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Abstract 
 

Chronic Lower Back Pain (CLBP) is one of the major types of pain that affects many people 

around the world. It is estimated that 28.1% of US adults suffer from this illness and 2.5 million 

of the UK population experience this type of pain every day.  Most CLBP cases do not happen 

overnight and it is usually developed from a less serious but acute variant of lower back pain. 

An acute type of lower back pain can develop into a chronic one if the underlying cause is 

serious and left untreated. The longer a person is disabled by back pain, the less chance he or 

she returns to work and the more health care cost he or she will require. It is therefore important 

to identify the cause of back pains as early as possible in order to improve the chance of patient 

rehabilitation. The speediness of early diagnosis can depend on many factors including referral 

time from a general practitioner to the hospital, waiting time for a specialist appointment, time 

for a Magnetic Resonance Imaging (MRI) scan and time for the analysis result to come out. 

Currently diagnosing the lower back pain is done by visual observation and analysis of the 

lumbar spine MRI images by radiologists and clinicians and this process could take up much 

of their time and effort. This, therefore, rationalizes the need for a new method to increase the 

efficiency and effectiveness of the imaging diagnostic process. 

This thesis details a novel methodology to automatically aid clinicians in performing diagnosis 

of CLBP on lumbar spine MRI images. The methodology is based on the current accepted 

medical practice of manual inspection of the MRI scans of the patient’s lumbar spine as advised 

by several practitioners in this field. The main methodology is divided into three sub-methods 

the first sub-method is disc herniation detection using disc segmentation and centroid distance 

function. While the second sub-method is lumbar spinal stenosis detection via segmentation of 

area between anterior and posterior (AAP) Elements. Whereas, the last sub-method is the use 

of deep learning to perform semantic segmentation to identify regions in the MRI images that 
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are relevant to the diagnosis process. The method then performs boundary delineation between 

these regions, identifies key points along the boundaries and measures distances between these 

points that can be used as an indication to the health of the lumbar spine. 

Due to a limitation in the size and suitability of the currently existing open-access lumbar spine 

dataset necessary to train and test any good classification algorithms, a dataset consisting of 

48,345 MRI slices from a complete clinical lumbar MRI study of 515 symptomatic back pain 

patients from several specialty hospitals around the world has been created. Each MRI study is 

annotated by expert radiologists with notes regarding the observed characteristics, condition of 

the lumbar spine, or presence of diseases. The ground-truth dataset containing manually 

labelled segmented images has also been developed. To complement this ground-truth dataset, 

a novel method of constructing and evaluating the suitability of ground truth data for lumbar 

spine MRI image segmentation has been developed.  

A subset of the dataset, which includes the data for 101 patients, is used in a set of experiments 

that have been conducted using a variety of algorithms to conclude with using SegNet as the 

image segmentation algorithm. The network consists of VGG16 layers pre-trained using a 

subset of non-medical images from the ImageNet database and fine-tuned using the training 

portion of the ground-truth dataset. The results of these experiments show the accurate 

delineation of important boundaries of regions in lumbar spine MRI. The experiments also 

show very close agreement between the expert radiologists’ notes on the condition of a lumbar 

spine and the conclusion of the system about the lumbar spine in the majority of cases. 
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Chapter 1 . Introduction 
 

Lower back is pain considered as the second most common illness after the common cold. 

More than half of the world population are affected by lower back pain once in their lives [1]. 

In the UK, the figure is higher where about sixty to eighty percent of its population will suffer 

from back pain once in their lives [2]. As a result back pain costs the UK government £1.3 

million per day [3]. One of the main techniques for diagnosing the cause of lower back pain is 

through MRI examination by a radiologist. It has been reported that the number of MRI 

examination in 2014 has increased in the UK by 11.3% to reach 2.61 million compared with 

the number of imaging tests in 2013 [4]. However, the number of radiologists in the UK is 

insufficient for the clinical demand made by the radiology services as there is an increase of 

26% for the MRI requests in comparison to only 3% increase in the consultant radiology 

workforce [5]. The gap between the increasing rate of the radiology services compared to the 

number of radiologists is very wide which justifies the need for automating the diagnosing 

process which usually includes two steps that start with labelling the intervertebral discs area 

then diagnosing the disc abnormality. Lumbar spine MRI images can also be used to diagnose 

different kinds of diseases such as Lumbar Spinal Stenosis (LSS) which is one of the leading 

causes of chronic lower back pain. It is a narrowing of the lumbar spinal canal caused by 

inflammation of bone or soft tissues, which in turn produces pressure on spinal nerve roots. 

Patients will experience symptoms ranging from radicular pain to atypical leg pain to 

neurogenic claudication [6]. Chronic lower back pain is suffered by millions of people around 

the world and MRI is one of the main techniques used for diagnosing patients with back pain. 

The lumbar spine MRI can be taken of the patients in different positions. However, the most 

common position is while the patient is in the supine position where that can affect the load 

and pressure on the disc Subsequently, there have been a number of studies that suggest 
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improvements in the way the scans are carried out which include taking the scans while the 

patient is in an upright position [7] and using a Lumbar Pillow [8]. Other studies propose to 

use different radiology techniques such as Radiographic Myelography [9] to detect the most 

difficult cases of LSS. While we acknowledge that these methods can serve as better 

alternatives to using supine MRIs in some cases, we also argue that supine MRIs remain, in the 

majority of cases, the most practical way to study the lumbar spine. Our argument lies on a 

simple fact that the equipment to carry out supine MRI is much more ubiquitous in hospitals 

than the others. Furthermore, scans taken in a standing or sitting up position are most likely 

affected by patients' movement due to discomfort and can result in bad quality images. Because 

our study relies on gathering and analysing a large amount of data, we, therefore, focus on 

using supine MRI scans rather than other types of scans. For the purpose of brevity, we refer 

to them simply as MRI in the remainder of the thesis. 

In this research, a method is proposed to aid clinicians in performing lumbar spinal stenosis 

detection through semantic segmentation and delineation of important boundaries in axial-view 

MRI images. We will first provide a concise review of related methodologies in the literature 

before presenting the rationale of our proposed method. There is a wide range of algorithms 

for computer-aided medical diagnosis depending on the type of disease they are targeting. 

These algorithms are often specific to a certain type of medical images, such as CT scan, X-

Ray, intravascular ultrasound, or MRI. This is the case because certain types of images can 

capture features of certain diseases better than others. For example, the detection of lumen and 

media adventitia (MA) borders is the key procedure to determine anomalies inside coronary 

arteries. Production, costs, and insurance are usually matters that involve economics [10] [11]. 

To achieve the purpose of this research, utilisation has been made of the current advances in 

image analysis and machine-learning technologies to develop computer-assisted diagnostic 

software. Clinical studies have shown that there are strong correlations between clinical 
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outcome and the morphological characteristics of the patient’s lumbar spine as captured in the 

MRI images [12]. Using a combination of different image analysis and machine learning 

techniques, computers can analyse the images and identify regions of interests for clinicians to 

focus on. The techniques could also be used to provide tools for specialists to help them come 

to the correct diagnosis quickly. As with many other medical imaging processes, the 

aforementioned approach will apply image segmentation as one of the earliest yet important 

steps. To ensure the validity of this step, the process must be grounded in sound medical 

evidence and reasoning as well as proven methodology. 

1.1 Research Problems  

We deduce from analysing the different relevant algorithms in the literature to date that 

boundary delineation through image segmentation is a very popular yet effective method to 

medical image analysis. Nonetheless, we have identified three main problems in the current 

state-of-the-art research in this field.  

1. The first one is the size of the freely available dataset. The most comprehensive 

database of lumbar-spine-related medical images is hosted by SpineWeb [18], however, 

it only contains a relatively small sample size and incomplete datasets taken from 

between 8 and 125 patients. To address this problem, we work together with one 

specialty hospital in Jordan and several physicians and radiologists around the world to 

gather a significant number of relevant MRI scans complete with medical annotation to 

develop our dataset. We made this dataset freely available to the research community.  

2. The second problem is the lack of ground truth data and the means to assess its quality. 

Since the ground truth data is tied to the dataset, the argument of needing a suitably 

large ground truth dataset also applies. Furthermore, because the task of developing 

ground truth data by manually labelling the MRI images is a laborious one, it becomes 

prone to errors. In other words, the data can be inaccurate and inconsistent. We address 
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the problem of how to measure accuracy and variability in ground truth data by 

developing two new metrics which are derived from the existing machine learning 

metrics.  

3. Despite the rapid advances in machine learning techniques, to the best of our 

knowledge, there is only a limited study on their application to lumbar spine image 

segmentation. In this research, we show how the new advances machine learning 

methods can be used to perform the segmentation for the important region of lumbar 

spine MRI which can subsequently be used for disc herniation and lumbar spinal 

stenosis detection. 

1.2 Research Aims and Objectives 

1.2.1 Research Aims 

The aim of this research is to develop a computer-assisted and systematic methodology for 

detection and prediction of potential sources of chronic lower back pain. 

1.2.2 Research Objectives 

To achieve the above-stated aim, the following research objectives are set: 

1. To produce a comprehensive literature review that catalogues previous achievements 

in the related area of research including image processing, computer vision, artificial 

intelligence, computer graphics, and physics simulation that would provide valuable 

knowledge, validation criteria and information of previous work relating to this 

research field.  

2. To understand the reasons and causes of CLBP and how this disease affects the lumbar 

spine. In addition, a clear understanding of the process carried out by the radiologist 

and orthopaedist when diagnosing CLBP. This can be achieved by interviewing several 
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radiologists and orthopaedists and understand their ways of analysing related medical 

data. 

3. To gather a sufficient number of data that is required for this research which includes 

the lumbar spine MRI images and related radiologist reports. 

4. To define methods to do the following: A) Select the MRI image with the best view for 

the lumbar spine disc that can help in diagnosing and detecting the CLBP. B) Separate 

the different important regions in the lumbar spine MRI image to help in help in 

diagnosing patients with chronic lower back pain. C) Locate the important points in the 

lumbar spine MRI image to determine and measure the relevant features that can be 

used to detect the cause of the CLBP. 

5. To implement a working prototype of the proposed methodology and evaluate its 

performance. The evaluation will be done by comparing its results with the reports 

provided by the radiologist for the MRI images used in this research 

1.3 Research Contributions 

1. This research presented a method to aid clinicians in performing CLBP detection 

through three sub-methods: the first one is Disc Herniation Detection using Disc 

Segmentation and Centroid Distance Function, the second sub-method is Lumbar 

Spinal Stenosis Detection via Segmentation of Area between Anterior and Posterior 

(AAP) Elements, the third sub-method is Semantic Segmentation using Convolutional 

Neural Networks. The mentioned sub-methods will be used to delineate the important 

boundaries in MRI images using different types of machine learning algorithms. The 

delineated images will be used to allocate specific points which have been used to 

calculate the distance for the spinal canal width as an indicator for the spinal canal 

stenosis.  
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2. Due to the limitation in size and suitability of the currently existing open-access lumbar 

spine dataset, there are a limited number of images in all the available datasets which 

range from 30 to 242 images and the majority of them are CT images.  Moreover, the 

currently available datasets are not supported by radiologist reports to help the 

researchers in analysing those images. In addition, the process for receiving the dataset 

is very complicated. For all these reasons,  it has been decided to develop our own 

dataset. Our dataset contains clinical lumbar spine MRI study of 515 patients with 

symptomatic back pains. From this dataset, a ground truth label image dataset is 

developed. It can be used to train and test an image segmentation model. 

3. The development of two novel metrics to assess the accuracy and variability of a ground 

truth dataset, namely the confidence and consistency metrics, respectively. These 

metrics are derived from the widely used intersection-over-union metric to measure the 

accuracy of image segmentation algorithms. 

1.4 Research Goal 

The main goal of this research is to provide all researchers “who aim to aid the clinicians in 

diagnosing patients using different types of images” the base needed to start their research by 

providing them with the up to date techniques and methods used in this area. The work done 

in this research can help in developing methodologies to diagnose patients with chronic lower 

back pain and many other types of diseases like detecting lung cancer or brain tumor. 

Moreover, the data used in this research is now freely available for all researchers to speed up 

the research process and benefit in diagnosing other diseases. 
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1.5 Thesis Structure 

The thesis is divided into 8 chapters, each part covering a specific area of the research work. 

The remainder of this thesis is organised as follows: 

 Background Information (Chapter 2): background on lower back pain and the 

economic cost of this disease has been provided. In addition, the spine anatomy 

including a detailed explanation about the lumbar spine and MRI have been also 

discussed.  

 Literature review (Chapter 3): a literature review on medical image analysis and 

methods that currently used medical images. The different types of machine learning 

have been also discussed.  

 Dataset (Chapter 4): the dataset has been introduced in which all our experiments are 

performed in the following two chapters. We introduce parts of our image analysis and 

explain them in more detail, along with explaining the publicly available dataset. 

 Disc Herniation Detection using Disc Segmentation and Centroid Distance 

Function (Chapter 5): This chapter discusses in detail a method for detecting the disc 

herniation using the centroid distance function that uses the disc boundary from the 

segmented MRI images. This chapter will discuss the selected classifiers and their 

training results in addition to the experiments’ results. 

 Lumbar Spinal Stenosis Detection via Segmentation of Area between Anterior and 

Posterior (AAP) Elements (Chapter 6): A method for presenting an automated 

delineation for our area of interest (AAP) that are used to help in diagnosing patients 

with spinal canal stenosis is explained. Furthermore, we have discussed an automatic 

calculation of the spinal canal width. This chapter also includes the technique used for 

cropping the images and the architecture for the deep neural network. 
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 Semantic Segmentation using Convolutional Neural Networks (Chapter 7): The 

Convolutional neural network is used to segment four important regions in the lumbar 

spine MRI image which includes the area of interest (AAP) and three other areas which 

are the intervertebral disc, posterior element and thecal sac which can be used for 

diagnosing more diseases. The development of ground Truth data for automatic lumbar 

Spine MRI Image segmentation will be also discussed in detail in this chapter.  

 Conclusion and Future Work (Chapter 8):   we conclude the thesis, listing our aims, 

objectives, contributions and discussing potential future work. 
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Chapter 2 Background Information 
 

Back pain is one of the major musculoskeletal pain problems which affects many people and 

it is considered as one of the main causes of disability all over the world [13]. The Pain 

Community Centre [14] indicated that in the United Kingdom (UK), 2.5 million people have 

back pain every day of the year. The survey also found that back problems are the leading cause 

of disability with nearly 119 million days per year lost. The survey also found that one in eight 

unemployed people give back pain as the reason for unemployment. Statistically, an individual 

who has been off sick with back pain for a month has a 20% chance of still being off work a 

year later [15]. The percentage of people who return to see their general practitioner (GP) with 

back pain within 3 months is more than 29% [16]. 

2.1  Lower Back Pain 

According to which part of the spine the pain originates from, back pain can be classified into 

two categories, upper and lower. Upper back pain is not as common as lower back pain. 

However, although it is not a very common spinal disorder, upper back pain can cause 

significant discomfort and pain when it occurs. The most common causes of upper back pain 

are muscular irritation and joint dysfunction. While most patients will have a resolution of their 

back pain with simple measures such as using simple analgesia and exercise, a small proportion 

of them develop a more chronic condition, referred to as Chronic Lower Back Pain or (CLBP) 

[2][17]. CLBP is a debilitating illness that affects the health, social life, and employment of 

millions of people around the world. In the UK, the cost of treating patients with CLBP is 

estimated to be around £500 million annually to the National Health Service (NHS) [18]. This 

is on top of other economic costs resulting from the loss of productivity and other informal care 

which is estimated to reach around £10,668 million [19]. 
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It is important to emphasise that CLBP is a chronic illness. While millions of people experience 

some sort of back pain at one point in their lives, only a small percentage of them experience 

what is termed acute lower back pain. This form of back pain is often non-specific and may 

not necessarily be caused by a serious condition. However, a small percentage of people with 

acute lower back pain can develop CLBP if the underlying cause is serious and left untreated. 

A study [15] discovered that the longer a person is disabled by back pain, the less chance that 

he or she returns to work and the more health care cost he or she will require. It is therefore 

important for early identification of back pain cause to happen, in order to improve the chance 

of patient rehabilitation. 

The speediness of early diagnosis can depend on many factors including referral time from GP 

to the hospital, waiting time for a specialist appointment, time for an MRI scan and time for 

the analysis result to come out. Due to the heavy demand for radiologists and clinicians, the 

whole process could take weeks to complete. 

As a short case study, NHS England currently put a target for all imaging and radio diagnostics 

to be within 6 to 13 weeks [20]. However, specialist shortages have caused many patients to 

wait longer. A report by NHS England [20] reveals that there is a significant number of cases 

where diagnostic wait time can be extended to more than 13 weeks. This problem is expected 

to get worse since the number of scans is historically on an uptrend. A report [21] by the Office 

of National Statistics shows that there is a 12.3% average annual growth in demand for MRI 

scans since 1995. This rationalises the need for a new method to increase the efficiency and 

effectiveness of the imaging diagnostic process. 

To have more understanding about this disease detailed explanations and descriptions of the 

lumbar spine anatomy and the MRI will be discussed in the next sections.   
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2.2  Lumbar Spine Anatomy 

The lumbar spine is the lower back area in the spinal column which contains five vertebrae 

labelled L1 to L5 [22][23]. Figure 2.1 shows the diagram of the relative position of each part 

of the spinal column and Figure 2.2 describes the lumbar spine and its parts which are the area 

affected by Chronic Lower Back Pain (CLBP) [24]. 

 

 

Figure 2.1: Anatomy of the Spine [25] 
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Figure 2.2: Lumbar Spine that contains the vertebrae from L1 to L5 [26]. 

 

The lumbar spine is made up of five lumbar vertebrae and each vertebra consists of an anterior 

(body) arch and posterior (rear) arch. In a T2-weighted mid-sagittal view of the lumbar spine, 

as shown in Figure 2.3, the two arches are separated by a long white opening. The part of this 

opening that is visible in this mid-sagittal cut is the Thecal Sac (TS) which contains 

Cerebrospinal Fluid (CSF), the same type of fluid that resides inside the brain. The back of the 

opening, which borders with the anterior of the posterior arch, is covered with Ligamentum 

Flavum (LF). The figure shows the five vertebrae of the lumbar spine labelled L1 to L5. 

Adjacent vertebrae are separated by an Intervertebral Disc (IVD) which is denoted by the two 

vertebrae that sandwich the disc, e.g., L1-L2, L2-L3, L3-L4, L4-L5 and L5-S1, the latter being 

the large triangular-shaped bone at the bottom of the spine, called the sacrum. 
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Figure 2.3: A T2-weighted mid-sagittal view of lumbar spine MRI. 

 

The sagittal view of lumbar spine MRI is the easiest to understand and traditionally is 

considered the best view that can be used to detect certain types of pain-inducing conditions. 

This can be seen from the methods used by some of the earliest computer-assisted diagnosis of 

disc herniation [1], [27], [28]. On the other hand, the axial view of MRI is more difficult to 

read because it has much more information about the lumbar spine at each vertebrae segment. 

As a result, in this view, the clinicians could identify the exact location of any tissue 

inflammations, facet cysts, intervertebral disc herniation, stenosis, or fractures. This view, as 

illustrated in Figure 2.4, can show more information on the various tissues surrounding the 

vertebra, the IVD and the posterior element (PE) of the vertebral body. Also in this view, we 

can see clearly the area between the anterior and posterior element of the vertebral body which 

contains the Thecal Sac and the nerve roots in both lateral recesses. This area extends from the 

cervical spine down to the lumbar spine. For the lack of a suitable medical terminology, in this 

thesis, we will refer to this area as AAP, which is short for Area between Anterior and Posterior 

vertebrae elements. 
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Figure 2.4: Axial View of the Lumbar Spine. 

 

2.3 Causes of lower back pain 

When a patient experiences lower back pain, there may be many possible causes for it, 

including [29], [30]:  

 An irritation to either the large nerve roots in the lower back that go to the legs or 

the smaller nerves supplying the lower back. 

 Straining of the large paired lower back muscles. 

 Damage to the bones, ligaments or joints in the lumbar spine. 

 Degeneration or injury of one or more of the intervertebral discs. 

 Lumbar spinal stenosis.  

 Disc Herniation. 

Lumber spine stenosis and disc herniation are widespread medical problems as they can occur 

when carrying heavy items or having incorrect movements like twisting the lower back and 
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many other reasons which cause heavy stress on the disc [31], [32]. In addition, the lumbar 

spinal stenosis and disc herniation affect a wide range of ages mostly between 30 and 60 years 

old which means a huge percentage of the population may be affected by the disc herniation in 

their life. That was the main reason for choosing these two diseases in our research, in this 

section, two of these reasons will be discussed starting by the spinal canal stenosis followed by 

the disc herniation. 

2.3.1 Spinal Canal Stenosis 

Lumbar spinal stenosis is a narrowing of the spinal canal caused by inflammation of bone or 

soft tissues, which in turn produces pressure on spinal nerve roots. This pressure could result 

in Chronic Lower Back Pain (CLBP) with symptoms ranging from radicular pain to atypical 

leg pain to neurogenic claudication [19]. The area between the anterior arch and the posterior 

arch of the vertebral body, that we discussed previously, extends from the cervical spine down 

to the lumbar spine. For the lack of a better word, in this research, we will refer to this area as 

AAP, which is short for Area between Anterior and Posterior. The width of AAP varies 

depending on the location in the spine where the measurement is taken. Furthermore, there 

have been a number of studies [20]–[22], which record the measurements of spinal canal widths 

in a population of different countries and the results suggest that width of AAP is also affected 

by the patient’s ethnicity. 

Lumbar spine stenosis can manifest as the narrowing of any parts of the AAP and depending 

on where it occurs can be classified as either central stenosis or lateral stenosis. This 

phenomenon is associated as one of the main causes of CLBP because of both the spinal canal 

and the lateral part of the AAP, called foramen, house many nerve roots from different parts of 

the spine to other parts of the body. An abnormal compression of either of them would exert 

pressure on these roots and creates a sensation of pain. 
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The stenosis could occur in any part of the AAP and could be caused by different types of 

defect such as posterior or posterolateral disc herniation, osteoarthritic thickening of the 

posterolateral vertebral body, or hypertrophy of LF. In all of these cases, clinicians will 

measure three distances in the AAP, namely the anteroposterior diameter of the spinal canal 

and the left and right width of the foramen. This process starts by manual delineation of the 

boundaries between AAP and the IVD, between AAP and the left and right facet joints, and 

between the AAP and LF. The three distances and the three boundaries are illustrated in Figure 

2.5. 

 

Figure 2.5: The three important boundaries for stenosis detection between AAP and 1) IVD, 

2) Facet Joints, and 3) LF to measure a) the anteroposterior diameter of the spinal canal and 

b) the left and right width of the foramen 

 

2.3.2 Disc Herniation 

Disc herniation is one of the main possible causes of lower back pain. It affects the spinal 

column by bulging out the nucleus pulposus to the outer ring through the annualus fibrosus 

[33] causing the pain by applying pressure to the nerve root during most of the body’s 

movements [34]. Figure 2.6 (A) illustrates a non-herniated disc seen from an axial view 
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whereas Figure 2.6 (B) illustrates a herniated disc by highlighting the herniated area which 

produces pressure to the nerve root. 

 

 

2.4  MRI Imaging 

Magnetic Resonance Image (MRI) is mainly used to diagnose patients with CLBP or those 

with symptoms consistent with radiculopathy or spinal column stenosis [36]. MRI is the 

preferred method of medical scans for detecting the causes of back pains. MRI images can be 

used to visualise lumbar spine, slice by slice, in three view-planes namely sagittal (side), axial 

(top-down) and coronal (frontal) – typically only the first two are used in lumbar spine MRI. 

Sagittal view of lumbar spine MRI is the easiest to understand and traditionally is considered 

the best view that can be used to detect certain types of pain-including conditions. This can be 

seen from the methods used by some of the earliest computer assisted diagnosis of disc 

herniation [28], [37], [38]. On the other hand, the axial view of MRI is much more difficult to 

read because it has much more information about the lumbar spine at each vertebrae segment. 

 
 

A.  Axial View Model Showing a non-

herniated Disc. 

B. Axial View Model Showing the 

Herniated Area on the Disc. 

 

Figure 2.6: Axial view of (A) non-herniated and (B) herniated Disc [35]. 
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As a result, in this view, the clinicians could pinpoint the exact location of any tissue 

inflammations, facet cysts, disc herniation, stenosis, and fractures. 

Based on the timing of radiofrequency pulse sequences used, MRI images can be one of two 

types namely T1- and T2-weighted MRI [39]. The same tissue could have markedly different 

intensity levels when imaged in each type. One example is Cerebrospinal Fluid (CSF), a clear 

and colourless body fluid that can be found inside our brain and spinal cord. Identification of 

CSF tissue in MRI images has significant relevance to our case since it surrounds the many 

nerve roots inside the spinal cord. Further and more detailed information on MRI and its uses 

as medical imaging technology are explained in chapter 4. 

2.5 Diagnosis of the Lower Back Pain 

The diagnosis of back pains is usually carried out by a radiologist or an orthopedist through 

manual inspection and observation of the patient’s spine MR images, because of the nature of 

different causes of back pains and the way each of them is diagnosed and treated. 

2.5.1 The current method of diagnosing the spinal canal stenosis and disc 

herniation. 

Currently diagnosing the lower back pain is done by visual observation and analysis of the 

lumbar spine MR images and this process could take up much of a radiologist’s time and effort. 

To understand this process, several interviews have been done with experienced clinicians in 

this field to summarise these steps. The current visual observation approach by the radiologist 

for diagnosing the spinal canal stenosis and disc herniation is explained in the following steps. 

1. Selecting the best axial view for the appropriate disc. Normally, each disc has a range 

of slices between 3 and 5 images and the best axial view slice is the image that shows 

all the required details in a way that gives the radiologist the ability to take a diagnosing 



19 | P a g e  
 

decision in the current disc for a particular disease. An example of the selected image 

for the disc L3-L4 is shown in Figure 2.7. 

 

Figure 2.7: The selected slice for the disc L3-L4. 

 

2. The radiologist or the orthopaedist then will find a point at the bottom centre of the disc 

as in Figure 2.8. 

  

Figure 2.8: Illustrate a point at the bottom centre of the disc L3-L4. 
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3. On this step, they need to allocate the lowest point in the spinal canal as shown in Figure 

2.9. 

      

            Figure 2.9: Shows the lowest point on the spinal canal for the disc L3-L4. 

 

4. Find the distance between the point at the centre of the disc and the lowest point of the 

spinal canal as displayed in Figure 2.10. 

 

            Figure 2.10: Illustrate the line between the lowest point on the spinal canal and the 

point at the bottom centre for the disc L3-L4. 
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5. Compare the distance with the standard distance for the normal lumbar spine and then 

decide if spinal canal stenosis is there or not. 

2.6 Chapter Summary 

While diagnosis accuracy is most paramount in medicine, we argue that it is also important to 

improve the effectiveness of the early diagnosis process to prevent benign cases from becoming 

more acute and chronic.  A diagnosis of lumbar spine stenosis and disc herniation is performed 

through inspection of a Magnetic Resonance Imaging (MRI) scan of the patient’s lumbar spine. 

The current diagnosing process of the lower back pain could take up much of the physician’s 

time and effort. Moreover, it can increase the probability of misdiagnosis. The speed of early 

diagnosis can depend on many factors including referral time from the general practitioner to 

the hospital, waiting time for a specialist appointment, time for an MRI scan and time for the 

analysis result to come out. Due to the heavy demand for radiologists and clinicians, the whole 

process could take weeks to complete. Developing a computer-aided diagnosing system will 

help the clinicians to efficiently diagnose this kind of disease. At the same time, there is a 

pressing need for this type of application to help radiologists and orthopedists in their tasks. In 

our method, however, we argue that it is best to use the axial-view slice of the MRI because it 

has much more information about the lumbar spine at each vertebrae segment than a sagittal-

view slice. In the following chapter, the literature review for the current methodologies that use 

the medical images in the computer-aided diagnosing is discussed. 
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Chapter 3 Literature Review  
 

Clinical studies have indicated that morphological characteristics of lumbar discs and signal 

intensity of the patient’s MR image have a strong relationship with clinical outcome [34]. To 

this end, Computer Vision and Artificial Intelligence algorithms can be utilised to exploit these 

facts by analysing the MR images, calculating appropriate image features, and classifying them 

to decide if any particular regions in the image belong to problematic areas. The literature 

review in this research is build using the up to date published research which includes the 

medical images, computer-aided diagnosing system, and machine learning. The research 

started by analysing most of the available research and only the significant research is 

referenced in this thises. 

3.1 Medical Image Analysis 

Image features are as a set of important information derived from an image or a subset of an 

image that can uniquely describe the image contents. This information is extremely important 

in computer vision as it can be used to label or mark specific locations of the image and can be 

used in comparing different images. There are two types of image features namely global and 

local features. 

Local features are computed at different locations in the image using only the small support 

area around the location point. As such, local features describe only the image in the context 

of that small subset and nothing else. That means even when the other parts of the image 

undergo changes, as long as the support area remains the same, local features would more likely 

not be affected. This is one of the strong points of local features over global features because 

they are robust to occlusion. Examples of local features are corners, edges, and texture 

descriptors. On the other hand, global features are derived from the entire image which results 

in their ability to generalise the entire image into one single feature vector. One example of 
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global features are image code, which is a compressed form of the image using an appropriate 

coding technique that preserves the high-level information of the image contents [40]. 

Alternatively, global features could be constructed from a collection of local features such as 

shape descriptors, contours descriptors and/or texture descriptors. 

Image analysis and comparison are performed by means of classifying its features. This is done 

by comparing the features from the test image in question with those from training data. A 

brute force approach for comparing two sets of image features would compare every feature in 

one set to every feature in the other and keep track of the "best so far" match. This results in a 

heavy computational complexity in the order of O(N2) where N is the number of features in 

each image. A number of algorithms have been proposed to improve the computational 

complexity, including the popular kd-tree technique [41]. This technique uses the exact nearest 

neighbour search and works very well for low dimensional data but quickly loses its 

effectiveness as dimensionality increases. The popularity of the kd-tree technique has seen a 

number of proposals to further improve the algorithm including [42], [43]. The success of a 

more recent matching technique called Fast Library for Approximate Nearest Neighbour 

(FLANN) [44] is another example how the computational complexity of image feature 

comparison can be further reduced to allow near real-time execution. 

The uniqueness of each proposed algorithm in this category often lies in the choice of features 

and matching algorithms as well as a novel application of existing methods to a new or untested 

application. Below we review a number of algorithms that were proposed to identify regions 

in the MRI that are responsible for CLBP. 

A method for curvature scale space image in shape similarity retrieval is developed in [45]. 

The paper used the curvature scale space CSS images to solve the problem in the shape 

similarity retrieval in image databases. The arch-shape contours in the CSS images are used to 
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represent the flexion of the shape in the image. The shape is represented by having the 

maximum of this contour. The CSS representation provides a method which can be easily used 

for the process of the shape similarity retrieval.  

Ma and Manjunath [46] have provided an implementation of NeTra which is an image retrieval 

system by using many different features including the image colour, information of the location 

for the segmented region of the image, texture and the shape. An algorithm for image automatic 

segmentation is developed that gives the ability to search for a specific region on the image. 

They are segmenting the images into different regions after which a calculation for the image 

attribute is done. Moreover, there are many other processes performed to increase the 

performance of the retrieval process which represents the colour, colour indexing, texture and 

calculating the shape features. The curvature, centroid, and complex functions are used by the 

author’s experiment as a contour type derived from the boundary coordinate. 

Saleh and Eswaran in [47] developed an automatic diagnosing system for diabetic retinopathy. 

The system has a user-friendly interface which gives the ability to grade the severity of the 

diabetic retinopathy after locating and examining the first indication for the disease. The 

authors use the centroid distance function and depend on the shape to find the exact location 

of the optic disc.  

3.2 Medical Images in the Computer-Aided Diagnosing System 

Computer-Aided Diagnosis (CAD) systems have been researched and developed to improve 

the effectiveness and efficiency of many medical procedures. As an example, when locating 

regions of interest in medical images for radiologists to focus on, or to provide a “second 

opinion” before a physician makes their final decision. It is important to note that fully 

automated diagnosis systems are not expected to replace, in the foreseeable future, experts 

performing medical diagnoses. Instead, a CAD system is expected to complement the 
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physicians’ ability rather than replace it [48]. The development of a CAD system involves 

modelling and embedding medical knowledge and thus incorporate a design of artificial 

intelligence through machine learning. 

Visual observation and analysis of MR images could take up much of a physician’s time and 

effort. As a result, physicians would opt to use a Computer-Aided Diagnosis (CAD) to help 

with this task. There are a number of CAD systems that can be used for various clinical 

purposes ranging from a CAD system for detecting colonic polyps and breast cancer in 

mammography, to another for detecting prostate cancer using MR images [27]. Despite the 

availability of these systems, physicians still have to overcome a number of technical 

challenges due to the wide range of imaging characteristics and resolutions [49] as well as due 

to the limitation of the algorithms employed to highlight areas of interest. 

Segmenting the area of interest and allocating the border for the segmented area is one of the 

main required tasks to help in automising the diagnostic process. There are many different 

methods that have been developed for segmentation and disease detection. One of the most 

recent frameworks for detecting these borders was proposed by Gao et. al. [10]. In [50], the 

authors then apply this framework by using an Artificial Neural Network (ANN) method as the 

feature learning algorithm for detecting the borders. In this method, two types of imaging 

information, including spatial-neighbouring features, were used as the input data to one ANN 

that has two sparse auto-encoders as a classifier. Another ANN was used as an optimizer. The 

paper presented a comparison between this method’s performance and the manual drawing 

approach on 461 IVUS images and reported a highly accurate result. A variant of the method 

using three types of features has also been proposed in [51] using 538 IVUS images. 

Intravascular ultrasound images are not, however, the only possible source of information for 

detecting vascular anomalies. Recently, a regression segmentation framework to delineate the 
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boundaries of bi-ventricle from cardiac MRI was proposed [52]. In this framework, a regression 

model has been trained automatically on a deep belief network by using extracted DAISY 

feature [53] as input and using automatically generated boundary points as labels. The method 

was reported to yield high performance when tested on 2,900 images taken from 145 clinical 

subjects. 

MRI scans and Neural Networks have also been used to diagnose other illnesses. A recent study 

[54] shows that a Convolutional Neural Network (CNN) can be used to reliably (with a reported 

accuracy of 98.8% when data augmentation and stochastic pooling are applied) identify 

Multiple Sclerosis in brain MRI scans. The experiment was conducted on images from an open-

source dataset [55] (containing 676 Multiple Sclerosis slices from 38 subjects) and another [56] 

(containing 681 healthy slices from 26 subjects) as a control dataset 

3.3 Computer-Aided Diagnosing System for Lumbar Spine Stenosis 

The previous methods are some of the most recent examples of how image segmentation can 

be used for border detection and delineation in medical images. There is a wide range of 

algorithms for computer-aided medical diagnosis depending on the type of disease they are 

targeting. These algorithms are often specific to a certain type of medical images, such as 

computed tomography (CT) scan, X-Ray, intravascular ultrasound, or MRI. This is the case 

because certain types of images can capture features of certain diseases better than others. For 

example, the detection of lumen and media adventitia (MA) borders is the key procedure to 

determine anomalies inside coronary arteries. This procedure is most often carried out using 

intravascular ultrasound (IVUS) images rather than any other types of images because it has 

been well recognized as one powerful imaging techniques to evaluate the stenosis inside the 

coronary arteries. 
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Jiang et. al. proposed a visualization and quantitative analysis framework using the image 

segmentation technique to derive the features that are extracted from patients’ MR images, 

which were found to have a close relationship with the Lumbar Disc Herniation score [57]. The 

features are the distribution of the protruded disc, the ratio between the protruded part and the 

dural sacs, and its relative signal intensity. 

Alomari et. al. [27], [28] proposed a probabilistic model for automatic herniation detection 

work by combining the appearance and shape features of the lumbar intervertebral discs. The 

technique models the shape depending on both the T1-weighted and T2-weighted co-registered 

sagittal views for building a 2D feature image. The disc shape feature is modelled using Active 

Shape Model algorithm while the appearance is modelled using the normalised pixel intensity. 

These feature-pairs are then classified using Gibbs-based classifier. The paper reported that 

91% accuracy is achieved in detecting the herniation. 

A vertebrae detection and labelling algorithm of lumbar MR images is proposed in [49]. The 

paper firstly converts the 2D MR images to 3D before using them as an input to the detection 

algorithm. This detection algorithm is a combination of two detectors namely Deformable Part 

Model (DPM) [58] and inference using dynamic programming on chain [59]. After the spines 

were detected in the 3D images a graphical model of the spine layout is built and bounded 

boxes for all vertebrae in the images are labelled. The algorithm is evaluated on a set of 291 

lumbar spine test images with a variable number of vertebrae visible and is reported to achieve 

84.1% and 86.9% correct identification rate for overall vertebrae and lumbar vertebrae 

respectively. 

A computational method to diagnose Lumbar Spinal Stenosis (LSS), which is a medical 

condition in which the spinal canal narrows and compresses the spinal cord, from a patient’s 

Magnetic Resonance Myelography (MRM) and MRI was proposed. An image segmentation 
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process is first carried out as a pre-processing step to identify the affected dural sac area in the 

input images. It then produces the relevant image features based on the inter and intra-context 

information of the segments and uses them to detect the presence of LSS [1]. 

A more recent and relevant technique to our work is an unsupervised neural foramina boundary 

delineation framework by He at. al. [60]. This framework uses the Multi-Feature and Adaptive 

Spectral Segmentation (MFASS) algorithm to automate the delineation process of neural 

foramina in the mid-sagittal view of a lumbar spine. MFASS utilizes a combination of region 

and edge features to generate spectral features that can be used to separate neural foramina and 

its surroundings. The separation process is controlled by adjusting the separation threshold, 

which is optimally and automatically estimated for each individual image. The framework is 

tested on 280 neural foramina MR images from 56 clinical subjects. The results are compared 

with manual boundary delineation performed by experienced physicians and analyzed using 

two metrics namely the Dice metric (a variant of the intersection-over-union metric) to measure 

segmentation overlap, and the Symmetric Mean Absolute Surface Distance (SMAD) to 

evaluate the delineation accuracy [61].  The paper reported a high consistency with manual 

delineation results (Dice: 90.58% ±2.79%; SMAD: 0.5657 ±0.1544 mm). 

3.4 Machine Learning 

Machine learning is often confused with data mining and knowledge discovery in databases 

(KDD), which share a similar methodology. Before the modern machine learning techniques, 

performing simple tasks was developed by giving the computer instructions or controlling the 

computer system by defining a complete task algorithm and then programming the algorithm 

into the computer which could consume much time and effort for computer specialists.  

Machine learning algorithms are used to optimize the performance criterion using example data 

or past experience. Models are defined based on some parameters, and the learning process is 
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the execution of a computer program to optimize the parameters of the model using training 

data or past experience [62]. The model is used to make predictions in the future or descriptive 

to gain knowledge from data or both. There are many examples of machine learning problems. 

This thesis will discuss the classification problem in detail as this study is focusing on this 

specific concept. In classification, objects need to be categorized into fixed categories by taking 

input and labelling them as belonging to a given class. The decision being modelled is to assign 

labels to new unlabelled data. This can be thought of as a discrimination problem, modelling 

the differences or similarities between groups [63]. 

In regression, the aim is to predict a real value using historical data. For instance, ML can be 

used to predict how much it will rain tomorrow, or predict how much a house will be worth a 

couple of months in the future; other examples including the prediction of time series data like 

the price of a stock over time, the decision being modelled is what value to predict for new 

unpredicted data. 

Another ML problem where the data is not labelled but can be divided into groups based on 

similarity and other measures of natural structure in the data is defined as clustering. A 

clustering or cluster analysis is the procedure of grouping a set of objects to discover that 

objects belonging to the same group (known cluster) are more similar (in some sense or 

another) to each other than to those in other groups (clusters). The Self Organized Map (SOM) 

network is a strong network and it can be implemented for feature selection, visualisation, and 

clustering tasks  

The main goal of the data processing job is to select appropriate methods to a wide range of 

challenging real-world data-sets. Experienced data scientists cannot judge which algorithm will 

perform best before trying them, hence data need to be studied before using them in ML 

processing. 
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3.4.1 Artificial neural networks 

Biologically, a simple neuron has four basic components: dendrites, soma (cell body), axon, 

and synapses as shown in Figure 3.1. Dendrites are assumed as input channels which receive 

inputs (signals) from the synapses of other neurons and send them to the soma. The soma 

processes the signals over time to transform the processed value as output and send it to other 

neurons through the axon and the synapses [64]. 

 

Figure 3.1: illustrations of biological neuron parts. 

 

The ANNs try to replicate the basic component of the human brain. Right up to the present 

moment researchers and scientists continue evolving various methods and models of neural 

networks to reach a higher accuracy rate in solving different problems [65]. 

ANNs consist of a number of basic units called neurons. The artificial unit is often called an 

artificial neuron, perceptron, node, unit or processing element (PE). It is designed in a method 

to stimulate the four natural neuron functions. As shown in Figure 3.2 the unit or processing 

element receives inputs from other units or external inputs xi. These inputs are connected with 

other processing elements by weights Wij which is the weight connection from node j to node 

i. Each input is associated with different synaptic weights. The inputs are multiplied by the 
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connection weights and the products are summed to obtain the net input. Then they are fed 

through a transform function, thus generating the neuron’s output or unit activation, Y at the 

output layer. 

SUM= ∑ wijxi                                    (3.1) 

 

 

Figure 3.2: Network of artificial neuron or perceptron. 

 

It is important to understand that the input nodes are used to provide the data to the neural 

network while the hidden nodes and the output units are considered as processing elements 

[64]. According to A.C.Knowles 2005 [66] there are two main types of NN architectures; 

feedforward networks and feedback or recurrent networks. The neural network is named 

feedforward NN when it is organized into layers which are input layers, hidden layer/s , output 

layer and the connections between consecutive layers have the same direction [67]. These NNs 

can include any number of neurons per layer, as well as having any number of hidden layers 

[64]. 
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3.4.2 Convolutional Neural Network 

A convolutional neural network (CNN) is considered as one of the most commonly used deep 

neural networks for deep learning images. The convolution is the mathematical linear operation 

between matrixes and this is the reason for naming this algorithm. CNN has multi-layers 

counting the convolutional, non-linearity, pooling, and fully connected layer in addition to the 

input and output layer [68]. In the convolutional layer, the input images will go through a set 

of convolutional filters where certain features from the image will be activated. Nonlinear 

downsampling and the number of the parameter will be reduced to simplify the output in the 

pooling layer. Another layer called rectified linear unit (ReLU) is implemented to map the 

negative values to zero and maintain positive values to have quicker and more efficient training 

as seen in Figure 3.3 [69] [70]. 

 

Figure 3.3: Convolutional deep neural network layers 

 

3.4.3 Support Vector Machine 

Support vector machines (SVM) is one of the supervised machine learning methods with the 

ability to analyse the datasets that can be used for the regression and classification role [166], 

minimising the misclassification done using SVM through a training phase, which is known as 

the maximum margin point [71]. 

The SVM model, on the other hand, is one of the dichotomous, kernel-based learning methods 

in which the Open Virtualization Format method extends its functionality to multi-class 
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classification. The MLP model uses a backpropagation algorithm to adjust the weights and 

determine the set of weights and bias values with the goal of minimising the error rate. In 

contrast, the SVM model in this study uses a Gaussian radial basis kernel function (RBF) to 

map the data into high dimensional space, where it is easier to create a linear decision boundary 

in the features space. The decision boundary, also called hyper-plane, should maximise the 

margin between the classes for optimal diagnosis. 

For instance, using LSVM to predict the health state, diabetic versus non-diabetic for a 

particular patient, based on genetic data by giving a set of data samples with a two-class 

problem where the classes are linearly separable. 

D =  {(𝑥1, 𝑦1), … … . . , (𝑥𝑚, 𝑦𝑚)}                    (3.2) 

For the training data a set of input vectors 𝒙𝒊 with each one having a number of component 

features. These input vectors are paired with corresponding labels 𝒚𝒊 , and there are 𝒎such 

pairs (i= 𝟏, 𝟐, … … 𝒎) where  

{
𝑥 ∈ 𝑅𝑛

𝑦 ∈ {−1, + 1}
}  , n is the data dimension  (3.3) 

 As shown in Figure 3.4 diabetic cases would be labelled 𝒚𝒊 = +𝟏, non-diabetic 𝒚𝒊 = −𝟏, and 

the matching 𝒙𝒊 are input vectors encoding the variables data derived from each patient. 

Separated by hyper-plane and the feature vector (Support vectors) represents the data points 

subset of the training data that lie closest to the hyper-plane or decision line [72]. 

 

Figure 3.4: Diabetic and non-diabetic data separated linearly by hyper-plane. 
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Figure 3.5: SVMC linearly separable set of two classes. 

 

Classifying datasets is considered a common procedure in machine learning algorithms such 

as SVM. In this model, a dataset is shown as a p-dimensional vector in order to create a model 

that is able to separate such points with a (p − 1)-dimensional hyper-plane. A number of hyper-

planes can be applied to separate the datasets into group sets as shown in Figure 3.5. The main 

function of applying hyper-plane is to deal with the largest margin, or separation, between the 

two sets or more multi-class labels. In this regard, we select the hyper-plane to maximize the 

distance from the nearest data point on each side. 

Figure 3.5 illustrates an example of a group of instances, with using optimal separating hyper-

plane 1 in the purpose of maximum margin. The hyper-plane usually needs to be drawn in the 

midway point between the two margins. The SVM models require learning where the optimal 

hyper-plane should be fitted. The main aims behind maximizing the margin are to minimize 

the probability between points of different classes, that are unclassified or unseen, that may 

drop on the wrong side [73]. The first hyper-plane (H1) work is the best one among others, 

which is able to separate them with the maximum margin. The second hyper-plane (H2) is 

capable of separating points, but with a small margin. The last hyper-plane (H3) isn’t able to 

separate the data sample. 

H1 
H2 

H333

https://en.wikipedia.org/wiki/Support_vector_machine
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Given the optimal hyper-plane function 𝒉(𝒙) = 𝒘𝑻. 𝒙 + 𝒃, for any new point 𝒛, the  class can 

be predicted  as  

𝑦̂ = sign(𝑤𝑇 . 𝑧 + 𝑏)                   (3.4) 

Where the sign function returns +1 if its argument is positive, and −1 if its argument is negative. 

Non-linear SVM can separate datasets of the two classes that may not be linearly separable in 

input space. It may not be possible to find a directed hyper-plane separating the two classes of 

data [74], [75]. For this reason, an alternative representation of the data will be the key in such 

classification by performing mapping the data points into an input space with different 

dimensionality, called feature space. A dataset which is not separable in input space can always 

be separated in a space of high enough dimensionality. For example, Figure 3.6 shows a dataset 

of the two classes in a 2-dimensional space, mapping to a third dimension, such that the +1 

labelled points are moved forward and the −1 labelled are moved backward, thus two classes 

become separable. The idea is to map the original d-dimensional points 𝐱𝐢 in the input space to 

points φ (𝐱𝐢) in a high-dimensional feature space via some nonlinear transformation φ 

(mapping function for each point). The linear SVM method can be used, where the points φ 

(xi) might be linearly separable in the feature space. 

 

Figure 3.6: Two and three-dimensional illustration of data. 
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3.4.4 Decision Tree 

The method followed in the decision tree was based on a logical or binary operation to 

implement an automatic computing procedure. The terminology associated with the decision 

tree is as follows: 

 Root Node: this node represents the entire sample of data, which gets divided into two 

or more similar sets [76]. 

 Splitting: this node represents a process of dividing a node into two or more sub-nodes. 

 Decision Node: this node shows when a sub-node separates into more sub-nodes. 

 Terminal Node: This node doesn’t split [77]. 

 Pruning: this node represents the process of removing sub-nodes from the Decision 

Node. It is the opposed process of Splitting. 

 Sub-Tree: this is a whole sub-section of the whole tree [78]. 

 Parent and Child Node: a parent node is a node which is divided into sub-nodes which 

are called the child node of the parent node [79]. 

Using the Tree-based Model VS Linear Model 

A. The linear model works best if a linear model estimates the relationship between 

dependent & independent variables. 

B. If there is a complex relationship between dependent & independent variables, then a 

tree model works best. 

C. For simplicity and ease of interpretation by people, the decision tree is the best method 

to use. 

3.4.5 Boosting 

Boosting combines weak learner to form strong rule. In order to find a weak rule, we apply 

base learning (ML) algorithms with a different distribution. Every time the algorithm is applied 
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it generates a new weak prediction rule. This process is repetitive. After many repetitions, the 

boosting method combines weak rules together into a single prediction rule [80]. 

The best ways to choose the right distribution are: 

1. The base learner takes all the distributions and assigns equal weight to each observation. 

2. If there is any prediction error caused by a first base learning algorithm, then we focus 

on observations that are having prediction error. Therefore, we apply the next base 

learning algorithm. 

3. Repeat step 2 until the limit of the base learning algorithm reaches the maximum 

accuracy level. 

In conclusion, this algorithm combines the outputs from the weak learner and creates strong 

learner which improves the prediction power of the model. 

There are many boosting algorithms, which convey an additional boost to the model’s 

accuracy. The two most commonly used algorithms are, Gradient Boosting (GBM) and 

XGboost. 

Extreme Gradient Boosting ‘XGBoost’ 

XGBoost is an implementation of gradient boosted decision trees designed for speed and 

performance. It was engineered for the efficiency of computation time and memory resources. 

The main goals of using XGBoost are execution speed and model performance [80].  

A. Execution Speed: XGBoost is fast in comparison to other implementations of gradient 

boosting. 

B. Model Performance: XGBoostcontrols structured datasets on classification and 

regression predictive modelling problems. 
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There are advantages and disadvantages for using this algorithm, and some of the features are: 

1) Sparse aware implementation with automatic handling of missing data values. 2) Block 

structure to handle parallelization of tree construction. 3) Training so that you can boost an 

already fitted model on new data. However, the price and the low number of algorithms are 

considered as a major drawback of XGBoost. 

Gradient Boosting and Random Forests are both ensemble learning methods that predict by 

joining the outputs from individual trees. They are different in the way the trees are constructed 

and the way the output results are combined. Although it may appear that Gradient-boosted 

decision trees (GBDTs) are better than random forests, they are prone to over fitting.  Random 

Forests train each tree independently using random samples of the data. This way aids in 

making the model more vigorous than a single decision tree and unlikely to over-fit on the 

training data. Whereas GBDTs build trees one at a time, the new tree helps to rectify the errors 

made by the previously trained tree. Every additional tree adds more expressiveness to the 

model. Training GBDTs generally takes longer because the trees are built successively. 

Benchmark results have shown GBDTs are better learners than Random Forests. 

3.4.6 K-Nearest Neighbour 

K-Nearest Neighbour Algorithm (KNN) is one of the most used algorithms. It’s used in many 

areas including machine learning and pattern recognition [81]. The closest training example in 

the feature space is the method followed for all the objects’ classification. The classifying 

process is done depending on the plurality of its neighbours. Meanwhile, the K-Nearest 

Neighbour method hangs on the theorem in principle. However, the KNN method in the 

category decision relates to a small group of adjacent samples. Figure 3.7 illustrates the 

instances with the blue and orange signs and the query with a yellow hexagon [82]. The main 
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procedure in this algorithm is divided into two parts starting by finding the nearest K instance 

followed by taking the majority vote of its neighbours to classify the dataset. 

 

 

 

 

 

 

 

 

 

Figure 3.7: K-nearest neighbour algorithm (KNN) example. 

 

The test sample in Figure 3.7 is yellow hexagon, which is classified into two classes, blue and 

orange triangle.  The hexagon object indicates a new data point and we want to predict the class 

of it. If K=3, the algorithm will look at the 3 nearest neighbours to this new data point (inner 

circle) where we have two blue class objects and one orange object. Due to the majority of the 

blue class objects being near to the hexagon, it will be classified into blue class B. On the other 

hand if K=7, the algorithm will predict the new data point into the orange class as now there 

are more of the orange class in the outer circle as compared to the blue class. [83]. 

3.5 Chapter Summary 

As a summary of the literature. It is noticeable that there is only a limited study on the machine 

learning techniques and their applications to lumbar spine image segmentation. This limitation 

was a motivation for this research to go further and improve the currently available methods. 

To improve the currently available methods it is important to have a dataset that contains 

enough number of images in addition to radiologist reports. The next chapter will include a 

discussion about the available dataset and the type of images used in each one of the datasets. 
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A comparison between those datasets and the available features will be used to state the reason 

to start developing our own dataset which contains a lot of properties and features to help in 

achieving the required result.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 | P a g e  
 

Chapter 4 The Dataset Developed for this Research 
 

Accessing the publicly available dataset was a big challenge for many reasons such as the 

complicated process to receive the data, the very small amount of available data, the non-

availability of medical reports for the images, and the type of available images. All these issues 

required us to build our own dataset. In this chapter, the dataset used to illustrate the work in 

this thesis will be described. The dataset consists of a scan of 575 patients with lower back pain 

with at least the images for the last three discs for each patient’s lumbar spine. The publicly 

available dataset provided from the SpineWeb website is described in section 4.1 along with 

the Lumbar Spine MRI dataset which is used in our thesis.  

4.1 The Available Open-Access Dataset 

Dataset 1:  The dataset published in the cross-modality spinal images for spine workshop  

contains MRI and CT images for the 30 patients’ lumbar spine [84]. However, only the data 

for 20 patients are available. As we are only interested in the MR images and after analysing 

this dataset we have noticed that the T1 images are only available for this dataset. Meanwhile, 

the radiologist reports for this dataset are not available.   

Dataset 2: A set of 10 patients with 18 trauma CT scan images with their labels are provided 

by the Department of Radiological Sciences, University of California, Irvine, School of 

Medicine. The manual label provided for these images is for the vertebrae only However, there 

are no medical reports provided with this dataset [85]. 

Dataset 3: This training dataset contains 242 CT scan images for 125 patients as some of the 

patients have a repeated scan for a long diagnosis and follow-up procedure. Manual annotations 

have been provided for the vertebra centroid. Spine data information for the patients is provided 

which contains the scan ID, number of scans for each patient, gender and age [84]. The 

Department of Radiology at the University of Washington provided the dataset for the 
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Computational challenges on spine imaging workshop CSI 2014. This dataset does not contain 

the radiologist report to help in the diagnosing process. 

Dataset 4: A set of spinal canal CT scan images provided by Melih S. Aslan  [86]. The dataset 

contains CT images for 5 patients with ground truth for all the images. However, the manual 

segmentation is not provided if the full scan is not fully provided for the vertebrae. The dataset 

has no medical report for the diagnosis prediction stage. 

Dataset 5:  A binary mask manual segmentation and the CT scan images are provided by [87] 

for 10 patients. Moreover, for each one of those patients lumbar spine vertebrae images are 

provided. This dataset has used landmark-based shape representation in the 3D view. This 

dataset does not provide the medical reports for those patients to be used in the diagnosing 

process. 

Dataset 6: A dataset of four patients’ lumbar spine images has been used in [88]. These images 

are provided in a CT scan image with a reference manual segmentation for each vertebra from 

Level 1 to Level 5. The manual segmentation for each one of the vertebrae is provided as a 

binary mask in the meta-image format used. The overall images have been released during the 

Challenge on Spine Imaging CSI 2016. The medical report for these images is not provided 

with the dataset  

Dataset 7 : In the International Conference on Medical Image Computing and Computer-

Assisted Intervention “MICCAI” a dataset of 30 pairs (antero-posterior and lateral) of vertebral 

fracture assessment VFA images has been released for the challenge “Automatic vertebral 

fracture analysis and identification from vertebral fracture assessment VFA by dual-energy x-

ray absorptiometry DXA“ [84]. The dataset contains 10 pairs with a compression fracture, 10 

pairs for normal vertebrae and another 10 with another type of deformation. Moreover, these 
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images do not contain medical reports to help in the diagnosis process for any other research 

issues. 

Dataset 8:  A dataset to help in understanding the name, location and the different positions of 

the vertebrae is provided by [89] which also includes the 3D for the vertebra centre location. 

The ground truth is developed from the manually annotated vertebra 3D orientation. However, 

there are no medical reports with this dataset. 

Dataset 9: The CT images of the spine for 10 patients are provided by the trauma centre at the 

Department of Radiological Sciences, University of California, Irvine, School of Medicine. 

The data is divided into two groups as five of the patients have a vertebral compression fracture 

and the rest of the patients are an adult group with an age range from 20 – 35 years old. The 

images are in mhd/raw format. The data has been used in [90] for the vertebra segmentation as 

a part of the spinal column analysis. Similar to the previous datasets, the medical reports are 

not provided with this dataset. Table 4.1 shows all the available dataset with its details. 

However, some of this dataset is not accessible and no longer available to the public. 
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Table 4.1: Shows all the available dataset in the SpineWeb web page with its details. 

Dataset # Image 

Type 

Number of 

Images 

Number Of 

Patients 

Type of availability Comments 

1 CT and 

MRI 

30 N/A The online form needs to be filled to obtain the 

data. 

 
The ground truth is not provided. 

 

2 CT N/A 10 Segmentation challenge of the CSI 2014 

Workshop. Published Paper is used for the 
citation 

 

Detection of Vertebral Body Fractures Based on 
Cortical Shell Unwrapping, 

 

ODC Public Domain Dedication and License 
(PDDL) 

(http://opendatacommons.org/licenses/pddl/1.0/). 

The 

segmentation is 
also provided. 

3 CT 242 125 localization and identification challenge of the 

CSI 2014 Workshop 
http://research.microsoft.com/spine/ 

 

4 CT N/A 5   

 

Published Paper 

Clinically desired segmentation method for 
vertebral bodies 

18 (10 female 8 male) 

 

5 CT 10 10 Published Paper. 

The code and image databases are publicly 
available through http://lit.fe. 

uni-lj.si. 

 

6 CT N/A 30 CSI 2016 challenge + Published  

7 X-Ray N/A 30 Testing Set of the MICCAI 2015 Challenge  

8 MRI + CT N/A 20 Published Paper  

9 CT N/A 10 Published Paper  

 

4.2 Lumbar Spine MRI (LSMRI) Dataset  

All procedures performed in this research are both in accordance with the ethical standards of 

the United Kingdom and comply with the 1964 Helsinki declaration and its later amendments. 

The approval was granted by the Medical Ethical Committee of Hospitals which provided this 

data. The data was collected between September 2015 and July 2016 from patients who 

attended the hospital who reported relevant pains. Written formal consent was obtained from 

each patient prior to the data collection. A personal-data cleaning process was applied by the 

hospitals to the collected data to remove any information that can be used to relate the data to 

any patient such as the patient’s name and contact details. We assign each patient’s data with 

a unique identification number and only refer to particular data with its assigned number for 

subsequent processes. This allows the data to be accessed anonymously as stipulated by the 

ethical committee’s condition of approval.  

http://csi-workshop.weebly.com/challenges.html
http://csi-workshop.weebly.com/challenges.html
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Our original dataset contains a clinical MRI study, or a set of scans, of 575 patients with 

symptomatic back pains. The MRI scanning parameters used in the scans can vary depending 

on the sequence and view plane types. The values of the most important parameters are 

summarized in Table 4.2 

Table 4.2: MRI Scanning Parameters. 

View Plane Types Sagittal Axial 

Sequence Types T1-weighted T2-weighted T1-weighted T2-weighted 

Number of Echoes (ETL) 3 15 to 18 3 9 to 16 

Repetition Time (ms) 330 to 926 3190 to 4000 385 to 953 1900 to 5000 

Echo Time (ms) 9.2 to 12.0 67.0 to 96.0 11.0 84.0 to 96.0 

Slice Thickness (mm) 3.0 to 4.0 3.0 to 5.0 4.0 3.0 to 5.0 

Spacing Between Slices (mm) 3.3 to 4.8 3.3 to 6.5  4.4 to 4.4 3.3 to 6.5 

Field of View (mm) 280 280 220 220 

Matrix (Freq. x Phase) 100% 100% 100% 100% 

Imaging Frequency (MHz) 63.6765 to 63.6828 63.6765 to 63.6828 63.6801 to  63.6828 63.6801 to  63.6828 

Number of Phase Encoding Steps 288 to 540 408 to 544 295 to 336 272 to 360 

Flip Angle 150 150 150 150 

 

During the data selection stage, we had to remove 60 of the studies that do not meet the 

requirements set by the proposed methodology described in this thesis. The requirements that 

need to be satisfied for each MRI study are as follows: 

1. The study needs to include at least the last three lumbar vertebrae and their adjacent 

posterior elements, the last three intervertebral discs (IVD), and the topmost sacral bones. 

2. The study has to contain both T1-weighted and T2-weighted scans. An image registration 

algorithm should be able to align both scans within a reasonable search space and time 

period. This means the patients have not made any significant movement during the 

scanning procedure to make the two scans completely different. 



46 | P a g e  
 

3. The study needs to have both sagittal and axial view scans and their corresponding cross-

view information. This should allow us to see the direction and position of the image plane 

of an axial view slice on the sagittal view and vice versa in a DICOM viewer application. 

4. The study needs to have at least one axial view slice close to the centre of each 

intervertebral disc. 

5. The study should be of reasonably good quality in terms of focus, sharpness, and distortion. 

6. The study should not contain destroyed or fused lumbar spine elements to make manual 

region labelling difficult or impossible. 

7. The study should be from patients with a minimum age of 17 to ensure common physiology 

of the lumbar spine. 

At the end of the data selection process, we have an MRI study of 515 patients. To help us 

maintain consistency in data numbering for all processes, we opted to keep the ID number 

assignment for each patient data the same instead of reassigning them every time an item of 

data is removed from the dataset. This approach will also be adopted in the future should we 

be required to remove more data. If this need arises, we will simply remove the data from the 

dataset but keep the unused numbers intact in the record. 

Each study of the remaining 515 patients in our dataset is annotated by expert radiologists with 

notes regarding the observed characteristics, condition of the lumbar spine, or the presence of 

diseases, these include bone marrow disease, endplate degeneration, IVD bulges, Thecal Sac 

compressing, central or foraminal stenosis, annular tears, scoliosis, endplate defects (Modic 

type), facet joint and Ligamentum Flavum hypertrophy, and spondylolisthesis. 

Each patient’s data can have one or more MRI studies associated with it.  Each study contains 

slices, i.e., individual images taken from either sagittal or axial view, of the lowest three 

vertebrae and the lowest three IVDs. The axial view slices are mainly taken from the last three 

IVDs – including the one between the last vertebra and the sacrum. The orientation of the slices 
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of the last IVD is made to follow the spine curve whereas those of the other IVDs are usually 

made in blocks – i.e., parallel to each other. There are four to five slices per IVD and they begin 

from the top of the IVD towards its bottom. Many of the top and bottom slices cut through the 

vertebrae leaving between one and three slices that cut the IVD cleanly and show purely the 

image of that IVD. In most cases, the total number of slices in axial view ranges from 12 to 15. 

However, in some cases, there may be up to 20 slices because the study contains slices of more 

than the last three vertebrae. Figure 4.1 illustrates an example for two different patients’ MRI 

which contain in the first case four slices of images for the disc while containing five slices for 

the second case. The scans in sagittal view also vary but all contain at least the last seven 

vertebrae and the sacrum. While the number of vertebrae varies, each scan always includes the 

first two sacral links. 

(A) The patient has 4 axial view slices for 

one disc 

(B) The patient has 5 axial view slices for 

one disc 

    

    
 

 

 

 

 

 

  
 

 

 

Figure 4.1: Illustrates an example for two different patients MRI (A) Four slices of images 

for the level 3 disc. (B) Five slices of images for the level 3 disc. 
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There are a total 48,345 MRI slices in our dataset. The majority of the slices have an image 

resolution of 320x320 pixels, however, there are slices from three studies with 320x310 pixel 

resolution. The pixels in all slices have 12-bit per pixel precision which is higher than the 

standard 8-bit greyscale images. Specifically for all axial-view slices, the slice thickness is 

uniformly 4 mm with the centre-to-centre distance between adjacent slices to be 4.4 mm. The 

horizontal and vertical pixel spacing is 0.6875 mm uniformly across all axial-view slices. 

The majority of the MRI studies were taken with the patient in Head-First-Supine position 

while the rest were taken with the patient in Feet-First-Supine position. Each study can last 

between 15 and 45 minutes and a patient may have one or more studies associated with them 

taken at a different time or a few days apart. Because of the requirement of the method we are 

employing, we only select studies that contain both T1- and T2-weighted images in both 

sagittal and axial views. The difference in acquisition time between T1- and T2-weighted scans 

ranges from 1 to 9 minutes. The long-time difference could suggest that corresponding slices 

may not necessarily align and may require an application of an image registration algorithm to 

align them. As before, due to the requirement of the method we are employing, we removed 

the studies where the difference in T1- and T2-weighted scans causes the image registration 

process to fail to provide our reader with a better picture on the unsuitability of the images that 

we discarded, we show several examples of them in Figure 4.2. 
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(a) (b) (c) 

   

(d) (e) (f) 

 

Figure 4.2 Some examples of the discarded MRI scans. Image (a) is T1-weighted and (b) T2-

weighted MRI scans of the same part of the lumbar spine of a patient. There is a significant 

difference in the position of the same organ in both images resulting in a large number of 

mismatch pixels (purple regions) in the resulting (c) composite image. Image (d) and (e) are 

example cases where multiple regions are fused together making manual segmentation 

unreliable. And (f) is an example of a scan that contains unexplained imaging distortion or 

artefact. 

 

4.3 Dataset Used in the First Two Experiments 

The dataset to be used to develop this methodology is a subset of the LSMRI described in this 

chapter; the subset we are going to use contains 101 patients out of 515. The distribution for 

age and gender is shown in table 4.3. We have produced a dataset from the anonymized axial 

view MR images. The data consists of the digitised MRI and the radiologist report for each one 

of these MR image sets, in addition to the patients’ details (Case Number, Patient Age, and 
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Gender). The LSMRI dataset is observed by our external partner including the MRI and here 

we expect no less than 3 axial view MR images for each patient.  

Before the data is used, it has been analysed to make sure that all the data used will have the 

necessary information and match our requirements to run the experiment. Then a filtering and 

cleaning process is done by removing all the data which does not fulfill the conditions discussed 

in section 4.2. As a result of this process, only the data for 515 patients remain as acceptable 

data and 101 patients have been selected for this experiment which has been categorized as in 

Table 4.3 whereas a sample of the data in terms of the patients’ age and gender is shown in 

Table 4.4. The radiologist report for each MRI scan will be used by the orthopedist to have 

more information about the reason for the patient’s pain. The radiologist reports are adopted as 

ground truth labels within this study, where each case reflects the observation of a single 

patient. Figure 4.3 shows an example of the radiologist report for one patient. 

Table 4.3: Data Categorization for 101 Patients. 
 

Patients Ages Numbers of Patients 

21 - 30 39 

31 - 50 53 

50> 9 

 Total of 101 

 

Patients Gender Number of Patients 

Male 70 

Female 31 

 Total of 101 
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Table 4.4: Sample of the provided data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Example of the radiologist report for one of the patients 

 

 

Patient DOB MRI date Patient Age Gender 

06/09/1979 22/07/2015 36 M 

16/12/1985 03/01/2016 30 M 

13/07/1979 26/12/2013 34 M 

01/01/1975 18/11/2015 40 F 

17/06/1978 21/01/2015 37 F 

08/12/1961 22/07/2015 54 M 

05/02/1956 24/11/2015 59 F 

10/10/1993 02/06/2015 22 M 

25/01/1974 28/07/2015 41 F 

26/07/1944 19/01/2016 71 F 
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4.4 Summary 

In summary, different types of spinal column dataset are available. However, none of the 

available data are suitable for our research either because the number of patients included was 

very low or because the medical reports for the MRI images were not provided and that made 

the use of these data not possible for the disease prediction stage. The dataset used in our 

research covers a wide range of cases fulfilling all the approval requirements in addition to 

having the medical reports for each one of these cases. Meanwhile, the dataset used which 

contains the medical MRI images, radiologist reports, and ground truth data is available for the 

public in [91]–[93] respectively.  The dataset used in our research was also used in developing 

the labels and the ground truth data which are going to be explained in the next chapter. 
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Chapter 5 Disc Herniation Detection using Disc Segmentation 

and Centroid Distance Function 
 

The methodology used is derived from the main machine learning framework as illustrated in 

Figure 5.1 and begins with the measurement of a real-world process, in this case, the MR 

images of the lumbar spine. Measurement is followed by the transcription of MRI into a usable 

form where the collection can take place. Such collected data is then pre-processed according 

to broadly distinct phases: cleaning and evaluation, followed by feature engineering. The 

cleaning and validation phases are potentially iterative, ensuring that subsequent analytical 

stages are not contaminated by systematic errors or the effect of unintended artefacts. Upon the 

output of a clean set of data, feature engineering is undertaken in our method to provide a 

problem representation suitable for input to the machine learning elements in subsequent 

analysis. The primary analytical phase follows feature derivation, comprising model building 

and model evaluation. The model building process involves the choice and specification of 

model architectures, in addition to the optimisation of the free parameters of the models using 

appropriate learning algorithms. The data used during this learning process is referred to as the 

training set (in-sample data). Following the modelling process, the generalisation performance 

of such models is evaluated, a procedure that aims to establish the degree to which the previous 

process of model development succeeded in producing a general model, capable of explaining 

future unseen data. The portion of data used to test generalisation performance is referred to as 

the test set (out of sample data), comprising data not used to influence the training procedure 

when forming the models. 
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Figure 5.1: Machine Learning Framework. 

 

The methodology in this thesis has been divided into three sub-methods, the first method is for 

segmenting the disc area in the lumbar spine MRI to diagnose the disc herniation. The second 

method is done by segmenting the AAP area in the lumbar spine MRI but using a cropped and 

full-size images which are going to be explained in chapter 6. Whereas, the final method is 

done by segmenting five different regions of the lumbar spine MRI using the full image size 

as explained in chapter 7. The decision of moving from one experiment to another is to improve 

the result of the segmented area which can lead to better diagnosing for the targeted diseases. 

Figure 5.2 shows the methodology followed to label the lumbar spine disc using axial view 

MRI based on pixels coordinate and grey level features. 

In order to detect the disc herniation, we need to find the disc boundary; in the next section we 

will explain how to detect this boundary using a traditional edge detection algorithm  

Data Collection 

Model Evaluation 

Model Building 

Feature Engineering 

Data Cleaning and Validation 
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Figure 5.2: Shows the methodology followed to label the lumbar spine disc using axial view 

MRI based on pixels coordinate and grey level features. 
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5.1 Basic Edge Detection Algorithms to detect disc boundaries  

A hastily done observation for locating the disc boundary in addition to the three important 

boundaries illustrated in Figure 2.5 in chapter 2 would suggest that the boundaries could be 

located by applying an edge detection algorithm. However, it should be noted that lumbar spine 

MRI images can have a varyingly wide spectrum of edge strengths while the strength of the 

disc and the other three edges are somewhat convoluted in the middle. This makes detection of 

those edges alone a challenge. To illustrate this claim, four results of an application of the 

Canny edge detector using a combination of two threshold values and two Gaussian sigma 

values to capture different levels of edge strength are shown in Figure 5.3. The figure shows 

that the edges cannot be reliably located without losing accuracy or having too much noise. 

 

 

Figure 5.3: The results of Canny edge detection using a combination of two threshold values 

and two sigma value where a) low threshold – low Gaussian width, b) low threshold – high 

Gaussian width, c) high threshold – low Gaussian width and d) high threshold and high 

Gaussian width. 
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Therefore we conclude each detection alone cannot be used to detect the boundary of the disc 

reliably. In order to do that we need first to segment the MRI images ie. separate the different 

region of the MRI images before we locate the boundary of that region 

The methodology we take to address the problem of disc segmentation is characterised by the 

use of a supervised machine learning framework, which we used to analyse the information 

exported from the axial view MR images, representing both disc and non-disc area. The 

machine learning method has been identified as a promising direction in our literature review, 

offering advantages over manual forms of analysis by human actors and conventional statistical 

methodologies. The computer-aided system has widened the scope of human grounded 

analysis, providing a shift in capability in disease diagnosis. However, the analytical forms 

permissible under the constraints of statistical validity, that is those accompanied by 

mathematical proof, restricts the class of addressable problems to those that can be represented 

using existing mathematical theorems. Machine learning, in contrast, allows for the analysis of 

arbitrary problem domains, while minimising the need for human grounded assumptions. 

 

5.2 Image Labels and Ground Truth 

Using machine learning required us to have ground truth data and this process starts from the 

manual labelling process of the disc area which is carried out on each T2-weighted axial-view 

MRI slice of the last three IVDs. The steps to develop the ground truth data are detailed below: 

1. We use a dual-view setup on a DICOM/MRI viewer illustrated in Figure 5.4. On the 

mid-sagittal (left) view, we observe the cut line (yellow line) of the corresponding axial-view 

slice on the right. The best axial-view slice of a disc, defined as one which cuts closest to the 

half-height of the disc, is then selected. 
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Figure 5.4: Dual-view of MRI images showing the mid-sagittal view (left) and the 

corresponding axial-view slice (right) at the cut line 

 

2. We then extract three best T2-weighted MRI slices, one from each of the lowest three 

IVDs, i.e., L3-L4, L4-L5, and L5-S1, from each patient’s MRI study. The extracted images are 

uncompressed. For brevity, we will refer to these selected slices as the images from now on. 

Figure 5.5 shows some examples of the selected images for each disc. 

  

(A) Middle Image of the Disc L3-L4 (B) Middle Image of the Disc L4-L5 

 

 

(C) Middle Image of the Disc L5-S1  

 

Figure 5.5: The selected MRI Images of the Three Lumbar Spine Discs. 
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3. The disc area in each image is then manually labelled. We call these images mask 

images or label images. An example of such mask images with the corresponding MRI can be 

seen in Figure 5.6. 

  

(A) MR image for L3-L4 disc (B) L3-L4 disc mask 

  

(C) MR image for L4-L5 disc (D) L4-L5 disc mask 

  

(E) MR image for L5-S1 disc (F) L5-S1 disc mask 

 

Figure 5.6: Discs MRI and the developed Mask for each disc. 

 

The intensity level for the disc on the mask is used to differentiate between the disc area and 

the non-disc area. The disc area on the mask is filled in black colour with intensity level 0 and 

the remaining area of the mask image has the white colour with intensity level 255. The feature 

vector is the x-, y- coordinate, and intensity of each pixel. Table 5.1 shows a sample of the 

exported data and the intensity in addition to the pixel values. 
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Table 5.1: Shows sample of the exported data including the pixel position, Intensity, and 

Disc which represented by (1) or Non-Disc which represented by (0). 

X coordinate Y coordinate Pixel Intensity Disc/Non-Disc area 

Class 1/Class 0 

288 292 43 1 

375 323 7 0 

486 544 69 0 

491 83 86 0 

238 92 30 1 

288 266 85 1 

 

There are a number of algorithms that could be used in the knowledge-based/artificial 

intelligence system. Our method is to experiment with a six of classifiers and perform the 

training and classification process. The best classifier will be chosen based on the achieved 

accuracy. To illustrate the training and classification process, the training will use the truth data 

which have been developed using contrast weighted MR images as discussed earlier. Contrast 

weighted images are used to emphasise different types of tissues within the same MR images. 

The trained system will then be able to produce labelled images of the affected areas if a disc 

herniation is detected in the input MR images. 

5.3 Classifier Model Selection 

To evaluate the capability of our classifiers, we conducted empirical simulations using the 

extracted features from the MRI. The models used in our experiment are listed in Table 5.2 

while the experiment results are shown in Table 5.3 and Table 5.4.  
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Table 5.2 The Models trained in the two experiments 

The Trained Model 

Medium Tree [94] [95] 

Coarse KNN [96] [97] 

Weighted KNN [96] [97] 

Medium Gaussian SVM [98] 

Fine Gaussian SVM [98] 

Ensemble RUSBoosted Trees [99] [100] 

 

Three features are extracted from the selected MR images and the masks produced for 101 

patients using Matlab as defined earlier in this chapter. Two different experiments were carried 

out using two data samples. We tried to use the maximum possible amount of data for the 

training and after many trials, it has been realized that the algorithm will run for around two 

days and then the machine will hang up due to limited resources in the machine used for the 

training process. That is why we have a limitation on the amount of chosen data. First, the 

classifiers were trained using 7,500 randomly chosen feature data from the three-disc images 

of one patient. The limit of the data is due to the maximum number of practically possible data 

that can be used at one time. Table 5.3 shows the list of classifiers and training results. The 

table shows that the weighted KNN model produces the highest accuracy compared to the other 

classifiers. Figure 5.8 shows the original and segmented images using the weighted KNN 

classifier. In the second experiment, the classifiers were trained using 7,000 randomly chosen 

feature data from seven patients. The number of feature data is drawn equally from each patient, 

i.e., one thousand points from each patient equally in all three discs. Table 5.4 shows the 

performance of the classifiers. In this experiment, SVM Fine Gaussian produced the best 

accuracy from the entire classifier set. An example of pixel classifier using SVM Fine Gaussian 

is shown in Figure 5.9. The trials presented in this work were conducted using a common 

dataset partitioning scheme. We reserved 80% of the data for model training and the remaining 

20%. 
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Table 5.3: The first experiment result based on the evaluation of 6 models. The Models 

trained using one patient data. 

Model Accuracy True Negative 

Rate (%) 

True Positive 

Rate (%) 

False Positive 

Rate (%) 

False Negative 

Rate (%) 

AUC 

Medium Tree [94] [95] 98.3 99 93 1 7 0.98 

Coarse KNN [96] [97] 98.6 99 93 1 7 1 

Weighted KNN [96] [97] 98.9 99 94 1 6 0.99 

Medium Gaussian SVM [98] 98.7 99 93 1 7 1 

Fine Gaussian SVM [98] 98.8 99 94 1 6 0.99 

Ensemble RUSBoosted Trees [99] 

[100] 

98.0 98 98 2 2 1 

 

Key: 

SVM Support Vector Machine 

KNN K-Nearest Neighbour 

AUC Area Under Curve 

PS  Prediction Speed 

 

Hint: 

True positive – correctly classified disc area 

True negative – correctly classified non-disc area 

False positive – incorrectly classified non-disc area 

False negative – incorrectly classified disc area 

 

Note: The selected classifier is highlighted in the table 

 

 

Table 5.4: The second experiment result based on the evaluation of 6 models. The Models 

trained using seven patients’ data. 

Model Accuracy True 

Negative 

Rate (%) 

True 

Positive 

Rate (%) 

False 

Positive 

Rate (%) 

False 

Negative 

Rate (%) 

AUC 

Medium Tree [94] [95] 89.0 92 70 8 30 0.87 

Fine Gaussian SVM [98] 91.1 96 62 4 38 0.88 

Medium Gaussian SVM [98] 90.8 95 64 5 36 0.95 

Coarse KNN [96] [97] 90.7 97 3 44 56 0.95 

Weighted KNN [96] [97] 90.8 95 66 5 34 0.94 

Ensemble RUSBoosted Trees [99] [100] 84.1 83 93 17 7 0.94 

 

Key: 

SVM Support Vector Machine 

KNN K-Nearest Neighbour 

AUC Area Under Curve 

PS  Prediction Speed  

 

 

Hint: 

True positive – correctly classified disc area 

True negative – correctly classified non-disc area 

False positive – incorrectly classified non-disc area 

False negative – incorrectly classified disc area 

 

Note: The selected classifier is highlighted in the table 
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The results of our experiment are divided into two parts the first part is the classifier training 

result, whereas the second part is the reconstructed image of predicted data from the classifier 

which got the highest accuracy; these two parts will be discussed later in this chapter. 

5.3.1 Classifier Training Result 

The results from our experimental procedure are presented and organised for each respective 

classifier for the first experiment in Table 5.3 when the data source was one patient’s details 

with 7,500 pixels. Whereas, in the second experiment in Table 5.4 the data source was seven 

patients’ details with 7,000 pixels. We then proceeded to present our evaluation of the 

classifiers according to the classifier accuracy. We have experimented with all the available 

classifiers in Matlab app and there were 23 classifiers. Nevertheless, only the best 6 classifiers 

with the highest accuracy have been discussed. Figure 5.7 shows the classifiers for the two 

experiments and the achieved accuracy for each of them. In our experiments, we concentrate 

on the disc area; that’s why a positive value has been given when the classifier predicts a disc 

area while a negative value is given when the non-disc area has been segmented. However, if 

the classifier has correctly segmented the area, either disc or non-disc, a true value is given for 

this case and a false value is given for the incorrect prediction. 
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Figure 5.7: The classifiers for the two experiments and the accuracy for each of them. 

 

In our experiments, we concentrate on classifiers’ accuracy. The best accuracy for the first 

experiment was for the Weighted KNN classifier with accuracy = 98.9. Whereas, for the second 

experiment SVM Fine Gaussian classifier got accuracy to 91.1. However, Weighted KNN is 

the selected classifier in the first experiment because of the high achieved accuracy. For the 

second experiment, SVM Fine Gaussian classifier has been selected for the same reason. The 

selected classifiers will be used in subsequent steps and analysis. Regarding the other 

performance measures like the sensitivity and specificity, we have done an investigation and 

we found that the quality of the segmented images is more closely aligned to the value of the 

accuracy compared to the other performance measures. 

5.3.2 Automatic Segmentation Result 

In this section, we have reconstructed the images depending on the result of the classifier as 

discussed in the previous section. From the first experiment, we took the result of the Weighted 

KNN classifier for each x and y coordinate as an input to Matlab code which converts this 

matrix to image as shown in Figure 5.8. On the other hand, the result of the SVM Fine Gaussian 

classifier has been selected in the second experiment and used as an input with x and y 

75
80
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Classifiers Accuracy Result

First experiment accuracy with input data from one patient

Second experiment accuracy with input data from seven patient
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coordinate to the Matlab code to reconstruct the output image. Figure 5.9  shows the segmented 

image for SVM Fine Gaussian classifier. 

Original Image Classifier Segmented Image 

  

A. Disc L3 – L4 B. Segmented Disc L3 – L4 

  

C. Disc L4 – L5 D. Segmented Disc L4 – L5 

  

E. Disc L5 – S1 F. Segmented Disc L5 S1 

 

Figure 5.8: The Original and Segmented Images by Weighted KNN. 

 

 

 

 

 

 

 

 

 



66 | P a g e  
 

 

 

 

 

Original Image Classifier Segmented Image 

  

A. Disc L3 – L4 B. Segmented Disc L3 – L4 

  

C. Disc L4 – L5 D. Segmented Disc L4 – L5 

  

E. Disc L5 – S1 F. Segmented Disc L5 S1 

 

Figure 5.9: The Original and Segmented Images by SVM Fine Gaussian. 

 

5.4 Detecting the Disc Herniation in Segmented Lumbar Spine MR Image using 

Centroid Distance Function 

The main goal of this work is the automatic detection of disc herniation in lumbar spine MRI. 

The process involves automatic labelling of the disc area, taken from an axial view, using 

machine learning and artificial intelligence techniques and using the resulting segmented 

images to generate shape features for the discs. 
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As a proof of concept, we will use a manually-created mask image marking the area of the disc 

in the MRI. Figure 5.10 shows the masked regions for a non-herniated and herniated disc. 

 

  

A. Non-Herniated Disc. B. Herniated Disc. 

 

Figure 5.10: Axial view of (A) non-herniated and (B) herniated discs. 

Our observation on a number of non-herniated and herniated discs yields a conclusion that if 

we measure the distance from the centre to the edge points of the disc taken over 360º and plot 

the distance values against the angle, we will get a distinctly different shaped curve in each 

case. The illustration for the process to calculate these distances is shown in Figure 5.11. This 

shape feature is known as the Centroid Distance Function (CDF) [101]. 

  

A. Radial distances for 

the non-herniated disc. 

B. Radial distances for a 

herniated disc. The 

green arrow marked the 

distance of the 

herniated-part of the 

disc. 

Figure 5.11: Illustration of the radial distances calculated from (A) non-herniated and (B) 

herniated disc. 

 

The Disc 

Herniated Area  
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The CDF is one of the shape signature functions [102] which is normally used as a tool for the 

preprocessing level for other algorithms [103] such as calculating the distance between 

boundary points from the centroid [104]. The position of the centroid is static relative to the 

shape. The average of all points inside the shape will be calculated to find the centroid. The 

region information is included in the centroid distance function which records the local and 

global feature. Moreover, the performance of using centroid distance function is very high 

based on [105]. To calculate CDF, the coordinate of the centroid of each disc needs to be 

calculated. This is followed by a boundary or edge detection process to calculate the 

coordinates of the disc’s boundaries. The distance between each of the boundary points and the 

disc centroid as well as the angle are calculated as illustrated in Figure 5.12. 

 

 

Figure 5.12: The distance between the centroid and the disc boundary (d) in the angle (θ). 

 

The results are then plotted as a graph for visual inspection as shown in Figure.5.13 and 

Figure.5.14. Moreover, Figure. 5.13 shows the change of the distance for the non-herniated 

disc whereas Figure. 5.14 shows that for a herniated disc. We can clearly see how the distance 

is increased sharply in comparison to the distances before and after the highlighted area. 

 

 

d 
θ 
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Figure 5.13: Plot of the Centroid Distance Function of a non-herniated disc. 

 

 

Figure 5.14: Plot of the Centroid Distance Function of a herniated disc. The red region 

marked the area of the disc where the herniation occurs. 

 

Although this finding has provided a useful indicator for herniation detection, the process 

requires a clear segmentation of disc area to produce reliable edge points from which the radial 

distances were measured. At this point, this is provided by manually segmenting the MRI to 

separate the disc and the non-disc areas. 

However, manual segmentation of each patient’s MRI would require an additional burden on 

the radiologists or orthopaedists. Therefore, this process needs to be automated by the computer 

by using machine learning and artificial intelligence. Unfortunately, the achieved segmentation 

of the disc area using the experiments discussed earlier is not accurate enough to apply the 
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centroid distance function methodology for detecting the disc herniation. Figure 5.15 shows 

the plot of the centroid distance function after using the automated segmentation of the disc 

area for a normal disc while Figure 5.16 shows the plot of the centroid distance function for an 

abnormal disc. As seen from the two plots there is no difference between the two figures for 

the normal and abnormal disc which required us to think widely about a new method in 

diagnosing the lumbar spine diseases. In the next chapter, we will discuss the method of 

segmenting the AAP in the axial view MRI and how this can lead to diagnosing the lumbar 

spine diseases. 

 

 
 

 Non-Herniated Disc 

 

Figure 5.15: Plot of the Centroid Distance Function of a non-herniated disc. 

          

 
 

 Herniated Disc 

 

Figure 5.16: Plot of the Centroid Distance Function of a herniated disc. 
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5.5 Chapter Summary 

The methodology of detecting the lumbar spine disc herniation using the centroid distance 

function works in theory but in practice, it has a problem as the segmented disc from the lumbar 

spine MRI images were not accurate enough to be used as an input image for the centroid 

distance function. However, because of the complexity of segmenting the disc, we developed 

a new methodology to segment the area AAP which will allow us to use another factor in the 

segmented area that will help in diagnosing different diseases from the lower back pain. The 

next chapter will discuss the method of segmenting the lumbar spine MRI images for stenosis 

detection. 
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Chapter 6 Lumbar Spinal Stenosis Detection via 

Segmentation of Area between Anterior and Posterior (AAP) 

Elements 
 

Lumbar spinal stenosis is illustrated as a narrowing of the AAP that produces pressure on the 

spinal nerve canal or roots. An abnormal compression of either of them would exert pressure 

and create a sensation of pain. Traditional methods to image segmentation include clustering 

techniques based on pixel values such as k-means clustering, histogram-based clustering, and 

probabilistic-based model. However, current state-of-the-art image segmentation techniques 

are dominated by different types of Deep Neural Network to achieve semantic segmentation. 

There are two main methods of semantic segmentation namely patch-based pixel classification 

[106]–[108] using convolutional and fully connected layers, and whole-image segmentation 

[109]–[111] using fully convolutional and convolution-transpose layers. Figure 6.1 illustrates 

the methodology used for segmenting the AAP area in the lumbar spine MRI images. Some of 

the processes used in segmenting the AAP are used in segmenting the lumbar spine disc which 

is explained in detail in chapter 5. However, the other steps will be explained in detail in this 

chapter. 
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Figure 6.1: Methodology used for segmenting the AAP area in the lumbar spine MRI 

images. 

6.1 MRI Image Cropping 

In the previous chapter, we have used a full-size image to segment the lumbar spine disc while 

for segmenting the AAP the images are cropped to provide better focus on the areas around the 

IVD, AAP, and posterior element, which can help in labelling the ground truth data.  Ground 

truth images were created with the assistance of physicians in this field by creating a binary 
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image marking the area of interest. An example of the MRI and ground-truth (label) image pair 

is shown in Figure 6.2. 

 

Figure 6.2: An example of MRI and ground-truth image pair used for training. 

 

Furthermore, we exploit the fact that all axial views of lumbar spine MRI images are always 

taken from the same orientation and similar scale to avoid having to augment the image patches 

synthetically.  

In this section, we utilise a patch-based classification method to image segmentation to separate 

the AAP region from other tissues in lumbar spine MRI. For each pixel, p, in the input image, 

a patch centred at p is considered. The patch dimension, w, is set to an odd number to enforce 

symmetry. The network will classify each pixel based on the information contained in the patch 

into one of two possible classes namely AAP (0) and not-AAP (1). The process flow of image 

segmentation using this architecture is illustrated in Figure.6.3 

 

Figure 6.3: The process flow of image segmentation using patch-based pixel classification 

method. 
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6.2 Deep Neural Network Architecture 

Our neural network shares a similar architecture to other patch-based deep neural networks. It 

includes an Image Input Layer, a cascade of Convolution Layers that will produce multiscale 

classification features and a Fully Connected Layer for classification of these features. 

The Image Input Layer contains a 2D array of nodes that act as a receptor to each pixel in the 

patch. The dimension of this layer is identical to the dimension of the patch. A data 

normalisation step is applied to the pixel values by subtracting the mean pixel value before 

generating the output of this layer. 

The output of the Image Input Layer is fed to a cascade of Convolution Layers. In our network, 

each convolution layer has a fixed number of equal-sized kernels. The kernel size chosen is 

relatively small since the input of the network is already a small subset of the entire image. 

Each kernel corresponds to each classification feature trained within the layer. The output of 

each of these layers is calculated as the dot product of the input and the kernel. As the signal is 

passed across these layers, it gets down-sampled hence the output of each layer covers an 

increasing support area of the input patch. Each layer, however, is set to have an increased 

number of kernels compared to the last. This decision is made to allow more features to be 

trained as the support area of the convolution layer increases. 

To further speed up the training process and reduce the sensitivity of the network to its initial 

weight values, we opt to apply batch normalisation [112] [113] to the convolution layer output. 

This method works by subtracting the output of the previous convolution layer by the batch 

mean and dividing the result by the batch standard deviation. The increase in training speed 

and stability are achieved since the batch normalisation process reduces the variability of the 

input signal into two trainable parameters namely, the batch means and batch standard 

deviation. 
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As with other deep neural network architectures, we opt to use the Rectified Linear Unit 

(ReLU) activation function [114]. This decision is based on the function’s advantages over 

others, such as Sigmoid function, that include faster training speed due to a reduced likelihood 

of vanishing gradient. ReLU activation function also has been proven to train networks with 

sparser, and hence considered better, weights representation.  

We set the convolution stride to one and apply an appropriate amount of pixel padding to its 

input to ensure the length of input and output of each convolution layer remains the same. A 

downsampling process is applied at the end of each convolution layer by taking the maximum 

of the activation signals inside a 2x2 non-overlapping region to produce a signal that has half 

the dimension. In total, our network uses three convolution layers to perform the feature weight 

training.  

After the end of the last convolution layer, we use two Fully Connected Layers to learn all 

high-level combinations of the features learned by the earlier layers. Since the network will 

classify the central pixel in each patch into one of the two possible classes, the last layer will 

have two neurons. For classification, our network uses the softmax classifier. This classifier 

produces the probability of the input to belong to each class and can produce a more 

representative loss value when evaluating the network [115]. 

Table 6.1: The Architecture of PALMSNet 

Layer Type Number 

of 

Neurons 

Kernel Size Number of 

Kernels 

0 Image Input 25x25   

1 Convolution 25x25 3x3 16 

2 Batch Normalisation 25x25   

3 ReLU 25x25   

4 Max Pooling 25x25   

5 Convolution 12x12 3x3 32 

6 Batch Normalisation 12x12   

7 ReLU 12x12   

8 Max Pooling 12x12   
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9 Convolution 6x6 3x3 64 

10 Batch Normalisation 6x6   

11 ReLU 6x6   

12 Max Pooling 6x6   

13 Fully Connected 2304   

14 Fully Connected 2   

15 Soft Max 1   

 

For ease of reference, throughout the remainder of this thesis, we will refer to this network as 

PALMSNet which is an acronym for Patch-based Axial-view Lumbar-spine MRI 

Segmentation Neural Network. The overall architecture of PALMSNet is summarised in Table 

6.1 

6.3 Training  

The training data consists of 400,680 image patches of size 25x25 pixels. They are taken from 

T2-weighted axial lumbar spine MRI images of the last three IVDs (D3-D5) of seven patients. 

The network is trained using the popular Stochastic Gradient Descent with Momentum 

algorithm [116] to update the network weights and biases. The algorithm works by taking small 

steps in the direction of the negative gradient of the loss function to minimize the error function. 

The size of the step is modulated by a learning rate parameter that is set to 0.001. 

The training is performed on a personal computer in Windows 10 with i7-7700 CPU @ 

3.60GHz, 64 GB RAM, and two NVIDIA Titan X GPUs. The training process takes 2,102 

seconds and 9.5 x 104 iterations to complete.  

Once trained, the network is used to classify pixels from test images. The test data consists of 

171,720 image patches of size 25x25 pixels extracted from T2-weighted axial lumbar spine 

MRI images of D3-D5 of three patients. They are different patients from the seven whose MRI 

images are used for training. We carried out four different experiments to measure the 

performance of PALMSNet. The first experiment uses the images from all three IVDs for 
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training and testing whereas the other three use only those from each disc separately. This 

experimental set-up is used based on our hypothesis made during observation and analysis of 

the MRI images, that separation of the disc images during training will improve the 

classification results. 

We will use four performance metrics that are common in other semantic segmentation 

evaluations [110]. They are pixel accuracy (𝑎𝑝), mean accuracy (𝑎𝑚), mean intersection over 

union (𝑖𝑜𝑢𝑚) and frequency weighted intersection over union (𝑖𝑜𝑢𝑓𝑤). The formulas to 

calculate these metrics are shown in Eq. [6.1] to [6.4]. 

 𝑎𝑝 =
∑ 𝑛𝑖𝑖𝑖

∑ 𝑡𝑖𝑖
  

 𝑎𝑚 =
∑

𝑛𝑖𝑖
𝑡𝑖

𝑖 

𝑛𝑐𝑙
  

 𝑖𝑜𝑢𝑚 =
∑

𝑛𝑖𝑖
𝑡𝑖+∑ 𝑛𝑖𝑖𝑖 −𝑛𝑖𝑖

𝑖 

𝑛𝑐𝑙
  

 𝑖𝑜𝑢𝑓𝑤 =
∑

𝑡𝑖.𝑛𝑖𝑖
𝑡𝑖+∑ 𝑛𝑖𝑖𝑖 −𝑛𝑖𝑖

𝑖 

∑ 𝑡𝑖𝑖
  

 

Where 𝑛𝑖𝑗 is the number of pixels of class 𝑖 predicted to belong to class 𝑗, and 𝑛𝑐𝑙 is the number 

of classes and 𝑡𝑖 = ∑ 𝑛𝑖𝑗𝑗  is the total number of pixels of class 𝑖. 

For comparison purposes, we perform another image segmentation using SegNet [111], a fully 

convolutional neural net and using six other, but more conventional, image segmentation 

algorithms. Four of these six algorithms are variants of the decision tree (complex/medium 

[117]–[119], and ensemble [120], [121]). A further four are based on the modified k-nearest 

neighbour (medium, weighted, coarse and cubic [97], [122]–[124] ) and the other two are based 

on modified SVM (fine and medium Gaussian [125]). The features used in these six 
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conventional algorithms are the raw pixel values and their corresponding locations. Pixel 

locations have been used in conjunction with pixel values to provide better spatial coherence 

to the segmentation result [126]. 

Table 6.2 Performance using All Intervertebral Discs 

Methods 𝑎𝑝 𝑎𝑚 𝑖𝑜𝑢𝑚 𝑖𝑜𝑢𝑓𝑤 

Fine Gaussian SVM 0.78 0.77 0.62 0.64 

Medium Gaussian 

SVM 

0.79 0.78 0.64 0.66 

Weighted k-nearest 

neighbour 

0.77 0.77 0.62 0.64 

Coarse k-nearest 

neighbour 

0.79 0.79 0.64 0.66 

Medium Tree 0.75 0.75 0.59 0.61 

Boosted Tree 

Ensemble 

0.76 0.76 0.60 0.62 

SegNet 0.75 0.67 0.53 0.58 

PALMSNet 0.86 0.85 0.75 0.76 

 

 

The results of the segmentation as measured using the four performance metrics are shown in 

Table 6.2 to 6.5. The results shown in Table 6.2 to 6.4 indicate that PALMSNet performs 

significantly better than the other algorithms.  The other DNN-based algorithm, however, has a 

similar level of pixel accuracy to the more conventional methods but performs slightly worse 

using the other three metrics. It is also important to note from Table 6.3 and 6.4 that the result 

of training and testing the network using only D3 or D4 data separately yielded significantly 

better results than training and testing using all of the discs together.   
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Table 6.3 Performance when trained and tested using D3 only 

Methods 𝑎𝑝 𝑎𝑚 𝑖𝑜𝑢𝑚 𝑖𝑜𝑢𝑓𝑤 

Fine Gaussian SVM 0.81 0.77 0.62 0.70 

Medium Gaussian 

SVM 

0.79 0.78 0.60 0.68 

Weighted k-nearest 

neighbour 

0.79 0.78 0.61 0.69 

Coarse k-nearest 

neighbour 

0.80 0.78 0.61 0.69 

Medium Tree 0.76 0.75 0.56 0.64 

Boosted Tree 

Ensemble 

0.71 0.74 0.52 0.59 

SegNet 0.79 0.73 0.58 0.68 

PALMSNet 0.93 0.92 0.85 0.87 

 

 

Table 6.4 Performance when trained and tested using D4 only 

Methods 𝑎𝑝 𝑎𝑚 𝑖𝑜𝑢𝑚 𝑖𝑜𝑢𝑓𝑤 

Fine Gaussian SVM 0.82 0.78 0.63 0.71 

Medium Gaussian 

SVM 

0.81 0.78 0.62 0.70 

Weighted k-nearest 

neighbour 

0.80 0.78 0.61 0.69 

Coarse k-nearest 

neighbour 

0.81 0.78 0.63 0.70 

Medium Tree 0.77 0.75 0.57 0.65 

Boosted Tree 

Ensemble 

0.79 0.77 0.59 0.67 

SegNet 0.73 0.69 0.53 0.57 

PALMSNet 0.92 0.91 0.84 0.85 
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The last experiment results when the network is trained and tested using D5 only are shown in 

Table 6.5. The results also indicate the superiority of PALMSNet over the other methods. 

However, the difference between them is less pronounced than the previous three results. For 

example, only 0.02% difference in mean accuracy between the best of the methods and 

PALMSNet in Table 6.5 compared to 0.06% in Table 6.2. 

 

Table 6.5 Performance when trained and tested using D5 only 

Methods 𝑎𝑝 𝑎𝑚 𝑖𝑜𝑢𝑚 𝑖𝑜𝑢𝑓𝑤 

Fine Gaussian SVM 0.68 0.71 0.48 0.55 

Medium Gaussian 

SVM 

0.68 0.71 0.49 0.56 

Weighted k-nearest 

neighbour 

0.67 0.69 0.47 0.54 

Coarse k-nearest 

neighbour 

0.69 0.72 0.49 0.56 

Medium Tree 0.65 0.65 0.44 0.52 

Boosted Tree 

Ensemble 

0.64 0.68 0.45 0.51 

SegNet 0.60 0.62 0.43 0.43 

PALMSNet 0.74 0.74 0.59 0.59 

 

 

The results provide a mixed degree of validation to our initial hypothesis.  While the decision 

to separate the disc yields much better results for D3 and D4, the same cannot be said for D5. 

As can be seen in Table 6.6 the network trained using data from all discs still yields better 

performance on D5 test data than the network that is trained using only D5 data. 
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Table 6.6 PALMSNet Performance when tested on D5 

Methods 𝑎𝑝 𝑎𝑚 𝑖𝑜𝑢𝑚 𝑖𝑜𝑢𝑓𝑤 

PALMSNet trained 

using all discs 

0.80 0.80 0.66 0.66 

PALMSNet trained 

using D5 only 

0.74 0.74 0.59 0.59 

     

6.4 Discussion and Analysis 

The experiment results presented in the previous section clearly show that PALMSNet can 

produce more accurate segmentation than the other techniques. However, while the 

segmentation metrics that are used provide us with a measure of how well each algorithm is in 

segmenting the MRI images, they do not provide a good visual indicator on how each of the 

algorithms fares in providing accurate delineation of the MRI images. This is because if we were 

to use the result of this segmentation to assist detection of lumbar spinal stenosis, the next step 

will rely heavily on the accuracy of the edges found around the areas shown in Figure 6.4 rather 

than the entire segmented image.  

 

 

  Figure 6.4: The three important boundaries for stenosis detection between AAP and 1) 

IVD, 2) Facet Joints, and 3) LF to measure a) the anteroposterior diameter of the spinal canal 

and b) the left and right width of the foramen 
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To provide better visual cues on the suitability of the network for this purpose, we show the 

result of superimposing the resulting edges with the ground truth. In the interest of conciseness 

of the discussion, we only show the result using PALMSNet trained on all discs. These are 

shown in Figure 6.5. 

The images illustrated in Figure 6.5 confirm our finding in the previous section that the results 

are markedly worse when applied to D5 compared to the other two discs. 

 

 

 

 

Figure 6.5: The result of superimposing the edges of the segmentation result on to the ground 

truth (right), and their corresponding original MRI images (left). The top images are taken 

from D3, middle from D4, and bottom from D5. 

 

The simulation result indicated that PALMSNet produces significantly better segmentation 

results than SegNet, another deep network architecture. Further investigation into the low metric 

score for SegNet reveals that this network suffers greatly from overfitting to the training dataset 

which may be attributed to the high number of layers that the network has. The network 

overfitting is evidenced by the significantly high accuracy of the prediction on the training data 

(0.95) compared to that on the test data (0.75). As illustrated in Figure 6.6. A major challenge 

of using PALMSNet, in addition to the requirement to crop the image, is that we still couldn’t 

train a large number of images due to the limitation of the resources in terms of the machine 
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capabilities and the time required to train using this algorithm. For this reason, in the next 

section, we will use the convolutional neural network to train the data. 

 

 

Figure 6.6: Visual evidence of overfitting of SegNet in this experiment. The figure shows 

prediction on (left) a training image and (right) on a test image. The bright pixels outline the 

edges of the segmented image. 

 

6.5 Two Regions Boundary Delineation through Semantic Segmentation 

In this section, we evaluate the applicability of deep learning using CNN in performing 

semantic segmentation on our dataset. Prior to the advent of deep learning in computer vision, 

image segmentation is traditionally performed using clustering techniques such as k-means 

clustering [127], nearest-neighbour [128], support vector machine [129], and Texton Forest 

[130]. With the recent increase in popularity of deep learning in image classification, so is its 

use in performing pixel-wise classification. This gives rise to a special type of image 

segmentation, namely semantic segmentation [131], which surpasses other methods by a large 

margin in terms of accuracy and efficiency. 

Image segmentation can be generally formulated as a discrete transformation function f : n  

l for each pixel n where n3 for colour images or n for monochrome images to a label ln 

∈ C, where C is a set of all available classes. However, image segmentation techniques do not 

often use a singular value of a pixel to decide its label. Instead, the techniques consider a set of 

pixels surrounding and including the pixel n to take into account local pixel distribution and 

local texture properties. The result is a partition of the image into several parts, each of which 

has common low-level features such as colour distributions, texture properties, or smoothness 
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of boundary, etc. Semantic segmentation differs from traditional image segmentation because 

whereas traditional image segmentation is carried out without any attempt at understanding 

what these different parts represent, semantic segmentation, on the other hand, performs the 

partition into parts that share high-level meanings. Although semantic segmentation can be 

performed by classifying each pixel (i.e., pixel-wise classification), the process considers 

groups of pixels that belong to a semantically identical entity as one class regardless of their 

low-level properties. Semantic segmentation solves many key problems in the field of 

computer vision, paving the way towards complete scene understanding. Numerous 

applications such as self-driving vehicles, human-computer interaction, and medical image 

analysis benefit greatly from the advances in high-level image segmentation.  

There are a number of proposed solutions to semantic segmentation including Fully 

Convolutional Networks [131], SegNet [111], DeepLab [132], and RefineNet [133]. We will 

focus on one of the most popular algorithms, namely SegNet, in carrying out the semantic 

segmentation of our dataset.  

SegNet consists of a series of convolutional layers arranged in an encoder-decoder architecture. 

The architecture of SegNet’s encoder network is topologically identical to the first 13 

convolutional layers of the VGG16 network [134]. The input image is passed on to the first 

layer of the encoder that performs convolution with a trainable filter bank to produce the first 

set of feature maps. These feature maps are then batch normalised [112] before an element-

wise Rectified Linear Unit (ReLU) function [114] is applied to them. The resulting signal is 

then applied to a max-pooling function with a 2x2 window and stride 2, non-overlapping 

window, before it is sub-sampled by a factor of 2. The result is then fed to the next set of 

convolution layer, batch-normalisation layer, ReLU layer, max pooling, and sub-sampling 

layer, and so on, until the end of the encoder section. The purpose of the encoder layers is to 

capture image features at varying resolutions. It is also intended to achieve translation 
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invariance over the various size of spatial image context at the cost of increasingly lossy, or 

inaccurate, boundary detail in its final output signal. 

The process to restore this detail starts by up-sampling that output signal using max unpooling 

layer in the decoder. The decoder will need the memorised indices of the corresponding max-

pooling process that was carried out previously in the encoder, to create sparse feature maps 

from the lower resolution input signal. These sparse feature maps are then convolved with a 

trainable decoder filter bank to produce dense feature maps. Similar to the step in the encoder, 

a batch normalisation step is applied to the dense feature maps before applying the ReLU 

function. The result is then fed to the next set of max unpooling and up-sampling layer, 

convolution layer, batch-normalisation layer, and ReLU layer and so on until the end of the 

decoder section. The role of the decoder is to map the low resolution, sub-sampled, feature 

maps to full resolution and dense feature maps, which then are pixel-wise classified using 

SoftMax function [115]. The signal propagation in the first encoder and the last decoder of 

SegNet is illustrated in Figure 6.7. 

 

Figure 6.7: The process flow of SegNet's encoder-decoder architecture. 



87 | P a g e  
 

2D convolution of an image is computed from the sum of element-wise multiplication of image 

pixels and filter coefficients of a certain size. The VGG16 architecture is an improvement over 

AlexNet [135], an earlier deep network architecture, by replacing large filter size with multiple 

smaller-sized, 3x3 pixel, filters. This method increases the depth of the networks while at the 

same time lowering the number of trainable parameters. For example, a convolution of a single-

channel image with a 5x5 filter can be replaced by two 3x3 filters with stride 1. The first method 

is implemented as one convolution layer with 25 parameters whereas the latter method is 

implemented as two convolution layers with 18 parameters. Note that the batch-normalisation 

and ReLU function activation still have to be applied at the end of each convolution while max 

pooling is only applied at the end of the last ReLU layer. 

The training of SegNet adjusts the value of filter coefficients in all convolution layers so as to 

minimise the loss function between the resulting predicted segmentation and the ground truth. 

In this section, we compare the result of the segmentation of our dataset using two versions of 

SegNet. The first SegNet has pre-trained VGG16 coefficients which had been trained using 

more than a million images from the ImageNet database [136]. Since the type and number of 

classes in the ImageNet database do not match the type and number of classes in our case, we 

replaced the last classification layer and retrained the SegNet with our dataset. While the 

second SegNet has an identical architecture as SegNet – TL. However, the initial value of the 

weight and bias of the convolution layer were set using uniform distribution random number 

generator between -1 and 1. This allows to train the SegNet from scratch and as a result, we 

refer to this network as SegNet – FS.  

When training both SegNets, we experimented using 80:20 ratios of training and testing 

images, we used the first number (i.e., training data percentage) to represent the ratio and 

referred to the parameter as Percentage of Training Data (PTD). 
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The network is trained using the popular Stochastic Gradient Descent with Momentum 

algorithm [116] to update the network weights and biases. The algorithm works by taking small 

steps in the direction of the negative gradient of the loss function, which is set as the cross-

entropy of probability distribution of each class, in order to minimize the loss function. The 

size of the step is modulated by a learning rate parameter that is set to 0.001. The training is 

performed in small batches of 40 images each, for a maximum of 100 epochs. Due to the input 

size requirement of VGG16 network, the input images need to be resized to 360x480 

beforehand. Figure 6.8 shows an example of the reconstructed images using SegNet using full-

size MRI images. Ths reconstructed images using this algorithm have been used in addition to 

the reconstructed images using Fine Gaussian SVM to allocate the important points and 

measure the required distances to help in diagnosing the lumbar spine stenosis. 

 

MRI Reconstructed 

  

  

 

Figure 6.8 Example of the reconstructed images using SegNet using full-size MRI images 
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6.6 Locating the main points in the delineated boundaries 

The manual diagnosing process for patients with spinal canal stenosis is done by calculating 

the spinal canal width which is labelled “A” as illustrated in Figure 6.9. The same distance will 

be calculated automatically using the reconstructed images from fine gaussian SVM and 

SegNet. The calculated distance will be compared with an approved distance for a healthy 

lumbar spine. The agreed anteroposterior diameter of the spinal canal width for the normal 

spine shouldn't be less than 15 mm [137]. The patient’s MRI images will be used as an input 

to find the border of the AAP area as mentioned in Figure 6.10. An image will be reconstructed 

for the delineated area from the axial view MRI image for the lumbar spine, as shown in Figure 

6.11. which illustrates the reconstructed images for 12 axial views MRI images for disc L3-L4, 

L4-L5, and L5-S1, which then will be used for further processes starting by calculating the 

important distance as is going to be explained later in this section. 

 

 

Figure 6.9: The four labelled Regions of Interest namely 1) Intervertebral Disc (IVD), 2) 

Posterior Element (PE), 3) Thecal Sac (TS) and 4) the Area between Anterior and Posterior 

(AAP) vertebrae elements. Delineation of boundaries between these regions is used to 

measure A) the anteroposterior diameter of the spinal canal width. 
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Figure 6.10: Axial View of the Lumbar Spine. 

 

 

 

L3-L4 Disc L4-L5 Disc L5-S1 Disc 

   

   

   

 

Figure 6.11: Sample of the reconstructed image for the AAP for L3-L4, L4-L5, and L5-S1 
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The results of the segmentation as measured using the four performance metrics are shown in 

Table 6.7. The results shown in Table 6.7 include all the data used in this research. Full-size 

images are used in these calculations for SegNet, whereas cropped images are used for the rest 

of the classifiers. Determining the important-points location for the automated lumbar spine 

diagnosis procedure has been done using the reconstructed images from Fine Gaussian SVM 

as the best performance classifier using cropped images and the SegNet has been used to 

complete the experiment in using a full-size image which does not require the radiologist or 

orthopaedist to crop the image to make sure that the AAP is in the middle of the image. 

Table 6.7: The classifier's performance using all intervertebral discs. 

Methods Pixel 

Accura

cy 

 𝒂𝒑 

Cropp

ed 

Image  

𝒂𝒑 

Mean 

Accura

cy 

𝒂𝒎 

Cropped 

Image 

𝒂𝒎 

Mean 

Intersect

ion over 

Union 

𝒊𝒐𝒖𝒎 

Cropp

ed 

Image 

𝒊𝒐𝒖𝒎 

Frequency 

weighted 

Intersection 

over Union 

𝒊𝒐𝒖𝒇𝒘 

Cropped 

Image 

𝒊𝒐𝒖𝒇𝒘 

Fine Gaussian 

SVM 

 0.92  0.89  0.81  0.85 

Medium 

Gaussian SVM 

 0.90  0.85  0.76  0.81 

Cubic k-

nearest 

neighbour 

 0.91  0.88  0.80  0.84 

Medium k-

nearest 

neighbour 

 0.91  0.88  0.80  0.84 

Weighted k-

nearest 

neighbour 

 0.91  0.88  0.80  0.84 

Coarse k-

nearest 

neighbour 

 0.91  0.86  0.79  0.83 

Complex Tree  0.89  0.86  0.76  0.81 

Medium Tree  0.87  0.81  0.71  0.77 

Boosted Tree 

Ensemble 

 0.90  0.87  0.78  0.82 

SegNet 0.94  0.90  0.81  0.90  

PALMSNet  0.70  0.53  0.41  0.53 

 

Determining the important-points location for the automated lumbar spine diagnosis procedure 

will help to calculate the width of the spinal canal which is going to be used as the main factor 

for diagnosing the patients with spinal canal stenosis. As seen in Figure 6.12 the process to find 

the important points will be by dividing the image into two parts from the middle then find the 
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points A and B which indicate the shortest distance between all the points in the green line and 

all the points in the yellow line, The same procedure will be done to find the points C and D 

then to find Y as the lowest point between B and D. To calculate Z point we find the midpoint 

between A and C which can help to determine the X point as nearest point in the disc border to 

the point Z. Determining all these values will help to calculate the width of the spinal canal as 

a distance between X and Y to be compared with the spinal canal width for the healthy lumbar 

spine; as seen in Table 6.8 a sample of the calculated distances using the Fine Gaussian SVM 

to reconstruct the images is compared with the manually calculated distances for the three 

lumbar spine disc L3-L4, L4-L5, and L5-S1 respectively. Meanwhile, Table 6.9 shows the 

same calculations using SegNet reconstructed images. 

 

 

Figure 6.12: Important points locations 
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Table 6.8: Sample of the calculated distances using the Fine Gaussian SVM to reconstruct 

the images are compared with the manually calculated distances for the three lumbar spine 

disc L3-L4, L4-L5, and L5-S1 respectively 

 

 

 

 

 

 

 

 

 

Original Cropped MRI Image Reconstructed Image using Fine 

Gaussian SVM Classifier  

 Using  Fine Gaussian SVM Manual 

Calculate 

Distance 

for the 

Spinal 

Canal 

Width in 

MM 

Auto 

Calculated 

Distance 

for the 

Spinal 

Canal 

Width in 

MM using 

Fine 

Gaussian 

SVM 

Difference 

between the 

Manual 

Distance 

and  Fine 

Gaussian 

SVM  

Calculated 

Distance 

Disc L3 – L4 

  

 

17.104 17.201 

 

0.097 

 

Disc L4 – L5 

  
 

13.547 15.510 

 

1.963 

 

Disc L5 – S1 

  
 

13.041 13 0.041 
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Table 6.9: sample of the calculated distances using SegNet to reconstruct the images are 

compared with the manually calculated distances for the three lumbar spine disc L3-L4, L4-

L5, and L5-S1 respectively 

Original MRI Images used 

in SegNet 

Reconstructed Images 

Using SegNet 

The located points using 

SegNet 

Manual Calculate 

Distance for the 

Spinal Canal Width 

in MM 

Auto 

Calculated 

Distance for 

the Spinal 

Canal Width 

in MM using 

SegNet 

Difference 

between the 

Manual 

Distance and 

SegNet 

Calculated 

Distance 

Disc L3 – L4 

   

15.906 19.902 3.996  

Disc L4-L5 

   

13.547 17.255 3.708 
 

Disc L5 – S1 

   

13.041 17.127 4.086 

 

 

A comparison between the automatic and manual calculated result is illustrated in Figure. 6.13 

and Figure. 6.14  for the anteroposterior diameter of the spinal canal width. It has been found 

that 53% of the calculated distances using Fine Gaussian SVM were less than 1 mm different 

and 34% were less than 2 mm different. On the other hand, the calculated percentage for SegNet 

shows 21% only with distances less than 1 mm and 26% for distances less than 2 mm which 

indicate a better result in using Fine Gaussian SVM. That’s related to using cropped images in 
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Fine Gaussian SVM and full-size images in SegNet which aim to fully automize the diagnosing 

process. In addition, the percentage for a difference between 2-3 mm and 3-4 mm was 8% and 

5% for Fine Gaussian SVM. Whereas, it increased to 21% and 16% for SegNet. 

 

 

Figure 6.13: The distribution of the differences between the manually computed spinal canal 

width and the width measured using Fine Gaussian SVM  

 

 

53%

34%

8%
5%0%0%

The distribution of the differences 
between the manually computed spinal 

canal width and the width measured using 
Fine Gaussian SVM 

Difference between 0 and < 1 Difference between 1 and < 2 Difference between 2 and < 3

Difference between 3 and < 4 Difference between 4 and < 5 Difference between 5 and < 6
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Figure 6.14: The distribution of the differences between the manually computed spinal canal 

width and the width measured using the SegNet  

 

The calculated distances from Fine Gaussian SVM and SegNet are used as an indicator for a 

patient with spinal canal stenosis. A comparison has been done between the auto-calculated 

distance for the spinal canal width in MM (scw) and the approved distance for the healthy 

patients as follows:  

For L3-L4 and L4-L5  

If scw <= 15 patients will have a probability of spinal canal stenosis. 

For L5-S1 

If scw < 15 patients will have a probability of spinal canal stenosis. 

 

The results we achieved are shown below in Figure 6.15 where we can find that 84% of the 

images we correctly diagnosed using SegNet for disc L3-L4 as illustrated in Figure 6.15. (A), 

while the Fine Gaussian SVM reached 88% for the same disc as shown in Figure 6.15. (B). 

21%

26%

21%

16%

13%
3%

The distribution of the differences between the 
manually computed spinal canal width and the 

width measured using the SegNet 

Difference between 0 and < 1 Difference between 1 and < 2 Difference between 2 and < 3

Difference between 3 and < 4 Difference between 4 and < 5 Difference between 5 and < 6
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Meanwhile, Figure 6.15.(C) and (D), show that the success in the diagnosing for disc L4-L5 

slightly decreased for both classifiers because the accuracy of the segmentation of the AAP 

area was lower than the other discs, which reduced the accuracy for the diagnosing to reach 

76.5% and 82.4 for SegNet and Fine Gaussian SVM respectively. However, the diagnosing 

accuracy is increased in disc L5-S1 to 90% for both classifiers as demonstrated in Figure 

6.15.(E) and (F). 

  

(A) The System Diagnosed Result in % For L3 - 

L4 Using SegNet  
(B) The System Diagnosed Result in % ForL3 -  

L4 Using Fine Gaussian SVM  

  

(C) The System Diagnosed Result in % For L4 - 

L5 Using SegNet  

(D) The System Diagnosed Result in % For L4 

- L5 Using Fine Gaussian SVM  
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(E)  The System Diagnosed Result in % For L5-

S1 Using SegNet  
(F) The System Diagnosed Result in % For L5-

S1 Using Fine Gaussian SVM  

 

Figure 6.15: (A) – (F), Illustrate the System Diagnosed Result in % for L3-L4, L4-L5 and 

L5-S1 Using SegNet and Fine Gaussian SVM. 

 

6.7 Chapter Summary 

In this chapter, the lumbar spinal stenosis has been detected via segmentation of the area 

between anterior and posterior (AAP). Segmenting the AAP area helped us to determine the 

important-points location for automated lumbar spine stenosis diagnosis procedure. The 

determined points are used to measure the width of the spinal canal and compare it with the 

spinal canal width for the normal lumbar spine. Segmenting the AAP will produce an output 

image having only two regions that can be used to detect a limited number of diseases. 

However, in the next chapter, the number of segmented regions has been expanded to segment 

four different important regions which are: Intervertebral Disc, Posterior Element, Thecal Sac 

and the AAP in the lumbar spine MRI images. Having all these regions segmented can help in 

diagnosing more diseases other than the lumbar spine stenosis such as disc herniation and disc 

degeneration.  
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Chapter 7 Semantic Segmentation using Convolutional 

Neural Networks 
 

As I have discussed in chapter 6 labelling the lumbar spine MRI image can help in diagnosing 

spinal canal stenosis. However, there are other parts in the image that can be also segmented 

and help the clinician in diagnosing more diseases such as disc herniation and disc 

degeneration. In this chapter, the methodology and the result of using the Semantic 

Segmentation using Convolutional Neural Networks for labelling the Intervertebral Disc, 

Posterior Element, Thecal Sac, and AAP will be discussed. Figure 7.1 illustrates the 

methodology followed in the segmentation using the convolutional neural network which 

includes some similar steps as the previous two methodologies such as selecting the best slice 

and feature extraction. Whereas, the other steps will be discussed in detail in this chapter. In 

this method, the labelling has been done for 515 MRI image using different experts and the 

results of all experts are analysed. 
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Figure 7.1 Shows the methodology followed in the segmentation using the convolutional 

neural network 
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7.1 SegNet Training Setup 

When training both SegNets, we experimented using different ratios of training and testing 

images, namely 20:80, 40:60, 50:50, 60:40, 70:30, 75:25, and 80:20. For convenience, we use 

the first number (i.e., training data percentage) to represent the ratio and refer to the parameter 

as a Percentage of Training Data (PTD). By evaluating the output of a network when it is 

trained using varying values of PTD we will be able to evaluate how well increasing training 

data ratio improves the network’s segmentation performance. 

The network is trained using the popular Stochastic Gradient Descent with Momentum 

algorithm [116] to update the network weights and biases. The algorithm works by taking small 

steps in the direction of the negative gradient of the loss function, which is set as the cross-

entropy of probability distribution of each class, in order to minimize the loss function. The 

size of the step is modulated by a learning rate parameter that is set to 0.001. The training is 

performed in small batches of 40 images each, for a maximum of 100 epochs. Due to the input 

size requirement of VGG16 network, the input images need to be resized to 360x480 

beforehand. 

Additionally, due to class population imbalances, we use class weighting to balance the 

importance of the classes.  To make sure that small classes, such as the TS and AAP, are not 

under-represented in our training data we set the class weighting to be inversely proportional 

to the class population. 

The training is performed using MATLAB on a personal computer in Windows 10 with i7-

7700 CPU @ 3.60GHz, 64 GB RAM, and two NVIDIA Titan X GPUs. The time taken to 

complete the maximum number of training epochs is, as expected, linearly dependent on the 

number of training images used. On average it takes about 18.6 seconds per image to complete 
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the training and it is also worth noting that there is very little difference between the average 

training times of each SegNet network. 

7.1.1 Image Labels and Ground Truth 

The labelling achieved by using Canny edge detector, using a combination of two threshold 

values and two Gaussian sigma values, leads to our conclusion that the three boundaries cannot 

be detected merely using edge detection alone. They should be located more reliably by first 

performing segmentation on the MRI image to separate the AAP and other regions from the 

rest of the lumbar spine areas before applying the edge detection algorithm. However, medical 

image segmentation itself possesses its own unique challenges. One of the major difficulties in 

medical image segmentation is the high variability in medical images which is caused by the 

variability in human anatomy itself, the severity of the illness, the effect of age and gender, and 

also the intrinsic factors of the equipment such as calibration and sensitivity. To overcome 

these difficulties, we use a deep neural network to perform the segmentation because of the 

technique’s widely acknowledged ability to take into account these variabilities [138]. The 

ground truth used for training and testing of the deep learning algorithm consists of labelled 

axial-view MRI slices of the IVDs [139]. It is important to note that we do not use the slices of 

all lumbar IVDs, but instead, we use the slice of the last three only. The rationale of this was 

provided in our previous explanations. 

The labels in the ground truth mark several regions of interest (RoIs). Since lumbar spinal 

stenosis occurs inside the AAP, we only focus on parts of the MRI which contain and are 

around this region. Subsequently, we decided to have four RoIs which are a) the IVD, b) the 

PE, c) the TS, and d) the AAP itself. Any other pixels that do not belong to any one of the 

above four regions are labelled as e) other. The labelling of these four regions is illustrated in 

Figure 7.2. 
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Figure 7.2 The four labelled RoIs namely 1) Intervertebral Disc, 2) Posterior Element, 3) 

Thecal Sac and 4) the AAP. 

 

The labelling process is carried out using the T1-weighted axial-view MRI slice of the last 

three IVDs. The task of manually labelling the four areas on each MRI slice is a laborious one. 

On average, five to ten minutes are spent to label each slice. This provides a significant 

challenge for us if we were to use the highly valuable expert’s time to perform it. As an 

alternative, we opted to use the expert’s time to label several MRI images as examples and use 

them to guide non-experts when labelling the dataset. We also use the examples that the expert 

has created to select the best results from the output. The steps to develop the ground truth data 

are detailed below: 

1. We use a dual-view set-up on a DICOM/MRI viewer to select the images as illustrated 

in Figure 7.3. On the mid-sagittal (left) view, we observe the cut line (yellow line) of the 

corresponding axial-view slice on the right. The best axial-view slice of a disk, defined as one 

which cuts closest to the half-height of the disc, is then selected. 
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Figure 7.3 Dual-view of MRI images showing the mid-sagittal view (left) and the 

corresponding axial-view slice (right) at the cut line. 

 

2. We then extract the three best T1-weighted MRI slices, one from each of the lowest 

three IVD, i.e., L3-L4, L4-L5, and L5-S1, from each patient’s MRI study. For brevity, we will 

refer to these selected slices as the images from now on.  

3. We asked our expert to label the four RoIs on ten patients (30 slices in total) as 

examples. The ten selected images are chosen in such a way to provide as best representation 

to the rest of the dataset as possible.  

4. We use these example images to train several undergraduate students, as project 

participants, to perform the same task. The training runs twice with a test at the end to assess 

their suitability. In the end, fourteen participants were recruited. 

5. We split the database into two groups and assigned seven participants to label all images 

in each dataset group independently. Their results are regularly checked by the expert to ensure 
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a good level of consistency and accuracy. In the end, we have seven batches of labelled images 

per group. 

6. From each group, the five best batches were selected by the expert to be used for subsequent 

stages. 

7.1.2 Ground Truth Quality Metrics 

Compared to other topics in computer vision, little formal or analytical work has been 

published to guide the creation of ground truth data. There is some guidance [140], [141] 

provided by the machine learning community for measuring the quality of ground truth data 

used for training and test datasets, but this tends to revolve only around the size of the dataset 

[142]. To address this issue, we propose a novel method to assess ground truth quality, not 

from the size of the dataset but through calculating its confidence and consistency levels to 

measure its accuracy and variability, respectively. The detail of this method has been presented 

in a limited form in our previous publication [143]. In the interest of completeness, in this 

section, we will describe the algorithm again and provide an updated result when the metrics 

are calculated using the final MRI dataset. 

We define the confidence level of ground truth data as a sureness measure that all labelled 

regions contain all the pixels that should be in that class and nothing less. On the other hand, 

we define consistency level as to how varied the ground truth data is across its sources. To 

measure the confidence level of the resulting labelled images we use a variant of the Jaccard 

Index, which is also known as the intersection-over-union metric [131]. The intersection-over-

union (iouc) of class c is calculated as the ratio between the number of correctly predicted pixels 

(intersection) and the sum (union) of the number of correctly and incorrectly predicted pixels. 

 



106 | P a g e  
 

𝑖𝑜𝑢𝑐 =
𝑚𝑐𝑐

𝑡𝑐+𝑚𝑐−𝑚𝑐𝑐
 [7.1] 

Where mcc is the number of pixels of class c correctly predicted to belong to class c, and tc is 

the total number of pixels of class c – according to the ground truth, and mc is the total number 

of pixels predicted to belong to class c. An ideal classifier would classify correctly all pixels 

that belong to class c as that class (i.e., mcc = tc) and only those pixels (i.e., mcc = mc), resulting 

in iouc = 1. Since in this case we do not have and are still developing the ground truth, therefore 

by definition, the value of both mcc and tc cannot be determined. Hence, we will develop an 

alternative intersection-over-union metric, denoted as iou’cv to estimate iouc, which will be used 

as a measure of confidence of the ground truth. 

 

Consider a set C, defined as C = {1, 2, 3, 4}, of the four classes or RoIs. A pixel, n, can be 

labelled by a participant p, where p ∈ {1, 2, 3, 4, 5}, as lnp where lnp ∈ C. We define a vote 

count, knc, as the number of votes from all five participants that assign class c to pixel n, where 

c ∈ C. 

𝑘𝑛𝑐 = ∑ [𝑙𝑛𝑝 = 𝑐]𝑝  [7.2] 

Where [z] is the Iverson Bracket notation of logic proposition z, i.e., [z] = 1 if z is true or 0 

otherwise. The vote count has values in the range of 0 ≤ knc ≤ 5, e.g., kn2 = 0 means the pixel n 

receives zero vote that assigns class 2 to it and kn3 = 5 means the pixel n receives all five votes 

that assign class 3 to it. 

Next, we define the intersection of c-labelled regions, denoted as scv, as the normalised number 

of pixels that receive at least v number of votes that assign class c. Here, we refer v as the vote-

threshold. 

𝑠𝑐𝑣 =
1

𝑛
∑ [𝑘𝑛𝑐 ≥ 𝑣]𝑛  [7.3] 
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Note that sc1 is the normalised number of pixels that receive at least one vote that assigns class 

c. This represents the union of all pixels receiving a non-zero number of votes for that class. 

Therefore, these pixels will serve as the union, or denominator, in our alternative intersection-

over-union iou’cv calculation. Another important fact to consider is that for ∀c, the following 

composite inequality applies: 

𝑠𝑐1 ≥ 𝑠𝑐2 ≥ 𝑠𝑐3 ≥ 𝑠𝑐4 ≥ 𝑠𝑐5 [7.4] 

Based on the above argument, we define our alternative intersection-over-union metric iou’cv 

of class c and vote threshold v as, 

 

𝑖𝑜𝑢′𝑐𝑣 =
𝑠𝑐𝑣

𝑠𝑐1
 [7.5] 

Substituting the equation to the above inequalities we have the following relationship: 

1 ≥ 𝑖𝑜𝑢′𝑐2 ≥ 𝑖𝑜𝑢′𝑐3 ≥ 𝑖𝑜𝑢′𝑐4 ≥ 𝑖𝑜𝑢′𝑐5 [7.6] 

Hence, the closer the value of iou’cv is to unity for all vote thresholds the better in-agreement 

the five participants are in labelling the region of class c. 

7.1.3 Compositing T1- and T2-weighted MRI images 

The labelling of the MRI slices used T1-weighted images because it provides us with the ability 

to identify and locate the TS region. However, the information in its corresponding T2-

weighted image is also as important as that contained in the T1-weighted image. The 

combination of the two will provide better and richer discriminating features when carrying 

out the segmentation process. 

Despite the fact that both T1-weighted and T2-weighted images have identical dimensions, not 

all pixels at the same location in both images correspond to the same point in an organ or tissue. 



108 | P a g e  
 

We have observed a wide gap, typically between 1 and 9 minutes, between the time data 

recorded on the T1-weighted and T2-weighted scans. The big time difference suggests that 

corresponding T1-weighted and T2-weighted MRI slices may not necessarily align.  

The process to align the two images begins by fixing one of the images and transforming the 

other to match the first image. We set the T1-weighted image as the fixed image because we 

used them when constructing our image labels. A set of affine transforms, i.e., a linear 

combination of translation, rotation, scaling, and shearing, are then applied to the T2-weighted 

image to produce transformed images and calculate the difference between them and the fixed 

image. The whole process is known as image registration, which is essentially an error-

minimisation problem over a search-space. In our experiment, we set the minimum and 

maximum limit to the radius of this search-space to 1.5e-6 and 13e-3, respectively with a 

growth factor of 1.05. To avoid a long or an indefinite search time, we limit the number of 

searches to 300 iterations. It is also expected that both modalities are affected by both high-

frequency noise and low-frequency inhomogeneity field. To counter the latter, a parametric 

bias field estimation is applied before being corrected using PABIC method [144]. This method 

also employs a search optimisation algorithm called (1+1)-Evolutionary Strategy that locally 

adjusts the search direction and step size while at the same time providing a mechanism to step 

out of non-optimal local minima. 

In the event that the registration process fails to converge, we perform a manual inspection on 

the images. It is very likely that it is a result of large discrepancies between the two modalities 

which may be caused by significant movement by the patient during the MRI scan. If that is 

the case, we will treat the images as unusable and remove the pair from our dataset. 

Once the image registration is completed, a composite 3-channel image is created from the T1-

weighted and T2-weighted slices. The first channel is the original T1-weighted image whereas 
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the second channel is constructed from the aligned T2-image. The third channel can be either 

a linear or non-linear combination of the two. We have experimented with different functions, 

including Manhattan distance, Euclidean distance, Mahalanobis distance, and polynomials and 

settled with the simplest one which is the Manhattan distance of the images. The registration 

process may also produce a set of pixels locations where T1-weighted pixels have no 

correspondence with any of the registered T2-weighted pixels. To accommodate the 

classification of these pixels, we create a new class of pixels in addition to the five classes we 

already have. We refer to this new set of pixels as ‘Unregistered’. Next, we use these images 

for training and testing a Convolutional Neural Network (CNN) to perform automatic semantic 

segmentation on them. 

7.2 Development of Ground Truth Data for Automatic Lumbar Spine MRI Image 

Segmentation 

7.2.1 Analysis of image labelling results 

 

We calculate the values of iou’cv for the four regions of interest in 1545 (three IVDs in each 

study of 515 patients) MRI images in our dataset and show the results in Table 7.1. We will 

next discuss and analyse the result of each individual region. 

Table 7.1 Intersection-over-union values of different vote-threshold groups. 

Regions (label/class) 𝒊𝒐𝒖′𝒄𝟐 𝒊𝒐𝒖′𝒄𝟑 𝒊𝒐𝒖′𝒄𝟒 𝒊𝒐𝒖′𝒄𝟓 

Intervertebral Disc (1) 0.96 0.93 0.91 0.87 

Posterior Element (2) 0.89 0.82 0.76 0.66 

Thecal Sac (3) 0.87 0.81 0.74 0.66 

The AAP (4) 0.66 0.48 0.34 0.21 

 

The MRI scans in our dataset show varying degrees of severity. Some scans, for example, show 

strong evidence of intervertebral disc collapse while some others show a non-existent gap 
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between the intervertebral disc and posterolateral arch. The condition in these cases is so severe 

that we could not reliably label the images with a high degree of confidence. 

7.2.2 Individual Region Analysis 

The analysis of the labelling results is done by correlating the calculated iou’cv for the four 

regions of interest with the heat map of the vote each pixel has as shown in Figure 7.4. In this 

figure, pixels with the most votes are rendered the brightest and vice versa. High contrast 

between a region and it's surrounding suggests stronger vote confidence whereas a blurry 

boundary suggests a presence of ambiguities. The images are cropped tightly to the size of each 

region of interest to maximise the visual clarity of the heat map. 

 

Figure 7.4: Visualizing vote counts that each pixel in and around each RoI receives as a heat 

map, where the brighter pixels have more votes than darker pixels. The RoIs are a) IVD, b) 

PE, c) TS and d) the AAP 
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The IVD region is by far the easiest region to the label. The region has more consistent visual 

characteristics across all patients which manifest as a narrow range of pixel grey level values, 

smoother texture, as well as high contrast to the surrounding tissues. This fact is reflected by 

the high iou’cv values the region has compared to the other three as shown in Table 7.1 The 

heat map image of the IVD region shown in Figure 7.4 (a) shows a high contrast between the 

region and the surrounding area indicating a high level of confidence in the data for this region. 

The PE region has a unique shape, similar to the letter Y in many cases, as exemplified in 

Figure 7.4 (b). The region has a relatively wide range of pixel grey level values and more varied 

texture compared to IVD. Furthermore, it has a lower contrast to the surrounding tissue than 

the latter, making it more difficult to determine its edges correctly especially towards its lower 

end. This fact is reflected in its lower iou’cv values than the IVD region. 

In a healthy patient, the TS region will appear distinct to its surrounding in T1-weighted MRI 

and has a round shape as depicted in Figure 7.4 (c). However, when central spinal stenosis 

occurs, the spinal canal may be squashed between the IVD and the PE. This, in turn, could 

make accurate identification of its edges more difficult. Furthermore, because of its small size, 

the ratio between its edges and inner pixels is large hence lowering its iou’cv values. 

By far, the hardest region to label is the AAP region. One of the reasons for this is because it 

does not strictly represent any part of human tissues like the other three, but instead it represents 

a large osseous opening in the lumbar spine structure [145]. Its shape can vary significantly 

depending on many factors such as the location of the slice, the patient’s posture as the MRI is 

performed, as well as the presence of illness or defects. 

Usually, the top and bottom boundaries of the AAP with the IVD and the PE respectively, are 

pronounced. However, in cases where central or lateral stenosis occurs, these boundaries 

narrow and become unclear. The AAP region also contains many spinal nerves, spinal arteries, 
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and veins whose locations vary significantly between patients and depending on which part of 

the lumbar spine the AAP is. This results in inconsistent and different pixel values and texture 

in MRI scans. Furthermore, judging from the example segmentation provided by our clinician 

experts, there seems to be a very loose definition of where the region should end on each side 

of the vertebrae. All these reasons result in poor values of iou’cv across all vote thresholds as 

shown in Table 7.1 

7.2.3 Confidence and consistency metrics 

At the end of the experiment, we have five groups of labelled images for each class. We need 

to choose one from each class that best represents the groups and to be selected as the final 

ground truth data. From them, we will calculate the confidence metric and consistency metric, 

denoted as xc and yc respectively. 

Each of the five groups is developed from its corresponding vote threshold. There is a question 

of which vote threshold value is to be chosen as the selected vote-threshold, denoted as vt, that 

will provide the best and most appropriate ground truth. The most liberal option would be to 

pick vt  = 1 as it provides the highest iou’cv value. However, this presents one problem,  that it 

is very likely that pixels which have only one vote for one class also have at least one vote for 

other classes, hence we need to reconcile the different votes before assigning those pixels a 

label.  Another alternative is to pick the most conservative group, i.e., choosing only those 

pixels that have all the votes, i.e., vt  = 5. One of the issues with this is the lowest iou’cv that the 

group has compared to all other options, hence it provides the least confidence level. 

One intuitive, yet arguably the best, answer to the question is to pick the majority vote. In our 

case, since there are in total five participants we will select vt  = 3 as our chosen vote threshold. 

This is a compromise solution that avoids both the problem of having the lowest iou’cv value 

and having to perform vote reconciliation. Therefore, a pixel n will be assigned a final 
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classification c when gnc3 = 1. Our generalised solution is, therefore, to set the confidence 

metric xc as the alternative intersection-over-union iou’cv at the selected vote-threshold vt. 

 

𝑥𝑐 =  𝑖𝑜𝑢′𝑐𝑣𝑡
 [7.7] 

 

We have previously defined consistency level as to how varied the ground truth data is across 

its sources. One way to measure this is by calculating the rate of change of iou’cv along the vote 

threshold dimension. Using the mean first derivative of the class’s confidence level at the 

chosen vote-threshold vt, we calculate the consistency metric yc as: 

𝑦𝑐 = 1 + 2 ×
𝑖𝑜𝑢′𝑐𝑣𝑡+1−𝑖𝑜𝑢′𝑐𝑣𝑡−1

𝑣𝑡+1−𝑣𝑡−1
 [7.8] 

Note that the value of yc ranges between 0 and 1, where low value suggests low consistency 

and high variability between the labellers, and vice versa. The final values of confidence and 

consistency values of the ground truth data are presented in Table 7.2. 

Table 7.2: Confidence and consistency values of the resulting ground truth data. 

Regions (label/class) 𝒙𝒄 𝒚𝒄 

Intervertebral Disc (1) 0.93 0.95 

Posterior Element (2) 0.82 0.87 

Thecal Sac (3) 0.81 0.87 

The AAP (4) 0.48 0.68 
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7.3 Boundary Delineation through Semantic Segmentation 

7.3.1 Segmentation Results and Analysis 

In this experiment, we will use a number of performance metrics to measure how well both 

SegNet networks perform semantic segmentation on our dataset. These metrics include general 

as well as class-specific metrics. To assess how the segmentation process performs on a specific 

class, we calculate class-specific metrics, namely class accuracy and class intersection-over-

union. The class accuracy of class c, denoted as ac, is calculated as: 

 𝑎𝑐 =
𝑚𝑐𝑐

𝑡𝑐
 [7.9] 

The definitions mcc and tc were given previously when we defined the class intersection-over-

union (iouc) in Eq. 7.1 in this chapter.   

   𝑖𝑜𝑢𝑐 =
𝑚𝑐𝑐

𝑡𝑐+𝑚𝑐−𝑚𝑐𝑐
 [7.10] 

 

General metrics that we use to assess the overall performance of the segmentation process are 

pixel accuracy (ap), mean accuracy (am), mean intersection-over-union (ioum) and frequency-

weighted intersection-over-union (ioufw). The formula used to calculate these metrics are 

provided as follows:  

 

 𝑎𝑝 =
∑ 𝑚𝑐𝑐𝑐

∑ 𝑡𝑐𝑐
 [7.11] 

 𝑎𝑚 =
∑ 𝑎𝑐𝑐

𝑚𝑐𝑙
 [7.12] 

 𝑖𝑜𝑢𝑚 =
∑ 𝑖𝑜𝑢𝑐𝑐 

𝑚𝑐𝑙
 [7.13] 

 𝑖𝑜𝑢𝑓𝑤 =
∑ (𝑡𝑐×𝑖𝑜𝑢𝑐)𝑐 

∑ 𝑡𝑐𝑐
 [7.14] 
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The pixel accuracy and mean accuracy results at different PTD values are shown in Figure 6.5. 

The results show that SegNet-FS produces very low accuracies at the low end of the PTD scale 

and increases in performance as the PTD increases. On the other hand, SegNet-TL produces 

more accurate segmentation even at low PTD and is significantly more insensitive to the values 

of PTD used. The figure also shows significant differences between the two accuracy metrics. 

The figure shows the pixel accuracies are consistently higher than mean accuracies at the same 

point in the x-axis. Pixel accuracy measures the proportion of correctly labelled pixels in the 

entire pixel population in the dataset. This metric does not allow us to see how accurate the 

segmentation is for each class but at the same time is affected by class population imbalance. 

High accuracy in the largest class will significantly mask poor performance in smaller classes. 

This is the case in our experiment as exemplified in Figure 7.5 The fact that the mean accuracy 

is lower than the pixel accuracy suggests that we have one dominant class that has significantly 

higher accuracy than the others. 

 

 

Figure 7.5: The plot of a) Pixel Accuracy and b) Mean Accuracy of the SegNet semantic 

segmentation results at different training data percentages. 
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The use of intersection-over-union metric gains popularity in the image segmentation research 

community because of one significant limitation in the accuracy metric. If there exists a class 

(or classes) of pixels that are not important to the calculation of the segmentation performance, 

one could design a classifier that increases the accuracy of other, more important, classes at the 

expense of the accuracy of the less important class, hence artificially boosts the overall 

segmentation accuracy. Segmentation algorithms that do this tend to produce a high number of 

false alarms or false positives. Moving away from this limitation, many image segmentation 

challenges such as Microsoft COCO challenge [146] introduced intersection-over-union (IoU) 

as a more representative metric. As with accuracy metric, there are also two versions of IoU 

metric that can be used. Frequency-weighted IoU is the equivalent of pixel accuracy whereas 

mean IoU is the equivalent of mean accuracy. The plot of mean IoU and Frequency-weighted 

IoU results are shown in Figure 7.6. 

 

Figure 7.6: The plot of a) Frequency-Weighted IoU and b) Mean IoU of the SegNet semantic 

segmentation results at different training data percentages. 

 

When we compare the pixel accuracy and frequency-weighted IoU results, we conclude that 

there is not much significant difference between them. This is expected since in our case, there 

is no class of pixels that are not used in the calculation of the segmentation performance. In 
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other words, the union of all pixels belonging to every class should comprise the total 

population of pixels under consideration. However, when we compare the mean accuracy and 

the mean IoU graphs, we can see that the segmentation performance measured using the latter 

metric is consistently lower than the former across all PTD values. To further investigate the 

underlying reasons for this phenomenon, we observe the individual class accuracies and class 

IoUs. These are given in Figure 7.7 and Figure 7.8. 

 

Figure 7.7: The plot of the class accuracy of the semantic segmentation results using a) 

SegNet-FS and b) SegNet-TL at different training data percentages. 

 

Figure 7.8: The plot of class IoU of the semantic segmentation results using a) SegNet-FS 

and b) SegNet-TL at different training data percentages. 

 



118 | P a g e  
 

One of the most straightforward findings from our observation of the individual class 

performance is that the ‘other’ class is consistently better than all other classes – across all PTD 

values and regardless of whether the network is trained from scratch or using transfer learning. 

Using this view, we can clearly identify which of the six classes is the worst performer. We 

found the ‘unregistered’ class to be consistently the worst region to classify. This is expected 

since the population of pixels that belongs to this class is the lowest and also at the same time 

not necessarily present in all images. In fact, we believe this is the reason behind the strangely 

shaped class-accuracy plot of the unregistered class in Figure 7.7 (b). We suspect that by 

chance, the randomised selection of the training data below the 75% mark had not picked up a 

sufficient number of unregistered pixels for training. 

7.4 Chapter Summary 

After observing all the results we have obtained, we concluded that SegNet-TL produces better 

segmentation than SegNet-FS. Additionally, we also concluded that the results get marginally 

better the higher the training percentage is used. Therefore, we decided to set the best semantic 

segmentation network to use to be SegNet-TL trained using 80% PTD. The segmentation 

performance of this network is summarised in table 7.3. 

Table 7.3: The performance of the best semantic segmentation network (SegNet-TL trained 

using 80% PTD) 

Regions (label/class) 𝒂𝒄 𝒊𝒐𝒖𝒄 

Unregistered 0.50 0.21 

Intervertebral Disc 0.99 0.92 

Posterior Element 0.96 0.78 

Thecal Sac 0.96 0.85 

AAP 0.93 0.53 

Other 0.98 0.98 
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Regarding the different performance metrics, we found that the class IoU metric is the best 

image segmentation metric to use due to its ability to differentiate much more clearly each 

class’s individual performances. However, it is important to note that our objective is to achieve 

delineation of important boundaries in the MRI images as illustrated in Figure.7.2 Therefore, 

we also need to analyse the delineation results to measure how the selected best SegNet 

performs in that regard. 
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Chapter 8 Conclusion and Future Work 
 

8.1 Conclusion 

The progress in image processing, computer vision, artificial intelligence, computer graphics, 

and physics simulation has moved rapidly in the past decade.  However, they have not been 

utilized in any significant way to improve Computer-Aided Diagnostic techniques, in 

particular, the way Chronic Lower Back Pain cases are diagnosed and managed. Most 

physicians still rely on a long and laborious task to visually identify abnormalities from the 

patient’s Magnetic Resonance Images. Furthermore, currently, there is no solution to assist 

physicians to understand how patients’ physiological characteristics, posture, and position 

affect the way pain at lower back spine is generated. This research proposed a novel 

methodology that utilises state-of-the-art computing technologies, which can be used as a 

computer-aided diagnosis tool, to help physicians in their efforts to diagnose and manage 

CLBP cases. The proposed method will be able to solve some of the existing problems with 

the current Chronic Lower Back Pain diagnosis and management procedures. 

The presented method is to aid clinicians in performing lumbar spinal stenosis detection 

through the delineation of important boundaries in MRI images. The method starts by applying 

semantic segmentation to the MRI images to locate four regions of interest, namely the 

Intervertebral Disc (IVD), Posterior Element (PE), Thecal Sac (TS), and Area between Anterior 

and Posterior (AAP) elements. SegNet has been used as one of the best performing deep neural 

networks in the literature to date, as the pixel classifier. Due to the limitation in size and 

suitability of the currently existing open-access lumbar spine dataset, it has been decided to 

develop our own dataset. Our dataset contains clinical lumbar spine MRI studies of 515 patients 

with symptomatic back pains. Each study is annotated by expert radiologists with notes 

regarding the observed characteristics, condition of the lumbar spine, or presence of diseases, 
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these include bone marrow disease, endplate degeneration, IVD bulges, Thecal Sac 

compressing, central or foraminal stenosis, annular tears, scoliosis, endplate defects (Modic 

type), facet joint and Ligamentum Flavum hypertrophy, and spondylolisthesis. From this 

dataset, a ground-truth label image dataset is developed. It can be used to train and test an 

image segmentation model. Due to the lack of appropriate methodologies in the literature to 

assess the quality of ground-truth datasets, in this research two novel metrics have been 

developed to assess the accuracy and variability of a ground truth dataset, namely the 

confidence and consistency metrics, respectively. These metrics are derived from the widely 

used intersection-over-union metric to measure the accuracy of image segmentation 

algorithms.  

SegNet models have been trained using a combination of different training set-ups. The first 

set-up trained the model from scratch, i.e., using random valued initial weights. The second 

set-up uses pre-trained initial weights provided by the VGG16 network. The experiment has 

been done using a variety of training-to-testing-percentage ratios on each of the above set-ups.  

Analysis of the results of the semantic segmentation and the delineation results was carried out 

using a comprehensive set of contour-based and region-based performance metrics including 

accuracy, intersection-over-union, and BF score. Our experiment shows that the different pixel 

classifiers produce varying levels of performances, but in general, the model that uses the 

VGG16 pre-trained initial weights, as opposed to initial random weights, is the best. Moreover, 

using 80:20 ratio of training to testing percentages provides the best performance across the 

board. Therefore, it has been concluded that SegNet-TL80 is the best segmentation model to 

use. 

The performance of this model is also analyzed in two ways. First, by measuring and comparing 

inter-rater agreement, rater-ground-truth agreement, and model-ground-truth agreement. The 
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research concluded that 1) the model's performance is within the range of manual labelling 

performance and 2) the ground-truth dataset has an excellent inter-rater agreement score. 

Qualitatively, this research presented two representative boundary delineation results. The 

results are selected from the entire dataset based on the worst and best contour-based metric 

score because they provide an indication of the range of quality of the boundary delineation 

results. Through visual inspection of these results, this research can confidently claim that our 

proposed method is sufficiently accurate, and the results are suitable for computer-aided-

diagnosis purposes. 

8.2 Research Contributions 

The finding presented in this research is to develop a computer-assisted diagnosis of chronic 

lower back pain which was detailed in this thesis and in our previous publication [147].  The 

MRI study dataset, the ground-truth label dataset, and the MATLAB source code used in this 

research are made available freely for the benefit of the research community. The MRI images 

are stored in Siemens IMA (DICOM) format, the label ground truth and all extracted slices are 

stored as greyscale images in PNG format with lossless compression to preserve the quality. 

The methodology proposed is to aid clinicians in performing disc herniation and lumbar spinal 

stenosis detection through machine learning delineate the magnetic resonance imaging (MRI) 

scans of the lumbar spine. Our dataset contains MRI studies of 515 patients with symptomatic 

back pains. Each study is annotated by expert radiologists with notes regarding the observed 

characteristics and condition of the lumbar spine. The research has developed a ground truth 

dataset, containing image labels of four important regions in the lumbar spine, to be used as 

the training and test images to develop classification models for segmentation. Two novel 

metrics have developed, namely confidence, and consistency, to assess the quality of the 

ground truth dataset through a derivation of the Jaccard Index. An experiment with semantic 

segmentation of our dataset using SegNet has been performed. The evaluation of the 
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segmentation and the delineation results show that our proposed methodology produces a very 

good performance as measured by several contour-based and region-based metrics. In addition, 

using the Cohen's kappa and frequency-weighted confidence metrics, it can show that 1) the 

model's performance is within the range of the worst and the best manual labelling results and 

2) the ground-truth dataset has an excellent inter-rater agreement score. The research also 

presented two representative delineation results of the worst and best segmentation based on 

their BF-score to show visually how accurate and suitable the results are for computer-aided-

diagnosis purposes. In addition to the delineation of the area of interest, the produced labelled 

images have been used to help the clinician diagnosing patients with spinal canal stenosis by 

allocating the specific points in the segmented area as advised by our external advisor. Then, 

these points have been used to calculate the distances between the centre of the disc and the 

bottom of the spinal canal and compare the calculated distances with the approved distance for 

the healthy lumbar spine. Meanwhile, the result of the comparison will be used as an indicator 

for patients with spinal canal stenosis. Table 8.1 shows the research contributions and the 

achievement of each one of them. 
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Table 8.1: The research contributions and how it has been achieved.  

Research Contribution Achievement 

1. Presenting a method to aid clinicians in 

performing CLBP detection. 

This is done through two steps: 

1. Developing a method to aid clinician 

detecting the disc herniation using the 

disc segmentation and centroid distance 

function. (Ch5) 

2. Developing a method to aid clinician 

detecting lumbar spinal stenosis 

detection via segmentation of Area 

between Anterior and Posterior (AAP). 

(Ch6) 

2. Develop our own dataset. Developing a dataset containing clinical 

lumbar spine MRI studies of 515 patients 

with symptomatic back pains. From this 

dataset, a ground-truth label image dataset is 

developed. It can be used to train and test an 

image segmentation model. (Ch4) 

3. The development of two novel metrics to 

assess accuracy and variability. 

Developing confidence and consistency 

metrics. These metrics are derived from the 

widely used intersection-over-union metric 

to measure the accuracy of image 

segmentation algorithms. 
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8.3 Summary and Future Research 

Chronic Lower Back Pain (CLBP) is one of the major types of pain that is affecting many 

people around the world. It is estimated that 28.1% of US adults suffer from this illness and 

2.5 million of the UK population experience this type of pain every day.  Most CLBP cases do 

not happen overnight and it is usually developed from a less serious but acute variant of lower 

back pain. An acute type of lower back pain can develop into a chronic one if the underlying 

cause is serious and left untreated. The longer a person is disabled by back pain, the less chance 

he or she will return to work and the more health care cost he or she will require. It is therefore 

important to identify the cause of back pains as early as possible in order to improve the chance 

of patient rehabilitation. The speed of early diagnosis can depend on many factors including 

referral time from a general practitioner to the hospital, waiting time for a specialist 

appointment, time for an MRI scan and time for the analysis result to come out. Currently 

diagnosing the lower back pain is done by visual observation and analysis of the lumbar spine 

MRI images by radiologists and clinicians and this process could take up much of their time 

and effort. This, therefore, rationalizes the need for a new method to increase the efficiency 

and effectiveness of the imaging diagnostic process. 

As a future plan will work to develop a new methodology to automatically aid clinicians in 

performing diagnosis of CLBP, the method will be based on the current accepted medical 

practice of manual inspection the MRI scans of the patient’s lumbar spine. There are different 

possible causes of CLBP and identifying one requires a different procedure from another. To 

identify lumbar spinal stenosis, for example, the procedure involves identifying boundaries 

between specific regions in MRI images, measuring distances between specific points in these 

boundaries and comparing the distances with the range of normal values. Another cause of 

CLBP, namely intervertebral disc degeneration, can be identified through observing the pixel 

intensity variations within the disc. Our method will use deep learning to perform semantic 
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segmentation on these regions and perform boundary delineation process, meanwhile, 

developing a machine learning model of the segmented intervertebral disc regions to detect the 

level of degeneration. The preliminary work has been carried out in the form of data gathering 

and ground truth data development. This data have been used to test the feasibility of the 

methodology by using it to detect lumbar spinal stenosis, one of the possible causes of CLBP. 

In this research, a further extending of this method to detect and classify other possible causes 

of CLBP will include: developing a new algorithm for Intervertebral Disc Herniation 

Detection, developing a new algorithm for Intervertebral Disc Degeneration Classification, 

developing a new algorithm for Lumbar Spine Fracture Detection and to develop a software 

prototype demonstrating the capability of the algorithms in assisting the diagnosis process of 

chronic lower back pain. Another direction for the proposed research is to use the current 

methodology to help the clinicians in diagnosing brain tumor using brain MRI images. 

Automatic tumor segmentation will help in speed up the diagnosing process and highlight the 

patients at risk which will contribute in saving people’s lives and reduce the overall cost by 

early diagnosing the patient’s with this kind of diseases.  Moreover, the proposed research can 

also contribute to developing a CAD that support image classification and boundary detecting 

for the lung using any kind of Dicom images such as X-Ray, MRI, or CT. This will help in 

diagnosing chest diseases such as pulmonary diseases, lung infections, and cancer which cause 

a huge number of deaths every year. The need of having these kinds of systems is motivating 

me to look forward in developing an automatic methodology that helps clinicians in diagnosing 

a different kind of diseases to mitigate the severity of the disease for the patients and help 

healthcare service authority in reducing the cost and saving the time. 
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