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Abstract

We propose a mixed-integer linear model that solves the Multiple Heterogeneous Knapsack Problem, minimising the

wasted space of the bins, taking into account their priority, and considering the following constraints: non overlapping,

boundaries and positioning (both constrained and free), rotations (around the vertical axis), orthogonal displacement,

weight limit, static stability, weight distribution in a pyramidal region and load bearing considering items’ arbitrary centre

of mass. In the experiments, the priority parameter is set to prioritize smaller bins, but the model is generic to cover other

cases. We study the trade-off of adding more constraints to make the problem more realistic and the complexity of finding

a solution. We introduce new metrics that facilitate the comparison of datasets used in experiments. These metrics allow

the export of theoretical results in the industry. We also propose a constructive heuristic named Weight First Best Fit to

handle large scale instances in a reasonable time.

Keywords: Linear programming, Multiple Heterogeneous Knapsack Problem, Container loading problem, Physical Internet, Packing,

Heuristic

1. Introduction

The cutting and packing class of problems (Wäscher et al., 2007) has been studied in the field of Operational

Research since the 1940s because of their wide range of applications in areas such as logistics, scheduling, and

manufacturing.

∗ Corresponding authors(e-mail: igor.deplano@gmail.com, T.T.Nguyen@ljmu.ac.uk).
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The aim of this paper is to develop a mixed integer linear programming model (MIP) for the Multi-

Heterogeneous Knapsack Problem (MHKP), considering the Container Loading Problem (CLP) constraints in-

cluding stability, weight limits, weight distribution and load bearing constraints (Bortfeldt and Wäscher, 2013),

and minimising the wasted space of bins with higher priority. We want to extend the state of the art considering

items with an arbitrary centre of mass and restricting the acceptable bins’ global centre of mass in a pyramidal

region. This model can be used as a base model for further research on heuristics for both the knapsack packing

and bin packing problems. We study the impact of the CLP constraints on the complexity of the solution space.

The pyramidal region of choice is a trade-off between the need for a packing solution and achieving desirable

conditions for safe container handling operations such as lifting and truck transport.

The MHKP consists of packing a strongly heterogeneous set of box-shaped items into a weakly heterogeneous set

of box-shaped bins such that the wasted space is minimized or equivalently the bins’ occupied space is maximized

(Bortfeldt and Wäscher, 2013). The item profit is equal to the item volume, which differs from the general

Knapsack problem where items with the same volume may have different profits. Items must be placed inside

the borders of the bin without overlapping each other and without floating in mid air. We consider orthogonal

rotation of items over the vertical axis.

A key difference between knapsack problems and bin packing problems is that the former considers profit

maximization whereas the latter focuses on the minimization of the number of bins used (Martello and Toth,

1990; Kellerer et al., 2004). The solution spaces of these problems overlap when these conditions are met: the

bins are homogeneous, the profit in the knapsack is the occupied volume, and all the items can be placed in the

available set of bins. If we are considering heterogeneous bins, the solution spaces of these problems overlap when

the availability of each type of bin is limited and there is a filling preference, e.g. based on the packing efficiency.

Without limits and preference, the bin type with the biggest volume will dominate all the other bin types in the

bin packing problem.

We provide a general model that assigns a priority parameter on each bin. Without any loss of generality, we

focus our experiments on a case study where smaller bins are preferred. This is done by assigning each bin, a

priority equal to the inverse of the bin’s volume. Such assignment produces a minimization of the wasted space

while prioritizing smaller bins over bigger ones. This is because companies often prefer to deal with smaller

bins as they are less expensive. Giving priority to filling small bins (rather than large bins) is very important

in some industries, e.g. fast-moving consumer goods. An example is food delivery companies like Deliveroo and

Uber Eats, where it is necessary to prioritise smaller boxes that can be carried by bicycles over larger boxes

that have to be carried by cars/vans/trucks. This is so that the food can be delivered to every part of the

area in the shortest time. Also it is cheaper and more environmental friendly. Similarly, for last-mile delivery

companies such as Amazon Logistics, Amazon Flex, myHermes, DPDLocal and the like, priority will be given to

smaller bins since they can fit into small vans and cars owned by the couriers. Other examples can be found in

last-mile delivery for pharmaceutical, consumer electronic, personal care, household care products, branded and
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packaged food, spirits and tobacco. The similar prioritisation also underlies the principle of the Physical Internet,

which is considered the future of logistics. In the Physical Internet initiative (Montreuil, 2012, 2011), priority is

given to packing goods into small, modular boxes if possible. Then thanks to modularisation the smaller boxes

can be attached together to be carried in bigger containers if needed. We exploit the work done so far in the

Physical Internet by using their containers’ dimensions as a proxy for dealing with real-world instances. In Sallez

et al. (2016), Physical Internet Containers or π-containers are divided into three main categories: T-container,

H-container, and P-container. Table 1 illustrates their planned dimensions: T-containers aim to replace 20 feet and

40 feet containers, H-containers are designed to fit in a pallet pallet sized surface, and P-containers have various

dimensions aiming to directly contain goods. Containers inside the same category can be combined into groups

and locked together (composition) while a container of a smaller category can be encapsulated in a container of a

larger category (encapsulation). The locking mechanism is still under development but considering the available

options (Landschützer et al., 2015), it is reasonable to assume that items will be placed over a grid (positioning

will be restricted to certain points).

Table 1: Table of dimensions of π-containers (container types marked with * have ten dimension modifiers: 100%

| 90% | ... | 20% | 10% )

Type length width height

T-container 1.2m, 2.4m, 3.6m, 4.8m, 6m, 12m 1.2m, 2.4m 2.4m, 1.2m

H-container * 1.2m 1.2m 2.4m

P-container * 1.2m 1.2m 2.4m

It is important to underline that even if the problem instances arise from the Physical Internet Containers, the

problem can be adapted to any common containers or box types by restricting the bins to standard dimensions, e.g.

20 feet and 40 feet for ISO-standard containers. From now on, we will adopt the common bin packing vocabulary:

T-containers will be called bins and H-containers will be called items.

The first contribution of this paper is an MIP Model for the MHKP considering some CLP constraints, and

minimising the wasted space of the higher prioritized bins. The main novelty of the model is the arbitrary items’

centre of mass (CoM) and the acceptable global bins’ CoM pyramidal shape. This creates a model that, for

the first time, covers both the pallet-loading and the container-loading instances with or without interlocking

mechanisms.

The second contribution is a study of the impact of the CLP constraints on the complexity of the solution

space.

The third contribution is the introduction of new metrics to compare the datasets used for the experimental

part. An effort in this direction is important because faster algorithms are often specialized algorithms that
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efficiently handle only particular cases of the problem (Wolpert and Macready, 1997). Having such metrics will

also improve the export of theoretical results in the industry.

The last contribution is the introduction of a simple deterministic heuristic that we name Weight First Best

Fit(WFBF). WFBF is an on-line heuristic that fills the available bins with one item at a time, sequentially, until

the available bins or the available items are exhausted. The algorithm is capable of handling any problem size in

a reasonable time.

This paper is organized as follows: in section 2 we will investigate the previous work done on CLP encountered

in the logistics field. In section 3 we will discuss the model in detail. In section 4 we will discuss the heuristic

WFBF and its limitations. Section 5 will describe the dataset used, and in section 6 we will show and discuss the

computational experiments used to validate the model. The paper will end with conclusions and discussions of

future research.

2. Literature review

Our literature review focuses on mathematical linear models for the three dimensional bin packing problem

(3DBPP) or three dimensional knapsack packing problem (3DKPP) that tackle some CLP constraints such as

weight distribution, load-bearing, and stability. Readers interested in approximated methods are referred to Zhao

et al. (2016); Coffman Jr et al. (2013); Christensen et al. (2017).

The first application-oriented literature review on cutting and packing problems was published by Sweeney and

Paternoster (1992), including papers written since 1940. Coffman Jr et al. (2004) published a bibliography on the

bin packing problem. Martello and Toth (1990) and successively Kellerer et al. (2004) made a detailed analysis of

the broad class of knapsack problems. Dyckhoff (1990) made the first categorization of the cutting and packing

problems, further improved by Wäscher et al. (2007).

According to Bortfeldt and Wäscher (2013), the most frequently used constraints in the CLP can be categorized

as follows: weight distribution, loading priorities, orientation, stacking or load-bearing; cargo-related: complete-

shipment, allocation, positioning; load-related: stability, complexity patterns. For a state-of-the-art review of the

CLP algorithms that also considers heuristics and metaheuristics, readers are referred to the work of Zhao et al.

(2016).

The geometrical constraints are common to any packing problem (Crainic et al., 2012). They are about posi-

tioning items inside bins ensuring that they will not overlap and that they will not exceed the bin’s dimensions.

Positioning can be modelled in absolute terms (in a Cartesian system where the origin is in one vertex of the

bin) or in relative terms (the position is relative to other items inside the bin) (Bortfeldt and Wäscher, 2013).

Considering only the underlying geometrical constraints (orthogonal packing inside the bins), BPP remains an

NP-Hard problem in a strong sense. Delorme et al. (2016) recently published a survey on exact methods focusing

on the one-dimensional version of the problem, while for approximation methods to solve the multiple-dimensional
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version, the most recent surveys are by Christensen et al. (2017, 2016).

Regarding the CLP constraints, weight distribution refers to displacing items inside the bin in order to obtain

an overall centre of mass inside a safe region or to minimize the distance from a reference point, which is usually

placed in the centre of the container. The centre of mass position is considered important (Bortfeldt and Wäscher,

2013) because it can affect the safety of operations during lifting with cranes, vehicle stability and asymmetric

tyre wear.

Trivella and Pisinger (2016) modelled this problem as an MIP model for the multidimensional case, not consid-

ering rotations, nor load-bearing and assuming a homogeneous density of rectangular shaped boxes. This implies

that a bin’s centre of mass falls in the centre of the box. The model is too hard to solve even for small instances.

Thus, the authors proposed a multi-level local search heuristic that exploits the Fekete-Schepers interval graphs

representation (Fekete et al., 2007; Fekete and Schepers, 2004).

Paquay et al. (2016) tackled a multiple bin size bin packing problem (MBSBPP) considering the following

constraints: geometrical (non overlapping, boundaries, rotations and positioning), orthogonal displacement, weight

limit, orientation, special shapes of the containers, stability, weight distribution and fragility (this is a special

case of load-bearing, where items cannot bear any load). Even in this paper, the mass of items is considered

homogeneous.

Load-bearing is the limit of weight that can be stacked over a box. Often it is represented as “do not place

more than n boxes” or “do not place box i over box j”. Junqueira et al. (2012) tackled the loading of a single bin

considering vertical stability (the ability of boxes to not fall/move along the vertical axis) and horizontal stability

(the capacity of boxes to not move along the axes that form the horizontal plane). Their load-bearing is constrained

inside a 100% vertical stability, which implies that no gaps between items are allowed. Jin et al. (2003) modelled

the 3DBPP with stability, heterogeneous bins, and rotations. The large-scale case is solved with an algorithm

based on Tabu-Search for the assignment phase and a sub-volume heuristic for the packing phase. Hifi et al.

(2010) modelled a 3DBPP for packing identical bins without considering additional constraints. They proposed

a set of lower bound inequalities based on analogies with the parallel-machine scheduling problems. Ceschia and

Schaerf (2013) developed two algorithms, one based on Tabu-Search and the other on Simulated Annealing.

They considered rotations, load-bearing, multi-drop, weight limits and stability (full-support). De Queiroz and

Miyazawa (2013) tackled the oriented two-dimensional strip packing problem (2SP), considering load balancing,

load-bearing, and a multi-drop constraint.

The above review shows that currently there is no exact method for solving the MHKP with the following

constraints despite these being very common in real scenarios: non overlapping, boundaries and positioning (both

constrained and free), rotations (around vertical axis), orthogonal displacement, weight limit, static stability,

feasible weight distribution in a pyramidal region and load-bearing considering items’ arbitrary centre of mass.

This research aims to fill this gap by proposing a mixed-integer linear model that solves MHKP while prioritising

bins, and considering all the aforementioned constraints. Having such a model will help further research on
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heuristics and approximations models.

3. Problem definition

Definition 1 (Item). An item i ∈ I is a parallelepiped object with length li, width wi and height hi. The possible

dimensions are combinations of a predefined set of dimensions (in this paper, without any loss of generality, we

take the dimensions specified in Table 1 as an example for experimental purposes). Each item has its load bearing

limit Λi, which is the maximal weight that the item can bear on its top surface. Moreover, each item has a centre

of mass expressed in coordinates κxi , κ
y
i , κzi .

Definition 2 (Bin). A bin j ∈ J is a parallelepiped object with length Lj , width Wj and height Hj . The possible

dimensions are combinations of the ones given in Table 1. Every bin has weight limit Ωj , which represent the

maximal weight that can be allocated inside, and a priority pj > 0, which represents the priority, or penalty,

applied to the bin in the selection process.

Definition 3 (Bin’s Centre of Mass). The feasible global centre of mass of bin j is described by the coordinates

of its vertex, %j , and the ratio of its pyramidal base, ξj . The pyramid base is proportional to the bin’s size,

Fig 1 shows an example. The ideal CoM is placed in the centre of the of the bin’s bottom face. This position

maximises the safety for crane lifting operations, truck transport and eventually manual handling. The choice of

the pyramidal region is a trade-off between the ideal CoM and the need to have feasible solutions. Restricting the

base of the pyramid and moving the vertex will result in having a feasible region nearer to the ideal one.

Fig. 1: Description of the feasible centre of mass pyramidal space

Definition 4 (Grid-based positioning). The positions inside the bin along the plane parallel to the ground are

restricted by a grid. Each grid cell is a square with β indicating the length of the side. β is the greatest common

divisor of all items sides. This choice ensures item alignment. Items’ positions are aligned on the grid. Note that

this grid-based positioning can be changed to free positioning by setting β = 1. Fig. 2 illustrates the concept.

6



Fig. 2: Description of the feasible position along the x/y plane inside the bin

Definition 5 (Rotation of items). Every item can rotate orthogonally around its vertical axis. The number of

feasible rotations is two. Table 2 describes possible orientations.

Table 2: Table of orientations

Orientation Type Parallel to x-axis Parallel to y-axis Parallel to z-axis

1 Length Width Height

2 Width Length Height

Definition 6 (Reflection). The reflection operator is a π radiant rotation that affects only the item centre of

mass. Fig 3 shows an example.

Fig. 3: A shows an item and its CoM, B shows the item’s CoM after the reflection is applied. Note that the

operator affects only the CoM position.

Definition 7 (Coordinate systems). The proposed model uses two coordinate systems. Fig 4 shows the descrip-

tion. The first coordinate system has as its origin the bin’s front-bottom-left corner, and is used to describe the

positions inside the bin. The second coordinate system has as its origin the item’s front-bottom-left corner and
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is used for defining the position of the CoM in an item.

Fig. 4: Description of the coordinate system

Table 3: Model overview

min wasted space of bins with higher priority

st:

each item must be assigned to at most one bin

assigned items can rotate orthogonally along the vertical axis

assigned items must be positioned on a grid

assigned items must be placed inside bins limits

assigned items must not overlap

assigned items have to be placed on the ground or one or more items,

they cannot float in middle air

the sum of the items’ weight assigned to a bin must be lower than or

equal to the bin’s supported weight limit

for each assigned item, the stacked weight over it must be lower than

its load bearing limit

the global centre of mass of every bin must fall inside a pyramidal region

One of the aims of this paper is to give a mathematical model for the problem in Table 3. We developed

the model considering items with an arbitrary centre of mass (CoM) and restricting the acceptable bins’ global

CoM in a pyramidal region. Items can rotate orthogonally around the vertical axis. This implies that there are

two feasible rotations for every item. The overview is shown in Table 2. The rotation applied to an item affects

the position of its CoM. Moreover, as we are considering arbitrary CoM, the model has to recalculate the CoM
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Fig. 5: Parameters and variables representation in two dimensions. The larger parallelepiped is the bin, the internal

one is the item. For the sake of simplicity, this figure does not present rotations.

considering an additional operation, which is a π radiant rotation that we call reflection, that affects only the

CoM of the item. Items are placed orthogonally, that is, items’ sides are aligned with bin’s sides.

In Table 4 we list all the model’s parameters, Fig 5 shows a two-dimensional representation of the parameters

and some variables. The variables of the model are presented in Table 5.

The rotation modelling is inspired by the work of Lin et al. (2014). ϕo,i ∈ {0, 1} is a binary variable that

equals 1 if the orientation of item i ∈ I follows orientation type o ∈ O = {1, . . . , r}, where r is the number of

the feasible rotations for an item (i.e 2). ϕo,i will be 0 otherwise. The orientation types are defined in Table 2.

We are considering only 2 orthogonal rotations in the plane x/y because it is a common practice to avoid any

rotation of the z-axis. For example, in the MODULUSCHA project (MODULUSHCA, 2012), an H-container has a

male/female mechanism on the top/bottom surface that limits the feasible rotations to only two along the ground

plane. Moreover, items and bins are regular parallelepipeds and since we are aiming for optimal configuration,

considering non-orthogonal rotations will only increase the complexity of the problem without improving solutions.

Items are aligned in a grid where each cell is a square with β indicating the length of the side. Aligned positioning

is a common practice, examples being pallet positioning into ISO-standard containers, boxes inside a pallet or

the locking mechanism (Landschützer et al., 2015) in the Physical Internet containers. Furthermore, this practice

reduces the feasible search space and can be disabled by assigning β = 1. It is preferable that the solution includes

the items’ absolute positioning using one of the bin’s corners as the origin of the Cartesian system. We define

β ∗ xi, β ∗ yi, zi, the coordinates of the front-bottom-left item corner.

3.1. The model

The model’s objective (1) is to minimize the wasted space of the bins having higher priority.
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Table 4: List of parameters

Name Description

J Set of bins’ indexes

I Set of items indexes

O Set of available rota-

tions

n Cardinality of J

m Cardinality of I

Lj Length of bin j

Wj Width of bin j

Hj Height of bin j

pj priority of bin j, pj > 0

L Max length of bins in J

W Max width of bins in J

H Max height of bins in J

li Length of item i

wi Width of item i

hi Height of item i

ωi Weight of item i

Ωj Weight limit of bin j

Λi Load-bearing limit of

item i

%j Vertex of the pyramid

for bin j

κi centre of mass vector

for item i

κsi With s ∈ {x, y, z} co-

ordinate s of the centre

of mass for item i

ξj Radius in the base of

the pyramid for bin j

β Dimension of the side

of the square cell grid

Table 5: List of variables

Name Description

xi, yi Position of the item i in the grid, β · xi, β · yi, are

the respective coordinates of the front-bottom-left

edge

zi Coordinate of the front-bottom-left edge of the item

i

x
′

i, y
′

i, z
′

i Coordinate of the back-top-right edge of the item i.

ϕo,i 1 if the applied rotation for the item i is o ∈ O,

otherwise 0

Si,k 1 if item i and item k are assigned to the same bin,

otherwise 0

Zj 1 if bin j is considered in the solution, otherwise 0

Ci,j 1 if item i is assigned to bin j, otherwise 0

xpi,k, y
p
i,k, z

p
i,k 1 if item i is placed after item k along the coordinate

x, y and z, which means respectively x′k ≤ xi, y
′

k ≤

yi, z
′

k ≤ zi, otherwise 0

πi,k,p p ∈ {0, 1, 2, 3}, 1 if the corner p of the item k is on

the top surface of the item i, otherwise 0

θi,m 1 if item i is placed on the ground of the bin, oth-

erwise 0

θi,k 1 if item i is placed on the top of item k, otherwise

0

Ri 1 if reflection is applied on item i, otherwise 0

υxi , υ
y
i Coordinate of the centre of mass of the item i af-

ter applying the item rotation and reflection, the

reference is the origin of item i

τxi,j , τ
y
i,j , τ

z
i,j Coordinate of the centre of mass for the item i using

as reference the origin of the bin j

λi,k 1 if item k must be considered for the sum of the

weights that are placed over the item i, otherwise 0
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minimize
∑
j∈J

pj ·
(
Lj ·Wj ·Hj −

∑
i∈I

(li · wi · hi · Ci,j)
)

(1)

In the case study in this paper, without any loss of generality, we use the inverse of the bin’s volume as the

priority (2). This is equivalent to giving filling priority to smaller bins. Other possible values may be: pj = 1,

to minimize the global wasted space, a standard objective in the packing problems; where pj = c, c ∈ N is an

arbitrary value that shapes a preference of the filling sequence, i.e. shaping a priority on the filling of trucks,

containers, or companies.

pj = 1
(Lj ·Wj ·Hj)

(2)

The objective (1), using the priority defined in (2), is equivalent to maximizing the packing efficiency. The

proof for equivalence is trivial and is shown in Appendix A. Note that, using rational representation, the objective

satisfies our requirements without having to add other penalties. There are other ways to model the objective to

satisfy this requirement. For example, giving unused bins penalty zero would be a good approach if we added a

specific constraint to force all items to be allocated.

The model is subject to the following constraints.

Ci,j ≤ Zj ∀i ∈ I, j ∈ J (3a)∑
j∈J

Ci,j ≤ 1 ∀i ∈ I (3b)

∑
i∈I

Ci,j ≥ Zj ∀j ∈ J (3c)

∑
o∈O

ϕo,i =
∑
j∈J

Ci,j ∀i ∈ I (3d)

Our problem considers selecting a subset of items and bins. The total allocation of items is not mandatory

because there may be a set I of items such that, given a set J of bins, there exists no valid solution with total

allocation. Constraint (3a) forces to 0 every Ci,j if the bin j has not been considered in the solution. Constraint (3b)

ensures that every item is assigned to at most one bin, while constraint (3c) states that at least one item must be

placed in an opened bin. Bins without at least one item inside are not considered a valid solution. Constraint (3d)

forces only one rotation if the item is assigned, O are the available rotations, shown in Table 2.
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∑
i∈I

Ci,j · ωi ≤ Ωj ∀j ∈ J (4)

∑
i∈I

Ci,j · li · wi · hi ≤ Lj ·Wj ·Hj ∀j ∈ J (5)

Constraint (4) and (5) ensure that the content of each bin do not exceed a weight limit and a volume limit,

respectively.

The positioning and non-overlapping constraints are based on the ones proposed by Paquay et al. (2016)

adapted with the rotation style found in Lin et al. (2014). The main difference between them is that Paquay

et al. (2016) adopted one boolean variable per side orientation, while Lin et al. (2014) adopted one variable per

rotation. In detail, constraints (6a)-(6c) define the borders of the items along the axes, taking into account the

possible rotation.

x
′

i − β · xi = li · ϕ0,i + wi · ϕ1,i ∀i ∈ I (6a)

y
′

i − β · yi = li · ϕ1,i + wi · ϕ0,i ∀i ∈ I (6b)

z
′

i − zi = hi ∀i ∈ I (6c)

Constraints (7a)-(7c) ensure that the shape of each item is contained inside the borders of the selected bin.

We precompute L = maxj∈J Lj , W = maxj∈J Wj , H = maxj∈J Hj as the maximum dimensions available for the

considered set of bins. L, W and H are used as big M constraints.

x
′

i ≤
∑
j∈J

Ci,j ·Wj + (1− Zj) ·W ∀i ∈ I (7a)

y
′

i ≤
∑
j∈J

Ci,j · Lj + (1− Zj) · L ∀i ∈ I (7b)

z
′

i ≤
∑
j∈J

Ci,j ·Hj + (1− Zj) ·H ∀i ∈ I (7c)

Constraints (8a)-(8d) deal with the case when two items i,k are allocated to the same bin. The constraints

enforce that Si,k is equal to 1 if and only if item i is in the same container of item k. Si,k is useful in other parts

of the model.
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Si,k ≤
∑
j∈J

Ci,j ∀j ∈ J,∀i, k ∈ I|i 6= k (8a)

Si,k ≤
∑
j∈J

Ck,j ∀j ∈ J,∀i, k ∈ I|i 6= k (8b)

Si,k ≥ Ck,j + Ci,j − 1 ∀j ∈ J,∀i, k ∈ I|i 6= k (8c)

Si,k + Ci,j + Ck,l ≤ 2 ∀j, l ∈ J |l 6= j,∀i, k ∈ I|i 6= k (8d)

The non overlapping constraints are basically the same as in Paquay et al. (2016) with minor modifications:

we utilized Si,k on the right part of constraint (9a) and stated clearly the coordinates considering the position in

the grid. Constraint (9a) states that two items do not overlap if the boundaries along at least one dimension do

not overlap. The overlapping boundaries are characterized by the constraints (9b)-(9d).

xpi,k + ypi,k + zpi,k + xpk,i + ypk,i + zpk,i ≥ Si,k ∀i, k ∈ I|i 6= k (9a)

x
′

k ≤ β · xi + (1− xpi,k) ·W

β · xi + 1 ≤ x
′

k + xpi,k ·W ∀i, k ∈ I|i 6= k (9b)

y
′

k ≤ β · yi + (1− ypi,k) · L

β · yi + 1 ≤ y
′

k + ypi,k · L ∀i, k ∈ I|i 6= k (9c)

z
′

k ≤ zi + (1− zpi,k) ·H ∀i, k ∈ I|i 6= k (9d)

zpi,k = 0, xpi,k = 0, ypi,k = 0 ∀i, k ∈ I|i = k (9e)

The stability is defined by constraining every item to lie on the bin’s floor (10a) or on at least one other item

(10b)-(10p). Constraint (10q) excludes the possibility of having one item both simultaneously lying over another

one θi,k = 1 and on the ground (θi,m = 1). πi,k,l, l ∈ {0, 1, 2, 3} represents which corner of item k is under item i.

Constraints (10b) and (10c) define one of the conditions for item i to be stable over an item k is zi = z
′

k, i.e.

the top surface of item k is at the same height as the bottom surface of item i. The criteria for defining whether

an item is on top of another in the x/y plane are defined respectively in (10d) - (10g) for the x axis and in (10h)

- (10k) for the y axis. The constraints (10l) - (10o) enforce that if item k is on top of item i, at least two bottom

corners of k should be on the top surface of i to maintain stability. (10p) states that two items can be considered

stable only if they are in the same container.

13



zi ≤ H · (1− θi,m) ∀i ∈ I (10a)

zi ≤ H · (1− θi,k) + z
′

k ∀i, k ∈ I|i 6= k (10b)

zi ≥ H · (θi,k − 1) + z
′

k ∀i, k ∈ I|i 6= k (10c)

β · xi +W · (θi,k − 1) ≤ β · xk + (1− πi,k,0) ·W ∀i, k ∈ I|i 6= k (10d)

β · xk +W · (πi,k,0 − 1) ≤ x
′

i + (1− θi,k) ·W ∀i, k ∈ I|i 6= k (10e)

β · xi +W · (θi,k − 1) ≤ x
′

k + (1− πi,k,1) ·W ∀i, k ∈ I|i 6= k (10f)

x
′

k +W · (πi,k,1 − 1) ≤ x
′

i + (1− θi,k) ·W ∀i, k ∈ I|i 6= k (10g)

β · yi + L · (θi,k − 1) ≤ β · yk + (1− πi,k,2) · L ∀i, k ∈ I|i 6= k (10h)

β · yk + L · (πi,k,2 − 1) ≤ y
′

i + (1− θi,k) · L ∀i, k ∈ I|i 6= k (10i)

β · yi + L · (θi,k − 1) ≤ y
′

k + (1− πi,k,3) · L ∀i, k ∈ I|i 6= k (10j)

y
′

k + L · (πi,k,3 − 1) ≤ y
′

i + (1− θi,k) · L ∀i, k ∈ I|i 6= k (10k)

πi,k,0 + πi,k,1 ≥ θi,k ∀i, k ∈ I|i 6= k (10l)

πi,k,2 + πi,k,3 ≥ θi,k ∀i, k ∈ I|i 6= k (10m)

πi,k,0 + πi,k,1 ≤ θi,k · 2 ∀i, k ∈ I|i 6= k (10n)

πi,k,2 + πi,k,3 ≤ θi,k · 2 ∀i, k ∈ I|i 6= k (10o)

θi,k ≤ Si,k ∀i, k ∈ I|i 6= k (10p)∑
k∈I+

θi,k ≥
∑
j∈J

Ci,j ∀i ∈ I (10q)

θi,k = 0, πi,k,l = 0 ∀i, k ∈ I|i = k,∀l ∈ 0, 1, 2, 3 (10r)

We are dealing with items with an arbitrary centre of mass and this condition affects both load-bearing and

the bins’ global CoM. Before proceeding further, we have to model how the centre of mass is affected by the

item rotations and reflection. κi = (κxi , κ
y
i , κ

z
i ) represents the actual centre of mass for the item i ∈ I, where the

dimensions are relative to the front-bottom-left corner. We use υxi , υ
y
i to represent the CoM point after applying

rotations and reflection. Note that CoM along the z-axis is not affected by rotation or reflection. However, if z-axis

rotations (i.e. 6-way rotations) are considered, it is trivial to extend the model here to cover such a case.

In the group of constraints (11) we state the centre of mass considering reflection and rotation. (11a)-(11d)

define the x coordinate, Ri is a decision variable that determines which group of equations must be satisfied. Ri
is equal to 1 if there is reflection, 0 otherwise. The first group, (11a)-(11b) represent the case of no reflection,

while (11c)-(11d) represent the case with reflection. The rotations follow the same schema adopted before in the
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constraints group (6).

υxi ≤ κxi · ϕ0,i + κyi · ϕ1,i +Ri ·W ∀i ∈ I (11a)

υxi ≥ κxi · ϕ0,i + κyi · ϕ1,i −Ri ·W ∀i ∈ I (11b)

υxi ≤ x
′

i − (κxi · ϕ0,i + κyi · ϕ1,i) + (1−Ri) ·W ∀i ∈ I (11c)

υxi ≥ x
′

i − (κxi · ϕ0,i + κyi · ϕ1,i)− (1−Ri) ·W ∀i ∈ I (11d)

υyi ≤ κyi · ϕ0,i + κxi · ϕ1,i +Ri · L ∀i ∈ I (11e)

υyi ≥ κyi · ϕ0,i + κxi · ϕ1,i −Ri · L ∀i ∈ I (11f)

υyi ≤ y
′

i − (κyi · ϕ0,i + κxi · ϕ1,i) + (1−Ri) · L ∀i ∈ I (11g)

υyi ≥ y
′

i − (κyi · ϕ0,i + κxi · ϕ1,i)− (1−Ri) · L ∀i ∈ I (11h)

Now we are ready to introduce the constraints that restrict the bins CoM. We define a pyramidal safe region in

which the centre of mass has to lie. This region is defined by the vertex %j , and has a base radius ξj . A possible

solution could be given by setting the vertex coordinates in the bin’s centre, respectively %zj = 1
2 ·Hj , %xj = 1

2 · Lj
and %yj = 1

2 ·Wj .

τxi,j , τ
y
i,j , τ zi,j represent the coordinates of the CoM of item i considering as coordinate reference system the origin

of the bin j. Constraints (12a)-(12c) represent the reference coordinate for υxi , (12d)-(12f) for υ
y
i and (12g)-(12i)

remap κzi , because we do not have rotations over the z axis.

The next group of constraints defines the pyramidal region. The linearization exploits the style in Paquay et al.

(2016), defining the feasible region for each bin. The principal differences are the region shape and the introduction

of the asymmetry in the items CoM. (12j) and (12k) define the pyramid limits along the x axis, (12l) and (12m)

for the y axis, while (12n) defines the constraint on the actual height of the CoM that must fall under the region

previously defined. ξj represents the radius in the base of the pyramid for bin j. We pre-compute ξj = α · Lj if

Wj > Lj or ξj = α ·Wj otherwise. α is a parameter to define the base of the pyramid, α ∈ (0, 1]. By default, we
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suggest α = 0.8 which means 80% of the lower dimension.

τxi,j ≤ Wj · Ci,j ∀i ∈ I, j ∈ J (12a)

τxi,j ≤ υxi + β · xi ∀i ∈ I, j ∈ J (12b)

τxi,j ≥ υxi + β · xi −Wj · (1− Ci,j) ∀i ∈ I, j ∈ J (12c)

τ yi,j ≤ Lj · Ci,j ∀i ∈ I, j ∈ J (12d)

τ yi,j ≤ υyi + β · yi ∀i ∈ I, j ∈ J (12e)

τ yi,j ≥ υyi + β · yi − Lj · (1− Ci,j) ∀i ∈ I, j ∈ J (12f)

τ zi,j ≤ Hj · Ci,j ∀i ∈ I, j ∈ J (12g)

τ zi,j ≤ κzi + zi ∀i ∈ I, j ∈ J (12h)

τ zi,j ≥ κzi + zi −Hj · (1− Ci,j) ∀i ∈ I, j ∈ J (12i)

∑
i∈I

τxi,j · ωi ≤ %xj · (
∑
p∈I

ωp · Cp,j) +
%zj · (

∑
p∈I ωp · Cp,j)−

∑
i∈I τ

z
i,j · ωi

%zj
· ξj ∀j ∈ J (12j)

∑
i∈I

τxi,j · ωi ≥ %xj · (
∑
p∈I

ωp · Cp,j)−
%zj · (

∑
p∈I ωp · Cp,j)−

∑
i∈I τ

z
i,j · ωi

%zj
· ξj ∀j ∈ J (12k)

∑
i∈I

τ yi,j · ωi ≤ %yj · (
∑
p∈I

ωp · Cp,j) +
%zj · (

∑
p∈I ωp · Cp,j)−

∑
i∈I τ

z
i,j · ωi

%zj
· ξj ∀j ∈ J (12l)

∑
i∈I

τ yi,j · ωi ≥ %yj · (
∑
p∈I

ωp · Cp,j)−
%zj · (

∑
p∈I ωp · Cp,j)−

∑
i∈I τ

z
i,j · ωi

%zj
· ξj ∀j ∈ J (12m)

∑
i∈I

τ zi,j · ωi ≤ %zj ·
∑
p∈I

ωp · Cp,j ∀j ∈ J (12n)

The last part of the model concerns load-bearing. We assume that every item i is not perfectly rigid, thus,

can resist the pressure of no more than a specific load, Λi. We know the centre of mass, κi, but how the mass

is distributed inside i remains unknown. The weight that an item is bearing is the sum of the items’ weights

inside the cuboid space over it. Constraints (13a) and (13b) restrict the z coordinate of items placed over item i.

Constraints (13c)-(13f) limit the items having their centre of mass over item i, note that those equations follow

the same style used for stability, exploiting the previously defined centre of mass. Constraint (13g) ensures that

the total weight of items placed over item i does not exceed Λi.
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z
′

i ≤ zk + (1− λi,k) ·H ∀i, k ∈ I|i 6= k (13a)

λi,k ·H + z
′

i ≥ zk + 1 ∀i, k ∈ I|i 6= k (13b)

(λi,k − 1) ·W + β · xi ≤
∑
j∈J

τxk,j ∀i, k ∈ I|i 6= k (13c)

∑
j∈J

τxk,j ≤ x
′

i + (1− λi,k) ·W ∀i, k ∈ I|i 6= k (13d)

(λi,k − 1) · L+ β · yi ≤
∑
j∈J

τ yk,j ∀i, k ∈ I|i 6= k (13e)

∑
j∈J

τ yk,j ≤ y
′

i + (1− λi,k) · L ∀i, k ∈ I|i 6= k (13f)

∑
k∈I

λi,k · ωk ≤ Λi ∀i ∈ I (13g)

xi, yi, zi, x
′

i, y
′

i, z
′

i, τ
x
i,j , τ

y
i,j , τ

z
i,j , υ

x
i , υ

y
i ∈ N, ∀i ∈ I, j ∈ J (14a)

Si,k, Zj , Ci,j , x
p
i,k, y

p
i,k, z

p
i,k, θi,m, Ri, λi,k ∈ {0, 1}, ∀i, k ∈ I, j ∈ J,m ∈ I

⋃
{m+ 1} (14b)

πi,k,p, ϕo,i ∈ {0, 1}, ∀i, k ∈ I, p ∈ {0, 1, 2, 3}, o ∈ O (14c)

3.2. Model splitting and sizes

From the previous model we extract three submodels called V0, V1, V2, with each including a subset of the

constraints. Let n be the number of items and m be the number of bins.

The submodel V0 contains constraints (1) - (10r) and considers only stability. The size of the model is 9n2 +

nm+m+ 9n variables and n2m2 − nm2 − n2m+ 2nm+ 25n2 + 3m− 15n constraints.

The submodel V1 includes constraints (1) - (12n) and considers stability and the distribution of the CoM. The

size of the model is 9n2 + 4nm+m+ 12n variables and n2m2−nm2−n2m+ 11nm+ 25n2 + 8m− 7n constraints.

The submodel V2 includes constraints (1) - (13g) and considers stability, distribution of the CoM and load

bearing. The size of the model is 10n2 +4nm+m+12n variables and n2m2−nm2−n2m+11nm+31n2 +8m−12n

constraints.
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Table 6: Size of models

constraints variables

V0 n2m2 − nm2 − n2m+ 2nm+ 25n2 + 3m− 15n 9n2 + nm+m+ 9n

V1-V0 9nm+ 5m+ 8n 3nm+ 3n

V2-V0 6n2 + 9nm+ 5m+ 3n n2 + 3n+ 3nm

V2-V1 6n2 − 6n+ n n2

4. Heuristic Weight First Best Fit(WFBF)

In this section we show a simple deterministic heuristic that we name Weight First Best Fit(WFBF). WFBF is

an on-line heuristic that fills the available bins with one item at a time, sequentially, until the available bins or

the available items are exhausted. WFBF includes a multi-start procedure in case the available bins have the

same priority but different dimensions. The assumptions of the heuristic is that all the bins have priority pj < 1

or pj ≥ 1. The procedure randomises the order of the bins in each unique priority set and tests if there are

better solutions. WFBF belongs to the category of constructive methods (Zhu et al., 2012) and it is detailed in

Algorithms 1 and 2.

WFBF assumes, without any loss of generality, that it is given as an input the list of bins (bins), the list of

items (items) and the maximum repetitions (maxLimit). The list of items is sorted by weight in descending

order, discarding the items that do not fit in any available bin. The sorting of the list of items may even be

internalised in the algorithm as can be trivially calculated by a few lines of code.

The list of bins is sorted with the function randomisedOrderWithPriority(bins).

randomisedOrderWithPriority takes as input the list of bins, and returns the list of bins sorted by

“randomised priority ascending”, if pj < 1, or in “randomised priority descending”, if pj ≥ 1. The steps of

randomisedOrderWithPriority are the following: 1) partition the list of bins in classes of bins with the same

priority 2) for each class, shuffle the list of bins in the class 3) flatten the classes in priority order. 4) return the

flattened array.

randomisedOrderWithPriority is necessary for the multi-starting procedure to explore different combina-

tions when there are bins in the same class that have the same priority but respectively different shapes. If a

class is composed by bins with the same shapes then there is no benefit in shuffling. An example of possible

randomisedOrderWithPriority outputs are shown in Fig 6, given as input any array a,b or c, the output can

be any array between a,b or c.

isRandomizable(bins) evaluates if the solution may benefit from randomisedOrderWithPriority. The proce-

dure is simple, it returns true if for at least one class (in the list of classes of bins with the same priority) there are
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Fig. 6: Example of randomisedOrderWithPriority outputs. The bins are sorted by priority, inside each priority

class, the order is random. If the bins’ shapes are exactly the same, there will not be any difference between every

output.

at least two elements and their shapes are different, false otherwise. This function is used to avoid unnecessary

repetitions in the case where the list of bins has every priority class with one element only.

isBetterSolution(solution1, solution2) returns true if solution1 opens fewer bins then solution2. If solution2

is empty or not set, then returns true. The function returns false otherwise.

Let solution be the set of final solutions. For each non-empty bin j, let solutionj be the set of items assigned

to the bin j with their configuration. The configuration for each item is its position p, its rotation o and a flag r

to determine if the reflection is applied.

If the bin list isRandomizable then repeat for the maxLimit the following filling procedure.

The algorithm fills the next empty bin j if there are still available items. A procedure enumerates all the

possible positions in the space of the bin j. This procedure is trivial, and the cardinality of positionj is Hj ·Wj ·Lj

β .

For each available item i, in every combination of possible positions p, rotations o and reflection r, the algorithm

computes a ranking function (Eq:15).

The ranking function ranks the quality of the item configuration, the smaller the rank, the better the con-

figuration. The function promotes configurations that are near the floor of the bin and near the vertical axis

placed in the vertex of the bin’s feasible centre of mass space. The variables zi and τx,yi are explained in Table 5,

respectively. They are the coordinate z of item i and the position of the CoM of item i in the plane orthogonal to

the bin’s floor. θx,yj is listed in Table 4 and is the position of the vertex of the feasible CoM region of the bin j.

rank ⇐ (zi +
∥∥∥τx,yi − θx,yj

∥∥∥
2
)2 (15)

WFBF makes use of three functions, named isNotOverlapping(solutionj ,itemi,p,o,r),

isLoadBearingV alid(solutionj ,itemi,p,o,r) and isCDMV alid(solutionj ,itemi,p,o,r). Their names describe

their function, and can be implemented in a straightforward way from the model’s constraints.

isNotOverlapping(solutionj ,itemi,p,o,r) tests if the configuration of item i does not overlap any other item

already placed inside the bin j
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Fig. 7: An example that WFBF cannot solve, despite there being a feasible solution. The feasible solution is

represented in the figure, with CoMglobal in the feasible region.

isLoadBearingV alid(solutionj ,itemi,p,o,r) tests if adding the item i with the configuration p, o, r breaks some

already placed items inside bin j under the CoM of item i.

isCDMV alid(solutionj ,itemi,p,o,r) tests if the global CoM in bin j is inside the admissible region.

The best rank is initialized to infinite. If the rank of a new item is strictly better than the rank of the current

best (first best fit) and the placement of this new item does not violate the filling constraints, update the best

item with the new item.

After all configurations have been tested, if there is no best (i.e. there is no feasible configuration), the item i

is placed in a list of discarded items, discarded. Items in this list will be considered for the next bin. If a best

configuration is found, the itemi,p,o,r is appended into solutionj , and the variable feasiblePositions is updated

by removing the ones that now are overlapping with the itemi,p,o,r. The last procedure helps to speed up the

algorithm.

Since the items are initially sorted by weight in descending order, WFBF may not guarantee a global optimal

solution. WFBF computational complexity in the worst case is O(m · n · q) where m is the number of bins, n is

the number of items and q is the number of possible positions. The worst case scenario belongs to the class of

cases that WFBF cannot handle: consider one bin j with dimensions Wj ,Lj ,Hj , and at least two items i,k with

dimensions wk = wi = Wj ,lk = li = Lj ,hk, hi. If the CoM of the items i,k are outside the feasible CoM region

of the bin j, WFBF will not be able to find any feasible packing solution, while, in fact there exists one. The

example is shown in Fig 7, the feasible solution is represented in the figure, with CoMglobal in the feasible region.

5. Dataset

In most studies in the literature, given a fixed dimension for the bin, items dimensions are generated randomly.

For example, Junqueira et al. (2012) considered a random dataset made from cubic bins of different size and items
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Algorithm 1 Heuristic WFBF, part 1
Require: bins

Require: maxLimit

Require: items sorted by weight in descending order, removing the items that do not fit in any available bin

1: bestSolution⇐ ∅

2: repeatLimit⇐ 1

3: repeat⇐ 0

4: if isRandomizable(bins) then

5: repeatLimit⇐ maxLimit

6: end if

7: for repeat < repeatLimit do

8: solution⇐ ∅

9: itemsleft⇐ items

10: bins⇐ randomisedOrderWithPriority(bins)

11: while j ∈ bins do

12: discarded⇐ ∅

13: if itemsleft 6= ∅ then

14: solutionj ⇐ ∅

15: positionsj ⇐ enumerate all the possible positions available inside the bin j

16: for i ∈ itemsleft do

17: best⇐∞

18: winning ⇐ ∅

19: for all itemi,p,o,r, p ∈ positionsj , o ∈ O, r ∈ {0, 1} reflection do

20: rank ⇐ (zi +
∥∥∥τx,yi − θx,yj

∥∥∥
2
)2

21: if rank < best AND isNotOverlapping(solutionj ,itemi,p,o,r) AND

isLoadBearingValid(solutionj ,itemi,p,o,r) AND isCDMValid(solutionj ,itemi,p,o,r) then

22: best⇐ rank

23: winning ⇐ itemi,p,o,r

24: end if

25: end for

that were ranging from 10% to 50% or 25% to 75% of the bin size. This procedure, although widely used, could

lead to results that do not entirely match with the characteristics of real-world scenarios. A dataset would be ideal

if it is useful for both academic and industrial fields. Thus, we decided to exploit the work made by Landschützer

et al. (2015) for the Physical Internet challenge (Montreuil, 2012). We built our test instances by randomly picking
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Algorithm 2 Heuristic WFBF, part 2
26: if winning 6= ∅ then

27: feasiblePositions⇐ remove the overlapping winning positions from feasiblePositions

28: solutionj ⇐ solutionj
⋃
{itemi,p,o,r}

29: else

30: discarded⇐ discarded
⋃
{i}

31: end if

32: end for

33: itemsleft⇐ discarded

34: end if

35: end while

36: repeat⇐ repeat+ 1

37: if isBetterSolution(solution, bestSolution) then

38: bestSolution⇐ solution

39: end if

40: end for

41: return bestSolution

containers and items from the types defined in the full theoretical set of Physical Internet containers. The set

consists of 24 types of bins and 440 types of items. Note that since the PI modular containers are designed to

be compatible with existing ISO units, the tested instances should be applicable for current scenarios where ISO

loading units (e.g. 40, 20, 10 ft ISO containers) are also used.

The other features, such as load-bearing for items and weight limits for the bins, have been selected to be

as realistic as possible. The bin’s weight limit is proportional to its volume and the weight limits for actual 40’

inter-modal containers (Eq: 16), with the exception of the 20’ container which follows the actual standard. The

same philosophy has been adopted for defining the maximal weight for the items (Eq: 17).

Ωj = Wj · Lj ·Hj

40′volume · 40′weightLimit (16)

Ωi = wi · li · hi
maxitemvolume

· 20′weightLimit ·maxitemvolume
20′volume (17)

The items’ centre of mass has been generated in a random point under 3
5 of the height and between 20% and

80% of the other dimensions.

The items’ load-bearing in real-world boxes varies considerably depending on the material used and construction
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geometries. Thus, we opt for simplicity and set the load bearing to be 3 times the maximal weight of the item.

This is a parameter that can be changed by users if necessary.

Λi = 3 · Ωi (18)

The item weight has been generated randomly with a uniform distribution between 30% and 100% of the items’

maximal weight.

Every experiment is composed of n bins and m items. The procedure for generating a test instance is to firstly

randomly pick n bins and then randomly pick m items such that, for every item there exists at least one bin that

can fit it. There is no loss of generality because this procedure is equivalent to filtering unfitting items before

the optimization task. All the instances follow the same item distribution. The set of available types of items is

ordered by increasing volume in such a way that every instance is made of 70% of items after the median (higher

volume), and 30% before (lower volume).

Moreover, we introduce some new metrics to better evaluate the results of the experiments. The first one is

inspired by the eccentricity of conics, which will measure the distance of an item/bin from being a cube. Thus,

given li, wi, hi as the dimensions of the item/bin i, the eccentricity of i is defined by Eq: 19.

εi = max{
∣∣∣∣ li − wili + wi

∣∣∣∣, ∣∣∣∣hi − wihi + wi

∣∣∣∣, ∣∣∣∣ li − hili + hi

∣∣∣∣} (19)

The second one, αi in Eq:20, measures the asymmetry of the centre of mass. αi is defined as the Euclidean

distance from the actual centre of mass to the centroid (geometric centre) Ci of the item.

αi = ‖Ci, CAi‖2 (20)

The third one is the relative volume, Eq: 21. This metric is calculated as the volume of item i divided by the

volume of the bin j.

V olReli,j = hi · wi · li
Hj ·Wj · Lj

(21)

6. Experiments and discussion

The first aim of the experiments is to test the model behaviour by varying the number of items and bins. We

also investigate the impact of the constraints on the difficulty of finding a solution. Each experiment terminates

with a final script that validates the solution found. We tested the three models listed in Section 3.2. Briefly, V0
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considers only stability, V1 considers stability and CoM distribution and V2 considers stability, CoM distribution,

and load-bearing. The second aim is to have a comparison metric to test the goodness of the proposed heuristic.

Having the results from the model we can know how far the heuristic is from finding the optimal solution.

All versions have been implemented in OPL and solved using IBM CPLEXR© 12.7. The heuristic has been

implemented in Python 3.6. The machine used to perform the experiments was an IntelR© CoreTM i7-4790 CPU @

3.60GHz, 16GB RAM, with Windows 7 Enterprise 64-bit. It is worth noting that, as mentioned before, in all the

following experiments, and without affecting the generality of the model, we use a priority equal to the inverse of

the bin’s volume (2), which is equivalent to giving filling priority to smaller bins.

As reported by many authors, the complexity of the problem depends obviously on the number of items, the

number of bins and their dimensions. The first two can be explained by looking at how the number of variables and

the number of constraints grows according to the number of items and bins, as shown in Table 6. The item/bin

dimensions involved affect the number of feasible positions in the solution space. Thus, considering large spaces

increases the difficulty.

In each experiment we reported the gap calculated by the solver, the formula is reported in Eq: 22. We applied

the same formula to calculate the gap in the heuristic results.

gap = |bestbound− bestinteger|1
1010 + |bestinteger|

(22)

In the first group of experiments, we focus on packing 10 random items in the smallest bin, with dimensions

120× 120× 120. In Table 7 we report the average features values of the solutions found for all the 1,000 instances

solved with V0, V1. and V2. The dataset column represents the features of the dataset. µ• indicates average while

σ2
• is the variance. ω indicates the weights, LB is the load bearing limit, V olRel is the relative volume ( volumeitemvolumebin ),

ε is the previously defined eccentricity, α is the asymmetry, objective value is the result of minimizing the wasted

space (Eq. 1), elapsedtime is the time elapsed from the starting point before the pre-solving phase to the solution

or the time limit. V0 is not affected by the weight but it packs fewer items than V1 because it chooses items with

bigger volume than V1 (µV olRel). The degradation of the objective between V0 and V1 is 0.12% and the time to

achieve a solution increases by about 30%. V2, instead, is about 15 times more complex to solve than V1. V2

chooses items with higher load-bearing limit (µLB) which will also have higher volume (µV olRel) and be slightly

less eccentric than V1 but with higher µα. We hypothesize that the complexity is due to the combination of the

following factors: higher volume items imply a higher centre of mass along the H axis and this brings a lower

feasible solution space1. Similarly, the higher the eccentricity, the higher the α. Those factors combined with the

restricted base will force the solver to explore more nodes before finding a solution.

The second group of experiments has been made to test the behaviour of the model using only one bin. We ran

1The higher the height in the pyramid, the less space available.
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Table 7: 10 item 1 bin, average values over 1,000 random instances, time in milli-seconds

feature V0 V1 V2 dataset

available items 10 10 10 10

packed items 9.813 9.817 9.386 -

µω 23.312 23.010 24.500 22.657

σ2
ω 1167.43 1170.52 1265.41 1111.56

µLB 107.38 105.69 112.78 103.97

σ2
LB 21698.31 21797.74 23466.60 20633.55

µV olRel 0.05005 0.04926 0.05259 0.04843

σ2
V olRel 0.00479 0.00481 0.00519 0.00455

µε 0.5587 0.5589 0.5557 0.5604

σ2
ε 0.0357 0.0358 0.0355 0.0359

µα 11.884 11.877 12.120 11.882

σ2
α 81.871 81.919 82.789 82.305

µobjective 0.5316 0.5328 0.5407 -

µelapsedtime 330.16 432.86 7019.56 -

experiments with instances having 18 to 200 items, each experiment had a time limit of 60 minutes. In Table 8

and Table 9 we report the results, with time and objective value, for V0, V1 and V2. Trying to solve more than

350 items made our computer run out of memory. With 130 items or more, the solver spent most of the time

in the pre-solving phase and very few iterations in the solving one. In almost every case, V2 final objective is

about 100% worse than V1. In some instances, for example, with 100 items, we can see that V2 obtains a better

objective than V1 within the time limit. This may be due to a different choice in the nodes to explore.

The third group of experiments aims to show the behaviour of the model with multiple bins. We tested with

2, 3 and 5 bins and number of items ranging from 70 to 200. Table 10 shows the computational time and the

objective value for V0, V1, and V2 according to the number of items and the number of bins. Compared to the

results for one bin, the overall performance degraded dramatically when the number of bins is two or more. Due

to the increased number of bins, for instances with more than 70 items, the solver spent most of its time on

the pre-solving phase and very few iterations on the solving phase. The fourth group of experiments compare

the heuristic WFBF with the results of V2. The comparison has been made using the three groups of problem

instances used previously. Table 11 shows the experiments using 1 bin, from 18 to 90 items. WFBF is capable of

finding on some instances the optimal solution, while in general it achieved better results using much less time.

Table 12 shows experiments using 1 bin, from 100 to 200 items. As expected, WFBF significantly outperformed
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Table 8: Experiments using 1 bin, from 18 to 90 items. Time is measured in seconds (* is when the solver has hit

the time limit of 60 minutes).

instance V 0 V 1 V 2

item bin time objective gap% time objective gap% time objective gap%

18 1 9.84 0.3090 0 14.38 0.3090 0 3600* 0.4407 29.87

19 1 2.72 0.5098 0 15.89 0.5098 0 3600* 0.5409 0.62

20 1 1.34 0.6912 0 1.404 0.6912 0 3.681 0.6912 0

21 1 9.06 0.2935 0 22.62 0.2935 0 3600* 0.3754 21.80

22 1 4.74 0.8211 0 5.61 0.8211 0 15.965 0.8211 0

23 1 9.12 0.3325 0 27.22 0.3325 0 3600* 0.5452 39.02

24 1 5.662 0.8965 0 0.936 0.8965 0 65.542 0.8965 0

25 1 3600* 0.0394 100 3600* 0.0394 100 3600* 0.0668 100

26 1 2.574 0.8664 0 6.16 0.8664 0 42.933 0.8664 0

27 1 3600* 0.1172 100 3600* 0.1538 100 3600* 0.3513 99.92

28 1 9.375 0.6917 0 34.42 0.6917 0 3600* 0.7218 4.17

29 1 9.475 0.7164 0 16.03 0.7164 0 256 0.7164 0

30 1 10.202 0.7842 0 11.31 0.7842 0 84.68 0.7842 0

35 1 45.831 0.5476 0 87.42 0.5476 0 3600* 0.6194 11.59

40 1 59.9 0.719 0 111.8 0.719 0 3600* 0.7545 4.70

45 1 3600* 0.2271 1.96 3600* 0.2937 24.20 3600* 0.3412 34.74

50 1 1813.27 0.4771 0 1234.49 0.4771 0 3600* 0.5462 12.65

55 1 3600* 0.0312 100 3600* 0.0430 100 3600* 0.3027 100

60 1 3600* 0.5633 29.75 3600* 0.5682 30.36 3600* 0.6117 35.31

65 1 1142.86 0.5414 0 3236.7 0.5414 0 3600* 0.6615 22.16

70 1 3600* 0.2394 100 3600* 0.2310 100 3600* 0.3841 100

80 1 3600* 0.0622 100 3600* 0.0902 100 3600* 0.3636 100

90 1 3600* 0.325 100 3600* 0.3364 100 3600* 0.4847 100

the solver, the filling rates are in average greater than 90%, in some cases achieve 100%. This is reasonable since

having more items also improves the probability of having items that fit together.

Table 13 shows the experiments with multiple bins. The results show that the heuristic clearly outperforms

the exact model both in terms of objective value and computational time. An increase in the number of items

26



Table 9: Experiments using 1 bin, from 100 to 200 items. Time is measured in seconds(* is when the solver has

hit the time limit of 60 minutes).

instance V 0 V 1 V 2

item bin time objective gap% time objective gap% time objective gap%

100 1 3600* 0.1833 100 3600* 0.6 100 3600* 0.5666 100

110 1 3600* 0.7291 100 3600* 0.4265 100 3600* 0.5759 100

120 1 3600* 0.0962 100 3600* 0.3555 100 3600* 0.3333 100

130 1 3600* 0.3083 100 3600* 0.3412 100 3600* 0.4458 100

140 1 3600* 0.9111 100 3600* 0.6495 100 3600* 0.5937 100

150 1 21.45 0 0 3600* 0.2305 100 3600* 0.2777 100

160 1 3600* 0.8411 100 3600* 0.5533 100 3600* 0.5650 100

170 1 28.06 0 0 3600* 0.0444 100 3600* 0.1666 100

180 1 3600* 0.3611 100 3600* 0.7777 100 3600* 0.4049 100

190 1 3600* 0.8333 100 3600* 0.8266 100 3600* 0.9333 100

200 1 3600* 0.8819 100 3600* 0.5944 100 3600* 0.6208 100

and bins does increase the computational time and the gap% of the heuristic in certain cases, but this increase

appears to be linear. This demonstrates the capability of the heuristic in dealing with larger instances.

The advantage of the heuristic, as demonstrated above, is the fast computational time and better quality than

what the exact model can offer within the given time limit. The heuristic does however have its limitations due to

its sequential filling procedure (one bin at a time and giving priority to smaller volume bins). According to this

procedure, the first bin will be the one with lowest volume. It is filled having all the items available. The next bin,

will have at least the same volume, however can only be filled using the discarded items from the previous bins.

These choices have the drawback that every discarded item is going to be placed in a bin which will have at least

the same volume as the previous one. Since we are assuming to allocate every item, it may lead to under-filling

the last bin, since it is more likely to be also the one with the biggest volume. As an example, considering the

experiment with 5 bins and 160 items, the first bin is filled with 4 items and has a 100% filling rate, the second

bin is filled with 66 items at a filling rate of 92.44%, the third bin is filled with 66 items at a filling rate of 17%

and the fourth one is filled with 24 items at a filling rate of 15%. The volume of the fourth bin is double the

volume of the third bin. Other examples of this behaviour are reported in the next group of experiments.

The last group of experiments is to measure the costs/benefits of using a randomised order to discover new

configurations. The instances in these experiments consider multiple bins such that for each distinct volume there
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Table 10: Experiments using multiple bins. * time limit exceeded. The objective function is minimising Eq:1. We

report the value of the objective and the number of bins that has been opened(in parentheses). In the last cases

(5 bins, from 130 to 200 items), the solver was not able to finish the pre-solving phase before the time limit.

instance V 0 V 1 V 2

item bin time
objective

(used

bins)

gap% time
objective

(used

bins)

gap% time
objective

(used

bins)

gap%

70 2 3600* 1.1022(2) 18.23 3600* 1.3634(1) 30.24 3600* 1.4066(1) 32.39

100 2 3600* 1.8705(2) 31.24 3600* 1.5491(2) 16.97 3600* 1.5696(2) 18.06

130 2 3600* 1.8006(2) 72.33 3600* 1.9791(1) 74.83 3600* 1.9791(1) 74.81

160 2 3600* 1.8888(1) 55.48 3600* 1.9305(1) 56.44 3600* 1.7489(1) 51.91

200 2 3600* 1.5(2) 254.30 3600* 1.2222(2) 289.36 3600* 1.3333(2) 273.58

70 3 3600* 2.2336(3) 9.84 3600* 2.4269(1) 15.19 3600* 2.4486(1) 15.94

100 3 3600* 2.3031(1) 49.45 3600* 2.2376(1) 47.97 3600* 2.2302(1) 47.79

130 3 3600* 2.5999(3) 76.95 3600* 2.6311(2) 70.98 3600* 2.6930(1) 71.64

160 3 3600* 2.6666(1) 97.50 3600* 2.4763(3) 97.31 3600* 2.6969(1) 97.53

200 3 3600* 2.8333(2) 61.09 3600* 2.8353(2) 61.12 3600* 3(0) 91.69

70 5 3600* 3.8309(5) 39.09 3600* 4.4104(2) 47.09 3600* 4.3152(3) 45.92

100 5 3600* 4.5870(2) 28.47 3600* 4.2220(2) 22.28 3600* 4.2713(2) 23.18

130 5 3600* 5(0) 63.45 3600* 4.565(3) 60.06 3600* 4.6055(2) 60.41

160 5 3600* 5(0) 86.98 3600* 5(0) 85.67 3600* 5(0) 85.67

200 5 3600* 5(0) 81.36 3600* 5(0) 77.48 3600* 4.6811(2) 75.84

are at least two bins with different dimensions. We compared the contribution of randomisedOrderWithPriority

to a simple sorting by volume ascending. The repeatLimit is set at 10 iterations for each experiment, in both

configurations.

Table 14 and Table 15 compare the behaviour of the heuristic using simple sorting to that of the heuristic using

randomisedOrderWithPriority.

In these tables we show also the details for each bin filled. The opening sequence is the progression number

of the container that has been filled. It is useful to highlight cases where a container has been skipped because

there were no fitting item. items packed is the number of items that has been allocated inside the bin. filling

rate is the percentage of the bin’s total volume filled by the items. For the majority of the instances CPLEX did
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not report a lower bound in the time limit of one hour, thus we could not report the gap. In some instances,

i.e. Table 15 5 bin with 160 to 400 items, WFBF skips a bin because there is no remaining fitting item: the

height of the bin is lower than the height of the remaining items. For each instance the objective is highlighted

in bold if there is a clear winner between randomisedOrderWithPriority and simple sorting, while the cases

where the objectives are equal or worse are not highlighted. randomisedOrderWithPriority was able to improve

the solutions in two cases. Since the simple ordering case is included in the possibles output, we can state that

randomisedOrderWithPriority is better than having a simple ordering, and the benefit is dependent on the

execution of a sufficient number of repetitions.

7. Conclusions

This research proposes a mixed-integer linear model that solves the Multiple Heterogeneous Knapsack Problem,

while minimising the wasted space of the higher priority bins, and considering the following constraints: non

overlapping, boundaries and positioning (both constrained and free), rotations (around z-axis), orthogonal dis-

placement, weight limit, static stability, weight distribution in a pyramidal region and load bearing considering

items’ arbitrary centre of mass.

We focused our experiments on a case study of minimizing the wasted space while prioritizing smaller bins over

bigger ones, but the model is generic and thus can be applied to case with other priorities.

This model can obtain routinely mathematically proved optimal solutions in small sized problems. For medium

sized instances it can only achieve sub-optimal solutions. Despite that, it remains a useful tool for studying the

problem. It provides a benchmark to compare the quality of the solutions found by heuristics and approximations

models.

We studied the trade-off of adding more constraints to make the problem more realistic and the complexity of

finding a solution. The model has been derived in submodels V0 (only stability), V1 (stability and centre of mass

distribution), V2 (stability, centre of mass distribution and load-bearing). The experiments showed that, even

with very small instances, the computational time for finding the optimal solution considering the load bearing

constraint was 16.2 times longer than without considering it.

We introduced new metrics that aim to facilitate the comparison and analysis of different knapsack instances.

An effort in this direction is important because faster algorithms are often specialized algorithms that only

efficiently handle particular cases of the problem. Often decision-makers are not operational research specialists,

so having such metrics improves the export of theoretical results to the industry.

We designed a simple deterministic heuristic to deal with large-scale instances in reasonable computational time

and memory. Weight First Best Fit is an on-line heuristic that fills the available bins one at a time, sequentially,

until the available bins or the available items are exhausted. WFBF significantly outperforms the exact model in

almost all instances. We also highlighted some limits of the algorithm.
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Table 11: Heuristic compared to V2. Experiments using 1 bin, from 18 to 90 items. Time is measured in seconds

(* is when the solver has hit the time limit of 60 minutes).

instance Heuristic V 2

item bin time objective gap% time objective gap%

18 1 4.1864 0.3090 0.02 3600* 0.4407 29.87

19 1 8.0681 0.7015 23.37 3600* 0.5409 0.62

20 1 13.3015 0.6912 0 3.681 0.6912 0

21 1 4.5546 0.3269 10.20 3600* 0.3754 21.80

22 1 27.0961 0.8211 0 15.965 0.8211 0

23 1 6.2495 0.4075 18.41 3600* 0.5452 39.02

24 1 31.3101 0.8965 0 65.542 0.8965 0

25 1 1.3735 0.0622 100 3600* 0.0668 100

26 1 30.9466 0.8664 0 42.933 0.8664 0

27 1 2.5830 0.235 99.88 3600* 0.3513 99.92

28 1 19.0795 0.69173 0 3600* 0.7218 4.17

29 1 19.7695 0.7164 0 256 0.7164 0

30 1 36.5915 0.7842 0 84.68 0.7842 0

35 1 31.4864 0.54769 0.01 3600* 0.6194 11.59

40 1 43.3107 0.7190 0.01 3600* 0.7545 4.70

45 1 19.7262 0.2226 0.03 3600* 0.3412 34.74

50 1 35.9081 0.4825 1.12 3600* 0.5462 12.65

55 1 7.0416 0.1032 100 3600* 0.3027 100

60 1 45.3121 0.3957 0 3600* 0.6117 35.31

65 1 54.0963 0.5414 4.89 3600* 0.6615 22.16

70 1 10.9763 0.14807 100 3600* 0.3841 100

80 1 2.3786 0.0094 100 3600* 0.3636 100

90 1 15.6290 0.0474 100 3600* 0.4847 100

We have also added a top level search that tests different orderings of the bins. The search is useful when there

are bins with the same priority and different dimensions.

For future work, we will analyse the behaviour of the model and heuristic using different combinations of

priorities. Further research is necessary to design new algorithms to overcome the limits of the proposed heuristic.
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Table 12: Heuristic compared to V2. Experiments using 1 bin, from 100 to 200 items. Time is measured in

seconds(* is when the solver has hit the time limit of 60 minutes).

instance Heuristic V 2

item bin time objective gap% time objective gap%

100 1 8.8989 0.0707 100 3600* 0.5666 100

110 1 70.1088 0.1455 100 3600* 0.5759 100

120 1 3.3416 0.0681 100 3600* 0.3333 100

130 1 10.8469 0.0263 100 3600* 0.4458 100

140 1 38.3794 0.0916 100 3600* 0.5937 100

150 1 1.3438 0.0 100 3600* 0.2777 100

160 1 46.1770 0.1043 100 3600* 0.5650 100

170 1 0.3227 0.0 100 3600* 0.1666 100

180 1 2.7800 0.0 100 3600* 0.4049 100

190 1 12.4953 0.0619 100 3600* 0.9333 100

200 1 24.0775 0.0428 100 3600* 0.6208 100
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Appendices

A. Appendix A

Minimizing the wasted space giving priority to smaller bins is equivalent to maximizing the packing efficiency

(1)-(4).

minimize
∑
j∈J

(
Lj ·Wj ·Hj −

∑
i∈I(li · wi · hi · Ci,j)

)
(Lj ·Wj ·Hj)

= (1)

∑
j∈J

Lj ·Wj ·Hj

Lj ·Wj ·Hj
−
∑
j∈J

∑
i∈I(li · wi · hi · Ci,j)
Lj ·Wj ·Hj

= (2)

n−
∑
j∈J

∑
i∈I(li · wi · hi · Ci,j)
Lj ·Wj ·Hj

⇔ (3)

maximize
∑
j∈J

∑
i∈I(li · wi · hi · Ci,j)
Lj ·Wj ·Hj

(4)

Where li·wi·hi

Lj ·Wj ·Hj
is the packing efficiency.
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