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Figure 1: Stokes Cage Coordinates. We compute our fluid-inspired Stokes Coordinates using an input undeformed model and its shape-
aware cage (left-hand side). To obtain coordinates via vorticity transport, we derive the Stokes stream function using a compact second-
order approximation with center-differencing. Given a collection of deformed cage poses, we output a sequence of deforming poses using our
Stokes Coordinates (middle). To showcase the usefulness of our technique, we produce cartoon-style non-rigid deformation for a performance
capture mesh. The resulting non-isometric deformation is quite fluid-like thanks to the local volume-preserving property since non-isometric
deformation can be encoded using our proposed coordinates (right-hand side).

Abstract
Cage-based structures are reduced subspace deformers enabling
non-isometric stretching deformations induced by clothing or mus-
cle bulging. In this paper, we reformulate the cage-based rigging
as an incompressible Stokes problem in the vorticity space. The
key to our approach is a compact stencil allowing the expression of
fluid-inspired high-order coordinates. Thus, our cage-based coor-
dinates are obtained by vorticity transport as the numerical solution
of the linearized Stokes equations. Then, we turn the incompress-
ible creeping Newtonian flow into Stokes equations, and we devise
a second-order compact approximation with center differencing for
solving the vorticity-stream function. To the best of our knowledge,
our work is the first to devise a vorticity-stream function formula-
tion as a computational model for cage-based weighting functions.
Finally, we demonstrate the effectiveness of our new techniques for
a collection of cage-based shapes and applications.

1 Introduction
“ Empty your mind. You must be shapeless, formless, like water.
When you put water in a cup, it becomes the cup. When you put
water in a bottle, it becomes the bottle. When you put water in a
teapot, it becomes the teapot. Water can flow and it can crash.“

— Bruce Lee, The Warrior Within.

Animator-Oriented Deformers. Subspace deformers are used
by artists to generate life-like skin deformation. Furthermore, shape
coordinates are essential for space-time shape modeling and geom-
etry encoding as seen with reduced subspace cages. Technically
speaking, cage deformers are closed polyhedral proxy meshes en-
closing the given model to deform. In this work, our research prob-
lem is to define fluid-inspired cage-based coordinates allowing non-
rigid boneless deformations with local preserving properties. This
property seems difficult to reach exclusively in term of piecewise-
rigid skeletal rigs.

Fluid-inspired Coordinates. Our motivation is to bring fluid
dynamics formulation into cage-based deformation. Derived from
Newton’s second law of fluid motion, Navier-Stokes equations are
fundamental in numerous physics problems to describe the dynam-

ics of general flow for the fluid motion. Also, Stokes equations are
of particular importance in solving physical problems by describing
the dynamics of general fluid flows. Moreover, we rely on fluid dy-
namics to offer a theoretical understanding of how to compute cage
coordinates. In this paper, we reformulate cage-based rigging as an
incompressible Stokes problem. Thus, we establish a strong intu-
ition for why cage basis functions should be framed in terms of fluid
flow, most likely by neglecting non-linear terms. Our motivation is
to rely on fluid vorticity transport principles instead of using the tra-
ditional heat diffusion to obtain high-order cage-based coordinates.
Our fluid-inspired intuition is justified by the mass preserving prop-
erty leading to the stable computation of well-localized weights for
cages. In this work, we study how the Stokes formulation can be
suitable for cage weighting functions since the governing Stokes
equation transports values stored at the cage vertices across the en-
closed mesh with a vorticity propagation behavior.

Compact-Stenciled Stokes Coordinates. At the heart of our
space based rigging approach, we cast weight coordinates as the
solution to the steady-state fluid flow, governed by the Stokes fluid
model. We introduce a novel deforming weighting scheme by con-
sidering the numerical approximation of the Stokes equations with
center differencing. The solutions to the Stokes equations are called
Stokes Coordinates and they are used as weighting terms for the
cage-based shape deformation. In contrast to previous techniques
that rely on heat transfer in the solid, our approach differs by taking
advantage of the conservation of mass principle offered by Stokes
fluids.

Our Contributions. Our central contribution is the mathemati-
cal bridge between vorticity stream function formulation and cage-
based coordinates. Our mathematical formulation brings general-
ity to solve the problem. To make the computation amendable,
we devise two key derivations: Stokes Linearization and Biharmo-
nization. As our Stokes Coordinates are solutions to Stokes flows
at steady state, we develop an iterative Volumetric Stokes Weights
Solver to discretize vorticity transport. To speed up the computation
and facilitate the boundary condition management, we directly for-
mulate a compact approximation for our Stokes-wise biharmonic
operator by employing a compact cell neighborhood stencil.
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Figure 2: Overview. We propose a five-stage pipeline for the computation of our Stokes Coordinates techniques dedicated to cage-based
encoding, deformation and animation.

2 Related Works
In this section, we first review relevant works related to our
Stokes Coordinates for cages covering the following research areas:
physic-inspired rigging, cage-based subspace coordinates, mani-
fold harmonicity and diffusion-based fluid dynamics.

Subspace Coordinates. In contrast with Baran et al. [Baran
and Popović 2007], we replace the skeletal-based representation
with a fully deformable cage to achieve extreme non-rigid local
deformation. Cage-based deformation is an important tool in Ge-
ometry Processing. Purely geometric deformers are represented by
generated coarse cages [Le and Deng 2017] offering reusability and
abstraction [Ju et al. 2008]. In addition, deformation fields are also
classical strategy to deform a shape with reduced control [Jacob-
son et al. 2012a; Xu et al. 2009; Shen et al. 2010]. Typically,
the coarse cage deformers are augmented with coordinates having
closed-form [Ju et al. 2005] and quasi-conformal properties [Lip-
man et al. 2008]. Interestingly, Harmonic Coordinates [Joshi et al.
2007; Weber et al. 2012] overcome the lack of smoothness of Mean
Value Coordinates [Ju et al. 2005] but suffer from non-closeness
form. To remedy this problem, Lipman et al. [Lipman et al. 2008]
propose one of the first closed-form and quasi-conformal coordi-
nate systems for cages using Green’s equation. Also, Ben-Chen et
al. [Ben-Chen et al. 2009] introduced variational harmonic maps
for space deformation as higher-order barycentric coordinates [Ju
et al. 2008] and Jacobson et al. [Jacobson et al. 2012b] propose
a harmonic shape deformation without local extrema. To reach
compactness, Zhang et al. [Zhang et al. 2014] prefer to define a
family of local barycentric coordinates using a small set of con-
trol points. Recently, researchers mixed various coordinates into
a unique multi-coordinates system [Garcı́a et al. 2013], and to
develop biharmonic functions with gradient constraints [Li et al.
2013]. More recently, Budninskiy et al. [Budninskiy et al. 2016] in-
troduces Voronoi-based coordinates as generalized barycentric co-
ordinates on convex polytopes. Our work is also related to recent
effort of Wang et al. [Wang et al. 2015] introducing non-negative
weight for producing as-rigid-as possible deformation. Even if our
work is focused on harmonic-type control [Joshi et al. 2007], our
key insight is the introduction of the fluid-inspired generalization
of the Biharmonic Coordinates [Jacobson et al. 2011; Weber et al.
2012] having local mass-conserving properties. Our technique also
avoids complex black-box numerical solver while offering an easy-
to-implement solution comparing to previous works.

Physic-inspired Deformation. Recent years have seen an im-
portant collection of physics-inspired rigging methods for elastic
character animation [Angelidis and Singh 2007; von Funck et al.
2007]. Even if physics-inspired rigging is a well-explored field for
elastic character animation [McAdams et al. 2011], our work in-
troduces flow dynamics to compute cage-based coordinates. Our
method exploits linearity [Capell et al. 2005] and domain decom-
position [Kim and James 2011] to generate physics-based character
skinning, but we prefer to rely on a skin-detached reduced subspace
domain rather than a direct forces system.

Elasticity is a useful theory employed in the works of McAdams
et al. [McAdams et al. 2011] and the elasticity-inspired deform-
ers of Kavan et al. [Kavan and Sorkine 2012]. Earlier, Capell et

al. [Capell et al. 2005] proposed a rigging system based on a force-
driven elastic linearization scheme. Similarly, we are inspired by
physical dynamics and linearity, but we prefer to rely on a de-
tached cage deformer instead of a force-based system. More re-
cently, Hahn et al. [Hahn et al. 2012] formalized a physically-based
rig-space to add rich physical motions by defining equations of mo-
tions in the deformation subspace. Also, we take inspiration from
Wang et al. [Wang et al. 2013] that built a connection between har-
monic parametrization and electrostatics and Zheng et al. [Zheng
and James 2009] to benefit from the harmonicity in fluid dynamics.
In our work, we take advantage of a domain-decomposition method
similar to Kim et al. [Kim and James 2011] to generate physics-
based character skinning. However, we define our decomposition
inside a reduced subspace domain, restricted to all cage handles.

Fluid-inspired Rigging. Classically, heat diffusion is used for
the transfer process but this technique does not preserve the mass.
However, diffused scalar fields can be obtained by mass-preserving
vorticity transport using the fluid dynamics. Hence, we are in-
terested in deriving cage-based coordinates from Stokes equation
and derived streamfunction rather than relying on fluid simula-
tion. Thus, we define handle-aware volumetric fields controllable
by cage vertices. Our work differs from classical studies about
fluid dynamics in Computer Graphics in the sense that we exploit
flow dynamics to compute cage-based coordinates away from its
original context. Unfortunately, fluid dynamics require a heavy
use of finite element method to solve non-linear equation [Turner
and Mazzone 1999; Shang et al. 2011; Rannacher 2000; Cai et al.
2010]. Consequently, we are interested in linearizing ideas of Jo-
vanovic et al. [Jovanovic and Bamieh 2001], coupled with a highly
reliable discretization [Fishelov et al. 2011] in the context of ge-
ometric subspaces [Barbič and James 2005] represented by de-
formable cages. Analogous to Xu et al. [Xu and He 2013] and
Shang et al. [Shang 2013], we also employ an iterative method to
obtain the steady state in our work, but we design our solver for
a simplified Stokes formulation. Finally, Ando et al. [Ando et al.
2015] derive the stream function for incompressible fluids, but the
formulation seems not directly applicable to cage-based applica-
tions. In contrast with Feng et al. [Feng and Warren 2012], we
define a discrete Stokes-wise biharmonic operator using a finite-
difference solution [Greenspan and Schultz 1972]. Finally, precon-
ditioners for incompressible Stokes problems [Segal et al. 2010;
ur Rehman et al. 2010] could also improve the accuracy of numeri-
cal results.

3 Stokes Cage Coordinates
In this section, we develop our novel mathematical derivation of
streamline-vorticity and its discretization using finite difference
method to obtain our compact-stenciled Stokes Coordinates. Then,
we show several applications like cage-based shapes encoding, de-
formation and reusing (see Figure 1).

Overview. We propose an overview of our five-stage derivation
strategy illustrated in Figure 2. We assume the common assumption
for incompressible creeping Newtonian flow [Karoly and Laszlo
2013] with constant density and constant viscosity. First, we start
from the incompressible Navier-Stokes equation as a formulation



Figure 3: Cage-based Animation. Taking the Horse model, various deformed cages and our Stokes Coordinates as input, we output a
sequence of stretched cage-based shapes are obtained with our Stokes Coordinates and cages interpolation (left-hand side). The undeformed
pose of the Armadillo model and two deformed poses obtained with our Stokes Coordinates (right-hand side).

for the fluid transport. In the second step, we linearize the Stokes
flow by neglecting the convective and by making viscous forces
dominant. In the third step, we derive a Stokes-wise biharmonic
form for Stokes equations, and we solve this equation for each cage
handle. Various assumptions made in the derivation are valid for
the purpose of cage-based deformation since cage weights compu-
tation only require to be transported. Then, neglecting these phys-
ical terms is permissible. In the fourth step, we formulate a com-
pact stencil to derive the Stokes-wise biharmonic operator using
a second-order approximation with center-differencing. In steady
state, we obtain our Stokes Coordinates using an iterative volumet-
ric solver to discretize the biharmonic equation of the stream func-
tion. Finally, we reuse Stokes Coordinates for cage-based geomet-
ric applications.

Navier-Stokes Flows. The velocity-pressure formulation for
fluid is defined as follows by Childress [Childress 2007]:

Re
(
∂u
∂t

+ u · ∇u
)

+ ∇p = ∇2u , ∇ · u = 0 (1)

where Re is the Reynolds number of the flow, u is the (vector-
valued) velocity, p the (scalar-valued) pressure, and ∇ is the gradi-
ent. In this equation, u ·∇u is the advection term, ∇p is the pressure
term and ∇2u is the diffusion term. Key to our approach, the sec-
ond equation ∇ · u = 0 enforces the conservation of the mass. The
difficulty of solving Equation 1 in its non-linear form motivates us
to devise a linearization.

Figure 4: Cage-based Encoding. As input, we provide the default
pose of the Ogremodel with its undeformed shape-aware cage (left-
hand side). Then, we color-code the root-mean-square error (nor-
malized by the bounding box diagonal length) measuring the dis-
tortion resulting of cage-based encoding using our Stokes Coordi-
nates (right-hand side).

Stokes Linearization We now derive a linear formulation from
the Navier-Stokes equation for our particular rigging problem by
restricting the steady flows to be highly viscous and incompressible.
Thus, we assume a viscous Newtonian fluid of constant density and
constant viscosity with Re small. Then, we linearize Equation 1 by
neglecting the unsteady, convective terms and non-linear advection
term u · ∇u leading to the following Stokes flow equation:

∇p − ∇2u = 0 , ∇ · u = 0 (2)

By assuming a flow with zero pressure, we eliminate the pressure
components from the Stokes equations:

∇2u = 0 , ∇ · u = 0 (3)

Stokes Biharmonization. Starting from the linearized Stokes
equations (Equation 3), we solve the Newtonian Stokes flow using
the vorticity-velocity stream function. To make the solving flow
problem tractable in mass continuity, we derive a stream function
ϕ for the steady viscous incompressible flow. Since the velocity u
is divergence-free (i.e. ∇ ·u = 0), we express the stream function ϕ
such that u = ∇×ϕ. The operator × denotes the curl as a vector op-
erator describing an infinitesimal rotation. We recall that a vector-
valued curl operator is defined from the scalar-valued function. The
mass continuity equation specifying the divergence of flow velocity
being zero, so we replace the flow velocity by the curl of ϕ in such
way that mass continuity is always satisfied: ∇2u = ∇2 (∇ ×ϕ) = 0.
The vorticity ω of the Stokes flow is defined in terms of its flow ve-
locity by ω = ∇ × u, so ω = ∇ × (∇ ×ϕ). Assuming ∇ · ϕ = 0
the divergence-free property, and ∇ × (∇ ×ϕ) = ∇(∇ ·ϕ) − ∇2ϕ a
well-known vector calculus identity, then ∇2ϕ = −∇ × (∇ ×ϕ).

Defining a stream function ϕ constraints three-dimensional incom-
pressible flow with axisymmetry, while remaining in its 3D form.
This implies that the vorticity of the Stokes flow is the negative of
the Laplacian of the stream function. Now, we derive the ellip-
tic Stokes stream function from vorticity leading to the following
Poisson’s equation:

ω = −∇2ϕ (4)

connecting the stream function to the vorticity. From physics lit-
erature, taking the curl of the Stokes equation and noting that the
curl of the gradient of any twice differentiable vector field is zero,
the vorticity also satisfies the Laplacian equation ∇2ω = 0 and the
creeping flow (Re < 0.1) imposes the following vorticity stream
equation:

∇2 (∇ ×ϕ) = ∇2ω (5)

Figure 5: Stokes Discretization. First, the cage is voxelized and
the boundary condition fall-off function is setup for each cage han-
dle (left-hand side). Second, the compact second-order Stokes ap-
proximation is applied iteratively in the cage interior (middle and
right-hand side). Finally, we obtain our Stokes Coordinates, at the
steady state of the volumetric vorticity stream.



Models Model #Vert Model #Face Cage #Vert Cage #Face Model Reduction Volumetric Grid L2 max RMSE L2 min RMSE L2 avg RMSE

Armadillo (Fig. 5) 15002 30000 110 216 99.3% 90 × 90 × 90 6.9909 0.0894 2.1562
Horse (Fig. 5) 48485 96966 51 98 99.8% 80 × 80 × 80 0.2160 0.0126 0.0752
Old man (Fig. 1) 35215 702538 141 278 99.5% 90 × 90 × 90 0.2646 0.0044 0.0757
Ogre (Fig. 3) 28352 52306 98 192 99.6% 90 × 90 × 90 0.8171 0.0153 0.0394
Flamingo (Fig. 7) 26394 52895 106 208 99.5% 80 × 80 × 80 0.0483 0.0027 0.0141
Camel (Fig. 7) 9770 19536 36 68 99.6% 80 × 80 × 80 0.0640 0.0011 0.0018
Hand (Fig. 7) 14347 28600 101 198 99.2% 64 × 64 × 64 3.4460 0.0731 1.0265

Table 1: Statistics: We report a summary of statistics for a various collection of cage-based shapes. We evaluate the distortion injected
by our Stokes Coordinates encoding, by measuring the associated Root Mean Square L2 errors (normalized by the bounding box diagonal
length) for the identity reproduction and for various cage-based model.

Finally, the steady state dimension-less vorticity becomes:

∇2u = ∇2ω = ∇2
(
−∇2ϕ

)
= 0 (6)

In steady state, we obtain the Stokes-wise biharmonic equation for
the stream function, where the components of u solves the bihar-
monic limit of the Stokes equations [Mohanty et al. 2011]. Conse-
quently,

∇2
(
∇2ϕ

)
= ∇4ϕ = 0 (7)

where ϕ is the scalar-valued biharmonic function, ∇4 is the fourth
power of the Del operator (also known as biharmonic operator),
subject to Dirichlet boundary conditions in the form of a fall-off
function for each cage handle. ∇2 is the square of the Laplacian
operator. In 3D Cartesian coordinates the Stokes-wise biharmonic
equation is a fourth-order partial differential equation is written as:

∇4ϕ (x, y, z) =
∂4ϕ

∂x4 +
∂4ϕ

∂y4 +
∂4ϕ

∂z4 + 2
∂4ϕ

∂x2∂y2 + 2
∂4ϕ

∂x2∂z2 + 2
∂4ϕ

∂y2∂z2

with (x, y, z) ∈ Ω, defined as the inner space bounded by the poly-
hedral cage.

Compact Second-Order Operator. Using the second-order ap-
proximation suggested by Altas et al. [Altas et al. 2002], we con-
struct the unique solution of the Stokes equations as a scalar-valued
biharmonic function ϕ (x, y, z) satisfying Equation 7. For high nu-
merical accuracy, we discretize the approximation with a 18-point
finite centered differences. The compact stencil is defined at each
grid corner point as an approximation scheme limited to two-rings
compact cell. Considering a 3D uniform grid centered at the point(
xi, y j, zk

)
values of the desired solution ϕ, the compact finite-

difference approximations of the Stokes biharmonic operator is ex-
pressed as follows

qi, j,k =
1
48

[ 10
(
qi+1, j,k + qi, j+1,k + qi, j,k+1

)
+ 10

(
qi−1, j,k + qi, j−1,k + qi, j,k−1

)
− qi+1, j,k+1 − qi, j+1,k+1 − qi−1, j,k+1 − qi, j−1,k+1

− qi+1, j,k−1 − qi, j+1,k−1 − qi−1, j,k−1 − qi, j−1,k−1

− qi+1, j+1,k − qi−1, j+1,k − qi−1, j−1,k − qi+1, j−1,k

− 3h
(
qxi+1, j,k − qxi−1, j,k + qyi, j+1,k − qyi, j−1,k + qzi, j,k+1 − qzi, j,k−1

)
]

−
h4

2
ϕ (i, j, k)

(8)

The scalar value at the point at the grid point (i, j, k) are written qi, j,k.
The formulation also incorporates the finite-difference approxima-
tions gradients functions written as qx, qy, qz at the point (i, j, k). We
refer the interested reader to the excellent paper of Altas et al. [Al-
tas et al. 2002] for further mathematical details about this operator.

Volumetric Stokes Weights Solver. We perform iterative
weights conduction our Stokes Coordinates using a volumetric
solver. To make the implementation amenable, we discretize the
Stokes operator inside the voxelized domain of the cage. Since
the approximations use the 18-point compact stencil with a two-
rings grid cells neighborhood (Equation 7), Dirichlet boundary
conditions are incorporated similarly to [Joshi et al. 2007]. Fig-
ure 5 shows the grid discretization employed as the support for the
Stokes-wise biharmonic operator. For each cage handle, we fix a
specific boundary condition and then we apply the Stokes-wise bi-
harmonic operator (Equation 8) iteratively on the grid cell in the
cage interior. The propagation of boundary condition values mim-
ics the fluid flow using several Jacobi-like iterations that iteratively
update the weight map. Figure 5 displays a cut-away slice of the
voxelized cage interior and a close-up visualization of the cage-
handle boundary condition transport acting as fluid-weights propa-
gated through the grid. Our cage-voxelized finite difference method
is similar in spirit to [Joshi et al. 2007] but enriched with a com-
pact second-order operator. The optimal solution for ϕ is reached
at convergence. The iteration termination criteria is reached when
all per-voxel values variations between two iterations lies under a
given threshold, assumed to be sufficient enough for shape defor-
mation applications. Then, Stokes Coordinates are extracted via
trilinear interpolation of the grid cell values qi, j,k (Equation 8). To
ensure partition of unity, we rescale resulting coordinates to ensure
that they sum up to 1. For each model vertex j, we defined a Stokes
Coordinates weighting function w j (l) ∈ R where l is a given cage
handle. To achieve cage-based deformation, Stokes Coordinates
serve as weights to compute the new location of deformed model
vertices p′j as follows, assuming c′l is the deformed location of the
cage handle l:

p′j =
∑

l

w j (l) · c′l subject to ∀l,
∑

j

w j (l) = 1 (9)

Figure 6: Cage-based Shapes. The Horse model is enclosed in a
coarse cage (left). We compare side-by-side the cage-based shape
with mean value coordinates (middle), and the cage-based shape
with Stokes Coordinates (right).



4 Experimental Results and Evaluation

We have implemented a standalone prototype of our compact Stokes
Coordinates in C/C++. We tested our algorithm using an Alien-
ware workstation with 4Gb memory and a Geforce GTX 660 graph-
ics card. Our framework offers three cage-based applications em-
ploying our novel coordinates system: interactive cage-based mesh
editing, cage-based shape encoding, and cage-based performance
capture reuse.

Cage-based Editing and Animation. We perform interactive
cage based editing using our Stokes Coordinates. The cage can be
deformed using Laplacian, As-Rigid-As Possible or linear interpo-
lation techniques. As shown in Figure 3, our coordinates system
is used for data-driven shape deformation to output collection of
animated poses for the Horse and the Armadillo model.

(a) (b) (c) (d)

Figure 7: Cage-based Encoding. We display the default input
model surrounding by its corresponding coarse cage (a), the default
input model (b) and the cage-based model encoded with our Stokes
Coordinates (c). Then, we color-code the root-mean-square error
(normalized by the bounding box diagonal length) measuring the
distortion injected by our Stokes Coordinates cage-based encod-
ing (right-hand side), for the Hand, Camel, Flamingomodel (from
top to bottom row).

Cage-based Shape Encoding. A well-known problem with
cage-based encoding is the conformality. A default cage with our
coordinates can be interpreted as a re-skinning mesh technique
that is not restricted to quasi-articulated or piece-wise rigid shapes.
Figure 6 illustrates a comparison of Mean Value Coordinates and
Stokes Coordinates. Our coordinates finely encode the lips and jaws
of the Horse with quasi-conformal properties. Even if the cage is a
global underlying structure, our Stokes Coordinates can be served
as local shape descriptor. Various cage-based encoding for com-
plex cage-based organic shapes are shown at low-distortion rate.
Reconstructing the enclosed surface with the default case allows
us to compare side-by-side with the default model. Figures 4 and
7 show the measured encoding RMS errors. Table 1 reports per-
formance statistics. The error resulting of the Stokes Coordinates
are somehow correlated with the design choice for the default cage.
This correlation makes the accuracy of Stokes Coordinates highly
dependent on the cage tessellation and thus hard to evaluate in it-
self. We point out that it is challenging for artists to design a cage

for complex organic topologies, even at the rest pose. Nevertheless,
local fine details are acceptably preserved if the cage is sufficiently
shape-aware.

Cage-based Performance Reuse. The reuse of captured dy-
namic mesh is now a crucial problem at the center of various do-
mains of application like filmmaking or cartoon animation produc-
tion for real-world captured data. We reuse performance capture
meshes by decomposing the template shape into a collection of
cage handles. Also, squash and stretch is a fundamental princi-
ple in animation. The right-hand side of Figure 1 depicts cage-
driven surface stretching. We show the feasibility of reusing per-
formance capture meshes by decomposing the static template shape
into a collection of cage handles coupled with our Stokes Coordi-
nates. The humanoid body is locally squashed and stretched by
pushing and pulling cages vertices. Our Stokes Coordinates allow
non-isometric deformations necessary to achieve cartoon-style over
life-like shapes.

5 Discussion

In this section, we propose a discussion of our approach devised for
fluid-inspired coordinates and its implementation, as well as our
results obtained with the proposed techniques.

Fluid-Inspired Coordinates. The fluid principle brings the in-
tuition about how to assign high-order weights to a model for the
cage-based rigging problem. In particular, vorticity transport offers
a practical linear numerical framework to solve cage-based weight-
ing functions by propagating weight following a fluid-flow fashion.
Our method required a straightforward voxelization procedure with
the finite difference to compute high-order coordinates. Finally, our
coordinates system allows rich geometry variations, non-rigid de-
formations and expressive control of the enclosed surface with few
user interactions. Independently, our work also provides a theoreti-
cal understanding of harmonicity property for cage coordinates via
the general flows analogy. Table 2 proposes a high-level compari-
son between our Stokes Coordinates with previous approaches.

Figure 8: Squash and Stretch Deformation. A humanoid model
obtained by performance capture is enclosed inside a bounding
cage (left-hand side). We produce a cage-based shape with lo-
cal non-rigid deformation reproducing cartoon-style squash and
stretch deformation (right-hand side). Using our proposed coor-
dinates, the resulting non-isometric shape deformation is fluid-like
looking with local volume preserving.



Linear Cage-Aware Stokes Flow. The principal limitation of
the Stokes linearization is the restriction of the fluid vorticity, lim-
iting the full potential of fluid dynamic for coordinates computa-
tion. Even if Equation 7 is well-known and has already been ap-
plied to solving cage coordinates, our derivation is new and pushes
forward the literature of biharmonic cage coordinates by expanding
deformation to the level of the flow. Tying bi-harmonic functions to
stokes flows could offer fine tailoring of the weights transportation
by controlling the flow velocity and the curl as the circulation den-
sity of the weight. Also, this sacrifice does not damage the mass-
conserving property of resulting coordinates, allowing rich and ex-
pressive non-rigid control with a shape-aware cage. Our unopti-
mized implementation suffers from computational cost and mem-
ory overhead since the solver converge of the solver depends on the
resolution of the discrete uniform voxel grid. This intermediate dis-
continuous discretization introduce undesired artifacts. This issue
can be solved by multi-grid optimization.

The results demonstrate that cage-based weights lead to satisfactory
control for surface deformation. The iterative scheme to obtain the
Stokes flow solution is very effective with highest strain accuracy.
However, starting from a viscous flow for coordinates computation
does not implies that resulting surface deformations produced by
estimated coordinates will depict physically-valid fluid effects. In
addition, solutions of the linearized Stokes equation do not satisfy
the maximum principle property. The missing reproduction prop-
erty and the low degree of smoothness of the Stokes Coordinates
is inherent to all other coordinates system since conformality in 3D
seems to be impossible. Bounding the generated weight functions
may lead to better intuitive responses.

Properties \Coordinates HC MVC BHC GC Ours

Closeness no yes no yes no
Finite Difference yes no - no yes
Stretchability yes yes yes no yes
High-order no no yes no yes
Stencil Compactness - - no - yes
Local Incompressibility no no no no yes

Table 2: High-level Comparison. We present a comparison ta-
ble of our Stokes Coordinates with previous approaches: Harmonic
Coordinates (HC), Mean Value Coordinates (MVC), Bi-Harmonic
Coordinates (BHC), Green Coordinates (GC).

Compact-Stenciled Vorticity Transport. The proposed high-
order coordinates are resulting from the solution of the vortic-
ity stream equation for the Stokes flow at the steady state. Our
Stokes Coordinates encode shape representation at low-distortion
rate while preserving mass and density. Linearization and bihar-
monization are two key steps to discretize the Stokes flow over the
volumetric domain defined by the low-dimensional cage structure.
Since our flow is not assumed to be irrotational (∇ × u , 0), then
∇2ϕ = 0 is not a trivial solution for the solved system. We demon-
strate the feasibility of deriving biharmonic weights for cage-based
deformation from Stokes’s transport equation. Our second-order
compact solver only requires a compact stencil while retaining
high-order accurate approximation properties of its classical ver-
sion. This technique remains center-differencing in spirit. Finally,
the benefit of fluid-perspective for geometry deformation is that vis-
cosity parameters could potentially offer better control. Still, the
compactness of the employed stencil does not implies the compact-
ness of the coordinates. Then, the compactness only refers to the
stencil and not the result weights.

Local Incompressibility. The volume-preserving property of
the virtual fluid is obtained thanks to the solenoidal divergence-free

vector field ∇·u = 0. However, there is not guarantee that the global
volume of the deformed mesh with Stokes coordinates is preserved.
For stretchable cage-based deformation, the volume conservation is
highly subject to hard constraints expressed by how the cage de-
formed. Then, global incompressibility is not an issue we need to
pay serious attention. However, it is reasonable that Stokes coor-
dinates bring the local incompressibility into the cage-based defor-
mation. Since the object should also shrink when the cage shrinks,
Equation 9 gives control over the change in volume upon global de-
formation by construction. Our incompressibility formulation only
conserves local volumes over isometric sub-region while allowing
as non-isometric as possible constrained deformation. In our work,
we demonstrate that non-rigid isometric deformations have a vortic-
ity propagation behavior reflecting the fluid flow. We estimate the
optimal stretch-minimizing stream since non-isometric stretching
energy is minimized by solving an incompressible Stokes equation
using the finite difference method discretized over the voxelized do-
main.

6 Conclusions and Future Work

In this paper, we describe a method for generating mesh bind
weights for control cages built upon the conceptual fluid-cage con-
nection. Inspired by the incompressible flow theory, we introduced
a new high-order coordinates system for cage-based rigging called
Stokes Coordinates, allowing non-isometric stretching. We borrow
the idea from fluid dynamics to express shape deformation as a
Stokes problem. In particular, we explored stencil computation and
governing field equations for cage weighting functions.

Stokes Cage Coordinates. In this paper, we take inspiration
from incompressible fluid transport to derive weight functions for
cage-based deformation. Since the Stokes flow is difficult to extend
in 3D, we have developed a Stokes rigging solver by taking ben-
efit from a linearization and biharmonization formulation. In the
context of deformable cages, Stokes flow serves as cage weight-
ing functions while providing useful incompressibility and mass-
conserving properties. More importantly, we compute high-order
cage coordinates efficiently by relying on the Stokes stream func-
tion at steady state. We have developed a stand-alone implementa-
tion for the accurate compact scheme. The equation is discretized
on a regular voxel grid and solved in Jacobi-style fashion by re-
peated application of a finite-difference stencil. Our method does
not corrupt the classical cage metaphor, nor does it modify the de-
formation equations. Furthermore, we show that our Stokes Coor-
dinates can be volumetrically discretized and approximated using
only a two-rings grid cells stencil. Further, we would like to in-
vestigate how to pilot the vorticity (for fluid dynamic) and stream
function equation (for fluid kinematic) to allow controllable weight
transport. Applying the Stokes flow principle to cage problems is
interesting since our new formulation brings incompressibility and
localized volume-preserving properties to cage-based deformation
allowing non-isometric stretching.

Future Work. Representing shape deformation as incompress-
ible flow is a very interesting solution to the cage-based rigging
problem allowing volume control. We proposed a vorticity stream
strategy dedicated to high-order coordinates for free-form cages.
We believe our alternative opens new directions for interactive
shape modeling. In the future, we hope to improve the conver-
gence rate of our basic iterative method. A natural extension is
to consider fast rebinding for shape deformation involving topo-
logical changes. Our new fluid-inspired coordinates system could
be extended to skeleton-based deformation or volumetric diffusion
curves. Our new coordinate system could benefit to geometric re-



verse engineering like animation re-skinning or shape decomposi-
tion. We are optimistic that our technique could be useful for volu-
metric diffusion curves or field-guided registration driven by a small
set of cage-handles. Straightforwardly, a potential future work is to
rely on an out-of-core multigrid solver with GPU parallelization or
block-SOR iteration. Another interesting avenue is to generalize
our compact discretization to any irregular grid. Finally, we want
to extend our compact-stenciled strategy to triharmonic or quadri-
harmonic weighting functions. More importantly, we would like
to put efforts in investigating if our method could be of benefit to
animating creatures made of liquid, like amoeba, slugs and so forth.
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