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Abstract In this paper we propose a heuristic convex-

ity measure for 3D meshes. Built upon a state-of-the-

art convexity measure that employs a time-consuming

genetic algorithm for optimization, our new measure

projects only once a given 3D mesh onto the orthogo-

nal 2D planes along its principal directions for an initial

estimation of mesh convexity, followed by a correction

calculation based on mesh slicing. Our measure experi-

mentally shows several advantages over the state-of-the-

art one: First, it accelerates the overall computation by

approximately an order of magnitude; second, it prop-

erly handles those bony meshes usually overestimated

by the state-of-the-art measure; third, it improves the

accuracy of the state-of-the-art measure in 3D mesh

retrieval.

1 Introduction

Shape analysis has been a vigorous research field for

decades, and one of its research focuses is to study

how to define a scalar to holistically describe geometric

properties of shapes, such as convexity [22], rectilin-

earity [7,12,21], regularity [2], ellipticity, rectangulari-

ty, triangularity [11], and concavity [20]. Among these

shape properties, convexity is a crucial measure in both

2D and 3D shape analysis and plays a fundamental role

in shape decomposition [1,4,8,18], classification [9,13,

17] and retrieval [6,15]. In geometry, a planar shape is

referred to as convex if an arbitrary line has no more

than two intersections with the boundary of the shape
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in the plane. Generally speaking, four desirable condi-

tions have to be satisfied in justifying a convexity mea-

sure.

1. The value of the convexity measure is a real number

and varies between (0, 1] for all shapes;

2. the value is equal to 1 if and only if the shape is

convex;

3. there exist shapes whose convexity measure is arbi-

trarily close to 0;

4. the convexity measure of a given shape is invariant

under similarity transformations.

These four conditions can be generalized to 3D by re-

placing the term shapes with 3D meshes.

1.1 Convexity measures for 2D shapes

Convexity measurement for 2D shapes has been exten-

sively studied up to now. The most commonly used con-

vexity measure for 2D shapes is based on the area ratio

of a shape over its convex hull [22], as defined below.

Note that for the sake of clarity, in this paper we de-

fine all the 2D convexity measures with c in lower case,

while all the 3D convexity measures with C in capital.

Definition 1 For a given 2D shape s and its convex

hull CH(s), its convexity measure c1(s) is formulated

as

c1(s) =
Area(s)

Area(CH(s))
. (1)

c1 is easy to evaluate and generally robust to bound-

ary noise, but it fails to sense extremely slim dents in

the shape. This problem can be overcome by introduc-

ing a perimeter-based convexity measure, which takes
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boundary into account. For any planar shape, there ex-

ists an inequality between the perimeters of itself and

its convex hull, i.e. Per(CH(s)) ≤ Per(s) and they are

equal only if s is convex. Therefore, the perimeter-based

convexity measure is defined as the perimeter ratio of

a shape over its convex hull.

Definition 2 For a given 2D shape s and its convex

hull CH(s), its convexity measure c2(s) is defined as

c2(s) =
Per(CH(s))

Per(s)
. (2)

c2 is based on shape boundary and more sensitive to

boundary noise than c1 [22].

There are other measures that calculate convexity

regardless of the convex hull. For example, Zunic et

al [22] proposed a boundary-based convexity measure

based on boundary projection of the 2D shape. Rosin

et al [14] proposed a symmetric convexity measure with

a convex polygon that best fits the 2D shape, and their

measure is defined as the area ratio of the convex poly-

gon and the shape. Rahtu et al proposed a convexity

measure defined as the probability that a point on any

line segment formed by an arbitrary pair of points from

a shape also belongs to the shape [10].

1.2 Convexity measures for 3D meshes

Unlike 2D convexity measurement that has been exten-

sively studied, there has been far less work reported for

3D convexity measurement thus far. A few intuitive at-

tempts for 3D meshes were built on the 2D measures

mentioned above. It is worth noting that the term 3D

mesh in the context of this paper is referred to as 3D

closed mesh and visualized as 3D shaded objects. Simi-

lar to Definition 1 of 2D shapes, a volume-based mea-

sure, that is the 3D generalization of c1, can be formu-

lated for 3D meshes.

Definition 3 Letting M stand for an arbitrary 3D mesh

and CH(M) indicate its convex hull, its convexity mea-

sure C1(M) is evaluated as

C1(M) =
V olume(M)

V olume(CH(M))
(3)

Similar to its 2D counterpart, C1 is insensitive to ex-

tremely slim dents [6] and cannot sense the difference

of two meshes with identical mesh and convex hull vol-

umes, as shown in Figure 1.

Similarly, we directly generalize the perimeter-based

convexity measure c2 into 3D. The 3D counterpart of

2D perimeter is regarded as mesh surface area. Howev-

er, it is hard to construct an inequality for a 3D mesh

Fig. 1 Two different meshes but with the same C1 value.

Fig. 2 A cube with many holes.

with its mesh surface area and its convex hull area. This

is because for some 3D meshes, such as the one shown

in Figure 2

Area(M) > Area(CH(M)),

while for others, such as the hollow cube shown in Fig-

ure 8, especially when the bars go extremely slim, the

inequality becomes

Area(M) < Area(CH(M)).

Therefore, the 3D generalization of c2 may not always

hold for 3D meshes.

To resolve the problem that C1 is insensitive to ex-

tremely slim dents, Lian et al [6] proposed a projection-

based convexity measure for 3D meshes. Their measure

was generalized from the 2D projection-based convexity

measure reported by Zunic et al [22].

Definition 4 For a given 3D mesh M its convexity

measure C2(M) is defined as

C2(M) = min
α,β,γ∈[0,2π]

Pview(M,α, β, γ)

Pface(M,α, β, γ)
, (4)

where Pview(M,α, β, γ) and Pface(M,α, β, γ) are Pview

and Pface of M after rotating α, β, and γ with re-

spect to x, y, and z axes, respectively. Pface is the

summed area of mesh faces projected onto the three or-

thogonal planes, Y OZ, ZOX, andXOY , with Pface =

Pfacex+Pfacey+Pfacez; while Pview is the summed

area of mesh silhouette images projected onto six faces
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of its bounding box parallel to the orthogonal planes,

with Pview = 2(Pviewx + Pviewy + Pviewz). Thus,

it is noticeable that there exists an inequality Pface ≥
Pview for any mesh, and that they are equal only if a

mesh is convex. Convexity is measured as a minimum

value that is sought by rotating the mesh at variant

angles.

Since the calculation of C2 is a nonlinear optimiza-

tion problem that traditional methods cannot deal with,

a genetic algorithm is used to help seek the minimum

value of C2. Nevertheless, the genetic algorithm is com-

putationally expensive, and requires a plethora of iter-

ations to reach an optimum. Therefore, a computation-

friendly measure enabling efficient convexity evaluation

is yet to be studied.

In this paper, we propose a heuristic convexity mea-

sure for 3D meshes. Our measure is still projection-

based, but computes the summed area ratio of project-

ed mesh silhouette images and mesh faces only once,

just along the principal directions of the mesh, followed

by a correction process based on mesh slicing, rather

than optimizing the ratio in iterations with the genet-

ic algorithm, accelerating the overall computation by

some an order of magnitude. Compared with C2, our

measure gives a more reasonable evaluation to bony

meshes. Compared with C1, our measure can sense the

difference of the two meshes displayed in Figure 1, and

can detect slim dents that C1 can do nothing with.

Moreover, the new measure has a better performance

than both C1 and C2 in 3D mesh retrieval.

2 Heuristic convexity measurement

To accelerate the computation of C2, this paper propos-

es to project a given 3D mesh onto the orthogonal 2D

planes in a certain direction only once. The philosophy

adopted here is that in this direction an initial estimate

of mesh convexity is first approximated and then nice-

ly corrected to approach the defacto convexity. Such a

scenario can be formulated as

C3(M) = Corr(
Pview(M ·R)

Pface(M ·R)
), (5)

where R represents the rotation matrix for the initial es-

timation; Corr(·) indicates the correction process sub-

sequently applied.

2.1 Initial estimation along principal directions

As stated above, initial estimation should result in a

value as close to the defacto mesh convexity as possible

by rotating the mesh with R only once. However, it is

difficult to figure out how much a mesh should be ro-

tated without a priori knowledge. To this end, we pro-

pose a statistical method for initial estimation. From

Definition 4 we know that C2 can reach a minimum

by rotating a mesh to a certain direction. Explicitly s-

peaking, this minimum value exists only if faces of the

mesh are projected onto three orthogonal planes hav-

ing a maximum overlapping area. Therefore, our goal

is to approximate this minimum convexity value using

the projection-based approach by rotating the mesh to

a certain direction that ensures a large overlapping area

of the mesh faces. Moreover, this direction should make

our convexity measure invariant under similarity trans-

formations.

Here we select Principal Component Analysis (P-

CA) for initial estimation mainly for three reasons. First,

the mathematical meaning of PCA is to transform a

given set of data to a new coordinate system having

the greatest variances of data along the principal direc-

tions. To this end, PCA ensures that the mesh faces are

projected onto three orthogonal planes with a relative-

ly larger overlapping area, leading to a relatively small-

er initial estimate, closer to the defacto mesh convex-

ity. Second, for the following correction process, cross

sections sliced along the principal directions can best

characterize the geometric detail of the mesh. Third,

PCA normalizes meshes and makes our convexity mea-

sure invariant under similarity transformations. In oth-

er words, an initial rotation of the mesh to an arbitrary

angle will not make our convexity measure variant un-

der similarity transformations.

Let E denote the matrix for the eigenvectors of the

covariance matrix of mesh vertices. Replacing R with

E, the initial estimation can be rewritten as

Ce(M) =
Pview(M · E)

Pface(M · E)
. (6)

Figure 3 depicts the silhouette images of some mesh-

es projected along the principal axes, where the prin-

cipal directions of the meshes conform well with the

human intuition and the values of Ce are close to those

of C2.

2.2 Correction to initial estimation

In this paper, we propose to correct the initial estima-

tion of convexity by slicing a mesh model into a series of

cross sections. If we treat cross sections of a 3D mesh

along its principal axes as normal 2D shapes, then a

2D convexity measure can be used to help offset the

precision loss caused by the initial estimation with P-

CA. Take a symmetric and elongated 3D mesh as an
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Fig. 3 Mesh silhouettes along the principal axes.

Fig. 4 An example whose convexity is overestimated by P-
CA.

example, as shown in Figure 4, where the PCA-based

projections perfectly align with the human intuition.

According to Equation 6, the initial estimate of the

mesh convexity is close to 1 . However, this mesh ap-

pears non-convex. As can be observed from Figure 4,

one of the three silhouettes is convex, while the others

are not. There is some concavity omitted by the PCA-

based initial estimation, which can be recovered from

cross sections of the mesh. Therefore, a 2D convexity

measure to the cross sections of the 3D mesh can be

readily used to correct the initial estimation of 3D con-

vexity.

Similar to CT slicing in medical science, we slice the

mesh into a sequence of 2D shapes in equal interval-

s along principal directions of the mesh, as illustrated

shown in Figure 5. We use convexity values of these 2D

shapes to compute the correction factor of each princi-

pal direction. Here we choose the area-based measure

c1 for the computation of the correction factors.

According to Definition 1, given that the 3D mesh

is sliced along each principal direction into N+1 equal-

ly spaced 2D cross sections, we can denote the general

form of the correction factor r along each principal di-

Fig. 5 An illustration of mesh slicing in one direction.

rection as

r =

∑N
i=0Area(si)∑N

i=0Area(CH(si))
(7)

whereArea(si) is the area of the ith slice, andArea(CH(si))

is the area of its corresponding convex hull. SinceArea(si)

is inconvenient to compute in practice, we turn the com-

putation of Area(si) into that of volume as follows. We

multiply both the numerator and denominator of Equa-

tion 7 by a slice step length lstep as

r =

∑N
i=0Area(si)lstep∑N

i=0Area(CH(si))lstep
≈ V olume(M)

lstep
∑N
i=0Area(CH(si))

.

(8)

In order to make slices retain more geometric detail-

s, we compute the average edge length of the mesh, and

set the slice step as a half of the average edge length.

To lighten the computational burden, we cap the slice

number by setting a threshold, Nmax. The slice number

along some principal direction is, thus, derived

N =

{
Nmax, ifL/lstep ≥ Nmax
L/lstep, ifL/lstep < Nmax,

(9)

where L is the projection length along each principal

direction; Nmax can be applied to all three principal

directions. In this paper, Nmax is by default set to 100,
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Fig. 6 A negative example of using c2 where the close-up
of a cross section into the legs shows that the value of c2 is
larger than 1.

a quantity sufficient for all the 3D meshes in our ex-

periments. Therefore, the correction factors for three

principal directions can be written as

rj =
V olume(M)

lstep
Nj∑
i=0

Area(CH(si))

, j = {x, y, z} (10)

Note that not every 2D convexity measure can be

applied to correcting the initial estimation. For exam-

ple, one may argue whether the boundary-based mea-

sure c2 can be used to replace c1. One natural consid-

eration for the replacement of Equation 7 with c2 is

r′ =
∑N
i=0 Per(CH(si))∑N

i=0 Per(si)
(11)

Nevertheless, we cannot guarantee that this correction

factor is definitely smaller than 1. One of the negative

examples is shown in Figure 6. Due to the mesh mod-

el in the figure has limbs, the value of r′ evaluated a-

long the illustrated principal direction is greater than 1

and will undermine the final convexity to be measured.

Thus, only c1 is used in this paper for the correction of

initial estimation.

Now we can give our new convexity measure an ul-

timate definition.

Definition 5 For a given 3D mesh M its convexity

measure C3(M) is defined as

C3(M) =
Pview(M · E, r)
Pface(M · E)

. (12)

where

Pview(M · E, r) = 2(rxPviewx(M · E)+

ryPviewy(M · E) + rzPviewz(M · E))
(13)

Pface(M · E) = Pfacex(M · E)+

Pfacey(M · E) + Pfacez(M · E)
(14)

Theorem 1 1. C3(M) distributes in the range (0, 1];

2. C3(M) = 1 only when the mesh is convex;

3. inf
M∈Π

(C3(M)) = 0, where Π denotes the set of all

meshes;

4. C3(M) is invariant under similarity transformation-

s.

Proof If M is convex, all the 2D slices along its princi-

pal directions must be convex. Thus, rx = ry = rz = 1.

Because Pview(M · E, r) = Pface(M · E), it always

holds C3(M) = 1. When M is non-convex, there must

be some non-convex slices, and thus 0 < rx, ry, rz ≤ 1.

Furthermore, because Pview(M ·E) ≤ Pface(M ·E) al-

ways holds, combining Equation 12, 13 and 14 we have

C3(M) ≤ 1 . Since C3(M) is computed along princi-

pal directions of the mesh, it is invariant under rota-

tion and translation. Because C3(M) is a ratio, it is

invariant under scaling too. Hence, the fourth condi-

tion of Theorem 1 is satisfied. It is worth noting that

an initial rotation of the mesh to an arbitrary angle

will not make our convexity measure variant under ro-

tation transformation thanks to PCA. Were PCA not

applied, the values of C3 would change as the mesh ro-

tates. Some examples of such a hypothesis are shown in

Figure 7, where rotations are made with respect to the

z axis.

In order to prove the third condition of Theorem

1, we employ a hollow cube shown in Figure 8, where

a indicates the edge length of the cube, and b denotes

the edge length of the hollow. Then, we have

rx = ry = rz =
a3 + 2b3 - 3ab2

a3
. (15)

When increasing b to approach a, we have

lim
b→a

C3(M) = 0. (16)

The third condition of Theorem 1 is, therefore, proved.

Furthermore, if decreasing b to 0, the hollow cube

turns completely convex as a proper cube, and C3(M) =

1.

Another interesting finding is that if applying Lian’s

measure to the same procedure above with the same

hollow cube, we have

C2(M) = min
α,β,γ∈[0,2π]

Pview(M,α, β, γ)

Pface(M,α, β, γ)

=
a+ b

a+ 3b

(17)
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Fig. 7 Without PCA convexity values calculated by C3 change as the meshes rotate.

(a)The model (b)Its silhouette.

Fig. 8 A hollow cube

When decreasing b to 0, C2(M) = 1. However, if in-

versely increasing b to approach a, Lian’s measure re-

turns

lim
b→a

C2(M) = lim
b→a

a+ b

a+ 3b
=

1

2
. (18)

This means that the hollow cube with extremely slim

bars is considered as infinitely close to being absolutely

concave by C3, but not by C2.

3 Experimental evaluations

In this section, we perform experimental tests with some

publicly accessible databases. The results produced by

C1, C2, and C3 are quantitatively evaluated and com-

pared in Section 3.1. Then an application of the con-

vexity measures in 3D mesh retrieval is performed and

analyzed in Section 3.2. The computational efficiency

of our method is also experimentally demonstrated in

Section 3.3.

3.1 Quantitative evaluations

To demonstrate the effectiveness of our convexity mea-

sure, we apply it to two commonly used mesh databases,

the McGill Articulated 3D Shape Benchmark [19] and

Princeton Benchmark [3]. Before we carry out the test-

s, all the meshes have to be normalized by translating

their origins to the mesh centroids.

Figure 9 shows a quantitative evaluation of different

measures on a group of meshes ranked by C3. It can be

seen that for those bony meshes, such as the 1st, 3rd,

6th, 7th, and 8th meshes, their convexity values evalu-

ated by C3 are lower than those of C2, better reflecting

the reality. It is also observed that C1 hardly senses the

slim dent in the 18th mesh, which is, however, noticed

by both C2 and C3. It is worth noting that the convex-

ity of the sphere evaluated by C3 is 0.9744 due to the

approximation introduced by Equation 8.

Figure 10 shows a group of hand gestures ordered

by C3, with their convexity values calculated by C1, C2,

and C3. For the gestures with five straight fingers, their

convexity values calculated by C1 and C3 are higher

than those with fingers bending. However, C2 cannot

distinguish this nuance.

Moreover, we extend our test to the hollow cube

with both C2 and C3. As can be seen in Figure 11,

when b goes wider, the values of two measures become

smaller. Note that the convexity values computed by

C3 range from 0 to 1 while the values computed by C2

are between 0.5 and 1. Here the value of b is in turn set

to 0, 0.2a, 0.5a, and 0.8a for the hollow cube.

A cube with a deep dent shown in Figure 12 is also

tested by comparing C3 with C1. When n→ 0, the vol-

ume for the dent approaches 0. The convexity computed

by C1(M) is,

lim
n→0

C1(M) = lim
n→0

V olume(M)

V olume(CH(M))

= lim
n→0

m3 − 1
2m

2n

m3
= 1

(19)
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Fig. 9 Meshes of the quantitative evaluation.

Fig. 10 Hand gestures ordered by C3.

Fig. 11 The hollow cube with b broadening.
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(a)The 3D perspective.
(b)Its silhouette.

Fig. 12 A cube with a cut.

However, this value cannot reflect the cut existing in the

cube. C3 can detect this cut instead, which is computed

as

lim
n→0

C3(M) =
6m2

8m2
= 0.75 (20)

The new measure can also handle the problem shown

in Fig.1. The convexity values of the two meshes calcu-

lated by C3 are, respectively, 0.6756 and 0.7483.

3.2 3D mesh retrieval

We apply C1, C2, and C3 to non-rigid 3D mesh re-

trieval. The meshes are selected from the McGill artic-

ulated 3D shape benchmark, consisting of 10 categories

of 255 watertight meshes. The retrieval performance is

evaluated by four quantitative measures (NN, 1-Tier,
2-Tier, DCG) [16]. We use convexities computed by the

three measures to represent the 3D meshes and employ

the L1 norm to calculate the dissimilarity between two

features. The results are shown in Table 1. Note that

all these convexities are calculated after the 3D meshes

are converted into their canonical forms. Here, we use

a method introduced in [5] to construct their feature-

preserved canonical forms of the 3D meshes. As shown

in Figure 13, the meshes for the same species may ap-

pear in quite different poses but have similar canonical

forms. Thereby following the calculation of canonical

forms, all feature extraction methods, even those specif-

ically designed for rigid 3D meshes, can be employed to

extract isometry-invariant shape descriptors from non-

rigid objects. The results in Table 1 show that our mea-

sure outperforms the others in terms of retrieval rate.

However, representing 3D meshes by a solo convexity

measure may result in relatively poor discriminations.

Instead when we use both C3 and C1 as dual features,

better performance results are obtained.

Table 1 Retrieval performance of our measure and the other
convexity measures evaluated on the McGill database.

NN 1-Tier 2-Tier DCG

C1 26.3% 26.0% 43.7% 59.8%
C2 25.9% 26.3% 45.9% 60.4%
C3 34.1% 26.8% 50.3% 61.9%

C1 and C3 43.9% 33.0% 54.1% 66.0%

3.3 Computational efficiency

C2 is computationally expensive due to the genetic al-

gorithm with 50 individuals and 200 evolution genera-

tions [6], especially when the number of vertices in the

mesh is large. In contrast, our measure needs to cap-

ture silhouette images from the frame buffer only once.

Table 2 compares the time consumed by both the mea-

sures on some typical meshes ordered in vertex number.

It can be seen that C3 accelerates the overall compu-

tations by approximately an order of magnitude. The

whole experimental environment is under Visual Studio

2010 in a laptop configured with Intel Core i5 CPU and

6G RAM.

4 Conclusions

Aiming to address the problems in the extant measures,

we have proposed a heuristic convexity measure for 3D

meshes in this paper. Our measure projects only once

a given 3D mesh onto orthogonal 2D planes along it-

s principal directions for an initial estimation of mesh

convexity, followed by a correction process based on the

2D area-based convexity measurement of mesh cross
sections. To this end, our measure avoids the tedious

genetic algorithm adopted by C2, enabling highly effi-

cient convexity measurement for 3D meshes and short-

ening the computational time of C2 by some an order

of magnitude. Compared with C1 that has difficulties

in detecting slim dents and sensing the difference of

meshes with the identical mesh and convex hull vol-

umes, our measure can successfully handle these issues.

The experimental results have also demonstrated the

advantage of our measure in 3D mesh retrieval against

both C1 and C2. Since our measure is computationally

inexpensive, it is ready for use in many other graphics

applications, such as 3D mesh partitioning, and classi-

fication, etc.
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Fig. 13 Canonical Forms of the meshes. The first row shows the original non-rigid models, while the second row shows their
feature-preserved 3D canonical forms.
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