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Abstract The development of the patchwise Partial

Differential Equation (PDE) framework a few years a-

go has paved the way for the PDE method to be used

in mesh signal processing. In this paper we, for the first

time, extend the use of the PDE method to progressive

mesh compression and mesh denoising. We, meanwhile,

upgrade the existing patchwise PDE method in patch

merging, mesh partitioning, and boundary extraction

to accommodate mesh signal processing. In our new

method an arbitrary mesh model is partitioned into

patches, each of which can be represented by a small set

of coefficients of its PDE spectral solution. Since low-

frequency components contribute more to the recon-

structed mesh than high-frequency ones, we can achieve

progressive mesh compression and mesh denoising by

manipulating the frequency terms of the PDE solution.
Experimental results demonstrate the feasibility of our

method in both progressive mesh compression and mesh

denoising.

Keywords Spectral method · Mesh processing ·
Patchwise PDE · Progressive mesh compression · Mesh

denoising

1 Introduction

Since Bloor and Wilson’s pioneering work [3] first ap-

plied Partial Differential Equations (PDEs) to generat-

ing blend surface decades ago, advantages of the PDE
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method in computer graphics have been gradually dis-

covered. One of the main advantages comes from the

ability that the differential operators of PDEs can gen-

erate smooth surfaces. Another major advantage is that

a 3D surface can be generated by manipulating a rela-

tively small set of boundary curves. These advantages

enable the PDE method to be applied to many research

fields, such as surface modeling [4] and computer-aided

manufacturing [5,10] in the 1990s, and shape morphing

[6], Web visualisation [28], interactive design [37], face

parameterisation [33], pharmaceutical modeling [1], and

medical image visualisation [7] after the millennium.

In the Bloor and Wilson’s PDE (BWPDE) method,

a 3D parametric PDE patch is defined as a solution to

an elliptic PDE that is analytically resolved by impos-

ing Fourier analysis on its boundary conditions. In this

sense, the PDE method possesses some spectral char-

acteristics due to the involvement of Fourier analysis,

but these spectral characteristics of the PDE method

have never been explored previously, mainly because

the PDE method, all the time leveraged as a model-

ing tool of smooth surfaces, cannot be directly used to

approximate irregular and sharp geometric details of a

given surface.

In order to resolve this problem, Sheng et al. [32]

proposed a patchwise PDE (PPDE) method, the main

distinction of which from the BWPDE method is the lo-

calisation of the coordinate system for each PDE patch.

Although the development of the PPDE method has

paved the way for spectral processing of irregular geo-

metric meshes, some issues in the PPDE method, such

as patch merging, mesh partitioning, and boundary ex-

traction, are yet to be studied to accommodate spectral

analysis.

In this paper we, for the first time, explore its spec-

tral nature of the PPDE method in mesh signal process-
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ing, more specifically, in progressive mesh compression

and mesh denoising. To accommodate progressive mesh

compression and mesh denoising we upgrade the PPDE

method as follows. First, instead of manually selecting

position fixers for PDE patch merging [32], we intro-

duce a new merging scheme, which blends the recon-

structed PDE patches in terms of point cloud before the

blended point cloud is globally triangulated. The new

merging scheme enables the PDE patches to be seam-

lessly blended together without user supervision. Sec-

ond, instead of partitioning the mesh with a simplifica-

tion algorithm [32] that may give rise to geometry loss,

we adopt MeTiS [22] for mesh partitioning. Patches seg-

mented by MeTiS retain both geometry and topology

of the original mesh. Third, the boundary extraction

method used in [32] was tailored for triangle-shaped

PDE patches, while ours in this paper is designed for

MeTiS-partitioned patches with arbitrary shapes.
The philosophy behind our method is stated as fol-

lows. By imposing Fourier analysis on the PDE bound-

ary conditions the mesh geometry can be handled in the

frequency domain. By taking advantage of the spectral

property that low-frequency components contribute more

to the reconstructed mesh than the high-frequency ones

in terms of geometric structure, mesh signal process-

ing can be performed. In mesh progressive compres-

sion, we first transmit the low-frequency coefficients of

PDE solutions for a coarse mesh, followed by transmit-

ting the high-frequency coefficients and at the receiving

end, gradually recovering more geometric details of the

mesh. In mesh denoising, a mesh with noise is trans-

formed into the spectral domain by Fourier analysis of

the PPDE method, and we can achieve low-pass filter-

ing by retaining the low-frequency components while

discarding the high-frequency ones. Iterating the above

process, we can obtain a desired denoising result. It is

worth noting that our primary goal is not to propose

new progressive mesh compression and mesh denoising

methods exceeding the existing ones, although our new

methods outperform them to some extent.
The rest of the paper is structured as follows. The

related work on progressive mesh compression, mesh

denoising as well as PDE methods is briefed in Section

2. Section 3 introduces the PPDE method. Section 4 is

dedecated to the mesh preprocessing technologies used,

including mesh partitioning and boundary extraction.

Section 5 describes our progressive mesh compression

scheme. Section 6 states our mesh denoising scheme.

Section 7 lends experimental evaluations to our method.

Section 8 concludes the paper.

2 Related Work

Both progressive mesh compression and mesh denois-

ing have been playing crucial roles in 3D mesh signal

processing. In this section, we briefly review both the

research fields as well as the mainstream PDE methods.

2.1 Progressive Mesh Compression

Progressive mesh compression has been studied for years,

the existing methods of which can be grouped into s-

patial and spectral methods. The first progressive mesh

compression method introduced by Hoppe [18] is a s-

patial method, where he used edge collapse and vertex

split operations to achieve progressive compression. In

order to make the compression ratio of [18] closer to

those of single-rate methods, Taubin et al [36] intro-

duced a progressive algorithm through the forest split

operation, while Pajarola and Rossignac [27] improved

Hoppe’s method by grouping vertex splits into batch-

es. Using the above two methods, a lower compression

rate can be obtained for meshes with acceptable qual-

ity. In fact, progressive mesh compression is to find a

balance between the restored mesh quality and com-

pression rate, namely the rate-distortion trade-off. For

this purpose, Lee et al. [26] proposed a rate-distortion

optimization (RDO) algorithm with adaptive quanti-

zation. All the above are of connectivity-driven algo-

rithms that first encode connectivity data and then

use them to encode geometry data. Instead, geometry-

driven algorithms proceed in an opposite way. Since

geometry data take up more storage space than con-

nectivity data, geometry compression is generally more
efficient than connectivity compression. Gandoin and

Devillers [14] focused their effort on geometry compres-

sion by proposing a geometry-driven algorithm based

on the KD-tree subdivision, while Peng and Kuo [30]

proposed a geometry-driven algorithm using the octree

subdivision.

Different from all the above spatial methods, the

methods focusing on spectral processing can build a

good approximation of the original mesh and achieve a

lower compression rate in a global manner. Karni and

Gotsman [20] proposed a spectral method, where mesh

geometry was projected onto an orthonormal basis of

the Laplacian matrix constructed with the mesh topo-

logical information, and then the corresponding eigen-

values were treated as frequency components. As the

computational complexity of eigenvectors of an n × n

matrix is O(n3), to reduce the complexity the input

mesh was partitioned into a series of submeshes [20],

and each submesh was compressed independently. Nev-

ertheless, the eigenvectors were also required to com-



A PDE Patch-based Spectral Method for Progressive Mesh Compression and Mesh Denoising 3

pute at the decoder, and thus the computational com-

plexity of this method was too heavy for real-time appli-

cations. To overcome this problem, Karni and Gotsman

[21] proposed to use fixed basis functions rather than

variable basis functions for spectral compression of 3D

meshes. In fact, these fixed basis functions are Fouri-

er basis functions so that the process of encoding and

decoding can be efficiently implemented using the Fast

Fourier Transform. Valette and Prost [38] proposed a

compression scheme based on wavelet decomposition,

where the connectivity of a higher level mesh was recon-

structed with that of the base mesh and subdivisions,

and the mesh geometry was subsequently reconstructed

with wavelet coefficients.

2.2 Mesh Denoising

The literature in mesh denoising can also be grouped

into spatial and spectral methods. The first spectral

method for mesh fairing based on the graph Laplacian

was proposed by Taubin [35]. In this method, vertexes

of a mesh were treated as a 3D signal and defined over

the underlying mesh graph. Since then, more and more

attention has been paid to smoothing the mesh within

the spectral domain. Desbrun et al [11] proposed an im-

plicit fairing method, where a new scale-dependent um-

brella operator was used for avoiding large distortions

on irregular meshes. Zhang et al [40] proposed efficien-

t techniques to address the computational difficulties

of Butterworth filtering and implicit fairing for irreg-

ular meshes. For the Butterworth filter, they proposed

that factorizing the liner system in the complex domain

could accelerate the computation speed. As for implicit

fairing, they used successive overrelaxation to improve

the processing speed. Kim et al combined the explicit

[35] and implicit [11,40] forms together to construct a

more flexible second order filter, named GeoFilter [24],

in which frequencies were computed automatically ac-

cording to user selected features so as to achieve a de-

sired result. Pauly and Gross [29] proposed a spectral

filtering framework for point-sampled geometric models

with noise, where a noised model was split into a num-

ber of surface patches with regularized samples, before

Fourier analysis was applied to removing the noise.

All the above methods are implemented in the spec-

tral domain. Nonetheless, both noise and geometric de-

tails in the mesh model correspond to high-frequency

components in the spectral domain. Some geometric

details are also inevitably removed during denoising.

In order to remove noise while retain more geometric

details of the mesh, some spatial methods have been

developed. For example, Fleishman et al [13] and Jones

et al [19] developed bilateral filters based on vertex po-

sitions of the mesh, while Sun et al [34] and Zheng et al

[44] applied bilateral filters to face normals, followed by

updating the vertex positions according to the filtered

normals. The effectiveness of a bilateral filter usually

relies on the range kernel that influences the weights,

and the range weights are determined by the intensi-

ty difference of the input signal. Nevertheless, the in-

put signal as the guidance sometimes cannot achieve

desirable results, and this leads to the development of

the joint bilateral filter. Zhang et al proposed a guid-

ed mesh normal filter [43] for joint bilateral filtering of

geometry signal, where a properly constructed normal

field was used as the guidance, and the joint bilateral

filter was applied to the face normals followed by updat-

ing the vertex positions. In order to effectively denoise

3D models with variant levels of noise, Lu et al pro-

posed two robust mesh denoising approachs [15] [16].

In [15] an initial estimation is introduced to largely re-

duce the noise level, followed by a string of operations to

preserve features during denoising. In [16] a three-step

method is proposed, consisting of vertex pre-filtering

of input noise, L1-median filtering of face normals, ver-

tex position updating according to the filtered normals.

In addition to the above-mentioned methods, sparsity

optimisation is also popular in mesh denoising. For ex-

ample, He and Schaefer [17] adopted L0 minimization

to remove noise from meshes, and demonstrated its ef-

fectiveness in preserving sharp features.

2.3 The PDE Methods

The mainstream PDE methods in geometric modeling

are resolved either numerically or analytically. The ana-

lytic solution is suitable for PDEs with closed boundary

conditions. Otherwise, a numerical solution has to be

sought, usually computationally more expensive. The

pioneering PDE method proposed by Bloor and Wil-

son [3] was analytically resolved by imposing Fourier-

analysis on the boundary conditions of a biharmonic-

like fourth order PDE. Zhang and You also proposed

to analytically resolve a fourth order PDE based on the

Pseudo-Levy Series [42,39]. In order to reach a trade-

off between the surface smoothness and computation-

al complexity, a fourth-order PDE is generally chosen.

However, it can only ensure a C1 continuity between

PDE patches. If a higher continuity is required a high-

er order PDE has to be employed [41,25].

All the methods surveyed above are based on an an-

alytic solution to resolve PDEs. Since not every PDE

has an analytic solution, seeking a numerical solution

can improve the generality of a PDE method. For exam-

ple, Du and Qin [12] proposed to use a finite difference

method to resolve PDEs.
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Although the above includes various PDE method-

s, the BWPDE method has had a widest spectrum of

applications due to its generality and computational ef-

ficiency.

3 The PPDE Method

The PDE method adopted in this paper is a patchwise

generalization of the BWPDE method. In the BWPDE

method, a 3D parametric PDE patch S(u, v) is defined

as a solution to a biharmonic-like fourth order elliptic

PDE:(
∂2

∂u2
+ a2

∂2

∂v2

)2

S (u, v) = 0 (1)

where 0 ≤ u ≤ 1, 0 ≤ v ≤ 2π, and a is called the

smoothing parameter, governing the relative rate of s-

moothing between the u and v directions. The fourth-

order PDE is adopted because a lower-order PDE has

no freedom to specify the reconstructed surface smooth-

ness, whereas the calculation of a higher-order PDE is

more time-consuming.

The smooth nature of the PDE is reflected by the

partial differential operators in (1), in which the val-

ue of the function at any point on the surface is, in

a certain sense, a weighted average of the surrounding

values. Thus, a surface is obtained as a smooth tran-

sition between the boundary conditions. However, this

smooth nature makes the BWPDE method impossible

to approximate irregular and sharp geometric details of

the original surface.

In order to approximate surfaces with irregular and
sharp details, Sheng et al [32] proposed a PPDE method.

In the BWPDE method, boundary curves are extract-

ed along the surface in a consistent order, so that each

PDE patch is adjacent to two other patches. In such a

patch configuration, each PDE patch shares a global-

ized uv parametric coordinate system with the others.

Due to the smooth nature of the PDE method, such

a patch configuration smoothes out some details be-

tween the boundary curves extracted from the original

surface, which is, however, undesired in geometry ap-

proximation. On the contrary, in the PPDE method, a

surface is divided into a number of patches. According

to the size and orientation of each patch, a local uv co-

ordinate system, independent of the other patches, is

assigned to each patch. Eventually, all the individual

patches are blended to approximate the original sur-

face. Such a patch configuration enables approximation

of irregular and sharp geometric details of the original

surface. Our spectral method is built upon the PPDE

method, and PDE patch generation and patch merging

are discussed in detail as follows.

3.1 PDE Patch Generation

An original surface can be divided into a number of

patches, and each patch S(u, v) can be approximated

by a PDE, as formulated by Equation (1). Using the

method of separation of variables, an analytic solution

to Equation (1) is given:

S(u, v) = A0(u) +

∞∑
n=1

[An(u) cos(nv) + Bn(u) sin(nv)]

(2)

where A0(u) is considered to be the ”spine” of the re-

constructed surface, while the remaining terms repre-

sent a summation of ”radius” vectors that give the po-

sition of reconstructed surface S(u, v) relative to the

”spine”. As a result, the PDE surface patch may be pic-

tured as a sum of the ”spine” vector A0(u), plus a pri-

mary ”radius” vector A1(u) cos(v)+B1(u) sin(v), plus a

secondary ”radius” vector A2(u) cos(2v)+B2(u) sin(2v)

attached to the end of the primary ”radius”, and so on.

The amplitude of the ”radius” term decays as the fre-

quency increases. It can be observed that the first few

”radii” containing the most essential geometric infor-

mation are the major contributors to surface genera-

tion while the following ones are trivial enough to be

neglected. Thus, we can rewrite Equation (2) as

S(u, v) = A0(u) +

N∑
n=1

[An(u) cos(nv) + Bn(u) sin(nv)]

(3)

where N indicates the first N ”radii” with

A0(u) = a00 + a01u+ a02u
2 + a03u

3 (4)

An(u) = an1e
anu + an2ue

anu + an3e
−anu + an4ue

−anu

(5)

Bn(u) = bn1e
anu+bn2ue

anu+bn3e
−anu+bn4ue

−anu (6)

The PDE coefficients a00, a01, . . . , an3, an4 and b11,

b12,. . . ,bn3, bn4 are determined by Fourier-analysing the

PDE boundary conditions imposed on Equation (3).

The boundary conditions take the following forms:

S(0, v) = C0(v) (7)

S(u1, v) = C1(v) (8)
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(a) (b)

(c) (d)

(e) (f)

Fig. 1 Patch merging illustration of position fixers adopted
in [32] and our new global triangulation scheme

S(u2, v) = C2(v) (9)

S(1, v) = C3(v) (10)

C0(v), C1(v), C2(v), C3(v) represent the boundary con-

ditions when u = 0, u1, u2, and 1, respectively, and

0 < u1 < u2 < 1.

For each PDE patch, the number of sampling points

in the uv domain determines its level of detail (LOD).

Different LODs can be obtained by adjusting the gran-

ularity of the uv grid without changing the number of

PDE coefficients used in generation. Generally speak-

ing, the denser the granularity, the more details the

PDE patch can retain.

3.2 Patch Merging

Since Equation (3) is used to approximate Equation

(2), this approximation introduces visible distortions

on the boundaries of generated PDE patches, resulting

in either overlaps or seams between the patches. In or-

der to avoid this problem, [32] introduced a group of

position fixers. The use of fixers can avoid generation

of T-junctions between adjacent patches and blend the

patches together seamlessly.

Although the above blending scheme can achieve

satisfactory results, there still exist some problems: (1)

Selection of the position fixers relies on manual work,

making it inefficient and inconvenient for practical ap-

plications, such as compression and filtering. (2) Posi-

tion fixers need extra storage space and increase the

data size in geometry representation. (3) The resolu-

tion of each PDE patch must remain identical. Fig.

1(a) shows two patches in an identical resolution and

Fig. 1(b) shows the result of patch merging using the

scheme in [32], where five red dots are the position fix-

ers used. When the resolution of the patch is different

(Fig. 1(c)), the merging result produced by the position

fixers is undesired, as shown in Fig. 1(d), junctions ’1’

and ’2’ appear unstable.

To address these problems, we propose a new merg-

ing scheme based on point cloud. Specifically speaking,

the vertexes of each PDE patch are first computed using

the uv grid designed in [32], but without its connectivi-

ty information. This means that in the new scheme, all

the reconstructed PDE patches containing only vertex-

es are merged into one model in terms of point cloud.

A final mesh can then be obtained by triangulating the

PDE point cloud with any existing algorithm. In this

paper, we employ the ball pivoting algorithm [2] in pro-

gressive mesh compression and Poisson surface recon-

struction [23] in mesh denoising according to their spe-

cialities. We call the new scheme global triangulation,

different from the local one previously introduced in

[32]. This global triangulation scheme enables different

patches with any resolutions to be seamlessly blended

together, avoiding the manual intervention as well as

the extra storage cost introduced by the position fix-

ers. Fig. 1(e) and Fig. 1(f) show such an example of

merging two patches in different resolutions with the

new scheme. Fig. 1(e) and Fig. 1(c) have the same ver-

tex information, but different topologies. It can be seen

that the topology of Fig. 1(f) is more reasonable than

that of Fig. 1(c).

4 Mesh Preprocessing

Before PDE patch generation, a mesh model needs to

be preprocessed with mesh partitioning and boundary

extraction. Mesh partitioning disparts the input mesh

into a number of patches, each of which corresponds

to one PDE. For each patch, four boundary condition-

s are subsequently extracted. In this section we intro-

duce the new mesh partitioning and boundary extrac-

tion schemes.

4.1 Mesh Partitioning

In [32], mesh simplification was used to guide partition-

ing a mesh model, where a high-resolution triangular
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(a) (b)

Fig. 2 (a) A result of 160 patches partitioned by MeTiS. (b)
Illustration of the extracted boundary conditions. c and d are
extracted as boundary vertexes because they are closest to the
one-third and two-thirds trisecting points on the geodesic line
between a and b

mesh was simplified to a user-specified resolution, and

then this simplified mesh was used as reference to guide

partitioning the original mesh. Thus, the PDE patch-

es in [32] were decided by the mesh simplification ap-

proach adopted rather than the geometric mesh itself.

If the simplification approach adopted gave no consid-

eration to the geometric detail of the original shape, it

would lead to a severe loss of original mesh information

after PDE reconstruction. To this end, we have to find

a new segmentation method.

The existing mesh segmentation approaches can be

divided into part-type segmentation and surface-type

segmentation [31]. Part-type segmentation is based on

human perception and focuses on partitioning the mesh

into meaningful 3D volumetric components, while surface-

type segmentation uses surface geometric properties of

the mesh, such as curvature and planarity, to dispart

the mesh into surface patches. Topologically, part-type

segmentation cannot guarantee segmented parts a home-

omorphism, while patches segmented by surface-type

methods are topologically equivalent to a disk. There-

fore, a surface-type method should be adopted here due

to the use of PPDE.

Ideally, we hope to partition a mesh into fewer patch-

es for a smooth region while more patches for a de-

tailed region. Nevertheless this ideal partitioning result

is hardly achieved by the existing surface-type methods

due to geometry uncertainty. Even for those geometry-

aware surface-type methods, segmentation results may

suffer from scale disparity, oversensitivity to local de-

tails, or even topology variation, etc. Therefore, rather

than using a geometry-aware method, we resort to topology-

friendly software MeTiS [22] in this paper. In [20], the

effectiveness and feasibility of MeTiS have been demon-

strated for a spectral mesh compression method. Com-

pared with the simplification scheme adopted in [32],

patches segmented by MeTiS retain both the geometry

and topology of the original mesh and have the same

number of vertices. Fig.2(a) shows the partitions gen-

erated by MeTiS for the Stanford bunny.

4.2 Boundary Extraction

In our method four boundary curves are extracted from

each patch after MeTiS partitioning. We first calculate

the average position of all the vertexes of each patch,

and then select the vertex closest to the average posi-

tion as the first boundary condition of this patch, i.e.

the innermost boundary condition. Next, the outermost

vertexes of the patch are extracted as the fourth bound-

ary condition. In order to precisely approximate the

patch with complex geometry, all the outermost ver-

texes of the patch are used in PDE patch generation.

After obtaining the fourth boundary condition, corre-

sponding geodesic lines between the vertexes on the first

and fourth boundaries are calculated, and the second

and third boundary conditions are in turn extracted

by collecting the vertexes closest to the one-third and

two-thirds trisecting points on the geodesic lines.

Note that our boundary extraction scheme differ-

s from the one used in [32], which was tailored for

triangle-shaped PDE patches. In [32], the corner points

of each triangle-shaped patch are first located after sim-

plifying the original mesh, and then the remaining points

on the boundary curves are selected by seeking the ver-

texes in the original mesh closest to the triangular edges

of the simplified mesh. Since a fixed number of bound-

ary points are required, if vertexes on the original mesh

are insufficient to select, then interpolation is carried

out. There is one complication that the vertexes ob-

tained by interpolation may not locate in the original

mesh, resulting in some distorted details. Instead of in-

terpolation, if the vertexes are insufficient for the second

and third boundaries, the boundary extraction method

in this paper allows the same vertex to be selected more

than once, guaranteeing that all the boundary points

originate from the mesh vertexes. Fig. 2(b) shows an

example of boundary extraction of an arbitrary patch

using our method, where the vertexes for the second

boundary are insufficient to select. The vertex indicat-

ed by alphabet c is selected twice because it is the ver-

tex closest to the one-third trisecting points of both the

geodesic lines linking a and b, and a and e.

5 Progressive Mesh Compression

After mesh partitioning and boundary extraction, we

are ready for progressive mesh compression. In pro-

gressive mesh compression a coarse 3D mesh is first

transmitted in lower precision and then decompressed
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Fig. 3 The pipeline of progressive compression

at the receiving end. With more geometric information

sent from the transmitting end and subsequently de-

compressed at the receiving end, the coarse mesh will

be gradually refined to restore the original model. In

the PPDE method, the PDE coefficients are resolved

by imposing Fourier-analysis on the boundary condi-

tions. Fourier analysis copes with the mesh data in the

frequency domain. According to the spectral character-

istic that low-frequency components contribute more to

the reconstructed mesh than the high-frequency ones,

we can obtain a coarse model of the original mesh with

its basic geometric structure by transmitting only the

coefficients of A0(u) in Equation (3), i.e., a00, a01, a02,

and a03, and then refine the coarse mesh with the re-

ceived coefficients of the following N ”radius” terms,

i.e., a11, a12, . . . , an3, an4 and b11, b12, . . . , bn3, bn4. We

divide our progressive mesh compression scheme in-

to progressive compression and progressive decompres-

sion.

Progressive Compression: Our progressive com-

pression procedure is composed of five stages and il-

lustrated in Fig.3. An input mesh model is first parti-

tioned into a number of patches with MeTiS, and for

each patch four boundary conditions are then extract-

ed. The corresponding PDE coefficients of each patch

can be calculated by imposing Fourier analysis on its

four boundary conditions. In this paper, each PDE coef-

ficient is empirically quantized to 15 bits, and the total

quantity of PDE coefficients is 12 × (2N + 1) for each

patch. Using the Lempel-Ziv-Markov chain algorithm

(LZMA), we can in turn encode the PDE coefficients

from low-frequency to high-frequency.

Progressive Decompression: Our progressive de-

compression process is composed of three stages and

shown in Fig.4. During decompression, the low-frequency

coefficients are first downloaded and decoded so that

a coarse mesh can be reconstructed using the PPDE

method. With the higher frequency coefficients received,

more geometric details of the original mesh are recov-

ered. Note that our method first renders the model into

a point cloud, before this point cloud model is triangu-

lated using the ball-pivoting algorithm [2] for its low

computational complexity.

Fig. 4 The pipeline of progressive decompression

6 Mesh Denoising

Raw mesh data acquired from scanning devices inevitably

contain noise, and thus, mesh denoising algorithms are

required ahead of any further mesh process. In im-

age processing, the Fourier transform has been wide-

ly used in transforming an image from its spatial do-

main into its frequency domain. However, the image

domain is regularly sampled, while 3D geometric mesh-

es are not. Therefore, it is difficult to directly apply

the Fourier transform to mesh signal. Previously, we

have demonstrated that a 3D model can be reconstruct-

ed with the PPDE method by manipulating frequency

coefficients of the Fourier series expansion. Likewise,

we can take advantage of the spectral nature of the

PPDE method to achieve a low-pass filter by retain-

ing the low-frequency coefficients while discarding the

high-frequency ones.

Fig.5 shows the pipeline of our denoising scheme us-

ing the PPDE method. An input mesh with noise is first

partitioned into a number of patches. For each noised

patch, four boundary conditions are extracted and the

corresponding PDE coefficients are calculated by Fouri-

er analysis. Preceding the generation of point cloud of

the PDE patches, low-pass filtering is carried out. In

the frequency domain, low-frequency components cor-

respond to the basic geometric structure of the model,

while the high-frequency ones define geometric details

of the model, such as bumps and noise. Thus, by keep-

ing the PDE coefficients of first N ”radius” terms while

discarding those of the rest ”radii”, a result of low-pass

filtering can be obtained after merging the patches. Our

scheme also allows for iterative filtering if the denoising

result of one iteration is unsatisfactory.

Note that instead of using the ball pivoting algorith-

m, we adopt the Poisson surface reconstruction algo-

rithm for triangulation mainly because of the smooth-
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Fig. 5 The pipeline of our denoising scheme

ness it lends, which makes the Poisson algorithm ideal

for low-pass filtering.

7 Experimental Results

In this section, we experimentally assess the perfor-

mance of our methods introduced in this paper against

the existing methods whose codes are publicly avail-

able. Fig.6 shows five typical mesh models tested in our

experiments, featuring various characteristics including

smooth surface as well as sharp edges, etc.

7.1 Progressive Mesh Compression Evaluations

We assess our compression method by comparing it

with one spatial and one spectral progressive mesh com-

pression methods. Fig.7-11 shows the rate-distortion

curves of the Wavemesh algorithm [38], RDO algorith-

m [26], and ours for the testing mesh models, where

the horizontal axes indicate compression rates while

the vertical axes indicate the corresponding Root Mean

Square (RMS) errors evaluated by METRO [9], mea-

suring how close a reconstructed mesh is to the origi-

nal. When the compression rate keeps unchanged, the

smaller the RMS error, the better the compression per-

formance. When the RMS error remains the same, the

lower the compression rate, the better the compression

performance. All the corresponding coefficients and ver-

texes in these three algorithms are empirically quan-

tized with 15 bits.

In our method, there are three variables, N , M , and

L, to be decided beforehand. N determines the num-

ber of PDE coefficients used during reconstruction; M

denotes the number of patches partitioned by MeTiS;

L indicates the number of isoparm triangle layers in

the uv grid [32], determining the LOD of reconstructed

patches.

For the sake of visibility, we compare the three algo-

rithms within a specified range in Fig.7-11. The nodes,

from left to right, of the polylines of our scheme in

Fig. 7 The rate-distortion curves of the sphere model

Fig.7-11 correspond to the results when the value of N

increases from 0 to 6. It can be observed that the value

of N determines how close the reconstructed mesh is to

the original one. The larger the value of N , the small-

er the RMS error, the closer the reconstructed mesh to

the original. However, the increase of N will enlarge the

compression rate. Note that for the sake of comparison,

we visualize all the possible nodes generated by the t-

wo competing algorithms within the specified ranges in

Fig.7-11, which correspond to different levels of detail

with variant vertexes.

The patch number M also influences the compres-

sion results. It can be observed in Fig.7-11 that with N

fixed, the larger the value of M , the smaller the RMS

error, i.e. the more details the reconstructed mesh can

preserve, but this may lead to an increase in compres-

sion rate. Therefore, in practical use we should choose

an appropriate M for a trade-off between the compres-

sion rate and RMS error.

In addition, the resolution of the uv parametric grid

also influences the reconstruction precision. It can be

observed in Fig.7-11 that with both M and N fixed,

the larger the value of L, the smaller the RMS error,

but the compression rates remain unchanged.

As can be seen, our method achieves better perfor-

mances than the RDO algorithm between the ranges

indicated by the alphabets a and b in Fig.7-10. Our

method can also achieve better performances than the

Wavemesh algorithm between the indicated ranges in

Fig.8-10. In Fig.11, both the Wavemesh and RDO al-

gorithms perform better than ours because the parti-

tioning method used in this paper is insensitive to the

model with sharp edges.
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Fig. 6 The mesh models used in our experiments. From left to right are the sphere model, Stanford bunny, Venus, Fandisk,
and hand model

We also observe from Fig.7-11 that when the com-

pression rate is greater than b, the RMS error keep-

s decreasing for the Wavemesh and RDO algorithms,

but almost unchanged for our scheme. This is because

both the Wavemesh and RDO algorithms are lossless,

and more geometric details can be recovered by the two

algorithms as more bits are used. By contrast, the im-

pact of high-frequency components after some ”radius”

terms in our PDE method is too weak to be observed.

Fig. 8 The rate-distortion curves of the Bunny

7.2 Mesh Denoising Evaluations

In this section, we compare our denoising scheme with

some existing methods, such as FDCO [13], JDD [19],

SRML [34], local ZFAT [44], ZDZBL [43], and LCS [16].

Each of the above methods involves a set of parameters

to be set by the user, and the best parameters may vary

from model to model. For a fair comparison, we choose

the best result for each method by sampling parame-

ters. Similarly, we need to set parameters properly in

Fig. 9 The rate-distortion curves of Venus

Fig. 10 The rate-distortion curves of the hand model
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Fig. 11 The rate-distortion curves of the Fandisk

our scheme to produce desired results. In our scheme,

we are concerned with four parameters, M , N , L, and

I, where I indicates the number of filtering iterations.

In order to test the denoising effect, Gaussian noise

is applied to both mesh normal and random directions.

As same as [43], the intensity of Gaussian noise in this

paper is controlled by a relative variance parameter,

defined as

σE =
σ

Emean
(11)

where σ is the variance of the Gaussian function, and

Emean is the average edge length of a mesh.

We first evaluate the robustness of variant denois-

ing methods against Gaussian noise with an increas-

ingly growing intensity, as shown in Fig.12. The Stan-
ford bunny is degraded by adding Gaussian noise to its

vertexes along the vertex normals. When the intensity

of noise is low, all the seven denoising algorithms can

achieve desired subjective results. However, as the noise

intensity increases, the denoising results of the FDCO,

JDD, SRML and ZFAT algorithms become worse and

worse, while ZDZBL, LCS and our algorithms can shake

off the impact of the growing noise intensity. The pa-

rameter values of our algorithm adopted in Fig.12 are

listed in Table 1.

Table 2 shows the iteration numbers performed by

the seven competing denoising algorithms in Fig.12,

where niter denotes the number of normal iterations,

and viter indicates the number of vertex iterations. It

is observed that to depress the impact of the growing

noise intensity the five competing algorithms have had

to increase the iteration number, except the JDD algo-

rithm that is independent of iteration. By contrast, our

algorithm can generate desired denoising results with

only two iterations.

Table 1 The parameters adopted by our algorithm in Fig.12

The intensity of noise σE
Parameters

M N L I
0.2 300 5 3 2
0.4 300 6 3 2
0.6 300 6 3 2
0.8 300 6 3 2

Table 2 The iterations required by variant algorithms in
Fig.12

σE Algorithms Iterations

0.2

[FDCO] 40
[JDD] -

[SRML]
niter viter

5 20

[ZFAT]
niter viter

6 20

[ZDZBL]
niter viter

4 15

[LCS]
niter viter

5 10
Ours 2

0.4

[FDCO] 40
[JDD] -

[SRML]
niter viter

30 50

[ZFAT]
niter viter

10 20

[ZDZBL]
niter viter

4 15

[LCS]
niter viter

7 15
Ours 2

0.6

[FDCO] 80
[JDD] -

[SRML]
niter viter

50 50

[ZFAT]
niter viter

15 40

[ZDZBL]
niter viter

4 15

[LCS]
niter viter

10 15
Ours 2

0.8

[FDCO] 50
[JDD] -

[SRML]
niter viter
100 100

[ZFAT]
niter viter

20 50

[ZDZBL]
niter viter

20 10

[LCS]
niter viter

10 25
Ours 2
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Noised [FDCO] [JDD] [SRML] [ZFAT] [ZDZBL] [LCS] Ours

Fig. 12 A subjective comparison of the denoising algorithms for the Stanford bunny with additive Gaussian noise of various
intensities along the normal directions. The intensity σE of noise from top to bottom are in turn set to 0.2, 0.4, 0.6, and 0.8

Fig.13 and Fig.14 show denoising performance com-

parisons between our algorithm and the competing ones

on variant models whose geometric details from top to

bottom become sharper and sharper. Especially, the

model Fandisk contains clear edges. Fig.13 shows the

results for the Gaussian noise added along the normal
directions. For the sphere, Venus, and hand models all

the seven algorithms can achieve subjectively accepted

denoising results. For the Fandisk, the FDCO and JDD

algorithms cannot completely filter out the noise; the S-

RML and ZFAT algorithms produce incorrect normals;

our algorithm fails to reserve the sharp edges mainly be-

cause our spectral method can hardly distinguish noise

and sharp geometric detail and MeTiS is insensitive to

geometry; ZDZBL and LCS algorithms can achieve de-

sired subjective results. Fig.14 shows the denoising re-

sults for the Gaussian noise added along random direc-

tions. As can be seen, the FDCO algorithm does not

completely filter out the noise for all the mesh models.

The other six denoising algorithms can produce subjec-

tively accepted denoising results for the first three mesh

models, but not for the Fandisk and hand model except

the LCS algorithm. JDD, SRML, ZFAT and ZDZBL al-

gorithms produce incorrect normals; our algorithm can

produce desired denoising result for the hand model,

but not for the Fandisk. Note that since our denoising

scheme relies on discarding high-frequency components

of the mesh, some geometric detail will be inevitably

removed along with noise. Such impacts can be seen

in the face of the Venus, as well as the edges of the

Fandisk. The parameters of our algorithm adopted in

Fig.13 and Fig.14 are listed in Table 3.

Fig. 15 shows a further comparison of denoising al-

gorithms on the models with a higher level of noise

added along random directions. As can be seen, FD-

CO, JDD, SRML, ZFAT, and ZDZBL algorithms fail

to achieve accepted denoising results for all the mesh

models. LCS and our algorithms can produce subjec-

tively accepted denosing results for all the mesh model-

s, except our algorithm fails to reserve the sharp edges

of the Fandisk.

Since error metrics, such as the RMS, max, mean,

and Hausdorff distances are based on correspondences

of vertexes, edges, and similar triangles faces, and there

is no such one-to-one correspondence in our method

between the denoised and the original, an objective as-

sessment for our method may not reflect the reality.

For instance, in Fig.14, the denoising result of our algo-

rithm for Venus is visually better than that of FDCO,

and FDCO even fails to filter out the noise of Venus.
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Table 3 The parameters adopted by our algorithm in Fig.13
and Fig.14

Figures Models
Parameters

M N L I

Fig.13

Sphere 500 1 2 4
Venus 500 6 3 1

Fandisk 200 2 2 2
Hand 300 3 3 2

Fig.14

Sphere 500 1 2 3
Bunny 400 6 3 1
Venus 500 6 4 1

Fandisk 200 5 2 2
Hand 300 5 3 2

Nonetheless, the RMS, max, mean, and Hausdorff dis-

tances of FDCO for Venus are smaller than ours, which

is, however, against the reality. Therefore, in this paper

the denoising results are not assessed by the error met-

rics.

8 Concluding Remarks

The feasibility of the PDE method in 3D mesh signal

processing is explored for the first time in this paper. To

accommodate progressive mesh compression and mesh

denoising, we upgrade the existing PPDE method in

patch merging, mesh partitioning, and boundary ex-

traction. Although our primary goal is not to develop

a progressive mesh compression algorithm or mesh de-

noising algorithm excelling the extant ones, the experi-

ments have demonstrated the advantages of our method

to some extent.

Our denoising algorithm is performed in the spectral

domain. One disadvantage of spectral methods is that

they can hardly distinguish noise and geometric detail-

s of a model in the spectral domain. Thus the spectral

denoising method will inevitably trade off some geomet-

ric details of the original mesh during denoising, result-

ing in over-smoothing. For example, in both Fig.13 and

Fig.14, our denoising algorithm fails to restore some de-

tails in the face of the Venus, nor the sharp edges of the

Fandisk.

This paper also opens some windows for further re-

search. For example, in progressive mesh compression,

apart from the quantity of frequency terms, the patch

number M also influences the compression rate and re-

construction precision of our method. This means that

to achieve a small compression rate we can partition the

mesh into a small number of patches, but this may lead

to unprecise reconstruction. However, we need to seek a

trade-off between the compression rate and RMS error

by properly selecting an optimal M , and to seek a way

of replacing manual setting, which are yet to be stud-

ied in the future. Moreover, we adopt topology-friendly

MeTiS in this paper to segment the mesh model into

patches with an identical number of vertexes, which is,

however, geometry-insensitive. Since desirable proper-

ties of a surface-type segmentation method may vary

according to the specific application, it would be better

in the future to develop our own geometry-aware seg-

mentation algorithm for this specific application, which

should enable a planar region to possess larger patch-

es and a detailed region to possess smaller patches,

and meanwhile, should be robust enough against scale

disparity, oversensitivity, and topology variation that

the existing surface-type geometry aware algorithms are

facing.

Note that both our progressive mesh compression

scheme and mesh denoising scheme currently work on-

ly for genus-0 models. This is determined by our patch

merging scheme, where the point cloud is directly trian-

gulated to achieve seamless blending of PDE patches.
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26. Lee, H., Lavoué, G., Dupont, F.: Rate-distortion opti-
mization for progressive compression of 3D mesh with color
attributes. The Visual Computer. 28(2), 137-153 (2012)

27. Pajarola, R., Rossignac, J.: Compressed progressive
meshes. IEEE Transactions on Visualization and Computer
Graphics. 6(1), 79-93 (2000)

28. Pang, M.Y., Sheng, Y., Sourin, A., Castro, G.G., Ugail,
H.: Automatic reconstruction and web visualization of com-



A PDE Patch-based Spectral Method for Progressive Mesh Compression and Mesh Denoising 15

plex PDE shapes. International Conference on Cyberworld-
s. pp. 97-104 (2010)

29. Pauly, M., Gross, M.: Spectral processing of point-
sampled geometry. Proceedings of SIGGRAPH’01. pp. 379-
386. ACM (2001)

30. Peng, J., Kuo, C.C.J.: Geometry-guided progressive loss-
less 3D mesh coding with octree (OT) decomposition. ACM
Transactions on Graphics. 24(3), 609-616 (2005)

31. Shamir A.: A survey on mesh segmentation techniques.
Computer graphics forum. 27(6), 1539-1556 (2008).

32. Sheng, Y., Sourin, A., Castro, G.G., Ugail, H.: A PDE
method for patchwise approximation of large polygon mesh-
es. The Visual Computer. 26(6), 975-984 (2010)

33. Sheng, Y., Willis, P., Castro, G.G., Ugail, H.: Facial ge-
ometry parameterisation based on partial differential equa-
tions. Mathematical and Computer Modelling. 54(5), 1536-
1548 (2011)

34. Sun, X., Rosin, P., Martin, R., Langbein, F.: Fast and
effective feature-preserving mesh denoising. IEEE Transac-
tions on Visualization and Computer Graphics. 13(5), 925-
938 (2007)

35. Taubin, G.: A signal processing approach to fair surface
design. Proceedings of SIGGRAPH’95. pp. 351-358. ACM
(1995)
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