

{rs17057233_C_D} 
0.637 0.905 1.022 7.895 

44 {rs6857523_A_D} => {rs12328617_A_D} 0.635 0.893 1.022 7.136 

45 {rs4865534_G_D,rs8041354_T_D} => {rs4739561_T_D} 0.611 0.910 1.022 6.931 

46 {rs1627354_A_D,rs3212578_A_D,rs4739561_T_D} => 
{rs17057233_C_D} 

0.602 0.904 1.022 6.325 

47 {rs11628551_T_D,rs747546_T_D} => {rs2722279_C_D} 0.631 0.866 1.022 6.123 

48 {rs17057233_C_D,rs2722279_C_D} => {rs6469232_A_D} 0.618 0.824 1.022 5.097 

49 {rs11466212_G_D,rs17479287_A_D} => {rs1627354_A_D} 0.633 0.885 1.021 6.492 

50 {rs17041230_A_D,rs17057233_C_D} => {rs6469232_A_D} 0.643 0.824 1.021 5.800 

51 {rs12328617_A_D,rs17041230_A_D} => {rs362777_C_D} 0.615 0.804 1.021 4.728 

52 {rs12328617_A_D,rs6990501_G_D} => {rs3212578_A_D} 0.631 0.885 1.021 6.329 

53 {rs11466212_G_D,rs11628551_T_D} => {rs2722279_C_D} 0.680 0.865 1.021 7.975 

54 {rs11190421_A_D,rs4739561_T_D} => {rs4865534_G_D} 0.618 0.818 1.021 4.840 

55 {rs1627354_A_D,rs2722279_C_D} => {rs11466212_G_D} 0.637 0.872 1.021 6.128 

56 {rs12450493_A_D,rs362777_C_D} => {rs17041230_A_D} 0.604 0.895 1.021 5.672 

57 {rs17057233_C_D,rs362777_C_D} => {rs17041230_A_D} 0.623 0.895 1.021 6.255 

58 {rs7537288_G_D,rs8080832_C_D} => {rs11628551_T_D} 0.606 0.938 1.021 7.932 

59 {rs17057233_C_D,rs2722279_C_D,rs593241_T_D} => 

{rs11628551_T_D} 
0.606 0.938 1.021 7.932 

60 {rs13116385_T_D,rs17057233_C_D} => {rs8041354_T_D} 0.603 0.853 1.021 4.614 

61 {rs17041230_A_D,rs4739561_T_D} => {rs362777_C_D} 0.628 0.803 1.021 4.950 
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62 {rs17041230_A_D,rs2722279_C_D,rs593241_T_D} => 

{rs11628551_T_D} 
0.604 0.938 1.021 7.676 

63 {rs11628551_T_D,rs3212578_A_D} => {rs7537288_G_D} 0.701 0.880 1.020 9.027 

64 {rs2722279_C_D,rs42695_A_D} => {rs11628551_T_D} 0.654 0.938 1.020 9.626 

65 {rs17041230_A_D,rs4865534_G_D} => {rs12450493_A_D} 0.606 0.869 1.020 4.861 

66 {rs17057233_C_D,rs7537288_G_D} => {rs3212578_A_D} 0.671 0.885 1.020 7.478 

67 {rs11628551_T_D,rs17041230_A_D,rs3212578_A_D} => 

{rs17057233_C_D} 
0.626 0.903 1.020 6.333 

68 {rs3136667_C_D,rs7537288_G_D} => {rs42695_A_D} 0.621 0.844 1.020 4.848 

69 {rs3212578_A_D,rs7537288_G_D} => {rs6990501_G_D} 0.627 0.831 1.020 4.868 

70 {rs11672342_T_D,rs17057233_C_D} => {rs3212578_A_D} 0.601 0.884 1.020 4.955 

71 {rs8080832_C_D} => {rs16897333_G_D} 0.613 0.823 1.020 4.379 

72 {rs11466212_G_D,rs1627354_A_D} => {rs12450493_A_D} 0.651 0.869 1.020 6.141 

73 {rs11466212_G_D,rs17057233_C_D} => {rs8041354_T_D} 0.641 0.853 1.020 5.492 

74 {rs11628551_T_D,rs2569538_A_D} => {rs7537288_G_D} 0.656 0.880 1.020 6.466 

75 {rs362777_C_D,rs7537288_G_D} => {rs17041230_A_D} 0.609 0.895 1.020 5.325 

76 {rs747546_T_D} => {rs11190421_A_D} 0.683 0.863 1.020 7.289 

77 {rs12883673_C_D} => {rs362777_C_D} 0.621 0.803 1.020 4.411 

78 {rs10510097_A_D,rs11628551_T_D} => {rs3212578_A_D} 0.608 0.884 1.020 4.957 

79 {rs17041230_A_D,rs17057233_C_D,rs2722279_C_D} => 

{rs11628551_T_D} 
0.613 0.937 1.020 7.389 

80 {rs2255146_A_D} => {rs4739561_T_D} 0.643 0.908 1.020 6.754 

81 {rs12450493_A_D,rs4739561_T_D} => {rs6990501_G_D} 0.625 0.831 1.020 4.516 

82 {rs11190421_A_D,rs4739561_T_D} => {rs362777_C_D} 0.606 0.803 1.020 3.870 

83 {rs17041230_A_D,rs17479287_A_D} => {rs1627354_A_D} 0.641 0.884 1.020 5.752 

84 {rs11628551_T_D,rs12328617_A_D,rs17057233_C_D} => 
{rs2722279_C_D} 

0.608 0.864 1.019 4.398 

85 {rs11628551_T_D,rs7307707_T_D} => {rs7537288_G_D} 0.612 0.879 1.019 4.757 

86 {rs11628551_T_D,rs6990501_G_D} => {rs7537288_G_D} 0.652 0.879 1.019 5.784 

87 {rs11628551_T_D,rs17041230_A_D} => {rs362777_C_D} 0.646 0.802 1.019 4.890 

88 {rs11190421_A_D,rs17041230_A_D} => {rs2569538_A_D} 0.613 0.825 1.019 3.919 

89 {rs6990501_G_D,rs8041354_T_D} => {rs4739561_T_D} 0.615 0.908 1.019 5.456 

90 {rs11628551_T_D,rs362777_C_D} => {rs2722279_C_D} 0.627 0.864 1.019 4.658 

91 {rs16897333_G_D,rs3212578_A_D} => {rs2722279_C_D} 0.605 0.864 1.019 4.121 

92 {rs17057233_C_D,rs4739561_T_D} => {rs8041354_T_D} 0.675 0.852 1.019 6.119 

93 {rs593241_T_D,rs8080832_C_D} => {rs11628551_T_D} 0.605 0.937 1.019 6.541 

94 {rs16897333_G_D,rs17057233_C_D} => {rs2722279_C_D} 0.612 0.864 1.019 4.243 

95 {rs1627354_A_D,rs17057233_C_D} => {rs12450493_A_D} 0.667 0.868 1.019 5.940 

96 {rs1627354_A_D,rs4739561_T_D} => {rs6990501_G_D} 0.638 0.830 1.019 4.548 

97 {rs11190421_A_D,rs1627354_A_D} => {rs12450493_A_D} 0.636 0.868 1.019 4.837 

98 {rs2839086_T_D} => {rs593241_T_D} 0.613 0.881 1.019 4.462 

99 {rs2722279_C_D,rs593241_T_D} => {rs11628551_T_D} 0.686 0.936 1.019 9.497 

100 {rs17057233_C_D,rs2722279_C_D} => {rs11628551_T_D} 0.702 0.936 1.019 10.298 

101 {rs12328617_A_D,rs2569538_A_D} => {rs7537288_G_D} 0.623 0.878 1.018 4.559 

102 {rs16897333_G_D,rs17057233_C_D} => {rs3212578_A_D} 0.626 0.883 1.018 4.705 

103 {rs2722279_C_D,rs8041354_T_D} => {rs11628551_T_D} 0.667 0.936 1.018 8.342 

104 {rs11628551_T_D,rs17057233_C_D,rs3212578_A_D} => 

{rs2722279_C_D} 
0.617 0.863 1.018 4.091 

105 {rs11628551_T_D,rs12328617_A_D,rs17041230_A_D} => 

{rs7537288_G_D} 
0.614 0.878 1.018 4.255 

106 {rs3212578_A_D,rs4739561_T_D} => {rs17057233_C_D} 0.695 0.901 1.018 7.541 

107 {rs11628551_T_D,rs12450493_A_D,rs17041230_A_D} => 
{rs1627354_A_D} 

0.608 0.883 1.018 4.173 
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108 {rs11628551_T_D,rs12450493_A_D,rs3212578_A_D} => 

{rs17057233_C_D} 
0.612 0.901 1.018 4.729 

109 {rs11628551_T_D,rs17057233_C_D} => {rs6469232_A_D} 0.669 0.821 1.018 5.298 

110 {rs17057233_C_D,rs3136667_C_D} => {rs6469232_A_D} 0.627 0.821 1.018 3.856 

111 {rs7182678_G_D} => {rs12328617_A_D} 0.613 0.889 1.018 4.369 

112 {rs3212578_A_D,rs593241_T_D,rs7537288_G_D} => 

{rs11628551_T_D} 
0.613 0.936 1.018 6.155 

113 {rs17041230_A_D,rs6990501_G_D} => {rs12450493_A_D} 0.618 0.867 1.018 4.044 

114 {rs11628551_T_D,rs17057233_C_D,rs593241_T_D} => 

{rs3212578_A_D} 
0.623 0.882 1.018 4.436 

115 {rs11628551_T_D,rs17041230_A_D,rs3212578_A_D} => 
{rs593241_T_D} 

0.610 0.880 1.018 4.076 

116 {rs12883673_C_D,rs1627354_A_D} => {rs11628551_T_D} 0.629 0.936 1.018 6.595 

117 {rs1627354_A_D,rs17041230_A_D} => {rs12450493_A_D} 0.662 0.867 1.018 5.238 

118 {rs4739561_T_D,rs593241_T_D} => {rs6990501_G_D} 0.635 0.829 1.018 4.031 

119 {rs11628551_T_D,rs11672342_T_D} => {rs593241_T_D} 0.618 0.880 1.018 4.219 

120 {rs17057233_C_D,rs4739561_T_D} => {rs6990501_G_D} 0.656 0.829 1.018 4.628 

121 {rs17057233_C_D,rs593241_T_D,rs7537288_G_D} => 

{rs11628551_T_D} 
0.611 0.936 1.018 5.929 

122 {rs593241_T_D,rs8041354_T_D} => {rs11628551_T_D} 0.677 0.936 1.018 8.241 

123 {rs12328617_A_D,rs17057233_C_D,rs4739561_T_D} => 

{rs3212578_A_D} 
0.605 0.882 1.018 3.927 

124 {rs1627354_A_D,rs8041354_T_D} => {rs11466212_G_D} 0.629 0.869 1.018 4.226 

125 {rs10510097_A_D} => {rs3212578_A_D} 0.664 0.882 1.018 5.427 

126 {rs11466212_G_D,rs4739561_T_D} => {rs8041354_T_D} 0.643 0.851 1.018 4.298 

127 {rs12883673_C_D,rs7537288_G_D} => {rs11628551_T_D} 0.626 0.935 1.018 6.237 

128 {rs17057233_C_D,rs593241_T_D} => {rs3212578_A_D} 0.672 0.882 1.018 5.639 

129 {rs2722279_C_D,rs6469232_A_D} => {rs11628551_T_D} 0.642 0.935 1.018 6.702 

130 {rs12883673_C_D,rs3136667_C_D} => {rs11628551_T_D} 0.625 0.935 1.017 6.121 

131 {rs11628551_T_D,rs17041230_A_D,rs8041354_T_D} => 

{rs17057233_C_D} 
0.608 0.901 1.017 4.255 

132 {rs11466212_G_D,rs6990501_G_D} => {rs1627354_A_D} 0.612 0.882 1.017 3.925 

133 {rs17041230_A_D,rs3212578_A_D} => {rs17057233_C_D} 0.679 0.900 1.017 6.256 

134 {rs11628551_T_D,rs12328617_A_D,rs17057233_C_D} => 

{rs3212578_A_D} 
0.620 0.882 1.017 4.049 

135 {rs12328617_A_D,rs3212578_A_D} => {rs7537288_G_D} 0.667 0.877 1.017 5.206 

136 {rs12883673_C_D,rs17041230_A_D} => {rs11628551_T_D} 0.639 0.935 1.017 6.455 

137 {rs2255146_A_D} => {rs17041230_A_D} 0.631 0.892 1.017 4.531 

138 {rs12883673_C_D,rs593241_T_D} => {rs11628551_T_D} 0.622 0.935 1.017 5.893 

139 {rs11628551_T_D,rs17057233_C_D} => {rs8041354_T_D} 0.693 0.851 1.017 5.830 

140 {rs12883673_C_D,rs17057233_C_D} => {rs11628551_T_D} 0.638 0.935 1.017 6.334 

141 {rs17041230_A_D,rs4739561_T_D} => {rs2569538_A_D} 0.644 0.824 1.017 3.926 

142 {rs12328617_A_D,rs17057233_C_D} => {rs3212578_A_D} 0.678 0.882 1.017 5.528 

143 {rs11628551_T_D,rs3136667_C_D,rs3212578_A_D} => 

{rs17057233_C_D} 
0.615 0.900 1.017 4.243 

144 {rs17041230_A_D,rs6990501_G_D} => {rs7537288_G_D} 0.625 0.877 1.017 3.934 

145 {rs4739561_T_D,rs6469232_A_D} => {rs17057233_C_D} 0.645 0.900 1.017 4.857 

146 {rs11628551_T_D,rs12328617_A_D} => {rs2722279_C_D} 0.688 0.862 1.017 5.494 

147 {rs16897333_G_D} => {rs2722279_C_D} 0.695 0.862 1.017 5.740 

148 {rs1627354_A_D,rs2722279_C_D} => {rs11628551_T_D} 0.683 0.935 1.017 7.559 

149 {rs17041230_A_D,rs593241_T_D,rs7537288_G_D} => 
{rs11628551_T_D} 

0.617 0.934 1.017 5.345 

150 {rs17041230_A_D} => {rs362777_C_D} 0.702 0.800 1.017 6.333 

151 {rs42695_A_D,rs8041354_T_D} => {rs17057233_C_D} 0.622 0.900 1.016 4.119 

152 {rs1627354_A_D,rs7537288_G_D} => {rs12450493_A_D} 0.647 0.866 1.016 4.019 
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153 {rs11628551_T_D,rs3212578_A_D} => {rs2722279_C_D} 0.686 0.861 1.016 5.121 

154 {rs593241_T_D,rs7537288_G_D} => {rs11628551_T_D} 0.695 0.934 1.016 7.768 

155 {rs13116385_T_D,rs7537288_G_D} => {rs11628551_T_D} 0.646 0.934 1.016 5.963 

156 {rs11466212_G_D,rs12883673_C_D} => {rs11628551_T_D} 0.613 0.934 1.016 5.032 

157 {rs11628551_T_D,rs12450493_A_D} => {rs1627354_A_D} 0.689 0.881 1.016 5.317 

158 {rs11466212_G_D,rs7537288_G_D} => {rs1627354_A_D} 0.647 0.881 1.016 4.087 

159 {rs593241_T_D,rs7537288_G_D} => {rs3212578_A_D} 0.655 0.881 1.016 4.241 

160 {rs11466212_G_D,rs11628551_T_D} => {rs8041354_T_D} 0.668 0.849 1.016 4.182 

161 {rs17041230_A_D,rs2722279_C_D} => {rs11628551_T_D} 0.691 0.934 1.016 7.182 

162 {rs1627354_A_D,rs8080832_C_D} => {rs11628551_T_D} 0.609 0.934 1.016 4.633 

163 {rs11466212_G_D,rs17041230_A_D} => {rs1627354_A_D} 0.662 0.880 1.016 4.266 

164 {rs17041230_A_D,rs8041354_T_D} => {rs17057233_C_D} 0.658 0.899 1.016 4.494 

165 {rs3798315_A_D,rs7537288_G_D} => {rs11628551_T_D} 0.608 0.934 1.016 4.536 

166 {rs1627354_A_D,rs3212578_A_D,rs7537288_G_D} => 
{rs11628551_T_D} 

0.608 0.934 1.016 4.536 

167 {rs12883673_C_D,rs3212578_A_D} => {rs11628551_T_D} 0.623 0.934 1.016 4.890 

168 {rs11628551_T_D,rs6990501_G_D} => {rs3212578_A_D} 0.653 0.880 1.016 3.972 

169 {rs11628551_T_D,rs4739561_T_D} => {rs8041354_T_D} 0.692 0.849 1.016 4.752 

170 {rs2722279_C_D,rs2849379_T_D} => {rs11628551_T_D} 0.606 0.933 1.015 4.440 

171 {rs3212578_A_D,rs42695_A_D} => {rs17057233_C_D} 0.646 0.899 1.015 4.113 

172 {rs11190421_A_D,rs11628551_T_D} => {rs2722279_C_D} 0.667 0.860 1.015 3.921 

173 {rs17057233_C_D,rs2722279_C_D} => {rs3212578_A_D} 0.660 0.880 1.015 3.992 

174 {rs12450493_A_D} => {rs1627354_A_D} 0.750 0.880 1.015 7.355 

175 {rs2722279_C_D} => {rs11628551_T_D} 0.791 0.933 1.015 12.281 

176 {rs13116385_T_D,rs593241_T_D} => {rs11628551_T_D} 0.647 0.933 1.015 4.937 

177 {rs8080832_C_D} => {rs4739561_T_D} 0.673 0.904 1.015 4.487 

178 {rs12450493_A_D,rs12883673_C_D} => {rs11628551_T_D} 0.613 0.933 1.014 4.021 

179 {rs11628551_T_D,rs17041230_A_D} => {rs593241_T_D} 0.706 0.877 1.014 4.858 

180 {rs12883673_C_D} => {rs11628551_T_D} 0.721 0.932 1.014 6.970 

181 {rs6469232_A_D,rs7537288_G_D} => {rs11628551_T_D} 0.643 0.932 1.014 4.521 

182 {rs11628551_T_D,rs12328617_A_D} => {rs7537288_G_D} 0.699 0.875 1.014 4.443 

183 {rs3136667_C_D,rs3212578_A_D} => {rs17057233_C_D} 0.669 0.898 1.014 4.021 

184 {rs17057233_C_D,rs3798315_A_D} => {rs11628551_T_D} 0.611 0.932 1.014 3.842 

185 {rs11628551_T_D,rs17041230_A_D} => {rs7537288_G_D} 0.704 0.874 1.014 4.378 

186 {rs593241_T_D,rs747546_T_D} => {rs11628551_T_D} 0.638 0.932 1.014 4.128 

187 {rs7537288_G_D,rs8041354_T_D} => {rs11628551_T_D} 0.669 0.932 1.014 4.803 

188 {rs747546_T_D,rs7537288_G_D} => {rs11628551_T_D} 0.637 0.932 1.014 4.034 

189 {rs11628551_T_D,rs3212578_A_D} => {rs17057233_C_D} 0.714 0.897 1.014 4.905 

190 {rs6469232_A_D} => {rs17057233_C_D} 0.724 0.897 1.013 5.140 

191 {rs3212578_A_D} => {rs6990501_G_D} 0.716 0.825 1.013 4.501 

All Canonical Pathways: Controls 

Rank Rule Supp. Conf. Lift 𝝌𝟐 

1 {rs12450493_A_D,rs7537288_G_D} => {rs4739561_T_D} 0.634 0.875 1.024 9.692 

2 {rs11628551_T_D,rs8041354_T_D} => {rs2569538_A_D} 0.602 0.863 1.023 7.317 

3 {rs11190421_A_D,rs11628551_T_D,rs4739561_T_D} => 
{rs12450493_A_D} 

0.602 0.905 1.023 8.676 
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4 {rs12450493_A_D,rs4739561_T_D} => {rs8041354_T_D} 0.615 0.809 1.023 6.825 

5 {rs17479287_A_D,rs362777_C_D} => {rs10510097_A_D} 0.608 0.831 1.021 6.054 

6 {rs6469232_A_D} => {rs593241_T_D} 0.635 0.829 1.021 7.145 

7 {rs11190421_A_D,rs17041230_A_D} => {rs3798315_A_D} 0.606 0.817 1.021 5.788 

8 {rs10510097_A_D,rs11628551_T_D} => {rs593241_T_D} 0.600 0.829 1.021 5.712 

9 {rs4733616_T_D} => {rs2569538_A_D} 0.622 0.861 1.021 6.918 

10 {rs12328617_A_D,rs7537288_G_D} => {rs2849379_T_D} 0.614 0.827 1.021 6.055 

11 {rs11190421_A_D,rs11628551_T_D,rs42695_A_D} => 
{rs12450493_A_D} 

0.623 0.903 1.021 8.126 

12 {rs12328617_A_D,rs2569538_A_D} => {rs2849379_T_D} 0.633 0.826 1.021 6.604 

13 {rs2275843_T_D} => {rs10510097_A_D} 0.601 0.831 1.021 5.392 

14 {rs11190421_A_D,rs1627354_A_D,rs42695_A_D} => 

{rs12450493_A_D} 
0.639 0.903 1.020 8.622 

15 {rs4949184_A_D} => {rs42695_A_D} 0.600 0.893 1.020 6.661 

16 {rs11190421_A_D,rs2569538_A_D} => {rs3798315_A_D} 0.610 0.816 1.020 5.394 

17 {rs12450493_A_D,rs1627354_A_D,rs4865534_G_D} => 

{rs11628551_T_D} 
0.614 0.904 1.020 7.254 

18 {rs362777_C_D,rs42695_A_D} => {rs10510097_A_D} 0.606 0.830 1.020 5.074 

19 {rs12450493_A_D,rs1627354_A_D,rs17041230_A_D} => 
{rs11190421_A_D} 

0.606 0.903 1.020 6.743 

20 {rs12450493_A_D,rs9890077_C_D} => {rs11628551_T_D} 0.612 0.904 1.019 6.858 

21 {rs11672342_T_D,rs12328617_A_D} => {rs2849379_T_D} 0.611 0.825 1.019 4.907 

22 {rs3136667_C_D,rs42695_A_D} => {rs10510097_A_D} 0.600 0.829 1.019 4.623 

23 {rs11190421_A_D,rs12450493_A_D,rs4865534_G_D} => 

{rs11628551_T_D} 
0.601 0.903 1.019 6.250 

24 {rs11190421_A_D,rs17057233_C_D} => {rs3798315_A_D} 0.602 0.815 1.019 4.517 

25 {rs11628551_T_D,rs12328617_A_D,rs4739561_T_D} => 

{rs12450493_A_D} 
0.613 0.901 1.019 6.485 

26 {rs17041230_A_D,rs17479287_A_D} => {rs13116385_T_D} 0.627 0.854 1.019 5.638 

27 {rs1627354_A_D,rs3798315_A_D} => {rs11190421_A_D} 0.659 0.902 1.019 8.219 

28 {rs1937834_C_D} => {rs362777_C_D} 0.607 0.852 1.019 4.954 

29 {rs10510097_A_D,rs11190421_A_D} => {rs362777_C_D} 0.607 0.852 1.019 4.954 

30 {rs1627354_A_D,rs2569538_A_D} => {rs2849379_T_D} 0.631 0.825 1.019 5.359 

31 {rs11628551_T_D,rs12450493_A_D,rs1627354_A_D} => 
{rs11190421_A_D} 

0.650 0.902 1.019 7.733 

32 {rs4513489_G_D} => {rs4865534_G_D} 0.631 0.861 1.019 5.810 

33 {rs11190421_A_D,rs11628551_T_D,rs12328617_A_D} => 

{rs12450493_A_D} 
0.643 0.901 1.019 7.335 

34 {rs11190421_A_D,rs1627354_A_D,rs4739561_T_D} => 

{rs12450493_A_D} 
0.618 0.901 1.018 6.357 

35 {rs11628551_T_D,rs362777_C_D} => {rs10510097_A_D} 0.615 0.829 1.018 4.763 

36 {rs11190421_A_D,rs12450493_A_D,rs362777_C_D} => 
{rs1627354_A_D} 

0.603 0.925 1.018 6.972 

37 {rs12883673_C_D,rs4865534_G_D} => {rs4739561_T_D} 0.608 0.871 1.018 5.076 

38 {rs1627354_A_D,rs2569538_A_D} => {rs3798315_A_D} 0.623 0.814 1.018 4.699 

39 {rs12450493_A_D,rs2569538_A_D} => {rs8041354_T_D} 0.601 0.806 1.018 3.992 

40 {rs12450493_A_D,rs1627354_A_D,rs4865534_G_D} => 

{rs11190421_A_D} 
0.613 0.901 1.018 5.849 

41 {rs17057233_C_D,rs4865534_G_D} => {rs4739561_T_D} 0.618 0.870 1.018 5.094 

42 {rs11466212_G_D,rs12450493_A_D} => {rs11628551_T_D} 0.643 0.902 1.018 6.820 

43 {rs11628551_T_D,rs12328617_A_D,rs42695_A_D} => 

{rs12450493_A_D} 
0.638 0.900 1.018 6.507 

44 {rs13116385_T_D,rs4739561_T_D} => {rs12883673_C_D} 0.600 0.842 1.018 4.107 

45 {rs1627354_A_D,rs17041230_A_D} => {rs3798315_A_D} 0.617 0.814 1.018 4.318 

46 {rs3212578_A_D,rs4865534_G_D} => {rs11628551_T_D} 0.625 0.902 1.018 6.052 

47 {rs3136667_C_D,rs4739561_T_D} => {rs17057233_C_D} 0.600 0.854 1.018 4.229 
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48 {rs12450493_A_D,rs3798315_A_D} => {rs11190421_A_D} 0.635 0.901 1.018 6.331 

49 {rs11190421_A_D,rs4739561_T_D} => {rs7537288_G_D} 0.628 0.833 1.017 4.726 

50 {rs12450493_A_D,rs9890077_C_D} => {rs11190421_A_D} 0.610 0.901 1.017 5.495 

51 {rs12450493_A_D,rs4865534_G_D} => {rs11628551_T_D} 0.674 0.902 1.017 7.761 

52 {rs12450493_A_D,rs12883673_C_D} => {rs4739561_T_D} 0.634 0.870 1.017 5.345 

53 {rs1627354_A_D,rs17041230_A_D} => {rs3136667_C_D} 0.638 0.841 1.017 5.025 

54 {rs11628551_T_D,rs1627354_A_D,rs2722279_C_D} => 
{rs4865534_G_D} 

0.609 0.860 1.017 4.420 

55 {rs1627354_A_D,rs4739561_T_D} => {rs8041354_T_D} 0.624 0.805 1.017 4.255 

56 {rs12450493_A_D,rs3212578_A_D} => {rs11628551_T_D} 0.653 0.901 1.017 6.422 

57 {rs1627354_A_D,rs6469232_A_D} => {rs4865534_G_D} 0.601 0.859 1.017 3.941 

58 {rs6469232_A_D} => {rs12883673_C_D} 0.644 0.841 1.017 4.836 

59 {rs12450493_A_D,rs1627354_A_D} => {rs11190421_A_D} 0.725 0.900 1.016 9.762 

60 {rs2722279_C_D,rs4739561_T_D} => {rs4865534_G_D} 0.649 0.859 1.016 5.121 

61 {rs12450493_A_D,rs593241_T_D} => {rs11628551_T_D} 0.651 0.901 1.016 6.157 

62 {rs10510097_A_D,rs1627354_A_D} => {rs362777_C_D} 0.629 0.850 1.016 4.385 

63 {rs11190421_A_D,rs1627354_A_D,rs4865534_G_D} => 

{rs11628551_T_D} 
0.618 0.901 1.016 5.107 

64 {rs11628551_T_D,rs6990501_G_D} => {rs12450493_A_D} 0.614 0.899 1.016 4.927 

65 {rs4865534_G_D,rs593241_T_D} => {rs2722279_C_D} 0.614 0.895 1.016 4.814 

66 {rs12450493_A_D,rs17479287_A_D} => {rs593241_T_D} 0.639 0.825 1.016 4.412 

67 {rs17479287_A_D,rs3136667_C_D} => {rs17041230_A_D} 0.614 0.849 1.016 3.914 

68 {rs3798315_A_D,rs4865534_G_D} => {rs2722279_C_D} 0.606 0.894 1.016 4.466 

69 {rs11190421_A_D,rs1627354_A_D,rs3212578_A_D} => 

{rs11628551_T_D} 
0.600 0.901 1.016 4.514 

70 {rs11628551_T_D,rs8041354_T_D} => {rs12450493_A_D} 0.627 0.899 1.016 5.027 

71 {rs11672342_T_D,rs4865534_G_D} => {rs11628551_T_D} 0.615 0.901 1.016 4.777 

72 {rs6469232_A_D} => {rs4865534_G_D} 0.657 0.859 1.016 5.004 

73 {rs11190421_A_D,rs12328617_A_D,rs42695_A_D} => 
{rs12450493_A_D} 

0.634 0.899 1.016 5.141 

74 {rs11466212_G_D,rs4865534_G_D} => {rs11628551_T_D} 0.614 0.900 1.016 4.670 

75 {rs10510097_A_D} => {rs362777_C_D} 0.691 0.849 1.016 6.165 

76 {rs1627354_A_D,rs17479287_A_D,rs4865534_G_D} => 

{rs11628551_T_D} 
0.605 0.900 1.015 4.282 

77 {rs11190421_A_D,rs11628551_T_D,rs17479287_A_D} => 

{rs12450493_A_D} 
0.616 0.898 1.015 4.486 

78 {rs2722279_C_D,rs7537288_G_D} => {rs4739561_T_D} 0.625 0.868 1.015 4.059 

79 {rs11628551_T_D,rs1627354_A_D,rs4739561_T_D} => 
{rs12450493_A_D} 

0.615 0.898 1.015 4.381 

80 {rs4865534_G_D,rs593241_T_D} => {rs11628551_T_D} 0.618 0.900 1.015 4.333 

81 {rs11628551_T_D,rs4739561_T_D} => {rs12450493_A_D} 0.676 0.898 1.015 5.864 

82 {rs12883673_C_D,rs42695_A_D} => {rs4739561_T_D} 0.629 0.868 1.015 3.890 

83 {rs1627354_A_D,rs9890077_C_D} => {rs11190421_A_D} 0.619 0.899 1.015 4.246 

84 {rs7327621_A_D} => {rs12450493_A_D} 0.628 0.898 1.015 4.363 

85 {rs11190421_A_D,rs12328617_A_D,rs1627354_A_D} => 

{rs12450493_A_D} 
0.659 0.898 1.015 5.173 

86 {rs11190421_A_D,rs11628551_T_D} => {rs12450493_A_D} 0.706 0.898 1.015 6.803 

87 {rs11466212_G_D} => {rs3212578_A_D} 0.674 0.834 1.015 4.700 

88 {rs11628551_T_D,rs2722279_C_D} => {rs4865534_G_D} 0.668 0.858 1.015 4.616 

89 {rs11190421_A_D,rs6469232_A_D} => {rs1627354_A_D} 0.627 0.921 1.015 5.029 

90 {rs11190421_A_D,rs16897333_G_D} => {rs1627354_A_D} 0.616 0.921 1.015 4.745 

91 {rs11190421_A_D,rs6990501_G_D} => {rs12450493_A_D} 0.611 0.898 1.015 3.878 

92 {rs11628551_T_D,rs12328617_A_D,rs17479287_A_D} => 

{rs12450493_A_D} 
0.633 0.897 1.014 4.252 
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93 {rs11628551_T_D,rs12328617_A_D,rs1627354_A_D} => 

{rs12450493_A_D} 
0.657 0.897 1.014 4.813 

94 {rs12328617_A_D,rs1627354_A_D} => {rs2849379_T_D} 0.677 0.821 1.014 4.557 

95 {rs11190421_A_D,rs11628551_T_D,rs17041230_A_D} => 

{rs1627354_A_D} 
0.603 0.921 1.014 4.214 

96 {rs11190421_A_D,rs12450493_A_D,rs17057233_C_D} => 

{rs1627354_A_D} 
0.602 0.921 1.014 4.127 

97 {rs2569538_A_D,rs4865534_G_D} => {rs11628551_T_D} 0.644 0.899 1.014 4.364 

98 {rs11628551_T_D,rs12328617_A_D} => {rs12450493_A_D} 0.722 0.897 1.014 6.567 

99 {rs7537288_G_D} => {rs4739561_T_D} 0.709 0.867 1.014 5.443 

100 {rs12450493_A_D,rs17057233_C_D} => {rs11628551_T_D} 0.663 0.898 1.013 4.337 

101 {rs12450493_A_D,rs2569538_A_D} => {rs11628551_T_D} 0.670 0.898 1.013 4.446 

102 {rs3136667_C_D} => {rs17041230_A_D} 0.699 0.846 1.013 4.601 

103 {rs2849379_T_D,rs42695_A_D} => {rs12328617_A_D} 0.648 0.922 1.013 4.554 

104 {rs11190421_A_D,rs42695_A_D} => {rs12450493_A_D} 0.694 0.896 1.013 4.942 

105 {rs6469232_A_D} => {rs2722279_C_D} 0.682 0.891 1.013 4.353 

106 {rs1627354_A_D,rs4865534_G_D} => {rs11628551_T_D} 0.690 0.898 1.013 4.579 

107 {rs11190421_A_D,rs4739561_T_D} => {rs12450493_A_D} 0.675 0.896 1.012 4.059 

108 {rs11628551_T_D,rs42695_A_D} => {rs12450493_A_D} 0.698 0.896 1.012 4.595 

109 {rs11628551_T_D,rs3798315_A_D} => {rs1627354_A_D} 0.649 0.919 1.012 3.978 

110 {rs11190421_A_D,rs7537288_G_D} => {rs1627354_A_D} 0.665 0.919 1.012 3.985 

111 {rs11190421_A_D,rs11628551_T_D} => {rs1627354_A_D} 0.722 0.918 1.011 5.132 

112 {rs11190421_A_D,rs362777_C_D} => {rs1627354_A_D} 0.681 0.918 1.011 3.913 

 


