
Alfakeeh, AS, Al-Bayatti, AH, Siewe, F and Baker, T

 Agent-based Negotiation Approach for Feature Interactions in Smart Home
Systems using Calculus of the Context-aware Ambient

http://researchonline.ljmu.ac.uk/id/eprint/11592/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Alfakeeh, AS, Al-Bayatti, AH, Siewe, F and Baker, T (2019) Agent-based
Negotiation Approach for Feature Interactions in Smart Home Systems
using Calculus of the Context-aware Ambient. Transactions on Emerging
Telecommunications Technologies, 33 (2). ISSN 2161-3915

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Agent-based Negotiation Approach for Feature
Interactions in Smart Home Systems using

Calculus of the Context-aware Ambient
Ahmed S. Alfakeeh1, Ali H. Al-Bayatti2, Francois Siewe2, and Thar Baker3

1Faculty of Computing and Information Technology, King Abdulaziz University,
Email:asalfakeeh@kau.edu.sa

2Faculty of Computing, Engineering ad Media, De Montfort University University,
Email:alihmohd@dmu.ac.uk

2Faculty of Computing, Engineering ad Media, De Montfort University University,
Email:fsiewe@dmu.ac.uk

3Department of Computer Science, Liverpool John Moores University
Email:t.baker@ljmu.ac.uk

September 17, 2019

Abstract
Smart Home Systems (SHSs) provide several services which are tai-

lored to different residents’ preferences. As a result, SHSs are highly
exposed to undesirable interactions, known as feature interactions (FIs).
FIs might occur as a result of a conflict in services’ goals or a conflict with
residents’ preferences. Previous studies have proposed solutions based
on applying priorities, in which some services or preferable features are
disabled in favour of other services. Alternatively, the agent-based negoti-
ation approach (ABNA) utilises agents and applies negotiation, enabling
services with contrary features to work simultaneously. ABNA avoids
applying priority between services or house residents’ preferences when-
ever a space for a compromise exists. The mechanism of ABNA is based
on the use of a hierarchy of features based on their contribution to the
function of the service or on the importance of these features to house
residents. To achieve a compromise between conflicting services, ABNA
models services and residents by using agents, and implements a nego-
tiation algorithm that allows services with conflicting features to work
simultaneously. This paper presents a description of ABNA with a formal
specification of ABNA in the Calculus of Context-aware Ambient (CCA).
This enables the formal analysis of ABNA by using the execution envi-
ronment of CCA.

Keywords: feature interactions, smart home systems, negotiation, agents, CCA

1

1 INTRODUCTION
Software systems supporting several services are exposed to undesirable interac-
tions which may affect the functionality of the overall system [1]. This problem
is common in telecommunication systems and it is known as Features Interac-
tions (FIs) [2] [23]. The root causes of FIs are conflicting goals, competition for
shared resources and a lack of inference between services [3]. The problem on
FIs is particularly challenging in Smart Homes Systems (SHSs) because of the
dynamic environment implementation involved and the multitude of services
provided to several residents according to individual preferences [4] [24]. In
the SHS domain, there are two types of interactions: policy- and service-based
interactions. The former type is a resident-defined instruction which modifies
the behaviour of the system [5]. Unlike previous approaches for detecting and
resolving FIs in SHSs, the agent-based negotiation approach (ABNA) is based
on a reaching a compromise, whenever possible. In order for ABNA to oper-
ate successfully, the components of SHSs i.e. services and residents, will be
modelled as agents. Each time an agent wants to control a device, he/she is
involved in negotiation sessions to reach a compromise and avoid any possible
undesirable interactions. Priority will be applied only if no possible compromise
can be achieved. In this paper, a formal specification of ABNA is presented.
The formalisation is carried out using the Calculus of Context-aware Ambient
(CCA). The main features of CCA include concurrency, context-awareness and
mobility. What is more, CCA specifications are executable and enable rapid
prototyping [6]. The main contributions of this article are as follows:

• A formal specification of ABNA using CCA is given. This enables the
formal analysis of ABNA by using the execution environment of CCA

• The pragmatics of the proposed ABNA is demonstrated using an SHS case
study

• The correctness of the ABNA is analysed using ccaPL, the execution en-
vironment of CCA

2 RELATED WORK
Many researchers have investigated FI issues within SHSs, Internet of Things
(IoT) and other related disciplines. [25] [26] [27] discussed the issue of services
possibly in conflict with other services, as they might share the same actual
device and/or the same field. These studies have suggested using a pre-defined
framework which clarifies the roles and responsibilities of each agent in the
parent–child structure. Some of the other proposed solutions for FI detection
and resolution in SHSs are implemented during the design phase of the system
[12].

One off-line detection approach is a service-centric framework for FIs in
National Health Service (NHS) integrated services [14]. It proposes revealing

2

all potential interactions within home network systems. The approach use an
off-line technique, which is performed before the deployment of the system, even
though most FI problems can be discovered only at run-time. Additionally, they
consider a wide scope of unlikely FI which would not normally appear in a real
run.

What is more, an off-line technique does not support feature scalability. As
mentioned above, the limitation of the off-line technique is that it is performed
before the deployment of the system, therefore missing problems that occur at
run-time. Using only the off-line technique to solve FI problems is insufficient.
In response to this issue, some approaches use an on-line technique. One such
example is the Policy Interactions Manager Module (PIMM), proposed to extend
the traditional networking systems which use KNX communications standards
for home and building automation [15]. PIMM is integrated with the KNX home
network as a part of the engineering tool software suite to work as a run-time
interactions manager for detecting and resolving any undesirable interactions.

Similarly, a proposed formal method approach, the semantic web-based pol-
icy interaction detection method (SPIDER) [16], and a semi-formal method
known as identifying requirements interactions (IRIS) [17], have been proposed
to detect and resolve FIs in SHSs. However, PIMM, SPIDER and IRIS can
only solve feature interactions that take place as a result of policy-based con-
flicts and not service- or device-based conflicts. In the same sequence, the work
in [18] uses the belief-desire-intention (BDI) agent model also to solve conflicts
which are a result of the differences in inhabitants’ desires, i.e. policy based.
The approach keeps alternative proposals in a library, allowing the agent, with
minimal risk to choose an alternative proposal in case of conflict. Although
the negotiation between agents is used in this study [18], only the agent with a
high priority, referred to as the maximum risk agent, will have the advantage.
In other words, there is no compromise allowing conflicting agents to work si-
multaneously. Likewise, the entity-relationship (ER) model is presented in [19].
The model creates a corresponding domain which captures the relevant context
information to determine the conflict between occupants’preferences. Besides
not covering service-based conflicts, the ER model resolves only conflicts related
to user comfort, such as light, sound and temperature.

Another study introduces the notion of resource locking [7]. In this ap-
proach, the access attribute of each device is set to not shared (NS) or shared
(S). NS means a device can only be used by one service at any one time, and S
means multiple services can control the device concurrently. The resource lock-
ing approach utilise a three-layer architecture service, device and environment
to present a clear and helpful taxonomy of FIs. It works as a feature manager
and is implemented as a service on the OSGi platform to detect and resolve
any FIs. However, this approach is not flexible. The notion of resource locking
requires the execution or non-execution of features; in other words, there is no
way for features to reach a compromise. Moreover, it prevents interactions at
the device level and not at the service level which is the main concern of SHSs.
Additionally, looping interactions in which two or more services go on an in-

3

finite loop because the activation of one of them leads unintentionally to the
activation of another and vice versa are not resolved [7].

A related work in [13] introduced a millimeter lightwave communication be-
tween multiple devices (D2D). In this work, the authors focused on so-called
future generation mobile networks to reduce propagation and latency were de-
vices communicating with each other through base stations can achieve the pro-
posed goal. On the other hand, the work in [20] covers both off-line and on-line
FI. It models each appliance as an object consisting of properties and methods
in an object-oriented fashion. Although our study is inspired by the notion of
negotiation and compromise, which are mentioned in such a work, the proposed
solution does not target FIs, which are caused by residents’ policies; the scheme
to resolve on-line FIs is also not clarified. The negotiation agent approach is
first used in the telecommunications domain to resolve FIs [21]. The proposed
system was able to detect and resolve FIs at run-time (on-line) automatically
without the need for users or service providers to know about other users’ or
service providers’ features or settings. However, the proposed solution is not
applicable to the smart home domain because SHSs are more complicated and
have many features, and they are implemented in a dynamic environment in
which they have to respond to a variety of contexts. From the discussion above,
the works which have been done so far for FI detection and resolution in SHSs
are grouped into three categories, namely off-line, on-line and both (off-line and
on-line together). The mechanisms used vary, and most of the works target only
one type of FI, i.e. service interaction [7] or policy interaction [15, 16, 18, 19].

Although, some works target both interactions [22], a negotiation approach
to reach a compromise has not been adopted yet. The significance of the ap-
proach is that it enables services with conflicting features or contrary resident
policies to work simultaneously.

3 OVERVIEW OF ABNA
Most of the services within SHSs could be broken down into simple features
[7, 8]. If we take the home cinema as an example, one of its functions is to
play films and adjust the room settings in order to create an ideal atmosphere
for watching a film. When this service is activated, the following features or
processes need to be carried out in order to achieve these goals [9]:

1. Switching on the TV

2. Choosing the appropriate TV channel or movie service (e.g. Netflix)

3. Setting the speaker volume to 70

4. Dimming the lights to 10

5. Pulling the curtains with smart curtain motor

6. Closing the door

4

It is important to note that from the above-listed features, there is a hierarchy
of priorities, in which it is essential to switch on the TV, while closing the door
is less important. Despite the key differences in service features, for an optimum
experience, all features should be present.

Commonly, FIs occur when more than one service need to function or more
than one resident are making requests. Hence, there are potential undesirable
interactions (conflicts), such as multiple services using the same device, multiple
users using the same service or multiple users using multiple services. In each
of these cases, an undesirable interaction may occur between the features of the
involved services.

Unlike other proposed solutions [12, 13, 14, 15, 16, 17], the aim of ABNA is
not to prioritise one service over another or one resident over another, but rather
to reach a compromise by allowing two conflicting services to run simultaneously
with slightly less efficiency (without affecting the overall performance). This is
more desirable than totally disabling one service or overriding a resident’s in
favour of another. The ABNA mechanism for SHS detection and resolution in
SHSs is based on establishing a negotiation system. In order for the negotiation
system to function, the ABNA utilises agents, enabling services with contrary
features to work simultaneously. The components of SHSs i.e. services and
residents, will be modelled as agents in addition to the negotiator (Figure 1).

Figure 1: The structure of ABNA

Each agent registers features or preferences (known as tasks) in a hierarchical
order, in which tasks with a high priority will be at the top, whereas the least
important tasks are at the bottom (Figure 2). Furthermore, each task will be

5

assigned as allowing a compromise or not. Tasks which are necessary for an
agent will be assigned as allowing a compromise, whereas tasks which are not
necessary but preferable will be assigned as allowing a compromise.

This is important to enable two or more conflicting agents to reach compro-
mise by enabling them to operate simultaneously. The compromise will enable
agents, first to reach a middle point of performance, such as setting the light
illumination to 40 when one agent wants to dim the light to 20 and another
wants to dim it to 60; and second, to allow an agent to take advantage of per-
forming a task when the task is a priority for itself whereas it is preferable but
not necessary for the other agent. For example, it is necessary for ventilation
service to switch on the ventilation fan in order to refresh the air, but it is only
preferable and not necessary for the air conditioning service to switch off the
ventilation fan in order to keep the room temperature at certain a degree.

Figure 2: Hierarchy of features [9]

ABNA in SHSs sets a negotiation session between concerned agents every
time a task needs to be carried out. The main goal of the negotiation process is
to detect and resolve any conflicts, allowing agents to operate simultaneously.
The negotiation session involves the initiating agent, i.e. the agent who needs
to perform a specific task, the negotiator agent and the involved agents. The
involved agents are any other agents who utilise the targeted device or could
affect the performed task. For example, on a warm day, in order to save energy,
the power management service agent sends a task in the form of a proposal
to open a window, allowing breeze to lower the room temperature instead of
activating the air conditioning. The negotiator, using a register of all agents who
utilise the window controller device, such as security, safety, heating, ventilation,
air conditioning and lighting, in addition to the power management service agent
itself, will send the proposal to each of these services to request their approval.

Each involved agent will evaluate the received proposal and then respond to
the negotiator, indicating whether the proposal could be accepted, could allow
a compromise, could be counter-proposed or could be rejected.

Each proposal consists of three components, namely the device ID, the action
to be performed and the value to describe the action degree. Hence, the proposal
in our previous example is (window, set, 100), in which 100 is the value of the

6

action ‘set’ to make the window fully open (the value 0 is used to make it
completely closed).

The counter-proposal is the option if there is no possibility to accept the
original proposal or to allow a compromise on it. As explained earlier, tasks are
organised in a hierarchy, so the counter-proposal will be the task with the lowest
priority or for which a compromise can be made. For illustration, we consider the
above example when a proposal is sent from the power management service to
open a window. If the security service is active and one of its priority features
is to keep the window closed, then it will not approve the received proposal;
instead, it will send a counter-proposal.

The counter-proposal will be a feature that is not a priority for the security
service, such as closing curtains because this feature will help reduce the room
temperature. Before considering the counter-proposal, the initiating agent will
check if it has priority over the involved agent by consulting the negotiator
accordingly. If the initiating agent has priority, the counter-proposal will be
rejected; otherwise, it will be accepted.

A proposal will be rejected only if there is no possibility for it to be accepted
or for a compromise to be achieved and there is also no counter-proposal to
be made. The sequence diagram (Figure 3) shows the negotiation process in
ABNA.

Although ABNA aims to avoid utilising priority as much as possible, there
are some situations in which the negotiator has to decide which agent has prior-
ity in controlling a device. Specifically, these situations occur when a counter-
proposal or the original proposal is rejected. To determine priority, the negotia-
tor has a register that shows the priority of each agent, whether it is the service
agent or the resident agent.

7

Figure 3: Negotiation algorithm

4 OVERVIEW OF CCA

CCA was proposed in [10] as a process calculus for modelling mobile systems
that are context-aware. It builds upon a previous calculus known as Mobile
Ambients [11] whilst introducing new ideas. It enables ambient (e.g., software,
devices, locations) and processes to have an awareness of the conditions and
context in which they are executed. The resulting process calculus is flexible
and powerful, emphasising context awareness and mobility. An ambient is an
abstraction of a bounded place where computation happens. An ambient can be
mobile, and, can communicate with peers and be nested inside another ambient.
In this section, we present the syntax (Table 1) and informal semantics of the
calculus. Because of space constrains, we refer readers to [10] for the formal
semantics of CCA. We shall define four syntactic categories with CCA. These
are processes P , capabilities M , locations α and context expressions (CEs) κ.

Names are always written in lowercase letters, e.g. n, x and x. A list of
names is denoted by ỹ, and |ỹ| represents the size of the list.

8

Table 1: SYNTAX OF CCA
P,Q := 0 | n [P] | (vn)P |!P | κ?M.P
M := in n |out| α x (ỹ) |α recv(ỹ) | α send(ỹ)
α := ↑| n ↑|↓| n ↓|::| n ::| 󰂃
κ := true| • | n = m | ¬κ | κ1| κ2| κ1∧κ2| new n,κ |

󰁏
κ | κ

Processes: The process 0 terminates immediately. If two processes P and
Q are running in parallel, this is denoted by P | Q. To limit the scope of a
name, the following notation is used: (vn)P , indicating that the scope of n is
limited to P . The replication !P denotes a process that can recreate a copy of
itself whenever needed, i.e. !P ≡ P |!P . The process n[P] represents an ambient
named n whose behaviour is described by the process P .

A CE κ denotes the situation that must be met by the environment of the
executing process. The context-guarded prefix κ?M.P is a process that waits
until the environment satisfies the CE κ, and then executes the capability M
and continues similar to the process P .

Locations: The location α can ↑ to indicate any parent, n ↑ for a definite
parent ambient named n, ↓ for any child, n ↓ for a definite child ambient named
n, :: refers to any sibling and n :: signifies a specific sibling ambient named n.
The symbol 󰂃 (empty string) refers to the current ambient.

Capabilities: There are two mobility capabilities defined in CCA [10], which
make it possible for an ambient to move in its environment. These are ‘in’
and ‘out’. An ambient can execute the capability ‘in n’ to move into a sibling
ambient named n, and the capability out allows an ambient to move out of its
parent ambient. Ambients can send and receive messages. Using the capability
α send (ỹ), an ambient can send a list of names ỹ to a location α. An ambient
can execute the capability α recv (ỹ) to receive in the variables ỹ a set of names
sent from the location α.

Context-expressions: In CCA, a context is modelled as a process with a hole
in it. The hole (denoted by ⊙) in a context represents the position of the process
that context is the context of. For example, suppose a system is modelled by
the process P |n[Q|m[R|S]]. Therefore, the context of the process R in that
system is P |n[Q|m[⊙|S]], and that of the ambient named m is P |n[Q|⊙]. The
properties of contexts are called CEs.

CE holds true for all contexts. A CE n = m holds if the names n and m are
lexically identical. The CE • holds solely for the whole context, i.e. the position
of the process evaluating that CE. Propositional operators, such as negation (¬)
and conjunction (∧), expand their usual semantics to CEs. A CE κ1 | κ2 holds
for a context if that context is a parallel composition of two contexts. A CE
n[κ] holds for a context if that context is an ambient named n such that κ holds
inside that ambient.

A CE
󰁏

κ holds for a context, on the condition that the context has a child
context for which κ holds. For a CE κ to hold for a context there must be a
sub-context present, somewhere in that context for which κ holds. The operator
is known as somewhere modality whereas

󰁏
is known as spatial next modality

9

[6].

5 FORMALISING ABNA IN CCA

In this section, we give a formalisation of ABNA by using the mathematical
notation of CCA. As stated in the sequence diagram (Figure 3), there are three
main agents that exchange messages during the negotiation process namely the
initiating agent (iniAgent), the negotiator agent (negAgent) and the involved
agent (invAgent). Each these above agents will be modelled as an ambient.
Because of the significant role of the negotiator, during the negotiation session,
there will be three extra ambients, i.e. delivering, compromising and prioritising,
which work as children ambients. Therefore, the formal specification of ABNA
is given by the following CCA process:

iniAgent [PiniAgent]|invAgent[PinvAgent]|device[Pdevice]
| negAgent [PnegAgent|delivering[Pdelivering]
| compromising [Pcompromising]
| prioritising [Pprioritising]]

Table 2: Constants
Constants

Notation Description
accept Accept proposal
reject Reject proposal
compromise Allow compromise on tasks
prioritise Give priority
counterProposal Place counterproposal
on Switch on device
off Switch off device
set Set device to a certain value
sec_Agent Security agent
saf_Agent Safety agent
vent_Agent Ventilation agent
AC_Agent Air conditioning agent
ent_Agent Entertainment agent
pwr_Agent Power management agent

The specifications of these ambients are presented in the following subsec-
tions. We first give a convention of the notations used in these specifications,
which include the constants (Table 2) and the variable symbols (Table 3).

10

Table 3: Variables
Variables

Notation Description Values
r Reply to the proposal accept, reject, compromise, prioritise and

counterpropsal
v1 Value of performance for

the initiating agent
1,2,...,100

v2 Value of performance for
the involved agent

1,2,...,100

v3 Compromised value 1,2,...,100
d Device ID window1, window2, door, light1, curtain1,

AC, TV, ventilation_fan,..
a Action to be performed on, off, set
m Master agent, which has

priority
sec_Agent ,saf_agent, AC_Agent,
vent_Agent,ent_Agent,pwr_Agent

iniAgent Initiating agent sec_Agent ,saf_agent, AC_Agent,
vent_Agent,ent_Agent,pwr_Agent

invAgent Involved agent sec_Agent ,saf_agent, AC_Agent,
vent_Agent,ent_Agent,pwr_Agent,none

A- iniAgent ambient

This ambient is responsible for submitting a proposal to negAgent to perform
a task based on the triggering context. iniAgent then waits for the reply to its
proposal, which could be accepted, rejected or counter proposal. If the reply is
the latter, this ambient will check and then accept the counter-proposal only if
the following is achieved:

1. The priority is for the involved agent.

2. The counter-proposal is one of the features that exist in the queue to be
performed.

This behaviour is modelled as follows: //
PiniAgent=̂negAgent :: send(sec_Agent, window1, set, 0).
negAgent :: recv(r).(r = counterProposal)?negAgent :: recv(m).
(¬(m = sec_Agent))?negAgent :: recv(d, a, v1).{
((a = set and d = window2 and v1 = 0) or
(a = set and d = door and v1 = 0))?negAgent :: send(accept).0

The symbols used here are as follows:

• d is the ID of the targeted device

• a is the action to be performed (on, off, set)

11

• v1 always follows the action “set” to describe the degree or performance
level for the targeted device, such as speakers and lights.

• r is the reply received to the proposal

• m is the agent with the highest priority

B- negAgent ambient

This ambient is the negotiation master and has three child ambients, namely
delivering, compromising and prioritising. After receiving a proposal from the
iniAgent, it will deliver it to the other involved agents and then take action
based on the reply, either accepting the proposal or compromising if there is an
agreement between the agents involved; otherwise, it applies priority.

The behaviour of this ambient is specified as follows:

PnegAgent=̂!sec−Agent :: recv(sec−Agent, window1, set, 0).deleviring↓
send(sec−Agent, window1, set, 0).delivering ↓ recv(invAgent).{
(invAgent = none)?window1 :: send(set, 0).sec−Agent :: send(accepted).0
|¬(invAgent = none)?pwr−Agent :: send(window1, set, 0).pwr−Agent ::
recv(compromise, 100).{
(r = accept)?window1 :: send(set, 0).sec−Agent :: send(accepted).0
|(r = compromise)?compromising ↓ send(window1, set, 0, 100).
compromising ↓ recv(v3).sec−Agent :: send(compromised).0
|(r = counterProposal)?invAgent :: recv(window2, set, 100).
sec−Agent :: send(counterProposal).
sec−Agent :: send(window2, set, 0).sec−Agent :: recv(r).
(r = accept)?window2 :: send(set, 0).0
|(r = reject)?prioritising ↓ send(sec−Agent, pwr−Agent).prioritising ↓
recv(m).iniAgent :: send(m).(m = sec−gent)?window1 :: send(set, 0).0
}}

C- delivering ambient

When a proposal is received by negAgent, the delivering ambient has to de-
termine the involved agents who should be consulted in order for the proposal
to be approved. To do this, it examines several conditions. A list of involved
agents will then be sent to the negotiation agent.

The behaviour of the delivering ambient is specified as follows:

Pdelivering=̂negAgent recv(iniAgent, d, a, v1).R,

where

R=̂((d = window1 and a = set) or (d = window2 and a = set))?
negAgent ↑ send(pwr−Agent).0|negAgent ↑ send(none).0

D- compromising ambient

12

If the reply from the invAgent ambient is a compromise, the compromising
ambient will allow a compromise on the proposal to satisfy each party. To
calculate the compromise level, the value which was proposed by the initiating
agent, i.e. (0), will be added to the value proposed by the involved agent, i.e.
(100), and the result will be divided by two. The final result, which is (50), will
be sent to the negAgent.

The behaviour of this ambient is modelled as follows:

Pcompromising=̂negAgent ↓ recv(window1, set, v1, v2).{
let v3 = (v1 + v2)/2 in ↑ send(v3).0}

E- prioritising ambient

If the invAgent ambient rejects the proposal, the prioritising ambient will give
the advantage of controlling the device to the agent with priority. This means
that if the initiating agent has the highest priority, the prioritising ambient will
accept the proposal by implementing the proposal to control the targeted device
according to the proposal parameters; otherwise, it will reject the proposal.

The behaviour of the prioritising ambient is modelled as follows:

Pprioritising=̂negAgent ↑ recv(iniAgent, invAgent).S

Where
S=̂{ (iniAgent = saf−Agent or invAgent = saf−Agent)? ↑ send(saf−Agent).0
|(iniAgent = sec−Agent and invAgent = saf−Agent)? ↑ send(sec−Agent).0
|¬(iniAgent = sec−Agent and invAgent = sec−Agent)? ↑ send(sec−Agent).0}

F- invAgent ambient

This ambient is responsible for examining three conditions in order to decide
whether to accept the proposal, allow a compromise on it, suggest a counterpro-
posal or reject the proposal. The decision will be based on the current status of
the involved ambient, i.e. ‘off’ or ‘on’. The received proposal will be accepted
if the current status id ‘off’. However, if the current status is ‘on’, the involved
ambient will not accept the proposal. Instead it will consider compromising or
offerring a counter-proposal. After all, if there is no space to assist the initiat-
ing agent, the proposal will be rejected. To examine the current status of the
involved agent, we use a memory cell [10].

The behaviour of invAgent ambient is specified as follows:
PinvAgent=̂negAgent :: recv(d, a).cur−status ↓ send().cur−status ↓ recv(status).P

where

P =̂{ (¬isON(status))?negAgent :: send(accept, 0).0
|(isON(status) and (d = window1 and a = set and v1 = 0) or
(d = window2 and a = 0))?negAgent :: send(compromise, 100).0
|(isON(status) and (d = air−conditioner and a = on))?
negAgent :: send(counterProposal, 0).negAgent :: send(window2, set, 0).0}

13

G- device Ambient

This ambient represents the device that needs to be controlled. It simply receives
the task from the negAgent ambient as an order. The task is subsequently
performed according to the received action and value.

The behaviour of the device ambient is modelled as follows:

Pdevice=̂!negAgent :: recv(a, v1).0

6 CASE STUDY
In this section, a case study is presented to illustrate the processes described
in the above. This section is divided into two subsections: the first one will
demonstrate the pragmatics of ABNA by using the case study, whereas the
second one analyses the correctness of ABNA by using ccaPL.

6.1 Pragmatics of ABNA
The ventilation service is concerned with ventilating the air in a room. This
service will be triggered, for example, if there is an unpleasant odour. To achieve
the goal of this service, the following features need to be present:

Proposal ID Action Device Value Compromise
1 on ventilation_fan 1 No
2 set window1 100 No
3 set window2 100 Yes
4 set door 100 Yes

Table 4: Proposals of ventilation service

As Table 4 shows, the first two features, to switch on the ventilation fan
and open window1, are essential and cannot allow to compromise, whereas the
other features are preferable but can allow to compromise. In order for the
first feature to be performed, a proposal to switch on the ventilation fan will be
sent from the ventilation service agent (initiating agent) to the negotiator. The
negotiator has a registry of all devices within the SHS and all agents who have
a link to each device. Table V shows a view of the negotiator’s registry.

14

Device ID Device Name Controlling Agents
101 air_conditioner Security, Safety, AC,

Ventilation, Heating, Power
Management

102 ventilation_fan Security, Safety, AC,
Ventilation, Heating, Power

Management
103 window1 Security, Safety, AC,

Ventilation, Lighting,
Entertainment

104 window2 Security, Safety, AC,
Ventilation, Lighting,

Entertainment
105 door Security, Safety, AC,

Ventilation, Lighting

Table 5: View of negotiator’s registry

For each of the features that need to be performed, there is an associated
device; in the case study presented here, these devices are the ventilation fan,
window1, window2 and the door (Table 5). It is important to note that the
device does not refer specifically to the window or the door, but rather to the
device which opens and closes the window or the door. These devices have a
value between 0 and 100, where 0 means fully closed and 100 means fully opened.
Besides the ventilation service agent, there are several other agents who have
a link with such devices, namely Security, Safety, air conditioning, Ventilation
and Power Management, Lighting and Entertainment service agents (Table 5).
The negotiator (as previously mentioned) sends each proposal to all agents who
have a link to the device which is to be controlled in the proposal. However, for
the purposes of this case study, only the response of the air conditioning service
agent will be considered; the assumed condition here is that it is active because
of the hot weather. The status of the features is presented in Table 6.

Proposal ID Action Device Value Compromise
1 on air_conditioner 18 No
2 set window1 0 No
3 set window2 0 Yes
4 set door 0 Yes
5 off ventilation_fan 0 Yes

Table 6: Proposals of air conditioning service

Negotiation mechanism Although normally, agent priority is already estab-
lished by the negotiator based on the services’ weight and residents’ preferences,
for the purposes of the case study, both scenarios (i.e. the initiating agent has

15

priority and the involved agent has priority) will be considered. We will discuss
two scenarios: in the first scenario, the ventilation agent has priority over the
air conditioning agent. The ventilation service agent sends the first proposal to
the negotiator and waits for a reply before sending the next proposal, explained
in more detail below:

• The first proposal is to switch on the ventilation fan. It cannot allow a
compromise, and it has no level of performance, so, the agent with the
higher priority will have the advantage. The air conditioning agent will
receive the proposal and check its current status and because it is ‘ON’ it
cannot accept the proposal because one of its own features is to have the
ventilation fan switched off (Table 6), but, it will inform the negotiator
that there is a possibility for compromise. The negotiator will relay the
compromise response ‘compromise’ of the air conditioning agent to the
ventilation agent. As it is a feature that does not allow a compromise
by the ventilation agent, it will be rejected. The negotiator will give the
advantage to the ventilation agent because the feature is a necessity, and
not to the air conditioning agent because a compromise on this feature
can be allowed, and priority is not a consideration here. Accordingly, the
order will be sent for the ventilation fan to be switched ‘ON’.

• The second proposal from the ventilation service is to fully open window1,
which cannot allow a compromise, and it will be received by the negotiator
then delivered to the air conditioning agent. The air conditioning agent
will check its current status, which is “ON” and, will inform the negotia-
tor that it cannot accept the proposal and there can be no compromise
for this feature (Table 6). However, because the air conditioning agent
has other features which are less important than the proposed feature and
a compromise on these can be allowed, it will send a counter-proposal
offering the advantage of its least important feature. In this case, the
counter-proposal will be ‘set door 100’, i.e., fully open the door. The ne-
gotiator will deliver the counter-proposal to the ventilation agent. Before
considering the counter-proposal, the ventilation agent will first check if
it has priority over the air conditioning agent. Because in this case, it has
higher priority, it will reject the counter-proposal and the negotiator will
send the original proposal to fully open window1 to the targeted device.

• The third and fourth proposals are similar to each other; the ventilation
agent requests to fully open window2 and the door, both of which can allow
a compromise by both the initiating and involved agents. The negotiator
will send the proposals one by one to the air conditioning agent, who
will examine its current state and send the compromise reply accordingly.
Because these features can also allow a compromise by the ventilation
agent, the negotiator will calculate a compromise performance value for
each, and this is achieved through the following equation:
(feature performance value in the proposal + feature performance value in
the involved agent) / 2 = (100 + 0) /2 = 50

16

• The outcomes from the above scenario were to keep the ventilation fan
and air conditioner switched on, to keep window1 fully opened and to
keep window2 and the door half opened. In this negotiation, both services
reached a compromise, allowing them to operate simultaneously albeit
with a slight advantage for the ventilation agent, as it had priority.

Second, in scenario 2 in which the air conditioning agent has priority, the
negotiation will be as follows:

• The first proposal is to switch on the ventilation fan. Although the air
conditioning agent has priority, this proposal will be accepted because the
particular feature involved, i.e. switching on the ventilation fan, allows a
compromise by the air conditioning agent, whereas it is necessary for the
initiating agent.

• The second proposal is to fully open window1, which is a feature that can-
not allow a compromise for both the initiating agent (ventilation) and the
involved agent air conditioning agent. Accordingly, the air conditioning
agent, after checking its current status, will send a counter-proposal to set
the door to 100 because it is its least important feature. The ventilation
agent will receive the counter-proposal and it does not have priority and
because the door being fully opened is one of its current features that it
wants to perform, the counter-proposal will be accepted.

• The third proposal is to fully open window2, a feature that can allow
a compromise for both agents. Therefore, the negotiator will instruct
window2 to be opened halfway, similar to the proposal in the first scenario.

• The fourth proposal, which is to set the door to 100, i.e. to fully open
the door, will not be sent because the included task is already done by
processing the counter-proposal of the second proposal.

Because the priority in the second scenario was for the air conditioning
agent, the outcome is slightly different from that of the first scenario, in which
although the ventilation and air conditioning were switched on and window2
was half open, window1 was closed, and the door was fully open. In this case,
both services were also able to function simultaneously, with an advantage for
the air conditioning agent, as it had priority.

6.2 Correctness of ABNA
This subsection demonstrates the execution of the above scenarios using the
CCA simulation tool ccaPL.

17

Figure 4: Negotiation algorithm

In the first scenario in which the priority is for the ventilation agent, the
execution of ABNA in ccaPL is shown in Figure 4, where the line 1 up to line
19 display the ccaPL header information. In line 20, the proposal is sent from
sibling to sibling, which is vent_Agent to negAgent. Line 21 shows that the
negAgent ambient sends the proposal to its child ambient (delivering) in order
to know the agent who should approve the proposal, which is AC_Agent, as
has been shown in the next line. In line 23, negAgent sends the proposal to
AC_Agent as sibling to sibling. From line 24 until line 26, there is an exchange
of messages between AC_Agent and its child (cur_status), which is a memory
cell to know whether the current status is ‘on’ or ‘off’. As can be seen in Figure
4, the current status of AC_Agent is ‘on’; therefore, in line 27, AC_Agent
will send ‘reject’ to negAgent. negAgent then sends to its child ambient the
proposal to prioritise the names of both the initiating and the involved agents
to determine the priority for each of them. In line 29, the reply is vent_Agent
so, the vent_Agent is informed that it has priority, as shown in line 30. The
last line shows that negAgent sends to its sibling ven_fan the proposal to be
switched on with a value of 100.

The execution of the second proposal is shown in Figure 5.

18

Figure 5: Execution of the second proposal in scenario 1

As can be seen in Figure 5, in line 21, the counter-proposal is sent to the
initiating agent. However, the counter-proposal is rejected, and the original
proposal is executed in line 33 because the initiating agent has priority.

In the third and fourth proposals, the agents reach a compromise. For
example, in the fourth proposal execution in Figure 6, the agents managed to
reach a compromise, so, the door will be half opened, as shown in line 30.

19

Figure 6: Execution of the third proposal in scenario 1

In the second scenario, as shown in Figure 7, in which the priority is for
the air conditioning agent, the results of the negotiation processes are different
from those in the first scenario, as explained in the first subsection. To show
an example of the ccaPL execution, let us consider the second proposal (Figure
7). As can be seen, the proposal was to fully open window1, but because the
initiating agent does not have priority, it accepts the counter-proposal to open
the door instead (see lines 33 and 34). The counter-proposal will follow the same
procedure as in the original procedure in which the negAgent ambient delivers
the information in the counter-proposal (line 37) to its child delivering, in order
to know if there is another agent who should approve the counter-proposal.

As can be seen in line 38, the reply was ‘(none)’, which means that there is
no agent who should be consulted. Therefore, the door will be ordered to be
fully opened as in line 39.

20

Figure 7: Execution of the second proposal in scenario 2

Acknowledgment
This project was funded by the Deanship of Scientific Research (DSR) at King
Abdulaziz University, Jeddah, under grant no. J-723-611-1438. The authors,
therefore, acknowledge with gratitude DSR for technical and financial support.

7 CONCLUSION
SHSs are complex; they include several services with a multitude of features that
respond to the preferences of multiple residents. FIs are an inevitable conse-
quence which can prevent services from functioning properly and may result in
an unpredictable behaviour of services provided by SHSs. In this paper, ABNA
was presented. This approach is significant because it allows negotiation, en-
abling services with conflicting features to work simultaneously. What is more,
it has the ability to deal with both types of FIs, i.e. policy- and service-based
FIs.

ABNA applies agent-based negotiation, to enable the negotiation mecha-

21

nism; a hierarchy of agent features is presented to illustrate their priority in
relation to the performance of each agent. To clarify ABNA, we have presented
the formalisation for the approach in CCA.

ABNA is represented as a process so that it can be executed and analysed
using the execution environment of CCA. We have illustrated how such an
analysis can be done using a case study within SHS. Different scenarios have
been analysed to test the various properties of ABNA. The ABNA makes a
novel contribution to the detection and resolution of FIs in SHSs by seeking a
compromise between conflicting agents before considering a priority. However,
it is based on certainty in that its functionality depends on pre-defined criteria.
Hence, future work should focus on making ABNA support uncertainty. This
could be achieved by allowing the negotiator to be smart, employing a self-
learning mechanism. This technique will enable the negotiator to monitor the
behaviour of agents and record their reactions in different scenarios, so future
decisions can be taken more quickly in similar situations.

References
[1] A. Nhlabatsi, R. Laney and B. Nuseibeh, "Feature interaction: the security

threat from within software systems," Progress in Informatics, vol. 5, pp.
75-89, 2008.

[2] E. Pulvermueller, A. Speck, J. O. Coplien, M. D’Hondt and W. De Meuter,
"Feature interaction in composed systems," in Object-Oriented Technology,
A. Frohner, Ed. Springer, pp. 86-97,2002.

[3] M. Weiss and B. Esfandiari, "On feature interactions among web services,"
in Web Services, 2004. Proceedings. IEEE International Conference On,
pp. 88-95, 2004.

[4] P. Zave and M. Jackson, "New feature interactions in mobile and multime-
dia telecommunications services." in FIW, pp. 51-66, 2000.

[5] E. C. Lupu and M. Sloman, "Conflicts in policy-based distributed systems
management," Software Engineering, IEEE Transactions On, vol. 25, pp.
852-869, 1999.

[6] A. Almutairi and F. Siewe, "Formal specification of CA-UCON model using
CCA," in Science and Information Conference (SAI), 2013, pp. 369-375,
2013.

[7] M. Kolberg, E. H. Magill and M. Wilson, "Compatibility issues between ser-
vices supporting networked appliances," Communications Magazine, IEEE,
vol. 41, pp. 136-147, 2003.

[8] A. Classen, P. Heymans and P. Schobbens, "What’s in a feature: A require-
ments engineering perspective," in Fundamental Approaches to Software
Engineering, F. José, Springer, pp. 16-30,2008.

22

[9] A. Alfakeeh and A. Al-Bayatti, "Feature Interactions Detection and Reso-
lution in Smart Homes Systems," International Journal of Electronics and
Electrical Engineering (IJEEE), vol. 4, 2016.

[10] F. Siewe, H. Zedan and A. Cau, "The calculus of context-aware ambients,"
Journal of Computer and System Sciences, vol. 77, pp. 597-620, 2011.

[11] L. Cardelli and A. D. Gordon, "Mobile ambients," Theor. Comput. Sci.,
vol. 240, pp. 177-213, 2000.

[12] M. Calder, E. Magill and D. Marples, "Hybrid approach to software in-
terworking problems: managing interactions between legacy and evolving
telecommunications software," Software, IEE Proceedings -, vol. 146, pp.
167-175, 1999.

[13] G. Misra, A., S. Misra and K. Agrawal, "Device to Device Millimeter Wave
Communication in 5G Wireless Cellular Networks (A Next Generation
Promising Wireless Cellular Technology)," International conference on Sig-
nal Processing, Communication, Power and Embedded System (SCOPES),
pp. 89-93, 2016.

[14] M. Nakamura, H. Igaki and K. Matsumoto, "Feature interactions in in-
tegrated services of networked home appliance," in Proc. of Int’l. Conf.
on Feature Interactions in Telecommunication Networks and Distributed
Systems (ICFI’05, pp. 236-251, 2005.

[15] M. Shehata, A. Eberlein and A. O. Fapojuwo, "Managing policy interac-
tions in KNX-based smart homes," in Computer Software and Applica-
tions Conference, 2007. COMPSAC 2007. 31st Annual International, pp.
367-378, 2007.

[16] H. Hu, D. Yang, L. Fu, H. Xiang, C. Fu, J. Sang, C. Ye and R. Li, "Semantic
Web-based policy interaction detection method with rules in smart home
for detecting interactions among user policies," IET Communications, vol.
5, pp. 2451-2460, 2011.

[17] M. Shehata, A. Eberlein and A. Fapojuwo, "Using semi-formal methods for
detecting interactions among smart homes policies," Science of Computer
Programming, vol. 67, pp. 125-161, 2007.

[18] C. Hsu and L. Wang, "A smart home resource management system for
multiple inhabitants by agent conceding negotiation," in Systems, Man
and Cybernetics, 2008. SMC 2008. IEEE International Conference On, pp.
607-612, 2008.

[19] P. Carreira, S. Resendes and A. C. Santos, "Towards automatic conflict
detection in home and building automation systems," Pervasive and Mobile
Computing, vol. 12, pp. 37-57, 6, 2014.

23

[20] H. Igaki and M. Nakamura, "Modeling and detecting feature interactions
among integrated services of home network systems," IEICE Trans. Inf.
Syst., vol. 93, pp. 822-833, 2010.

[21] N. D. Griffeth and H. Velthuijsen, "The negotiating agents approach to
runtime feature interaction resolution," in Feature Interactions in Telecom-
munications Systems, pp. 217-235, 1994.

[22] M. Wilson, E. H. Magill and M. Kolberg, "Detection and prediction of
insider threats to cyber security: a systematic literature review and meta-
analysis," in Consumer Communications and Networking Conference, 2005.
CCNC. 2005 Second IEEE, pp. 251-256, 2005.

[23] A. I. Gheyas, and E. A. Abdallah"Towards automatic conflict detection
in home and building automation systems," Big Data Analytics, Springer,
vol.1, pp.1-6, 2016.

[24] B. J. Muscedere, R. Hackman, D. Anbarnam and J. M. Atlee, I. J. Davis
and M. W. Godfrey, "Detecting Feature-Interaction Symptoms in Automo-
tive Software using Lightweight Analysis, " 2019 IEEE 26th International
Conference on Software Analysis, Evolution and Reengineering (SANER),
pp. 175-185, 2019.

[25] S. Takeuchi, M. Takemoto and M. Matsuo," SPIRE Scalable and Unified
Platform for Real World IoT Services with Feature Interaction ", IEEE
40th Annual Computer Software and Applications Conference (COMP-
SAC), pp.348-353, 2016.

[26] D. Mekuria, P. Sernani, N. Falcionelli and A. Dragoni," Reasoning in Multi-
agent Based Smart Homes: A Systematic Literature Review ", Ambient
Assisted Living - Italian Forum 2018, Ninth Italian Forum on Active and
Assisted Living, (ForItAAL) 2018, Lecce, Italy, pp. 161-179, 2018.

[27] J. Walzberg, T. Dandres, R. Samson, N. Merveille and M. Cheriet," An
agent-based model to evaluate smart homes sustainability potential ",28th
IEEE Annual International Symposium on Personal, Indoor, and Mobile
Radio Communications, (PIMRC) 2017, Montreal, QC, Canada, October
8-13, 2017, pp. 1-7, 2017.

24

