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Abstract 
 
Skeletal muscle tissue demonstrates a remarkable malleability and can adjust its 

metabolic and contractile makeup in response to alterations in functional demands. As 

a result, great diversity exists in muscle physiology, biochemistry and energy 

metabolism, all of which are underpinned by the functional changes in the abundance 

of individual proteins. The proteome represents a highly dynamic and versatile entity 

that coordinates the adaptive response of skeletal muscle through adjustments in 

individual protein turnover as well as abundance. Until very recently, research relating 

to protein turnover was largely limited to average synthesis rates of protein mixtures, 

e.g. from whole muscle homogenates. This project utilises our new methodology, 

coined dynamic proteome profiling, combining deuterium labelling and advanced 

proteomic techniques with computational biology, to investigate muscle protein 

dynamics at the individual protein level. We have used programmed exercise to 

perturb skeletal muscle in vivo for the purposes of studying two contrasting types of 

muscle adaptation, each over a chronic 30-day period. The first is an endurance 

stimulus that induced changes in protein abundance for 50 individual muscle proteins. 

Of these changes, 30 % were driven by changes in synthesis, 38 % were driven by 

degradation only and the remaining 32 % by changes in a combination of both 

synthesis and degradation. We also provide new evidence to demonstrate that in 

response to resistance exercise training individual proteins increase the rates of 

protein turnover and can be selectively degraded at varying rates to alter individual 

protein abundances. As a result, we report, 27 of 91 proteins studied exhibited a 

change in abundance in response to muscle hypertrophy. Of which 96 % were driven 

by synthesis and 4 % of proteins were driven by degradation. For the remaining 64 

proteins that did not change in abundance, 36 % increased protein turnover, 17 % 

decreased in protein turnover and 47 % of proteins were unaffected by our resistance 

exercise training stimulus. This work is the first of its kind and presents a highly novel 

contribution to the rapidly growing field of exercise proteomics. 
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Glossary of Terms 
 
1DGE One dimensional gel electrophoresis  
2D Two dimensional 
2DGE Two dimensional gel electrophoresis 
2H Deuterium 
2H2O Deuterium oxide 
3MH 3-methylhistidine 
A-V arterial–venous balance 
AA Amino acid 
AATC Aspartate aminotransferase, cytoplasmic 
AATM Aspartate aminotransferase, mitochondrial 
ACADL Long-chain specific acyl-CoA dehydrogenase, mitochondrial 
ACON Aconitate hydratase, mitochondrial 
ACTH Adrenocorticotropic hormone 
ACTN1 Alpha-actinin-1 
ACTS/ACTC Actin, alpha skeletal muscle/ Actin, alpha cardiac muscle 1 
ADH-1 Alcohol dehydrogenase 1 
ADR Absolute degradation rate 
ADT1 ADP/ATP translocase 1 
ALBU Serum albumin 
ALBU Serum albumin 
ALDOA Fructose-bisphosphate aldolase A 
ALDR Aldo-keto reductase family 1 member B1 
ANXA4 Annexin A4 
ASR Abssolute synthesis rate 
AT2A1 Sarcoplasmic/endoplasmic reticulum calcium ATPase 1 
AT2A2 Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 
ATP5H ATP synthase subunit d, mitochondrial 
ATPA ATP synthase subunit alpha, mitochondrial 
ATPase ATP synthase 
ATPB ATP synthase subunit beta, mitochondrial 
ATPG ATP synthase subunit gamma, mitochondrial 
ATPO ATP synthase subunit O, mitochondrial 
BSA Bovine serum albumin 
Ca2+ Calcium ion 
CAH3 Carbonic anhydrase 3 
CASQ1 Calsequestrin-1 

CHAPS 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate 
hydrate 

CHFS Co-contraction high-frequency stimulation 
CISY Citrate synthase 
CLFS Chronic low-frequency stimulation 
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CO2 Carbon dioxide 
COF1 Cofilin-1 
COX2 Cytochrome c oxidase subunit 2 
CRYAB Alpha-crystallin B chain 
Ctrl Non-stimulated, contralateral control muscle 
CV Coefficient of variation 
CX7A2 Cytochrome c oxidase subunit 7A2, mitochondrial 
CYC Cytochrome c 
Da Dalton 
DESM Desmin 
DPP Dynamic proteome profiling  
DTT Dithiothreitol 
ECHA Trifunctional enzyme subunit alpha 
EDL Extensor digitorium longus 
EF1A2 Elongation factor 1-alpha 2 
ENOB Beta-enolase 
ESI-Q-TOF Electrospray ionisation quadrupole time of flight 
FABPH Fatty acid-binding protein, heart 
FASP Filter aided sample preparation 
FDL Flexor digitorium longus 
FDR Fractional degradation rate 
FDR Fractional degradation rate 
FHL Flexor hallucis longus 
FHL1 Four and a half LIM domains protein 1 
FSR Fractional synthesis rate 
G3P Glyceraldehyde-3-phosphate dehydrogenase 
G6PI Glucose-6-phosphate isomerase 
GAS Gastrocnemius 
GC-MS Gas chromatography mass spectrometry  
GPDA Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic 
H2B1 Histone H2B type 1 
HBA Hemoglobin subunit alpha-1/2 
HBB1 Hemoglobin subunit beta-1 
HBB2 Hemoglobin subunit beta-2 
HCl Hydrochloric acid 
HS90B Heat shock protein HSP 90-beta 
HSP7C Heat shock cognate 71 kDa protein 
HSPB1 Heat shock protein beta-1 
HSPB6 Heat shock protein beta-6 
IDH3A Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial 
IDHP Isocitrate dehydrogenase [NADP], mitochondrial 
IPG Immobilised pH gradient  
k Synthesis rate constant 
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KAD1 Adenylate kinase isoenzyme 1 
KCRB Creatine kinase B-type 
KCRM Creatine kinase M-type 
KCRS Creatine kinase S-type, mitochondrial 
kDa Kilo Dalton 
KPYM Pyruvate kinase PKM 
LC-MS Liquid chromatography mass spectrometry 
LC-MS/MS Liquid chromatography mass spectrometry/mass spectrometry 
LDHA L-lactate dehydrogenase A chain 
LDHB L-lactate dehydrogenase B chain 
m/z Mass to charge ratio 
m0 Monoisotopic peak 
m1, m2, m3 Heavy isotopomers 
MALDI Matrix-assisted laser desorption/ionization 
MALDI-TOF Matrix-assisted laser desorption/ionization-time of flight 

MALDI-TOF/MS Matrix-assisted laser desorption/ionization-time off fight/mass 
spectrometry 

MDHC Malate dehydrogenase, cytoplasmic 
MDHM Malate dehydrogenase, mitochondrial 
MIDA Mass Isotopomer distribution analysis 
MLRS Myosin regulatory light chain 2, skeletal muscle isoform 

MLRV Myosin regulatory light chain 2, ventricular/cardiac muscle 
isoform 

MPCP Phosphate carrier protein 
Mr Relative molecular mass 
MS Mass spectrometry 
MS/MS Tandem mass spectrometry 
mTOR Mammalian target of rapamycin 
mTORC1 Mammalian target of rapamycin complex 1 
MYG Myoglobin 
MYH4 Myosin-4 
MYH8 Myosin-8 
MyHC Myosin heavy chain 
MYL1 Myosin light chain 1/3, skeletal muscle isoform 
MYL3 Myosin light chain 3 
n Number of exchangeable deuterium/hydrogen sites 
NC No change 
NS Not significant 
O2 Oxygen 

ODPA Pyruvate dehydrogenase E1 component subunit alpha, 
somatic form, mitochondrial 

ODPB Pyruvate dehydrogenase E1 component subunit alpha, 
somatic form 

p Precursor enrichment 
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PARK7 Protein/nucleic acid deglycase DJ-1 
PEBP1 Phosphatidylethanolamine-binding protein 1 
PFKAM ATP-dependent 6-phosphofructokinase, muscle type 
PGAM2 Phosphoglycerate mutase 2 
PGK1 Phosphoglycerate kinase 1 
PGM1 Phosphoglucomutase-1 
Phospho S/T Phosphorylation of Serine/Threonine 
pI Isoelectric point 
PLEC Plectin 
PLN Plantaris 
PRDX5 Peroxiredoxin-5 
PRVA Parvalbumin alpha 
PYGB Glycogen phosphorylase, brain form 
PYGM Glycogen phosphorylase, muscle form 
Q-TOF Quadrapole time of flight mass spectromtry  
QCR1 Cytochrome b-c1 complex subunit 1 
QCR2 Cytochrome b-c1 complex subunit 2 
SAFB1 Scaffold attachment factor B1 
SAR Selective androgen receptor 
SD Standard deviation 
SDS Sodium dodecyl sulfate 
SERCA Sarcoplasmic/endoplasmic reticulum calcium ATPase 
SOL Soleus 
Stim Stimulated muscle 
TA Tibialis anterior  
TFA Trifluoroacetic acid 
TIC Total ion chromatogram 
TNNI1 Troponin I, slow skeletal muscle 
TNNI2 Troponin I, fast skeletal muscle 
TNNT1 Troponin T, slow skeletal muscle 
TNNT3 Troponin T, fast skeletal muscle 
TPIS Triosephosphate isomerase 
TPM2 Tropomyosin beta chain 
TPM4 Tropomyosin alpha-4 chain 
TRY1 Anionic trypsin-1 
UPLC Ultra performance liquid chromatography 
VDAC Voltage-dependent anion channel 
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Chapter 1. Review of the literature. 

1.1 Abstract 

In mammals ~40 % of total body mass is accounted for by skeletal muscle, 

commanding ~30 % of resting metabolic rate in adult humans (Wagermakers et al, 

1998). Skeletal muscle plays a crucial role in whole body locomotion and is paramount 

in metabolic homeostasis and glycemic control, being the largest site for glucose 

disposal (~80 %) (Kraegen et al, 1993). Importantly, skeletal muscle is the site of more 

than 60 % of whole body protein turnover (Wagermakers et al, 1998). Skeletal muscle 

is distinguished from other bodily tissues by its unique diversity. This remarkable 

characteristic is made possible through its design. The heterogeneity of each 

individual fibre that composes skeletal muscle has a range of physiological 

characteristics associated with them. It is these functional qualities bestowed on the 

composition of the individual fibres that is responsible for the basis of muscle plasticity. 

Exercise capacity is strongly related with all-cause mortality and offsetting the age-

associated loss of muscle mass (Cohen et al, 2014). Understanding how exercise 

causes muscles to adapt is fundamental to improving our health, quality of life and 

longevity. However, the proportion of different fibre types varies from muscle to muscle 

and this gives a broad range of different functional properties. This makes the study 

of skeletal muscle a challenging endeavour because of the wide diversity it exhibits. 

However, fibre typing has been used as a framework to understand muscle since the 

1960’s (Barany, 1967). Over the years, the sophistication of fibre typing has developed 

from gross anatomy to histology and the molecular classification of myosin heavy 

chain isoforms. More recently, new proteomics techniques have begun to illuminate 

the full diversity of the muscle proteome and intricacies of changes involved in the 

response to exercise (Burniston, 2008). This is challenging in itself as the proteome is 

a highly dynamic entity, but the latest developments have combined proteomics with 

stable isotope labelling to allow quantification of dynamic changes in the proteome in 

response to exercise. Such unique advancements allow for an understanding of how 

muscle coordinates its adaptive response to exercise. Subsequently, such detailed 

knowledge will position this thesis in a position to provide valuable insights into the 

mechanisms involved in skeletal muscle adaptation and potentially begin to unpick the 

physiological and pathophysiological changes within skeletal muscle associated to 

exercise. 



 12 

1.2 Muscle phenotype and plasticity 

It is clear that skeletal muscle can be classified on the basis of its diversity as early as 

1873 when Ranvier distinguished the difference between white and red muscles. 

White muscles are faster contracting and more specialised for phasic activity, whilst 

red muscles are slower contracting and better suited to more continuous tonic activity. 

Grutzner, (1883) and Knoll, (1891) report histological analysis of different muscle fibre 

types fibre size and appearance, but it was well into the 19th century before 

histochemical analyses were able to quantify fibre characteristics. Seminal work 

reported in Barany, (1967) established the intrinsic speed of muscle shortening is a 

characteristic property of the muscle myosin ATPase activity. This breakthrough 

justified the use of ATPase as a primary marker for fibre typing and provided a 

foundation for later studies on the role of myosin heavy chain (MyHC) isoforms as the 

regulator of the contractile properties across different motor unit types in response to 

exercise (Petersen et al, 2005), ageing (Barogi et al, 1995) and metabolic 

dysregulation (Nishida et al, 1992). Muscle fibre typing generated new avenues of 

research which later established what we now know about muscle e.g. organisation of 

motor units and metabolic profiles of fast contracting fatigable versus slow contracting 

fatigue resistance fibres.   

We now know that skeletal muscle is composed of a combination of heterogeneous 

myofibres with specific sub-types established in relation to their contractile and 

metabolic properties (Schiaffino, 2010). Fast-twitch fibres principally depend on 

glycolytic metabolism which makes them highly fatigable whereas, slow-twitch 

oxidative fibres have a relatively larger mitochondrial content and are therefore more 

fatigue resistant, predominantly depending on oxidative metabolism (Pette and 

Vrbova, 1992). However, intermediate or fast-twitch oxidative fibres, are also present. 

These fibres still depend on glycolytic metabolism for energy production but have a 

preponderant mitochondrial concentration when compared with ‘pure’ fast-twitch 

fibres, awarding a greater capacity for endurance; but are sensitive to fatigue at a 

greater degree than slow-twitch fibres (Schiaffino and Reggiani, 1996). The unique 

fibre type differences in contractile function are owed to particular alterations in the 

expression of a diverse range of isoforms from each myofibrillar protein at the 

individual level (Schiaffino and Reggiani, 1996). Figure 1.1 illustrates the gross to 

subcellular level of structure in skeletal muscle. 
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Figure 1.1. The gross to subcellular structure of skeletal muscle anatomy.  

The different levels of skeletal muscle anatomy are dissected. Note that many muscle 

fibres (average cross sectional area ~3000-6000 mm2) make up the compete muscle, 

as many myofibrils (average cross sectional area ~1-2 μm2) make up a single muscle 

fibre. It is within these myofibrils that individual proteins e.g. Actin and Myosin express 

different isoforms of their protein species that carry very different functional 

characteristics with them; ultimately impacting on the function of whole muscle 

physiology to give the muscle a specific phenotype.  

 

Bottinelli et al, (1991) reported the myosin heavy chain (MyHC) composition of single 

fibres from Soleus, Extensor digitorium longus (EDL) and Plantaris via 

immunocytochemistry. Four fibre types: slow-twitch (type I), intermediate (type IIA), 
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fast-intermediate (type IIX) and fast-twitch (type IIB) were distinguished. The 

maximum shortening velocity of the identified fibres was quantified as muscle lengths 

per second (L/s) and formed a continuum from 0.35 to 2.84 L/s. The mean values from 

slowest to fastest fibre type were as follows: type I: 0.639 ± 0.038 L/s, type IIA: 1.396 

± 0.084 L/s, type IIX: 1.451 ± 0.066 L/s and type IIB: 1.8 ± 0.109 L/s. Bar and Pette, 

(1988) later corroborated these findings by implementing an improved 

electrophoretic separation technique (Carraro and Catani, 1983) in rat muscle. They 

discovered a type IIX fibre with corresponding MyHC IIx and concluded the newly 

detected MyHC IIx is functionally different to MyHC IIb being undetectable in the purely 

fast-twitch muscle, Levator Ani. However, they did report a concomitant reduction in 

the expression of MyHC IIb as MyHC llx increased in chronically stimulated Tibialis 

Anterior (TA) muscle. Immunohistochemical analysis (Gorza et al, 1990) and 

biochemical and physiological studies of single fibres (Pette and Staron, 1990) also 

teach us that muscle fibres adapt in a progressive manner over a spectrum of change 

in accordance with their MyHC profile, illustrated by the scheme displayed in Figure 

1.2. 

 

 
 
Figure 1.2. Fibre type transitions of skeletal muscle based on Myosin heavy chain 

profile. 

Fibre type transitions occur in a step-wise, progressive manner based on their 

predominate MyHC isoform composition. This bestows functional and biochemical 

change on the muscle which enables pure and hybrid fibre expression along the 

continuum of fibre type transformation. 
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Close, (1965) showed an intimate relationship between maximum shortening velocity 

and contraction time, as a result of the association between cross-bridge formation 

and calcium kinetics of release and re-uptake. As a result, the stimulation frequency 

necessary to obtain fused tetanic contractions is purported to be higher in small 

animals when compared to that in large. For example, maximal force is attained at a 

frequency of 50 Hz in human muscles in situ (McComas et al, 1968), while rat fast 

motor units reach tetanic fusion only above 100 Hz and slow motor units above 70 Hz 

(Piotrkiewicz and Celichowski, 2007). This evidence suggests that the functional 

characteristics displayed by skeletal muscle is dictated by the neural demands of the 

motor unit placed upon the muscle fibre. As a consequence, directly affecting the 

MyHC isoform composition dominating the muscle. One of the key distinguishing 

factors between each type of motor unit is cell size, with the fastest motor units 

commanding the largest cell (Henneman et al, 1974). Henning and Lomo, (1985) 

investigated single motor units in rat Soleus and EDL muscle by chronically recording 

the firing patterns of different sized motor units in vivo, using implantable electrodes. 

This work lead to the clear identification of three distinct firing patterns in the rat. The 

first pattern is typically of the motor units found in the relatively slow contracting Soleus 

muscle. This type of motor unit receives a high amount of impulse activity (300,000 – 

500,000 over 24 h) combined with long lasting trains (300 – 500 ms) and a low 

frequency of firing (~20 Hz). In contrast the motor units innervating the fast fibres of 

the EDL were sub-divided into two groups (fast to fatigue, FF and fatigue resistance, 

FR), the first pattern identified for the FF motor units was characterised by a lower 

impulse activity (3,000 – 10,000 over 24 h) with a very short duration of train (<3 ms) 

but a high discharge frequency (~90 Hz). The last identified pattern, for the FR motor 

units had a moderate impulse activity (90,000 – 250,000 over 24 h) with a longer train 

duration (60 – 140 ms) and an average discharge frequency (~65 Hz). In light of these 

data, the authors conclude that the motor units found in soleus likely innervate type I 

fibres, FF type IIB fibres and the FR motor units may correspond to the type IIA and 

IIX fibres. 

The heterogeneity of skeletal muscle fibres throughout the mammalian body primarily 

reflects the degree of adaptation to the different muscle activity patterns. There is 

strong evidence (Salmons and Vrbova, 1969) to suggest that the muscle adapts to the 

neural stimulus placed upon it by the firing pattern; which in turn alters the muscle 

phenotype by inducing functional change by expression of individual proteins e.g. 
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myosin heavy chain. This was first demonstrated by the pioneering work of Buller et 

al, (1960) in a series of nerve cross-union experiments performed in cat. When slow-

twitch Soleus is reinnervated by nerve fibres that would normally supply the fast-twitch 

Flexor Digitorium Longus (FDL), the Soleus adopted contractile characteristics similar 

to that of the faster contracting FDL. Conversely, when the FDL was reinnervated with 

the Soleus nerve the muscle became much slower contracting adopting physiological 

properties consistent to the Soleus. These results helped to establish the notion that 

motor neurones exert a phenotypic influence on the muscle they innervate.  

Many studies have since confirmed the phenotypic influence of fast and slow motor 

neurones on the contractile properties of adult skeletal muscles. Close, (1969) 

investigated a host of physiological properties, such as contraction time, sacomeric 

shortening, fibre length and cross sectional area in cross-innervated rat EDL and 

Soleus muscle. Demonstrating that the changes in the speed of contraction from nerve 

cross-union seem to be brought about directly by neural influence on the muscle, with 

EDL contraction time lengthening from 13 msec to 25 msec and a complimentary 

shortening measured in the contraction time of the Soleus from 34 msec to 15 msec. 

Soon after, Barany and Close, (1970) investigated myosin ATPase activity levels in 

nerve cross-union experiments in the Soleus and EDL of the rat and discovered it was 

possible to assign the established neutrally induced changes of contraction speed to 

alterations in the activity of myosin ATPase, which was consistent with Barany’s 

previous work. Furthermore, the characteristically high levels of SDH in slow-twitch 

muscles, indicative of a higher mitochondrial content, was also shown to be reversed 

under cross innervation; with the faster contracting muscle displaying an increased 

level of SDH under cross innervated conditions (Dubowitz et al, 1967.; Pette and Tyler, 

1983). Taken together, this work produced a multitude of evidence that positions 

skeletal muscle as a highly dynamic, plastic tissue with the ability to adapt to the 

innervation of its motor units to fulfil the functional demands required of the muscle.  

Salmons and Vrbova, (1969) were amongst the first to address muscle adaptation by 

developing a nerve electrical stimulation technique in vivo whereby the motor neurons 

are stimulated chronically at pre-programmed frequencies and durations in order to 

alter the neuromuscular function. Chronic low-frequency stimulation (CLFS) in the 

range of 10 Hz of a rabbit fast twitch muscle such as the extensor digitorium longus 

(EDL) can transform its fast-type properties into slow-type properties. To help 

corroborate these findings, new methods in analytical protein chemistry highlighted 
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that such contractile changes corresponded to altered myosin isoform profiles (Hoh, 

1975.; Sreter et al, 1974). Further investigations by Amphlett et al, (1975) utilising a 

similar protein electrophoresis technique showed that the electrophoretic mobility of 

protein isoforms in transformed muscle was not exclusive to the Myosins. This 

evidence indicated that when the contractile speed of the Soleus muscle is increased 

by cross innervation with EDL, the slow-skeletal muscle isoform for Troponin I is 

replaced by the fast-skeletal muscle isoform of Troponin I.  Furthermore, Heeley et al, 

(1983) used electrophoresis separation in rabbit Soleus, where only alpha and beta 

subunits of Tropomyosin were detected and in the EDL, only gamma and delta 

subunits were observed. Cross innervation of the two muscles revealed that the 

relative proportions of alpha, gamma and delta subunits altered their expression in 

accordance with the change in the contraction speed of the muscles. It is now clear 

that the isoforms of many more myofibrillar and sarcoplasmic/soluble proteins are 

substituted in response to a change in phenotype of skeletal muscle to account for the 

contrasting physiological contractile demands placed upon it. 

Since the pioneering work performed by Buller et al, (1960) which demonstrated that 

the contraction speed of skeletal muscle is determined by the nature of its innervation, 

there is now strong evidence to show that alterations in the biochemical composition 

and functional properties of muscle are likewise influenced. All of these early 

physiological investigations in skeletal muscle have taught us that the biochemical 

changes such as levels of SDH and myosin ATPase activity strongly correlate with 

changes in the histochemistry and physiological characteristics of transformed skeletal 

muscle. This highlights the commanding influence of neural input on muscle 

phenotype and proves that terminally differentiated skeletal muscle is a highly versatile 

tissue. However, the functional elements within skeletal muscle, with regard to 

metabolism and contraction, are without doubt attributed to its constituent proteins 

(Donoghue et al, 2005). With the advent of proteomic investigations, we learn that 

skeletal muscle has a hugely complex and dynamic proteome which is made up of 

thousands of individual proteins that each may have multiple splice variants and 

proteoforms consisting of different post translational states that change in response to 

environmental stimuli such as exercise (Burniston and Hoffman, 2011). However, the 

number of proteins that can be mined from skeletal muscle is limited. For instance, 

Hojlund et al, (2008) were amongst the first to report large scale proteome profiling in 

skeletal muscle. They used high performance liquid chromatography electrospray 
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ionization tandem mass spectrometry to identify 945 proteins in human muscle. 

Burniston et al (2014) later used a more sophisticated instrument (Q-TOF mass 

spectrometer, which incorporated an additional gas-phase separation) to identify 1514 

proteins in rat muscle, encompassing the entire complement of metabolic enzymes 

and some regulatory kinases. Burniston et al, (2014) also quantified the abundance of 

these proteins reporting the range to span four orders of magnitude. Due to this scale 

and complexity seen in the muscle proteome, changes in the abundance of individual 

muscle proteins contribute towards overt alterations in muscle phenotype, thus 

changing the characteristics of individual muscle fibres. For example, Murgia et al, 

(2017) used novel proteomic methods with a high sensitivity to investigate single 

muscle fibres from human subjects. They were able to categorise muscle fibres based 

on the protein complement and subsequently measured ~5000 individual proteins. 

Since the new developments made possible by proteomic methods, we learn that 

because of the complex design of skeletal muscle, knowledge of the mechanisms that 

underpin skeletal muscle adaptation and how these processes are coordinated, at the 

protein level, is not fully understood. Skeletal muscle is one of the most essential 

tissues in the body and understanding its adaptation is fundamental to physiology and 

paramount to the understanding of different pathophysiology. In order to comprehend 

how these adaptive processes are organised in skeletal muscle, proteomics has 

investigated the effects of exercise on the proteome (Burniston and Hoffman, 2011). 

The problem with this line of investigation is that existing proteome data are static i.e. 

report abundance data only. However, the skeletal muscle proteome is a highly 

dynamic and versatile entity which establishes a need to study protein turnover. As 

such, a better understanding of individual protein responses is required, for instance, 

how does the rate of turnover of individual proteins contribute towards muscle 

adaptation? Figure 1.3 illustrates the factors affecting individual protein turnover within 

the muscle cell. At present, there are few viable techniques that accurately capture 

protein degradation. Whilst synthesis measurements are possible, until recently, most 

data were from gross/mixed muscle. � 

�

�
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Figure 1.3. Factors effecting individual protein turnover. 

All proteins within an organism are being continually broken down (i.e. protein 

degradation) and remade (i.e. protein synthesis). The abundance of a given protein 

depends solely on its rate of degradation versus its rate of synthesis. If a protein has 

a fast synthesis rate and slow degradation rate it will increase in abundance within the 

cell. Conversely, proteins that have both a swift degradation and synthesis rate have 

the fastest turnover rates.  

 

Synthesis of new protein in vivo has traditionally been investigated by biosynthetic 

metabolic labelling, using tracers such as stable isotope labelled amino acids e.g. L-

[1-13C]-leucine (Rennie et al, 1982). This enables the fraction of newly synthesised 

protein to be calculated from the precursor: product ratio. Incorporation of stable-

isotope labelled amino acids in to protein in vivo is most commonly combined with gas-

chromatography mass spectrometry (GC-MS) analysis of hydrolysed amino acids to 

measure the average rate of synthesis in protein mixtures extracted from skeletal 

muscle (Wagenmakers, 1999). In rats, the rate of protein synthesis has been reported 

to be different, within different skeletal muscles, for example the average half-life for 

mixed proteins in EDL was 12 days, 14 days in gastrocnemius and 7 days in soleus 

(Kelly et al, 1984). However, these values represent averages across the entire 

proteome and can be misleading, as Terjung et al, (1979) gives an account of the 
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turnover for the mitochondrial protein, cytochrome c, which is more rapid in fast-twitch 

than slow-twitch muscle. The most important lessons we have learned from the 

biosynthetic labelling methods is that there are large differences between the fractional 

synthesis rates in different tissues e.g. 12 %/d in liver (Fearon et al, 1991) compared 

to 3 %/d in muscle (Nair et al, 1988). Subsequent fractionation of muscle protein has 

shown that the myofibrillar proteins have the lowest fractional synthetic rates of ~1 %/d 

(Balagopal et al, 1997) and the highest FSR are seen in the mitochondrial fraction of 

~2.5 %/d (Rooyackers et al, 1996). However, FSR has been shown to change in 

respond to external factors such as exercise. For example, resistance exercise can 

induce a 20 % increase in myofibrillar FSR above basal levels (Brook et al, 2015). 

Adaptation to exercise is governed by many factors e.g. mechanical load but is mainly 

a result of the activation pattern delivered to the muscle. High intensity dynamic 

exercise is known to induce hypertrophy of the muscle fibres and in an attempt to 

replicate these changes, several models of muscle transformation have been 

constructed. These models such as tenotomy, synergist ablation and high resistance 

exercise (Timson, 1990) have clearly demonstrated, using a number of different 

species (reviewed in greater detail in Chapter 4), that the primary determinant of 

muscle size is the external load that is applied to it (Booth and Thomason, 1991). In 

any one of these models a common response to the increased loading is a rise in 

protein content (Timson, 1990) that asserts a close correlation with increases in 

protein synthesis (Goldberg, 1968). Wong and Booth, (1990a.; 1990b) used a model 

of both shortening and lengthening contractions and muscle loading in rat 

gastrocnemius and TA. It was established that 12-17 h after either eccentric or 

concentric resistance training protocols protein synthesis was increased to ~40 % 

higher than control. Interestingly, similar responses have been described in humans 

with rapid increases in protein synthesis post resistance training (Chesley et al, 1992.; 

MacDougall et al, 1995) suggesting that activation of protein synthesis is a customary 

acute response of skeletal muscle following an increased workload. The model utilised 

by Wong and Booth, (1988) activates the muscles of the distal hindlimb. This model 

relies on antagonist muscle action resulting in lengthening contractions in the 

Dorsiflexor muscles and shortening contractions in the Plantar flexor muscles. Baar 

and Esser, (1999) modified this protocol to ensure that muscle activation occurred 

through the innervating nerve and all the motor units of the distal hindlimb are 

recruited. The animals received 100 Hz stimulation in 3 second pulses with a 10 or 50 
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second rest between repetitions. This continued for 10 sets of 6 stimulations resulting 

in 60 contractions over a 22 minute period 2 days per week for 6 weeks. They 

observed increases in muscle mass for TA (14.4 %), EDL (13.9 %) and Plantaris (6.9 

%) when compared to control, but no change was recorded in the Soleus (-2.3 %). 

These findings establish co-contraction as a viable research model to investigate 

resistance exercise induced changes of the muscle proteome. Baar and Esser, (1999) 

used a model of co-contraction to discover a key protein (p70s6k) of ribosomal 

regulation that was associated with muscle hypertrophic response to exercise. This 

raises questions about whether it is only synthesis that increased or whether 

degradation could also play a part and should be considered as a possible 

mechanism. For example, Watt et al, (1982) reported different contributions of 

synthesis and degradation in fast-twitch muscle EDL and slow-twitch Soleus in rats 

during a 2-week regimen of high-intensity jump training. The growth rate of both EDL 

and Soleus increased up to 70 % when compared to control, but growth of the fast-

twitch muscle was primarily achieved through greater (28 %) protein synthesis, 

whereas in the Soleus muscle protein synthesis did not change but there was a 38 % 

decrease in protein degradation. While it is likely some proteins may not have followed 

these overall trends, until recently it has not been possible to routinely measure 

isotope incorporation in large numbers of individual proteins. However, with the 

application of proteomic separation techniques in striated muscle (Burniston and 

Hoffman, 2011) along with advances in the sensitivity of mass spectrometers, it is now 

feasible for these types of investigations to be undertaken in skeletal muscle and in 

response to stimuli such as exercise.  

The first studies in exercise proteomics investigated the acute effects of swimming in 

rats. For example, Takahashi and Kubota, (2005) performed 2DGE on muscle pooled 

from rats killed immediately after 150 minutes of swimming and report lesser 

expression of a gel spot later identified as zinc finger protein 3. In a similar study, 

Guelfi et al, (2006) isolated gastrocnemius muscles from rats either immediately after 

or 30 min after a 3 min bout of swimming. Rather than pooled samples, biological 

replicates were analysed, which enabled statistically significant differences to be 

identified in the expression of troponin T, creatine kinase and a spot containing both 

adenylate kinase 1 and heat-shock protein 20. Gandra et al, (2010) also investigated 

changes in rat gastrocnemius muscles isolated from either 3 or 24 h after an 

incremental treadmill test to exhaustion, and reported significant changes in glycolytic 
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enzymes, heat-shock cognate protein 70 and carnitine palmitoyltransferase II. These 

changes observed in proteins involved in high-energy phosphate (Guelfi et al, 2006) 

and glycolytic (Gandra et al, 2010) metabolism are consistent with the energy 

demands of intense exercise. However, because muscles were isolated at different 

time points or after differing bouts of acute exercise, there is no direct identity among 

the findings of these studies. Burniston, (2008) investigated rat plantaris muscle using 

2DGE after implementing endurance training using intensity-controlled treadmill 

running and found that endurance training indeed altered the relative expression of 

individual protein spots; thus, linking changes in spot profile of individual proteins with 

differences in muscle function. From 80 gel spots, statistical analysis detected 

significant changes in the expression of 15, which represented the products of 11 

individual genes. A total of six of the 11 differentially expressed genes were present 

as multiple protein spots with endurance training altering the expression of single spots 

from each of the multi-spot series identified as: transferrin (n = 3 spots), albumin (n = 

4 spots), lactate dehydrogenase A (n = 2 spots) and induced changes in multiple spots 

identified as phosphoglucomutase 1, triosephosphate isomerase and mitochondrial 

aconitase. Using the same rat model of intensity-controlled treadmill running, 

Burniston, (2009) reported the effects of a 6-week training programme consisting of 

four 30 minute sessions per week at approximately 75 % VO2max. Endurance running 

resulted in the increase of the animals’ VO2max by an average of 23 % and was 

associated with an 11 % increase in cardiac mass. Furthermore, 2DGE was 

implemented to detect changes in the muscle proteome. A spot was identified as heat 

shock protein 20 and was significantly increased in the hearts of endurance-trained 

animals, consistent with previous work by Boluyt et al, (2006). However, Burniston, 

(2009) also used MS/MS analysis to unambiguously identify a phosphorylation of heat 

shock protein 20 at residue serine 16 unique to endurance trained rat heart. Whilst 

these findings are important and shed light on quantitative changes in individual 

protein abundance during adaptation to exercise. They do not inform us about how 

these changes are brought about i.e. from what are the relative contributions from 

synthesis and degradation that impacts on changes in protein abundance.  

Recent advances in peptide mass spectrometry and deuterium (2H2O) labelling in vivo 

have created the opportunity to measure changes in the synthesis rates of individual 

proteins under free living conditions over a long period of time. The classic tracer 

methods previously described provide only gross measurements of mixed muscle 
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synthesis rates or employ complex and laborious methodologies. Whereas the advent 

of 2H2O labelling afford many technical advantages over these techniques, such as 

length of administration and intracellular labelling of amino acids but also allow the 

measurement of individual proteins. Xiao et al, (2008) describe a method to determine 

protein turnover using in vivo labelling of individual proteins with 2H2O, analysed by 

matrix-assisted laser desorption ionisation – time of flight mass spectrometry (MALDI-

TOF/MS) spectrum. Here, protein synthesis is calculated using mass isotopomer 

distribution analysis (MIDA) instead of precursor to product amino acid enrichment 

ratio. This combined with the ability to also identify the protein makes the use of in vivo 

labelling with 2H2O a precise method to determine specific protein synthesis. Kim et 

al, (2012) implemented a similar methodology to report a large-scale analysis of 

protein turnover in mouse heart and liver mitochondria using in vivo 2H2O labelling and 

Liquid Chromatography – Mass Spectrometry (LC-MS). Here the synthesis rates of 

314 cardiac mitochondrial proteins were reported over a period of 90 days at an 

enrichment of ~5 % 2H2O. Protein synthesis rates were approximately 3-fold greater 

in liver compared to cardiac mitochondria. In addition, while there was a general 

correlation (Spearmen ρ = 0.50) between synthesis rates of proteins in heart and liver 

mitochondria, the synthesis rate of many mitochondrial proteins ranked differently 

between cardiac and liver mitochondria, which suggest tissue-specific regulation. 

More recently, we used 2H2O labelling in vivo combined with 2DGE and MALDI-

TOF/MS to measure synthesis of 8 individual proteins across four different muscle 

tissues over a 14 day period in the rat (Hesketh et al, 2016). Similar to the work of Kim 

et al, (2012) we also reported the rank order of synthesis is different depending on the 

muscle investigated. Furthermore, such work has important implications for future 

human studies where it is typical for just one muscle to be sampled but the results are 

often extrapolated to skeletal muscle as a whole. Shankaran et al, (2015) carried out 

a similar investigation over a 7-day period in the triceps muscle of ovariectomised rats 

exposed to a selective androgen receptor modulator or vehicle control. Table 1.1 

provides a comparison between these data. Of all the proteins investigated within the 

five different tissues there were no proteins that were completely turned over within 

this time period. Based on these findings, the duration of future experiments would be 

wise to extend experimental durations to greater than three weeks in order to capture 

a more accurate reflection of the individual protein synthesis rates within rat striated 

muscles.  
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Table 1.1. Percentage of newly synthesised protein in rat striated muscles after seven 

days 2H2O administration in vivo. 

 
Protein Heart* Diaphragm* EDL* Soleus* Triceps † 
ALBU 11.9 ± 2.4 20.2 ± 6.1 16.6 ± 2.7 13.6 ± 0.8 - 
ATCS 1.3 ± 0.6 2.6 ± 0.8 0.8 ± 0.5 - 7.0 ± 0.3 
KCRM 0.4 ± 0.3 5.9 ± 1.7 2.2 ± 1.0 1.0 ± 0.3 13.0 ± 0.4 
ENOB 5.3 ± 0.3 4.0 ± 1.0 4.2 ± 1.2 7.5 ± 2.6 13.7 ± 0.3 
ATPA 0.3 ± 0.2 3.3 ± 1.0 8.1 ± 4.8 - 30.0 ± 1.2 
TPM1 1.6 ± 0.7 1.7 ± 1.6 2.0 ± 1.4 - 14.5 ± 0.4 
MLY3 1.2 ± 1.1 2.2 ± 2.1 7.2 ± 2.1 - 13.4 ± 1.6 
MLRV 7.9 ± 3.0 6.3 ± 1.3 5.6 ± 1.1 - 9.6 ± 0.3 

† From Shankaran et al, (2015); * From Hesketh et al, (2016). 
 
 
Taken together this work has taught us that not only do protein synthesis rates vary 

greatly from one tissue to the next, but it appears there is protein-specific regulation 

within different tissues i.e. muscle, that manifest through a range of synthesis rates 

that are different from one muscle to the next. This poses some obvious questions in 

the context of muscle adaptation. For instance, do individual proteins exhibit the same 

rank order of synthesis rates during muscle adaptation? During muscular hypertrophy 

is the mechanism of change protein-specific or is there a blanket response for all 

proteins that results in increased rates of synthesis? How is individual protein turnover 

regulated when protein abundance i; increases, ii; decreases or iii; stays the same? 

With these gaps in knowledge driving the research questions, the objective of this 

thesis is to investigate individual protein turnover during skeletal muscle adaptation. It 

is clear that skeletal muscle exhibits a wide range of plasticity, this will be exploited to 

the full by using in vivo animal models (chronic low-frequency stimulation, Chapter 3 

and co-contraction high-frequency stimulation, Chapter 4) as tools to induce muscle 

adaptation within the rat. By combining this with the unique exercise proteomic 

methods our lab has refined (Dynamic proteome profiling, see Chapter 2) we can 

measure the protein turnover of individual proteins in order to begin to establish the 

sequence of events that contribute to the alterations in muscle phenotype and the 

physiological functional changes that are associated with. This will mean we are first 

to report a comprehensive analysis of the turnover rates of individual proteins in the 

rat, across striated muscle and in response to adaptation; providing a key insight to 

the mechanisms of muscle adaptation. This work will utilise the principles of non-
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targeted ‘-omic’ science and avoids the temptation to overly reduce complex biological 

questions to isolated hypotheses or to specify unnecessary constraints by trying to 

predict which regulatory mechanisms might be dominant. This is expected to provide 

valuable insights to the mechanisms that underpin muscle adaptation and drive new 

developments in exercise and clinical physiology.  

 
Objectives 
 
Overarching objective of thesis – To measure individual protein turnover during 

muscle adaptation. 

 

Specific Aim 1: To successfully implement a method to enable the measurement of 

individual protein turnover (Chapter 2), over a time series to investigate individual 

protein responses in a dynamic environment i.e. muscle adaptation (Chapter 3 and 4). 

 

Specific Aim 2: To measure individual protein turnover in a model of endurance-type 

exercise training to investigate how the relative contributions of synthesis and 

degradation coordinate changes in protein abundance during skeletal muscle 

adaptation (Chapter 3). 

 

Specific Aim 3: To measure individual protein turnover in a model of co-contraction 

induced hypertrophy to investigate how the relative contributions of synthesis and 

degradation coordinate changes in protein abundance during skeletal muscle 

adaptation (Chapter 4). 
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Chapter 2. The dynamic proteome profiling method. 

2.1  Abstract 

Skeletal muscle is one of the most important tissues in the body and understanding its 

adaptation is fundamental to physiology and pathophysiology. Skeletal muscle 

consists of a heterogeneous, dynamic mixture of myofibres that express a complex 

array of protein isoforms. The skeletal muscle proteome is made from thousands of 

individual genes, many of which have multiple isoforms and splice variants, 

furthermore each of these gene products may carry numerous different patterns of 

post-translational modification to give rise to a plethora of proteoforms that underpin 

muscle function. Due to this complexity, knowledge of the mechanisms underpinning 

skeletal muscle adaptation and how these processes are coordinated, at the protein 

level, are not yet well developed. In order to comprehend how these adaptive 

processes are organised, a better understanding of individual protein responses to 

muscle transformation will enable a prescription to be tailored for interventions for 

specific diseases and would provide a valuable contrast against which pathological 

and physiological situations can be better understood. At present, there are few viable 

techniques that accurately capture protein degradation. Whilst synthesis 

measurements are possible, until recently, most data were from gross/mixed muscle. 

Traditional methods of synthesis measurements, employ amino acid tracers that have 

limited practical application but have taught us important information about the 

dynamic nature of body constituents. However, amino acid tracers require intravenous 

administration that is invasive and can only be implemented over very short duration 

(<12 h). They are also expensive to administer and the data is not interchangeable 

due to the labelling of just specific amino acids e.g. phenylalanine and the inability to 

measure precursor enrichment which often brings complications to the analysis. More 

recently, there has been renewed interesting using deuterium oxide as a biosynthetic 

label to measure synthesis as it equilibrates with body water quickly, can be easily 

administered and maintained during free-living conditions. We present a highly novel 

methodology utilising deuterium labeling in skeletal muscle over a 30-day period, 

combining established bottom-up and top-down proteomic methods to generate 

reproducible data for each element of protein turnover i.e. synthesis, abundance and 

degradation on an individual level.  
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2.2  Methodology development rationale 

Skeletal muscle is known for its high degree of plasticity and its ability to adapt, based 

on the environment it is exposed to and/or the role it is required for (Coffey and Hawley, 

2007). These changes are stimulated by discreet alterations in the muscle proteome; 

the pioneering investigations by Rudolph Schonheimer in the 1930’s helped to 

establish this, demonstrating that the proteome is constantly in a dynamic state of 

change, governed by the two processes synthesis and degradation (Schonheimer, 

1935). It is now well-established that proteins are continuously recycled through these 

processes of synthesis and degradation, termed protein turnover. Furthermore, the 

skeletal muscle proteome is made up of thousands of individual proteins (i.e. gene 

products) that each have multiple isoforms and can undergo post-translational 

modification in response to environmental changes of the cell (Burniston and Hoffman, 

2011). Due to this complexity, knowledge of the mechanisms underpinning skeletal 

muscle adaptation and how these processes are coordinated, at the protein level, is 

not fully understood. Proteomic investigation into muscle adaptation is a new and 

rapidly growing area of research interest because in order to comprehend how these 

adaptive processes are organised, a better understanding of individual protein 

turnover responses i.e. synthesis and degradation to muscle transformation is 

important, and could eventually be used to provide tailored interventions for specific 

diseases or training outcomes.  

In an attempt to quantify whole muscle protein turnover, several different methods and 

models have been developed, primarily these have utilised biosynthetic labelling 

techniques, including radio- or stable-isotope labelling, fluorescent labels and 

derivatised amino acids (Wolfe and Chinkes, 2005). To achieve turnover 

measurements in whole tissues, such as muscle, direct incorporation or fractional 

synthesis rate (FSR) measurements of muscle protein synthesis have been 

extensively used in the field (Garlick et al, 1994) and for a long time considered the 

‘gold standard’ technique in acquiring protein metabolism measurements. The 

measurement of FSR may be achieved through the use of either a continuous, bolus 

or pulsed infusion of a stable isotope labelled amino acid tracer, administered 

intravenously. However, to measure turnover effectively there is need for a second 

tracer incorporation to quantify degradation. This is less than ideal, bringing further 

complexities and can involve complications during the administration making it 
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challenging to establish the precursor: product ratio. To circumvent such drawbacks, 

the use of arterial–venous (A–V) balance was introduced (Biolo et al, 1992). The A-V 

balance method enables both the rates of synthesis and degradation of limb proteins 

to be estimated by monitoring the rate of disappearance of the tracer from the arterial 

pool (as a proxy of synthesis) and the rate of appearance of the tracer into the venous 

pool (as a proxy of breakdown). However, this model is limited to the amino acid being 

studied, which may be subject to secondary metabolism, and it is not possible to 

isolate muscle specific responses from those of the surrounding tissues e.g. skin and 

bone (Biolo et al, 1995). Furthermore, the turnover data are also dependant on 

measures of arterial blood flow and lean leg mass. This is less than ideal in an exercise 

context where there are large changes in blood flow during and following exercise, this 

combined with challenging analyses of lean tissue mass would lead to the acquired 

data suggesting a potential over or under estimation in muscle protein turnover rates.  

To date, the majority of studies on muscle protein turnover use L-[ring 13C6]-

phenylalanine (e.g. Areta et al, 2013). The calculation of FSR is achieved by 

comparing the incorporation of tracer into newly made proteins over a period of time 

against the level of precursor enrichment. Largely, this is achieved by sampling the 

muscle pool, hydrolysing the protein mixture and then derivatising the amino acid of 

interest so that the proportion of labelled: unlabelled amino acid can be measured by 

gas chromatography-mass spectrometry. This combined with similar measurements 

of the enrichment of free amino acids in the precursor pool gives a precursor: product 

ratio allowing for the calculation of FSR (Figure 2.1). Furthermore, to gain a measure 

of fractional degradation rate (FDR), the infusion of a steady state tracer can be 

stopped and the decay of the tracer enrichment from the protein-bound and free amino 

acid pools over time can provide a best estimation of FDR (Zhang et al, 1996.; 2002). 

The application of such techniques has enabled insight into amino acid regulation and 

the contribution of FSR in tissue-specific and whole-body investigations. In addition, 

these techniques have made protein metabolism measurements possible through 

both health and disease states and in response to acute and chronic exercise 

(Wagenmakers, 1999). However, unlike the FSR methods, measurements of A-V 

balance are tissue specific and account for changes to blood flow in calculations.  

Amino acid tracer methodologies, whether AV-balance or direct incorporation, share 

several key limitations. These methods require intravenous infusion of the amino acid 

tracer, which restricts measures to acute time periods (<12 h) because of the need for 
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invasive venous/arterial cannulation. Measurements are generally restricted to a 

laboratory or clinical settings and the type of exercise or other activities that 

participants can perform is limited. Investigations that utilise traditional amino acid 

tracers may also be influenced by the metabolism and transport rates in particular 

tissues. Synthesis values from amino acid tracer studies represent averages across 

the entire proteome i.e. data from mixtures containing many hundreds of proteins. The 

calculation of degradation rate using this technique is less than ideal due to the rate 

of appearance of the labelled amino acids not being truly reflective of actual 

degradation rates. This is attributed to the problem of tracer ‘label recycling’ where 

tracer can be reincorporated in to new protein; thus, providing end values that are 

potentially misleading (Nair et al, 1988). Information on the gross turnover of muscle 

proteins oversimplifies the complexity of biological processes such as muscle 

adaptation and key information about the turnover of individual proteins is lost. Protein 

synthesis and degradation are each an intricate process that affect changes in muscle 

protein abundance. Synthesis and degradation are regulated independently and on a 

protein-by-protein basis to maintain homeostasis or to facilitate muscle adaptation. It 

is paramount to accurately capture the contributions of both synthesis and degradation 

at the individual level to gain a detailed understanding of the mechanisms of muscle 

adaptation.  
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Figure 2.1. Fundamental principle of precursor: product ratio used in tracer studies. 

Schematic showing the use of stable isotope tracers for the calculation of protein 

synthesis and degradation utilising the arterial–venous balance and fractional 

synthesis rate methodologies. The precursor relates to the enrichment of amino acid 

tracer and the product is the incorporation in the final protein product. 

 

Recent advances in mass spectrometry have brought renewed interest in the use of 

heavy water, deuterium oxide (2H2O) as a stable isotope amino acid tracer (Gasier et 

al, 2010). Theory underpinning deuterium labelling is fundamentally the same as the 

traditional amino acid tracer methods described above, as it still relies on biosynthetic 

labelling in vivo and precursor: product ratio calculation. However, deuterium oxide 

labelling overcomes the aforementioned limitations of traditional amino acid tracer 

techniques. Deuterium can be administered orally, consequently equilibrating within 

the body water quickly <30 min; in rodents (Busch et al, 2006).  Almost all amino acids 

can incorporate 2H-label and administration of deuterium oxide can be sustained for 

long periods (but supplementing the drinking water) with no hazardous effects (Jones 

and Leatherdale, 1991). Therefore, there is no need for intravenous infusion and 

measurements of turnover of individual muscle proteins can be taken during free-living 

conditions for acute (hours – days) or chronic (weeks – months) experiments. The use 
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of deuterium oxide also affords analytical advantages over the previous amino acid 

tracer methods. Metabolic labelling of newly synthesised proteins with deuterium 

occurs across almost all amino acid residues and, therefore, gives a proportionally 

larger signal than previous methods by causing a shift in isotope pattern for any given 

synthesis rate (Figure 2.2). Furthermore, labelling occurs intracellularly meaning 

deuterium labelling is not influenced by the metabolism or transport rates of individual 

amino acids (Gasier et al, 2010). The combination of these factors position the use of 
2H2O as an ideal tool for the study of free-living exercise physiology, allowing for the 

evaluation of muscle protein turnover. Moreover, with its ability to quantify responses 

of muscle protein synthesis, this technique will prove to be critical in the study of 

muscle metabolism over longer periods of exercise training, leading to a more 

complete understanding of the muscle adaptation process. 

 



 38 

 

Figure 2.2. Nomenclature and composition of peptide mass isotopomers and how 

exogenous deuterium is incorporated.  

(A) Mass spectrometry resolves peptides as ‘envelopes’ of mass isotopomers, and the 

relative abundance of the mass isotopomers reflects the natural abundance of C, H, 

N and O isotopes in the amino acids that were used to synthesise that protein. The 

first isotopomer in the series has the lowest mass (mass to charge ratio; m/z) and is 

known as the monoisotopic peak (m0) because it consists entirely of primary/ ‘light’ 

isotopes (i.e. 12C, 1H, 14N, 16O etc). The second isotopomer is composed of peptides 



 39 

that contain one stable secondary/ ‘heavy’ isotope (i.e. 13C, 2H, 15N etc) and is labelled 

the m1 peak, and the next isotopomer is labelled the m2 peak because it contains 2 

secondary/ ‘heavy’ isotopes, which may be 13C or other heavy isotopes such as 2H. A 

peptide with the sequence DGFIDKNDLR has an elemental composition of 

C51H81N15O18 and in the absence of an exogenously applied isotope label, the natural 

pattern of the mass isotopomers is largely determined by the natural abundance of 

carbon isotopes because carbon is a major component of amino acids and the ‘heavy’ 
13C isotope has a relatively high natural abundance (~1.1 % of C is 13C and 98.9 % is 
12C). The mass isotopomer pattern of a peptide can be roughly predicted based on the 

probability that 1.1 % of the C will be 13C and therefore cannot contribute to the 

abundance of the m0 peak. However, accurate and complete prediction of the mass 

isotopomer pattern also requires the contributions of H, N and O isotopes to be 

recognised and the diminishing probability of 2, 3 or 4, etc., heavy isotopes occurring 

with a peptide. (B) For each peptide, deuterium (2H)-labelled amino acids incorporated 

in to protein during synthesis in vivo cause a shift in the distribution of peptide mass 

isotopomers. Peptides that contain 2H-labelled amino acids can only contribute to the 

abundance of m1, m2 and m3 mass isotopomers, the relative abundance of the m0 

mass isotopomer then declines as a function of deuterium incorporation. 

Consequently, these data can be used to analyse both the relative abundance (based 

on the intensity of all mass isotopomers) and deuterium incorporation (based on the 

relative distribution of mass isotopomers) to calculate the rate of protein synthesis for 

that peptide/protein. 

 
Despite the advances in biosynthetic labelling in vivo afforded by deuterium oxide, it 

is still challenging to determine protein-specific synthesis rates. The hydrolysis of 

muscle proteins in to individual amino acids destroys the relationship between the 

protein and its synthesis measurement. Therefore, the majority of the literature 

(Claydon et al, 2012; MacDonald et al, 2013) report fractional synthesis rates that are 

essentially averages across the hundreds or thousands of proteins in hydrolysates of 

whole muscle or sub-cellular fractions such as, myofibrillar, soluble and mitochondrial. 

This limits the potential to develop knowledge about muscle adaptation because there 

is now evidence that documents the rate of turnover for individual proteins spans a 
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broad range (Jaleel el at, 2008.; Hesketh et al, 2016.) and can change in response to 

exercise interventions (Camera et al, 2017). The use of proteomic applications, 

including two-dimensional gel electrophoresis (2DGE) combined with analytical 

techniques such as peptide mass spectrometry have facilitated the advancement of 

research at the protein-specific level. Our laboratory has pioneered the application of 

proteomic techniques in exercise physiology and reported data on the changes in the 

abundance of individual proteins in response to, moderate-intensity endurance 

exercise in rats (Burniston, 2008), cardiac adaptation of rats (Burniston, 2009), high 

and low running capacity in the rat (Malik et al, 2013) and interval training in humans 

(Holloway et al, 2009). Data such as these present information on individual proteins 

and even their post-translation states (Burniston, 2009), but largely these are static 

proteome data that quantifies protein abundance only. Jaleel et al, (2008) reports the 

separation of individual proteins using 2DGE from rat gastrocnemius that had been 

labelled by an infusion of ring-[13C6] phenylalanine in vivo. Gel spots were identified 

by peptide mass spectrometry, whereas incorporation of the stable isotope label into 

new protein was measured in mixtures of hydrolysed amino acids using gas 

chromatography-mass spectrometry (GC-MS) of derivatised amino acids. The 

marriage of these established techniques enabled synthesis rates to be calculated for 

68 mitochondrial proteins in rat skeletal muscle. Despite this work confirming the 

synthesis of proteins within a muscle differs on a protein-by-protein basis, of the 

proteins investigated beta enolase had the greatest synthesis rate (11 %/day) while 

myosin light chain regulatory had the lowest (3 %/day). However, this is a complex 

and laborious solution to acquiring data on protein-specific turnover rates and was not 

widely adopted in the field. In contrast, advances in the sensitivity of mass 

spectrometers and the ability to mass analyse peptides, presented new opportunities 

for investigation of protein turnover based on mass spectrometry data. The mass 

analysis of peptides offers a more straight forward solution for the calculation of 

protein-specific turnover rates. Using peptide mass spectrometry, it is possible to 

identify the parent protein that the peptide has derived from, measure the level of 

incorporation of isotopically labelled amino acid in that protein and determine the 

relative enrichment of isotopically labelled amino acids in the precursor pool. 

During my MSc studies, we (Hesketh et al 2016) used 2DGE analysis of deuterium 

labelled proteins to measure protein-specific synthesis rates in four different striated 

muscles in the rat (EDL, SOL, cardiac and diaphragm). Two dimensional gel 
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electrophoresis is an advanced biochemical method that separates proteins based on 

isoelectric point (pI) and relative mass (Mr) (Kelleher et al, 1999). This technique 

enables the semi-quantitative analysis and identification of specific proteoforms via 

the use of peptide mass fingerprinting. 2DGE is nicknamed a ‘top-down’ approach 

because it provides separation of individual proteoforms prior to mass spectrometry 

analysis. Gel-based methods are robust and provide a highly efficient visual platform 

for the separation of protein proteoforms (Padula et al, 2017). The separation of 

protein in to discrete spots (proteoforms) by 2DGE provides a swift and reliable way 

for determining the characteristic combination of the Mr and the pI of a proteoform of 

interest (Dowling et al, 2019). A proteoform is the same product of an individual protein 

species that normally occurs at a different isoelectric point. This is usually the result of 

a post-translation modification e.g. phosphorylation (Burniston, 2009) but can also be 

caused from a shift in isoform. The visualisation of these protein spots also offers a 

semi-quantitative measure of protein abundance using spot density, analysed by 

computer software. After 2DGE separation, in-gel proteolytic digestion is performed 

on each protein-spot to digest protein into their constituent peptides. Peptide mass 

spectrometry is then used to identify each 2D-gel spot against gene or protein 

databases. For example, peptide mass fingerprinting (PMF) is used to compare mass 

spectrometry data that contains multiple peptide peaks against a protein database 

such as SwissProt (https://www.uniprot.org). A successful PMF search returns a 

protein identification and a probability-based (MOWSE) score of the certainty of the 

protein identification. An acknowledged limitation of 2DGE is that the range of protein 

separation is restricted to high abundance, complex mixtures of proteoforms. There 

can also be technical issues with gel-to-gel variations and the possible 

underestimation of the presence of certain types of proteins. For example, high-

molecular-mass proteins, low-abundance proteins or very hydrophobic proteoforms 

(Burniston, 2008; Murphy et al, 2016). However, top-down proteomics that utilise gel-

based approaches are well suited to the investigation of proteins in the myofibrillar 

fraction. This collection of proteins are highly abundant and therefore well represented 

on gel-based techniques. Furthermore, most myofibrillar proteins (e.g. myosin, 

troponin etc.) exist as many different isoforms which can be expressed as multiple 

proteoform patterns. Changes in muscle phenotype are underpinned by complex 

patterns of such proteoform expression which are clearly resolved by 2DGE.  

Currently, the majority of muscle proteome data comes from 2DGE (e.g. Burniston 
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and Hoffman, 2011), which affords robust comparative analysis of protein species but 

does not easily resolve proteins at the extremes of the molecular mass and isoelectric 

point ranges. Moreover, because 2DGE separates proteins to their constituent 

species, the number of non-redundant proteins identified may be relatively small (e.g. 

<300 proteins). In contrast, liquid chromatography mass spectrometry (LC-MS) is able 

to catalogue larger numbers of muscle proteins. For instance, Burniston et al, (2014) 

identified 1514 proteins encompassing the entire complement of metabolic enzymes 

and some regulatory kinases. The method of proteome profiling provides that basis of 

a contrasting technique to gel-based ‘top-down’ proteomic strategies. 

An alternative approach for proteome profiling is nicknamed ‘bottom-up’ analysis and 

involves in-solution digestion of proteins from the muscle homogenate followed by 

delivery of the peptide mixture in to the mass spectrometer by reverse-phase liquid 

chromatography. The peptide mixture is resolved in time and a chromatogram is 

produced wherein the intensity of the peptide peaks provide a measure of abundance. 

This can be further quantified with use of a protein ‘spike’ where a known quantity of 

spiked protein is incorporated into the chromatogram so the peaks of the experimental 

peptide can be compared to provide a measure of abundance in absolute (fmol) terms. 

Label-free quantitation is performed, which defines the isotopic envelope of each 

peptide and records the abundance of all mass isotopomers over the duration of the 

chromatographic peak for that peptide. Bottom-up proteomic approaches can also be 

combined with deuterium labelling which means that the mass isotopomers can be 

used to calculate protein synthesis utilising the same principles described in Figure 

2.2. Despite this approach affording greater levels of automation compared to top-

down approaches there are still several challenges associated with this type of 

analysis. Firstly, all proteins are digested in one mixture and it can be a time-

consuming process to identify individual proteins from the resulting peptides. 

Furthermore, because all proteins are digested in the same mixture, this means that 

individual proteoform identifications or information on post translation modifications is 

lost. This means that bottom-up proteomics is better suited to the analysis of muscle 

proteins from the soluble fraction where differences in proteoforms may be less 

extensive compare to myofibrillar proteins. Sophisticated software platforms exist 

which assist with bottom-up label-free quantitation of individual proteins. Our lab uses 

commercial software (Progensis QI-P; Waters Corp.), which normalises mass 

spectrometry by inter-sample abundance ratio and generates log-transformed protein 
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data that can be used to investigate differences in protein abundance (Malik et al, 

2013.; Burniston et al, 2014). However, there are currently no commercially available 

software applications for automated analysis of protein synthesis rates, therefore 

researchers working in this area need to do this work manually and develop their own 

solutions for computing synthesis rates from peptide mass isotopomer data.  

Mass spectrometers are cutting edge, analytical machines that are constantly 

improving to encompass a greater range of biological applications. In recent years, 

exercise proteomics has exploited these developments by measuring large numbers 

of proteins of individual proteins (Burniston et al, 2014) and in response to exercise 

training (Sollanek et al, 2017). The advances in peptide mass spectrometry combined 

with stable isotope techniques such as deuterium oxide labelling, now mean 

information can be gained on the synthesis rate of individual proteins. Xiao et al, 

(2008) were the first to combine MALDI-TOF MS data collection with established 

(Hellerstein and Neese, 1992) mass isotopomer distribution analysis. Xiao et al, 

(2008) reported the measurement of albumin synthesis in vivo via 2H2O, labelling and 

peptide analysis by matrix-assisted laser desorption ionisation – time of flight mass 

spectrometry (MALDI-TOF/MS). Furthermore, Price et al, (2012) devised a method to 

isolate deuterated peptides using liquid chromatography-mass spectrometry (LC-MS) 

and calculate the rates of turnover for ~100 individual proteins within humans. Similar 

techniques using 2H2O and peptide mass spectrometry have been used to provide 

information on tissue proteome dynamics in response to exercise. Shankaran et al, 

(2016) quantified synthesis rates for over 139 individual muscle proteins in response 

to 3 weeks of sprint interval training, reporting 20 proteins with greater synthesis rates 

in exercised muscle, highlighting individual differences in synthesis rates across the 

muscle proteome. Kim et al, (2012) implemented a similar deuterium oxide labelling 

in vivo with bottom-up analysis to report a large-scale analysis of protein synthesis 

rates in mouse heart and liver mitochondria. The synthesis rates of 314 cardiac 

mitochondrial proteins were characterised over a period of 90 days and were 

approximately 3-fold greater in liver compared to cardiac mitochondria (Kim et al 

2012). A general correlation (Spearmen ρ = 0.50) between synthesis rates of proteins 

in heart and liver mitochondria was reported, but the synthesis rate of many 

mitochondrial proteins ranked differently between cardiac and liver mitochondria, 

suggesting tissue-specific regulation. In Hesketh et al (2016), we developed this 

technique further by combining it with 2DGE, which enabled us to investigate a 
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collection of different proteins across different striated muscles of the rat. Deuterium 

labelling in vivo of 8 individual proteins across fast- and slow-twitch, cardiac and 

diaphragm muscles were used over a 14-day period. Similar to the work of Kim et al, 

(2012) we also reported the rank order of synthesis is different depending on the 

muscle investigated. While all of this work is unique, implementing deuterium labelling 

and mass spectrometry proteomics still fails to report individual abundance. This 

research has taught us valuable information by demonstrating that there is a broad 

range of fractional synthesis rates of muscle proteins and a specific rank order of 

individual protein synthesis rates across different muscle tissues i.e. fast vs slow-

twitch. This raises questions about previous work that used mixed protein data where 

it is typical for just one muscle to be sampled but the results are often extrapolated to 

skeletal muscle as a whole. By just measuring protein synthesis rates means we 

cannot ascertain whether a change in synthesis rate represents a greater turnover of 

the protein pool or accretion of a given protein. This becomes especially important 

when we consider that changes to the balance between the rate of synthesis and 

breakdown can alter the net abundance of a protein within the cell and the rate of 

turnover can vary from one protein to the next (Figure 2.3).  

 

 

Figure 2.3. Protein turnover: The lifecycle of a protein. 

(1) Genetic information contained in the DNA sequence is transcribed in to messenger 

RNA (mRNA). This message contains all of the information necessary to build a 
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particular protein. (2) The mRNA is used to direct the synthesis of the new protein at 

the ribosome. The ribosome translates the genetic information contained in the mRNA 

sequence in to the appropriate sequence of amino acids. How quickly this process is 

coordinated is the synthesis rate of that protein. (3) The chain of amino acids forms 

folds and other complex shapes and become a mature protein (Balchin et al, 2016). 

The amount of this functional protein in the cell is the protein abundance. Often 

proteins are modified by covalent attachment of molecules such as phosphate (i.e. 

phosphorylation) and this changes their functional properties. (4) Proteins are marked 

for degradation by the attachment of chains of ubiquitin. (5) Ubiquitylated proteins are 

degraded by the 26S proteasome, which cleaves the protein in to peptides. The speed 

that this process occurs is the rate of degradation for that protein. (6) The peptides are 

digested in to single amino acids by endopeptidases and the amino acids are attached 

to transfer RNA (tRNA) ready for use by the ribosome.  

 
The data generated from the recent advent of 2H2O labelling combined with peptide 

mass spectrometry and proteomics give rise to new opportunities to investigate 

tissues, such as muscle, at the individual protein level. However, it is also important to 

consider the contributions of protein degradation (Figure 2.3) at the individual level in 

order to achieve complete insight in to the turnover of muscle proteins in vivo. Protein 

degradation is yet more challenging to study. A variety of techniques purport to 

measure degradation (Biolo et al, 1995, 1997; Pasiakos et al, 2014), but these 

methods are associated with important confounding factors. For example, the A-V 

balance method may underestimate the rate of degradation because of reutilisation of 

labelled amino acids for protein synthesis. Other stable isotope tracer methods have 

also been developed to assess protein degradation in vivo that do not require such 

invasive methods (Zhang et al, 1996). The principle behind these methods is that the 

appearance of unlabelled amino acids from protein degradation will dilute the tracer 

enrichment in the muscle intracellular pool but not the arterial blood pool, allowing the 

relationship of label enrichment in the muscle intracellular fluid and arterial blood to be 

used to calculate the fractional degradation rate (Chinkes, 2005). More recently, a 

pulse-chase version for determination of protein degradation was developed (Zhang 

et al, 2002). This method requires fewer biopsies and does not require an infusion of 

amino acids. However, physiological steady state is a crucial component of this 
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models is to allow protein degradation to be determined. Without maintaining this 

steady state, the relationship between degradation and amino acid transport is 

variable meaning that interpretation of the data can be easily confounded (Tuvdendorj 

et al, 2013). Thus, the technique is not appropriate for quantifying protein degradation 

rates in response to exercise. Furthermore, these methods that attempt to measure 

fractional degradation rates and the A-V methods are both limited to degradation rates 

of mixed muscle proteins with no capacity to quantify individual proteins or even 

protein sub-fractions e.g. myofibrillar or soluble. Measurement of 3-methylhistidine 

(3MH) in the urine is one approach that attempts to address this limitation. 3MH is a 

post translationally methylated histidine found in myofibrillar proteins. This is used as 

a marker of myofibrillar degradation because it cannot be further metabolised and 

cannot be recycled for use in protein synthesis (Vesali et al, 2004). 3MH methods are 

controversial (Rennie et al, 2008) and the routine measurement of 3MH in urine means 

the degradation information is not specific to a specific muscle or muscle type. More 

recently, attempts have been made to investigate degradation of individual proteins in 

muscle. This method involves the measurement of decay of isotopic enrichment of 

protein mixtures (Holm et al, 2010). However, despite this method allowing for 

measurements to last up to as long as 2 weeks, methodologies like deuterium labelling 

cannot be employed simultaneously because this method relies on no labelled amino 

acids being re-incorporated into new proteins and means that the net muscle protein 

balance cannot be determined. This positions the utility of this method with a very 

limited scope, especially when trying to study adaptive models where there is a 

changing protein mass.  
The next challenge would be to gain this level of insight i.e. individual protein turnover 

responses, into muscle adaptation. Even with the introduction of mass spectrometry 

driven methods to measure protein synthesis, all previous studies have been 

conducted in a ‘stable environment’ with no intervention or ‘change’ in the system. 

Therefore, protein abundance is assumed to be stable throughout the experimental 

period. However, during patho-physiological or physiological change, such as muscle 

adaptation, there are quantifiable differences in individual protein abundance 

(Burniston, 2009; Holloway et al, 2009) to change the desired characteristics of the 

muscle i.e. faster contracting or more fatigue resistant (Burniston 2008). We know that 

changes such as these occur in response to exercise and are documented extensively 

in whole muscle physiology (Burniston and Holloway, 2011). However, there is little or 
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no information on how these processes of change are orchestrated on the individual 

protein level. In order to investigate this level of detail and elucidate the mechanisms 

responsible, a shift in paradigm must be introduced. Programmed exercise would 

provide a ‘changing environment’ to give a platform where individual protein turnover 

can be investigated in response to altered protein abundance; challenging the status 

quo of how traditional tracer studies are normally conducted. In a changing system, 

protein degradation can be calculated as the difference between the measured 

synthesis rate and change in protein abundance (Burniston and Chen, 2019). 

Our lab has previously achieved in humans, the combination of 2H2O labelling and 

proteomic investigation with a changing system to permit investigation of how protein 

synthesis and degradation contribute to muscle adaptation (i.e. changes in 

abundance) on an individual level (Camera et al, 2017). This implements a robust 

method of measuring protein synthesis and abundance of individual proteins and can 

therefore accurately calculate protein degradation. However, further optimisation of 

this technique is required as the degree of adaptive change that is quantified in this 

work is not reflective of the whole muscle. In this regard, absolute measurements are 

not possible in humans even with multiple biopsies. This is due to that fact we cannot 

extract whole muscles in humans for analysis and because the fibre type 

characteristics (and therefore the individual proteins) differ from one biopsy to the next, 

even within the same muscle of one individual (Elder et al, 1982). 

Muscle phenotypes are determined by complex patterns of co-expression of fast and 

slow isoforms of myofibrillar proteins that share high levels of sequence homology. 

This makes peptide level studies particularly challenging because isoform-specific 

peptides must be detected in order to study adaptations of the myofibrillar proteome. 

Furthermore, the bottom-up approach utilised in such work (e.g. Camera et al, 2017) 

means that to quantify this level of peptide-specific data is challenging. Therefore, 

future work and consequently the aim of this chapter is to present a method that can 

incorporate peptide-specific data to give insight in to domain-specific rates of turnover, 

e.g. for peptide domains that may be cleaved or subject to post-translational 

modifications that alter their rate of turnover. Further limitations of human studies 

include problems with larger body mass meaning slower uptake of deuterium making 

curve fitting more complex. Whereas, the use of small laboratory animals means that 

precursor enrichment is rapid and stable. This makes the calculation of synthesis rate 
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more robust and subsequently enabling us to calculate both relative (FSR) and 

absolute synthesis rates for individual proteins.  

To circumvent limitations associated with human administration of deuterium, we 

present the implementation of animal models which allows for the extraction of the 

whole muscle for analysis, thus making absolute measurements possible and 

providing a greater amount of tissue sample to permit both bottom-up and top-down 

proteomic analysis, in order to capture peptide-specific changes in turnover. This also 

has the added benefit of using a programmable stimulation protocol to exploit the 

unique characteristics of muscle plasticity to the full, whilst utilising the contralateral 

non-stimulated muscle as an internal control. The implementation of introducing a 

dynamic system to study muscle adaptation will be the main aim of future chapters. 

The proposed methodology will calculate protein turnover on not just an individual 

protein scale but to also shed light on proteoform-specific turnover, providing 

information on whether a particular post translational modification is associated with a 

change to the synthesis or degradation rate of that specific protein. Thus, allowing us 

access to a deeper understanding of muscle adaptation by providing important 

quantitative information, at the absolute cutting edge, of how muscle adaptation is 

orchestrated.  

 

Objectives 
 
Objective of chapter – To establish the dynamic proteome profiling method. 

 

Specific Aim 1: To implement a robust technique that combines common proteomic 

approaches to exploit the fractionation of skeletal muscle to increase the number of 

non-redundant protein identifications and to increase the analytical space allowing for 

proteoform specific analysis.  

 

Specific Aim 2: To combine biosynthetic labelling with mass spectrometry analysis 

during a period of adaptation (30 d), using multiple sampling points to quantify the 

relative abundance changes and synthesis rates of individual proteins during muscle 

adaptation. 

 

Specific Aim 3: To use mathematics to calculate the rate of change for individual 
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protein abundances to allow for calculation of degradation rates of individual proteins 

for each experimental time point.  

 

Specific Aim 4: To calculate values that reflect the state of the whole muscle, 

generating absolute protein turnover data for all individual proteins. 

 

2.3  Experimental design 

In order to interrogate complex proteoform-specific responses it will be necessary to 

further optimise experimental designs for generating protein turnover rates from 

peptide mass spectrometry data. Experiments that collect only baseline and post-

intervention samples are less appropriate for detailed interrogation of protein 

responses because they do not chart the time-course of changes in deuterium 

incorporation and, therefore cannot establish whether the labelling of a protein has 

reached equilibration. For a study to accurately measure muscle protein turnover at 

the level of the individual protein in response to skeletal muscle adaptation, there are 

several key factors that must be considered when designing the experimental 

investigation. Firstly, there must be a baseline or control group to establish the profile 

of unlabelled peptides. Secondly, it is paramount to include multiple sampling points 

in a time-series analysis (Figure 2.4) to minimise the risk that aspects of the adaptation 

process might be missed because the asymptote of the synthesis and abundance 

measures are no detected. Finally, there must be biological replication within groups, 

and across the experimental time series to allow for adequate comparison at 

incremental periods throughout the adaptive process. 
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Figure 2.4. Schematic overview of theoretic experimental design.  

A theoretic experimental design shows a time series with independent groups of rats 

in each group. After a post-operative recovery period the animals in the 0 d group 

(baseline/sham control) are killed and muscles from both the left and right limb are 

extracted for analysis. The animals in the subsequent groups: 10 d, 20 d and 30 d 

then receive deuterium oxide (2H2O) labelling and the implanted stimulators are 

switched on to administer a programmed stimulation pattern designed to induce 

adaptation to the target left limb muscle. At each of the experimental time periods, the 

respective group of animals are killed in the same way as the 0 d group and both the 

left (stimulated) and right limb (non-stimulated control) muscles are extracted for 

further analysis. 

 

In addition to the main components of the experimental design an appropriate labelling 

protocol must be adhered to. For all the experimental investigations that include animal 

models and/or handling described here. All aspects of the animal husbandry were 

conducted by the LJMU animal facility staff. Surgery procedures and the electrical 

stimulation models were part of a collaborative effort in a wider project. As a result, 

work conducted within this thesis focused solely on aspects associated with dynamic 

proteome profiling of muscle samples. All animal procedures are conducted under the 

British Home Office Animals (Scientific Procedures) Act 1986 and are part of a sub-

set of experiments from a larger investigation (licence holder Prof. Jonathan Jarvis). 

Animals assigned to our experimental procedures were all male Wistar rats that were 

bred in-house in a conventional colony, housed in controlled conditions of 20 °C, 45 

% relative humidity, and a 12 h light (0600–1800 hours) and 12 h dark cycle, with water 

and food available ad libitum.  
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We have previously used 2H2O in rats (Hesketh et al, 2016) and found ~4 % body 

water enrichment sufficient enough to allow for the tracking of 2H2O in to newly 

synthesised peptides. To achieve this level of enrichment the animals must receive 

deuterium oxide (2H2O; Sigma-Aldrich, St. Louis, MO) that is initiated by an 

intraperitoneal loading injection of 10 µl/g of 99 % 2H2O-saline, which is then 

maintained over the course of the investigation by administration of 5 % (v/v) 2H2O in 

the drinking water, available to the animals ab libitum and refreshed daily. Findings 

from our previous work (Hesketh et al, 2016) were also used to optimise the duration 

of the current experiments. Based on the calculated half-life of serum albumin, ALBU, 

half- 14.4 d (Hesketh et al, 2016) we chose to use a 30-d experimental period.  

 

2.4  Laboratory processing 

2.4.1  Laboratory workflow 
 
The methodology described in this chapter has been developed to study models of 

muscle adaptation, combining stable isotope labelling using deuterium oxide and 

proteomic techniques. Figure 2.5 gives an overview of the processing involved in the 

proteomic workflow. This approach affords in-depth analysis of muscle adaptation by 

analysing both the contractile apparatus of the muscle (myofibrillar) and the 

enzymes/energy producing proteins (soluble) on an individual level. 
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Figure 2.5. Established workflow sequence to measure protein turnover during 

skeletal muscle adaptation. 

(1) Deuterium oxide (2H2O) administration to independent groups of rats for given 

period of time (i.e. 0, 10, 20 or 30 days). N.B. in subsequent experimental chapters, 

the animals also receive in vivo stimulation to bring about transformation of left hind 

limb muscles only. (2) Animals are sacrificed and both the left stimulated and right 

non-stimulated muscles are excised for analysis. The contralateral, non-stimulated 

muscle is taken to serve as internal control. (3) Muscles are then homogenised and 

fractionated to myofibrillar proteins and soluble proteins. (4a/b) Muscle fractions are 

processed via biochemical techniques to establish the amount of protein per sample. 

(5a) Proteomics techniques e.g. 2DGE is used to separate myofibrillar proteoforms 

and quantify abundance changes. (5b) Homogenised soluble proteins undergo in-

solution digest to separate samples into peptides. (6a) Gel spots are cut and digested 

before peptide mass fingerprinting is used via MALDI-TOF/MS to identify each 

individual protein. (6b) Peptides are loaded onto LC-MS where proteins can be 

identified and abundance quantified. (7a) MALDI-TOF/MS provides raw data of peak 

intensities for individual peptides specific to each protein. (7b) Alignment of raw data 

is required using Progenesis software to perform calculations. (8a/b) After extracting 

the raw data for each protein/peptide mass isotopomer, a computer programme is 

used so the rate of synthesis for each protein can be calculated. 
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2.4.2   Exemplar experimental methods  
 
The data presented in the current chapter were from Male Wistar rats (n = 16) aged 3 

months, 500 ± 69 g body weight were bred in-house in a conventional colony, housed 

in controlled conditions of 20 °C, 45 % relative humidity, and a 12 h light (0600–1800 

hours) and 12 h dark cycle, with water and food available ad libitum. All aspects of 

animal husbandry were conducted by the LJMU animal facility staff conducted under 

the British Home Office Animals (Scientific Procedures) Act 1986.  

These animals provided example data using soleus and plantaris muscles that did not 

receive any kind of stimulation or adaptation induced change. The purpose of which 

was to test our relative and absolute calculations fit the expected outcomes before 

applying them to a model of muscle adaptation (subsequent chapters). An 

experimental design using the same time-series described in Figure 2.4 was utilised, 

this included independent grouping of the rats (n = 4, in each) that received deuterium 

oxide (2H2O), in line with the labelling protocol described in section 2.3, at 0 d, 10 d, 

20 d and 30 d. At each of these time points the Soleus (SOL) and Plantaris (PLN) 

muscles of the hindlimb were extracted and processed according to the methods 

detailed in sections 2.4 and 2.6. From which we provide data to show the two methods 

of calculating fractional synthesis rate (FSR) described in section 2.7.1 as well as 

documenting the comparisons in FSR of slow-twitch muscle (SOL) and fast-twitch 

muscle (PLN). 

 

2.4.3  Measurement of precursor enrichment 
 
Body water 2H enrichment was measured in plasma samples collected at the time of 

muscle isolation. Plasma water was measured against external standards that were 

constructed by adding 2H2O to phosphate buffered saline over the range from 0.0 to 

5.0 % in 0.5 % increments. Deuterium enrichment of aqueous solutions was 

determined after exchange with acetone (McCabe et al, 2006). Samples were 

centrifuged at 12 000 x g, 4 °C for 10 min, and 20 μl of plasma supernatant or standard 

was reacted overnight at room temperature with 2 μl of 10 N NaOH and 4 μl of 5 % 

(v/v) acetone in acetonitrile. Acetone was then extracted in 500 μl chloroform and 

water was captured in 0.5 g Na2SO4 before transferring a 200 μl aliquot of chloroform 

to an autosampler vial.  



 54 

Samples and standards were analysed in triplicate using an Agilent 5973N mass 

selective detector coupled to an Agilent 6890 gas chromatography system. A CD624-

GC column (30 m x 0.25 mm x 1.40 μm) was used in all analyses. Samples (1 μl) were 

injected using an Agilent 7683 autosampler. The temperature program begins at 50 

°C and was increased by 30 °C/min to 150 °C, and was held for 1 min. The split ratio 

is 50: 1 with a helium flow of 1.5 ml/min. Acetone was eluted at approximately 2.0 min. 

The mass spectrometer was operated in the electron impact mode (70 eV) and 

selective ion monitoring of m/z 58 and 59 was performed using a dwell time of 10 

ms/ion.        

 

2.4.4  Muscle processing 

Muscles were fractionated into myofibrillar and soluble fractions according to Camera 

et al, (2017). Samples were pulverized under liquid nitrogen using a mortar and pestle, 

100 mg of the tissue powder was homogenized on ice in 10 volumes of 1 % Triton X-

100, 50 mM Tris pH 7.4 including phosphatase inhibitor and complete protease 

inhibitor cocktails (Roche, Indianapolis, USA) using a PolyTron homogenizer. 

Samples were incubated on ice for 15 min, then centrifuged at 1000 x g, 4 °C, for 5 

min. The supernatants containing the soluble/sarcoplasmic proteins were decanted 

and stored on ice, and the myofibrillar pellet was resuspended in 0.5 ml of 

homogenization buffer and then centrifuged at 1000 x g, 4 °C, for 5 min. The washed 

myofibrillar pellet was solubilized in 10 volumes of 7 M urea, 2 M thiourea, 4 % CHAPS, 

30 mM Tris, pH 8.5 and cleared by centrifugation at 12 000 x g, 4 °C, 45 mins. Protein 

concentrations of each myofibrillar and soluble protein sample were measured using 

the Bradford assay (Sigma-Aldrich, Poole, Dorset, United Kingdom). The reference 

protein used was Bovine serum albumin (BSA) plotted on a standard curve over a 

range of increments in concentration: 0.000 mg/ml (Blank), 0.125 mg/ml, 0.250 mg/ml, 

0.500 mg/ml, 0.750 mg/ml and 1.000 mg/ml. Standards were pipetted in triplicate into 

a microtitre plate. Myofibrillar samples were diluted (distilled water) 1:10 and proteins 

of the soluble fraction diluted 1: 20 to bring them in range of the standard curve. 5 μl 

of each sample was pipetted in duplicate and 250 μl of Bradford reagent was added 

to each well. The sample absorbance was captured at a wavelength of 595 nm and 

protein concentrations were calculated using linear regression from the changes in 

absorbance.  
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2.5  Analysis of myofibrillar proteins 

2.5.1  Top-down proteomic analysis  

Homogenates of the myofibrillar fraction were prepared for 2-dimensional gel 

electrophoresis (2DGE) as described previously in Burniston, (2008). Gels were 

produced in batches of 8 comprising of an individual gel for each experimental and 

contralateral control muscle over the time series of 4 points (0 d, 10 d, 20 d and 30 d) 

so there is no technical bias. For each batch of gels, identical stock solutions were 

used, gels were loaded equivalently and were electrophoresed under the same 

conditions. An aliquot of each supernatant was precipitated in 5 volumes of acetone 

at -20 °C for 1 hour and then resuspended in 7 M urea, 2 M Thiourea, 2 % (w/v) 

CHAPS, 20 mM dithiothreitol, 0.5 % (v/v) and ampholytes (pH 3-11). Samples, 

containing 250 µg protein, were loaded on to 13 cm pH 3–11 nonlinear IPG strips (GE 

Healthcare, Chalfont St Giles, UK) and resolved using an “active rehydration” and 

isoelectric focusing protocol comprising: 150 Vh at 30 V, 300 Vh at 60 V, 500 Vh at 

500 V, 1000 Vh at 1000 V and 48 000 Vh at 8000 V; conducted on an IPGPhor II (GE 

Healthcare) at 20 °C, maximum 50 mA per strip. IPG strips were equilibrated in 50 mM 

Tris-HCl pH 8.8, containing 6 M urea, 30 % (v/v) glycerol, 70 mM sodium dodecyl 

sulfate (SDS) and a trace of bromophenol blue. Dithiothreitol (DTT) (65 mM) was 

present as a reducing agent in the first equilibration and iodoacetamide (135 mM) in 

the second. Proteins were then electrophoresed from the IPG strip through 16 cm 

linear 12 % polyacrylamide gels at 20 °C; at a constant current of 15 mA per gel for 

30 min, then 30 mA per gel until the tracking dye reached the bottom edge of the gel. 

Gels were washed and stained with colloidal Coomassie blue (Bio-Safe; BioRad, 

Hercules, CA, USA) according to the manufacturer’s instructions. Gels were 

subsequently scanned on to a computer and digitised images (8-bit greyscale, 300 

dpi) of the stained gels were saved as tagged-image file format (.TIFF) files.  

 

2.5.2  Abundance analysis 

Image analysis (Samespots, v3.0, Nonlinear Dynamics, Newcastle, UK) was 

performed on all individual 2DGE images, representing the myofibrillar protein fraction 

from the experimental and contralateral control muscles of every animal included in 

the experiment over a time series of 4 points e.g. 0 d, 10 d, 20 d and 30 d. Prominent 
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spots were manually identified to avoiding including gel artefacts in the data and the 

gel images were warped to align the spot positions to a common reference gel. The 

resulting spot outlines were applied to each parent image and manually verified 

consistent with our previous work (Burniston, 2008). Statistical analysis was 

performed on log-transformed spot volume data that were normalised relative to total 

spot density for each individual gel. 

 

2.5.3 Matrix-assisted laser desorption ionisation tandem time of flight 
mass spectrometry  

Protein spots were cut from each 2D-gel and processed using an Xcise robot 

(Proteome Systems, North Ryde, Australia) as described previously (Burniston et al, 

2007.; Burniston, 2008.; Hesketh et al, 2016). Gel plugs were destained in three 

changes of 25 mM ammonium bicarbonate in 50 % acetonitrile and were dehydrated 

before being incubated with 35 µL of 1.25 mg/mL porcine trypsin (Promega, Madison, 

WI, USA) in 50 mM ammonium bicarbonate.  

Peptide solutions were de-salted and concentrated (Zip-tips; Millipore, Billercia, MA, 

USA) before being mixed with matrix (3.5 µg α-cyano-4-hydroxcinnamic acid in 50: 50 

acetonitrile and 0.1% trifluoroacetic acid) and spotted on to 384-well stainless steel 

target plates. A calibration mix (Laserbio Labs, Sophia Antipolis, France) consisting of 

angiotensin II (m/z 1046.2), angiotensin I (m/z 1296.5), neurotensin (m/z 1672.9), 

ACTH fragment {1–17} (m/z 2093.5) and ACTH fragment {18–39} (m/z 2465.19) was 

mixed 1: 1 with matrix solution and spotted (0.5 µL) between every four sample-wells. 

Peptide mass spectra were recorded using a matrix-assisted laser desorption 

ionisation tandem time of flight mass spectrometer (MALDI-TOF/MS), (Axima TOF2; 

Shimadzu Biotech, Manchester, UK) in positive reflectron mode over a mass/charge 

(m/z) range of 900–3000. Data was smoothed (Gaussian, 2 chan peak width), baseline 

subtracted (100 chan peak width) and an adaptive (8.0ˆ) threshold applied. Peptide 

mass lists (restricted to 20 peptides over 900–3000 m/z) were produced using the 

peak selection tool of the instrument’s Launchpad software (Version 2.8.4) and 

searched against the Uniprot database restricted to “Rattus” using the online 

MASCOT (www.matrixscience.com) server v.2.2.03. The enzyme specificity was set 

as trypsin allowing one missed cleavage, carbamidomethyl modification of cysteine 

(fixed), oxidation of methionine (variable) and an m/z error of ± 0.3 Da. Protein 
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identifications were accepted subject to performing quality controls on the data. Firstly, 

the signal: noise ratio was <30 and secondly, each protein had a MOWSE score of 

above 54, signalling the significant identity threshold, our exclusion criteria was set at 

>60. 

Mass spectrometry data were recorded from every gel spot from the 2DGE in every 

experimental and contralateral control muscle for every animal included in the 

experiment over the time series of 4 points (i.e. 0 d, 10 d, 20 d and 30 d). Raw mass 

spectra were exported in mzXML format and mMAss software (Version 5.5.0, 

http://www.mmass.org) was used to extract intensity data for the monoisotopic peak 

(m0), m1 and m2 mass isotopomers of 5 selected peptides for each protein/ proteoform, 

as previously described (Hesketh et al, 2016).  
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2.6  Analysis of soluble proteins 

2.6.1  Bottom-up proteomic analysis  
 
Soluble proteins in lysis buffer at a concentration of 5 μg/μl of protein were processed 

for mass spectrometry analysis by in-solution digestion according to the filter aided 

sample preparation (FASP) method described by Wisniewski et al, (2009). An aliquot 

(200 μg) of each sample was precipitated in 5 volumes of acetone at -20 °C overnight 

and then resuspended in UA buffer (8 M urea in 0.1 M Tris-HCl, pH 8.5). Proteins were 

diluted with 200 μl of UA buffer in a 30 kDa MW filter cup (Micron-30/ Ultracel PL-30), 

the filter cup was placed in a waste collection tube and was centrifuged at 10, 000 x 

g, at room temperature for 30 mins. Subsequently, 100 mM of dithiothreitol in UA buffer 

was added to each sample filter cup, agitated for 5 mins and incubated at 37 °C for 15 

mins before being centrifuged at 10, 000 x g, at room temperature for 30 mins. 50 mM 

of iodoacetamide in UA buffer was then added to each sample filter cup, agitated for 

2 mins and incubated at 4 °C for 20 mins before being centrifuged at 10, 000 x g, at 

room temperature for 30 mins. The samples were then washed twice by adding 100 

μl of UA buffer to each sample filter cup which was centrifuged at 10, 000 x g, at room 

temperature for 30 mins after each wash. One-hundred microlitres of 50 mM 

ammonium bicarbonate was then added to each sample filter cup which were agitated 

for 2 mins and centrifuged at 10, 000 x g, at room temperature for 30 mins. Waste 

collection tubes were then discarded and clean labelled tubes used for collection of 

the samples after proteolytic digestion by porcine trypsin (Promega, Madison, WI, 

USA). Trypsin was prepared in 50 mM ammonium bicarbonate for a 1: 50 enzyme: 

protein ratio. The trypsin solution was then added to each sample filter cup and 

agitated for 5 mins before overnight incubation at 37 °C in a humidified chamber. 

Following the overnight digestion, the samples were centrifuged at 10, 000 x g, at room 

temperature for 30 mins. After which, 40 μl of 50 mM ammonium bicarbonate was then 

added to each sample filter cup before centrifugation at 10, 000 x g, at room 

temperature for 30 mins. The trypsin reaction was then stopped by adding 20 μl of 1 

% trifluoroacetic acid (TFA) to each sample collection tube. 

 

2.6.2  Abundance analysis 

After FASP digest, 4 μl of peptides (equivalent to x 4 ug) from each sample was mixed 

with 11 μl of 0.1 % trifluoroacetic acid. After which, each peptide solution was de-
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salted and concentrated using Zip-tips (Millipore, Billercia, MA, USA) according to the 

manufacturer’s instructions. The eluents were then subject to drying using a 

SpeedVac (Thermo Scientific Savant, United Kingdom) for 20 mins at 60 °C with the 

lids open. Yeast protein ADH-1 was then spiked into all samples at a concentration of 

10 fmol per μl before each sample was transferred into autosampler vials for LC-

MS/MS analysis. 

 

2.6.3  Liquid chromatography-mass spectrometry 

Label-free liquid chromatography-mass spectrometry analysis was performed using 

nanoscale reverse-phase ultra-performance liquid chromatography (UPLC; Nano 

Acquity; Waters) and online electrospray ionization quadrupole–time-of-flight mass 

spectrometry (ESI-Q-TOF; QTOF Premier; Waters). Samples (400 ng tryptic peptides) 

were loaded in aqueous 0.1 % (v/v) formic acid via a Symmetry C18 5 µm, 2 cm X 180 

µm trap column (Waters). Separation was conducted at 35 °C via a BEH C18 1.7 µm, 

25 cm X 75 µm analytical reverse-phase column (Waters). Peptides were eluted using 

a gradient that rises to 37 % acetonitrile 0.1 % (v/v) formic acid over 90 min at a flow 

rate of 300 nl/min. For all measurements, the mass spectrometer was operated in 

positive electrospray ionization mode at a resolution of >10, 000 full width at half 

maximum (FWHM). Before analysis, the time-of-flight analyser was calibrated using 

fragment ions of [Glu-1]-fibrinopeptide B from m/z 50 to 1990. Mass spectra (MS) for 

liquid chromatography-mass spectrometry profiling was recorded between 350 and 

1600 m/z using mass spectrometry survey scans of 0.9 s durations with an inter scan 

delay of 0.1 s. In addition, equivalent data-dependent tandem mass spectrometry 

(MS/MS) spectra was collected from each 0 d (control) sample. MS/MS spectra of 

collision-induced dissociation fragment ions were recorded for the 5 most abundant 

precursor ions of charge 2+ or 3+ detected in the survey scan. Precursor 

fragmentation was achieved by collision-induced dissociation at an elevated (20–40 

eV) collision energy over a duration of 0.15 s per parent ion with an inter scan delay 

of 0.05 s over 50–2000 m/z. Acquisition was switched from MS to MS/MS mode when 

the base peak intensity exceeds a threshold of 30 counts per second, and returned to 

the MS mode when the total ion chromatogram (TIC) in the MS/MS channel exceeds 

7, 500 counts per second or when 1.0 s (5 scans) were acquired. To avoid repeated 

selection of peptides for MS/MS, the program used a 30 s dynamic exclusion window.  
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For data processing Progenesis Quantitative Informatics for proteomics (Water Corp, 

United Kingdom) was used to perform label-free quantitation that was consistent with 

our previous work (Malik et al, 2013.; Burniston et al, 2014.; Camera et al, 2017.; 

Sollanek et al, 2017). Prominent ion features (>600 per chromatogram) were used as 

vectors to align each data set to a common reference chromatogram. An analysis 

window of 15–105 min and 350–1500 m/z was selected, which encompasses features 

with charge states of +2 or +3. Log-transformed MS data were normalised by an inter-

sample abundance ratio, and differences in relative protein abundance were 

investigated using nonconflicting peptides only.  

MS/MS spectra were exported in Mascot generic format and searched against the 

Swiss-Prot database (2016.7) restricted to Rattus (8,071 sequences) by using a locally 

implemented Mascot server (v.2.2.03; www.matrixscience.com). Enzyme specificity 

was trypsin, which allows for 1 missed cleavage, carbamidomethyl modification of 

cysteine (fixed), deamination of asparagine and glutamine (variable), oxidation of 

methionine (variable) and an m/z error of ± 0.3 Da. Mascot output (xml format), was 

restricted to nonhomologous protein identifications, was recombined with MS profile 

data, and peptides modified by deamination or oxidation were removed before 

quantitative analysis. 
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2.7  Turnover calculations 

2.7.1  Individual Protein Synthesis rates 

After MALDI-TOF/MS analysis, raw mass spectra for the myofibrillar proteins is 

exported in mzXML format and mMAss software (Version 5.5.0, 

http://www.mmass.org) is used to extract intensity data for the isotopomer envelope, 

including the monoisotopic peak (m0), m1 and m2 mass isotopomers for each peptide 

from each protein/ proteoform, as previously described (Hesketh et al, 2016). For each 

myofibrillar protein a minimum of 5 selected peptides are used to calculate the molar 

fraction of m0 as shown in Figure 2.6. 

After LC-MS analysis, mass isotopomer abundance data for the soluble proteins are 

extracted from MS only spectra using Progenesis Quantitative Informatics (Nonlinear 

Dynamics). Peak picking is performed on ion features with +2, or +3 charge states 

within an analysis window of 15–105 min and 350–1500 m/z. The abundance of the 

monoisotopic peak (m0), m1 and m2 mass isotopomers are collected over the entire 

chromatographic peak for each non-conflicting peptide that is used for label-free 

quantitation in the aforementioned Progenesis Quantitative Informatics for proteomics 

analysis, as previously described (Camera et al, 2017). For each soluble protein, a 

minimum of one unique peptide is used to calculate the molar fraction of m0 as shown 

in Figure 2.6. 

Fractional synthesis rate (FSR) is then derived for all identified myofibrillar and soluble 

proteins. Synthesis rates are calculated in both control (right, non-stimulated) and 

stimulated (left) muscles in two primary ways. Fitting mass isotopomer data collected 

at each of the 4 experimental time-points using a semi-log plot and fitting the same 

data to a 2-point (0 d and 30 d) non-linear first-order equation. These calculations 

provide the rate constant (k) for the decay of the molar fraction of the m0 mass 

isotopomer across the specified time points. The rate constant (k) is then divided by 

the number (n) of exchangeable hydrogen sites reported in standard tables 

(Commerford et al, 1983) and finally by the level of precursor enrichment (p) measured 

by GC-MS analysis of plasma samples. Protein FSR is then reported as the mean of 

the peptide values assigned to each protein or proteoform. 
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Figure 2.6. Fractional synthesis calculations from mass spectra analysis. 

(A) Example mass spectra of peptide RFNDGTDEK (1145.3682 m/z) from ATP synthase alpha (ATPA). Relative abundances of m0 

(monoisotopic), m1, m2 and m3 mass isotopomers at days 0, 10, 20, and 30 are presented. Incorporation of deuterium into newly 

synthesized protein is evident in the proportional increase in the heavy isotopomers (m1, m2, and m3) and relative decrease in the 

fractional abundance of the monoisotopic peak (i.e., m0 / ∑mi). (B) Rate constant (k) of synthesis is calculated by fitting mass
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isotopomer data (m0 / ∑mi) to a nonlinear model of steady state precursor enrichment 
and incorporation of deuterium into the product peptide, taking into account the amino 
acid composition of the peptide. (C) The rate constant (k) is then divided by the number 
(n) of exchangeable hydrogen - deuterium sites which is then finally divided by the 
level of precursor enrichment (p) measured by GC-MS analysis of the plasma samples 
to give the fractional synthesis rate for the example peptide in percent per day. 

 

To calculate the synthesis rate constant (k) using our 2-point calculation used for time 
point intermediaries, we implement the following non-linear first-order equation: 

 

 

 

Where Fm0t is the molar fraction of m0 at time t, and Fm0t0 is the molar fraction of m0 
at time t0. By using protein abundance data at times t and t0 

 

2.7.2  Individual Protein Degradation rates 

The rate of change in the abundance of a protein is dependent on the difference 

between its rate of synthesis (Rs) and the rate of degradation (Rd). Our model assumes 

first-order kinetics that followed the standard formula: 

 

 

 

 

Where A is the abundance at time t, and A0 is the abundance at time t0. By using 

protein abundance data at times t and t0, the net rate of change in abundance can be 

calculated by rearranging the above to give: 
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Converting differences in abundance between day zero and day 30 to rates of change 

in abundance enables the rate of degradation of each protein to be calculated as the 

difference between its rate of synthesis and its rate of change in abundance.  

 

2.7.3  Absolute Protein turnover rates 

Absolute protein turnover is calculated for individual proteins in both the control (right, 

non-stimulated) and stimulated (left) muscles of both the myofibrillar and soluble 

fractions. To calculate values that reflect the state of the whole muscle i.e. protein 

turnover; firstly, the protein content of the muscle must be calculated (Equation 1).  

 

Equation 1: 

 

 

 

 

Where MA is the muscle aliquot (mg) of the mass from the muscle powder that was 

taken and weighed after the whole muscle is pulverised under liquid nitrogen. HV is 

the homogenisation volume (ml) that is measured after the homogenisation process. 

PC is the protein concentration value (mg/ml) derived from the protein assay. This 

gives the protein extraction in mg of protein per mg of muscle mass. This value is then 

multiplied up by the mass of the whole muscle (mg) to give the protein content for the 

entire muscle. 

Once the absolute protein content is determined, absolute protein abundance can then 

be calculated for each individual protein. This is achieved in two similar ways for the 

soluble (Equation 2) and myofibrillar (Equation 3) fraction. It is necessary to calculate 

absolute abundance in this way for the two fractions because relative abundance 

changes are quantified in different ways between the two fractions. The soluble 

fraction proteins contain a protein ‘spike’ utilised by the LC-MS to give a measure of 

protein abundance in units i.e. fmol/µg of protein. However, relative abundance 

changes in the myofibrillar fraction proteins are quantified by densitometry and require 

manual conversion to mg units. 
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Absolute abundance (ABD) of proteins in the soluble fraction was calculated by 

Equation 2. 

 

Equation 2: 

 

 

 

 

 

 

 

(i) Total protein content (ug) is multiplied by the absolute abundance value (AAQIP) 

generated from the Progenesis Quantitative Informatics software normalised to the 

ADH-1 protein spike (fmol). This value is divided by one thousand to convert into more 

manageable units (pmol). (ii) The experimental period in days (d) is converted to a 

decimal by dividing by one and is then multiplied by the natural log of the absolute 

abundance of the muscle at 30 days (ABD30) is divided by the absolute abundance of 

the muscle at zero days (ABD0). This gives the rate constant (k) of absolute 

abundance change from day-0 to day-30. 

 

Absolute abundance (ABD) for the myofibrillar fraction is calculated by Equation 3. 

 

Equation 3: 

 

 

 

 

Fold change is calculated between muscle mass (MM0) and spot density (SD0) at day 

0 and multiplied by the fold change at day-30. For each value, one is divided by the 

experimental period in days (d) to convert it in to a decimal and multiplied by the natural 

log (ln) of the product between the fold changes of 0 days and 30 days. This is then 

multiplied by 100 to convert the final value into percent per day (%/d). 
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Before absolute synthesis rate can be calculated the units of both the soluble fraction 

proteins (fmol/d) and myofibrillar proteins (mg/d) must be normalised (Equation 4) to 

achieve comparable data. 

 

Equation 4: 

 

 

The molecular weight (MW) of each protein is multiplied by C, the protein 

concentration (pmol) and finally by the sample volume (pl) to give the final units as 

pictograms. 

 

Absolute synthesis rate (ASR) for individual proteins are calculated by using the 

absolute abundance of the protein which gives two similar equations for both the 

myofibrillar and soluble fraction proteins (Equation 5). 

 

Equation 5: 

 

 

 

The fractional synthesis rate (FSR in %/d) for each individual protein is divided by 100 

and multiplied by ABD, derived from Equation 2 for the soluble fraction proteins, and 

from Equation 3 for the myofibrillar proteins to give ASR in pg/d. 

Absolute degradation rate (ADR) is calculated for both soluble and myofibrillar 

fractions using Equation 6.  

 

Equation 6: 
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2.7.4  Statistical Analysis 
 
Statistical analysis of myofibrillar protein abundances are conducted on normalised 

spot abundances from 2D-gel spots. Normalised protein abundance from LC-MS 

label-free quantitation are used for soluble protein abundance. Relative synthesis 

rates are analysed as percent per day (%/d) and absolute synthesis rates are analysed 

as picograms per day (pg/d) in the soluble fraction proteins and as pg/d in the 

myofibrillar fraction proteins, all values are averages of the analysed peptides for each 

protein and subsequent analysis is at the protein level. All statistical testing is 

conducted using SPSS (SPSS, v23, Chicago, USA) and the statistical significance 

level is set at P< 0.05. To assess the degree of consistency across control situations 

(right limb, non-stimulated muscle) for all time points (10 d, 20 d and 30 d) and sham 

operated animals (0 d) a one-way ANOVA is used to analyse protein abundance, 

synthesis and degradation data.  
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2.8 Results 

The first method used to calculate is described by Figure 2.7 illustrates the semi-log 

plot method for calculating protein FSR. For each protein, a minimum of 5 selected 

peptides was used to calculate the molar fraction of m0. Synthesis rates are then 

calculated for each individual peptide by fitting mass isotopomer data collected at each 

of the 4 experimental time-points (0 d, 10 d, 20 d and 30 d) using a semi-log plot 

(Figure 2.7). The rate constant (k) of the change in the molar fraction of m0, across the 

experimental time points can then be used to derive the FSR of the selected peptides 

and subsequently the whole protein. The rate of change in the mass isotopomer 

distribution is also dependant on the number of hydrogen to deuterium exchangeable 

sites (n) each peptide contains and the body water enrichment of 2H2O in the animal 

(Figure 2.6). The change in mass isotopomer distribution is a result of the incorporation 

of 2H labelled amino acids in to newly synthesised peptides. This leads to the changes 

in mass isotopomer distribution following an exponential plateau, which can then be 

used to determine the rate of change of the monoisotopic peak over the 30-day 

experiment (Figure 2.7). 
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Figure 2.7. Peptide semi-log plot calculations to determine FSR for muscle creatine kinase (KCRM). 

Each figure represents a semi-log plot for an individual peptide. The data is presented as the log-transformed fraction of the 

monoisotopic peak (Fm0) over 0 d, 10 d, 20 d and 30 d for each peptide. This represents the relative decrease in the fractional 

abundance of the monoisotopic peak, due to the incorporation of deuterium into newly synthesized protein resulting in a proportional 

increase in the heavy isotopomers. The rate constant (k) of synthesis is calculated by linear regression of the mass isotopomer data 

(Fm0), taking into account the amino acid composition of the peptide (sequence in bold for each peptide) and precursor enrichment 

(p) to give the fractional synthesis rate (FSR) for each peptide. From which the mean ± SD can be calculated to inform the final FSR 

in percent per day (%/d) for Creatine kinase (KCRM).
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Mixed muscle FSR in the SOL (3.77 ± 0.41 %/d) is greater (P = 0.019) than mixed 

muscle FSR in the PLN (2.55 ± 0.25 %/d), Figure 2.8. A difference between the two 

muscles is further extended at the level of the individual protein. Table 1 shows there 

is a clear difference in FSR rank order between the two muscles. However, for both 

the SOL and PLN the protein with the fastest FSR was ALBU (7.25 ± 0.79, 7.60 ± 0.68 

%/d respectively). Yet, beyond ALBU the SOL displays its greatest FSR rates in 

mitochondrial and calcium handling proteins such as ATPA (5.71 ± 0.35 %/d) and 

AT2A2 (5.03 ± 0.76 %/d). Whereas the PLN has greater FSR values for proteins more 

associated with glycolysis; for example, PYGM (4.14 ± 0.14 %/d) and ALDOA (3.63 ± 

0.18 %/d). In SOL, the protein with the slowest FSR was ENOB (1.13 ± 0.14 %/d) and 

in the PLN muscle, CASQ1 had the slowest FSR (0.81 ± 0.09 %/d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8. Fractional synthesis rate of mixed muscle proteins in Soleus and Plantaris 

muscle over 30 days. 

All data is reported and calculated by fitting mass isotopomer data using a semi-log 

plot for individual proteins. Data is presented in box and whisker plots with fractional 

synthesis (FSR) data in percent per day (%/d), of the 24 detected proteins in soleus 

muscle and the 28 detected proteins in plantaris muscle (Proteins detailed in Table 1). 
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FSR was greater in soleus than in plantaris detected by independent t-test, P-value 

was set at <0.05. 

 

Table 2.1. The rank order of individual protein FSR in Soleus and Plantaris muscle 

after 30 days. 

Soleus Plantaris   

Protein I.D. FSR (%/d) CV (%) Protein I.D. FSR (%/d) CV (%)   

ALBU 7.25 ± 0.79 10.95 ALBU 7.60 ± 0.68 8.92   

CAH3 6.57 ± 0.80 12.14 PYGB 4.46 ± 0.23 5.16   

HSPB1 5.73 ± 0.57 9.90 PYGM 4.14 ± 0.14 3.42   

ATPA 5.71 ± 0.35 6.11 KPYM 3.72 ± 0.28 7.45   

AT2A2 5.03 ± 0.76 15.06 ALDOA 3.63 ± 0.18 5.06   

KCRS 4.34 ± 0.21 4.81 KAD1 3.62 ± 0.63 17.50   

MGHM 4.28 ± 0.62 14.60 PGAM2 3.06 ± 0.51 16.79   

HSPB6 4.10 ± 0.33 8.09 KCRM 3.05 ± 0.06 1.92   

LDHB 4.08 ± 0.27 6.66 TPIS 3.04 ± 0.26 8.42   

FHL1 3.76 ± 0.39 10.31 G3P 2.66 ± 0.13 4.80   

MYL3 3.72 ± 0.37 9.87 TNNT3 2.65 ± 0.26 9.76   

G3P 3.69 ± 0.73 19.77 MDHM 2.60 ± 0.11 4.08   

PEBP1 3.58 ± 0.42 11.67 CAH3 2.51 ± 0.30 12.03   

MDHC 3.48 ± 0.50 14.51 ENOB 2.49 ± 0.09 3.59   

KCRM 3.41 ± 0.18 5.28 ATPB 2.40 ± 0.23 9.48   

ALDOA 3.39 ± 0.58 16.99 MYH4 2.25 ± 0.20 9.10   

TPIS 2.98 ± 0.03 0.84 ATPA 2.18 ± 0.29 13.39   

MLRV 2.84 ± 0.31 10.78 MYL3 2.00 ± 0.33 16.74   

FABPH 2.65 ± 0.35 13.15 MYG 1.94 ± 0.18 9.40   

HBA 2.44 ± 0.33 13.33 PRVA 1.70 ± 0.22 13.24   

HBB1 2.17 ± 0.05 2.22 TPM2 1.50 ± 0.11 7.44   

PGK1 2.11 ± 0.32 15.39 MYH8 1.49 ± 0.20 13.21   

MYG 2.09 ± 0.36 17.16 ADT1 1.44 ± 0.25 17.53   

ENOB 1.13 ± 0.14 12.57 MYL1 1.27 ± 0.15 12.04   

- - - H2B1 1.15 ± 0.11 9.84  

- - - HBB1 1.09 ± 0.19 17.08  

- - - AT2A1 1.07 ± 0.18 16.94  

- - - CASQ1 0.81 ± 0.09 11.08  

 

Protein I.D. relates to the Uni-Prot database, entries returned using the MASCOT 

search engine. FSR is the fraction synthesis rate representative of the selected 

peptides for each protein, reported as mean ± SD in percent per day (%/d). CV 

represents the coefficient of variation expressed as a percentage. 
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Alternative methods for calculating k is through applying a two-point calculation 

between time points to give a rate of decline in the monoisotopic peak without the 

influence from the excluded time points. In addition, a series of two-point calculations 

were used 0 d – 10 d, 10 d – 20 d and 20 d – 30 d for KCRM across both SOL and 

PLN muscles (Figure 2.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Fractional synthesis rate of KCRM at each experimental time-series 

duration for Soleus and Plantaris muscle. 

All data is presented is fractional synthesis rate expressed as present per day (%/d) 

as mean ± SD. FSR values are calculated by the two-point calculation over each 

incremental time-series 0-10 days, 10-20 days and 20-30 days with the addition of 
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FSR calculated via semi-log plot method (0-30 days) for comparison for (A) Soleus 

muscle and (B) Plantaris muscle. 

 

Statistical analysis was performed in SPSS (SPSS, v23, Chicago, USA) and the 

statistical significance level was set at P< 0.05. One-way ANOVA was conducted on 

KCRM FSR to assess for differences between each time point within each muscle. 

Tukey’s HSD post-hoc testing was conducted (P = 0.361) as were independent t-tests 

to assess the differences within time points between muscles. There were no 

differences between the semi-log plot calculation (0-30 d) and any of the other time 

points for both SOL and PLN. In addition, there were no significant differences 

between any of the time points in SOL (P = 0.231 ± 0.071), or between the time points 

for PLN (P = 0.159 ± 0.066). 
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2.9 Discussion 

The aim of this chapter was to develop a protocol that will enable us to investigate 

skeletal muscle adaptation at the level of synthesis, abundance and degradation of 

individual proteins. To evaluate whole muscle changes over a period of time (i.e. 30 

days) that will provide insight to changes that occur in the context of whole muscle 

adaptation; we present an experimental design that utilises an animal model over a 

time series analysis (Figure 2.4). This allows us to create an experiment with a robust 

statistical analysis by filtering out proteins that do not fit to the expected exponential 

plateau across the four sampling points. Not only does our methodology equip us with 

the investigatory tools to quantify changes in individual protein turnover of enough 

myofibrillar and soluble proteins (n = ~30 myofibrillar and ~40 soluble proteins after 

stringent filtering) to begin to inform the mechanism of how muscle adaptation is 

coordinated. It also provides access to a deeper understanding of how muscle 

transformation is orchestrated, allowing us to gather unprecedented information on 

proteoform-specific turnover. This is highly unique as almost all previous biosynthetic 

labelling experiments have been designed so that protein abundance does not change 

during the investigatory period and have therefore assumed that synthesis rates are 

equivalent to degradation rates (Wagenmakers, 1999). 

We can subsequently present exemplar data that document expected differences 

(Kelly, 1984; Lewis et al, 1984) between the synthesis rate of fast and slow muscle, 

with a different rank order of synthesis between tissues, consistent with our previous 

work (Hesketh et al, 2016). This gives us great confidence to report our semi-log plot 

calculation method (Figure 2.7) performs comparably with existing literature. 

Independent groups of rats were subject to deuterium labelling during a time series of 

30 days. We analysed deuterated peptides to compute FSR data in both the soleus 

(SOL) and plantaris (PLN) muscles (Figure 2.8). The soleus muscle is a slow-twitch 

muscle in the rat, containing ~95 % type 1 fibres which express MyHC type 1 isoforms 

(Soukup et al, 2002). Whereas, plantaris represents a faster twitching muscle with ~12 

% type 1 fibres, ~28 % type 2a and ~60 % type 2b (Burniston et al, 2007). Figure 2.8 

reveals a greater (P = 0.019) mixed muscle protein FSR in the SOL and PLN. This 

equates to an average half-life in SOL of 18.7 days and PLN of 27.7 days. Consistent 

with previous data (Lewis et al, 1984) that demonstrate slow-twitch muscle (SOL, half-

life of 12.1 days) in developing rats to have a greater turnover rate than fast-twitch 
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muscle (TA, half-life of 18.3 days). Furthermore, this is supported by further tissue-

specific investigation that reports protein turnover is generally more rapid in slow than 

fast-twitch muscle. The average half-life of proteins is reported to be ~14 days in mixed 

fibre locomotive muscles and ~7 d in slow-twitch postural muscles (Kelly, 1984). 

However, these values represent averages across the entire proteome and so are a 

gross simplification of events at an individual protein level. For example, contrary to 

the average turnover rate, turnover of the mitochondrial protein, cytochrome c, is more 

rapid in fast than slow-twitch muscle (Terjung 1979). During such investigations, these 

differences in individual protein turnover rate suggests protein degradation is selective 

and thus, should also be considered for these types of experiments. For example, the 

turnover of rabbit myosin heavy chain is ~29 days and actin is ~75 days (Koizumi, 

1974). Even amongst the troponin complex, which consists of 3 subunits: troponin T, 

troponin I and troponin C, the rates of turnover are different. Troponin T and troponin 

I turnover in about 12 days, whereas troponin C turnover is almost twice as long (i.e. 

~22 days). Furthermore, we have also previously shown that the synthesis rates of 

individual proteins change depending on which muscle is analysed. Hesketh et al, 

(2016) investigated four different muscle tissues in the rat over a 14-day period using 

deuterium labelling and found the rank order of protein synthesis was different across 

all muscles. For example, KCRM had a FSR of 3 % over 14 days in fast twitch EDL 

and 9.5 % over 14 days in the slower contracting SOL. These data are corroborated 

by our exemplar data as we report 24 proteins detected in the SOL compared to 28 in 

the PLN, both with contrasting rank orders for protein synthesis (Table 1), 

corresponding to large ranges in FSR for the SOL (1.13 – 7.25 %/d) and the PLN (0.81 

– 7.60 %/d), underlining the significance of analysing muscle at the protein level and 

relying on mixed muscle data. 

One of the main challenges of studying skeletal muscle on an individual protein level 

is that there is a small number of high abundance proteins present in skeletal muscle 

that tend to mask the expression of the majority of other proteins by dominating the 

analytical space (Murphy et al, 2019). Challenges are also encountered with peptide-

level studies due to isoform-specific peptides being co-expressed within different 

skeletal muscle phenotypes that share high levels of sequence homology (Blaauw et 

al, 2013). The methodology presented here attempts to overcome these technical 

issues and greatly enhance the number of proteins we can detect for analysis. This is 

achieved by using the fractionation of samples into soluble and myofibrillar fractions 
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that subsequently allow us to employ separate, more optimised workflows for each 

fraction. The soluble fraction generally contains many different metabolic enzymes 

e.g. mitochondrial and glycolytic which do not tend to be expressed as multiple 

proteoforms thus allowing for a bottom-up proteomic approach combined with tandem 

mass spectrometry to quantify abundance changes and synthesis rates of individual 

proteins. Subsequently, the myofibrillar fraction that contains the contractile apparatus 

of the muscle, with proteins such as troponin and myosin that display many different 

proteoforms, position a top-down proteomic approach as a more optimised technique 

for investigation of this fraction (Burniston, 2008, 2009; Nishikawa et al, 2018.; Dowling 

et al, 2019).  

Using our refined methods of dynamic proteome profiling we are able to assess each 

muscle on an individual level and calculate protein synthesis rates between each time 

sampling point to interrogate the degree of change over time. This is important to 

establish gaining a further level of detail to ensure no acute adaptive responses are 

missed over a 30-day time course. We can report that our semi-log plot data (Figure 

2.7) is consistent with previous work (Hesketh et al, 2016) and our 2-point calculation 

methods appear consistent with our semi-log plot data (Figure 2.9). Therefore, 

validating our use of the 2-point calculation. Furthermore, Table 1 suggests a high 

level of repeatability reporting the coefficient of variation encompassing the technical 

and biological variability for SOL 10.9 ± 4.8 % and 10.6 ± 5.7 % for PLN with none of 

the proteins analysed in either muscle exceeding 20 %.  
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2.10 Conclusion 

The methodology presented here allows for the robust calculation of protein synthesis 

over a time-course with subsequent calculation of synthesis rates at intermediary 

sampling points. This allows us to establish individual protein turnover measurements 

during a time-course of muscle adaptation. In future chapters, we have employed 

established proteomic techniques to quantify abundance changes of individual 

proteins (Burniston, 2008; 2009) with robust models of adaptation e.g. chronic low-

frequency stimulation (Jarvis et al, 1996). These methods can then be coupled with 

the biosynthetic labelling technique we describe, using deuterium, that permits rapid 

equilibrium within rodents and can accurately measure incorporation into new protein 

through mass spectrometry analysis (Hesketh et al, 2016). Furthermore, we will also 

combine this with the marriage of both top-down and bottom-up proteomic analysis to 

allow a deeper investigation of skeletal muscle adaptation. Subsequently, exemplar 

data is provided to show that the calculations we use are consistent and robust 

meaning the degradation values derived from the abundance and synthesis 

calculations will be precise. 
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Chapter 3. The role of protein turnover in skeletal muscle 
adaptation induced by chronic low-frequency stimulation. 

3.1 Abstract 

The health benefits of exercise training involve adaptations to the contractile and 

metabolic properties of muscle that are underpinned by changes in protein 

abundance. Exercise is also associated with a general increase in muscle protein 

turnover, but it is not yet known how the components of protein turnover (i.e. synthesis 

and degradation) are coordinated to bring about exercise-induced changes in protein 

abundance. We have used stable isotope labelling and chronic low-frequency 

stimulation (CLFS) in vivo to investigate how the synthesis, abundance and 

degradation of individual proteins change during exercise-induced muscle adaptation.  

Four independent groups of rats (n = 3 in each), received CLFS (10 Hz, 24 h/d) and 

deuterium oxide for either 0 d, 10 d, 20 d or 30 d. At each time point the extensor 

digitorium longus (EDL) muscle was harvested from the stimulated left hindlimb (Stim) 

and non-stimulated right hindlimb (Ctrl). Proteomic techniques were used to quantify 

changes in abundance of 30 myofibrillar proteins and 47 soluble proteins. Peptide 

mass spectrometry was used to calculate protein synthesis rates, protein degradation 

was calculated from the difference between the change in abundance and synthesis 

rate. Endurance activity tended (P = 0.145) to increase the average rate of synthesis 

in mixed myofibrillar proteins from Ctrl (8.63 ± 0.26 pg/d) to Stim (10.24 ± 1.63 pg/d). 

However, the synthesis rate of mixed soluble proteins increased (P = 0.001) from Ctrl 

(43.70 ± 0.07 pg/d) to Stim (60.17 ± 0.73 pg/d).  

Protein turnover responses differ on a protein-by-protein basis regardless of protein 

function during the muscle transformation process. For example, Creatine kinase S-

type, mitochondrial (KCRS), Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 

(AT2A2) and ATP synthase subunit beta, mitochondrial (ATPB) all increase (P<0.05) 

in abundance but this is achieved in different ways.  Independent responses; being 

partially accounted for by a greater synthesis rate (KCRS), without a detectable 

change in synthesis rate (AT2A2) or being entirely accounted for by an increase in the 

rate of synthesis in Stim compared to Ctrl muscle (ATPB). The abundance of Glycogen 

phosphorylase (PYGB), Beta-enolase (ENOB) and Troponin T, fast skeletal muscle 

(TNNT3) significantly (P<0.05) decreased after CLFS. The decrease in abundance of 

ENOB was partially accounted for by a decreased synthesis rate in Stim compared to 
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Ctrl. The decrease in abundance of PYGB was entirely accounted for by a decrease 

in its rate of synthesis, whereas the abundance of TNNT3 decreased without a 

detectable change in synthesis rate.  

To gain more detailed information, individual proteoforms of key myofibrillar proteins 

were investigated. Myosin regulatory light chain 2 (MLRS) was resolved as 2 separate 

proteoforms (spot 11 and spot 12). Spot 11 significantly (P< 0.05) decreased (62 %) 

in abundance and spot 12 increased (16 %) after 30 days of CLFS. There was no 

difference in synthesis rate between Stim and Ctrl muscle for either proteoform. 

Therefore, we attribute the changes in abundance to proteoform-specific changes to 

degradation rate.  

In conclusion, we provide new evidence for selective degradation of individual proteins 

during muscle adaptation in response to CLFS. From this we can report, 50 proteins 

displayed a change in abundance in response to muscle adaptation. Of which 30 % of 

proteins were driven by synthesis, 38 % of proteins were driven by degradation and 

the remaining 32 % were driven by both synthesis and degradation. Our data suggest 

both protein synthesis and protein degradation regulate of changes in protein and 

proteoform abundance during muscle adaptation. 
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3.2 Introduction 

A physically active lifestyle and/or participation in formal exercise training are 

fundamental to the prevention of chronic diseases, including metabolic disorders e.g. 

type 2 diabetes (Knowler et al, 2002) that effect skeletal muscle. Repeated bouts of 

muscle contraction that are associated with frequent exercise represent a potent 

stimulus for the physiological and biochemical adaptation of muscle. Skeletal muscle 

demonstrates a remarkable malleability in response to contractile activity (Salmons 

and Vrbova, 1969.; Fluck and Hoppeler, 2003.; Coffey and Hawley, 2007) and 

exercise training is associated with functional changes in the expression of contractile 

and metabolic proteins in muscle (Adams et al, 1993.; Widrick et al, 2002). As such, 

when cellular homeostasis is perturbed, for instance during muscular contraction, the 

metabolic demands of the tissue are altered significantly; leading to numerous 

structural, functional and biochemical changes that ultimately impact on tissue 

phenotype (Delp and Pette, 1994). This widely accepted molecular mechanism that 

governs the adaptation to exercise training, involves a gradual alteration in protein 

content and enzyme activities within skeletal muscle. However, exactly how this 

process is coordinated, e.g. through changes to the synthesis and degradation of 

proteins, is currently unknown. This is an important area to understand given the 

extensive catalogue of health benefits the adaptation to exercise initiates.  

We have employed a robust model (Jarvis et al, 1996) of exercise adaptation (chronic 

low-frequency stimulation; CLFS) to study the complex mechanisms underpinning 

muscle adaptation. As a model, CLFS is an approach that enables the investigation of 

specific molecular events resulting in functional change of skeletal muscle. The 

artificial stimulation activates all motor units equally therefore abolishing the 

hierarchical order of motor unit recruitment associated with voluntary exercise (Pette 

and Vrbova, 1992). During CLFS, the largest, normally less active, motor units are 

activated in synchrony with the other normally more active motor units. Thus, the 

normally less active fibre types, i.e. the fast-twitch fatigable fibres, undergo profound 

adaptation when exposed to CLFS. The advantage of this method is that the 

unstimulated, contralateral muscle can be used as an intra-animal control, as unlike 

exercise, the activity is restricted to the stimulated muscle only. Therefore, the muscle 

is less influenced by other systemic factors that can occur in the body during more 

holistic methods of training. 
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Ultimately, CLFS challenges the adaptive potential of the target muscle to its limits by 

inducing transformations which exceed those promoted by any other form of increased 

contractile activity. CLFS is associated with well-established time-dependant changes 

in the molecular, structural and functional properties of fast-twitch muscle that can be 

followed from the beginning using the unstimulated, intra-animal control (Jarvis et al, 

1996). Consequently, CLFS is well positioned to offer insight to the mechanism of 

muscle plasticity of which the use is well documented. The effects of CLFS were first 

reported (Salmons and Vrbova, 1969.; Pette et al, 1973) in the EDL and TA muscle of 

the rabbit and the FDL muscle of the cat (Eerbeek et al, 1984). These investigations 

showed that a transformation of a fast into a slow-twitch muscle can be brought about 

by a stimulation frequency pattern which is normally delivered to slow muscle. 

Continuous stimulation at 10 Hz is sufficient to convert fast-twitch muscles into slower 

contracting more fatigue resistant muscle that exhibits a greater time to peak twitch 

tension and half-relaxation time (Brown et al, 1976). Resistance to fatigue is one of 

the most pronounced changes in fast-twitch chronically stimulated muscle (Kwong and 

Vrbova, 1981.; Pette and Simoneau, 1990) and consistent with the changes in the 

velocity of muscle contraction, increases in the twitch to tetanus ratio of stimulated 

muscle are also observed (Salmons and Sreter, 1979.; Brown et al, 1989), indicating 

the duration of the active state of the muscle is prolonged.  

Time course investigations of the response of rabbit fast-twitch muscle to CLFS 

(Froemming et al, 2000) report changes in the physiological properties of the muscle 

are detectable as early as 2 to 4 days after the onset of stimulation. The increase in 

time to peak tension induced by CLFS has two distinct phases. During the first two 

weeks of CLFS there is a rapid increase in time to peak tension, which reaches values 

approximately 1.8-fold greater than the unstimulated contralateral (control) muscle. 

More prolonged periods of stimulation (e.g. 20 weeks; Salmons and Sreter, 1976) lead 

to further increases in time to peak tension, but the rate of change is less. The early 

changes in time to peak tension and half-relaxation time are associated with changes 

in the release and sequestration of Ca
2+

 by the sarcoplasmic reticulum (Heilmann and 

Pette, 1979). Whereas, mechanisms other than Ca
2+

 handling seem responsible for 

the later changes in muscle contractile properties, including an increase in type I fibres 

(Pette et al, 1976).  The appearance of type I fibres and the associated expression of 

slow myosin heavy chain isoforms affect the speed of contraction (Brown et al, 1983) 

and give the fast-twitch muscle physiological and morphological characteristics that 
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are more similar to a slow-twitch phenotype. In rabbit TA that is exposed to 12 h/d or 

continuous (24 h/d) CLFS (10 Hz) the predominant fast isoform MyHC IIx/d is down 

regulated and there is a concomitant up-regulation of the slower MyHC IIa that is latter 

replaced with MyHC I (Peuker et al, 1999). These transitions in MyHC expression are 

accompanied by a complementary fast-to-slow transition of myosin light chain 

isoforms (Leeuw and Pette, 1996), Troponin T (Hartner et al, 1989), Troponin I and C 

(Hartner et al, 1990). Coinciding with the changes in myofibrillar protein isoforms there 

is a transition from fast to slow isoforms of sarco-endoplasmic reticulum Ca
2+

-ATPase 

(SERCA) and calsequestrin (Ohlendieck et al, 1999). Concomitant with the contractile 

changes there are increases in abundance of enzymes related to aerobic-oxidative 

metabolism (Pette and Simoneau, 1990). A linear correlation has been demonstrated 

(Reichmann et al, 1985) between citrate synthase activity and muscle aerobic-

oxidative capacity. Therefore, elevations in citrate synthase have been used as a 

biomarker for the enhanced resistance to fatigue in the CLFS fast-twitch muscles of 

both the rat and rabbit (Green and Pette, 1997). The use of biomarkers like citrate 

synthase, permit certain strengths to analysis such as allowing for changes to be 

monitored easily and objectively. However, this is just one enzyme associated with the 

aerobic system, Burniston et al, (2014) reports a wide distribution of metabolic 

enzymes in muscle fibres that seemingly have the same fibre type and report protein 

abundance to span over four orders of magnitude. This alone suggests that reliance 

on a single biomarker is not going to enable us to pick apart complex proteomic 

changes to answers questions like how different proteins change in response to 

muscle adaptation. 

Donoghue et al, (2005) reports proteomic analysis of CLFS rabbit fast-twitch TA and 

used techniques similar to our current work, including two dimensional-gel 

electrophoresis (2DGE) and mass spectrometry. Changes to more than 21 different 

proteins were reported (Donoghue et al, 2005), including isoform switches in Myosin 

heavy and light chains, troponin T and SERCA. The fast isoforms of troponin T and 

myosin light chain 2 were drastically down regulated (5-fold and 3-fold respectively) 

whilst their slow-twitch counterparts exhibited an increased expression (6-fold and 5-

fold respectively) (Donoghue et al, 2005). However, the mechanisms underpinning 

these changes in abundance were not investigated. Mayne et al, (1993) established 

the CLFS model of muscle transformation in vivo in rat using 10 Hz of continuous 

stimulation of the TA and EDL muscles and demonstrated shifts from the fast to slow 
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myosin heavy chain isoforms. Jarvis et al, (1996) reported CLFS of rat EDL muscle in 

vivo and demonstrated that 10 Hz is optimal for muscle transformation, evidenced by 

a marked slowing of the isometric twitch and maximum shortening velocity. 

Accordingly, histochemical analysis of the stimulated muscles revealed a substantial 

increase in the type I fibre population at the expense of the type IIB/D fibres (Jarvis et 

al, 1996). Key to all of these findings is the consistent correlation with changes in 

muscle mass and the increased physiological properties of slow-twitch muscle. 

Chronic low-frequency stimulation induced changes are strongly correlated with a 

decline in muscle mass of the target muscle with a decrease of ~50 % typical of 

transformed muscle. Jarvis et al, (1996) recorded a 49 % decrease in TA muscle mass 

and a 58 % decrease in EDL muscle mass compared to unstimulated control muscles, 

in the rat over the 8 week stimulation period. Similar work has also demonstrated that 

fibre damage is not an inevitable consequence of electrical stimulation as it is closely 

related to the pattern and frequency of the stimulation (Lexell et al, 1992). 

Furthermore, degenerative processes have only been observed in the rabbit (Lexell et 

al, 1992.; Maier et al, 1986) and not in the rat (Delp and Pette, 1994.; Putman et al, 

1999). Investigations into CLFS induced damage in rat EDL muscle has demonstrated 

that at frequencies of 10 and 20 Hz for periods up to 2 months of continuous 

stimulation there is no significant damage to the muscle (Jarvis et al, 1996). However, 

this decline in muscle mass correlates with a change to a smaller cross sectional area 

of the slow-twitch muscle fibres which subsequently decrease the peak force output 

and increase the contraction time of the muscle, all expected changes for the CLFS 

model, indicating the successful transformation of the target muscle. Thus, providing 

a robust link between the physiological and biochemical change of a muscle to 

measurable changes in muscle morphology. The CLFS model has been instrumental 

to the development of knowledge regarding the physiological and biochemical 

properties of skeletal muscle and the processes of muscle adaptation. It is well 

documented that CLFS induces overt changes in muscle function, with elevations in 

aerobic-oxidative capacity, decreased fibre calibre, switches in isoform expression 

patterns all established biochemical hallmarks of skeletal muscle transformation 

(Donoghue et al, 2007). However, it is the constituent proteins that are the functional 

component of the muscle and CLFS has been shown to induces changes in these 

muscle proteins accordingly (Donoghue 2005). Investigations that attempt to quantify 

individual proteins, primarily investigate solely protein abundance. However, the 
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abundance of a protein is the result of the net balance between its rate of synthesis 

versus its rate of degradation, but until very recently it was not possible to investigate 

the abundance, synthesis and degradation of proteins. 

The processes underlying muscle adaptation centre on this balance of synthesis and 

degradation of individual proteins. Our current work is driven by an interest in the 

adaptive process of skeletal muscle and specifically by the contributions of synthesis 

and degradation to changes in the abundance of individual proteins in response to 

exercise. We employ CLFS to ensure robust changes in individual protein abundance 

occur over the experimental period. Proteome-wide technologies to investigate the 

rates of individual protein degradation in biological systems in vivo are lacking. The 

majority of the research in this field reports either protein abundance or protein 

synthesis in isolation and, therefore, misses part of this balance equation. Our lab has 

recently established a robust method for measuring the synthesis and abundance of 

individual proteins (Burniston and Chen, 2019). Our unique method nicknamed 

“Dynamic Proteome Profiling”, can give insight to protein degradation by calculating 

the contribution of synthesis to changes in protein abundance. The methodology gives 

us the power to calculate protein turnover on an individual protein scale, allowing 

access to new information on how muscle adaptation is orchestrated. It has been 

proposed that the net loss of protein abundance in response to CLFS is brought about 

by a wholesale increase in protein degradation, whilst observing a brake in protein 

synthesis (Loughna et al, 1986). Herein, we present a highly novel data set that 

challenges this paradigm, demonstrating that the mechanism of how protein 

abundance is regulated during the adaptive process differs on a protein-to-protein 

basis. Indicating that degradation not only has a regulatory role in skeletal muscle but 

also contributes to the pattern of change amongst proteoforms, which occur as part of 

the fast-to-slow transformation of skeletal muscle.  

 

Objectives 
 
Objective of chapter – To investigate how individual protein responses coordinate 

the adaptive response of the muscle to an endurance-type stimulus. 

 

Specific Aim 1: To clarify quantitative changes of specific protein isoforms induced 

by CLFS to indicate the transformation from a fast-twitch phenotype to a more 
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oxidative phenotype. 

 

Specific Aim 2: To investigate the time course of changes to individual protein 

turnover in both myofibrillar and soluble fraction proteins in response to CLFS.  

 

Specific Aim 3: To identify proteoform-specific changes during muscle adaptation 

induced by CLFS and measure protein turnover to investigate how such changes are 

coordinated. 

 

Specific Aim 4: To inform what is the dominant driver of change during CLFS induced 

skeletal muscle adaptation i.e. the percentage of individual proteins that where their 

changes in abundance is i) driven by synthesis, ii) driven by degradation, or iii) driven 

by a combination of both synthesis and degradation. 

 

3.3 Methods 

Experimental procedures were conducted under the British Home Office Animals 

(Scientific Procedures) Act 1986. Male Wistar rats aged 9 months old, 500 ± 69 g body 

weight and bred in-house in a conventional colony, housed in controlled conditions of 

20 °C, 45 % relative humidity, and a 12 h light (0600–1800 hours) and 12 h dark cycle, 

with water and food available ad libitum. All aspects of animal husbandry were 

conducted by the LJMU animal facility staff. 

Animals were assigned to four groups (n = 3 in each), including a sham-operated 

control group and three groups that received a programmed stimulation pattern (24 h 

at 10 Hz) of chronic low-frequency stimulation (CLFS) of the left hindlimb dorsiflexor 

muscles, as described previously by our group (Jarvis et al, 1996). Surgical 

procedures, anaesthetic protocol and the electrical stimulation model of CLFS were 

performed by Prof. Jonathan Jarvis and Dr. Hazel Sutherland as part of a wider 

project. Work conducted within this thesis focused solely on aspects associated with 

dynamic proteome profiling of muscle samples. 

Surgery was performed in full aseptic precautions and the animals were anaesthetised 

using a gaseous mixture of isoflurane and O2.  An initial concentration of 4 % isoflurane 

was used for induction of anaesthesia and was then adjusted to levels of 1-2 % to 

maintain an adequate surgical plane of anaesthesia. Buprenorphine (Temgesic, 
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Indivior, Slough, UK) at a dose of 0.05 mg/kg
-1

 body mass, was administered pre-

surgery for analgesia. Implantable stimulators were used according to Salmons & 

Jarvis, (1991) with minor modifications, fine multi-stranded stainless steel leads 

(Cooner Wire Assoc., Chatsworth, CA) were taken subcutaneously from the flank to 

just proximal to the knee on the left hind limb, the electrodes were fixed in close 

relationship to, but not in physical contact with, the common peroneal nerve. The body 

of the stimulator was situated in the abdominal cavity and held in place by suturing an 

integral dacron mesh tag into the closing of the abdominal wall. The post-operative 

recovery of the animals was monitored daily for 1 week prior to commencing the 

stimulation protocol. The 0-day experimental time point represents the sham-operated 

control group that were implanted with stimulators and then killed after the 1 week 

recovery period without being turned on. The remaining (10 d, 20 d and 30 d) 

experimental groups of animals had the device activated remotely via an optical link 

to a phototransistor in the device (Brown and Salmons, 1981). This initiated stimulation 

from day zero at a continuous 10 Hz of the fast dorsiflexor muscles of the anterior 

compartment of the hindlimb, including the Extensor digitorium longus (EDL). 

Simultaneously, deuterium oxide (
2
H2O; Sigma-Aldrich, St. Louis, MO) administration 

was initiated by an intraperitoneal loading injection of 10 µL.g 99 % 
2
H2O-saline, and 

then maintained by administration of 5 % (v/v) 
2
H2O in the drinking water available to 

the rats, which was refreshed daily.  
At 10 d, 20 d and 30 d after the start of stimulation and deuterium oxide consumption, 

animals were killed humanely in a rising concentration of CO2 followed by cervical 

dislocation. Plasma samples were obtained by cardiac puncture immediately after 

death to determine 
2
H2O enrichment and EDL muscles, from the left stimulated limb 

(Stim) and the right non-stimulated limb (Ctrl), were isolated. Each muscle was 

cleaned of fat and connective tissue then weighed before being frozen in liquid 

nitrogen and stored at -80 °C pending further analysis. 

Deuterium enrichment of the body water of each animal (n = 12) was determined by 

GC-MS analysis of 
2
H enrichment in plasma samples against external standards. Full 

methods are described in Chapter 2, section 2.4.2. Muscle homogenates were 

fractionated into the myofibrillar, contractile proteins and soluble fraction proteins 

according to Chapter 2, section 2.4.3. The subsequent analysis of the myofibrillar 

proteins were analysed via top-down proteomic methods using the gel-based 

separation method, 2-dimensional gel electrophoresis (2DGE) to isolate individual 
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proteoforms and to quantify abundance changes. Individual proteins were identified 

from peptide mass fingerprinting and synthesis measurements were derived from 

MALDI mass spectrometry, detailed in its entirety in Chapter 2.5. 

The analysis of the proteins in the soluble fraction was achieved by a bottom-up 

proteomic approach with full details described in Chapter 2.6. Here, protein samples 

underwent in-solution digest and were identified and abundance quantified via LC-

MS/MS label free quantitation. MS data were normalised by an inter-sample 

abundance ratio, and the differences in relative protein abundance were quantified 

using nonconflicting peptides only. MS/MS spectra were exported into Mascot and 

individual proteins were identified, from which protein synthesis measurements were 

calculated based on the mass isotopomer distribution of specific peptides (Chapter 

2.7).  

Two spots (number 11 and 12) of similar Mr but different pI were identified as skeletal 

muscle myosin regulatory light chain (MLRS) and may indicate different post-

translational states. To investigate post-translational modification of MLRS, tryptic 

peptides were analysed by LC-MS/MS. High-energy fragment mass spectra were 

created using a collision-induced dissociation with helium as the collision gas. MS/MS 

ions lists were searched against the Swiss-Prot database using error tolerant 

searches.   

Fractional synthesis rates (FSR) were derived for all identified myofibrillar and soluble 

proteins using the methods detailed in Chapter 2.7. Synthesis rates were calculated 

in both control (right, non-stimulated) and stimulated (left) muscles in two primary 

ways. All proteins used the fitting of the mass isotopomer data collected at each of the 

4 experimental time-points using a semi-log plot. In addition, data were fitted using a 

2-point non-linear first-order equation in order to calculate FSR over intermediate time 

points e.g. 0 d – 10 d, 10 d – 20 d, 20 d – 30 d. These calculations are achieved by 

first calculating the rate of decay of the molar fraction of the m0 mass isotopomer 

across 0 d, 10 d, 20 d and 30 d time points by using semi-log plots. The rate constant 

(k) is then divided by the number (n) of exchangeable hydrogen sites reported in 

standard tables (Commerford et al, 1983) and finally by the level of precursor 

enrichment (p) measured by GC-MS analysis of plasma samples. Protein FSR is then 

reported as the median of the peptide values assigned to each protein or proteoform. 

The individual rates for fractional degradation rate (FDR) were also calculated for each 

protein in the myofibrillar and soluble fractions. This was achieved by calculating the 
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difference between the rate of synthesis and the rate of change in protein abundance 

(Full details in Chapter 2, section 2.7.2). 

From the FSR and FDR calculations absolute protein turnover was calculated for each 

individual protein in the myofibrillar and soluble fraction (Full calculation details in 

Chapter 2, section 2.7.3). Absolute synthesis rates were calculated by first multiplying 

the wet weight of the EDL by the total amount of protein extracted from the EDL and 

then multiplying by the rate of change in relative protein abundance for each individual 

protein. 

Statistical analysis of myofibrillar protein abundance was conducted on normalised 

spot data from 2D-gels. Normalised protein abundance from LC-MS label-free 

quantitation were used for soluble protein abundance. Relative synthesis rates were 

analysed as percent per day (%/d) and absolute synthesis rates were analysed as 

pmol/d in the soluble fraction proteins and as mg/d in the myofibrillar fraction proteins, 

all values are the average of the analysed peptides for each protein and subsequent 

analysis is at the protein level. All statistical testing was performed on biological 

replicates (n = 3 in each group) conducted using SPSS (SPSS, v23, Chicago, USA) 

and the statistical significance level was set at P< 0.05. To assess the degree of 

consistency across control situations (right limb, non-stimulated muscle) for all time 

points (10 d, 20 d and 30 d) and sham operated animals (0 d) a one-way ANOVA was 

used to analyse protein abundance, synthesis and degradation data. To assess the 

differences between the non-stimulated control limb (right) and the stimulated limb 

(left), paired T-tests were conducted to compare stimulated and non-stimulated limbs 

at each experimental time point (0 d, 10 d, 20 d and 30 d) for protein abundance, 

synthesis and degradation rates at the individual protein level. To control the false-

discovery rate, P-value distributions were used to calculate Q values and a criterion 

false-discovery rate of <1 % was set. This statistical approach considers the biological 

variation across each protein and, therefore, is more sophisticated than arbitrarily 

implementing a threshold on the basis of fold change. 
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3.4 Results 

At the beginning of the experiment (0 days) the wet weight of extensor digitorium 

longus (EDL) was not different between the sham operated left limb (177.0 ± 12 mg) 

and the non-operated right limb (195.6 ± 4 mg). There was also no change in EDL 

mass of the non-stimulated right limb at any of the experimental time points 

encompassing the 30 days of unilateral chronic low-frequency stimulation (CLFS). In 

response to CLFS, EDL mass of the left, stimulated limb declined by 16 % after 10 

days, 40 % after 20 days and 50 % after 30 days, consistent with our previous work 

(Jarvis, 1993). The difference in mass between the left, stimulated (Stim), and right 

contralateral non-stimulated (Ctrl) EDL was statistically significant (P<0.05) after 20 

days and 30 days of chronic endurance activity (Figure 3.1). 

 

 

Figure 3.1. Time course of changes in muscle wet weight.  

Wet weight (mg) of extensor digitorium longus (EDL) in non-stimulated right (broken 

line) and contralateral stimulated left (solid line) limbs after unilateral chronic low-

frequency (10 Hz) stimulation in vivo. Data are presented as mean ± SD from 

independent groups of n = 3 rats at each time point. *P<0.05 statistically significant 

difference between the right and left limbs analysed by paired t-test at each time point. 

2D Gel analysis of the myofibrillar fraction resolved 43 protein spots in each of the 24 

biological samples. Mass spectra were recorded from in-gel digests of each spot in 
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each biological replicate (approximately 1000 gel spots analysed). After filtering based 

on quality control criteria, a total of 30 spots had complete data from 5 peptides per 

protein that were present in all samples. In addition, a further 8 spots were detected 

only in samples that had received CLFS for 20 days or greater. Figure 3.2, illustrates 

the gel position of the 38 spots that satisfied the requirements for protein synthesis 

calculations, the identity of each gel spot is reported in Table 3.1. The total number of 

non-redundant protein identifications was 23 and 10 proteins were present in multiple 

spots and therefore represent different proteoforms. The reproducibility of protein 

abundance measurements was good (coefficient of variation 2.7 ± 0.06 %, n = 3 

biological replicates) and the abundance of each proteoform in Ctrl and Stim muscles 

is reported in supplementary Table S3.  

 

 

Figure 3.2. Separation of myofibrillar proteins by 2DGE. 

Representative two-dimensional gel electrophoresis map of EDL myofibrillar proteins 

after 30 days of chronic low-frequency stimulation in vivo. The gel has been annotated 

with common spots across both conditions (stimulated and non-stimulated control) n 

= 30 (annotated 1-30) and spots unique to the stimulated samples only n = 8 

(annotated 31-38). Spot annotations are consistent with the protein identities in Table 
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3.1. 

Table 3.1. Myofibrillar protein identifications. 

 

Spot 
number 

Protein name/ 
Description 

UniProt 
name 

Mr pI Mows
e 

score 

Sequence 
coverage 

1 Alpha-actinin-1 ACTN1 102960 5.23 133 15 % 

2 Plectin PLEC 533540 5.61 94 4 % 

3 Desmin DESM 53457 5.21 72 24 % 

4 ATP synthase 

subunit beta 

ATPB 56354 5.08 78 23 % 

5 Actin, alpha skeletal 

muscle 

ACTS/A

CTC 

42051 5.29 71 24 % 

6 Tropomyosin alpha-

4 

TPM4 28510 4.71 119 37 % 

7 Tropomyosin beta 

chain 

TPM2 32837 4.71 93 34% 

8 Myosin light chain 1 MYL1 20680 5.17 76 44 % 

9 Myosin light chain 1 MYL1 20680 5.42 81 44 % 

10 Myosin light chain 1 MYL1 20680 5.73 72 42 % 

11 Myosin regulatory 

light chain 2 

MLRS 18969 4.24 100 42 % 

12 Myosin regulatory 

light chain 2 

MLRS 18969 4.76 97 43 % 

13 Beta-enolase ENOB 47014 7.33 88 31 % 

14 Beta-enolase ENOB 47014 7.63 84 31 % 

15 ATP synthase 

subunit alpha 

ATPA 59754 8.66 113 30 % 

16 Creatine kinase M-

type 

KCRM 43045 7.29 96 24 % 

17 Creatine kinase M-

type 

KCRM 43045 7.74 98 26 % 

18 Creatine kinase S-

type 

KCRS 47385 8.20 81 26 % 

19 Creatine kinase S-

type 

KCRS 47385 8.22 76 28 % 

20 Annexin A4 ANXA4 35849 9.43 61 22 % 

21 Glyceraldehyde-3-

phosphate 

dehydrogenase 

G3P 35828 8.71 67 20 % 

22 Glyceraldehyde-3-

phosphate 

dehydrogenase 

G3P 35828 8.70 63 18 % 

23 Troponin I, fast TNNI2 21328 9.05 93 36 % 

24 Troponin I, slow TNNI1 21724 7.87 117 34 % 

25 Troponin T, fast TNNT3 30750 7.79 78 21 % 

26 Troponin T, fast TNNT3 30750 7.11 84 22 % 

27 Troponin T, slow TNNT1 31215 6.19 70 24 % 
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28 Troponin T, fast TNNT3 30750 5.97 79 23 % 

29 Carbonic anhydrase 

3 

CAH3 29431 8.71 94 31 % 

30 Carbonic anhydrase 

3 

CAH3 29431 8.74 89 30 % 

31 Myosin regulatory 

light chain 2, 

ventricular/cardiac 

muscle isoform 

MLRV 18880 4.92 103 27 % 

32 Creatine kinase S-

type 

KCRS 47385 8.04 83 26 % 

33 Troponin T, slow TNNT1 31215 5.86 70 22 % 

34 Troponin T, slow TNNT1 31215 5.91 67 22 % 

35 Alpha-crystallin B 

chain 

CRYAB 20089 6.33 88 32 % 

36 Myosin light chain 3 MYL3 22156 5.21 77 28 % 

37 Myosin light chain 3 MYL3 22156 5.53 82 25 % 

38 Myosin light chain 3 MYL3 22156 5.72 73 27 % 

 

Spot number refers to the different proteoforms resolved by 2DGE and corresponds 

to the 2DGE image in Figure 3.2. Protein name relates to the Uni-Prot database, 

entries returned using the MASCOT search engine. A mowse score greater than 55 

denotes a confident (P<0.05) identification by peptide mass fingerprinting. Relative 

molecular mass (Mr) are from protein database entry, isoelectric point (pI) is observed 

from position on experimental 2DGE images. The amino acid sequence of peptides 

and residue positions (start and end) are available in supplementary information ‘Table 

S1’. 

 

At baseline (0-day time point) there was no difference in the abundance of myofibrillar 

proteins between Ctrl and Stim muscle. Accordingly, protein abundances were highly 

correlated (R
2
 = 0.97521; Figure 3.3) between Ctrl and Stim muscle. Protein 

abundances in Ctrl muscles did not change during the 30-d experimental period (Fig. 

3.3, upper panels). In contrast, the level of correlation (R
2
) deteriorated from 0.67619 

at day 10 to 0.50474 at day 30 (Figure 3.3) between baseline and Stim muscles. 

Protein abundances from each of the Ctrl were also assessed by one-way ANOVA of 

spot volumes in 0 d, 10 d, 20 d and 30 d and no differences (P<0.05) were found. 

Relative fold-change in abundance, not taking into account the changing muscle 

mass, were calculated between the Ctrl and Stim EDL for each myofibrillar proteoform 

(Supplementary Table S3). Similar fold-change data were also calculated in absolute 

terms (Supplementary Table S3). Both methods of calculation gave similar rank orders 
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of change and equivalent outcomes in terms of the pattern of change for each 

myofibrillar proteoform (Supplementary Table S3). Twelve myofibrillar proteoforms 

exhibited significant (P<0.05) differences in abundance after 10 days of stimulation. 

After 20 days of stimulation the abundance of a further 3 proteins became significantly 

different, and by the end of the experiment period (30 d) there were 16 significant 

differences in protein abundance between Ctrl and Stim EDL (Figure 3.4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Correlation of relative myofibrillar protein abundance between stimulated 

and non-stimulated EDL. 

Correlation matrix of normalised myofibrillar relative protein abundance (proteins 1-30 

present in both stimulated and non-stimulated EDL at each time point). Correlation 

between (A) left and right limb of 0-day sham control. (B) Upper panels; 0-day sham 

control and either 10 d, 20 d or 30 d of right contralateral control limb. Lower panels; 

right contralateral control limb and chronic low-frequency stimulation in the left limb for 

either 10 d, 20 d or 30d. 
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Figure 3.4. Changes in absolute abundance for the myofibrillar proteins between control and stimulated EDL muscle.  

Each data point represents an individual protein. Proteins that changed significantly (P<0.05) determined via paired t-tests between 

control and stimulated muscle are labelled by their UniProt I.D. name returned using MASCOT search engine. Proteins are described 

as increasing, decreasing or not changing in absolute protein abundance calculated by the fold change from non-stimulated control 

muscle to stimulated muscle for the myofibrillar proteins only after 10 days, 20 days and 30 days of CLFS.
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The changes in myofibrillar protein abundance are consistent with a shift toward a 

more slow-twitch phenotype in the stimulated EDL. The slow isoform of myosin 

essential light chain (MYL3) was absent in Ctrl EDL but was detected after 20 days of 

CLFS. The fast isoform of troponin T (TNNT3) was detected as three separate 

proteoforms (Table 3.1), these three proteoforms (spots 25, 26, 28) decreased by -

12.1 ± 1.3-fold after 30 days of CLFS. Conversely a single proteoform (spot 27) of the 

slow-twitch troponin T isoform (TNNT1) increased +7.7-fold in Stim muscle and two 

new proteoforms of troponin T slow (spots 33, 34) were detected after 20 days of 

CLFS.  

There was no change in the absolute rate of synthesis in the non-stimulated right limb 

at any of the experimental time points encompassing the 30 days of CLFS. In response 

to CLFS, absolute rate of synthesis (ng/d) of the left, stimulated limb declined by 18 % 

after 10 days, 40 % after 20 days and 50 % after 30 days, consistent with the changes 

in muscle mass (Figure 3.1). The difference in absolute synthesis between Stim, and 

Ctrl EDL was statistically significant (P<0.05) after 10 days, 20 days and 30 days of 

CLFS (Figure 3.5).  
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Figure 3.5. Absolute protein synthesis rates of stimulated and non-stimulated EDL.  
Synthesis data (ng/d) displayed as mean ± SD (n = 3 per group) in 10-day intervals 

over 30 days of unilateral chronic stimulation (10 Hz) in vivo. Protein synthesis rates 

(ng/d) calculated from total protein content of the EDL in the non-stimulated control 

limb (broken line) and contralateral stimulated left (solid line). *P<0.05 statistically 

significant difference between the right and left limbs analysed by paired t-test at each 

time point. 
 

In the Ctrl muscle, the 30 individual myofibrillar proteins spanned a 40-fold range in 

fractional synthesis rate (FSR), the protein with the highest FSR was spot 29 (CAH3) 

17.02 ± 5.01 %/d and the protein with the lowest FSR was spot 2 (PLEC) 0.43 ± 0.15 

%/d. This gave an average rate of mixed myofibrillar protein FSR of 4.70 ± 0.3 %/d in 

the Ctrl. CLFS did not increase FSR, with spot 29 (CAH3) the fastest 19.81 ± 6.88 %/d 

and spot 28 (TNNT3) with the slowest 0.72 ± 0.44 FSR. In the Stim muscle, the 30 

myofibrillar proteins still covered a broad range (28-fold) in individual FSR with the 

average rate of relative protein synthesis in the Stim of mixed myofibrillar proteins of 

4.97 ± 0.1 %/d. The average absolute synthesis rate (ASR) of mixed myofibrillar 

proteins in Ctrl muscle was 8.63 ± 0.26 pg/d and there was a broad distribution of 

synthesis rates (Table S4) amongst individual proteoforms, from 0.35 ± 1.06 pg/d (spot 

20; ANXA4) to 76.08 ± 9.95 pg/d (spot 6; TPM4). Endurance activity tended (P = 
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0.145) to increase the average rate of synthesis (10.24 ± 1.63 pg/d) of mixed 

myofibrillar proteins, whilst the effect of stimulation on the absolute synthesis rate of 

individual proteoforms was statistically more robust. Twelve myofibrillar proteoforms 

exhibited significant (P<0.05) differences in synthesis rate between Ctrl and Stim 

muscle. The greatest change in absolute synthesis rate was, spot 4: ATP synthase 

subunit beta (ATPB), which increased (P = 0.001) from 22.44 ± 1.55 pg/d to 40.02 ± 

2.09 pg/d after 30 days of CLFS (Table S4). This increase in synthesis was also 

matched by a 6.2-fold increase (P = 0.016) in abundance between Ctrl to Stim muscle.  

In summary, top-down analysis of myofibrillar proteoforms revealed that a total of 16 

proteins responded to CLFS by changing in abundance significantly (P< 0.05). In total, 

7 increased in abundance and 9 decreased in abundance. These changes in 

abundance were associated with 6 different patterns of regulation in individual protein 

turnover that are summarised in Figure 3.6 and illustrated in further detail in Figures 

3.7 and 3.8. 
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Figure 3.6. Contributions of synthesis and degradation to changes in abundance of 

myofibrillar proteins. 

Mean protein turnover data is shown as absolute values for all myofibrillar proteins 

that exhibit a significant (P<0.05) change in abundance from the control muscle to the 

30-d stimulated muscle. (A) Venn diagram displays the number of myofibrillar proteins 

that show different responses in protein turnover: increases (­), decreases (¯) or no 

change («) for synthesis and degradation in order to change their net abundance 

after 30 days of stimulation. (B) Box and whisker plot of data from proteins displayed 

panel A. The left panel shows the range of synthesis and degradation rates in 

picograms per day for the 30-d stimulated muscle only. The box and whisker plot on 
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the right shows the range of synthesis and degradation rates in picograms per day for 

the control muscle only. 

 

In the myofibrillar fraction, 7 proteins increased, and 9 proteins decreased in 

abundance after CLFS. The increase in abundance of ATPB (spot 4), TNNT1 (spot 

27) and CAH3 (spot 30) was entirely accounted for by the greater rate of synthesis in 

Stim compared to Ctrl muscle. The increase in abundance of KCRS (spot 19), TNNI1 

(spot 24) and CAH3 (spot 29) was partially accounted for by the greater synthesis rate, 

whereas ACTN1 (spot 1) became more abundant in Stim muscle without a detectable 

change in synthesis (Figure 3.7). The decrease in abundance of TNNI2 (spot 23) was 

entirely accounted for by a decrease in the rate of synthesis in Stim compared to Ctrl 

muscle. The decrease in abundance of ENOB (spot 14) and TNNT3 (spot 26 and 28) 

was partially accounted for by a decreased synthesis rate, whereas MYL1 (spot 8), 

MLRS (spot 11), G3P (spot 21 and 22) and TNNT3 (spot 25) became less abundant 

in Stim muscle without a detectable change in synthesis (Figure 3.8). 
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Figure 3.7. Protein turnover responses of myofibrillar proteins that increased in 

abundance. 

Mean protein turnover data is shown in absolute terms (pg/d) for myofibrillar proteins 

that exhibit a significant (P<0.05) increase in abundance between the control and 

stimulated muscle at the 30-d time point. (A) Venn diagram displays the number of 

myofibrillar proteins that show different responses in protein turnover: increases (­), 

decreases (¯) or no change («) for synthesis and degradation in order to increase 

their net abundance after 30 days of stimulation. (B) Uni-Prot name relates to the 

protein I.D. using the Uni-Prot database, entries returned using the MASCOT search 

engine (number relates to the spot number in Figure 3.2). The response is described 

for both synthesis and degradation with significance level (P-value) for each protein 

which corresponds with the Venn diagram in panel A. (C) Summary of proteins 

identified in panel B, grouped and colour coded by their protein turnover responses. 
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Green text in panel B represent data in green in panel C etc. Data are displayed for 

absolute synthesis and degradation in picograms per day as mean ± SD for each 

collective group (n = 3). The light-coloured bars represent the 30-d stimulated muscle 

and the darker coloured bars represent the control muscle. 

 

 

Figure 3.8. Protein turnover responses of myofibrillar proteins that decreased in 

abundance. 

Mean protein turnover data is shown in absolute terms (pg/d) for myofibrillar proteins 

that exhibit a significant (P<0.05) decrease in abundance between the control and 

stimulated muscle at the 30-d time point. (A) Venn diagram displays the number of 

myofibrillar proteins that show different responses in protein turnover: increases (­), 
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decreases (¯) or no change («) for synthesis and degradation in order to decrease 

their net abundance after 30 days of stimulation. (B) Uni-Prot name relates to the 

protein I.D. using the Uni-Prot database, entries returned using the MASCOT search 

engine (number relates to the spot number in Figure 3.2). The response is described 

for both synthesis and degradation with significance level (P-value) for each protein 

which corresponds with the Venn diagram in panel A. (C) Summary of proteins 

identified in panel B, grouped and colour coded by their protein turnover responses. 

Green text in panel B represent data in green in panel C etc. Data is displayed for 

absolute synthesis and degradation in picograms per day as mean ± SD for each 

collective group (n = 3). The light-coloured bars represent the 30-d stimulated muscle 

and the darker coloured bars represent the control muscle. 

 

Figure 3.9 illustrates absolute synthesis and abundance data for myosin regulatory 

light chain (MLRS) proteoforms (spots 11 and 12) calculated in 10-day intervals. In 

Ctrl muscle, there was no significant change (P = 0.69 ± 0.02) in abundance of either 

proteoform of MLRS (spot 11 and 12) at any of the experimental time points. In Stim 

muscle, the absolute abundance of spot 11 decreased (-5.5 ± 0.8-fold change, P = 

0.001) after 10 days, (-6.0 ± 1.3-fold change, P = 0.018) after 20 days and (-6.6 ± 2.9-

fold change, P = 0.022) after 30 days of stimulation. However, the absolute synthesis 

of MLRS spot 11 did not change (P = 0.472) in response to stimulation, and was 7.52 

± 1.34 pg/d in Stim and 9.28 ± 3.06 pg/d in Ctrl (calculated using semi-log plot of all 4 

data points). Absolute synthesis (Stim and Ctrl, respectively) calculated using the 2-

point method was 6.11 ± 2.38; 5.93 ± 1.07 pg/d at 0-10 d, 4.76 ± 1.33; 4.33 ± 0.62 

pg/d at 10-20 d and 5.58 ± 1.92; 4.41 ± 1.89 pg/d at 20-30 days.  

This response was specific to the spot 11 proteoform. The proteoform of MLRS in spot 

12 tended (P = 0.100) to exhibit the opposite response to stimulation and increased in 

abundance by 0.8 ± 1.6-fold change over the 30-day stimulation period. The rate of 

synthesis (Ctrl: 15.1 ± 1.6 pg/d and Stim: 10.26 ± 5.3 pg/d) of MLRS proteoform 12 

was not different (P = 0.083) between Ctrl and Stim muscles.  
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Figure 3.9. Changes in Myosin regulatory light chain (MLRS) proteoform distribution. 

Abundance and protein turnover of spots 11 and 12, in the stimulated (L) and non-

stimulated control (R) limb over 30 days of chronic low-frequency (10 Hz) stimulation 

in vivo.  

(Ai) 3D representations of spot volumes (abundance) presented for spot 11 and 12 in 

control and stimulated samples. Spot numbers correspond to Figure 3.2 and Table 

3.1. (Aii) The normalised volume (AU) of spot 11 (Mr, ~19 kDa, pI ~4.2) was 

significantly (P< 0.05) less after 30 days of stimulation; whist an increase (NS) was 

observed in the abundance of neighbouring spot 12 (Mr, ~19 kDa, pI ~4.7) in response 

to 30 days of stimulation. Data presented as mean ± SD, dark green bars represent 

the stimulated muscle and dark blue bars represent the control muscle. (B, C) All data 

is displayed as mean ± SD in 10-day intervals over 30 days of chronic stimulation. 

Each 10-day interval corresponds to an independent group of rats (n = 3). (Bi, Ci) The 

lines represent percent changes in abundance, the dark green lines represent the 

stimulated muscle and the dark blue lines represent non-stimulated control muscle. 

(Bii, Cii) Bars represent absolute protein synthesis and degradation rates in picograms 

per day. (B) Data for the most acidic proteoform of MLRS (spot 11). Protein synthesis 
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for the stimulated limb (light green bars) shows no change (NS) from 0 days – 30 days 

of stimulation when compared to the non-stimulated limb (light blue bars). Protein 

degradation shows a significant (P<0.05) increase in the stimulated limb (dark green 

bars) at each 10-day interval compared to the non-stimulated limb (dark blue bars). 

(C) Data for the most basic proteoform of MLRS (spot 12). Protein synthesis for the 

stimulated limb (light green bars) shows no change (NS) from 0 days – 30 days of 

stimulation when compared to the non-stimulated limb (light blue bars). Protein 

degradation shows no change in the stimulated limb (dark green bars) at each 10-day 

interval compared to the non-stimulated limb (dark blue bars). 

 

Site-specific post-translational modifications of MLRS were investigated by LC-MS/MS 

analysis of spots 11 and 12. A sequence coverage of 92 % (mowse score 1770) was 

achieved and error tolerant searches of the MS/MS spectra unambiguously identified 

serine 16 phosphorylation in both spot 11 and spot 12. Spot 11 also contained site-

specific phosphorylation of serine 20 that was not detected in spot 12 (Figure 3.10). 

 

 

Figure 3.10. Myosin regulatory light chain site-specific phosphorylation.  

(A) The amino acid sequence at residues 9-31 of spot 11 MLRS. The underlined amino 

acid highlight the phosphorylation at serine 16 and 20. In particular the b7 and b8 ions 

provide unambiguous evidence of serine 16 phosphorylation and b11, y12 and b13, y11 

ions provide unambiguous evidence of serine 20 phosphorylation of spot 11 MLRS. 

(B) The amino acid sequence at residues 9-31 of spot 12 MLRS. The underlined amino 
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acid highlight the phosphorylation at serine 16. In particular, the b7 and b8 ions provide 

unambiguous evidence of serine 16 phosphorylation of spot 12 MLRS. 

 

LC-MS/MS analysis of the soluble muscle proteins yielded a list of 47 proteins 

(Supplementary Table S2) that had at least one protein-specific peptide that could be 

detected in all (n = 24) Ctrl and Stim samples. The majority of proteins were enzymes 

of either mitochondrial/oxidative metabolism or glycolysis/anaerobic metabolism 

(Supplementary Table S2). The reproducibility of protein abundance measurements 

by label-free quantitation was good (coefficient of variation 2.9 ± 0.12 %, n = 3 

biological replicates) and the abundance each protein in Ctrl and Stim muscles is 

reported in supplementary Table S5.  

Similar to the analysis of myofibrillar proteoforms, there was a high correlation (R2 = 

0.99024; P = 0.001) in the abundance of soluble proteins between the Ctrl and the 

sham-operated muscle at the 0-day time point. There was also no significant 

difference (P = 0.753) in the abundance of soluble proteins in the Ctrl EDL (Figure 

3.11, upper panels), assessed by one-way ANOVA of normalised peak abundances 

in 0 d, 10 d, 20 d and 30 d samples. Relative fold changes in abundance were 

calculated between the Ctrl and Stim EDL for each soluble protein (Supplementary 

Table S5). Similar fold change calculations for the soluble proteins were also used to 

calculate fold changes in abundance in absolute terms (Supplementary Table S5). 

Both calculations gave similar rank orders of change and equivalent patterns of 

change for each soluble protein (Supplementary Table S3). Figure 3.12 illustrates the 

changes in absolute abundance of the soluble muscle proteins induced by CLFS. 

From the 47 soluble proteins; 4 proteins exhibited significant (P<0.05, FDR <0.1 %) 

differences in abundance after 10 days of stimulation, and after 20 days of stimulation 

the abundance of a further 7 proteins became significantly different. By the end of the 

experiment period (30 d) there were 34 significant differences in protein abundance 

between the Stim and Ctrl EDL (Figure 3.12). 
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Figure 3.11. Correlation of relative soluble protein abundance between stimulated and 

non-stimulated EDL. 
Correlation matrix of relative soluble protein abundance (proteins 1-47 present in both 

stimulated and non-stimulated EDL at each time point). Correlation between (A) left 

and right limb of 0-day sham control. (B) Upper panels; 0-day sham control and either 

10 d, 20 d or 30 d of right contralateral control limb. Lower panels; right contralateral 

control limb and chronic low-frequency stimulation in the left limb for either 10 d, 20 d 

or 30d. 

Data are presented as normalised peak abundances. Data was also assessed by one-

way ANOVA of spot volumes in 0 d, 10 d, 20 d and 30 d samples. 
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Figure 3.12. Changes in absolute abundance for the soluble proteins between control and stimulated EDL muscle.  
Each data point represents an individual protein. Proteins that changed significantly (P<0.05) determined via paired t-tests between 

control and stimulated muscle are labelled by their UniProt I.D. name returned using MASCOT search engine. Proteins are described 

as increasing, decreasing or not changing in absolute protein abundance calculated by the fold change from non-stimulated control 

muscle to stimulated muscle for the soluble proteins only after 10 days, 20 days and 30 days of CLFS.  
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After 30 days of CLFS, of the 12 mitochondrial proteins identified, 11 became more 

(P< 0.05 abundant (+5.91 ± 3.21-fold) and of the 12 proteins identified that are 

associated with glycolysis, 10 became less (P< 0.05) abundant (-8.14 ± 3.79-fold). In 

addition, CLFS increased (P = 0.017) the abundance (+2.49 ± 1.1-fold) of the oxygen 

transport protein myoglobin (MYG) from Ctrl to Stim muscle (Supplementary Figure 

S1). Whereas, proteins of high-energy phosphate metabolism, including muscle 

creatine kinase B-type (KCRB) and adenylate kinase isoenzyme 1 (KAD1), became 

less abundant (-4.10 ± 1.9-fold, P = 0.027; -4.51 ± 1.2-fold, P = 0.036) in Stim EDL, 

respectively (Supplementary Figure S3). The calcium binding protein parvalbumin 

alpha (PRVA) decreased in abundance (-9.10 ± 2.5-fold, P = 0.001) and the slow-

twitch isoform of sarcoplasmic/endoplasmic reticulum calcium ATPase (AT2A2) 

increased in abundance (+0.93 ± 0.8-fold, P = 0.047) in response to CLFS 

(Supplementary Figure S2). 

In the Ctrl muscle, the 47 individual soluble proteins spanned a 18-fold range in 

fractional synthesis rate (FSR), the protein with the highest FSR was CAH3 14.83 ± 

4.01 %/d and the protein with the lowest FSR was AATC 0.81 ± 0.16 %/d. This gave 

an average rate of mixed soluble protein FSR of 5.17 ± 0.04 %/d in the Ctrl. CLFS did 

not change FSR with CAH3 the fastest 17.20 ± 6.80 %/d and G3P with the slowest 

0.74 ± 0.47 FSR. In the Stim muscle, the 47 soluble proteins still covered a broad 

range (23-fold) in individual FSR with the average rate of relative protein synthesis in 

the Stim of mixed soluble proteins of 5.43 ± 0.39 %/d. The average rate of absolute 

protein synthesis (ASR) in the Ctrl of mixed soluble proteins was 43.70 ± 0.07 pg/d, 

based on n = 3 biological replicates. The distribution of individual proteins in the control 

muscle spanned from 0.82 ± 0.29 pg/d (G3P) to 112.65 ± 8.91 pg/d (ALDOA). Chronic 

low-frequency stimulation increased (P = 0.001) the average (60.17 ± 0.73 pg/d) 

synthesis rate of mixed soluble proteins. The range of synthesis rates (Table S6) was 

also broader in Stim compared Ctrl muscle. The lowest synthesis rate in Stim muscle 

was 0.04 ± 0.03 pg/d (G3P) and the greatest was 173.69 ± 5.21 pg/d (ATPB). Proteins 

that exhibited the greatest synthesis responses to endurance activity include ATPA 

which increased (P = 0.001) from 33.89 ± 6.46 pg/d to 136.51 ± 4.12 pg/d and TPIS 

which decreased (P = 0.014) from 50.13 ± 11.53 pg/d to 3.21 ± 2.49 pg/d after 30 days 

of CLFS.  

In summary, bottom-up analysis of soluble proteins detected protein-specific 

responses to endurance activity that were consistent with the changes found by top-
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down analysis of myofibrillar proteoforms. A total of 34 proteins exhibited a statistically 

significant change in protein abundance (Table S5) in response to chronic endurance 

activity. Twenty proteins increased and 14 proteins decreased in abundance. These 

changes in protein abundance were associated with 7 different patterns of regulation 

in protein turnover (Figure 3.13).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.13. Different patterns in protein turnover response of soluble muscle 

proteins. 

Mean protein turnover data is shown as absolute values for all soluble proteins that 
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exhibit a significant (P<0.05) change in abundance from the control muscle to the 30-

d stimulated muscle. (A) Venn diagram displaying the number of soluble proteins that 

exhibit different responses in protein turnover, including: increases (­), decrease (¯) 

or no change («) in synthesis and degradation in order to change their net abundance 

after 30 days of stimulation. (B) The data displayed here are all the proteins from panel 

A. The box and whisker plot on the left shows the range of synthesis and degradation 

rates in picograms per day for the 30-d stimulated muscle only for all soluble proteins 

that have significantly different abundance from control to stimulated muscle. The box 

and whisker plot on the right shows the range of synthesis and degradation rates in 

picograms per day for the control muscle only for all soluble proteins that have 

significantly different abundance from control to stimulated muscle. 

 

Figure 3.14 illustrates four separate responses amongst the 11 mitochondrial proteins 

that increased (P<0.05) in abundance in Stim muscle. The increase in abundance of 

AATM, ACADL, ATPA and ATPB was entirely accounted for by the greater rate of 

synthesis in Stim compared to Ctrl muscle. The increase in abundance of ACON, 

ATPO, ODPA and MDHC was partially accounted for by the greater synthesis rate, 

whereas CX7A2, IDHP and MDHM became more abundant in Stim muscle without a 

detectable change in synthesis rate (Figure 3.14).  
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Figure 3.14. Protein turnover responses of mitochondrial proteins that increased in 

abundance. 

Mean protein turnover data is shown in absolute terms (pg/d) for mitochondrial 

proteins that exhibit a significant (P<0.05) increase in abundance between the control 

and stimulated muscle at the 30-d time point. (A) Venn diagram displays the number 

of mitochondrial proteins that show different responses in protein turnover: increases 
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(­), decreases (¯) or no change («) for synthesis and degradation in order to increase 

their net abundance after 30 days of stimulation. (B) Uni-Prot name relates to the 

protein I.D. using the Uni-Prot database, entries returned using the MASCOT search 

engine (number relates to the spot number in Figure 3.2). The response is described 

for both synthesis and degradation with significance level (P-value) for each protein 

which corresponds with the Venn diagram in panel A. (C) Summary of proteins 

identified in panel B, grouped and colour coded by their protein turnover responses. 

Green text in panel B represent data in green in panel C etc. Data is displayed for 

absolute synthesis and degradation in picograms per day as mean ± SD for each 

collective group (n = 3). The light-coloured bars represent the 30-d stimulated muscle 

and the darker coloured bars represent the control muscle. 

 

Figure 3.15 details the patterns of change amongst proteins of glycolysis that 

decreased (P<0.05) in abundance in response to CLFS. The decrease in abundance 

of PYGB was entirely accounted for by a decrease in the rate of synthesis in Stim 

compared to Ctrl muscle. The decrease in abundance of ENOB, G3P, PFKAM and 

TPIS was partially accounted for by a decreased synthesis rate, whereas ALDOA, 

LDHA, PGAM2, PGK1 and PYGM became less abundant in Stim muscle without a 

detectable change in synthesis (Figure 3.15). 
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Figure 3.15. Protein turnover responses of glycolysis proteins that decreased in 

abundance. 

Mean protein turnover data is shown in absolute terms (pg/d) for glycolysis proteins 

that exhibit a significant (P<0.05) decrease in abundance between the control and 

stimulated muscle at the 30-d time point. (A) Venn diagram displays the number of 

glycolysis proteins that show different responses in protein turnover: increases (­), 

decreases (¯) or no change («) for synthesis and degradation in order to decrease 

their net abundance after 30 days of stimulation. (B) Uni-Prot name relates to the 

protein I.D. using the Uni-Prot database, entries returned using the MASCOT search 

engine (number relates to the spot number in Figure 3.2). The response is described 

for both synthesis and degradation with significance level (P-value) for each protein 

which corresponds with the Venn diagram in panel A. (C) Summary of proteins 
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identified in panel B, grouped and colour coded by their protein turnover responses. 

Green text in panel B represent data in green in panel C etc. Data is displayed for 

absolute synthesis and degradation in picograms per day as mean ± SD for each 

collective group (n = 3). The light-coloured bars represent the 30-d stimulated muscle 

and the darker coloured bars represent the control muscle. 
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3.5 Discussion 

Skeletal muscle is renowned for its malleability, particularly in response to changes in 

activity pattern associated with exercise training. Adaptations of the muscle proteome, 

including an increase in mitochondrial proteins induced by endurance exercise, are 

well-established and contribute to the health benefits of a physically active lifestyle 

(Coffey and Hawley, 2007). Nevertheless, the dynamic processes that govern 

changes in protein abundance have seldom been reported. We have brought together 

techniques of stable isotope labelling and muscle transformation in vivo, with 

advanced peptide mass spectrometry analysis to generate new insight to the dynamic 

response of muscle to endurance activity. Specifically, we report the first data in rat 

EDL on the contributions that synthesis and degradation make to changes in the 

abundance of individual muscle proteins. Our data include a variety of patterns of 

response (Fig. 3.6 and 3.12), including proteins that both increase and decrease in 

abundance without exhibiting a change in synthesis rate. In addition, we show (Figure 

3.9) that different proteoforms of a protein can respond independently to an endurance 

exercise stimulus.  

Changes in protein abundance occur principally because of a difference between the 

rate of synthesis and degradation of a protein. We used a robust and well-established 

model of muscle transformation to investigate protein-specific changes in abundance 

as well as synthesis rate. Consistent with earlier work (Jarvis et al, 1993) we report 

chronic endurance activity is associated with a decrease in muscle mass and a shift 

toward a slower-twitch oxidative profile. The mass of EDL muscle decreases by 50 % 

after 30 days of CLFS, we are confident to report that this decrease in muscle mass 

is not reflective of muscle damage, as the muscles showed no signs of degeneration 

upon extraction and we report decreases amongst glycolytic enzymes with 

concomitant increases in oxidative metabolism proteins, suggesting that this is more 

likely to do with the change in phenotype induced by the stimulation. In addition, Jarvis 

et al, (1996) document continuous stimulation of rat EDL at 10 and 20 Hz, showing 

that CLFS does not cause significant damage to this muscle in the rat. Furthermore, 

the average rate of relative protein synthesis in the Ctrl of mixed soluble proteins (5.17 

± 0.04 %/d) and mixed myofibrillar proteins (4.69 ± 0.33 %/d) was no different than for 

the Stim (5.43 ± 0.39 %/d, 4.97 ± 0.1 %/d, respectively). This suggests that after 30 

days of stimulation, the smaller muscle (Stim) is making a similar amount of protein as 
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the larger one (Ctrl). However, the absolute rate of synthesis was calculated for whole 

EDL muscle at each experimental time point (Figure 3.5) and can account for the 50 

% change in muscle mass at 30 days (Figure 3.1). The absolute synthesis of Ctrl 

muscle did not change throughout the experimental period, consistent with the 

unchanging mass of Ctrl muscle. Yet, similar to the changes in the mass of Stim 

muscle, the absolute rate of synthesis in Stim muscle significantly (P< 0.05) declines 

compared to Ctrl by 18 %, 40 % and 50 % after 10, 20 and 30 d. This means that as 

the muscle gets smaller, the average relative synthesis rate of mixed proteins does 

not change and at the whole muscle level, the absolute rate of newly synthesised 

protein declines in-line with muscle mass. Therefore, we can be confident that any 

changes in the abundance of an individual protein not accompanied by a change in 

synthesis can be attributed to protein degradation.  

The individual proteins analysed were quantified for their changes in abundance at 

each of the time points during the experimental period. It is generally expected that 

increased mixed muscle protein synthesis following an endurance-type stimulus is 

predominantly driven by increases in sarcoplasmic and mitochondrial protein 

synthesis, rather than myofibrillar protein synthesis (Wilkinson et al, 2008.; Donges et 

al, 2012). This is logical from a physiological standpoint as increases in mitochondrial 

protein synthesis potentially reflect the adaptations to endurance-type exercise e.g. 

mitochondrial biogenesis. Furthermore, the myofibrillar fraction of the muscle contain 

much larger structural and contractile proteins that are thought to turn over much more 

slowly when compared to proteins found in the soluble fraction, that is predominately 

composed of metabolic enzymes (Balagopal et al, 2007a). However, the comparison 

between Figure 3.4 and 3.12 highlights a very different pattern of response. Initially 

(0-20 d) a greater number of myofibrillar proteins exhibit a significantly altered 

abundance compared to proteins in the soluble fraction. For example, the majority of 

the changes in myofibrillar protein abundance seem to be complete after 20 days, but 

in the soluble fraction, less than one-half of the proteins that exhibit significant changes 

in abundance after 30 days have changed at the 20-day time point. There have been 

suggestions in the literature that there may be an effect present in myofibrillar protein 

synthesis following acute bouts of endurance exercise in humans, with significant 

increases in myofibrillar protein synthesis measured between 30 min and 4.5 h post-

exercise which can be maintained for periods up to 24 h depending on intensity (Di 

Donato et al, 2014). However, the changes that we measure in the current work are 
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more likely due to the fact that the proteins included in the myofibrillar fraction are 

resolved from 2DGE and therefore do not include larger structural proteins that are 

documented to have slower turnover rates like titin (Isaacs et al, 1989) and myosin 

heavy chain (Balagopal et al, 2007b). The fractionation process also must be 

considered as there are proteins normally expected to be seen in the soluble fraction 

included in the myofibrillar fraction; for example, ATPB. Furthermore, from the 30 

common spots (Figure 3.2) there are 20 individual protein identifications of which, 18 

are expressed as multiple proteoforms (Table 3.1). This information is routinely 

overlooked in literature from more comprehensive ‘bottom-up’ proteomic methods. 

That is, while LC-MS/MS profiling often provides more extensive coverage (i.e. total 

number of proteins) the level of detail is less because proteins are grouped in to the 

sum of all of their proteoforms. Herein, we provided evidence that proteoform-level 

changes may be the earliest to show response during the fast-to-slow adaptive 

process (Figure 3.9). Importantly, we report absolute data (Fig. 3.4 and 3.12) that 

reflects changes at the whole muscle level. This is an important consideration when 

investigating muscle adaptation associated with significant changes in muscle mass. 

Moreover, we do not adopt the same assumptions made within the wider literature, 

attributing increases in synthesis to increases in abundance, but, instead, we measure 

each of these processes and report the turnover of individual proteins (Fig. 3.6 and 

3.13). Based on our detailed analysis, changes in abundance are highly individualised 

and differ on a protein-by-protein basis. Changes in synthesis do not always equate 

to changes in abundance when degradation is driving the adaptive change and could 

potentially explain why, in contrast to the mainstream literature, we report that 

abundance changes in the myofibrillar fraction proteins are the first that respond to 

CLFS in comparison to the soluble fraction. 

CLFS was associated with a prominent shift in protein from a fast to slow-twitch muscle 

phenotype. Our data are in agreement with Mayne et al, (2003) who observed the 

appearance of slow twitch myosin light chain isoform expression using 1DGE in 

chronically stimulated rat EDL muscle after 61 days. However, we are able to show 

that the decrease in the protein abundance of the TNNT3 spots (n = 3 spots, Table 

3.1) is conducted by a combination of two different responses (Figure 3.8). Spot 26 

and 28 both decrease in synthesis rate in Ctrl (1.91 ± 0.51 pg/d) compared to Stim 

(0.02 ± 0.01 pg/d). However, the synthesis rate of spot 25 is maintained and the rate 
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of degradation is increased in Ctrl (3.99 ± 4.20 pg/d) compared to Stim (1.21 ± 3.06 

pg/d) after 30 d of CLFS. 

Chronic low-frequency stimulation not only alters the contractile elements of the 

muscle but creates a robust shift from anaerobic to aerobic energy metabolism. 

Qualitatively, the effects of CLFS on muscle metabolism are similar to that of 

endurance training, although the effects induced by CLFS greatly surmount the 

changes caused by exercise. For example, Donoghue et al, (2007) reports proteins 

such as Glycerol-3-phosphate dehydrogenase to decrease (-4.7-fold) in abundance, 

whereas Cytochrome-c oxidase increases (+6.3-fold) in protein abundance in 

response to a 60-day period of CLFS. Findings from the current study support these 

data, reporting an increase (+5.91 ± 3.21-fold) in the abundance of proteins that are 

associated with the mitochondria (Figure 3.14) and a decrease (-8.14 ± 3.79-fold) in 

the abundance of proteins associated with glycolysis (Figure 3.15) following 30 days 

of CLFS. For the first time in rat muscle, we report the mechanisms underlying these 

changes in abundance that clearly differ on a protein-to-protein basis during muscle 

transformation. The increases in abundance of the mitochondrial proteins were 

achieved by four different patterns of response in protein turnover (Figure 3.14). 

Importantly, these data suggest degradation is capable of driving adaptation just as 

much as synthesis. Furthermore, we also report different patterns of response to CLFS 

from proteins that decrease in abundance. For example, the glycolysis proteins, such 

as LDHA, G3P and PYGB each decrease in abundance after 30 days of stimulation, 

but this decrease is orchestrated through three different patterns of response in protein 

turnover (Figure 3.15). The synthesis rate of LDHA does not change from Ctrl to Stim 

but the rate of degradation is increased from Ctrl (100.53 ± 13.18 pg/d) to Stim (218.90 

± 15.55 pg/d). In contrast, G3P and PYGB both decrease the rate of synthesis from 

Ctrl to Stim, but G3P simultaneously increases the rate of degradation from Ctrl (11.82 

± 9.44 pg/d) to Stim (105.21 ± 8.29 pg/d) to lower its abundance, whereas PYGB does 

not change the rate of degradation from Ctrl to Stim to achieve a similar decrease in 

abundance. 

One of the primary stimuli for muscle adaptation is neuromuscular activity. Under 

conditions such as CLFS where a fast-to-slow transformation of the skeletal muscle is 

induced, robust changes in the isoform expression pattern of calcium handling 

proteins occur, including the ryanodine receptor Ca2+ release channel of the junctional 

sarcoplasmic reticulum and the relaxation-inducing Ca2+-ATPases (Harmon et al, 
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2001). Chronic stimulation has also been shown to lead to elevations in free 

sarcoplasmic Ca2+ (Everts et al, 1993) which affects Ca2+ homeostasis of the muscle 

and is associated with a pronounced decrease in parvalbumin (PRVA; Leberer et al, 

1986), which is a cytosolic Ca2+ binding protein present at high concentrations in fast-

twitch muscle fibres (Heizmann et al, 1982). Furthermore, these changes in Ca2+ 

regulation induced by CLFS involve a switch in isoform expression of 

sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) from fast (SERCA 1a) to slow 

(SERCA 2a) isoform (Leberer et al, 1989.; Ohlendieck et al, 1991). Our data are 

entirely consistent with these earlier observations. We report a -9.1-fold decrease in 

PRVA abundance and a +0.93-fold increase in SERCA 2a (Uniprot ID: AT2A2) 

abundance. Furthermore, our work adds new insight by demonstrating the synthesis 

rate for the two calcium handling proteins, PRVA and AT2A2 does not change from 

Ctrl to Stim muscle despite changes in abundance, meaning that the entire regulation 

of these proteins is done so by degradation. Parvalbumin consequently increases its 

rate of degradation in Stim (97.15 ± 2.38 pg/d) compared to Ctrl (5.59 ± 1.48 pg/d) in 

order to decrease protein abundance. Whereas, AT2A2 increases in abundance but 

achieves this result by decreasing its rate of degradation in Stim (2.00 ± 1.80 pg/d) 

compared to Ctrl (8.53 ± 0.61 pg/d). It is clear that skeletal muscle adapts by 

expressing different quantities of functional proteins dependent on the needs of the 

muscle, achieved by changing the abundance of individual proteins via protein 

turnover. Here we have not only investigated the mechanisms used by muscle to 

execute this process by measuring the individual protein turnover of each protein, 

illustrating that both synthesis and degradation play a unique and complementary role 

during the adaptive process in skeletal muscle; but have gone one step further to 

identify proteoform-specific changes that complement the adaptive process. 

During muscle transformation, there are also some proteins that do not change in 

abundance. For instance, it is known that both fast and slow isoforms of myosin light 

chain can exist in the same muscle fibre after chronic stimulation (Donoghue, 2007). 

Although both fast and slow isoforms maybe present and unchanging in absolute 

levels, the relative quantities of each isoform may be different (Brown et al, 1983). The 

current study has quantified skeletal myosin light chain (MLRS) as an absolute value 

of protein abundance and has additionally resolved MLRS as two separate 

proteoforms (Table 3.1). In response to CLFS, the total amount of MLRS protein 

abundance does not change in absolute terms. However, when analysed at the 
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proteoform level, one MLRS proteoform (spot 11) decreases significantly and the other 

(spot 12) increases (Figure 3.9). This has meaningful implications when investigating 

muscle transformation, as it appears the process of muscle adaptation from a fast-to-

slow-twitch muscle is brought about by proteoform-specific changes in abundance.  

The spot 11 proteoform of MLRS (Figure 3.9), exhibited a significant decrease in 

abundance (-6.55 ± 2.9-fold) after 30 days of stimulation but the synthesis rate of 

MLRS spot 11 was not significantly different in the Ctrl over the 30 days of stimulation 

than the Stim. Therefore, we interpret a net loss in abundance of the more acidic 

proteoform of MLRS (spot 11) without a decrease in synthesis rate to mean a greater 

contribution of protein degradation. Furthermore, the decrease in MLRS spot 11 

abundance after 30 days (62 %) coincides with the 50 % decrease in the overall 

decrease in mass of the EDL (50 %). However, during the 0-10 day period, the EDL 

only reduces in mass by 16 % and MLRS spot 11 decreases the most over this period 

(55 %), we therefore interpret the decrease in spot 11 to be, at least in part due to be 

proteoform-specific degradation that occurs before any major changes to gross EDL 

mass and is amongst the earliest indicator of the change in muscle phenotype. 

Compared to spot 11, spot 12 tended to exhibit the opposite response to stimulation 

(Figure 3.9). Although the abundance of spot 12 increased by 16 % over the 30-day 

period of stimulation, the decrease in the abundance of spot 11 was proportionally 

greater than the increase in the abundance of spot 12 and so the change in abundance 

is not entirely due to a change in post-translational state. For the MLRS spot 12 

proteoform the rate of protein synthesis did not change from Ctrl to Stim. However, 

synthesis tended to be greater than degradation in the Stim muscle, which possibly 

explains why there is a trend for the abundance MLRS spot 12 to rise (Figure 3.9).  

These data from MLRS indicate that chronic stimulation affects the EDL muscle 

proteome by changing the protein turnover kinetics of not just a whole protein but of 

individual proteoforms within it. Moreover, it is degradation that appears to regulate 

this process, which is at least true for MLRS. More specifically, from the multiple 

proteoforms resolved (spot 11 and 12) we have identified two site-specific 

phosphorylations (Figure 3.10). Serine 16 phosphorylation is present in both spot 11 

and 12 proteoforms but there is an additional serine 20 phosphorylation in spot 11 

only. This indicates that selective degradation of individual proteins maybe regulated 

by site-specific post translational modifications. Serine 16 and 20 phosphorylation of 

MLRS have previously been documented in human phospho-proteomic mapping 
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studies such as Hojlund et al, (2009). Furthermore, proteomic analysis of the 

ventricular/slow twitch isoform of myosin light chain (MLRV) in rat cardiac muscle 

revealed endurance training to decrease phosphorylated (serine 15) myosin light 

chain (Burniston, 2011), which may in turn relate to the improved myocardial Ca2+ 

handling associated with endurance training (Kemi et al, 2008). However, it is known 

that during muscle contraction MLRS is phosphorylated by an increase in Ca2+-

calmodulin-dependant myosin light chain kinase which is activated by a rise in free 

calcium ions (Sweeney et al, 1993). In skeletal muscle, phosphorylation of this kind 

correlates with potentiation of the rate of force development and maximal isometric 

twitch tension (Szczesna et al, 2002) and a significant increase in the level of MLRS 

phosphorylation has also been reported after a repetitive low-frequency stimulus 

(Sweeney et al, 1993). However, this work lacks information about site-specific 

phosphorylation meaning we cannot know if there are multiple sites of phosphorylation 

that are specific to each of these situations. The physiological function of MLRS 

phosphorylation is still somewhat unclear but it is thought to increase calcium 

sensitivity of the myofibrils and enhance basic mechanical properties affecting the 

dynamic aspects of muscle force and power (Sweeney et al, 1993), as well as 

modulating alterations in cross bridge function and muscle activation during muscle 

fatigue (Grange et al, 1993).  

Here, we have not only presented two site-specific phosphorylations of MLRS (Figure 

3.10) that maybe responsible for selective degradation but have also reported the 

individual protein turnover data for MLRS in each of these phosphorylated states. This 

type of information is highly unprecedented and could prove to be of paramount 

importance when studying the sequence of events that occur during muscle 

adaptation. Thus, providing a level of detail that gives an explanation of exactly how 

the adaptation process is orchestrated, in this case through proteoform-specific 

protein degradation. These data also suggest that this level of change occurs early on 

in the fast-to-slow adaptation process (55 % decrease after 10 days, Figure 3.9) 

suggesting that proteoform-specific changes in MLRS abundance largely precede 

structural or metabolic changes in not only gross muscle but also at the level of the 

individual protein, therefore suggesting that proteoform-specific changes may be the 

best early indicators currently available to recognise changes in muscle phenotype.  
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3.6 Conclusions 

We report fully integrated dynamic proteomic profiling (DPP) to simultaneously 

measure the rate of synthesis and net abundance, allowing accurate calculation of the 

rate of degradation in muscle proteins and proteoforms during muscle adaptation. We 

have shown that additional proteins are introduced and others increase or are 

removed from the muscle proteome in both the functional and metabolic sense during 

muscle transformation. It is generally regarded that such changes are attributed to 

differences in synthetic processes only. However, by using DPP, we provide novel 

data to show that changes in muscle proteins during adaptation occur via several 

different patterns of response that involve the modulation of both synthetic and 

degradative processes. Such profusion of different adaptive responses in the muscle 

proteome has only recently been captured in human resistance training (Camera et 

al, 2017). Together, with our current data, a mechanistic insight into the regulation of 

protein abundance within the muscle cell and protein metabolism is provided. 

Moreover, results from this study add to the now growing list of evidence 

demonstrating whole mixed-muscle protein synthesis rates give less than adequate 

information compared to synthesis rates at the individual protein level. We also provide 

new evidence for selective degradation of individual proteins at varying rates to 

decrease and/or to maintain the same relative abundance of protein in the muscle. 

From this we can report, 50 proteins displayed a change in abundance in response to 

muscle adaptation from the 77 proteins that were measured. Of which 30 % of proteins 

were driven by synthesis, 38 % of proteins were driven by degradation and the 

remaining 32 % were driven by both synthesis and degradation. In addition, we 

document proteoform-specific degradation appearing to drive fast-to-slow muscle 

adaptation. 

Our work is the first of its kind to show the response of proteoform-specific turnover 

during muscle adaptation and provides further evidence that protein turnover is 

increased and decreased by increasing and/or decreasing the relative contributions of 

synthesis and degradation to marshal the abundance of individual proteins that are 

required to control the physiological demands of the muscle. 
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Supplementary tables 
 
Table S1. Myofibrillar protein identifications and peptide information. 
 

Myofibrillar fraction 

Spot 
Number 

Protein Score Coverage Peptide sequence Residue 

1 ACTN1 133 15 % ASLHEAWTR 
ATLPEADRER 
DGLALCALIHR 

VGEPSMSAMQRK 
LSHRPAFMPSEGK 

417-425 
570-579 
189-199 
315-326 
361-373 

2 PLEC 94 4 % QAQEEAER 
 

LSVAAQEAAR 
 

VPVDVAYQR 
 

LPVDVAYQR 
 

HRELAEEDAAR 

1631-
1638 
2423-
2432 
3292-
3300 
3623-
3631 
1956-
1966 

3 DESM 72 24 % TSGGAGGLGSLR 
LEEEIRHLK 

RQVEVLTNQR 
HLREYQDLLNVK 

FLEQQNAALAAEVNR 

59-70 
369-377 
163-172 
383-394 
127-141 

4 ATPB 78 23 % IPVGPETLGR 
IMNVIGEPIDER 

FTQAGSEVSALLGR 
TIAMDGTEGLVRGQK 
VALVYGQMNEPPGAR 

134-143 
144-155 
311-324 
110-124 
265-279 

5 ACTS/
ACTC 

71 24 % HQGVMVGMGQK 
DSYVGDEAQSK 

QEYDEAGPSIVHR 
IWHHTFYNELR 

MQKEITALAPSTMK 

42-52 
53-63 

362-274 
87-97 

315-328 
6 TPM4 119 37 % HIAEEADRK 

ELDGERERR 
MEIQEMQLK 

RIQLVEEELDR 
AGLNSLEAVK 

117-125 
34-42 

105-113 
55-65 
2-11 

7 TMP2 93 34 % KMQMLKLDK 
LVILEGELER 
EDKYEEEIK 

AQERLATALQK 
LEEAEKAADESER 

7-15 
169-178 
218-226 
102-112 
113-125 

8, 9, 10 MYL1 76 44 % HVLATLGEK 
EAFLLFDR 

149-157 
52-59 
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ITLSQVGDVLR 
DQGGYEDFVEGLR 

KPAAAAPAPAPAPAPAPAK
PK 

65-75 
120-132 

9-29 

11, 12 MLRS 100 42 % DGIIDKEDLR 
EAFTVIDQNR 

LKGADPEDVITGAFK 
KQFLEELLTTQCDR 

AAAEGSSNVFSMFDQTQIQ
EFK 

42-51 
32-41 

91-112 
117-130 

10-31 

13, 14 ENOB 88 31 % IGAEVYHHLK 
GVLKAVEHINK 

IFAREILDSR 
GNPTVEVDLHTAK 

LAQSNGWGVMVSHR 

184-193 
61-71 
6-15 

16-28 
359-372 

15 ATPA 113 30 % AVDSLVPIGR 
VGSAAQTR 

RFNDGTDEK 
GIRPAINVGLSVSR 

TGAIVDVPVGDELLGR 

195-204 
417-424 
231-239 
403-416 
134-149 

16, 17 KCRM 96 24 % LMVEMEKK 
GYTLPPHCSR 
DLFDPIIQDR 

GGDDLDPNYVLSSR 
GTGGVDTAAVGAVFDISNA

DR 

359-366 
139-148 

87-96 
117-130 
321-341 

18, 19, 
32 

KCRS 81 26 % GIWHNYDK 
GLSLPPACSR 
ITHGQFDER 

VPPPLPQFGR 
LFPPSADYPDLR 

250-257 
173-182 
150-158 
409-418 

47-58 
20 ANXA4 61 22 % TAYKSTIGR 

NKPAYFAER 
SMKGLGTDDSTLIR 

GLGTDEDAIIGVLACR 
GAGTDEGCLIEILASR 

54-62 
245-253 
257-270 

29-44 
101-116 

21, 22 G3P 67 20 % LVTRAAFSCDK 
VPTPNVSVVDLTCR 
GAAQNIIPASTGAAK 

IVSNASCTTNCLAPLAK 
VIHDNFGIVEGLMTTVHAIT

ATQK 

15-25 
233-246 
199-213 
144-160 
161-184 

23 TNNI2 93 36 % VRMSADAMLK 
SSKELEDMNQK 

MSADAMLKALLGSK 
YDMEVKVQK 

QHLKSVMLQIAATELEK 

115-124 
89-99 

117-130 
80-88 
16-32 

24 TNNI1 117 34 % VEVVDEER 
VSMDLRANLK 

NVEAMSGMEGR 

73-80 
134-143 
164-174 
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YLSERIPTLQTR 
AKECWEQEHEER 

44-55 
26-37 

25 TNNT3 78 21 % QKYDITTLR 
KPLNIDHLSDDKLR 
IPEGEKVDFDDIQK 

SRIDQAQK 
LTAPKIPEGEK 

225-233 
185-198 

49-62 
234-241 

44-54 
26 TNNT3 84 22 % LTAPKIPEGEK 

QKYDITTLR 
KPLNIDHLSDDKLR 
IPEGEKVDFDDIQK 

IDQAQKHSK 

44-54 
225-233 
185-198 

49-62 
236-244 

28 TNNT3 
(fTnT2) 

79 23 % KEEEELIALK 
YDIMNVR 

LTAPKIPEGEK 
QNRLAEEK 

QNKDLMELQALIDSHFEAR 

85-94 
227-233 

44-54 
118-126 

65-83 
27 TNNT1 

(sTnT1 
or 

sTnTx) 

70 24 % AEDDAK 
YEINVLYR 

IPEGERVDFDDIHR 
DLLELQTLIDVHFEQR 

EEERPKPSRPVVPPLIPPK 

143-148 
232-240 

54-67 
73-88 
35-53 

33 TNNT1 
(sTnT1 

or 
sTnTx) 

70 22 % VDFDDIHRK 
YEINVLYR 

EEEELIALKDR 
EEERPKPSRPVVPPLIPPK 
MEKDLLELQTLIDVHFEQR 

60-68 
232-240 
91-101 
35-53 
70-88 

34 TNNT1 
(sTnT2 

or 
sTnT3) 

67 22 % VDFDDIHRK 
YEINVLYR 

IPEGERVDFDDIHR 
EERPKPSRPVVPPLIPPK 

MEKDLLELQTLIDVHFEQR 

60-68 
232-240 

54-67 
36-53 
70-88 

29, 30 CAH3 94 31 % DGIAIGIFLK 
TILNNGKTCR 

GGPLPGPYRLR 
GENQSPVELHTK 
FDPSCLFPACR 

138-148 
58-67 
81-91 
25-36 

178-188 
31 MLRV 103 27 % VFDPEGKGSLK 

DGFIDKNDLR 
EAFTIMDQNR 

NLVHIITHGEEKD 
LKGADPEETILNAFK 

105-115 
41-50 
31-40 

154-166 
92-104 

35 CRYAB 88 32 % QDEHGFISR 
EEKPAVTAAPK 
VLGDVIEVHGK 
DRFSVNLDVK 

RPFFPFHSPSR 

108-116 
164-174 
93-103 
73-82 
12-22 

36, 37, 
38 

MYL3 77 28 % HVLATLGER 
EAFQLFDR 

ITYGQCGDVLR 

160-168 
61-68 
76-86 
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ALGQNPTQAEVLR 
AAPAPAAAPAAAPEPERPK 

87-99 
19-38 

 
Spot number refers to the different proteoforms resolved by 2DGE and corresponds 

to the 2DGE image in Figure 3.2. Protein name relates to the Uni-Prot database, 

entries returned using the MASCOT search engine. A mowse score greater than 55 

denotes a confident (P<0.05) identification by peptide mass fingerprinting. Coverage 

is the amount of sequence covered of the protein for identification. Peptide sequence 

refers to the amino acid sequence of each peptide used for peptide mass spectrometry 

and the residues are where each peptide occurs in the protein sequence. 
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Table S2. Soluble proteins identification. 
 

Soluble fraction 
Protein I.D. Protein name GO function Peptide # 

AATC Aspartate 
aminotransferase , 
cytoplasmic 

Unassigned 2 

AATM Aspartate 
aminotransferase, 
mitochondrial 

Mitochondrial 4 

ACADL Long-chain specific acyl-
CoA dehydrogenase, 
mitochondrial 

Mitochondrial 1 

ACON Aconitate hydratase, 
mitochondrial 

Mitochondrial 2 

ACTC Actin, alpha cardiac 
muscle 1 

Unassigned 3 

ALBU Serum albumin Unassigned 23 

ALDOA Fructose-bisphosphate 
aldolase A 

Glycolysis 7 

ALDR Aldose reductase High-energy 
phosphate 

3 

AT2A2 Sarcoplasmic/endoplasmic 
reticulum calcium ATPase 
2 

Ca2+ 
Handling 

8 

ATPA ATP synthase subunit 
alpha, mitochondrial 

Mitochondrial 3 

ATPB ATP synthase subunit 
beta, mitochondrial 

Mitochondrial 2 

ATPO ATP synthase subunit O, 
mitochondrial 

Mitochondrial 1 

CAH3 Carbonic anhydrase 3 Unassigned 4 
CASQ1 Calsequestrin-1 Ca2+ 

Handling 
5 

CX7A2 Cytochrome c oxidase 
subunit 7A2, mitochondrial 

Mitochondrial 2 

ENOB Beta-enolase Glycolysis 4 
FHL1 Four and a half LIM 

domains protein 1 
Unassigned 2 

G3P Glyceraldehyde-3-
phosphate dehydrogenase 

Glycolysis 4 

HBA Hemoglobin subunit alpha-
1/2  

O2 Transport 2 

HBB1 Hemoglobin subunit beta-1 O2 Transport 2 
HBB2 Hemoglobin subunit beta-2 O2 Transport 1 
HINT1 Histidine triad nucleotide-

binding protein 1 
Unassigned 3 

HSPB6 Heat shock protein beta-6 Unassigned 4 
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IDH3A Isocitrate dehydrogenase 
[NAD] subunit alpha, 
mitochondrial 

Mitochondrial 2 

IDHP Isocitrate dehydrogenase 
[NADP], mitochondrial 

Mitochondrial 2 

KAD1 Adenylate kinase 
isoenzyme 1 

High-energy 
phosphate 

4 

KCRB Creatine kinase B-type High-energy 
phosphate 

1 

KCRM Creatine kinase M-type High-energy 
phosphate 

7 

KPYM Pyruvate kinase PKM Glycolysis 12 
LDHA L-lactate dehydrogenase A 

chain 
Glycolysis 5 

MDHC Malate dehydrogenase, 
cytoplasmic 

Mitochondrial 1 

MDHM Malate dehydrogenase, 
mitochondrial 

Mitochondrial 6 

MYG Myoglobin O2 Transport 2 
MYL1 Myosin light chain 1/3, 

skeletal muscle isoform 
Unassigned 2 

ODPA Pyruvate dehydrogenase 
E1 component subunit 
alpha, somatic form, 
mitochondrial 

Mitochondrial 1 

PARK7 Protein/nucleic acid 
deglycase DJ-1 

Unassigned 2 

PFKAM ATP-dependent 6-
phosphofructokinase, 
muscle type 

Glycolysis 1 

PGAM2 Phosphoglycerate mutase 
2 

Glycolysis 3 

PGK1 Phosphoglycerate kinase 
1 

Glycolysis 6 

PGM1 Phosphoglucomutase-1 Glycolysis 2 
PRVA Parvalbumin alpha Ca2+ 

Handling 
2 

PYGB Glycogen phosphorylase, 
brain form 

Glycolysis 1 

PYGM Glycogen phosphorylase, 
muscle form 

Glycolysis 2 

SAFB1 Scaffold attachment factor 
B1 

Unassigned 1 

TPIS Triosephosphate 
isomerase 

Glycolysis 6 

TRY1 Anionic trypsin-1 Unassigned 1 
VDAC1 Voltage-dependent anion-

selective channel protein 1 
Unassigned 2 
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Protein I.D. relates to the Uni-Prot database, entries returned using the MASCOT 

search engine. Full protein name is given with assigned gene ontology function. The 

peptide number refers to the number of unique peptides used for each protein to gain 

a positive identification. 
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Table S3. Rank order for abundance changes in myofibrillar proteins after 30-d of 
stimulation in EDL muscle. 
 

Protein I.D. Relative 
ABD 

P-Value Protein I.D. Absolute 
ABD 

P-Value 

TNNI1 (24) +4.82 ± 1.1 0.021 TNNI1 (24) +15.82 ± 3.8 0.013 
 

CAH3 (29) +4.19 ± 2.0 0.011 CAH3 (29) +8.29 ± 3.2 0.019 
 

CAH3 (30) +3.57 ± 0.9 0.016 TNNT1 (27) +7.68 ± 2.8 0.024 
 

TNNT1 (27) +3.19 ± 1.2 0.022 KCRS (19) +6.99 ± 1.5 0.041 
 

ACTN1 (1) +2.70 ± 0.8 0.048 CAH3 (30) +6.49 ± 2.2 0.037 
 

KCRS (19) +2.63 ± 0.9 0.032 ATPB (4) +6.15 ± 0.1 0.016 
 

ATPB (4) +2.43 ± 1.3 0.044 ACTN1 (1) +6.04 ± 1.0 0.038 
 

KCRM (17) +2.32 ± 1.8 0.057 KCRM (17) +1.61 ± 3.5 0.338 
 

KCRS (18) +1.94 ± 1.4 0.069 MYL1 (10) +1.55 ± 2.7 0.071 
 

MYL1 (10) +1.85 ± 1.3 0.067 KCRM (16) +1.12 ± 2.4 0.439 
 

ANXA4 (20) +1.48 ± 2.1 0.089 ANXA4 (20) +0.88 ± 2.8 0.629 
 

KCRM (16) +1.47 ± 1.7 0.087 MLRS (12) +0.81 ± 1.6 0.100 
 

ATPA (15) +1.32 ± 1.8 0.093 ATPA (15) +0.39 ± 2.2 0.732 
 

TPM2 (7) +0.92 ± 1.1 0.088 KCRS (18) +0.36 ± 3.2 0.489 
 

ACTS (5) +0.81 ± 0.6 0.094 TPM2 (7) +0.28 ± 0.2 0.372 
 

MLRS (12) +0.38 ± 0.7 0.083 DESM (3) -0.35 ± 2.0 0.331 
 

DESM (3) +0.26 ± 1.3 0.224 ACTS (5) -0.36 ± 0.4 0.174 
 

PLEC (2) -0.40 ± 1.8 0.157 PLEC (2) -0.47 ± 4.9 0.106 
 

ENOB (13) -0.42 ± 2.0 0.274 ENOB (13) -0.77 ± 2.9 0.194 
 

MYL1 (9) -0.71 ± 1.5 0.079 TPM4 (6) -1.66 ± 2.3 0.094 
 

TPM4 (6) -0.79 ± 1.9 0.267 MYL1 (9) -1.71 ± 2.1 0.088 
 

TNNI2 (23) -2.64 ± 0.9 0.045 MLY1 (8) -3.36 ± 2.5 0.042 
 

MLY1 (8) -2.66 ± 0.7 0.018 TNNI2 (23) -5.02 ± 0.8 0.001 



 141 

 
MLRS (11) -3.05 ± 1.0 0.001 G3P (21) -5.40 ± 2.7 0.047 

 
TNNT3 (25) -3.13 ± 0.9 0.001 MLRS (11) -6.55 ± 2.9 0.022 

 
G3P (21) -3.23 ± 1.1 0.001 G3P (22) -10.31 ± 1.7 0.001 

 
G3P (22) -3.31 ± 0.7 0.001 TNNT3 (25) -10.62 ± 2.5 0.018 

 
TNNT3 (26) -4.27 ± 1.1 0.001 TNNT3 (28) -12.48 ± 1.9 0.001 

 
ENOB (14) -4.88 ± 1.3 0.001 TNNT3 (26) -13.06 ± 2.1 0.001 

 
TNNT3 (28) -4.94 ± 2.1 0.014 ENOB (14) -14.27 ± 1.8 0.001 

 
 
Protein I.D. relates to the Uni-Prot database, entries returned using the MASCOT 

search engine. Spot numbers are in brackets which refers to the different proteoforms 

resolved by 2DGE and corresponds to the 2DGE image in Figure 3.2. Relative 

abundance (ABD) represents data normalised to spot density from the 2D-gels only. 

Absolute abundance (ABD) represents data normalised to spot density and total EDL 

mass. All data is represented as MEAN ± SD for biological replicates (n = 3) and is 

displayed as the positive (+) or negative (-) fold change from non-stimulated control 

muscle to 30 days chronically stimulated muscle, in rank order of largest positive 

change to largest negative change. P-Values are generated from paired t-tests 

between control and 30-d stimulated muscle. 
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Table S4. Rank order for synthesis rates in myofibrillar proteins after 30-d of stimulation in EDL muscle. 
 

Protein I.D. Relative 
(Stim) 

Relative 
(Ctrl) 

P-Value Protein I.D. Absolute (Stim) Absolute (Ctrl) P-Value 

CAH3 (29) 19.81 ± 6.88 17.02 ± 5.01 0.048 ATPB (4) 40.02 ± 2.09 22.44 ± 1.55 0.001 
 

KCRS (19) 4.80 ± 1.40 2.14 ± 0.75 0.047 TNNI1 (24) 18.88 ± 2.61 5.53 ± 3.34 0.001 
 

ATPB (4) 11.07 ± 2.42 9.10 ± 1.48 0.021 CAH3 (29) 18.23 ± 2.10 7.79 ± 2.42 0.001 
 

CAH3 (30) 22.21 ± 7.99 20.69 ± 7.17 0.049 CAH3 (30) 24.12 ± 2.71 14.92 ± 1.61 0.001 
 

TNNT1 (27) 2.04 ± 0.27 0.94 ± 0.84 0.028 TNNT1 (27) 9.71 ± 1.10 0.99 ± 2.52 0.043 
 

TNNI1 (24) 4.23 ± 0.32 3.31 ± 1.36 0.037 KCRS (19) 11.05 ± 2.94 5.70 ± 1.77 0.019 
 

ACTN1 (1) 5.00 ± 1.28 4.10 ± 0.91 0.432 ACTN1 (1) 5.85 ± 4.27 1.49 ± 3.65 0.287 
 

KCRS (18) 4.56 ± 2.24 3.70 ± 0.40 0.051 MYL1 (8) 18.34 ± 3.60 14.86 ± 5.65 0.088 
 

ATPA (15) 3.18 ± 0.86 2.52 ± 0.48 0.049 TPM2 (7) 27.86 ± 3.84 24.66 ± 6.02 0.739 
 

PLEC (2) 0.89 ± 0.10 0.43 ± 0.15 0.115 MYL1 (10) 12.82 ± 3.88 10.08 ± 4.47 0.114 
 

KCRM (17) 3.61 ± 0.72 3.22 ± 0.28 0.057 KCRS (18) 7.55 ± 2.27 5.79 ± 5.89 0.073 
 

MYL1 (10) 3.33 ± 0.95 3.04 ± 3.45 0.832 KCRM (17) 3.45 ± 1.09 1.96 ± 2.95 0.063 
 

TPM2 (7) 1.47 ± 0.21 1.22 ± 0.85 0.548 KCRM (16) 5.14 ± 2.33 3.69 ± 3.38 0.254 
 

ACTS (5) 1.84 ± 0.81 1.66 ± 1.35 0.194 ATPA (15) 0.96 ± 1.21 0.62 ± 0.98 0.361 
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KCRM (16) 5.22 ± 0.58 5.12 ± 2.43 0.594 ANXA4 (20) 0.51 ± 2.56 0.35 ± 1.06 0.337 
 

DESM (3) 4.80 ± 1.72 4.71 ± 0.74 0.853 G3P (21) 1.07 ± 2.76 0.93 ± 1.68 0.092 
 

MLRS (12) 1.69 ± 0.41 1.60 ± 0.30 0.071 ACTS (5) 1.60 ± 1.15 1.66 ± 0.63 0.842 
 

ANXA4 (20) 1.19 ± 1.26 1.12 ± 0.99 0.965 PLEC (2) 0.46 ± 1.59 0.60 ± 1.63 0.973 
 

G3P (22) 7.32 ± 5.03 7.43 ± 4.21 0.472 ENOB (13) 8.81 ± 3.51 10.24 ± 3.77 0.117 
 

MYL1 (8) 4.67 ± 0.94 4.81 ± 0.27 0.624 G3P (22) 1.13 ± 1.13 2.61 ± 1.30 0.320 
 

MLRS (11) 2.74 ± 0.57 2.92 ± 0.89 0.346 TNNT3 (26) 0.02 ± 0.22 1.55 ± 0.68 0.047 
 

G3P (21) 1.13 ± 1.13 1.32 ± 0.05 0.743 MLRS (11) 7.52 ± 1.34 9.28 ± 3.06 0.472 
 

ENOB (13) 6.79 ± 0.32 7.01 ± 1.60 0.071 ENOB (14) 0.03 ± 0.33 2.08 ± 0.34 0.001 
 

TNNT3 (25) 2.50 ± 0.30 2.73 ± 0.63 0.854 DESM (3) 3.41 ± 2.24 5.63 ± 2.49 0.357 
 

MYL1 (9) 3.02 ± 1.20 3.27 ± 0.66 0.733 TNNT3 (28) 0.02 ± 0.16 2.27 ± 1.18 0.026 
 

TPM4 (6) 9.21 ± 1.70  9.61 ± 2.99 0.964 MYL1 (9) 0.97 ± 1.96 3.45 ± 1.02 0.087 
 

TNNT3 (28) 0.72 ± 0.44 1.49 ± 0.11 0.052 TNNI2 (23) 0.13 ± 0.10 2.65 ± 0.90 0.019 
 

TNNT3 (26) 0.74 ± 0.43 1.94 ± 0.86 0.046 TNNT3 (25) 1.21 ± 3.06 3.99 ± 4.20 0.791 
 

TNNI2 (23) 2.75 ± 0.10 4.31 ± 0.57 0.042 MLRS (12) 10.26 ± 5.27 15.09 ± 1.63 0.083 
 

ENOB (14) 6.48 ± 2.26 8.12 ± 1.62 0.042 TPM4 (6) 66.07 ± 5.11 76.08 ± 9.95 0.762 
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Protein I.D. relates to the Uni-Prot database, entries returned using the MASCOT search engine. Spot numbers are in brackets which 

refers to the different proteoforms resolved by 2DGE and corresponds to the 2DGE image in Figure 3.2. Synthesis rates are presented 

in relative format which relates to fractional synthesis rate in percent per day and in absolute terms which is reflective of whole EDL 

synthesis with rates expressed in picograms per day. All data is represented as MEAN ± SD for biological replicates (n = 3) in the 30 

days stimulated muscle (Stim) and the non-stimulated control muscle (Ctrl). The proteins are ranked in order of largest increase in 

synthesis rate from Ctrl to Stim through to largest decrease in synthesis rate from Ctrl to Stim. P-Values are generated from paired t-

tests between control and 30-d stimulated muscle. 
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Table S5. Rank order for abundance changes in soluble proteins after 30-d of 
stimulation in EDL muscle. 
 
Protein I.D. Relative 

ABD 
P-Value Protein I.D. Absolute 

ABD 
P-Value 

ALBU +3.27 ± 0.8 0.001 ATPA 
 

+11.83 ± 1.2 0.017 
 

CX7A2 +3.06 ± 0.9 0.004 CAH3 
 

+10.34 ± 2.4 0.021 
 

IDHP +3.01 ± 1.1 0.014 ODPA 
 

+9.32 ± 2.9 0.001 
 

HBB1 +2.93 ± 0.7 0.036 HBA 
 

+8.53 ± 5.6 0.051 
 

AATM +2.84 ± 0.5 0.001 ACADL 
 

+7.99 ± 1.3 0.027 
 

ATPB +2.76 ± 1.2 0.019 ACON 
 

+7.75 ± 1.6 0.023 
 

CASQ1 +2.38 ± 1.0 0.028 ATPB 
 

+7.21 ± 2.2 0.011 
 

ATPO +2.35 ± 1.4 0.015 CASQ1 
 

+5.80 ± 1.7 0.002 
 

MYG +2.05 ± 0.8 0.039 ATPO 
 

+5.69 ± 2.0 0.012 
 

HBA +2.02 ± 0.6 0.036 AATC 
 

+5.10 ± 0.3 0.039 
 

CAH3 +1.95 ± 0.4 0.037 ALBU 
 

+4.60 ± 1.8 0.033 
 

ACON +1.92 ± 0.7 0.041 CX7A2 
 

+4.28 ± 1.3 0.014 
 

HSPB6 +1.88 ± 1.0 0.042 MDHC 
 

+4.09 ± 0.4 0.025 
 

ATPA +1.71 ± 0.3 0.026 MDHM 
 

+3.41 ± 1.4 0.035 
 

AT2A2 +1.69 ± 0.4 0.039 HBB1 
 

+2.78 ± 0.6 0.028 
 

ACADL +1.66 ± 0.6 0.028 MYG 
 

+2.49 ± 1.1 0.017 
 

ODPA +1.32 ± 1.1 0.041 IDHP 
 

+1.96 ± 0.8 0.004 
 

MDHC +1.31 ± 0.9 0.045 HSPB6 
 

+1.63 ± 0.2 0.033 
 

MDHM +1.24 ± 0.9 0.049 AATM 
 

+1.52 ± 0.7 0.047 
 

AATC +1.18 ± 0.7 0.031 AT2A2 
 

+0.93 ± 0.8 0.047 
 

HBB2 +0.94 ± 1.2 0.611 IDH3A 
 

+0.86 ± 0.7 0.371 

IDH3A +0.94 ± 0.9 0.108 HBB2 
 

+0.65 ± 0.5 0.482 
 

SAFB1 +0.90 ± 0.7 0.821 ACTA +0.26 ± 0.9 0.625 
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HINT1 +0.52 ± 0.6 0.893 VDAC 

 
-0.17 ± 0.1 0.763 

 
ACTA +0.21 ± 0.4 0.673 SAFB1 

 
-1.41 ± 0.8 0.884 

 
VDAC -0.20 ± 0.3 0.934 HINT1 

 
-1.47 ± 3.1 0.942 

 
TRY1 -0.35 ± 0.2 0.68 FHL1 

 
-1.58 ± 1.0 0.174 

 
KCRM -0.48 ± 0.8 0.942 KPYM -1.75 ± 1.4 0.290 

 
KPYM -0.49 ± 1.2 0.773 KCRM 

 
-1.92 ± 0.2 0.439 

 
FHL1 -0.56 ± 0.9 0.167 PARK7 

 
-1.92 ± 1.7 0.431 

 
PARK7 -0.60 ± 0.8 0.122 TRY1 

 
-2.70 ± 2.2 0.771 

 
PGM1 -0.66 ± 1.2 0.199 PGM1 

 
-2.95 ± 2.8 0.847 

 
ALDR -0.71 ± 0.7 0.784 PGK1 -3.69 ± 1.3 0.031 

 
KCRB -1.03 ± 0.4 0.042 PYGB 

 
-3.70 ± 1.4 0.014 

 
MYL1 -1.31 ± 0.7 0.048 KCRB 

 
-4.10 ± 1.9 0.027 

 
PFKAM -1.39 ± 0.8 0.045 KAD1 

 
-4.51 ± 1.2 0.036 

 
KAD1 -1.65 ± 1.0 0.037 LDHA 

 
-4.70 ± 2.1 0.024 

 
PGAM2 -2.03 ± 1.1 0.013 MYL1 

 
-5.20 ± 1.3 0.029 

 
PGK1 -2.04 ± 0.8 0.028 PGAM2 

 
-6.47 ± 1.2 0.011 

 
TPIS -2.06 ± 1.3 0.037 ALDR -7.53 ± 1.3 0.036 

 
PYGM -2.25 ± 0.7 0.022 ALDOA 

 
-7.65 ± 1.4 0.018 

 
ALDOA -2.53 ± 0.6 0.023 TPIS 

 
-7.68 ± 1.9 0.014 

 
LDHA -2.96 ± 1.3 0.028 ENOB 

 
-8.81 ± 2.7 0.012 

 
PRVA -3.22 ± 1.1 0.001 PRVA 

 
-9.10 ± 2.5 0.001 

 
ENOB -3.63 ± 0.9 0.033 G3P 

 
-11.42 ± 1.4 0.003 

 
PYGB -4.01 ± 1.2 0.001 PYGM 

 
-12.56 ± 2.3 0.001 

 
G3P -4.46 ± 1.2 0.001 PFKAM 

 
-14.75 ± 1.8 0.001 
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Protein I.D. relates to the Uni-Prot database, entries returned using the MASCOT 

search engine. Relative abundance (ABD) represents Log-transformed MS data 

normalised by inter-sample abundance ratio using nonconflicting peptides only. 

Absolute abundance (ABD) represents Log-transformed MS data normalised by inter-

sample abundance ratio using nonconflicting peptides and total EDL mass. All data is 

represented as MEAN ± SD for biological replicates (n = 3) and is displayed as the 

positive (+) or negative (-) fold change from non-stimulated control muscle to 30 days 

chronically stimulated muscle, in rank order of largest positive change to largest 

negative change. P-Values are generated from paired t-tests between control and 30-

d stimulated muscle. 
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Table S6. Rank order for synthesis rates in soluble proteins after 30-d of stimulation in EDL muscle. 
 

Protein I.D. Relative 
(Stim) 

Relative 
(Ctrl) 

P-Value Protein I.D. Absolute 
(Stim) 

Absolute (Ctrl) P-Value 

CAH3 17.20 ± 6.80 14.83 ± 4.01 0.019 ATPA 136.51 ± 4.12 33.89 ± 6.46 0.001 
 

ACON 7.39 ± 3.07 5.10 ± 1.23 0.024 CAH3 
 

157.36 ± 15.51 60.37 ± 8.98 0.019 
 

ATPA 3.19 ± 2.45 1.21 ± 0.47 0.028 HBA 
 

 167.32 ± 19.90 71.78 ± 21.37 0.042 
 

HSPB6 4.00 ± 2.00 2.23 ± 0.51 0.027 ODPA 122.80 ± 5.68 40.21 ± 8.01 0.023 
 

ATPO 8.36 ± 0.03 6.64 ± 0.02 0.015 ACADL 85.95 ± 9.58 3.95 ± 0.70 0.002 
 

CASQ1 11.17 ± 4.28 9.64 ± 0.73 0.025 ATPB 173.69 ± 5.21 95.66 ± 8.57 0.022 
 

ACADL 4.18 ± 1.58 2.65 ± 0.12 0.041 CASQ1 74.21 ± 10.25 11.30 ± 8.06 0.011 
 

MDHC 4.89 ± 0.96 3.39 ± 0.94 0.033 LDHA 171.41 ± 25.69 110.05 ± 5.20 0.856 
 

MYG 3.77 ± 0.71 2.30 ± 0.02 0.013 ACON 94.27 ± 12.81 37.92 ± 9.23 0.027 
 

ATPB 10.76 ± 2.72 9.42 ± 1.77 0.044 MYG 141.20 ± 5.94 85.83 ± 11.68 0.021 
 

AATM 2.09 ± 0.11 0.84 ± 0.13 0.037 MDHC 89.31 ± 3.82 37.27 ± 2.14 0.027 
 

HBA 8.36 ± 0.62 7.11 ± 0.13 0.014 AATC 108.48 ± 4.93 58.46 ± 3.03 0.016 
 

ODPA 9.29 ± 1.16 8.11 ± 0.80 0.047 ATPO 76.47 ± 9.40 28.37 ± 4.20 0.005 
 

HBB1 6.97 ± 1.48 5.86 ± 0.91 0.046 HBB1 37.34 ± 1.28 8.58 ± 1.06 0.001 
 



 149 

IDH3A 4.00 ± 0.79 3.01 ± 0.79 0.052 HSPB6 29.65 ± 2.81 11.41 ± 3.15 0.036 
 

AATC 1.78 ± 0.17 0.81 ± 0.16 0.048 AATM 14.98 ± 6.39 3.34 ± 1.21 0.034 
 

CX7A2 7.68 ± 3.45 7.32 ± 0.23 0.754 ACTA 14.85 ± 8.75 10.00 ± 5.35 0.775 
 

ACTA 1.26 ± 0.23 1.00 ± 0.23 0.775 MDHM 83.70 ± 8.35 79.42 ± 6.76 0.592 
 

IDHP 5.69 ± 1.17 5.46 ± 1.11 0.173 PGM1 34.98 ± 2.97 31.08 ± 5.51 0.852 
 

MDHM 10.93 ± 1.66 10.73 ± 1.52 0.964 IDH3A 7.18 ± 3.32 3.96 ± 2.05 0.271 
 

HBB2 7.54 ± 0.07 7.35 ± 0.17 0.427 HBB2 9.62 ± 7.16 6.62 ± 3.10 0.095 
 

AT2A2 1.18 ± 0.09 1.04 ± 0.12 0.976 CX7A2 46.85 ± 5.86 44.68 ± 3.46 0.794 
 

SAFB1 1.03 ± 0.88 0.98 ± 0.22 0.463 AT2A2 13.99 ± 2.45 12.22 ± 2.24 0.864 
 

ALBU 7.23 ± 0.24 7.19 ± 0.18 0.954 SAFB1 7.78 ± 8.31 6.32 ± 4.02 0.857 
 

KCRM 4.78 ± 1.03 4.85 ± 1.53 0.958 VDAC 9.20 ± 8.00 7.88 ± 2.56 0.739 
 

HINT1 1.15 ± 0.14 1.29 ± 0.19 0.904 PRVA 13.25 ± 6.56 12.71 ± 2.35 0.947 
 

PYGM 9.65 ± 0.94 9.80 ± 1.04 0.342 KAD1 19.29 ± 6.34 18.90 ± 8.83 0.492 
 

PGAM2 5.57 ± 1.28 5.74 ± 0.92 0.875 MYL1 1.58 ± 2.36 2.24 ± 1.66 0.906 
 

FHL1 0.80 ± 0.21 0.99 ± 0.16 0.729 G3P 0.04 ± 0.03 0.82 ± 0.29 0.028 
 

LDHA 11.24 ± 1.43 11.47 ± 0.23 0.996 ALBU 111.36 ± 1.09 112.59 ± 4.53 0.375 
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PARK7 1.14 ± 0.45 1.37 ± 0.28 0.663 ALDR 60.15 ± 5.98 61.47 ± 4.14 0.821 
 

ALDR 8.54 ± 0.34 8.79 ± 0.31 0.655 KCRM 82.19 ± 4.42 84.21 ± 2.44 0.841 
 

PGK1 5.95 ± 0.2 6.19 ± 1.07 0.722 FHL1 5.49 ± 4.10 7.59 ± 3.15 0.885 
 

MYL1 1.53 ± 0.38 1.78 ± 0.69 0.504 PARK7 3.17 ± 2.55 5.91 ± 3.57 0.336 
 

TRY1 1.06 ± 0.08 1.37 ± 0.18 0.933 PGAM2 90.96 ± 6.29 94.01 ± 7.20 0.962 
 

VDAC 1.26 ± 0.02 1.58 ± 0.13 0.411 PGK1 101.81 ± 7.95 104.89 ± 5.43 0.973 
 

KAD1 1.43 ± 0.55 1.78 ± 0.14 0.195 IDHP 31.04 ± 4.01 34.62 ± 6.55 0.954 
 

ALDOA 8.11 ± 0.79 8.50 ± 2.80 0.785 TRY1 20.10 ± 3.59 23.72 ± 2.14 0.944 
 

PRVA 4.38 ± 3.34 4.79 ± 0.96 0.182 HINT1 3.12 ± 4.20 7.30 ± 2.17 0.625 
 

KPYM 2.25 ± 0.22 2.69 ± 0.13 0.885 PFKAM 0.13 ± 0.43 4.64 ± 1.45 0.041 
 

G3P 0.74 ± 0.47 1.79 ± 0.16 0.048 KPYM 35.12 ± 10.19 40.55 ± 1.44 0.798 
 

TPIS 0.91 ± 0.20 2.00 ± 0.14 0.047 PYGM 89.70 ± 7.81 98.22 ± 12.08 0.418 
 

PGM1 2.12 ± 2.17 3.30 ± 1.29 0.163 ALDOA 98.22 ± 7.82 112.65 ± 8.91 0.632 
 

KCRB 5.12 ± 0.14 6.35 ± 0.51 0.031 ENOB 1.80 ± 1.44 21.42 ± 4.59 0.028 
 

PFKAM 9.22 ± 0.84 10.48 ± 0.82 0.029 KCRB 8.98 ± 1.68 41.89 ± 4.89 0.015 
 

ENOB 7.31 ± 1.64 8.97 ± 1.71 0.029 PYGB 7.80 ± 1.50 41.31 ± 8.25 0.027 
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PYGB 10.81 ± 2.55 12.69 ± 2.95 0.031 TPIS 3.21 ± 2.49 50.13 ± 11.53 0.014 
 

 
Protein I.D. relates to the Uni-Prot database, entries returned using the MASCOT search engine. Synthesis rates are presented in 

relative format which relates to fractional synthesis rate in percent per day and in absolute terms which is reflective of whole EDL 

synthesis with rates expressed in picograms per day. All data is represented as MEAN ± SD for biological replicates (n = 3) in the 30 

days stimulated muscle (Stim) and the non-stimulated control muscle (Ctrl). The proteins are ranked in order of largest increase in 

synthesis rate from Ctrl to Stim through to largest decrease in synthesis rate from Ctrl to Stim. P-Values are generated from paired t-

tests between control and 30-d stimulated muscle. 
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Supplementary figures 
 

 
 
Figure S1. Protein turnover responses of oxygen transport proteins. 

Mean protein turnover data is shown in absolute terms (pg/d) for oxygen transport 

proteins that exhibit a significant (P<0.05) difference in abundance between the control 

and stimulated muscle at the 30-d time point. (A) Venn diagram displays the number 

of oxygen transport proteins that show different responses in protein turnover: 

increases (­), decreases (¯) or no change («) for synthesis and degradation in order 

to change their net abundance after 30 days of stimulation. (B) Uni-Prot name relates 

to the protein I.D. using the Uni-Prot database, entries returned using the MASCOT 

search engine (number relates to the spot number in Figure 3.2). The response is 

described for both synthesis and degradation with significance level (P-value) for each 

protein which corresponds with the Venn diagram in panel A. (C) Summary of proteins 

identified in panel B, grouped and colour coded by their protein turnover responses. 

Green text in panel B represent data in green in panel C etc. Data is displayed for 

absolute synthesis and degradation in picograms per day as mean ± SD for each 

collective group (n = 3). The light-coloured bars represent the 30-d stimulated muscle 

and the darker coloured bars represent the control muscle. 
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Figure S2. Protein turnover responses of calcium handling proteins. 

Mean protein turnover data is shown in absolute terms (pg/d) for calcium handling 

proteins that exhibit a significant (P<0.05) difference in abundance between the control 

and stimulated muscle at the 30-d time point. (A) Venn diagram displays the number 

of calcium handling proteins that show different responses in protein turnover: 

increases (­), decreases (¯) or no change («) for synthesis and degradation in order 

to change their net abundance after 30 days of stimulation. (B) Uni-Prot name relates 

to the protein I.D. using the Uni-Prot database, entries returned using the MASCOT 

search engine (number relates to the spot number in Figure 3.2). The response is 

described for both synthesis and degradation with significance level (P-value) for each 

protein which corresponds with the Venn diagram in panel A. (C) Summary of proteins 

identified in panel B, grouped and colour coded by their protein turnover responses. 

Green text in panel B represent data in green in panel C etc. Data is displayed for 
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absolute synthesis and degradation in picograms per day as mean ± SD for each 

collective group (n = 3). The light-coloured bars represent the 30-d stimulated muscle 

and the darker coloured bars represent the control muscle. 
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Figure S3. Protein turnover responses of high-energy phosphate proteins. 

Mean protein turnover data is shown in absolute terms (pg/d) for high-energy 

phosphate proteins that exhibit a significant (P<0.05) difference in abundance 

between the control and stimulated muscle at the 30-d time point. (A) Venn diagram 

displays the number of high-energy phosphate proteins that show different responses 

in protein turnover: increases (­), decreases (¯) or no change («) for synthesis and 

degradation in order to change their net abundance after 30 days of stimulation. (B) 

Uni-Prot name relates to the protein I.D. using the Uni-Prot database, entries returned 

using the MASCOT search engine (number relates to the spot number in Figure 3.2). 

The response is described for both synthesis and degradation with significance level 

(P-value) for each protein which corresponds with the Venn diagram in panel A. (C) 

Summary of proteins identified in panel B, grouped and colour coded by their protein 

turnover responses. Green text in panel B represent data in green in panel C etc. Data 

is displayed for absolute synthesis and degradation in picograms per day as mean ± 

SD for each collective group (n = 3). The light-coloured bars represent the 30-d 

stimulated muscle and the darker coloured bars represent the control muscle. 
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Figure S4. Protein turnover responses of unassigned proteins. 

Mean protein turnover data is shown in absolute terms (pg/d) for unassigned proteins 

that exhibit a significant (P<0.05) difference in abundance between the control and 

stimulated muscle at the 30-d time point. (A) Venn diagram displays the number of 

unassigned proteins that show different responses in protein turnover: increases (­), 

decreases (¯) or no change («) for synthesis and degradation in order to change their 

net abundance after 30 days of stimulation. (B) Uni-Prot name relates to the protein 

I.D. using the Uni-Prot database, entries returned using the MASCOT search engine 
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(number relates to the spot number in Figure 3.2). The response is described for both 

synthesis and degradation with significance level (P-value) for each protein which 

corresponds with the Venn diagram in panel A. (C) Summary of proteins identified in 

panel B, grouped and colour coded by their protein turnover responses. Green text in 

panel B represent data in green in panel C etc. Data is displayed for absolute synthesis 

and degradation in picograms per day as mean ± SD for each collective group (n = 3). 

The light-coloured bars represent the 30-d stimulated muscle and the darker coloured 

bars represent the control muscle. 
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Chapter 4. The role of protein turnover in skeletal muscle 
adaptation induced by co-contraction high-frequency 
stimulation. 

4.1 Abstract 

Adaptations to resistance exercise training can support improvements in athletic 

performance but also improve health-related musculoskeletal function and offset the 

loss of muscle mass and strength in pathological states. Resistance exercise is also 

associated with a general increase in muscle protein turnover, but it is not yet known 

how the components of protein turnover (i.e. synthesis and degradation) are 

coordinated to bring about exercise-induced changes in protein abundance. We have 

used stable isotope labelling and co-contraction high-frequency stimulation (CHFS) in 

vivo to investigate how the synthesis, abundance and degradation of individual 

proteins change during resistance exercise-induced muscle hypertrophy.  

Four independent groups of rats (n = 4 in each), received CHFS (5 sets of 10 

repetitions at 100 Hz, daily) and deuterium oxide for either 0 d, 10 d, 20 d or 30 d. At 

each time point the tibialis anterior (TA) muscle was harvested from the stimulated left 

hindlimb (Stim) and non-stimulated right hindlimb (Ctrl). Proteomic techniques were 

used to quantify changes in abundance of 35 myofibrillar proteins and 57 soluble 

proteins. Peptide mass spectrometry was used to calculate protein synthesis rates, 

protein degradation was calculated from the difference between the change in 

abundance and synthesis rate. Resistance exercise training increased (P = 0.002) the 

average rate of synthesis in mixed myofibrillar proteins from Ctrl (34.71 ± 1.07 pg/d) 

to Stim (40.18 ± 0.96 pg/d). However, the synthesis rate of mixed soluble proteins did 

not change (P = 0.639) from Ctrl (49.66 ± 0.82 pg/d) to Stim (52.04 ± 1.07 pg/d). 

However, there was a large range 2.71 ± 0.55 pg/d (PFKAM) to 140.53 ± 0.24 pg/d 

(KCRM) of individual protein synthesis rates. Protein turnover responses differ on a 

protein-by-protein basis during muscle adaptation. For example, ALBU and ACTS 

both increase (P = 0.014, 0.003 respectively) in abundance in response to CHFS, but 

ALBU does not change (P = 0.831) its synthesis in Stim compared to Ctrl, whereas 

ACTS increases (P = 0.016) the rate of synthesis in Stim. In contrast, CAH3 and G3P 

both do not change (P = 0.271, 0.113 respectively) in abundance in response to CHFS, 

but CAH3 increases (P = 0.001) and G3P decreases (P =0.013) the rate of synthesis 

in Stim compared to Ctrl. In conclusion, muscle adaptation in response to CHFS is 
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underpinned by protein-specific changes in synthesis and degradation. Our data 

suggest both protein synthesis and protein degradation contribute to changes in 

protein abundance during muscle adaptation to resistance exercise training. 
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4.2 Introduction 

Resistance exercise training elicits a range of morphological and neurological 

adaptations, including increases in muscle mass and strength that contribute towards 

whole-body changes in physiological function (Booth and Thomason, 1991.; Folland 

and Williams, 2007). Strength directly refers to the capacity of the muscle to exert 

force against an external load, whereas hypertrophy is defined as an increase in 

muscle mass (Folland and Williams, 2007). Muscle adaptations to resistance exercise 

include changes to the metabolic properties of a muscle as well as the contractile 

elements of the muscle, and these gross changes in muscle phenotype are 

underpinned by complex changes in the abundance or modification status of 

numerous proteins (Roux et al, 2013). Such changes in protein abundance are brought 

about through differences in synthesis and degradation. Exercise is generally 

associated with a universal increase in muscle protein turnover, especially following 

resistance activity (Chesley et al, 1992; MacDougall et al, 1995). Biolo et al, (1995) 

reported protein turnover to increase compared to resting values post resistance 

exercise, but fractional synthesis rate (FSR) to be higher (~133 %) than the 

degradation (~40 %) rate (FDR) of mixed muscle proteins in untrained humans, even 

for up to 3 hours after exercise cessation. Thus, demonstrating an increase in whole 

muscle protein turnover in response to resistance exercise and a likely shift towards a 

more positive net protein balance (i.e. synthesis increased more than degradation). 

However, these data are the average synthesis and degradation rates of mixtures of 

thousands of different proteins and it is not yet known how the individual components 

of protein turnover (i.e. synthesis and degradation) are coordinated on an individual 

level to bring about changes in protein abundance that underpin phenotypic changes 

associated with resistance exercise. Changes in protein abundance and the 

subsequent increases in protein content of the muscle leading to hypertrophy can 

result in improvements in strength, muscular endurance, power and neuromuscular 

control (Kraemer et al, 1988; Folland and Williams, 2007). These adaptations can 

support improvements in athletic performance as well as improve health-related 

musculoskeletal function in general populations, e.g. by offsetting the loss of muscle 

mass and strength in pathological states such as sarcopenia (Macaluso and De Vito, 

2004). This ability of skeletal muscle to adapt to external stimuli i.e. resistance training 

can be used to access the range of benefits associated with a greater muscle 
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hypertrophy. Muscle has been shown to elicit an increase in size in response to 

resistance exercise at an intensity of 65-80 % 3 times per week ~40 %, based on 

myofibre size and ~4 %, based on fat free mass increases in humans (Bamman et al, 

2003.; Rennie et al, 2004) and ~7 % to ~30 % in rats (Alway et al, 2005). Furthermore, 

progressive resistance training can alter the individual abundance of key muscle 

proteins, which in turn increases the protein content of the muscle (up to 24 % in rat 

over 8 weeks of training; Hornberger and Farrar, 2004) to induce adaptations to the 

physiology, cell biology and neuromuscular control of a muscle in order to efficiently 

fulfil the demands of a particular locomotion task. There are well developed guidelines 

for resistance training that produce muscular characteristics such as strength, 

hypertrophy, power and endurance that are extensively documented (ACSM, 2009). 

There are also many advantages to long-term health that resistance exercise training 

affords, such as the maintenance of strength and lean muscle tissue to prevent the 

onset of conditions such as sarcopenia (Marzetti et al, 2017). However, with the advent 

of exercise proteomics, there is now room to refine our understanding regarding such 

adaptations, permitting investigation of how the synthesis and degradation of 

individual proteins contribute to changes in protein turnover.  Employing the use of 

exercise proteomics will provide a more explicit understanding to the mechanism of 

how this adaptation to resistance exercise occurs addressing issues that previous 

literature has failed to. Whilst at the same time providing insight in to how 

pathophysiological conditions (e.g. sarcopenia) are manifested in skeletal muscle. 

To maintain or increase the volume of skeletal muscle mass is of clear benefit to health 

(Landi et al, 2014). Exercise induced gains in muscle mass are commonly attributed 

to a greater protein synthetic response, Brook et al, (2015) recently reported an ~20 

% increase in the synthesis rate of mixed myofibrillar proteins during the first 3 weeks 

of a resistance exercise intervention that accounted for most of the observed increase 

in muscle mass. However, their study did not measure individual protein responses to 

exercise, so the relationship between an average increase in synthesis across mixed 

myofibrillar proteins and selective changes in myofibrillar protein abundance was not 

clear. Furthermore, Phillips et al, (1997) also demonstrate that muscle is often in a 

catabolic state unless exercise is undertaken or protein is consumed, underlining the 

importance of exercise training to maintain muscle mass. Here, FSR and FDR was 

determined using primed constant infusions of amino acid tracer to study subjects in 

a fasted state at rest and up to 48 hours after a resistance exercise bout. Resistance 
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exercise resulted in significant increases in FSR and FDR, ~113 % and ~31 % 

respectively. However, in the resting state only, FDR exceeded FSR by ~83% resulting 

in the net loss of muscle protein. This work highlights the importance of muscle protein 

degradation in the adaptive response and suggests that degradation may have a 

fundamental role in the remodelling of skeletal muscle in response to resistance 

exercise. Furthermore, reports (Mitchell et al, 2014) that acute (~6 h) elevations in 

muscle protein synthesis rates tend to over-estimate the longer-term hypertrophy 

responses which also indicate that protein degradation is an important component of 

the response to chronic resistance training.  

Exercise proteomic techniques, such as dynamic proteome profiling (DPP), enables 

the time course of adaptation to be investigated over longer periods. Compared to the 

traditional amino acid tracer methods that can be sustained for approximately <12 h, 

DPP relies on oral consumption of stable isotope and investigation can occur over 

days or weeks. Currently, it is not known how resistance exercise training influences 

protein turnover in this manner i.e. over weeks, and little is known about the 

modulation of synthetic and degradative processes over longer time courses of 

adaptation, that this would encompass. Camera et al, (2017) attempts to fill this gap 

by using dynamic proteome profiling in humans and reports key findings in that shows 

resistance exercise-induced changes in muscle protein abundance occurred via 

several different patterns of response that involved the modulation of both synthetic 

and degradative processes proteins. However, this was only a 9-day intervention and 

lacked absolute data to inform how individual protein responses are informing 

adaptation at the whole muscle level. Furthermore, human subjects have a larger body 

mass and subsequently have a slower uptake of deuterium (used in DPP) making 

curve fitting calculations more complex. These issues can be overcome with use of 

small laboratory animals, the precursor enrichment is rapid and stable making the 

calculation of synthesis rates more robust allowing the calculation of both individual 

protein turnover rates in both relative and absolute terms. Animal models also allow 

for whole muscle mass and protein abundance to be measured accurately, 

consequently overcoming the limitations of using DPP in human populations. 

However, models of resistance training in rats have been difficult to implement. 

Research in this area has utilised several different animal models, that attempt to 

induce muscular hypertrophy in order to investigate the mechanisms associated with 

muscle growth. Compensatory overload is one of the longest established approaches 
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to producing muscle hypertrophy in rodents (Tomanek et al, 1970.; Timson, 1990) 

currently, several models of application exist, including: tenotomy (Goldberg et al, 

1975), surgical removal (Ianuzzo et al, 1976.; Gollnick et al, 1981) or denervation 

(Degens et al, 2003) of synergistic muscles. Primarily, compensatory overload models 

are implemented unilaterally so the contralateral limb can serve as an intra-animal 

control. Hypertrophy is then achieved by inactivating or removing the synergists in the 

target limb, so that the remaining muscle is overloaded during movement by the animal 

(Armstrong et al, 1979; Roy et al, 1982). This is an attractive experimental approach 

and has been widely adopted because it provides a large (65-97 %) and rapid (hours 

after surgery) hypertrophic response with relatively little stress for the animal. 

Synergist ablation of gastrocnemius and soleus muscles is perhaps the most common, 

overloading the plantaris muscle (Armstrong et al, 1979; Baldwin et al, 1982). There 

are two distinct phases, a short-term inflammatory response of the muscle ranging 

from 1 hour to 10 days after the surgical removal of the synergist (Armstrong et al, 

1979). As a result, here is a significant increase in the overloaded plantaris wet weight 

as early as 1 hour following surgery, but 96 % of this increase is accounted for by 

oedema. Muscle oedema appears to peak between 1–5 days post-surgery. However, 

the mass increases of the muscle appear to be due to surgical trauma rather than the 

increased stretch imposed on the muscle (Armstrong et al, 1979). The second phase 

is a slower long-term response, which can take as long as two-weeks, whereby the 

muscle responds to the increased functional demands imposed on it due to the 

removal of synergistic muscles. Tenotomy, the process of severing the distal tendon 

of synergist muscles has also been used to study hypertrophy of rat plantaris and 

soleus muscles (Goldberg et al, 1975; Timson, 1990). Tenotomy of the gastrocnemius 

results in rapid compensatory growth (~30-40 %) of the plantaris and soleus during 

the first week after surgery (Castle and Reyman, 1984.; Goldberg et al, 1975). 

However, Gollnick et al, (1981) report muscle mass then reduces (to ~10 % greater 

than control) after 2–3 weeks. Moreover, it seems compensatory hypertrophy is not a 

good model for studying the initial adaptations to skeletal muscle as the first stages of 

adaptation are largely missed due to the massive response of muscle oedema 

masking the hypertrophic response during the early part of compensatory overload. 

Armstrong et al, (1979) have illustrated that even with sham operations used as 

controls in surgical ablation models, the first initial increase in muscle size is due 

surgery related trauma evidenced by significant (~91 %) oedema of the muscle. 
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Furthermore, a potential complication with tenotomy is that the distal tendon may 

reattach to the remaining musculature, thus reducing the overload stimulus (Castle 

and Reyman, 1984.; Lowe and Alway, 2002). However, the degree of muscle 

hypertrophy is variable and seems to be due, at least in part, to the activity of the 

animal, with more active animals, such as mice showing greater hypertrophy than less 

active animals, for example cats (Roy and Edgerton, 1995). 

Rodent models of either voluntary and involuntary resistance exercise have been 

developed and are reviewed in (Timson, 1990). These models attempt to establish 

weight-lifting strategies that mimic human resistance training. Wong and Booth, (1988) 

reported a unilateral model for resistance training in anesthetised rats using bespoke 

apparatus to give mechanical resistance against plantar flexion of the foot in response 

to electrical stimulation. Resistance exercise was performed twice per week for 16 

weeks and resulted in a 13-18 % increase wet muscle. However, a potential draw-

back of this design is that rats were also exposed to multiple rounds of anaesthesia 

which may have interfered with the hypertrophic response. Wong and Booth, (1990) 

used the same experimental setup again to study the differences between unloaded 

and high resistance concentric contractions of the gastrocnemius in anesthetised rats 

during a high-frequency (20 bouts of 192 repetitions) training protocol. They reported 

an increase in muscle wet weight of the stimulated TA of 16 % for the unloaded group 

and 30 % for the high resistance group, in comparison to a sedentary control group. 

However, these values need to be interpreted with care, as the non-stimulated 

muscles of the trained animals also showed significant growth. Comparing the 

average muscle mass of the stimulated versus non-stimulated muscles within each 

group, gives a relative increase of 6 % for the unloaded group and 13 % for the high 

resistance group. The model described by Wong and Booth, (1988; 1990) lead to the 

development of a much-improved model by Baar and Esser, (1999) here the use of 

stimulation to the sciatic nerve results in a simultaneous contraction of all innervated 

hind limb muscles. Thus, creating a model of co-contraction which has the benefit of 

working the target muscles antagonistically to produce a model of resistance exercise 

training that is highly comparable to human resistance exercise.  

The strategy developed by Baar and Esser, (1999) utilised the fact that the plantar-

flexors (gastrocnemius, GAS; soleus, SOL; plantaris, PLN) produce more force (~800 

g maximal output, Wong and Booth, 1988) than the dorsi-flexors (extensor digitorium 

longus, EDL; tibialis anterior, TA) resulting in net plantar-flexion of the ankle. Thus, 
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producing a concentric contraction of the plantar-flexors, and an eccentric contraction 

of the dorsi-flexors. However, training sessions were again, performed in anesthetised 

animals, twice a week for a total of 6 weeks resulting in a significant increase of wet 

muscle mass of ~14 % and in both the EDL and TA, but no comparable changes were 

observed within any of the plantar-flexor muscles. Unfortunately, these stimulation 

models (Wong and Booth, 1988; Baar and Esser, 1999) still require a lot of manual 

interaction and multiple periods of repeat anaesthesia to conduct an experiment which 

leads to increased stress for the animals and may subsequently affect the hypertrophic 

response. To address concerns regarding repeated periods of anaesthesia, 

Hornberger and Farrar, (2004) developed a model of resistance training in conscious 

rats. Animals were trained to climb a 1.1 metre ladder (80° incline) and resistance was 

added by attaching weights to the animals’ tails. Hornberger and Farrar, (2004) report 

a 23 % increase in flexor halluces longus (FHL) mass after 8 weeks of training (every 

3 days per week, 4-9 climbs per session). Hindlimb training of the plantar-flexor 

muscles to mimic squat exercise in humans is effective and results in 20-30 % 

hypertrophy of the plantaris after 15 training sessions over a 3-week period (Wirth et 

al, 2003). Voluntary models may reflect physiological adaptation of muscle to 

resistance exercise more faithfully than the aforementioned surgical interventions. For 

example, Hornberger and Farrar, (2004) report muscle growth is underpinned by 

accretion of muscle protein, rather than oedema. Similarly, Duncan et al, (1998) report 

muscle growth after ladder climbing is associated with 50 % increase in fibre cross 

sectional area (i.e. true hypertrophy rather than damage response). These findings 

make voluntary models attractive, particularly because training parameters such as 

exercise type and intensity as well as rest intervals can be prescribed in a manner 

analogous to human training (Nader and Esser, 2001.; Haddad and Adams, 2002). 

However, operant conditioning strategies e.g. light or shock (Ho et al, 1980.; Tamaki 

et al, 1992) and are rewarded with food when they complete a lifting task (Gonyea and 

Ericson, 1976.; Wirth et al, 2003) are often required to ensure the animals will perform 

resistance exercise training, and can be challenging to achieve complete and 

reproducible execution of each task. This likely adds to inter-subject variability 

compared to involuntary protocols. Furthermore, food deprivation and reward or the 

use of an electrical shock stimulus to promote a lifting activity may interfere with 

intended outcome of the training programme (Des Neves et al, 2017). Lastly, voluntary 
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hindlimb training models are bilateral and thus the experimental muscles must be 

compared to muscles from control, sedentary animals. 

The hypertrophic response to electrical stimulation models appear to be the least 

variable in terms of outcome (e.g. range of 13-18 % hypertrophy compared to 7-30 % 

seen in voluntary resistance training models and 30-97 % produced by compensatory 

overload models). Furthermore, models requiring surgical intervention, in comparison 

to more voluntary models, could be considered more ethical due to the animals being 

unaware of the surgery. Whereas operant conditioning involves a lot of interaction with 

the animals resulting in an increased amount of stress. Surgical intervention also 

allows for a better controlled model meaning less animals are required but with a 

greater statistical power due to the unilateral model permitting pair-sample analysis. 

Electrical stimulation differs from the natural ordered recruitment of motor units 

(Henneman et al, 1965), which may be regarded as non-physiological, but this also 

benefits the experiment design when the aim is to study the mechanisms of proteome 

adaptation. Electrical motor nerve stimulation has been used to activate muscles and 

induce muscular hypertrophy in anaesthetised animals to establish models of 

resistance exercise training (Wong and Booth, 1988; Baar and Esser, 1999). These 

animal models that incorporate electrical stimulation provide a robust means of 

studying both the acute and chronic responses of various contraction types in skeletal 

muscle, and are well positioned to offer an improved understanding of the mechanisms 

that contribute towards muscle hypertrophy (Wong and Booth, 1988; Baar and Esser, 

1999).  

Herein, we have used a relatively new model, developed within our group (Schmoll et 

al, 2018), involving electrically stimulated co-contraction of plantar flexors and dorsi 

flexors in vivo. Our model replicates the co-contraction design reported in Baar and 

Esser, (1999) but uses an implanted programmable stimulator and therefore does not 

involve repeat bouts of anaesthesia.  Stimulation can be adjusted to optimise the load 

on the dorsi-flexors by moderating the activation of the plantar-flexors to result in 

isometric contraction. The model is unilateral and muscles of the non-stimulated limb 

provide a contralateral, internal control. In recent work (Schmoll et al, 2018), this model 

has produced comparable increases in muscle mass (14 % in TA and 11 % in EDL 

achieved over 4 weeks) with published in the literature (Baar and Esser, 1999).  

Increases in muscle wet weight and protein content are common responses of skeletal 

muscle to mechanical loading (Timson, 1990). Wong and Booth, (1990) report both 
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shortening and lengthening contractions increase muscle size through increasing 

protein synthesis rates by ~50 % above baseline during the 12–17 h period after 

resistance stimulation. Furthermore, Baar and Esser, (1999) report p70S6k 

phosphorylation correlates with the increases EDL and TA size and therefore provides 

a mechanistic link to the processes underpinning protein translation. These data agree 

well with mixed muscle fractional synthesis data in humans. Phillips et al, (1997) 

reports resistance exercise results in significant increases above rest that is at its 

highest point 3 h post exercise (112 %) but is still elevated for up to 48 h (24 h, 65 %; 

48 h, 34 %). Jacobs et al, (2013) report mTORC1 as a downstream target of p70S6k 

and a known mediator of protein synthesis. (Song et al, 2017) report higher levels of 

phosphorylation of p70S6k and subsequent mTORC1 activation in response to 

resistance exercise training in humans.  

Exercise proteomics is a rapidly growing area of research, but to date there has been 

little work that has focused on resistance training or hypertrophy. Isfort et al, (2002) 

reports proteomic analysis of rat soleus muscle involving two dimensional gel 

electrophoresis (2DGE) to identify individual proteins. Isfort et al, (2002) implement a 

unilateral model of hindlimb suspension to induce atrophy for 14 days, subsequently 

the soleus is then reweighted to induce hypertrophy. Proteomic 2DGE separation was 

then performed on the samples after undergoing 7 days of reweighting induced 

hypertrophy. During the hypertrophic response, there were significant changes to the 

abundance of 15 muscle proteins that encompassed both contractile and metabolic 

proteins such as troponin T (increased) and beta enolase (decreased). Although we 

do not learn if these changes are brought about due to changes in synthesis or 

degradation, Isfort et al, (2002) provides evidence that both contractile and metabolic 

proteins are selectively gained or lost during muscle hypertrophy. Shankaran et al, 

(2016) reports growth in rat triceps muscle in response to selective androgen receptor 

(SAR) stimulation. The mass of the triceps increased ~10 % after 28 days of SAR 

administration and several metabolic and structural proteins such as, ATPB and 

MYL1/3 increased in fractional synthesis rates. However, in this case the authors did 

not measure protein abundance, and so these data do not distinguish between 

changes in synthesis rate that result in protein accumulation rather than elevated 

protein turnover.  Therefore, it is necessary to measure synthesis, degradation and 

abundance simultaneously to gain an accurate representation of how protein turnover 

and ultimately muscle adaptation is organised. More recently, our lab reported 
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(Camera et al, 2017) dynamic proteome profiling of the human muscle response to a 

9-day period of resistance exercise and high-fat diet. Dynamic proteome profiling 

combines traditional proteomic methods for measuring protein abundance with the 

new stable isotope incorporation methods recently reported in Shankaran et al, (2016) 

for measuring protein synthesis. Camera et al, (2017) reported synthesis and 

abundance measurements for almost 100 muscle proteins and used these data to also 

calculate protein specific degradation rates. These data (Camera et al, 2017) provide 

crucial evidence to demonstrate the processes of protein synthesis and degradation 

in response to resistance training are probably more complex than has been 

previously recognised. For example, there were at least 6 different patterns of 

response, including (i) proteins that increased in turnover rate with no change in 

abundance, (ii) proteins that increased in abundance with no increase in synthesis 

rate or (iii) proteins that decreased in abundance despite increasing in synthesis rate. 

Based on these data it will be of interest to investigate longer term responses to more 

prolonged training regimens that result in measurable increases in muscle mass. 

However, a limitation of dynamic proteome profiling using human participants is that 

accurate measurements of whole muscle mass are not easily obtainable. Comparison 

of fractional synthesis rate data from muscle at baseline and after a period of growth 

induced by exercise could be confounded by changes in overall muscle mass. For 

example, the fractional synthesis rate could be identical prior to and after training, and 

the relative abundance of the protein may be unchanged, but if overall the muscle has 

increased in size then the absolute amount of protein being synthesised will be 

greater. Without the ability to provide information at the whole muscle level i.e. 

absolute values, we cannot gain an entirely clear picture of how individual muscle 

protein turnover is orchestrated during resistance exercise adaptation. This limitation 

is circumvented by using an animal model where the mass of the isolated muscle can 

be measured. Moreover, calculation of protein synthesis using deuterium 

incorporation is more robust in small laboratory animals and our unilateral model 

provides internal control, which further enhances the robustness of the technique. 

Herein, we report a proteomic analysis, utilising our unique DPP method, whilst 

employing an in vivo animal model of co-contraction high-frequency stimulation 

(CHFS). A resistance training stimulus was delivered over a 30-day period and 

samples were taken at 10-day intervals in order to capture time-dependent changes 

in individual protein turnover.  



 169 

Objectives 
 
Objective of chapter - To investigate how individual protein responses coordinate the 

adaptive response of the muscle in response to hypertrophy. 

 

Specific Aim 1: To measure increases in protein content to confirm a hypertrophic 

response from the model. 

 

Specific Aim 2: To investigate the time course of changes to individual protein 

turnover in both myofibrillar and soluble fraction proteins in response to muscle 

hypertrophy. 

 

Specific Aim 3: To identify proteoform-specific changes during muscle adaptation 

induced by CHFS and measure protein turnover to investigate how such changes are 

coordinated. 

 

4.3 Methodology 

All experimental procedures were conducted under the British Home Office Animals 

(Scientific Procedures) Act 1986. Male Wistar rats aged 3 months, 412 ± 69 g body 

weight were bred in-house in a conventional colony, housed in controlled conditions 

of 20 °C, 45 % relative humidity, and a 12 h light (0600–1800 hours) and 12 h dark 

cycle, with water and food available ad libitum. All aspects of animal husbandry were 

conducted by the LJMU animal facility staff. Surgery procedures and the electrical 

stimulation model of co-contraction were performed by Prof. Jonathan Jarvis and Dr. 

Hazel Sutherland as part of a wider project. Work conducted within this thesis focused 

solely on aspects associated with dynamic proteome profiling of muscle samples. 

Animals were assigned to four groups (n = 4 in each), including a sham-operated 

control group and three groups (10, 20 and 30 days) that received deuterium oxide 

(2H2O; Sigma-Aldrich, St. Louis, MO) administration that was initiated by an 

intraperitoneal loading injection of 10 µL.g 99 % 2H2O-saline, and was then maintained 

by administration of 5 % (v/v) 2H2O in the drinking water available to the rats, which 

was refreshed daily. Animals also received a programmed stimulation pattern that 

simulated high intensity resistance training from an implanted device, by means of 
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electrical nerve stimulation intended to induce hypertrophy of the Tibialis anterior (TA) 

muscle, described previously by our group (Schmoll et al, 2018). All surgical 

procedures and anaesthetic protocol were conducted according to Schmoll et al, 

(2018). Surgery was performed with full aseptic precautions and the animals were 

anaesthetised using a gaseous mixture of isoflurane and O2.  An initial concentration 

of 4 % isoflurane was used for induction of anaesthesia and was then adjusted to 

levels of 1-2 % to maintain an adequate surgical plane of anaesthesia. Buprenorphine 

(Temgesic, Indivior, Slough, UK) at a dose of 0.05 mg/kg-1 body mass, was 

administered pre-surgery for analgesia. The animals received stimulation via the 

cathode electrode placed underneath the common peroneal nerve while the anode 

was positioned underneath the tibial nerve. This configuration takes advantage of the 

different stimulation thresholds for anodic and cathodic stimulation. The lower 

stimulation threshold at the cathode results in an initial recruitment of all the axons of 

the peroneal nerve followed by additional depolarization of some motor neurones 

within the tibial nerve at higher stimulation amplitudes. An amplitude was set that 

provided enough activation of the plantar-flexors to resist the action of the dorsi-flexors 

so that the ankle angle did not decrease. The forces produced by the much stronger 

plantar-flexor muscles were transmitted via the ankle joint and caused additional 

loading in auxotonic contractions of the TA muscle. The 0-day time point represents 

the sham-operated control group that were implanted with inactive stimulators and 

then killed after the 1-week recovery period. The remaining animals had the 

stimulation patterns implemented remotely using the Mini-VStim-App installed on a 

standard Android driven tablet computer (Xperia Tablet Z, Sony Corporation, Tokyo, 

Japan). The tablet computer maintained an active Bluetooth connection to a Mini-

VStim programming device which served as bridge to communicate with the pulse 

generator via an additional radio frequency link to adjust the stimulation amplitude on 

day zero (all stimulation was initiated, monitored and controlled by researchers Mark 

Viggars and Steffen Eickhoff). Thereafter the stimulator operated autonomously and 

the animals were maintained in their normal cages. The stimulation pattern consisted 

of a daily ‘warm-up’ phase of 40 twitches at 4 Hz for a duration of 10 seconds 

immediately before the main daily training session. The main training stimulus entailed 

the animals receiving 5 sets of 10 repetitions. Each repetition was a 2 second 

contraction at a stimulation frequency of 100 Hz producing a fused, near maximal 

tetanic contraction of the recruited motor units. The devices were programmed to give 
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2 seconds of rest between repetitions and 2.5 minutes of rest between the sets. After 

10 d, 20 d and 30 d of stimulation and deuterium oxide consumption, animals were 

euthanised humanely in a rising concentration of CO2 followed by cervical dislocation. 

Plasma samples were obtained by cardiac puncture immediately after death and TA 

muscles, from the left stimulated limb (Stim) and the right non-stimulated limb (Ctrl), 

were isolated. Each muscle was cleaned of fat and connective tissue, weighed before 

being frozen in liquid nitrogen and stored at -80 °C pending further analysis. 

Deuterium enrichment of the body water of each animal (n = 16) was determined by 

GC-MS analysis of 2H enrichment in plasma samples against external standards. Full 

methods are described in Chapter 2, section 2.4.2. Muscle homogenates were 

fractionated into the myofibrillar, contractile proteins and soluble fraction proteins 

according to Chapter 2, section 2.4.3. The subsequent analysis of the myofibrillar 

proteins were analysed via top-down proteomic methods using the gel-based 

separation method, 2-dimensional gel electrophoresis (2DGE) to isolate individual 

proteoforms and to quantify abundance changes. Individual proteins were identified 

from peptide mass fingerprinting and synthesis measurements were derived from 

MALDI mass spectrometry, detailed in its entirety in Chapter 2.5. 

The analysis of the proteins in the soluble fraction was achieved by a bottom-up 

proteomic approach with full details described in Chapter 2.6. Here, protein samples 

underwent in-solution digest and were identified and abundance quantified via LC-

MS/MS label free quantitation. MS data was normalised by an inter-sample 

abundance ratio, and the differences in relative protein abundance were quantified 

using nonconflicting peptides only. MS/MS spectra were exported into Mascot and 

individual proteins were identified, from which protein synthesis measurements were 

calculated based on the mass isotopomer distribution of specific peptides (Chapter 

2.7).  

Fractional synthesis rates (FSR) were derived for all identified myofibrillar and soluble 

proteins using the methods detailed in Chapter 2.7. Synthesis rates were calculated 

in both control (right, non-stimulated) and stimulated (left) muscles in two primary 

ways. All proteins used the fitting of the mass isotopomer data collected at each of the 

4 experimental time-points using a semi-log plots. In addition, data were fitted using a 

2-point non-linear first-order equation in order to calculate FSR over intermediate time 

points e.g. 0 d – 10 d, 10 d – 20 d, 20 d – 30 d. These calculations are achieved by 

first calculating the rate of decay of the molar fraction of the m0 mass isotopomer 
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across 0 d, 10 d, 20 d and 30 d time points by using semi-log plots. The rate constant 

(k) is then divided by the number (n) of exchangeable hydrogen sites reported in 

standard tables (Commerford et al, 1983) and finally by the level of precursor 

enrichment (p) measured by GC-MS analysis of plasma samples. Protein FSR is then 

reported as the median of the peptide values assigned to each protein or proteoform. 

The individual rates for fractional degradation rate (FDR) were also calculated for each 

protein in the myofibrillar and soluble fractions. This was achieved by calculating the 

difference between the rate of synthesis and the rate of change in protein abundance 

(Full details in Chapter 2, section 2.7.2). 

From the FSR and FDR calculations absolute protein turnover was calculated for each 

individual protein in the myofibrillar and soluble fraction (Full calculation details in 

Chapter 2, section 2.7.3). Absolute synthesis rates were calculated by first multiplying 

the wet weight of the TA by the total amount of protein extracted from the TA and then 

multiplying by the rate of change in relative protein abundance for each individual 

protein. 

Statistical analysis of myofibrillar protein abundance was conducted on normalised 

spot data from 2D-gels. Normalised protein abundance from LC-MS label-free 

quantitation were used for soluble protein abundance. Relative synthesis rates were 

analysed as percent per day (%/d) and absolute synthesis rates were analysed as 

pmol/d in the soluble fraction proteins and as mg/d in the myofibrillar fraction proteins, 

all values are the average of the analysed peptides for each protein and subsequent 

analysis is at the protein level. All statistical testing was performed on biological 

replicates (n = 4 in each group) conducted using SPSS (SPSS, v23, Chicago, USA) 

and the statistical significance level was set at P< 0.05. To assess the degree of 

consistency across control situations (right limb, non-stimulated muscle) for all time 

points (10 d, 20 d and 30 d) and sham operated animals (0 d) a one-way ANOVA was 

used to analyse protein abundance, synthesis and degradation data. To assess the 

differences between the non-stimulated control limb (right) and the stimulated limb 

(left), paired T-tests were conducted to compare stimulated and non-stimulated limbs 

at each experimental time point (0 d, 10 d, 20 d and 30 d) for protein abundance, 

synthesis and degradation rates at the individual protein level. To control the false-

discovery rate, P-value distributions were used to calculate Q values and a criterion 

false-discovery rate of <1 % was set. This statistical approach considers the biological 
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variation across each protein and, therefore, is more sophisticated than arbitrarily 

implementing a threshold on the basis of fold change. 

 

4.4 Results 

At the beginning of the experiment (0 days) the wet weight of the tibialis anterior (TA) 

was not different between the sham operated left limb (580.0 ± 46.6 mg) and the non-

operated right limb (617.0 ± 46.8 mg). There was also no significant change in TA 

mass of the non-stimulated right limb at any of the experimental time points 

encompassing the 30 days of unilateral co-contraction high-frequency stimulation 

(CHFS). In response to CHFS, TA mass of the left, stimulated limb increased by 16 % 

after 10 days, and a further 4 % after 20 and 30 days. The difference in mass between 

the left, stimulated (Stim), and right contralateral non-stimulated (Ctrl) TA was 

statistically significant (P<0.05) after 10, 20 days and 30 days of CHFS (Figure 4.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Time course of changes in muscle wet weight.  

Wet weight (mg) of tibialis anterior (TA) in non-stimulated right (broken line) and 

contralateral stimulated left (solid line) limbs after unilateral high-frequency (100 Hz) 

stimulation in vivo. Data are presented as mean ± SD from independent groups of n = 

4 rats at each time point. *P<0.05 statistically significant difference between the right 

and left limbs analysed by paired t-test at each time point. 
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The changes in protein content in the TA over the experimental time course at 10-day 

intervals for the Stim and Ctrl TA is shown in Figure 4.2. At the start of the experiment 

period (0 days) the total protein content of the TA was no different between the sham 

operated left limb (89.36 ± 19.9 mg) and the non-operated right limb (88.08 ± 9.5 mg). 

There was also no change in TA protein content of the non-stimulated right limb at any 

of the experimental time points during the 30 days of unilateral CHFS. However, the 

protein content of the TA in the Stim increased by 65 % after the first 10 days of CHFS. 

A further 19 % in total protein content of the TA occurred by the end of the experiment 

(30 days). The difference in mass between Stim, and Ctrl TA was statistically 

significant (P<0.05) after 10, 20 days and 30 days of CHFS (Figure 4.2). 

 

 
Figure 4.2. Time course of changes in muscle protein content.  

Protein content (mg) of the tibialis anterior (TA) in non-stimulated right (broken line) 

and contralateral stimulated left (solid line) limbs after unilateral high-frequency (100 

Hz) stimulation in vivo. Data are presented as mean ± SD from independent groups of 

n = 4 rats at each time point. *P<0.05 statistically significant difference between the 

right and left limbs analysed by paired t-test at each time point. 

 

2D Gel analysis of the myofibrillar fraction resolved 50 protein spots in each of the 32 
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each biological replicate (approximately 1600 gel spots analysed). After filtering based 

on quality control criteria, a total of 35 spots had complete data from 5 peptides per 

protein that were present in all samples. Figure 4.3, illustrates the gel position of the 

35 spots that satisfied the requirements for protein synthesis calculations, the identity 

of each gel spot is reported in Table 4.1. The total number of non-redundant protein 

identifications was 18 and 10 proteins were present in multiple spots and therefore 

represent different proteoforms. The reproducibility of protein abundance 

measurements was good (coefficient of variation 3.1 ± 0.05 %, n = 4 biological 

replicates) and both the relative and absolute abundance of each proteoform in Ctrl 

and Stim muscles is reported in supplementary Table S3.  
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Figure 4.3. Separation of myofibrillar proteins by 2DGE. 

Representative two-dimensional gel electrophoresis map of TA myofibrillar proteins 

after 30 days of co-contraction high-frequency stimulation in vivo. The gel has been 

annotated with common spots across both conditions (stimulated and non-stimulated 

control) n = 35 (annotated 1-35). Spot annotations are consistent with the protein 

identities in Table 4.1. 

 

Table 4.1. Myofibrillar protein identifications. 

 
Spot 

number 
Protein name/ 
Description 

UniProt 
name 

Mr pI Mowse 
score 

Sequence 
coverage 
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1 Plectin PLEC 533540 5.61 88 4 % 
2 Glycogen 

phosphorylase, brain 
form 

PYGB 96174 7.27 93 18% 

3 Glycogen 
phosphorylase, brain 
form 

PYGB 96174 7.30 96 18 % 

4 ATP-dependant 6-
phosphofructokinase, 
muscle type 

PFKAM 85560 8.41 92 12 % 

5 ATP-dependant 6-
phosphofructokinase, 
muscle type 

PFKAM 85560 8.60 84 12% 

6 ATP synthase subunit 
beta 

ATPB 56354 5.08 128 22 % 

7 Desmin DESM 53457 5.21 115 25 % 
8 Alpha-enolase ENOA 47128 5.48 109 26 % 
9 Alpha-enolase ENOA 47128 5.72 98 26 % 

10 Beta-enolase ENOB 47014 7.03 114 30 % 
11 Beta-enolase ENOB 47014 7.33 93 30 % 
12 Beta-enolase ENOB 47014 7.63 97 30 % 
13 ATP synthase subunit 

alpha 
ATPA 59754 8.66 102 30 % 

14 Actin, alpha skeletal 
muscle 

ACTS 42051 5.29 126 26 % 

15 Creatine kinase M-
type 

KCRM 43045 7.19 98 24 % 

16 Creatine kinase M-
type 

KCRM 43045 7.29 91 24 % 

17 Creatine kinase M-
type 

KCRM 43045 7.74 91 24 % 

18 Creatine kinase S-
type 

KCRS 47385 8.20 86 28 % 

19 Creatine kinase S-
type 

KCRS 47385 8.22 92 28 % 

20 Creatine kinase S-
type 

KCRS 47385 8.48 84 28 % 

21 Tropomyosin alpha-1 
chain 

TPM1 28510 4.71 98 37 % 

22 Tropomyosin beta 
chain 

TPM2 32837 4.71 107 34 % 

23 Troponin T, fast TNNT3 30750 5.97 97 24 % 
24 Troponin T, fast TNNT3 30750 7.23 91 24 % 
25 Troponin T, fast TNNT3 30750 7.79 93 21 % 
26 Troponin I, fast TNNI2 21328 8.21 94 34 % 
27 Troponin I, fast TNNI2 21328 8.55 96 34 % 
28 Troponin T, fast TNNT3 30750 8.80 89 24 % 
29 Myosin light chain 1/3 MYL1/3 22156 5.21 112 28 % 
30 Myosin light chain 1/3 MYL1/3 22156 5.53 92 28 % 
31 Myosin light chain 1/3 MYL1/3 20680 5.42 82 28 % 
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32 Myosin light chain 1/3 MYL1/3 20680 5.73 85 28 % 
33 Carbonic anhydrase 3 CAH3 29431 8.74 96 30 % 
34 Myosin regulatory 

light chain 2 
MLRS 18969 4.24 92 42 % 

35 Myosin regulatory 
light chain 2 

MLRS 18969 4.76 98 43 % 

 

Spot number refers to the different proteoforms resolved by 2DGE and corresponds 

to the 2DGE image in Figure 4.3. Protein name relates to the Uni-Prot database, 

entries returned using the MASCOT search engine. A mowse score greater than 55 

denotes a confident (P<0.05) identification by peptide mass fingerprinting. Relative 

molecular mass (Mr) are from protein database entry, isoelectric point (pI) is observed 

from position on experimental 2DGE images. The amino acid sequence of peptides 

and residue positions (start and end) are available in supplementary information ‘Table 

S1’. 

 

At baseline (0-day time point) there was no difference in the abundance of myofibrillar 

proteins between Ctrl and Stim muscle. Accordingly, protein abundances were highly 

correlated (R2 = 0.98878; Figure 4.4) between Ctrl and Stim muscle at the beginning 

of the experiment. Protein abundances in Ctrl muscles did not change during the 30-

d experimental period (Fig. 4.4, upper panels). Protein abundances from the Ctrl limb 

were also assessed by one-way ANOVA of spot volumes in 0 d, 10 d, 20 d and 30 d 

and no differences (P<0.05) were found. In contrast, the level of correlation (R2) 

between baseline and Stim muscles deteriorated from 0.97882 at day 10 to 0.81623 

at day 30 (Figure 4.4). Relative fold-change in abundance were calculated between 

the Ctrl and Stim TA for each myofibrillar proteoform (Supplementary Table S3). 

Similar fold-change data were also calculated in absolute terms, taking into account 

the changing muscle mass (Supplementary Table S3). Both relative and absolute 

methods of calculation gave similar rank orders of change and equivalent outcomes 

in terms of the pattern of change for each myofibrillar proteoform (Supplementary 

Table S3). Two myofibrillar proteoforms (spot 8, ENOA and spot 2, PYGM exhibited 

significant (P<0.05) decreases in abundance after 10 days of stimulation. After 20 

days of stimulation the abundance of 16 proteins was significantly increased and by 

the end of the experimental period (30 d) there were 19 significant differences in 

protein abundance between Ctrl and Stim TA (Figure 4.5). 
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Figure 4.4. Correlation of relative myofibrillar protein abundance between stimulated 

and non-stimulated TA. 

Correlation matrix of normalised myofibrillar relative protein abundance (proteins 1-35 

present in both stimulated and non-stimulated TA at each time point). Correlation 

between (A) left and right limb of 0-day sham control. (B) Upper panels; 0-day sham 

control and either 10 d, 20 d or 30 d of right contralateral control limb. Lower panels; 

right contralateral control limb and co-contraction high-frequency stimulation in the left 

limb for either 10 d, 20 d or 30d. 
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Figure 4.5. Changes in absolute abundance for the myofibrillar proteins between control and stimulated TA muscle.  
Each data point represents an individual protein. Proteins that changed significantly (P<0.05) determined via paired t-tests between 

control and stimulated muscle are labelled by their UniProt I.D. name returned using MASCOT search engine. Proteins are described 

as increasing, decreasing or not changing in absolute protein abundance calculated by log-transformed fold change from non-

stimulated control muscle to stimulated muscle for the myofibrillar proteins only after 10 days, 20 days and 30 days of CHFS. 
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The changes in myofibrillar protein abundance are consistent with an increase in the 

contractile machinery of the muscle in the stimulated TA. Of the 19 proteins that 

changed significantly in abundance only 2 proteins (spot 2 glycogen phosphorylase, 

PYGM; spot 8 alpha-enolase, ENOA) decreased in abundance whilst the remaining 

17 proteins all responded to CHFS by gaining in abundance. The most significant 

period of change in response to CHFS was after 20 days, were 18 of the 19 proteins 

that exhibit significant changes in abundance were altered. The protein with greatest 

change was spot 26, TNNI2 (+6.8 ± 0.8-fold; P = 0.022; +6.9 ± 0.3-fold; P = 0.002) 

after 20 and 30 days of stimulation respectively. Proteins detected as multiple 

proteoforms (see Table 4.1) tended to exhibit a similar response to CHFS. Troponin T 

(TNNT3) was detected as four separate proteoforms (spots 23, 24, 25, 28) which each 

increased in abundance after both 20 (+3.43 ± 0.62-fold) and 30 days (+3.66 ± 0.86-

fold) of CHFS. Creatine kinase S-type (KCRS) was resolved as three separate 

proteoforms (spots 18, 19, 20) and none of these spots changed (P = 0.489 ± 0.3) in 

abundance in response to stimulation. However, myosin light chain 1/3 (MLY1/3) 

which was also detected as four separate proteoforms (spots 29, 30, 31, 32) had a 

mixed response. Spots 29 and 30 did not change (P = 0.119 and 0.184, respectively) 

in abundance but spots 31 and 32 each increased (+2.56 ± 0.02-fold; +3.17 ± 0.83-

fold; P = 0.019; 0.031 respectively) in abundance in response to stimulation.  

The average FSR of the myofibrillar proteins in the TA over 30 days was 5.33 ± 0.03 

%/d (n = 4 biological replicates) in Ctrl. Carbonic anhydrase 3 (spot 33, CAH3) as the 

most rapidly (15.38 ± 0.8 %/d) synthesised protein and plectin (spot 1, PLEC) as the 

slowest (1.06 ± 0.3 %/d). Thirty days of CHFS increased (P = 0.001) the average FSR 

to 9.85 ± 0.08 %/d in Stim TA. The protein with the fastest FSR in Stim was again spot 

33, CAH3 (26.84 ± 0.4 %/d) and the slowest was spot 29, MYL1/3 (2.15 ± 0.4 %/d). 

Figure 4.6 reports the absolute synthesis rate of the whole TA at each of the 10-day 

experimental time series. There was no change in the absolute rate of synthesis in the 

non-stimulated right limb at any of the experimental time points encompassing the 30 

days of CHFS. In response to CHFS, absolute rate of synthesis (pg/d) of the left, 

stimulated limb increased by 12 % after 10 days, 17 % after 20 days and 14 % after 

30 days, consistent with the changes in muscle mass (Figure 4.1). The difference in 

absolute synthesis between Stim, and Ctrl TA was statistically significant (P<0.05) 

after 10 days, 20 days and 30 days of CHFS (Figure 4.6).  
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Figure 4.6. Absolute protein synthesis rates of stimulated and non-stimulated TA.  
Synthesis data (pg/d) displayed as mean ± SD (n = 4 per group) in 10-day intervals 

over 30 days of unilateral high-frequency stimulation (100 Hz) in vivo. Protein 

synthesis rates (pg/d) calculated from total protein content of the TA in the non-

stimulated control limb (broken line) and contralateral stimulated left (solid line). 

*P<0.05 statistically significant difference between the right and left limbs analysed by 

paired t-test at each time point. 
 

The average absolute synthesis rate of mixed myofibrillar proteins in Ctrl muscle was 

34.71 ± 1.07 pg/d and there was a broad distribution of synthesis rates (Table S4) 

amongst individual proteoforms, from 2.84 ± 0.73 pg/d (spot 1; PLEC) to 72.12 ± 0.85 

pg/d (spot 5; PFKAM). Furthermore, the rank order of protein synthesis rates were 

different for FSR values versus the absolute data (supplementary Table S4) 

Stimulation increased (P = 0.002) the average rate of synthesis (40.18 ± 0.96 pg/d) of 

mixed myofibrillar proteins (Figure 4.7) and 23 individual proteoforms exhibited 

significant (P<0.05) differences in synthesis rate between Ctrl and Stim muscle after 

10 days, 20 days and 30 days of stimulation (Figure 4.8). The greatest change in 

absolute synthesis rate was, spot 28: Creatine kinase M-type (KCRM), which 

increased (P = 0.012) from 42.14 ± 0.86 pg/d to 58.26 ± 0.85 pg/d after 30 days of 

CHFS (Table S4). This increase in synthesis was also matched by a 3.17-fold increase 

(P = 0.031) in abundance between Ctrl to Stim muscle.  
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In summary, top-down analysis of myofibrillar proteoforms revealed that a total of 20 

proteins responded to CHFS by changing in abundance significantly (P< 0.05). In total, 

18 increased in abundance and 2 decreased in abundance. These changes in 

abundance were associated with 2 different patterns of regulation in individual protein 

turnover that are summarised in Figure 4.7. Whereas the other 15 proteins that did not 

change in abundance achieved this maintenance by a further 2 different patterns of 

regulation (Figure 4.7). 
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Figure 4.7. Contributions of synthesis and degradation to changes in the protein 

turnover of myofibrillar proteins. 

Mean protein turnover data is shown as absolute values for all 35 identified myofibrillar 

proteoforms. (A) Venn diagram displays the number of myofibrillar proteins that show 

different responses in protein turnover: increases (­), decreases (¯) or no change («) 

for synthesis and degradation in response to 30 days of stimulation. (B) box and 

whisker plot of data from proteins displayed panel A. The left panel shows the range 

of synthesis and degradation rates in picograms per day for the 30-d stimulate muscle 
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only. The box and whisker plot on the right shows the range of synthesis and 

degradation rates in picograms per day for the control muscle only.
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Figure 4.8. Changes in absolute synthesis rates for the myofibrillar proteins between control and stimulated TA muscle.  
Each data point represents an individual protein. Proteins that changed significantly (P<0.05) determined via paired t-tests between 

control and stimulated muscle are labelled by their UniProt I.D. name returned using MASCOT search engine. Proteins are described 

as increasing, decreasing or not changing in absolute protein synthesis rate calculated by log-transformed fold change from non-

stimulated control muscle to stimulated muscle for the myofibrillar proteins only during 0-10 days, 10-20 days and 20-30 days of 

CHFS.
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In the myofibrillar fraction, the 18 proteins that increased in abundance after 30 days 

of CHFS did so by increasing the rate of synthesis in Stim compared to Ctrl muscle 

(Figure 4.9). The two proteins in the myofibrillar fraction that decreased in abundance 

after 30 days of CHFS, did so by decreasing the rate of synthesis in Stim compared 

to Ctrl muscle (Figure 4.9). For the remaining 15 myofibrillar proteins that did not 

change in abundance, 12 of these were unaffected by CHFS, whereas the other 3 

increased (spot 1 PLEC, P = 0.027; spot 16 KCRM, P = 0.028; spot 17 KCRM, P = 

0.031) their rate of protein turnover to maintain abundance levels within Stim TA after 

30 days of CHFS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Dynamic proteome responses to CHFS of the myofibrillar proteins.  

Data is presented for the 35 myofibrillar proteins as log-transformed fold change from 

the non-stimulated control muscle to 30 days of co-contraction high-frequency 

stimulation in the TA for absolute synthesis against absolute changes in abundance. 

Each data point represents an individual protein and proteins that exhibit a significant 

(P<0.05) change in synthesis from control to stimulated muscle are labelled by their 
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UniProt I.D. name returned using MASCOT search engine. The upper left quadrant 

represents an increase in abundance over the 30 days of stimulation but a greater rate 

of synthesis in control muscle compared with CHFS muscle. Proteins that increase in 

abundance in the stimulated muscle, were the protein synthesis rate is also greater in 

stimulated muscle compared with control are displayed in the upper right quadrant. 

The lower right quadrant represents proteins that have decreased in abundance in 

response to 30 days of stimulation and increased in protein synthesis in the stimulated 

muscle compared to the non-stimulated control. Proteins that decrease in abundance 

after stimulation and have a synthesis rate that is also less than that in the control 

muscle are displayed in the lower left quadrant. 

 

LC-MS/MS analysis of the soluble muscle proteins yielded a list of 56 proteins 

(Supplementary Table S2) that had at least one protein-specific peptide that could be 

detected in all (n = 32) Ctrl and Stim samples. The majority of proteins were enzymes 

of either mitochondrial/oxidative metabolism or glycolysis/anaerobic metabolism 

(Supplementary Table S2). The reproducibility of protein abundance measurements 

by label-free quantitation was good (coefficient of variation 4.9 ± 0.07 %, n = 4 

biological replicates) and the abundance each protein in Ctrl and Stim muscles is 

reported in supplementary Table S5.  

Similar to the analysis of myofibrillar proteoforms, there was a high correlation (R2 = 

0.99502; P = 0.001) in the abundance of soluble proteins between the Ctrl and the 

sham-operated muscle at the 0-day time point. There was also no significant 

difference (P = 0.863) in the abundance of soluble proteins in the Ctrl TA (Figure 4.10, 

upper panels), assessed by one-way ANOVA of normalised peak abundances in 0 d, 

10 d, 20 d and 30 d samples. Relative fold changes in abundance were calculated 

between the Ctrl and Stim TA for each soluble protein (Supplementary Table S5). 

Similar fold change calculations were also used to calculate changes in soluble protein 

abundance in absolute terms (Supplementary Table S5). Both relative and absolute 

calculations gave similar rank orders of change and equivalent patterns of change for 

each soluble protein (Supplementary Table S3). Figure 4.11 illustrates the changes in 

absolute abundance of the soluble muscle proteins induced by CHFS. From the 56 

soluble proteins; 5 proteins exhibited significant (P<0.05) differences in abundance 

after 10 days of stimulation, after 20 days of stimulation the abundance of a further 2 

proteins became significantly different. By the end of the experiment period (30 d) 
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there were a total of 7 significant differences in protein abundance between the Stim 

and Ctrl TA (Figure 4.11).  

 

 
Figure 4.10. Correlation of relative soluble protein abundance between stimulated and 

non-stimulated TA. 

Correlation matrix of normalised soluble relative protein abundance (proteins 1-56 

present in both stimulated and non-stimulated TA at each time point). Correlation 

between (A) left and right limb of 0-day sham control. (B) Upper panels; 0-day sham 

control and either 10 d, 20 d or 30 d of right contralateral control limb. Lower panels; 

right contralateral control limb and co-contraction high-frequency stimulation in the left 

limb for either 10 d, 20 d or 30d. 
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Figure 4.11. Changes in absolute abundance for the soluble proteins between control and stimulated TA muscle.  
Each data point represents an individual protein. Proteins that changed significantly (P<0.05) determined via paired t-tests between 

control and stimulated muscle are labelled by their UniProt I.D. name returned using MASCOT search engine. Proteins are described 

as increasing, decreasing or not changing in absolute protein abundance calculated by log-transformed fold change from non-

stimulated control muscle to stimulated muscle for the soluble proteins only after 10 days, 20 days and 30 days of CHFS. 
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After 30 days of CHFS, of the 7 soluble proteins that significantly changed in 

abundance, 3 decreased (-0.62 ± 0.08-fold) in abundance and 4 increased (+0.61 ± 

0.13-fold) in abundance. Lactate dehydrogenase (LDHA) and glycogen phosphorylase 

(PYGM) are two proteins associated with glycolysis that decreased (-0.53 ± 0.08-fold; 

-0.64 ± 0.07-fold; P = 0.014; 0.013, respectively) in abundance in response to 30 days 

of CHFS. The blood protein haemoglobin (HBA) also decreased (-0.69 ± 0.05-fold; P 

= 0.012) in abundance after 30 days of stimulation. Of the remaining 4 proteins that 

increased in abundance after 30 days of CHFS, 2 were mitochondrial proteins (ATPA, 

+0.66 ± 0.03-fold; ATPB, +0.77 ± 0.06-fold), 1 was serum albumin (ALBU, +0.55 ± 

0.04-fold) and the other was actin-binding protein (COF1, +0.48 ± 0.01-fold). The 

average rate of protein synthesis in the Ctrl of mixed soluble proteins was 4.28 ± 0.63 

%/d in relative terms (FSR) and 49.66 ± 0.82 pg/d as an absolute (ASR) value (Figure 

4.12). The distribution of individual proteins in the control muscle spanned from 8.44 

± 0.47 pg/d (PARK7) to 142.73 ± 0.17 pg/d (PYGM). Co-contraction High-frequency 

stimulation did not change (P = 0.639) the average (FSR = 4.74 ± 0.84 %/d; ASR = 

52.04 ± 1.07 pg/d) synthesis rate of mixed soluble proteins (Figure 4.12). However, 

the range of synthesis rates (Table S6) was broader in Stim compared Ctrl muscle 

(Figure 4.14).  
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Figure 4.12. Contributions of synthesis and degradation to changes in the protein 

turnover of soluble proteins. 

Mean protein turnover data is shown as absolute values for all 56 identified soluble 

proteoforms. (A) Venn diagram displays the number of soluble proteins that show 

different responses in protein turnover: increases (­), decreases (¯) or no change («) 

for synthesis and degradation in response to 30 days of stimulation. (B) box and 

whisker plot of data from proteins displayed panel A. The left panel shows the range 

of synthesis and degradation rates in picograms per day for the 30-d stimulated 
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muscle only. The box and whisker plot on the right shows the range of synthesis and 

degradation rates in picograms per day for the control muscle only. 
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Figure 4.13. Changes in absolute synthesis rates for the soluble proteins between control and stimulated TA muscle.  
Each data point represents an individual protein. Proteins that changed significantly (P<0.05) determined via paired t-tests between 

control and stimulated muscle are labelled by their UniProt I.D. name returned using MASCOT search engine. Proteins are described 

as increasing, decreasing or not changing in absolute protein synthesis rate calculated by log-transformed fold change from non-

stimulated control muscle to stimulated muscle for the soluble proteins only during 0-10 days, 10-20 days and 20-30 days of CHFS. 
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The lowest synthesis rate in Stim muscle was 2.71 ± 0.55 pg/d (PFKAM) and the 

greatest was 140.53 ± 0.24 pg/d (KCRM). Proteins that exhibited the greatest 

synthesis responses to resistance exercise training include CAH3 which increased (P 

= 0.001) from 73.19 ± 0.36 pg/d to 98.55 ± 0.40 pg/d and PYGM which decreased (P 

= 0.001) from 142.73 ± 0.17 pg/d to 100.33 ± 0.44 pg/d after 30 days of CHFS. In 

summary, bottom-up analysis of soluble proteins detected protein-specific responses 

to resistance exercise training that were similar to the changes found by the top-down 

analysis of myofibrillar proteoforms. Only 7 proteins from 56 exhibited a statistically 

significant change in protein abundance (Table S5) in response to CHFS. However, 

36 proteins changed the rate of protein synthesis in Stim TA compared to Ctrl after 30 

days of stimulation (Fig. 4.12 and 4.13). Of the 36 proteins that changed in rate of 

synthesis, 20 proteins increased the rate of synthesis but did not change in 

abundance, 11 decreased the rate of synthesis but did not change in abundance. Two 

proteins decreased the rate of synthesis subsequently decreasing their abundance 

levels and the remaining 3, increased in both synthesis and abundance (Fig. 4.12 and 

4.14). Two more proteins had no change in protein synthesis and displayed opposite 

responses, 1 increased in abundance and the other decreased in abundance. The 

remaining 18 proteins displayed no effect after 30 days of CHFS (Fig. 4.12 and 4.14). 
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Figure 4.14. Dynamic proteome responses to CHFS of the soluble proteins.  

Data is presented for the 56 soluble proteins as log-transformed fold change from the 

non-stimulated control muscle to 30 days of co-contraction high-frequency stimulation 

in the TA for absolute synthesis against absolute changes in abundance. Each data 

point represents an individual protein and proteins that exhibit a significant (P<0.05) 

change in synthesis from control to stimulated muscle are labelled by their UniProt I.D. 

name returned using MASCOT search engine. The upper left quadrant represents an 

increase in abundance over the 30 days of stimulation but a greater rate of synthesis 

in control muscle compared with CHFS muscle. Proteins that increase in abundance 

in the stimulated muscle, were the protein synthesis rate is also greater in stimulated 

muscle compared with control are displayed in the upper right quadrant. The lower 

right quadrant represents proteins that have decreased in abundance in response to 

30 days of stimulation and increased in protein synthesis in the stimulated muscle 

compared to the non-stimulated control. Proteins that decrease in abundance after 

stimulation and have a synthesis rate that is also less than that in the control muscle 

are displayed in the lower left quadrant.  
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4.5 Discussion 

Skeletal muscle is well-known for its plasticity, eliciting biochemical, metabolic and 

contractile adaptations in response to environmental changes to the muscle cell i.e. 

contractile stress (Coffey and Hawley, 2007). These functional adaptations manifest 

through discrete alterations of the muscle proteome which include increases in total 

protein content that are underpinned by the abundance changes of individual muscle 

proteins. Resistance exercise is known to induce hypertrophy and can preserve lean 

muscle mass in various pathophysiological conditions such as sarcopenia (Walston, 

2012). However, data on the dynamic processes (i.e. synthesis and degradation) that 

contribute towards these changes in individual protein abundance are not widely 

available. In an attempt to inform this knowledge gap, we report the dynamic response 

of skeletal muscle to resistance exercise training. We achieve this by the marriage of 

stable isotope labelling and mass spectrometry analysis during an in vivo model of 

muscle growth. This is the first data to report how the contributions of both synthesis 

and degradation produce changes to individual protein abundance in rat TA muscle 

during resistance exercise training. Our data report several different patterns of 

response to individual protein turnover (Fig. 4.7 and 4.12), including proteins that 

exhibit both increases and decreases in protein synthesis but do not change in protein 

abundance. 
Changes in protein abundance primarily occur because of a difference between the 

rate of synthesis and degradation of a protein. The results from this study demonstrate 

whole mixed-muscle protein synthesis rates give less than adequate information 

compared to synthesis rates at the individual protein level. We also provide new 

evidence to demonstrate that in response to resistance exercise training individual 

proteins increase the rates of protein turnover and can be selectively degraded at 

varying rates to decrease and/or to maintain the same relative abundance of protein 

in the muscle. As a result, we can report, 27 proteins displayed a change in abundance 

in response to muscle adaptation from the 91 proteins that were measured. Of which 

96 % of proteins were driven by synthesis, 4 % of proteins were driven by degradation. 

For the remaining 64 proteins that did not change in abundance, 36 % increased both 

the contributions of synthesis and degradation to increase protein turnover, 17 % 

decreased in protein turnover and 47 % of proteins were unaffected by CHFS. Our 

work is the first of its kind in CHFS to document the response of protein-specific 
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turnover during muscle adaptation that provides further evidence to show protein 

turnover is increased and decreased by increasing and/or decreasing the relative 

contributions of synthesis and degradation to coordinate the adaptive response. 

Suggesting that protein degradation is equally as important as synthesis in skeletal 

muscle during adaptation to resistance exercise training. 
The co-contraction high-frequency stimulation (CHFS) model we have implemented 

to simulate resistance exercise training was developed by our group (Schmoll et al, 

2018) and has subsequently been applied to investigate protein-specific changes in 

abundance as well as synthesis rate. Consistent with our earlier work (Schmoll et al, 

2018) we report resistance exercise training is associated with an increase in muscle 

mass and a greater turnover of muscle protein (Phillips et al, 1999). The mass of the 

TA muscle increased by 16 % after the first 10 days of CHFS and subsequently rises 

to ~20 % greater than Ctrl after 30 days of stimulation (Figure 4.1). Several other 

animal models that attempt to simulate resistance training e.g. compensatory 

overload, also see large increases in muscle mass that constitute to ~34 % increase 

compared to intra-animal control muscles. However, in a compensatory overload 

model of the rat PLN Armstrong et al, (1979) reports almost all (~91 %) of this gain in 

muscle weight is due to oedema. We are confident that our changes in muscle mass 

are a result of resistance exercise-induced protein accretion, as we measure a 

concomitant increase in total protein content (Figure 4.2). In addition, Baar and Esser, 

(1999) used a similar model of muscle co-contraction and report elevated levels of 

p70S6k phosphorylation, as a proxy of increased protein synthesis. They document 

phosphorylation levels to peak just 12 h after resistance exercise training, with 

sustained effects up to 36 h post exercise. Although we did not measure 

phosphorylation of p70S6k, we can report the absolute protein synthesis of the TA 

(Figure 4.6). Our data describes an increase from Ctrl to Stim muscle of ~20 % after 

30 days of CHFS, aligning closely with the muscle mass increase illustrated in Figure 

4.1. Furthermore, relative data generated from our study reports mixed muscle FSR 

values increase by ~85 % from Ctrl to Stim similar to previous work in trained humans 

reporting ~50 % increases in mixed protein FSR in response to resistance exercise 

training (Phillips et al, 1999). We can further report a large range of individual protein 

responses (2-27 %/d), underlining issues with gross or mixed muscle data on muscle 

adaptation. 
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To investigate individual muscle proteins further, proteomic separation techniques 

such as 2DGE enable individual proteins to be isolated based on their molecular mass 

and isoelectric point, which allows proteoform-specific responses during muscle 

transformation to be investigated (Burniston, 2008). Two dimensional-gel 

electrophoresis is well known for its ability to resolve proteoforms of the myofibrillar 

fraction (Dowling et al, 2019) and by using this method we can report protein turnover 

data for the identified myofibrillar proteoforms (Table 4.1) during adaptation to 

resistance exercise training. This is vital information that would be otherwise missed 

by more common ‘bottom-up’ proteomic techniques. The majority of the data from 

resistance exercise concerning mixed muscle or the myofibrillar fraction generally 

report an increase in protein turnover (Biolo et al, 1995.; Phillips et al, 1997). Whilst 

this is true for the first 10 days of stimulation in the myofibrillar fraction (Fig. 4.5 and 

4.8) where we observe an increase in the synthesis rates of 23 proteins (Figure 4.8) 

from Ctrl to Stim, resulting in a change of abundance in only 2 proteins (PYGM and 

ENOA; Figure 4.5), the remaining 20-day period show a different response. Similar to 

the data presented in Shankaran et al, (2016) who reported increases in muscle mass 

after 28 days of SAR administration to correlate with increases in protein synthesis of 

individual proteins. We too see increases in muscle mass, but in response to CHFS, 

and also measure increases in protein synthesis rates of individual proteins. We 

measured 11 of the same myofibrillar proteins as Shankaran et al, (2016) and our data 

agree with the exception of ENOB where we detect no changes in synthesis from Ctrl 

to Stim, and ENOA were we found synthesis to decrease in response to resistance 

training. We have (Hesketh et al, 2016) previously reported tissue-specific regulation 

of synthesis rates of individual proteins and since Shankaran et al, (2016) data report 

synthesis rates from rat triceps and our data is from rat TA this may provide an 

explanation as to why ENOB and ENOA response may be different. Furthermore, 

Shankaran et al, (2016) did not measure protein abundances to indicate if these 

increases in proteins synthesis are a protein turnover response or a synthesis-specific 

anabolic response. However, we can report that after 30 days of CHFS of the 35 

myofibrillar proteoforms identified in this study (Table 4.1), 20 proteoforms significantly 

change their abundance (2 decrease and 18 increase) despite measuring 23 

proteoforms that significantly alter their synthesis rates. Figure 4.9 highlights the 

proteins that exhibit these changes in abundance, from which the remaining 15 

proteoforms maintain abundance via increasing the rate of protein turnover (n = 3) i.e. 
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increases in synthesis that is matched by degradation or by no response to CHFS (n 

= 12). Furthermore, myofibrillar proteins detected as multiple proteoforms (n = 10, 

Table 4.1) tended to respond in a similar manner to each other in response to CHFS. 

For example, the four spots identified as TNNT3 all increased in response to 

hypertrophy, consistent with previous findings (Isfort et al, 2002). In addition, other 

proteoforms like KCRS (spots 18, 19, 20) did not change in abundance but all 

increased in synthesis, consistent with an increased turnover response of the muscle 

proteome to resistance exercise training (Phillips et al, 1997). However, most of the 

myofibrillar proteoforms increased in abundance in response to CHFS. For example, 

the two MLRS proteoforms (spot 34 and spot 35) increased (+3.6 ± 0.6-fold) in 

abundance, as did TNNI2 (spot 26, +7-fold; spot 27 +1.9-fold), ACTS (spot 14, +5.6-

fold), tropomyosin (spot 21 TPM1, +2.6-fold; spot 22 TPM4, +2-fold) and DESM (spot 

7, +2.3-fold). These increases in protein abundance, could be explained by the 

assembly of striated myofibrils in the development of premyofibril complexes (Sanger 

et al, 2017). Not only are premyofibrils known to contain thin protein filaments (e.g. 

actin, tropomyosin, and troponin) and cosameric proteins (e.g. DESM), but proteins 

that are involved in the early phase of premyofibril assembly are documented to be 

highly dynamic (Sanger et al, 2017). Specifically, DESM has been associated with 

lateral force transmission from contracting sarcomeres to the muscle exterior (Bloch 

and Gonzalez-Serratos, 2003) and is known to increase in the muscle, post resistance 

exercise (Woolstenhulme et al, 2006). Given that the protein content of the muscle is 

significantly increased (Figure 4.2) in response to CHFS and there are greater 

contractile demands placed on the muscle, this may explain why we document these 

significant increases in key contractile proteins, in response to resistance exercise 

training. However, not all contractile proteoforms follow this pattern. Myosin light chain 

1/3 (MLY1/3) was resolved as four separate proteoforms (spots 29, 30, 31, 32; Figure 

4.3). MYL1 and MLY3 are two proteins with almost identical amino acid sequences. 

Due to the nature of peptide mass fingerprinting if the unique peptide sequence is not 

identified then we cannot distinguish between the two and the protein is identified as 

MYL1/3. On this occasion peptide mass fingerprinting did not identify the unique 

peptide to differentiate these proteoforms (supplementary Table S1). This could 

provide reasoning as to why we observe 2 MYL1/3 proteoforms to increase (+2.93 ± 

0.3-fold) in abundance (spots 31 and 32), where the other 2 (spots 29 and 30) exhibit 

no change (P = 0.220 ± 0.09) to the stimulation. Furthermore, spot 29 and 30 share 
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the same molecular mass consistent with MLY3, as spot 31 and 32 are consistent with 

MLY1.  

The absolute synthesis rate for the average mixed soluble fraction did not change (P 

= 0.639) from Ctrl (49.66 ± 0.82 pg/d) to Stim (52.04 ± 1.07). This is inconsistent with 

previous work that report relative data (Phillips et al, 2007) but increases in muscle 

mass (Wong and Booth, 1990.; Shankaran et al, 2016). Largely, this is due to the fact 

previous literature reported mixed muscle synthesis and/or turnover data, failing to 

differentiate the highly abundant myofibrillar proteins from the soluble proteins. 

Furthermore, here we report the average across 56 soluble proteins that encompass 

a range of synthesis rates that spans 2 orders of magnitude. This equates to 36 out of 

56 proteins significantly changing (23 increase, 13 decrease) the rate of synthesis 

from Ctrl to Stim after 30 days of CHFS. Further highlighting the problem of working 

with whole muscle data; thus, demonstrating that clearly some proteins increase and 

others decrease accordingly, in response to resistance exercise training, information 

that is otherwise missed when not measuring individual proteins. Camera et al, (2017) 

applied DPP methods similar to that in this thesis to quantify protein turnover of 91 

muscle proteins (31 myofibrillar and 60 of soluble fraction) in response to resistance 

exercise training in humans. Similarly, they reported different patterns of response that 

differ on a protein-by-protein basis involving changes to both the synthesis and 

degradation of individual proteins. Furthermore, consistent with our findings Camera 

et al, (2017) reported an increase in myofibrillar protein synthesis and no significant 

change in protein synthesis for the soluble fraction. However, when analysed at the 

individual protein level, 7 proteins from the soluble fraction increased in response to 

resistance exercise training, were we showed 36 soluble proteins to change 

significantly in synthesis but only 7 change in abundance. An explanation for reporting 

this difference between relative and absolute data is that the proteins in the soluble 

fraction are being turned over more rapidly due to quality control within the muscle as 

a result of resistance training. Furthermore, the changes we see in the soluble fraction 

between our data and Camera et al, (2017) are less than consistent, with only one 

protein agreeing with our findings. ALDOA shows a significant decrease in protein 

synthesis in response to exercise training which is apparent in both data sets. 

Whereas we report the abundance of glycolytic enzymes LDHA and PYGM to 

decrease in response to CHFS, Camera et al, (2017) reported LDHA to not change in 

abundance but to increase in turnover. Although we report contrasting findings to 
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some of the previous literature that has observed increases in glycolytic metabolism 

to correlate with resistance exercise (Tesch et al, 1986.; Camera et al, 2017). We 

report 15 other proteins associated with oxidative metabolism that increase their 

turnover rates which may be associated with maintaining enzyme pool efficiency (Lam 

et al, 2014). Amongst the proteins that increase in abundance is COF1 the response 

observed for this protein may be necessary to stabilise the cytoskeleton and myofibril 

structures to prevent protein denaturation during periods of increased contractile 

activity (Benndorf et al, 1994). There are potentially several explanations why our data 

do not exactly align with Camera et al, (2017). Firstly, part of the Camera et al, (2017) 

intervention includes a high fat diet and the study did not include a healthy control diet 

so we cannot compare even our Ctrl TA data to their control group (which was fed a 

high fat diet only). Furthermore, our intervention is over a 30-day period of resistance 

training with significant hypertrophic gains compared to an intra-subject control, in 

comparison to just 9 days of resistance training with a separate control group and no 

muscle growth shown. Finally, although overall trends are similar, changes on a 

protein-by-protein basis, and specifically in protein synthesis (i.e. increases in mixed 

myofibrillar fraction and no change in mixed soluble fraction in response to resistance 

exercise) there may be species dependent responses that does not translate to protein 

specific differences.  
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4.6 Conclusions 

We have used deuterium labelling and peptide mass spectrometry to establish fully 

integrated DPP in order to measure the rate of synthesis and net abundance, allowing 

accurate calculation of the rate of degradation for muscle proteins in both the 

myofibrillar and soluble fractions in response to resistance exercise training. We have 

demonstrated that proteins increase, decrease and are more rapidly or slowly turned 

over in response to resistance exercise. Previously, it has been largely assumed that 

such changes are due to alterations of protein synthesis only. However, by using DPP, 

we present highly novel data to show that changes in muscle proteins during muscle 

hypertrophy occur via several different patterns of response that involve the 

modulation of both synthetic and degradative processes. This level of detail has only 

previously been detected in human resistance training over a 9-day period (Camera 

et al, 2017). We present measurement of rat TA using DPP over 30 days of resistance 

exercise training, resulting in significant hypertrophy to provide a mechanistic insight 

into the regulation of protein abundance during adaptation within the muscle cell and 

protein metabolism.  
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Supplementary tables 
 
Table S1. Myofibrillar protein identifications and peptide information. 
 

Myofibrillar fraction 

Spot 
Number 

Protein Score Coverage Peptide sequence Residue 

1 PLEC 88 4 % QAQEEAER 
 

LSVAAQEAAR 
 

VPVDVAYQR 
 

LPVDVAYQR 
 

HRELAEEDAAR 

1631-
1638 
2423-
2432 
3292-
3300 
3623-
3631 
1956-
1966 

2, 3 PYGM 96 18 % DHLVDR 
YEFGIFNQK 

IGEEYISDLDQLR 
QEYFVVAATLQDIIR 

LITAIGDVVNHDPAVGDR 

62-67 
162-170 
508-520 
296-310 
623-640 

4, 5 PFKAM 92 12 % ITAEER 
FDEAIK 

DLQVNVEHLVQK 
VLVVHDGFEGLAK 

LNITIVAEGAIDKNGK 

145-150 
367-372 
604-615 
433-445 
257-272 

6 ATPB 128 22 % IPVGPETLGR 
IMNVIGEPIDER 

FTQAGSEVSALLGR 
TIAMDGTEGLVRGQK 
VALVYGQMNEPPGAR 

134-143 
144-155 
311-324 
110-124 
265-279 

7 DESM 115 25 % TSGGAGGLGSLR 
LEEEIRHLK 

RQVEVLTNQR 
HLREYQDLLNVK 

FLEQQNAALAAEVNR 

59-70 
369-377 
163-172 
383-394 
127-141 

8, 9 ENOA 109 26 % GVPLYR 
SPDDASR 

LNVVEQEK 
GNPTVEVDLYTAK 

FGANAILGVSLAVCK 

127-132 
263-269 

82-89 
16-28 

106-120 
10, 11, 

12 
ENOB 114 30 % IGAEVYHHLK 

GVLKAVEHINK 
IFAREILDSR 

GNPTVEVDLHTAK 
LAQSNGWGVMVSHR 

184-193 
61-71 
6-15 

16-28 
359-372 

13 ATPA 102 30 % AVDSLVPIGR 
VGSAAQTR 

195-204 
417-424 
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RFNDGTDEK 
GIRPAINVGLSVSR 

TGAIVDVPVGDELLGR 

231-239 
403-416 
134-149 

14 ACTS 126 26 % HQGVMVGMGQK 
DSYVGDEAQSK 

QEYDEAGPSIVHR 
IWHHTFYNELR 

MQKEITALAPSTMK 

42-52 
53-63 

362-274 
87-97 

315-328 
15, 16, 

17 
KCRM 91 24 % LMVEMEKK 

GYTLPPHCSR 
DLFDPIIQDR 

GGDDLDPNYVLSSR 
GTGGVDTAAVGAVFDISNA

DR 

359-366 
139-148 

87-96 
117-130 
321-341 

18, 19, 
20 

KCRS 92 28 % GIWHNYDK 
GLSLPPACSR 
ITHGQFDER 

VPPPLPQFGR 
LFPPSADYPDLR 

250-257 
173-182 
150-158 
409-418 

47-58 
21 TPM1 98 37 % LEEAEK 

YEEVARK 
KMQMLKLD 
GTEDELDK 
SLEAQAEK 

KATDAEADVASLNR 

113-118 
162-168 

7-14 
52-59 

206-213 
77-90 

22 TMP2 107 34 % KMQMLKLDK 
LVILEGELER 
EDKYEEEIK 

AQERLATALQK 
LEEAEKAADESER 

7-15 
169-178 
218-226 
102-112 
113-125 

23, 24, 
25, 28 

TNNT3 97 24 % LTAPKIPEGEK 
QKYDITTLR 
QNRLAEEK 

IPEGEKVDFDDIQK 
QNKDLMELQALIDSHFEAR 

44-54 
225-233 
118-126 

49-62 
65-83 

26, 27 TNNI2 96 34 % VRMSADAMLK 
SSKELEDMNQK 

MSADAMLKALLGSK 
YDMEVKVQK 

QHLKSVMLQIAATELEK 

115-124 
89-99 

117-130 
80-88 
16-32 

29, 30, 
31, 32 

MYL1/3 112 28 % HVLATLGEK 
EAFLLFDR 

ITLSQVGDVLR 
DQGGYEDFVEGLR 
ALGQNPTQAEVLR 

149-157 
52-59 
65-75 

120-132 
87-99 

33 CAH3 96 30 % DGIAIGIFLK 
TILNNGKTCR 

GGPLPGPYRLR 
GENQSPVELHTK 
FDPSCLFPACR 

138-148 
58-67 
81-91 
25-36 

178-188 
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34, 35 MLRS 98 42 % DGIIDKEDLR 
EAFTVIDQNR 

LKGADPEDVITGAFK 
KQFLEELLTTQCDR 

AAAEGSSNVFSMFDQTQIQ
EFK 

42-51 
32-41 

91-112 
117-130 

10-31 

 
Spot number refers to the different proteoforms resolved by 2DGE and corresponds 

to the 2DGE image in Figure 4.3. Protein name relates to the Uni-Prot database, 

entries returned using the MASCOT search engine. A mowse score greater than 55 

denotes a confident (P<0.05) identification by peptide mass fingerprinting. Coverage 

is the amount of sequence covered of the protein for identification. Peptide sequence 

refers to the amino acid sequence of each peptide used for peptide mass spectrometry 

and the residues are where each peptide occurs in the protein sequence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 212 

Table S2. Soluble proteins identification. 
 

Soluble fraction 
Protein I.D. Protein name GO function Peptide # 

AATC Aspartate 
aminotransferase , 
cytoplasmic 

Unassigned 8 

AATM Aspartate 
aminotransferase, 
mitochondrial 

Mitochondrial 6 

ACON Aconitate hydratase, 
mitochondrial 

Mitochondrial 11 

ADT1 ADP/ATP translocase 1 Mitochondrial 7 
ALBU Serum albumin Unassigned 14 

ALDOA Fructose-bisphosphate 
aldolase A 

Glycolysis 22 

AT2A1 Sarcoplasmic/endoplasmic 
reticulum calcium ATPase 
1 

Ca2+ 
Handling 

34 

ATP5H ATP synthase subunit d, 
mitochondrial 

Mitochondrial 2 

ATPA ATP synthase subunit 
alpha, mitochondrial 

Mitochondrial 13 

ATPB ATP synthase subunit 
beta, mitochondrial 

Mitochondrial 20 

ATPG ATP synthase subunit 
gamma, mitochondrial 

Mitochondrial 4 

ATPO ATP synthase subunit O, 
mitochondrial 

Mitochondrial 2 

CAH3 Carbonic anhydrase 3 Unassigned 11 
CASQ1 Calsequestrin-1 Ca2+ 

Handling 
3 

CISY Citrate synthase Mitochondrial 7 
COF1 Cofilin-1 Unassigned 1 
COX2 Cytochrome c oxidase 

subunit 2 
Mitochondrial 3 

CYC Cytochrome c Mitochondrial 4 
ECHA Trifunctional enzyme 

subunit alpha 
Mitochondrial 4 

EF1A2 Elongation factor 1-alpha 2 Unassigned 2 
ENOB Beta-enolase Glycolysis 14 
FABPH Fatty acid-binding protein, 

heart 
Unassigned 12 

G3P Glyceraldehyde-3-
phosphate dehydrogenase 

Glycolysis 5 

G6PI Glucose-6-phosphate 
isomerase 

Glycolysis 6 

GPDA Glycerol-3-phosphate 
dehydrogenase [NAD(+)], 
cytoplasmic 

High-energy 
phosphate 

2 
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HBA Hemoglobin subunit alpha-
1/2  

O2 Transport 2 

HBB1 Hemoglobin subunit beta-1 O2 Transport 2 
HBB2 Hemoglobin subunit beta-2 O2 Transport 2 

HS90B Heat shock protein HSP 
90-beta 

Unassigned 2 

HSP7C Heat shock cognate 71 
kDa protein 

Unassigned 7 

IDHP Isocitrate dehydrogenase 
[NADP], mitochondrial 

Mitochondrial 4 

KAD1 Adenylate kinase 
isoenzyme 1 

High-energy 
phosphate 

16 

KCRM Creatine kinase M-type High-energy 
phosphate 

24 

KPYM Pyruvate kinase PKM Glycolysis 19 
LDHA L-lactate dehydrogenase A 

chain 
Glycolysis 7 

MDHC Malate dehydrogenase, 
cytoplasmic 

Mitochondrial 14 

MDHM Malate dehydrogenase, 
mitochondrial 

Mitochondrial 2 

MPCP Phosphate carrier protein Mitochondrial 8 
MYG Myoglobin O2 Transport 1 
MYL1 Myosin light chain 1/3, 

skeletal muscle isoform 
Unassigned 3 

ODPA Pyruvate dehydrogenase 
E1 component subunit 
alpha, somatic form, 
mitochondrial 

Mitochondrial 1 

ODPB Pyruvate dehydrogenase 
E1 component subunit 
alpha, somatic form 

Mitochondrial 2 

PARK7 Protein/nucleic acid 
deglycase DJ-1 

Unassigned 3 

PFKAM ATP-dependent 6-
phosphofructokinase, 
muscle type 

Glycolysis 4 

PGAM2 Phosphoglycerate mutase 
2 

Glycolysis 13 

PGK1 Phosphoglycerate kinase 
1 

Glycolysis 14 

PGM1 Phosphoglucomutase-1 Glycolysis 18 
PRDX5 Peroxiredoxin-5 Mitochondrial 2 
PRVA Parvalbumin alpha Ca2+ 

Handling 
9 

PYGB Glycogen phosphorylase, 
brain form 

Glycolysis 2 

PYGM Glycogen phosphorylase, 
muscle form 

Glycolysis 21 
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QCR1 Cytochrome b-c1 complex 
subunit 1 

Mitochondrial 2 

QCR2 Cytochrome b-c1 complex 
subunit 2 

Mitochondrial 1 

TPIS Triosephosphate 
isomerase 

Glycolysis 12 

TRY1 Anionic trypsin-1 Unassigned 1 
VDAC1 Voltage-dependent anion-

selective channel protein 1 
Unassigned 5 

 
Protein I.D. relates to the Uni-Prot database, entries returned using the MASCOT 

search engine. Full protein name is given with assigned gene ontology function. The 

peptide number refers to the number of unique peptides used for each protein to gain 

a positive identification. 
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Table S3. Rank order for abundance changes in myofibrillar proteins after 30-d of 
stimulation in TA muscle. 
 

Protein I.D. Relative ABD P-Value Protein I.D. Absolute ABD P-Value 
ATPB (6) 1.48 ± 0.06 0.024 TNNI2 (26) 6.95 ± 0.3 0.002 

TNNI2 (26) 1.34 ± 0.03 0.012 ATPA (13) 6.52 ± 0.52 0.002 
TNNT3 (23) 1.18 ± 0.09 0.033 ACTS (14) 5.58 ± 0.44 0.003 
TNNT3 (28) 1.15 ± 0.72 0.024 TNNT3 (23) 4.39 ± 0.18 0.002 
TNNT3 (25) 1.13 ± 0.32 0.026 TNNT3 (24) 4.39 ± 0.26 0.003 
MLRS (34) 1.12 ± 0.17 0.021 MLRS (34) 4.01 ± 0.83 0.003 
ACTS (14) 1.12 ± 0.08 0.012 ATPB (6) 3.66 ± 1.02 0.007 

MYL1/3 (32) 1.12 ± 0.04 0.021 TNNT3 (28) 3.17 ± 0.91 0.031 
DESM (7) 1.08 ± 0.07 0.025 MYL1/3 (32) 3.15 ± 0.83 0.019 
MLRS (35) 0.99 ± 0.06 0.025 MLRS (35) 3.10 ± 1.20 0.039 
ATPA (13) 0.92 ± 0.05 0.015 CAH3 (33) 2.81 ± 0.96 0.018 

TNNT3 (24) 0.92 ± 0.05 0.042 MYL1/3 (31) 2.71 ± 0.92 0.029 
CAH3 (33) 0.86 ± 0.09 0.039 TNNT3 (25) 2.70 ± 0.93 0.026 

MYL1/3 (31) 0.86 ± 0.04 0.023 KCRM (15) 2.56 ± 0.95 0.019 
TPM1 (21) 0.81 ± 0.01 0.041 TPM1 (21) 2.55 ± 0.96 0.028 
KCRM (15) 0.79 ± 0.06 0.021 DESM (7) 2.30 ± 0.97 0.026 
TPM2 (22) 0.79 ± 0.05 0.028 TPM2 (22) 2.00 ± 0.93 0.017 
TNNI2 (27) 0.66 ± 0.08 0.038 TNNI2 (27) 1.92 ± 0.95 0.033 
KCRM (17) 0.08 ± 0.05 0.156 MYL1/3 (30) 1.16 ± 0.96 0.155 
PLEC (1) 0.07 ± 0.04 0.866 KCRS (20) 1.07 ± 0.97 0.195 

KCRM (16) 0.02 ± 0.09 0.263 KCRM (17) 0.75 ± 0.37 0.477 
MYL1/3 (29) 0.02 ±0.00 0.731 KCRS (19) 0.51 ± 0.36 0.119 
KCRS (18) 0.02 ± 0.00 0.332 KCRS (18) 0.46 ± 0.22 0.291 
KCRS (20) 0.01 ± 0.00 0.195 PLEC (1) 0.11 ± 0.04 0.887 
KCRS (19) 0.01 ± 0.00 0.174 MYL1/3 (29) 0.09 ± 0.01 0.288 

MYL1/3 (30) 0.01 ± 0.00 0.832 KCRM (16) 0.04 ± 0.00 0.184 
ENOB (12) -0.02 ± 0.00 0.429 ENOB (12) -0.04 ± 0.00 0.471 
ENOB (11) -0.03 ± 0.00 0.885 PFKAM (4) -0.07 ± 0.01 0.446 
PFKAM (4) -0.03 ± 0.02 0.431 ENOA (9) -0.16 ± 0.05 0.094 
ENOB (10) -0.03 ± 0.00 0.732 PYGM (3) -0.61 ± 0.42 0.642 
PYGM (3) -0.07 ± 0.06 0.177 PFKAM (5) -0.71 ± 0.35 0.251 
PFKAM (5) -0.08 ± 0.01 0.323 ENOB (10) -0.72 ± 0.63 0.874 
ENOA (9) -0.53 ± 0.21 0.116 ENOB (11) -0.92 ± 0.61 0.266 
ENOA (8) -0.92 ± 0.02 0.027 ENOA (8) -2.59 ± 0.19 0.029 
PYGM (2) -1.28 ± 0.71 0.033 PYGM (2) -3.29 ± 0.20 0.022 

 
Protein I.D. relates to the Uni-Prot database, entries returned using the MASCOT 

search engine. Spot numbers are in brackets which refers to the different proteoforms 

resolved by 2DGE and corresponds to the 2DGE image in Figure 4.3. Relative 
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abundance (ABD) represents data normalised to spot density from the 2D-gels only. 

Absolute abundance (ABD) represents data normalised to spot density and total TA 

mass. All data is represented as MEAN ± SD for biological replicates (n = 4) and is 

displayed as the positive (+) or negative (-) fold change from non-stimulated control 

muscle to 30 days co-contraction high-frequency stimulated muscle, in rank order of 

largest positive change to largest negative change. P-Values are generated from 

paired t-tests between control and 30-d stimulated muscle. 
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Table S4. Rank order for synthesis rates in myofibrillar proteins after 30-d of stimulation in TA muscle. 
 

Protein I.D. Relative (Sim) Relative (Ctrl) P-Value Protein I.D. Absolute (Stim) Absolute (Ctrl) P-Value 
TNNI2 (27) 20.33 ± 0.45 6.78 ± 0.88 0.029 TNNT3 (28) 58.26 ± 0.85 42.14 ± 0.86 0.012 
TNNT3 (25) 14.86 ± 0.46 2.75 ± 0.76 0.041 MLRS (35) 29.05 ± 1.08 14.28 ± 0.74 0.014 
CAH3 (33) 26.84 ± 0.42  15.38 ± 0.84 0.026 KCRM (15) 70.82 ± 0.48 56.28 ± 1.27 0.019 
TPM1 (21) 15.29 ± 0.52 4.73 ± 0.78 0.013 MYL1/3 (31) 33.73 ± 0.70 20.66 ± 0.86 0.011 

MYL1/3 (32) 12.42 ± 0.43 2.03 ± 0.97 0.018 TNNI2 (26) 74.24 ± 0.69 61.55 ± 1.21 0.029 
ATPB (6) 21.45 ± 0.75 11.74 ± 0.73 0.019 ATPB (6) 48.27 ± 0.37 35.86 ± 1.74 0.018 

MYL1/3 (31) 11.52 ± 0.44 1.93 ± 1.03 0.033 TNNT3 (25) 56.24 ± 0.21 43.94 ± 0.83 0.016 
TNNT3 (23) 12.03 ± 0.48 2.79 ± 0.84 0.026 MLRS (34) 23.44 ± 0.24 11.53 ± 0.93 0.017 
TNNI2 (26) 11.81 ± 0.45 4.99 ± 1.28 0.019 TPM2 (22) 19.26 ± 0.72 8.28 ± 0.84 0.016 
TNNT3 (24) 8.68 ± 0.48 1.94 ± 1.17 0.034 KCRM (17) 68.20 ± 0.51 58.01 ± 3.92 0.031 
TPM2 (22) 9.49 ± 0.50 2.82 ± 0.62 0.011 ATPA (13) 33.27 ± 0.31 23.27 ± 0.98 0.021 
KCRM (16) 11.64 ± 0.55 5.18 ± 0.56 0.021 TNNT3 (23) 46.93 ± 0.52 38.18 ± 0.93 0.011 
KCRM (15) 12.17 ± 0.56 5.74 ± 0.94 0.031 TPM1 (21) 14.27 ± 0.24 5.84 ± 0.61 0.028 
MLRS (34) 8.34 ± 0.41 1.94 ± 0.94 0.029 DESM (7) 26.73 ± 0.36 18.34 ± 0.61 0.012 
PLEC (1) 7.44 ± 1.10 1.06 ± 0.37 0.017 MYL1/3 (32) 41.17 ± 0.55 33.20 ± 0.91 0.023 
DESM (7) 11.52 ± 0.72 5.26 ± 0.63 0.024 TNNI2 (27) 66.03 ± 0.24 58.23 ± 0.93 0.013 
MLRS (35) 7.83 ± 0.41 1.88 ± 0.88 0.021 CAH3 (33) 22.74 ± 0.32 15.17 ± 0.93 0.011 
ATPA (13) 11.21 ± 0.67 5.27 ± 0.84 0.027 ACTS (14) 19.37 ± 0.30 12.57 ± 1.75 0.016 
ACTS (14) 7.93 ± 0.59 1.98 ± 0.88 0.019 TNNT3 (24) 42.18 ± 0.21 35.39 ± 0.58 0.027 
TNNT3 (28) 9.55 ± 0.44 3.63 ± 0.93 0.023 KCRM (16) 61.34 ± 0.39 54.84 ± 3.62 0.028 
KCRM (17) 9.54 ± 0.54 4.72 ± 0.84 0.017 ENOB (12) 42.74 ± 0.31 36.28 ± 0.96 0.109 
PFKAM (5) 9.97 ± 0.77 8.03 ± 1.18 0.162 ENOA (9) 38.24 ± 0.35 33.74 ± 0.85 0.755 
ENOB (11) 7.35 ± 0.69 5.43 ± 0.64 0.183 MYL1/3 (30) 31.83 ± 0.27 28.20 ± 0.93 0.838 
ENOB (12) 7.26 ± 0.68 5.38 ± 0.78 0.116 PLEC (1) 6.13 ± 0.39  2.84 ± 0.73 0.027 
KCRS (20) 5.12 ± 0.52 3.58 ± 0.91 0.553 KCRS (19) 38.19 ± 0.41 35.28 ± 0.83 0.643 
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PFKAM (4) 10.27 ± 0.82 8.95 ± 0.86 0.291 MYL1/3 (29) 23.54 ± 0.98 20.73 ± 0.97 0.375 
KCRS (18) 4.28 ± 0.53 3.27 ± 0.47 0.742 PFKAM (4) 70.22 ± 0.38 68.27 ± 0.89 0.188 
PYGM (3) 8.24 ± 0.99 7.26 ± 0.93 0.744 KCRS (18) 35.02 ± 0.58 33.26 ± 0.74 0.911 

MYL1/3 (30) 3.13 ± 0.44 2.20 ± 0.88 0.227 KCRS (20) 31.19 ± 0.70 30.12 ± 1.17 0.228 
ENOA (9) 9.46 ± 0.71 8.74 ± 0.81 0.416 ENOB (11) 40.82 ± 0.33 41.37 ± 1.02 0.277 

ENOB (10) 7.34 ± 0.70 7.24 ± 0.83 0.229 PYGM (3) 39.24 ± 0.39 40.98 ± 0.81 0.743 
KCRS (19) 3.28 ± 0.52 3.73 ± 0.73 0.618 PFKAM (5) 70.26 ± 0.38 72.12 ± 0.85 0.277 

MYL1/3 (29) 2.15 ± 0.44 2.72 ± 0.73 0.174 ENOB (10) 35.82 ± 0.34 38.37 ± 0.92 0.561 
ENOA (8) 3.01 ± 0.71 9.10 ± 1.04 0.023 ENOA (8) 20.20 ± 0.35 31.74 ± 1.05 0.033 
PYGM (2) 2.18 ± 1.35 9.46 ± 0.77 0.023 PYGM (2) 33.13 ± 0.39 48.24 ± 0.93 0.018 

 
Protein I.D. relates to the Uni-Prot database, entries returned using the MASCOT search engine. Spot numbers are in brackets which 

refers to the different proteoforms resolved by 2DGE and corresponds to the 2DGE image in Figure 4.3. Synthesis rates are presented 

in relative format which relates to fractional synthesis rate in percent per day and in absolute terms which is reflective of whole TA 

synthesis with rates expressed in picograms per day. All data is represented as MEAN ± SD for biological replicates (n = 4) in the 30 

days stimulated muscle (Stim) and the non-stimulated control muscle (Ctrl). The proteins are ranked in order of largest increase in 

synthesis rate from Ctrl to Stim through to largest decrease in synthesis rate from Ctrl to Stim. P-Values are generated from paired t-

tests between control and 30-d stimulated muscle. 
 
 
 
 
 
 
 
 



 219 

Table S5. Rank order for abundance changes in soluble proteins after 30-d of 
stimulation in TA muscle. 
 
Protein I.D. Relative ABD P-Value Protein I.D. Absolute ABD P-Value 

ALBU 0.52 ± 0.34 0.014 ATPB 0.77 ± 0.06 0.014 
ATPB 0.52 ± 0.46 0.013 ATPA 0.66 ± 0.03 0.015 
COF1 0.45 ± 0.69 0.012 ALBU 0.55 ± 0.04 0.014 
ATPA 0.42 ± 0.56 0.012 COF1 0.48 ± 0.01 0.012 
QCR2 0.20 ± 0.21 0.079 IDHP 0.25 ± 0.23 0.218 
IDHP 0.20 ± 0.69 0.075 QCR2 0.24 ± 0.27 0.263 
ECHA 0.16 ± 0.49 0.151 KCRM 0.20 ± 0.27 0.298 
KCRM 0.15 ± 0.74 0.164 QCR1 0.20 ± 0.28 0.377 
CAH3 0.15 ± 0.23 0.092 ECHA 0.19 ± 0.28 0.457 
QCR1 0.15 ± 0.26 0.147 CYC 0.18 ± 0.29 0.296 
CYC 0.14 ± 0.46 0.153 MDHC 0.18 ± 0.30 0.402 

ODPA 0.14 ± 0.48 0.169 ATP5H 0.17 ± 0.30 0.462 
ATPO 0.12 ± 0.50 0.174 ATPO 0.17 ± 0.31 0.385 
MDHM 0.12 ± 0.38 0.268 MDHM 0.17 ± 0.31 0.368 
KAD1 0.10 ± 0.71 0.118 KAD1 0.16 ± 0.31 0.362 

ATP5H 0.10 ± 0.31 0.263 ODPB 0.16 ± 0.35 0.815 
COX2 0.10 ± 0.49 0.119 CAH3 0.16 ± 0.35 0.271 
ODPB 0.09 ± 0.51 0.464 ODPA 0.15 ± 0.35 0.477 
AATM 0.09 ± 0.86 0.374 FABPH 0.15 ± 0.37 0.538 
EF1A2 0.08 ± 0.24 0.422 COX2 0.14 ± 0.37 0.271 
MDHC 0.08 ± 0.45 0.317 AATM 0.12 ± 0.39 0.482 
FABPH 0.07 ± 0.53 0.482 CISY 0.12 ± 0.42 0.942 
ACON 0.05 ± 0.47 0.637 EF1A2 0.11 ± 0.43 0.826 
CISY 0.05 ± 0.19 0.536 ACON 0.09 ± 0.44 0.961 

PRDX5 -0.03 ± 0.17 0.728 PGAM2 -0.02 ± 0.45 0.957 
G6PI -0.05 ± 0.18 0.635 GPDA -0.04 ± 0.59 0.593 

PARK7 -0.06 ± 0.26 0.512 VDAC1 -0.04 ± 0.69 0.381 
PGK1 -0.06 ± 0.27 0.611 PRDX5 -0.06 ± 0.33 0.542 

PGAM2 -0.06 ± 0.11 0.758 PGK1 -0.07 ± 0.43 0.846 
PGM1 -0.07 ± 0.31 0.599 PARK7 -0.08 ± 0.43 0.842 
VDAC1 -0.07 ± 0.52 0.433 G6PI -0.09 ± 0.44 0.871 
GPDA -0.08 ± 0.94 0.306 PGM1 -0.10 ± 0.44 0.866 
MYG -0.09 ± 0.96 0.338 KPYM -0.11 ± 0.45 0.852 

KPYM -0.09 ± 0.45 0.417 AT2A1 -0.12 ± 0.46 0.091 
TRY1 -0.10 ± 0.09 0.336 TRY1 -0.13 ± 0.47 0.710 
MPCP -0.11 ± 0.40 0.272 CASQ1 -0.13 ± 0.47 0.192 
TPIS -0.11 ± 2.38 0.364 ENOB -0.15 ± 0.48 0.773 

CASQ1 -0.11 ± 0.46 0.171 HBB2 -0.16 ± 0.49 0.294 
ENOB -0.11 ± 0.43 0.266 MYG -0.16 ± 0.49 0.716 
AATC -0.13 ± 0.53 0.106 AATC -0.18 ± 0.50 0.247 
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HSP7C -0.14 ± 0.19 0.158 MPCP -0.18 ± 0.51 0.381 
G3P -0.14 ± 0.68 0.148 ALDOA -0.18 ± 0.51 0.744 

ALDOA -0.14 ± 0.37 0.293 ATPG -0.18 ± 0.52 0.443 
HBB2 -0.14 ± 0.72 0.184 TPIS -0.19 ± 0.53 0.852 
MYL1 -0.15 ± 0.15 0.195 HSP7C -0.20 ± 0.56 0.375 
ATPG -0.15 ± 0.08 0.288 PRVA -0.20 ± 0.58 0.204 
ADT1 -0.16 ± 0.78 0.103 HS90B -0.20 ± 0.60 0.082 
PRVA -0.16 ± 0.42 0.088 ADT1 -0.21 ± 0.61 0.295 
HS90B -0.16 ± 0.27 0.097 HBB1 -0.21 ± 0.62 0.084 
PYGB -0.17 ± 0.15 0.087 G3P -0.21 ± 0.64 0.113 
AT2A1 -0.17 ± 0.28 0.084 MYL1 -0.22 ± 0.79 0.774 
PFKAM -0.17 ± 0.31 0.085 PFKAM -0.22 ± 0.83 0.217 
HBB1 -0.18 ± 0.64 0.096 PYGB -0.23 ± 0.83 0.143 
LDHA -0.45 ± 0.39 0.014 LDHA -0.53 ± 0.08 0.014 
PYGM -0.54 ± 0.34 0.011 PYGM -0.64 ± 0.07 0.013 
HBA -0.56 ± 0.18 0.015 HBA -0.69 ± 0.05 0.012 

 
Protein I.D. relates to the Uni-Prot database, entries returned using the MASCOT 

search engine. Relative abundance (ABD) represents Log-transformed MS data 

normalised by inter-sample abundance ratio using nonconflicting peptides only. 

Absolute abundance (ABD) represents Log-transformed MS data normalised by inter-

sample abundance ratio using nonconflicting peptides and total TA mass. All data is 

represented as MEAN ± SD for biological replicates (n = 4) and is displayed as the 

positive (+) or negative (-) fold change from non-stimulated control muscle to 30 days 

of co-contraction high-frequency stimulated muscle, in rank order of largest positive 

change to largest negative change. P-Values are generated from paired t-tests 

between control and 30-d stimulated muscle. 
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Table S6. Rank order for synthesis rates in soluble proteins after 30-d of stimulation in TA muscle. 
 

Protein I.D. Relative (Sim) Relative (Ctrl) P-Value Protein I.D. Absolute (Stim) Absolute (Ctrl) P-Value 
CAH3 17.64 ± 0.25 11.12 ± 0.16 0.003 CAH3 98.55 ± 0.40 73.19 ± 0.36 0.001 
EF1A2 8.20 ± 0.41 2.52 ± 0.39 0.001 COF1 92.27 ± 0.44 67.86 ± 0.48 0.014 
ATPO 13.67 ± 0.63 8.12 ± 0.31 0.003 ODPA 56.26 ± 0.39 31.92 ± 0.71 0.013 
KCRM 10.42 ± 0.43 6.26 ± 0.36 0.012 ECHA 81.34 ± 0.48 57.33 ± 0.58 0.018 
ATPB 11.58 ± 0.65 7.46 ± 0.13 0.002 QCR1 69.01 ± 0.63 46.23 ± 0.24 0.025 
IDHP 12.57 ± 0.40 8.57 ± 2.10 0.019 ATPG 68.41 ± 0.58 45.74 ± 0.72 0.018 
QCR2 5.41 ± 0.29 1.63 ± 0.70 0.001 EF1A2 84.47 ± 0.51 63.12 ± 0.52 0.028 
FABPH 6.51 ± 0.45 2.76 ± 0.60 0.003 ATPB 107.39 ± 0.32 86.92 ± 0.76 0.024 
QCR1 4.46 ± 0.33 1.22 ± 0.21 0.012 ATPA 58.44 ± 0.24 38.13 ± 0.26 0.019 
CYC 4.49 ± 0.36 1.36 ± 0.18 0.002 MDHM 71.73 ± 0.26 53.33 ± 0.29 0.027 

ATPG 5.35 ± 0.61 2.23 ± 0.95 0.022 CISY 55.27 ± 0.46 38.26 ± 0.48 0.022 
CISY 4.34 ± 0.37 1.43 ± 0.14 0.001 IDHP 68.24 ± 0.27 51.24 ± 0.51 0.011 
ATPA 4.76 ± 0.15 1.92 ± 0.53 0.003 AATC 81.37 ± 0.32 65.93 ± 0.53 0.024 
KAD1 3.72 ± 0.98 1.13 ± 0.05 0.018 QCR2 59.44 ± 0.28 44.28 ± 0.40 0.018 
ECHA 4.15 ± 0.47 1.57 ± 0.41 0.011 ATPO 63.34 ± 0.28 48.24 ± 0.73 0.026 
MDHM 8.71 ± 0.18 6.32 ± 0.44 0.011 COX2 49.04 ± 0.51 34.02 ± 0.34 0.024 
ODPA 11.71 ± 0.61 9.39 ± 0.59 0.018 ACON 57.62 ± 0.49 42.63 ± 0.51 0.013 
AATM 2.62 ± 0.38 1.01 ± 0.43 0.026 KCRM 140.53 ± 0.24 125.84 ± 0.53 0.016 
COF1 1.81 ± 0.58 0.35 ± 0.62 0.002 KAD1 70.27 ± 0.65 55.63 ± 0.89 0.021 
ODPB 2.09 ± 0.36 0.66 ± 0.91 0.001 ODPB 43.48 ± 0.81 30.72 ± 0.26 0.016 
ALBU 14.57 ± 0.11 13.72 ± 0.29 0.189 CYC 71.27 ± 0.34 58.94 ± 0.47 0.031 

ATP5H 1.17 ± 0.60 0.52 ± 0.33 0.072 FABPH 28.62 ± 0.19 18.94 ± 0.56 0.025 
COX2 1.71 ± 0.43 1.19 ± 0.37 0.013 AATM 16.91 ± 0.14 9.62 ± 0.49 0.014 
MYL1 1.96 ± 0.74 1.49 ± 0.15 0.166 ALBU 139.79 ± 0.34 136.24 ± 0.21 0.831 
GPDA 2.27 ± 0.83 1.86 ± 0.23 0.081 PRDX5 30.22 ± 0.42 28.47 ± 0.33 0.866 
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MDHC 5.61 ± 0.13 5.22 ± 0.17 0.726 MDHC 25.66 ± 0.26 24.13 ± 0.24 0.261 
AATC 2.19 ± 0.42 1.82 ± 0.13 0.097 MYL1 14.37 ± 0.85 12.94 ± 0.65 0.085 
AT2A1 1.29 ± 0.24 0.98 ± 0.24 0.082 HSP7C 22.36 ± 0.42 21.53 ± 0.30 0.227 
MYG 1.67 ± 0.26 1.46 ± 0.35 0.266 PARK7 8.01 ± 0.48 8.44 ± 0.47 0.811 
HBB2 4.42 ± 0.27 4.27 ± 0.08 0.971 TRY1 9.97 ± 0.47 11.17 ± 0.29 0.634 
PRVA 7.03 ± 2.25 6.89 ± 0.47 0.862 ATP5H 42.96 ± 0.61 44.19 ± 0.50 0.558 

PRDX5 2.50 ± 0.22 2.36 ± 0.21 0.931 HS90B 9.83 ± 0.20 11.13 ± 0.92 0.736 
HSP7C 1.58 ± 0.19 1.49 ± 0.74 0.885 GPDA 14.27 ± 0.27 15.74 ± 0.94 0.855 
ADT1 2.05 ± 0.51 1.96 ± 0.40 0.883 VDAC1 13.27 ± 0.33 14.74 ± 0.44 0.373 
HBB1 4.77 ± 0.33 4.68 ± 0.35 0.973 CASQ1 16.27 ± 0.55 17.82 ± 0.08 0.437 
MPCP 1.41 ± 0.55 1.43 ± 0.73 0.844 HBB2 27.77 ± 0.36 29.47 ± 0.38 0.853 
VDAC1 2.30 ± 0.33 2.35 ± 0.31 0.936 PRVA 35.27 ± 0.28 37.27 ± 2.36 0.914 
PARK7 1.09 ± 0.36 1.14 ± 0.35 0.947 HBB1 32.74 ± 0.46 34.94 ± 0.44 0.852 
HS90B 11.48 ± 0.81 11.54 ± 0.52 0.874 ADT1 19.27 ± 0.86 21.83 ± 0.41 0.092 
TRY1 0.32 ± 0.18 0.66 ± 1.05 0.082 HBA 46.24 ± 0.21 48.84 ± 0.51 0.682 
HBA 5.95 ± 0.40 6.36 ± 0.29 0.715 MYG 70.45 ± 0.67 73.24 ± 0.17 0.912 

CASQ1 11.73 ± 0.17 12.25 ± 0.64 0.973 MPCP 30.24 ± 0.25 33.73 ± 0.66 0.725 
G3P 1.31 ± 0.23 2.06 ± 0.76 0.031 AT2A1 15.24 ± 0.16 19.53 ± 0.35 0.426 

KPYM 0.86 ± 0.16 1.63 ± 0.09 0.017 PFKAM 2.71 ± 0.55 9.63 ± 0.70 0.011 
G6PI 1.03 ± 0.65 2.04 ± 0.98 0.019 G3P 16.21 ± 0.96 25.27 ± 0.13 0.013 
TPIS 1.44 ± 0.14 3.15 ± 0.25 0.007 KPYM 40.38 ± 0.49 50.42 ± 0.07 0.025 

PGAM2 2.36 ± 0.18 4.22 ± 0.10 0.027 G6PI 18.37 ± 0.63 31.83 ± 0.76 0.019 
PGM1 2.25 ± 0.29 4.26 ± 0.03 0.023 PGM1 32.55 ± 0.44 48.27 ± 0.40 0.027 
ACON 2.23 ± 0.41 4.40 ± 0.22 0.019 TPIS 56.45 ± 0.54 72.36 ± 0.25 0.026 
PGK1 1.59 ± 0.35 3.87 ± 0.16 0.014 PYGB 49.23 ± 0.88 66.24 ± 0.13 0.028 

ALDOA 2.21 ± 0.51 5.15 ± 0.42 0.019 PGK1 91.27 ± 2.00 112.33 ± 0.26 0.019 
PFKAM 2.02 ± 0.59 5.54 ± 0.95 0.016 PGAM2 79.05 ± 0.51 101.44 ± 0.29 0.011 
PYGB 2.43 ± 0.22 6.41 ± 0.15 0.002 ALDOA 70.84 ± 0.53 93.28 ± 0.62 0.019 
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ENOB 6.51 ± 0.26 11.30 ± 0.37 0.001 ENOB 64.33 ± 0.46 87.37 ± 0.37 0.019 
PYGM 1.41 ± 0.26 7.87 ± 0.53 0.001 LDHA 75.23 ± 0.53 106.24 ± 0.32 0.019 
LDHA 4.63 ± 0.41 15.17 ± 0.17 0.001 PYGM 100.33 ± 0.44 142.73 ± 0.17 0.001 

 
Protein I.D. relates to the Uni-Prot database, entries returned using the MASCOT search engine. Synthesis rates are presented in 

relative format which relates to fractional synthesis rate in percent per day and in absolute terms which is reflective of whole TA 

synthesis with rates expressed in picograms per day. All data is represented as MEAN ± SD for biological replicates (n = 4) in the 30 

days stimulated muscle (Stim) and the non-stimulated control muscle (Ctrl). The proteins are ranked in order of largest increase in 

synthesis rate from Ctrl to Stim through to largest decrease in synthesis rate from Ctrl to Stim. P-Values are generated from paired t-

tests between control and 30-d stimulated muscle.
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Chapter 5. General discussion 

5.1 Abstract 

Skeletal muscle is a diverse tissue that has a remarkable ability to adapt to 

physiological, biochemical and metabolic stresses. Exercise training elicits changes in 

muscle phenotype through alterations in the abundance of individual proteins. 

However, there is a paucity of data reporting how changes in protein abundance are 

coordinated through relative contributions of synthesis and degradation. Preservation 

or increases in skeletal muscle mass through exercise training can ameliorate 

metabolic dysfunction and contribute to the prevention of chronic diseases. These 

benefits are facilitated, at least in part, by extensive metabolic and contractile 

remodelling of skeletal muscle in response to exercise. Endurance and resistance 

exercise training represent two extremes on the continuum and elicit markedly 

different training responses that are each underpinned by complex changes to the 

muscle proteome. We, for the first time in rat muscle, report individual protein 

responses in response to both endurance and resistance exercise training. Using 

novel techniques, we present evidence of two contrasting sequences of adaptation, 

including 8 different protein-specific patterns of protein turnover in the myofibrillar 

fraction, 4 which were unique to the endurance stimulus and 2 that were unique to 

resistance exercise. Similarly, we report 9 different patterns in protein turnover from 

proteins of the soluble fraction, with 2 unique to endurance stimulation and 1 unique 

to resistance exercise training. Consequently, our work provides new evidence 

documenting the mechanisms underpinning muscle adaptation. These data are 

evidence of highly individualised responses on a protein-by-protein basis to coordinate 

muscle adaptation, including selective degradation of individual proteins at varying 

rates to decrease and/or to maintain the relative abundance of proteins in muscle. 
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5.2 General commentary 

Skeletal muscle is a heterogeneous tissue composed of functionally diverse fibre 

types (Staron, 1997). The heterogeneous nature of muscle is what permits its broad 

application to fulfil a variety of functional demands. It is also well established that 

skeletal muscle demonstrates a high degree of plasticity in regard to its physiological, 

biochemical and metabolic characteristics in order to meet the functional demands 

placed upon it (Pette and Staron, 2001). Such changes ultimately result in exchanges 

of muscle phenotype involving the gradual alteration of protein content and enzyme 

activity, manifested through overt changes to individual protein abundance. For 

resistance exercise training, these alterations usually contribute to significant 

increases in muscle hypertrophy (Kraemer et al, 2004). Conversely, in endurance 

exercise the metabolic status of the cell is significantly modified, often with no notable 

increases in cross-sectional area of the muscle fibre. However, currently there are little 

data on the exact processes that coordinate changes in protein abundance i.e. it is not 

clear to what extent synthesis and degradation contribute to individual protein 

turnover, during muscle adaptation. More detailed understanding of the mechanisms 

of muscle adaptation may help to support public health recommendations and data 

showing that regular exercise participation can be effectively used in the prevention, 

management, and the treatment of chronic conditions, including hypertension, heart 

disease, obesity, type 2 diabetes, and age-related muscle wasting (Haskell et al, 2007; 

Colberg et al, 2010). Understanding how exercise causes muscles to adapt is 

fundamental to improving our knowledge towards improving health, quality of life and 

longevity. Exercise capacity is strongly and inversely related with all-cause mortality 

and offsetting the age-associated loss of muscle mass is a key component of this 

protective effect. In adults, muscle is the most abundant tissue in the body, it is the 

largest reservoir of amino acids that can be used to support metabolism and repair 

other tissues, and in healthy individuals it is the primary site of postprandial glucose 

disposal (Theibaud et al, 1982). Clearly there is an intimate and reciprocal relationship 

between exercise and muscle; without muscle we could not exercise and without 

exercise our muscles deteriorate and become dysfunctional. Despite the clear 

importance of skeletal muscle and the key role of both resistance and endurance 

exercise to human health we know surprisingly little about the molecular events that 

link muscle contraction to muscle adaptation. Now, with the arrival of exercise 
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proteomics as a rapidly emerging field, there is scope to enhance this understanding 

of how skeletal muscle adaptation occurs in response to exercise. Since proteins are 

the functional components of the cell, a comprehensive analysis of the protein 

complement of muscle can give an unprecedented and detailed insight to changes in 

muscle phenotype. The focus of this thesis has been to extend traditional proteomic 

analysis in to include the dynamic aspects of protein turnover to muscle adaptation. 

Mixed muscle protein turnover is widely acknowledged to increase in response to 

resistance exercise (Chesley et al 1992; Biolo et al, 1995), with mixed protein fractional 

synthetic rates (FSR) maintaining elevation above mixed protein fractional 

degradation (FDR) 48 h post resistance exercise, to increase the net protein content 

of the muscle (Phillips et al, 1997). However, Burniston et al, (2014) reported a wide 

distribution of metabolic enzymes in muscle fibres that seemingly have the same fibre 

type and reports protein abundances span more than four orders of magnitude. This, 

in itself suggests that reliance on averaged mixed protein data is insufficient to pick 

apart complex proteomic changes. With regard endurance exercise, Burniston, (2008) 

documented 15 significant changes in the abundance of individual proteins in 

response to endurance training using intensity-controlled treadmill running. However, 

despite such work quantifying changes in the muscle proteome in response to 

endurance exercise, this leaves us with no information on whether these protein 

changes are a result of increases in synthesis rate, a decrease in degradation rate or 

a combination of the two. Taken together, this largely stations the evidence from whole 

mixed-muscle protein turnover in a redundant position to inform us how the 

mechanism of muscle adaptation is coordinated. It also suggests that general 

proteomics data is inadequate to provide information on the dynamic changes involved 

in muscle adaptation, exposing the requirement for protein turnover to be measured 

on the individual level during muscular perturbation events. 

We have successfully refined a unique method, coined dynamic proteome profiling 

(DPP; Chapter 2) to allow the dynamic muscle proteome to be captured during 

programmed exercise. We have employed DPP and combined it with two robust 

models of exercise adaptation in vivo that simulate endurance activity (chronic low-

frequency stimulation, CLFS; Chapter 3) and resistance exercise training (co-

contraction high-frequency stimulation, CHFS; Chapter 4) in order to study the 

complex mechanisms underpinning muscle adaptation. This work has quantified two 

very different responses of the muscle proteome in two contrasting modes of 
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programmed exercise in the rat. Demonstrating that the mechanism for skeletal 

muscle adaptation is organised through two distinct ways that seems dependent on 

the given exercise stimulus. Using animal models to investigate these processes holds 

several advantages over studies in human participants. Firstly, models such as CLFS 

have a long history of robust and effective change to induce the desired outcome 

(Salmons and Vrbova, 1969.; Pette et al, 1973). Furthermore, models like this can 

administer a much larger degree of change to the muscle that controlled human 

exercise studies could ever achieve, allowing us to study the full extent of muscle 

adaptation. This is primarily achieved through the specific regulation of the stimulation 

parameters that can be more readily controlled in animal models than in humans. 

Moreover, environmental conditions and nutritional intake can be accurately 

standardised in laboratory animals, while activity level is manipulated and/or 

monitored. Furthermore, animals used in laboratory studies have a much more 

homogenous gene pool than human subjects, and the studies can be completely 

randomised whereas this is difficult to do in humans. These factors increase the 

sensitivity and reproducibility of the experimental outcomes. Another invaluable 

benefit of animal models is the accessibility of analytical sample. For instance, the 

amount of muscle tissue that can be harvested compared to human biopsies. At the 

end of an exercise training period, whole muscles can be dissected and studied 

extensively in animal models. In contrast, biopsies in humans are often limited to the 

most accessible muscles such as the vastus lateralis (Bergstrom, 1975) and the tissue 

sample may not fully represent the changes that occur during an intervention. This is 

because fibre type characteristics and protein abundances may differ from one biopsy 

to the next, even within the same muscle of one individual (Elder et al, 1982). Thus, 

even four or five biopsies may not fully represent the adaptations that occur throughout 

the entire muscle.  

A unique strength of our analysis is that whole muscle measurements were used to 

enable us to report absolute data that reflects the level of whole muscle adaptation. 

Almost without exception, previous work using biosynthetic labelling techniques in 

either animals or humans only report relative data (Wagenmakers, 1999) i.e. fractional 

synthesis rate (FSR). Whilst FSR is used extensively in the literature, it is a relative 

measurement and does not give insight to whether absolute changes, i.e. we do not 

know if the whole from which the fraction is reported has changed. For example, we 

report FSR is consistent between control and stimulated muscle during chronic low-
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frequency stimulation (10.40 %/d in Ctrl and 9.86 %/d in Stim). However, when we 

compare absolute synthesis values, we can establish that the muscle is actually 

making less protein and synthesis rates have decreased (Figure 3.5). For purposes of 

comparison we have reported FSR throughout this thesis but all data were conducted 

on absolute values to provide context of how changes to protein turnover affect whole 

muscle adaptation. 

Our two exercise stimulation models produced varying results. Initially, at the whole 

muscle level, CLFS induced a typical (Jarvis et al, 1996) 50 % reduction in wet muscle 

mass, whereas CHFS produced 20 % increase in wet muscle mass, consistent with 

previous work (Schmoll et al, 2018). Both absolute and relative protein synthesis rates 

were affected accordingly in each of the models. CLFS maintained the rate of relative 

protein synthesis in Stim (9.86 %/d) compared to the Ctrl (10.4 %/d) over the 30 days 

of CLFS suggesting that the smaller muscle (Stim) is still making a similar amount of 

protein as the larger Ctrl muscle. Whereas during CHFS the rate of relative protein 

synthesis increased in Stim (6.71 %/d) from the Ctrl (4.61 %/d), suggesting the larger 

muscle (Stim) is making a greater amount of protein than the smaller Ctrl. However, 

the interpretation is different when the absolute rate of synthesis is calculated for whole 

muscle in each experimental model. Absolute protein synthesis decreased by ~50 % 

over the 30 days of CLFS and increased by ~20 % during the 30 days of CHFS. Not 

only can this account for changes in muscle mass, but means that as the muscle size 

changes, at the whole muscle level, the absolute rate of newly synthesised protein 

responds in-line with muscle mass. Therefore, we can be confident that any changes 

in the abundance of an individual protein not accompanied by a change in synthesis 

can be attributed to protein degradation. 

Top-down proteomic analysis was able to resolve a similar amount of myofibrillar 

proteins between experiments, resulting in 30 common 2D-gel spots across sampling 

points for the CLFS intervention and 35 protein spots for the CHFS experiment. This 

corresponded to 23 non-redundant protein identifications with 10 spots resolved as 

separate proteoforms in the CLFS investigation. Similarly, 10 individual proteoforms 

were resolved from 18 protein identifications in the CHFS experiment. The interesting 

findings from this analysis revealed that resistance exercise training largely effects the 

whole protein and not the proteoforms, which is in contrast to endurance type exercise. 

Generally, we see a substitution of specific proteoforms more specialised to slow-

twitch muscle in response to our endurance stimulus. This is consistent with 
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transformation from a fast-to-slow muscle phenotype. Whereas, in response to 

resistance exercise training the main response is protein accretion resulting in the 

maintenance of the muscle phenotype. It can be reasoned that there is no need to 

change the muscle phenotype in response to such a stimulus, as the muscle is already 

highly specialised to deal with high intensity contraction. Hence, the blanket response 

of the proteoforms and no evidence of proteoform-specific changes. Furthermore, the 

response of the muscle to CLFS (Figure 3.4) was more immediate than in CHFS (4.5). 

This provides evidence for the argument made of proteoform-specific changes may 

be the early indicators of phenotypic change. Moreover, this makes sense from a 

physiological position as the abundance of a whole protein takes longer to change 

than the abundance of a proteoform that could be a result of a post-translational 

modification. Granata et al, (2017) documents phosphorylation, the most commonly 

known post-translational modification, to occur immediately after aerobic exercise 

training in proteins associated with adaptation. Hojlund et al, (2009) were the first to 

map large scale phosphoproteomics in human muscle and found 306 distinct 

phosphorylation sites in 127 proteins with 26 % of phosphoproteins belonging to the 

sarcomere. Despite this large catalogue of information on specific sites of 

phosphorylation the functional importance, specific kinases and phosphatases 

involved have yet to be determined for the majority of this work. The site-specific 

phosphorylation we have discovered through work in this thesis (Figure 3.10), has led 

to the proteoform-specific degradation of myosin light chain (Figure 3.9). Future work 

could further support this by providing more quantitative evidence for peptide-specific 

degradation. This could be achieved by a work flow similar to Xu et al, (2010), in order 

to identify specific sites of ubiquitination on myosin light chain peptides following 

endurance type exercise. Xu et al, (2010) generated a monoclonal antibody that can 

enrich for peptides containing lysine residues modified by di-glycine, an adduct left at 

sites of ubiquitination after trypsin digestion. This would be an obvious line of follow-

up investigation given that there is a lysine residue close by (Lysine 31) to our site-

specific phosphorylation at Serine 20. 

Upon interrogation of our findings, we can also report interesting differences in the 

regulation of abundance changes (or lack of in CHFS) between the two experiments. 

Protein turnover is the fundamental mechanism that both maintains proteome quality 

and enables muscle adaptation/ changes in protein abundance to occur. We 

document the regulation of changes in protein abundance to be induced by different 



 230 

patterns of turnover seemingly bespoke to each mode of programmed exercise. 

Firstly, protein synthesis of proteins in the soluble fraction appears to elicit very similar 

responses between CLFS and CHFS. We report increases in synthesis from Ctrl to 

Stim for 20 proteins in CLFS and 36 proteins in CHFS. For endurance type exercise, 

this seems generally related to the phenotypic change of the muscle, increases in the 

synthesis of mitochondrial (Figure 3.14) proteins and decreases in the glycolytic 

proteins (Figure 3.15). However, when we analyse changes in the abundance of these 

proteins, there are clear contrasting differences. Consistent with changes in synthesis 

soluble proteins in the CLFS experiment display both positive and negative net 

changes in abundance (Figure 3.12) which are consistent with the phenotypic changes 

described earlier. The unique finding amongst these proteins is that the relative 

contributions of synthesis and degradation is highly individualised and it appears there 

is no uniform way to predict this (Fig. 3.14 and 3.15). Conversely, in the resistance 

exercise training experiment we see almost no changes in abundance (Figure 4.11).  

The reason for this response is there is an increase in protein turnover and therefore 

the quality control of the proteins. It is important to appreciate that the abundance of a 

protein can also be modulated by changes to its rate of degradation as well as 

synthesis. This provides important information evidencing that both measures are 

required to provide the correct context for muscle adaptation. It is possible and highly 

likely that these changes to the rate of protein turnover may influence muscle function 

even in the absence of changes protein abundance. Indeed, there is a growing 

awareness of the importance of ‘quality control’ particularly regarding the biology of 

ageing and as a mechanism of disease (Lopez-Otin et al, 2013), and this is driving the 

development for methods such as Dynamic Proteome Profiling to investigate protein 

homeostasis (i.e. proteostasis) and dynamics.  

The reasons underpinning such changes at the gross fractional level could be due to 

a number of factors from the myofibrillar proteoforms exhibiting a split response in 

protein abundance in-line with phenotypic change in response to CLFS and the huge 

ranges of individual protein synthesis rates in the soluble fraction after CHFS (2.7 – 

140.5 pg/d) correlating to increased protein turnover. As a consequence, average 

synthesis reported across each fraction is a poor indicator of muscle adaptation due 

to the range of synthesis rates and abundance changes within each fraction. Of which, 

subsequently appears to be unique for each stimulation intervention. Furthermore, we 

can show the need for individual protein data, as when reported at the fractional level 
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the data does not further translate to individual regulation of protein turnover. For 

example, in the myofibrillar fraction alone there are 8 patterns of protein turnover 

across experiments with 4 patterns of change bespoke to CLFS and 2 patterns of 

change only reported in the CHFS study (Figure 5.1). Similarly, in the soluble fraction 

there are a total of 9 patterns of individual protein turnover with 2 only reported in 

CLFS and 1 unique to the CHFS intervention (Figure 5.1). Furthermore, this is 

independently unique for each experimental intervention. For example, in the CLFS 

investigation proteins that exhibit an increase in protein abundance do so completely 

independently of gene ontology, protein function or structure. The mitochondrial 

proteins ACON, IDHP and ATPB all increase in abundance but through the 

independent responses of partially being accounted for by a greater synthesis rate 

(ACON), without a detectable change in synthesis rate (IDHP) or being entirely 

accounted for by an increase in the rate of synthesis in Stim compared to Ctrl muscle 

(ATPB). Whereas in the CHFS experiment, proteins that increased in abundance such 

as ABLU and ATPB did so through no detection in synthesis rate (ALBU) or through 

only increasing the rate of synthesis (ATPB), whilst there were marked increases in 

protein turnover for other proteins such as CISY and KCRM. Figure 5.1 provides a 

fully comprehensive overview that compares all of the proteins between experiments, 

detailing individual protein turnover in response to two different types of muscle 

adaptation. 
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Figure 5.1. Dynamic proteome profiling responses to endurance type exercise and 

resistance exercise training. 

The individual protein turnover responses are described within a matrix for the sum 

total of proteins reported in the EDL from both the chronic low-frequency stimulation 

experiment (panel A) and in the TA muscle in the co-contraction high-frequency 

stimulation experiment (panel B). The matrix reports proteins that either increase, do 
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not change or decrease for synthesis and degradation rates determined by paired t-

tests between the non-stimulated control muscle and the stimulated muscle. Proteins 

are represented by their Uni-Prot protein I.D. name from the Uni-Prot database, entries 

returned using the MASCOT search engine. Green text identifies proteins from the 

myofibrillar fraction (panel A, bracketed number relates to Figure 3.2; panel B, 

bracketed number relates to Figure 4.3). Blue text identifies proteins from the soluble 

fraction.   

Dynamic Proteome Profiling (DPP) is unique in its ability to provide insight to the 

individual components of protein turnover (i.e. synthesis, abundance and degradation) 

on a protein-by-protein basis in skeletal muscle. The present analysis is reproducible 

but the technique is new so there is undoubtedly scope for further optimisation. The 

use of heavy water deuterium (2H2O) for biosynthetic labelling is less invasive than 

infusion of isotope-labelled amino acids and studies can be conducted in free living 

subjects. Nevertheless, DPP is best suited to studying long term integrated protein 

dynamics over periods of days or weeks, but it is not optimal for studying the acute 

short term (e.g. < 1 d) responses due to complex curve fitting and the equilibration of 
2H in body water. Proteomic methods afford the identification of hundreds and 

sometimes thousands of proteins in any one experiment. However, in any proteomic 

experiment the number of proteins that can be identified will be largely greater than 

the number that can be quantified because of issues regarding missing data. That is, 

to identify a protein it need only be detected in one sample amongst many, but to 

quantify a protein, peptides that are unique to that protein must be clearly resolved in 

each biological replicate. Often this issue is partially circumvented by accepting a less 

than full number of biological replicates for statistical testing of proteomics data, but 

this is not best practice. Dynamic Proteome Profiling adds a further layer of complexity 

and requires high quality mass isotopomer distribution profiles to be captured for each 

peptide during their entire chromatographic profile. Therefore, some peptides may be 

excluded because co-eluting peptides with similar or overlapping mass isotopomer 

envelopes contaminate each other and so the number of proteins submitted to 

statistical analyses is further reduced. Because of the above-mentioned quality control 

processes, the analysis of some proteins is based on data from single peptides, 

whereas other proteins may have numerous protein-specific peptides that are well 

resolved and submitted to statistical analysis. Profiling of the same peptide across 
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different experimental groups is robust but it is not yet certain how representative one 

peptide is of the abundance or synthesis rate of the entire protein. Closer inspection 

of proteins with numerous quantifiable protein-specific peptides sometimes reveals 

that peptides from the same protein exhibit broadly different rates of synthesis. Given 

the stringent filtering of data and high level of reproducibility of peptide mass 

isotopomer analysis, it is unlikely broad differences in peptide synthesis rates occur 

and it is entirely possible these differences are attributable to technical errors. 

Furthermore, we have calculated degradation to be the difference between the two 

processes we measure; synthesis and degradation. Whilst this is likely to be an 

accurate estimation we cannot ignore the fact DPP fails to directly measure protein 

degradation. Finally, the time series analyses that is necessary for DPP are well suited 

to detailed studies such as muscle adaptation. However, the timing of sample 

collection dictates the sensitivity of the synthesis measurements. Furthermore, to 

apply this design in human populations that encompass clinical settings may not be 

appropriate where this technique requires the collection of numerous muscle samples 

during a short experimental period and may be less well tolerated.  

Despite these potential technical limitations, our data reports a mechanistic insight into 

the regulation of protein abundance within the muscle cell and protein metabolism. 

Moreover, these data add to the now growing list of evidence indicating whole mixed-

muscle protein synthesis give a less than adequate picture of muscle adaptation. We 

have provided new evidence for selective degradation of individual proteins at varying 

rates to decrease and/or to maintain the same relative abundance of protein in the 

muscle and have refined a unique methodology to achieve this. Our work is the first of 

its kind in rat muscle to document the response of protein-specific turnover during 

muscle adaptation, providing original evidence to show how protein turnover is 

increased and decreased by increasing and/or decreasing the relative contributions of 

synthesis and degradation to coordinate the adaptive response in muscle. 

To build on this work, we conclude that our DPP technique is suitable to use in other 

models that administer significant change to the muscle. For example, future work 

could continue in this vain to analyse individual protein turnover and utilise further 

animal models, such as the model of muscle wasting/dis-use, involving silencing of 

the common peroneal nerve using tetrodotoxin (Dupont Salter et al, 2003). 

Furthermore, we have provided novel evidence to suggest proteoform-specific 

degradation may act as an early indicator for phenotypic change. With the current 
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interest in the field of phosphoproteomics this could build on emerging knowledge 

(Potts et al, 2017) to answer questions on what modifications may contribute to the 

adaptive processes over more chronic periods in skeletal muscle.  Phosphorylation 

causes changes in protein conformation that alter functional characteristics (e.g. 

enzymatic activity, protein-protein interactions and subcellular localisation) of the 

protein and also change its peptide MS/MS spectra, which can be used to map 

modifications to specific residues (Roux et al, 2013). Potts et al, (2017) reports almost 

6,000 phosphorylation sites on more than 4,800 proteins including low abundance 

proteins involved in signal transduction. One hour after a bout of maximal intensity 

contractions there were more than 600 differences in phosphorylation status spread 

across more than 300 proteins. Less than half of the exercise responsive 

phosphorylation sites have been previously detected and in most cases the kinases 

responsible for phosphorylation of these sites have not been defined. Therefore, this 

work represents a substantial addition to the body of information on muscle responses 

to resistance exercise. Deciphering which of these signals link contraction to 

adaptation will be the next challenge and this may not be a straight forward process. 

For instance, exercise is associated with widespread perturbations to homeostasis, 

therefore molecular events detected in exercised muscle could be associated with 

restoration of cellular homeostasis rather than, or as well as, being the signalling 

events that instigate adaptation. Moreover, such comprehensive information on 

phosphopeptides is not equivalent to knowing the protein species which are the 

entities that are actually responsible for biological processes. Indeed, it is uncommon 

for a protein to be modified at just one site or by just one type of modification (Roux et 

al, 2013). So, future work will have the demanding task of stitching all the available 

information together in order to uncover the true nature of the protein species that 

dictate muscle adaptation.  
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Chapter 6. Future directions 
 
We can conclude that our Dynamic proteome profiling (DPP) technique is suitable to 

bring new insight to muscle adaptation and could be used in other models that result 

in changes to skeletal muscle phenotype. To build on data generated from this thesis, 

it would be interesting to investigate other models of adaptation, including pathological 

changes associated with diseases or ageing. For example, future work could utilise 

DPP to measure individual protein turnover during muscle wasting/dis-use, in 

response to silencing of the common peroneal nerve using tetrodotoxin, reported in 

Fisher et al, (2017). In particular, it would be of interest to know whether the dominant 

regulators of changes in protein abundance i.e. synthesis driven, degradation driven 

or a combination of them both, are of a similar weighting during muscle atrophy in 

comparison to an endurance-type stimulus (Chapter 3), that was also associated with 

a decrease in muscle mass. Such information will help us to understand if during 

muscle adaptation, individual protein responses are highly individualised/ specific to 

the protein, or subject to the specific nature of the stimulus used to induce adaptation. 

We provided novel evidence to suggest proteoform-specific degradation may act as 

an early indicator for phenotypic change (Chapter 3). However, we did not uncover 

the function of the unique site-specific phosphorylation that was identified in the 

specific myosin light chain 2 (MLRS) proteoform. A key area for future investigation 

could be focused to discovering the kinase(s) responsible for such contrasting 

differences between MLRS proteoforms. It would also be of interest to provide 

quantitative evidence for peptide-specific degradation that may be regulated differently 

between each proteoform. Such work could be achieved by a workflow similar to Xu 

et al, (2010), in order to identify specific sites of ubiquitination on MLRS peptides 

following endurance type exercise. Xu et al, (2010) generated a monoclonal antibody 

that can enrich for peptides containing lysine residues modified by di-glycine, an 

adduct left at sites of ubiquitination after trypsin digestion. This type of analysis could 

test the hypothesis that unique phosphorylation at Serine 20 is a precursor to 

ubiquitination of the nearby lysine residue (K31) and subsequent degradation. 

Di-glycine remnant profiling is relatively new, whereas phosphoproteome profiling 

methods are becoming more widely established. The growing interest in the field of 

phosphoproteomics could build on emerging knowledge (Potts et al, 2017) to answer 

questions regarding which modifications contribute to the adaptive processes during 
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longer term/ chronic interventions in skeletal muscle. Potts et al, (2017) reports almost 

6,000 phosphorylation sites on more than 4,800 proteins including low abundance 

proteins involved in signal transduction. One hour after a bout of maximal intensity 

contractions there were more than 600 differences in phosphorylation status spread 

across more than 300 proteins. Less than half of the exercise responsive 

phosphorylation sites have been previously detected and in most cases the kinases 

responsible for phosphorylation of these sites have not been defined. However, 

although these phosphorylation sites are associated with maximal contractions it is 

not yet clear how they might contribute to changes in specific muscle functions. It is 

likely some of the acute changes in phosphorylation status are a result of increased 

mechanical stress, a greater metabolic demand or functional changes associated with 

force production. Informed from our current work (Chapter 3) it could also be reasoned 

that some of these phosphorylation could be associated with proteoform-specific 

degradation and could lead to new molecular insight to muscle adaptation. 

Future directions in work arising from this thesis could focus on addressing some of 

the limitations associated with the DPP technique. DPP is highly novel and allows us 

to investigate skeletal muscle during adaptation at the individual protein level. 

However, the data generated from DPP were averages from periods of several days, 

which raises questions whether the data could be confounded by hour-to-hour 

fluctuations in synthesis and/or degradation of individual proteins. There is evidence 

to suggest that there are tissue-specific oscillations in the mechanisms that regulate 

protein synthesis during a 24-hour cycle, for example changes in the phosphorylation 

of the mTOR/p70S6K and ERK intracellular signalling pathway (Chang et al, 2017). 

Interestingly, p70S6k and ERK phosphorylation exhibited circadian variation in the 

fast-twitch muscle, but not in the slow-twitch muscle and this could provide a means 

to interrogate whether circadian oscillations affect DPP data. However, knowledge 

regarding the wider phosphorylation networks in fast- and slow-twitch muscle will be 

required alongside di-glycine remnant profiling to uncover the true regulatory 

mechanisms responsible. Such work could provide an important avenue of research 

to help us understand if circadian variation in protein synthesis-related intracellular 

signalling networks contribute to circadian rhythms in various muscle specific functions 

and/or homeostasis. 

Whilst DPP is a highly novel and robust technique (Srisawat et al, 2019). We provide 

no data to link the DPP data presented in this thesis with physiology or histology data 
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that would enable wider interpretation. It would be beneficial to investigate the 

contractile properties and physiological characteristics in future investigations that 

employ DPP to correlate quantitative changes in individual protein turnover with 

quantitative assessments of strength, endurance and fatigue. For example, CLFS 

results in a marked slowing of the isometric twitch characteristics and maximum 

shortening velocity in rat muscle (Jarvis et al, 1996). Likewise, it will be important to 

know how increases in muscle hypertrophy induced by our co-activation model in 

Chapter 4 contribute to changes in maximal contractile force, e.g. is the amount of 

hypertrophy proportional to the maximal contractile force gain?  

Finally, some of our own previous work (Hesketh et al, 2016) and others (Kim et al, 

2012) provide evidence that suggests the rank order of protein synthesis changes 

when individual proteins are measured in different types of skeletal muscle and tissue. 

It would be pertinent to utilise DPP to investigate the several muscles across animal 

models, in the interest of repeatability and to understand if the individual responses 

documented in this thesis are a true result of the experimental intervention or as a 

result of inter-tissue variability. 
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