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ABSTRACT 12 

Drug-induced liver injury (DILI) is one of the prevailing causes of fulminant hepatic failure. It is 13 

estimated that three idiosyncratic drug reactions out of four result in liver transplantation or death. 14 

Additionally, DILI is the most common reason for withdrawal of an approved drug from the market. 15 

Therefore, the development of methods for the early identification of hepatotoxic drug candidates is of 16 

crucial importance. This review focuses on the current state of cheminformatics strategies being applied 17 

for the early in silico prediction of DILI. Herein, we discuss key issues associated with DILI modelling 18 

in terms of the data size, imbalance and quality, complexity of mechanisms, and the different levels of 19 

hepatotoxicity to model going from general hepatotoxicity to the molecular initiating events of DILI. 20 

INTRODUCTION 21 

Drug-induced liver injury (DILI) refers to hepatotoxicity resulting from adverse reactions caused by 22 

drugs or their reactive metabolites and toxic chemical entities. DILI is a major concern as it is one of 23 

the leading causes of acute liver failure in the world, accounting for more than 50% of cases in the US1. 24 

Additionally, a recent study showed that DILI is responsible for more than 20% of the withdrawals of 25 

approved drugs from the market due to toxicity 2–4. This is an on-going problem, there have been at least 26 

eight withdrawals of drugs due to DILI from 1997 to 2016 alone: tolcapone, troglitazone, trovafloxacin, 27 

bromfenac, nefazodone, ximelagatran, lumiracoxib and sitaxentan5. Moreover, hepatotoxicity is also a 28 

major reason for the failure of candidates in the drug discovery process6. These reasons underscore the 29 

need for the accurate prediction of the risk of DILI for bioactive compounds. DILI itself is complex, it 30 

comprises a broad set of effects which can be further characterised in several ways, either by the type 31 

of hepatotoxicity (physiological effect) or by whether the effect is dose-dependent or not.  32 

 33 

34 
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With regard to hepatotoxicity, three types or patterns may be observed. Firstly, hepatocellular injury 35 

which is the result of biochemical perturbations of the cell culminating in severe cellular malfunction or 36 

cell death, the latter resulting in formation of scaring tissue. It comprises steatosis, necrosis and cirrhosis 37 

and is characterised by the release of hepatocellular enzymes (e.g. alanine transferase (ALT) and 38 

aspartate transaminase (AST)). Secondly, cholestatic injury is the result of an impairment of the biliary 39 

system caused either by bile stasis (i.e. the accumulation of bile in the bile ducts), portal inflammation 40 

or proliferation or injury of bile ducts. It is usually characterised by elevated levels of alkaline 41 

phosphatase (ALP) and γ-glutamyl transpeptidase (GGT). Finally, mixed hepatocellular-cholestatic 42 

injury, which occurs rarely in other forms of acute liver disease, usually shows prominent hepatocyte 43 

necrosis and inflammation as well as marked bile stasis. It is characterised by the elevation of both ALT 44 

and ALP. 45 

 46 

DILI itself may also be categorised into two subtypes. The first type, called intrinsic DILI (itDILI), is 47 

dose-dependent and is modulated by the presence of key compound substructures and its effects are 48 

reversed after discontinuation of drug administration. These reasons make it quite predictable7. The 49 

second type is idiosyncratic DILI (iDILI), which is very rare as it only occurs in 1:1,000 to 1:100,000 50 

patients exposed to the drug8. iDILI is associated with poor prognosis and does not show any dose-51 

response relationship. Because it is host-dependent9,10, iDILI can be the result of either immunological 52 

effects (i.e. allergic reactions) or metabolic effects which makes it more unpredictable11 and a 53 

considerable challenge for drug development and safety. 54 

 55 

These problems emphasise the importance of the early detection of hepatotoxic compounds in the drug 56 

discovery process in order to reduce attrition rates and to increase drug safety. However, a major obstacle 57 

to the development of comprehensive tools for the early detection of iDILI is primarily the lacking 58 

predictivity of the existing animal studies and secondly its complexity, ranging from the variety of its 59 

effects but also from the diversity of factors affecting susceptibility to iDILI. Additionally, drug 60 

metabolism and pharmacokinetics (DMPK) aspects, including local and intracellular concentration, are 61 

difficult to evaluate and predict. Effects of iDILI include elevations in serum transaminases, jaundice, 62 

acute liver failure or chronic liver dysfunction. Factors affecting iDILI include age, gender, ethnicity, 63 

genetic polymorphism, use of other medication or pre-existing liver disease12,13. Additionally, the 64 

development and mechanisms of iDILI are poorly understood making its early detection, and therefore 65 

its prediction, a challenge14,15. A detailed summary of these mechanisms lies outside the scope of this 66 

review and the reader is referred to the works of Fraser et al.16 and of Noureddin and Kaplowitz17 for 67 

comprehensive information on DILI mechanisms. Nonetheless, a wide range of predictive models have 68 

been established for the prediction of DILI and can be divided among quantitative adverse outcome 69 

pathways (qAOPs)18, metabolomics19, cheminformatics 14,20, pharmacokinetic-pharmacodynamics (PK-70 

PD) modelling21, dynamical pathway modelling with ordinary differential equation (ODE) models22 and 71 
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multi-scale approaches modelling DILI with systems biology approaches23.  72 

 73 

 74 

The focus of this work is to characterise the application and scope of published cheminformatics models 75 

for DILI and to highlight their relevance, with a particular focus on machine learning. 76 

APPROACHES TO PREDICTING DILI RISK 77 

Better understanding of the underlying mechanisms of DILI, as well as better annotation of the risk 78 

associated with drug structures is key for the development of more accurate and valuable predictive 79 

models20. Additionally there is no evidence that the mechanisms through which iDILI occurs are 80 

different than itDILI24,25. Thus, the focus of DILI research has been to identify reported clinical cases of 81 

hepatotoxicity. For instance, such information was compiled by Ludwig and Axelsen26, who created a 82 

list of 150 compounds associated with their adverse events. This compilation did not account for the 83 

difference(s) between itDILI and iDILI but was one of the first exhaustive lists of hepatotoxic drugs to 84 

link phenotypic outcomes in human.  85 

 86 

A more recent study classified a list of 611 compounds using high content image screening (HCS) on 87 

human cells and compared the findings to conventional assays27. The compounds were classified as 88 

either “severely”, “moderately” or non-toxic and laid the foundation for the use of in vitro data as a 89 

surrogate for the prediction of clinical outcomes. Other sources of hepatotoxicity-related compounds 90 

come from medicines regulatory agencies and post-marketing data. For instance, Suzuki et al. compiled 91 

adjudicated cases of DILI reported from the literature resulting from drugs that had been suspended or 92 

withdrawn from the market28 and Chen et al. annotated compounds based on information provided by 93 

the United States Food and Drug Administration (FDA)4. The first version of the latter organised 94 

compounds into three categories: no-DILI Concern compounds, for which no hepatotoxicity had been 95 

Figure 1: Visual summary of in silico models for liver toxicity prediction 
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observed, Less-DILI Concern, which caused only mild hepatotoxicity (i.e. steatosis, cholestasis and 96 

increase in liver aminotransferases) and Most-DILI concern, which were associated with severe 97 

hepatotoxicity4. In a later revision, called DILIRank29, the data were curated based on causality 98 

evidence. This allowed for the separation of compounds for which association with hepatotoxicity was 99 

not supported by sufficient data and allowed for the creation of a new class of compounds (i.e. 100 

Ambiguous DILI Concern) consisting of the compounds of the Most and Less DILI Concern classes of 101 

the previous version of DILIRank for which no strong evidence of causality was observed. 102 

 103 

Fourches et al. used text-mining approaches on the titles and abstracts of a collection of articles to 104 

identify 902 compounds associated with drug-induced liver effects30. Based on these different 105 

approaches to annotate compounds, Kotsampasakou et al. aggregated the data from 9 datasets and 106 

applied extensive curation techniques31. Multiple datasets have been published32 either derived from 107 

clinical and/or post-marketing sources, from in vitro/in vivo experiments or aggregated from different 108 

types of sources (Table 1). However, the published data suffer from two major limitations: data size and 109 

imbalance in both the positive and negative DILI group compounds which would bias the outcome of 110 

the analysis. 111 

LIMITED DATASET SIZES HAMPERS PROPER MODEL VALIDATION 112 

As a consequence of the nature of the datasets described above, the majority of existing published 113 

models for DILI are binary classification models (Table 2). Of these, only one, by Cheng and Dixon, 114 

focused exclusively on the prediction of reported itDILI in humans using a set of 382 compounds related 115 

to 25 2D molecular descriptors selected with a Monte-Carlo regression algorithm7. The leave-10%-out 116 

cross-validated random forest model developed had very high specificity and reasonable sensitivity 117 

(0.90 and 0.78 respectively). Although similar performance was observed with the test set, its size was 118 

quite limited as it only included 23 positive compounds and 31 negatives. Similarly Cruz-Monteagudo 119 

et al. developed general hepatotoxicity binary classification models from a set of 74 compounds using 120 

Radial Distribution Function (RDF) descriptors33. Even though the performance of the best performing 121 

model was consistent between the cross-validation and external validation sets (0.86 and 0.82 122 

respectively), the validation set was small comprising only 13 hepatotoxic compounds and no negatives. 123 
Table 1: Published classifications of drugs for DILI risk 124 

Year Reference origin of data number of compounds endpoint 

1983 26 Ludwig and Axelsen Compilation of 
published data 150 Morphological endpoints 

1999 34 Zimmerman Compilation of 
published data ~500 hepatotoxic drugs  

2005 35 Guo et al. Compilation of 
public data 175 drugs 

0: no information about hepatotoxicity 
1: no significant liver damage reported 
2: multiple cases reports or significant injury 
3: clear literature evidence of life-threatening 
hepatotoxicity 

2006 27 O’Brien et al. in vitro cell-based 
data 

381 
(42 +/102 ~/237 –) Severely, moderately and non-toxic 

2007 36–38 ToxCast in vitro data 3799 Biochemical properties based on HTS assays, cell-
based phenotypic assays, and genomic and 
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Year Reference origin of data number of compounds endpoint 
metabolomic analyses of cells 

2008 39 Xu et al. Drug labels, 
expert opinion 

344 
(200 +/144 –) Hepatotoxic and non-hepatotoxic 

2010 40 Ekins et al. Clinical data for 
hepatotoxicity 

532 
(272 +/ 260 –) Based on Xu et al. 39 

2010 30 Fourches et al. Text mining 951 compounds Liver effects in humans, rodents or non-rodents 

2010 41 Greene et al. Compilation of 
published data 1,266 Human or animal-only hepatotoxicity, weak or no 

evidence 

2010 42 Rodgers et al. FDA reports 
database 

395 
(76 +/ 319 –) 

Compounds (not) associated with ALT or AST 
elevation or with combined score 

2010 43,44 SIDER database Compilation of 
public data 1,430 drugs Association with 5,868 hepatotoxic side effects 

2010 28 Suzuki et al. 

Compilation of 
data from 
regulatory 
agencies 

473 hepatotoxic drugs Drugs causing overall injury, acute liver failure and 
suspended/withdrawn  

2011 4 Chen et al. FDA-approved 
labels 287 drugs 

Most-DILI Concern 
Less-DILI Concern 
No DILI Concern 

2011 45 Liew et al. 
Micromedex 

reports of adverse 
reactions 

1,274 compounds 

1: transient and asymptomatic liver function 
abnormalities 
2: liver function abnormalities and hyperbilirubinemia  
3: hepatitis, jaundice and cholestasis  
4: fulminant hepatitis and liver failure 
5: fatality 

2011 46 Liu et al. SIDER database 888 drugs Association with 13 hepatotoxic side effects 

2011 47 Low et al. 
in vivo 

toxicogenomics on 
rats 

127 
(53 +/74 –) Hepatotoxic and non-hepatotoxic 

2012 48 Sakatis et al. Physician’s Desk 
reference 

223 
(113 +/ 110 –) Hepatotoxic and non-hepatotoxic 

2013 49 Liver Toxicity 
Knowledge Base 

FDA-approved 
labels 

195 
(113 +/ 82 –) 

Most-DILI Concern 
No DILI Concern 

2013 50 LiverTox Compilation of 
published data 

~1,200 hepatotoxic drugs, 
dietary supplements and herbal 

products 
 

2014 51 Zhu & Kruhlak Post-marketing 
safety data 

2,029 
(662 +/ 1367 –) Hepatotoxic and non-hepatotoxic 

2016 52 DILIrank FDA-approved 
labels 1036 drugs 

Verified Most-DILI Concern 
Verified Less-DILI Concern 
Verified No DILI Concern 
Ambiguous DILI Concern 

2016 53 Mulliner et al. Compilation of 
public data 

921 
(519 +/ 402 –) Hierarchical classification in 21 endpoints  

2016 54,55 Tox21 In vitro data ~ 10,000 Biochemical properties based on HTS assays 

2016  eTOX in vitro and in vivo 
data 1947 

In-life observations, gross necropsies, histopathology 
and laboratory values (e.g. clinical chemistry, 
haematology and urinalysis) 

2017 31 Kotsampasakou et al. Compilation of 
published data 

966 
(500 +/ 466 –) Hepatotoxic and non-hepatotoxic 

2018 56 Ai et al. 
Zhu & Kruhlak 51, 

FDA Orange 
Book 

1,241 
(683 +/ 558 –) Hepatotoxic and non-hepatotoxic 

 125 

Although the metrics indicate that Cheng and Dixon’s and Cruz-Monteagudo et al.’s models performed 126 

well, one has to consider that a phenotypic readout such as general hepatotoxicity is the integrated result 127 

of many signalling pathways (e.g. oxidative stress and NRF2 pathway57, unfolded protein response, 128 

DNA damage response and mitochondrial toxicity17). For each pathway, protein-protein interactions, as 129 

well as gene expression or gene and protein degradation could be disturbed, adding up to a multitude of 130 

different modes of actions by which a compound could induce toxicity. Thus, building general 131 

hepatotoxicity models from a rather small number of diverse compounds increases the difficulty to make 132 

reliable generalisations based on compound structures when considering all the possible toxicity modes 133 

of action that could be triggered. Xu et al. exemplified such a phenomenon and showed that an increase 134 
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of the size of the training set improved not only the accuracy of models but also reduced their 135 

variability58. Additionally, the limited size of external test sets (Table 1) makes the interpretation of the 136 

validation of hepatotoxicity prediction models difficult since only a small fraction of hepatotoxicity 137 

mechanisms may be validated. The ideal validation set should comprise at least as many compounds as 138 

there are ways to disturb the processes involved in these pathways. However, the aggregation of such a 139 

dataset is, at this time, not possible. Nevertheless, sizes of both training sets and evaluation sets have 140 

been increasing (Table 2), notably through the aggregation and careful data curation of multiple 141 

datasets59 but also through the United States Environmental Protection Agency’s (EPA) ToxCast36–38 142 

and the multi-agency Tox2154,55 open-data initiatives and the European eTOX60–63 and eTRANSAFE 143 

consortia. These consortia have gathered pharmaceuticals, data curators, modelers and software 144 

developers aiming at building a shared and mineable database of preclinical (eTOX) and clinical 145 

(eTRANSAFE) toxicity data to enable more effective read-across and predictive modelling of safety 146 

endpoints.  147 

DATASET IMBALANCE 148 

The second limitation of published datasets is the imbalance of the validation sets (e.g. in 33,64–68 in Table 149 

2). These datasets, where either only hepatotoxic compounds are represented or fewer than 10% of 150 

compounds are non-hepatotoxicants, do not allow for a proper estimation of the specificity of the 151 

models. From the perspective of the training set, the imbalance of the data has been a major challenge 152 

to overcome in the prediction of hepatotoxicity: we identified eight articles in which the ratio of non-153 

hepatotoxic compounds considered represented less than 40% of the training set7,13,42,69–73. The opposite 154 

trend was observed in six articles where hepatotoxic compounds represented less than 40% of the 155 

training set68,74–78. Although building a robust model on an imbalanced dataset is possible, the 156 

performance decreases significantly when the number of individuals in the minority class approaches, 157 

or becomes, less than 10%. Whilst imbalanced sets affect the robustness of a model, they may better 158 

represent the distribution of compounds or dugs observed in real life. This is relevant for the work of Lu 159 

et al., who predicted the general hepatotoxicity of compounds based on the profiles of their predicted 160 

metabolites69, where 64 hepatotoxic and 3,339 non-hepatotoxic compounds were considered – the 161 

minority class representing about 2% of the entire dataset. The strategies generally adopted to counteract 162 

the systematic prediction of compounds to belong to the majority class are (i) undersampling of the 163 

majority class, (ii) oversampling of the minority class79, (iii) bagging, (iv) boosting, (v) cost-sensitive 164 

learning and (vi) hybrid methods80,81. In their work, Lu et al. used the Synthetic Minority Oversampling 165 

Technique (SMOTE) algorithm79 to correct for this data imbalance yielding a cross-validated balanced 166 

accuracy of 0.60 when predicting hepatotoxicity from predicted metabolites69. The application of such 167 

meta-classifiers in the prediction of hepatotoxicity is quite recent since only five other works have used 168 

them since 201513,72,77,82–84. It is worth noting that a comparison of the behaviour of meta-classifiers has 169 

been performed on few selected imbalanced drug-induced cholestasis datasets85. Bagging86 has the worst 170 
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performance as it does not balance or weight the two classes, threshold selection performed better than 171 

bagging but gave lower sensitivity than when using stratified bagging, cost sensitive classifier or Meta-172 

Cost87. The authors emphasised the versatility of the stratified bagging technique despite its 173 

computational cost when extensive resampling has to be performed. 174 

EARLY DILI PREDICTION STRATEGIES 175 

Among the different in silico models that have been developed for the prediction of hepatotoxicity, four 176 

main groups of models can be identified based on the features, properties or data the prediction models 177 

are built upon: (i) structural alerts, (ii) rules of thumb, (iii) molecular descriptors and (iv) in vitro data. 178 

These are described in detail below. 179 

STRUCTURAL ALERTS 180 

Structural alerts are specific substructures of molecules generally associated with hepatotoxicity. 181 

Structural alerts are generally developed by experts in toxicology who consider not only toxicological 182 

data but also the underlying mechanisms of toxicity, as well as chemical reactivity and biotransformation 183 

through metabolism.  184 

 185 

One of the first approaches to determining such alerts for DILI utilised a four-stage process41. A dataset 186 

of 1,266 compounds associated with in vivo human DILI was aggregated from the literature. Candidate 187 

structural classes were derived from these compounds by experts through well-characterised and 188 

previously published relationships between compound structures and hepatoxicity. Then these classes 189 

were refined by the development of structure-activity relationships (SAR) for which sufficient evidence 190 

was available. Finally, the 38 structural alerts classes identified, such as tetracyclines and thiophenes, 191 

were validated against an in-house dataset from Pfizer consisting of 626 compounds (412 192 

hepatotoxicants and 214 non-hepatotoxicants). The compounds were classified as either hepatotoxic for 193 

humans and/or animals or with weak or no evidence of hepatotoxicity. Although its sensitivity and 194 

accuracy were close to random (0.46 and 0.56 respectively) and its specificity quite reasonable (0.77), 195 

this approach was not designed for screening purposes. Nevertheless, it should be noted that alerts were 196 

prioritised based on their applicability to the Pfizer compound collection. Additionally, compounds that 197 

showed unambiguous toxicity during in vitro screening were not prioritised for in vivo studies, and thus 198 

were not considered in this study, potentially explaining the very low sensitivity.  199 

 200 

In a second approach a set of 244 hepatotoxic compounds was aggregated from the literature and from 201 

failed clinical candidates and drugs withdrawn from the market88. From these, 74 structural alerts were 202 

derived from mechanistic information, of which 56 were related to reactive and toxic metabolites 203 

metabolism. The remaining 18 alerts were based on high cut-off similarity queries, as no mechanistic 204 

information could be derived. The authors did not evaluate the predictive performance of these structural 205 

alerts but deployed them within the VERDI cheminformatics platform from Vertex pharmaceuticals. 206 
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In a third approach89, a diverse set of 951 compounds was compiled through curation of the dataset from 207 

Fourches et al.30. The protein binding potency of each compound was predicted and structural similarity-208 

based clusters of compounds were identified. These categories were then manually curated and related 209 

to other well characterised structural alerts. Finally, each alert was thoroughly examined to derive a 210 

mechanistic hypothesis for the observed hepatotoxicity. In total 16 structural alerts were characterised. 211 

The authors did not validate such alerts on external datasets as their aim was to provide a scheme to 212 

identify mechanistically supported structural alerts. 213 

 214 

Applying a similar process, Pizzo et al. compiled a dataset of 950 compounds of which 510 were 215 

hepatotoxicants and identified 13 structural alerts manually and 75 through automatic identification, 11 216 

and 40 of which were respectively associated with hepatotoxicity90. The authors then developed an 217 

expert-based decision tree based on these structural alerts to predict binary general hepatotoxicity. The 218 

model developed was subsequently validated against an external dataset of 101 compounds (69 219 

hepatotoxicants), of which 41% could not be predicted as did not contain any structural alert. Although 220 

sensitivity and accuracy were satisfactory for such an approach (0.80 and 0.68 respectively) the model 221 

performed poorly in terms of specificity (0.33). Through thorough examination the authors derived a 222 

mechanistic hypothesis for the manually derived structural alerts. In addition to the β-lactam 223 

substructures, retinoids, oestrogen steroids identified by Hewitt et al.89, the authors characterised  N-224 

containing heterocyclic aromatic compounds, sulphonamides, nucleoside analogues, tricyclic 225 

antidepressants, aromatic amines, macrolide antibiotics, anti-bacterial agents, cationic amphiphilic 226 

drugs to be mostly associated with hepatotoxicity and nitrosourea compounds not to be associated with 227 

hepatotoxicity. 228 

 229 

Finally, aggregating DILI associated compounds from LiverTox50 with literature findings, Liu et al. 230 

performed substructure searches using literature-based structural alerts91. Alerts were ranked by their 231 

probability of chance occurrence to classify compounds as being hepatotoxic, non-hepatotoxic, or 232 

possible hepatotoxic. This led to the identification of 12 statistically relevant alerts that, unfortunately, 233 

were not validated on an external set for prospective prediction. In addition to steroids that were already 234 

well characterised hepatotoxicants, sulphonamides, hydrazines, arylacetic acids, anilines, sulfinyls, 235 

acyclic bivalent sulphurs, acyclic diaryl ketones, halogen atoms bonded to a sp3 carbon, 236 

aminocyclopropyls, aminophenols and phenothiazines were identified as being toxic to the liver.  237 
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Table 2: Reported computational models for the prediction of DILI   238 

year ref. endpoint prediction Descriptors data points (positive/negative) methods performance type of 
data species 

2003 7 general hepatotoxicity binary Cerius2 2D molecular descriptors CV: 382 (149/233) 
EV:  54 (23/31) RF CV: 0.85 Acc, 0.78 Sen, 0.90 Spe 

EV: 0.81 Acc, 0.70 Sen, 0.90 Spe in vivo human 

2004 92 4 endpoints, general hepatotoxicity binary molecular electrostatic field 654 SIMCA 0.52 Acc in vitro human 

2008 33 general hepatotoxicity binary radial distribution function CV: 74 (33/41) 
EV: 13 (13/0) 

LDA 
 

ANN 
one-level DT 

CV: 0.86 Acc,0.81 Sen, 0.90 Spe 
EV: 0.82 Acc 
CV: 0.78 Acc, 0.75 Sen, 0.80 Spe 
CV: 0.81 Acc, 0.76 Sen, 0.98 Spe 

in vivo human 

2009 93 
Liver disorders, jaundice and 

cholestasis, liver enzymes elevation, 
bile duct disorders 

binary molecular fragment descriptors CV: 1044 – 1608 
EV: 18 

4 commercial QSAR 
programs 

CV: 0.32-0.47 Sen, 0.85-0.88 Spe 
EV: 0.89 Sen in vivo human 

2010 42 AST level, ALT level 
Composite score binary 

MolconnZ   
topological descriptors and 

DRAGON molecular descriptors 

CV: 190 (76/114) 
CV: 210 (84/126) 
CV: 188 (75/113) 

k-NN CV: 0.74-0.92 Acc, 0.60-0.88 Sen, 0.89-0.96 Spe in vivo human 

2010 30 general hepatotoxicity binary ISIDA 2D fragments and 
DRAGON molecular descriptors 

CV: 531 (248/283) 
EV: 18 SVM CV: 0.62-0.68 Acc  

EV: 0.56-0.73 Acc  
human 
rodents 

non-rodents 

2010 40 general hepatotoxicity binary extended connectivity fingerprint 
with counts and bound diameter 6 

CV: 295 (158/137) 
EV: 237 (114/123) NB CV:0.58 Acc, 0.53 Sen, 0.64 Spe 

EV: 0.60 Acc, 0.56 Sen, 0.67 Spe in vivo human 

2010 41 general hepatotoxicity binary structural alerts EV: 626 (412/214) - EV: 0.56 Acc, 0.46 Sen, 0.73 Spe in vivo human 

2011 94 13 hepatopathology endpoints binary function class fingerprint with 
counts and bond diameter 6 

CV: 22-274 
EV: 40-148 NB CV: 0.93-0.99 Acc 

EV: 0.60-0.70 Acc in vivo human 

2011 47 general hepatotoxicity binary toxicogenomics descriptors CV: 127 (53/74) RF, k-NN, SVM CV: 0.69-0.76 Acc, 0.57-0.67 Sen, 0.77-0.84 Spe in vivo rats 

2011 45 general hepatotoxicity binary PaDEL molecular descriptors CV: 1087 (654/433) 
EV: 120 (72/48) SVM, NB, k-NN CV: 0.64 Acc, 0.64 Sen, 0.63 Spe 

EV: 0.62 Acc, 0.62 Sen, 0.62 Spe in vivo human 

2012 95 general hepatotoxicity, 
3 hepatopathology endpoints binary ChemTree augmented atom pairs 

CV: 1380 
EV: 231-901 
3 endpoints EV: 28-539 

RF EV: 0.64-0.81 Acc, 0.58-0.73 Sen, 0.71-0.88 Spe 
EV: 0.62-1.00 Acc, 0.75-1.00 Sen, 0.60-1.00 Spe  mouse 

rat 

2013 78 general hepatotoxicity binary Log P and daily dose CV: 164 (116/48) 
EV: 179 (115/64) Rule of 2 IV: 0.55 Acc, 0.36 Sen, 0.96 Spe  

EV: 0.51 Acc, 0.29 Sen, 0.91 Spe   human 
animal 

2013 96 general hepatotoxicity binary Mold2 chemical descriptors CV: 197 (81/116) 
EV: 190-328 (95-214/95-114) RF CV: 0.70 Acc, 0.58 Sen, 0.78 Sep 

EV: 0.62-0.69 Acc, 0.58-0.66 Sen, 0.66-0.72 Spe in vivo human 

2014 97 general hepatotoxicity binary 
CDK, Dragon and MOE 

molecular descriptors and 8 
cellular phenotypes 

CV: 292 (156/136) RF CV:0.68-0.73 Acc, 0.71-0.73 Sen, 0.64-0.74 Spe in vivo human 

2014 64 general hepatotoxicity binary E-dragon molecular descriptors 
CV: 872 (436/436) 
IV: 216 (54/162) 
EV: 23 (23/0) 

SVM 
CV: 0.83 Acc 
IV: 0.82 Acc, 0.87 Sen, 0.81 Spe 
EV: 0.74 Acc 

in vivo human 

2015 70 
hypertrophy, 

injury, 
proliferative lesions 

binary 
QuikProp physicochemical 

descriptors, PaDEL fingerprints 
and in vitro bioactivity data 

CV: 677 (161/463) 
  (101/463) 
  (99/463) 

LDA, NB, SVM, k-NN CV: 0.62-0.84 BAcc, 0.27-0.77 Sen, 0.85-1.00 Spe in vivo animal 

2015 58 general hepatotoxicity binary undirected graph recursive neural 
networks 

CV: 475 (236/239) 
EV: 198 (114/84) DL CV: 0.88 Acc, 0.90 Sen, 0.87 Spe 

EV: 0.87 Acc, 0.83 Sen, 0.93 Spe in vivo human 

2015 68 general hepatotoxicity binary PaDEL molecular descriptors CV: 201 (136/65) 
EV: 91 (83/8) RF CV: 0.79 Acc, 0.91 Sen, 0.54 Spe 

EV: 0.87 Acc, 0.90 Sen, 0.63 Spe in vivo human 
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year ref. endpoint prediction Descriptors data points (positive/negative) methods performance type of 
data species 

2015 65 7 hepatopathology endpoints, 
general hepatotoxicity binary ISIDA descriptors and in vivo 

endpoints 
CV: 414 (41-168) 
EV: 10 (9/1) SVM, RF, ANN 

QSAR CV: 0.58-71 BAcc 
Endpoints CV: 0.86-0.87 BAcc 
Endpoints EV: 0.90 Acc, 0.89 Sen, 1.00 Spe 

in vitro 
in vivo human 

2015 91 general hepatotoxicity 

hepatotoxic 
non-hepatotoxic 

possible 
hepatotoxic 

structural alerts 
178 
185 
242 

-  in vivo  human 

2016 74 general hepatotoxicity binary FP4 descriptors CV: 336 (206/130) 
EV: 84 (51/33) NB CV: 0.94 Acc, 0.97 Sen, 0.89 Spe 

EV: 0.73 Acc, 0.73 Sen, 0.73 Spe in vivo human 

2016 53 21 endpoints binary CATS, MOE, MDL, VolSurf+ 
physicochemical descriptors 

CV: 3712 
EV: 221-269 SVM with GA CV: 0.73-0.83 Acc 

EV: 0.38-0.64 Acc in vivo animal 
human 

2016 90 general hepatotoxicity binary structural alerts CV: 950 (510/440) 
EV: 202 (137/65) expert manual DT CV: 0.81 Acc, 0.93 Sen, 0.67 Spe 

EV: 0.68 Acc, 0.80 Sen, 0.33 Spe 
in vivo 
in vitro human 

2016 76  general hepatotoxicity multiple scales Log P, daily dose or Cmax, and 
formation of metabolites  IV: 192 (124/68)  - IV: 0.47Acc, 0.38 Sen, 1.00 Spe in vivo human 

2016 98 general hepatotoxicity binary 
CDK, Dragon and Mold2 

molecular descriptors, HTS 
bioactivity data 

CV: 233 (67-166) RF CV: 0.66-0.73 Acc, 0.62-0.77 Sen, 0.56-0.79 Spe in vivo mouse 

2016 99 general hepatotoxicity binary FP4 and MACCS fingerprints 
CV: 978 (571/407) 
IV:  251 (155/96) 
EV: 88 (59/29) 

SVM, NB, k-NN, DT, 
RF 

CV: 0.67-0.82 Acc, 0.92-0.96 Sen, 0.32-0.62 Spe 
IV: 0.60-0.66, 0.77-0.93 Sen, 0.24-0.34 Spe 
EV: 0.65-0.75 Acc, 0.81-0.93 Sen, 0.21-0.38 Spe 

in vivo human 

2017 100 general hepatotoxicity 
No/Less/Most DILI 

binary 
ternary Mold2 molecular descriptors CV: 451 (183/268) 

EV: 721 (183/270/268) RF CV: 0.73 Acc, 0.63 Sen, 0.53 Spe 
CV: 0.53 Acc 

in vivo 
in vitro 
in vitro 

rat 
rat 

human 

2017 101 general hepatotoxicity binary PubChem fingerprints CV: 312 (180/132) 
EV: 398 (224/174) RF, SVM CV: 0.73-0.74 Acc 

EV: 0.61 Acc in vivo human 

2017 102 general hepatotoxicity binary Log P and daily dose IV: 568 (313/255)  Rule of 2 IV: 0.58 Acc, 0.80 Sen, 0.52 Spe in vivo human 

2017 73 general hepatotoxicity binary CORAL descriptors CV: 2029 (662/1367)  Monte Carlo 
optimization CV: 0.83-0.87 Acc, 0.71-1.00 Sen, 0.85-0.87 Spe in vivo human 

2017 69 general hepatotoxicity binary molecular descriptors CV: 34023 (64/3339) NB, 
Ensemble 

CV: 0.78 BAcc, 0.74 Sen, 0.83 Spe 
CV: 0.60 BAcc, 0.70 Sen, 0.65 Spe   

2017 13 general hepatotoxicity binary MACCS public fingerprints, CDK 
and Mold2 molecular descriptors CV: 1054 (122/932) RF CV: 0.77-0.84 Acc, 0.76-0.88 Sen, 0.73-0.80 Spe in vivo human 

2017 66 general hepatotoxicity binary Mold2 descriptors CV: 192 (127/65) 
EV: 20 (14/6) RF CV: 0.80-0.84 Acc, 0.82-0.84 Sen, 0.70-0.75 Spe 

EV: 0.90 Acc, 1.00 Sen, 0.67 Spe in vivo human 

2017 103 17 modes of actions binary Mold2 descriptors CV: 222 (155/178) 
EV: 111 RF CV: 0.70-0.76 Acc 

IV: 0.70-0.71 Acc in vivo human 

2018 56 general hepatotoxicity binary CDK estate, MACCS, FP4, atom 
pairs fingerprints 

CV: 1241 (683/558) 
EV: 286 (221/65) XGBoost, RF, SVM CV: 0.63-0.70 Acc, 0.66-0.82 Sen, 0.41-0.63 Spe 

EV: 0.73-0.86 Acc, 0.72-0.89 Sen, 0.42-0.83 Spe in vivo human 

2018 104 general hepatotoxicity binary PaDEL molecular descriptors and 
fingerprints 

1731 (980/751) 
IV: 413 (270/143) 
EV: 151 (88/63) 

SVM, k-NN, NB, DT, 
RF 

IV: 0.62-0.80 Acc, 0.53-0.97 Sen,0.13-0.83 Spe 
EV: 0.66-0.83 Acc, 0.68-0.93 Sen, 0.54-0.70 Spe in vivo human 

2018 75 general hepatotoxicity binary PaDEL descriptors CV: 712 (444/268) RF, ANN CV: 0.80-0.90 Acc, 0.78-0.90 Sen, 0.81-0.90 Spe in vivo human 

2018 105 general hepatotoxicity binary PaDEL molecular descriptors CV: 99 (48/51) 
EV: 25 (10/15) k-NN with GA CV: 0.76 Acc, 0.79 Sen, 0.74 Spe 

EV: 0.92 Acc, 0.90 Sen, 0.93 Spe in vivo rats 

2018 77 general hepatotoxicity binary PaDEL molecular descriptors CV: 575 (384/191) DT, k-NN, SVM, ANN CV: 0.53-0.98 Acc in vivo human 
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year ref. endpoint prediction Descriptors data points (positive/negative) methods performance type of 
data species 

2018 52 general hepatotoxicity binary 
maximum daily dose, 

LogP, 
Fraction of sp3 carbons 

326 (163/163) Expert manual DT 0.82 Acc, 0.79 Sen, 0.85 Spe in vivo human 

2018 106 hepatocellular hypertrophy binary DRAGON molecular descriptors  405 (207/198) 
EV: 405 (218/187) ANN, RF, SVM EV: 0.68-0.76 Acc, 0.58-0.90 Sen, 0.46-0.84 Spe in vivo rats 

2018 72 serum ALT level binary DRAGON molecular descriptors CV: 176 (40/136) LR CV: 0.60 Acc, 0.65 Sen, 0.58 Spe 
EV: 0.60 Sen, 0.40-0.50Acc and Spe in vivo rats 

2018 107 

non-neoplasic proliferative lesions 
 

 inflammatory liver changes  
 

degenerative lesions 
 

binary and 
continuous 

Adriana and GRIND2 molecular 
descriptors 

332 (168/164) 
 

258 (164/94) 
 

246 (164/82) 
 

PLS, RF 

CV: 0.70 Sen, 0.69 Spe 
EV: 0.50 Sen, 0.62 Spe 
CV: 0.44 Sen, 0.84 Spe 
EV: 0.54 Sen, 0.76 Spe 
CV: 0.68 Sen, 0.55 Spe 
EV: 0.67 Sen, 0.59 Spe 

in vitro 
in vivo animal 

2018 108 general hepatotoxicity four categories solubility, in vitro permeability, 
metabolism, dose 

EV: 164 (116/48) 
EV: 192 (124/68) Rule-based EV: 0.62-0.72 Acc 

EV: 0.66-0.78 Acc 
in vivo 
in vitro 

human 
animal 

2019 67 

general hepatotoxicity 
4 severity degrees 
22 adverse events 

 

binary MOE molecular descriptors 

CV: 2513 (1475-1720/1038) 
CV: 426-1180 (213-590/213-590) 
CV: 200-1104 (100-552/100-552) 
EV: 11-16/0 

RF 

CV: 0.69 Acc, 0.84 Sen, 0.51 Spe 
CV: 0.70-0.71 Acc, 0.71-0.77 Sen, 0.63-0.70 Spe 
CV: 0.67-0.78 Acc, 0.65-0.84 Sen, 0.63-0.81 Spe 
Tiered CV: 0.67 Acc 
EV: 0.81-0.82 Spe 

in vivo human 

2019 109 general hepatotoxicity binary Marvin molecular descriptors CV: 1254 (636/618) 
EV: 204 (125/79) 

NB, k-NN, RF, ANN, 
Ensemble 

CV: 0.60-78 Acc, 0.61-0.86 Sen, 0.40-0.76 Spe 
Ensemble CV: 0.78 Acc, 0.82 Sen, 0.75 Spe 
Ensemble EV: 0.73 Acc, 0.77 Sen, 0.66 Spe 

 animal 
human 

2019 71 general hepatotoxicity binary PaDEL molecular fingerprints CV: 1812 (453/1359) 
IV: 664 (166/498) 

ANN, SVM, RF, k-NN, 
Ensemble 

CV: 0.85-0.90 Acc, 0.71-0.86 Sen, 0.82-0.92 Spe 
IV: 0.82-0.89 Acc, 0.60-0.80 Sen, 0.83-0.93 Spe in vivo human 

2019 83 biliary hyperplasia, fibrosis, and 
necrosis binary transcriptomic data 

CV: 2324 (91/2333, 37/2287, 
   275/2049) 
EV: 341-376 (20/321, 22/354, 
   32/326) 

DL, RF, SVM CV: 0.48-0.89 MCC 
EV: 0.36-0.90 MCC in vivo rats 

2019 110 general hepatotoxicity binary PaDEL molecular fingerprints and 
descriptors  450 (182/268) LR, SVM, GBT, RF, 

Ensemble 
CV: 0.77 Acc, 0.64 Sen, 0.86 Spe 
IV: 0.82 Acc, 0.65 Sen, 0.96 Spe in vivo human 

2019 111 general hepatotoxicity four categories 
Log P, daily dose, ionization 

state, carbon bond saturation and 
mechanistic assays 

CV: 200 (79/56/47/18) 
IV: 21 
EV: 7 

Rule of Thumbs CV: 41-80 Sen, 58-97 Spe in vivo human 

2019 112 general hepatotoxicity ternary 
Log P, Cmax, formation of 
metabolites and mechanistic 

assays 
96 (33/40/23) NB 0.63 BAcc 

Binary: 0.86 Acc, 0.87 Sen, 0.85 Spe, in vivo human 

ANN: artificial neural network, DL: deep learning, DT: decision tree, GA: genetic algorithm, GBT: gradient-boosted trees (of which XGBoost [extremally gradient tree boosting113] is an implementation), 239 
k-NN: k-nearest neighbours, LDA: latent Dirichlet allocation, LR: logistic regression, NB: naïve Bayes, PLS: partial least squares, RF: random forest, SVM: support vector machine, CV: cross-validation, 240 
IV: internal validation, EV: external validation, Acc: accuracy, BAcc: balanced accuracy, Sen: sensitivity, Spe: specificity, MCC: Matthews correlation coefficient241 
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Other studies on the development of quantitative structure-activity relationship (QSAR) models have 242 

also focused on the identification of molecular patterns related to hepatotoxicity. Structural fingerprints 243 

of compounds (e.g. Kletkota-Roth114 or extended connectivity fingerprints115) have been calculated for 244 

a training set. Association of the presence of one pattern with hepatotoxicity was evaluated either based 245 

on the feature importance of each bit of such fingerprints or on their frequency. The importance of 246 

fingerprint bits has been notably derived from extended connectivity fingerprints with a maximum 247 

diameter of 6 (ECFP6) using naïve Bayes models40,74 and a random forest 56 with 12 different 248 

fingerprints. This analysis pointed not only to substructures associated with hepatotoxicity but also those 249 

associated with non-hepatotoxic compounds. Frequency focused determination of substructures of 250 

interest was performed either by determining the information gain of using such substructures or by 251 

using logistic regression, and deriving odds ratios and/or p-values associated with these 252 

moieties13,30,45,99,104,106. 253 

 254 

The real benefit of using structural alerts is that they may be associated with well characterised 255 

mechanisms (e.g. biotransformation to reactive metabolites or alteration in membrane structure 256 

integrity, adduction to proteins) and with specific organ level toxicity effects116. This reason makes them 257 

valuable when determining the toxicity of new drugs and postulating key mechanisms involved. In 258 

addition to expert-derived structural alerts, the identification of key substructures associated with DILI 259 

is of crucial importance since it allows for further research on, and understanding of, the associated 260 

underlying mechanisms. 261 

 262 

Nevertheless, a key concept of applying structural alerts is that the absence of a matching alert for a 263 

compound is not proof of it not being hepatotoxic117. Moreover, the presence of structural alerts should 264 

not be seen as a clear indication of the DILI potential of a drug. To emphasise this, Stepan et al. 265 

retrospectively examined the 200 most prescribed and sold drugs in the US in 2009 and 68 other drugs 266 

that had been recalled or were associated with black box warning due to iDILI118. Although structural 267 

alerts were present in 78%-86% of hepatotoxic drugs, approximately half of the top 200 drugs for 2009 268 

also contained one or more structural alerts, mitigating the use of alerts in for the screening of the toxicity 269 

of a compound. According to the authors, “the major differentiating factor appeared to be the daily 270 

dose”, as drugs with high daily doses were mostly associated with toxicity. 271 

RULES OF THUMB 272 

To expand on Stepan et al.’s observation about daily dose, few rules of thumb based on two or three 273 

molecular features of compounds have been derived. Chen et al. identified that from a dataset of 164 274 

US FDA-approved oral medications, a high risk of DILI was associated with lipophilic drugs (Log P ≥ 275 

2) given at high dosage (daily dose ≥ 100 mg; odds ratio 14.05, p-value < 0.001)78. This ‘rule of two’ 276 

was validated using Greene et al.’s dataset of 179 oral medications41. Of the compounds being positive 277 
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for such a rule, 85% were associated with hepatotoxicity. However, this high positive predicted value 278 

was associated with very low sensitivity (0.29) but very high specificity (0.91), which overall gives an 279 

accuracy (0.51) close to that of a random prediction. When applying this ‘rule of two’ to five 280 

datasets29,39,41,48,51, accounting for a total of 1,036 compounds, the authors noticed that the association 281 

between toxicity and high lipophilicity was statistically significant for only three of them (those of Chen 282 

et al., Greene et al. and Zhu et al.). Moreover they found that all compounds with a daily dose higher 283 

than 100 mg per day were significantly associated with DILI risk102. The authors also collected hepatic 284 

metabolism information for 398 drugs and observed that drugs, which are more than 50% metabolised 285 

in the liver, were more prone to be hepatotoxic (odds ratios between 1.80 and 2.67). Combining 286 

significant hepatic metabolism with high daily dose allowed for the correct identification of 78% of 287 

hepatotoxic compounds and 60% of non-hepatotoxicants, giving this prediction method an overall 288 

accuracy of 0.68. Factoring high lipophilicity with reactive metabolite (RM) formation and high daily 289 

dose for a dataset of 192 drugs, the authors were then able to develop a prediction method with a 290 

specificity of 1.00 but sensitivity of 0.3876. The assessment of the association between daily dose, 291 

lipophilicity, RM formation and DILI risk by logistic regression analysis confirmed the significant 292 

importance of these features119 and allowed for the development of a DILI score significantly correlated 293 

with the severity of liver injury in human for three different datasets4,28,41.  294 

 295 

Another rule of thumb was derived by Leeson, who investigated the predictivity of physicochemical 296 

properties of compounds related to their dose52. More specifically, the differences between dose, 297 

lipophilicity and the fraction of sp3 hybridised carbons atoms (Fsp3) in relationship to whether drugs 298 

with the most and no DILI concern were acids, bases or neutral (from the Chen et al. dataset)4 were 299 

examined. As the mean Fsp3 values of bases, which were enriched in the non-hepatotoxicants class, are 300 

greater than for acids120, the author was able to integrate Fsp3 to the ‘rule of two’, yielding accurate 301 

predictions for 82% of compounds and with high and balanced sensitivity and specificity (0.79 and 0.85 302 

respectively). 303 

 304 

Despite the simplicity of these rules of thumb that have high specificity, their major flaw is that their 305 

applicability is limited to the datasets they are built upon102. The datasets may have different causality 306 

assessment scales to derive DILI annotation which vary from one dataset to the other121, or reported 307 

hepatotoxicity evidence maybe is vague122,123. This limitation of the data was stressed by Leeson who 308 

identified that among the 155 oral drugs belonging to the top 200 prescribed medications in the US in 309 

2009 that were annotated by Chen et al4, 59% belonged to the Less DILI category, hence questioning 310 

the significance of such a class. 311 

QUANTITATIVE STRUCTURE-ACTIVITY AND TOXICITY RELATIONSHIPS 312 

Because the acquisition of some of the parameters mentioned above is only possible from in vitro and 313 
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in vivo studies QSAR or structure-toxicity relationship-based models have been developed using 314 

molecular properties to allow for the early screening of compounds for which no data exist. Examples 315 

of experimental properties which may not be available for models include metabolism activity, 316 

maximum daily dose or peak concentration in serum after drug administration (Cmax).  There are several 317 

different types of cheminformatics model: models predicting general hepatotoxicity, histopathological 318 

phenotypes (e.g. increase in serum biomarkers, cholangitis) or specific modes of action mediated 319 

through protein-ligand interactions. 320 

General hepatotoxicity 321 

Derived from the first phenotypic observations of hepatotoxicity and used to provide a general 322 

estimation for compound prioritisation in drug discovery, QSAR models were first built using general 323 

binary DILI annotations. For instance, Cheng and Dixon developed one of the first hepatotoxicity QSAR 324 

models derived from molecular descriptors, without regard to dose-dependence. In addition to those 325 

descriptors, the similarities to the 382 compounds in the training set (149 hepatotoxicants and 233 non-326 

hepatotoxicants) were also used as explanatory variables. Monte Carlo feature selection was applied to 327 

reduce the number of descriptors to 25, of which 6 were physicochemical properties. A random forest 328 

model was developed and validated on a test set of 54 compounds. Its performance was very 329 

encouraging with good accuracy, fair sensitivity and high specificity (0.81, 0.70 and 0.90 respectively). 330 

However, such an approach, with such a limited description of the molecular structure and similarity 331 

profiles to the training set, did not allow for extrapolation to other compound classes. 332 

 333 

Since then, a wide variety of general QSAR models predicting hepatotoxicity have been derived using 334 

different types of molecular descriptors, molecular fingerprints and machine learning algorithms (see 335 

Table 2). The most recent work predicting general hepatotoxicity solely from molecular descriptors is 336 

from He et al.109. The authors combined a total of 14 datasets for which hepatotoxicity labels originated 337 

from animal and cell experiments, clinical reports, drug labels, medical monographs and the scientific 338 

literature. In addition, compounds that were classified by fewer than two of eight effective classifiers 339 

were discarded, allowing for the creation of a large, balanced and high-quality dataset of 1,254 340 

compounds (636 positives and 638 negatives). Using a set of 85 physicochemical and topological 341 

properties an ensemble model based from the eight base classifiers was obtained with high and balanced 342 

performance evaluated with 10-fold cross-validation (sensitivity 0.82, specificity 0.75, accuracy 0.78 343 

and balanced accuracy 0.78) and on an external test set of 204 compounds (sensitivity 0.77, specificity 344 

0.66, accuracy 0.73 and balanced accuracy 0.72). To further validate their model to identify non-345 

hepatotoxicants, the authors assembled a dataset of 312 negative compounds. Their classification 346 

ensemble model correctly predicted 215 of these compounds, giving a reasonable accuracy of 0.70. 347 

The relevance of building classification models from molecular descriptors alone, in comparison with  348 

molecular fingerprints, was questioned by Li et al.104. The relative performances of k-nearest neighbour 349 
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(k-NN), support vector machine (SVM), random forest (RF), naïve Bayesian (NB) and decision tree 350 

(DT) models built from seven PaDEL molecular fingerprints124 and molecular descriptors were 351 

compared for a dataset of 980 DILI-positive and 751 DILI-negative compounds. Models based solely 352 

on molecular descriptors had the lowest average performance with low accuracy (0.62 to 0.73), 353 

specificity (0.13 to 0.70) and AUC (0.0.63 to 0.78). The combination of public MACCS fingerprints in 354 

an SVM yielded the best classification performance on an external test set of 88 hepatotoxicants and 63 355 

non-hepatotoxicants (0.83 accuracy, 0.93 sensitivity, 0.68 specificity and 0.88 AUC) despite their 356 

limited dimensionality of 166 bits. Only one model, also developed with public MACCS fingerprints 357 

but using k-NN, had higher specificity than the previous one (0.70) but lower accuracy, sensitivity and 358 

AUC (0.76, 0.81 and 0.82 respectively). This emphasised the usefulness of ensemble models, which 359 

was the strategy used by Wu et al.71, who combined four PaDEL molecular fingerprints with k-NN, RF, 360 

SVM and artificial neural network (ANN) base classifiers in consensus voting models and also identified 361 

the public MACCS fingerprints and SVM-based based classifier to perform well on an external test set 362 

of 166 positive and 498 negative compounds (0.75 sensitivity, 0.93 specificity, 0.88 accuracy and 0.70 363 

Matthews correlation coefficient [MCC]). Their consensus models were based on the number of times 364 

a compound was predicted to be hepatotoxic by base classifiers. The best performing consensus model, 365 

which was that based on three positive predictions out of the 4 base classifiers, was selected (0.77 366 

sensitivity, 0.97 specificity, 0.92 accuracy and 0.78 MCC respectively).  367 

 368 

Ai et al.56 adopted the same strategy as Wu et al. but filtered out bits of the fingerprints that were 369 

correlated and did not apply them to the dataset (e.g. all molecules contain carbon atoms so this 370 

information was removed). The five best performing base classifiers in terms of AUC, which 371 

interestingly did not include any based on public MACCS fingerprints, were then combined in an 372 

ensemble model by averaging their predicted hepatotoxicity probability (0.84 accuracy, 0.87 sensitivity, 373 

0.75 specificity and 0.90 AUC on the external test set).  374 

 375 

Wang et al.110 recently combined the Ai et al.’s approach with the work of He et al. by developing an 376 

ensemble model based on the eight PaDEL fingerprints that performed best on their dataset as well as 377 

an ensemble model based on seven simple molecular properties (ALogP, molecular weight and numbers 378 

of aromatic rings, hydrogen-bond donors, acceptors, rotatable bonds and rings). The five base classifiers 379 

used for both these ensemble models were random forest and boosting tree models. The average 380 

probabilities for each ensemble were then summed and the weighted average of the two (i.e. 0.7 for 381 

fingerprint-based and 0.3 for molecular property-based) were used to classify compounds. The 382 

performance of the model was comparable, although slightly lower, than that obtained by Ai et al. but 383 

specificity was very good (0.82 accuracy, 0.65 sensitivity, 0.96 specificity, 0.80 AUC).  384 

 385 
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Phenotypically-focused models 386 

To compensate for the complexity of predicting general hepatotoxicity, models focused on finer 387 

phenotypes have been devised. In this sense, Myshkin et al. derived an ontology database of hepatotoxic 388 

pathology from human and animal publicly available toxicity data95. This database was organised by the 389 

type of pathology and by organ substructure and function impairment. From this ontology, different 390 

toxicity datasets were identified among which were datasets related to liver necrosis, liver weight gain 391 

and liver steatosis, comprising of 300, 305 and 172 instances respectively. For each endpoint, random 392 

forest QSAR models were derived using augmented atom pairs125. The best performing models were 393 

then evaluated on external test sets (490, 539 and 478 respectively). Results were encouraging with 0.63, 394 

0.74 and 0.60 specificity for liver necrosis, weight gain and liver steatosis respectively, 0.87, 0.86 and 395 

0.75 sensitivity, 0.66, 0.76 and 0.62 accuracy and 0.35, 0.51 and 0.23 Matthews correlation coefficient. 396 

The authors then characterised the applicability domain of their models based on a Tanimoto distance 397 

between compounds in the training and test set. The models were quite sensitive as sensitivity decreased 398 

for compounds in the 30-59% compound dissimilarity range. Interestingly, the model based on weight 399 

gain was very robust as sensitivity remained above 0.72 for the entire 30-99% range. It is worth 400 

mentioning that these three models performed better than a general hepatotoxicity model (0.58 401 

sensitivity, 0.71 specificity, 0.64 accuracy and 0.29 Matthews correlation coefficient) which showed a 402 

high sensitivity of 0.82 for the 30-39% Tanimoto dissimilarity range, highlighting the relatively high 403 

diversity of compounds in the validation set. 404 

 405 

Another work by Takeshita focused on the prediction of alanine transferase (ALT) elevation in rats from 406 

repeated-dose toxicity studies72. Two logistic regression models, with seven and nine explanatory 407 

variables out of an initial 3,636 DRAGON molecular descriptors respectively 126, were derived to 408 

classify 176 compounds. Compounds which had either a lowest observed effect level (LOEL) associated 409 

to ALT elevation, (40 positives and 136 negatives) or an elevation in ALT at a dose below 1000 mg/kg 410 

(23 strong and 153 weak compounds) were included. Because of the imbalance of their datasets, the 411 

authors used the SMOTE algorithm79. Although classification performance on the training set was 412 

limited between toxic and non-toxic compounds (0.65 sensitivity, 0.581 specificity and 0.600 accuracy), 413 

the logistic model showed better discrimination between weak and strong compounds (0.78 sensitivity, 414 

0.74 specificity and 0.75 accuracy). External validation on a dataset of 59 compounds (23 strong and 36 415 

weak compounds) showed decreased performance (0.60 sensitivity and specificity and accuracy 416 

between 0.40 and 0.50). Nevertheless, the significant difference between 52 out of a set of 197 molecular 417 

descriptors from the training and test sets was observed by the authors, emphasising the need for 418 

applicability domain determination. 419 

 420 

Focusing only on in vivo hepatocellular hypertrophy in rats, Ambe et al. developed deep learning (DL), 421 

RF and SVM classification models106. The authors collected rat toxicity data following chronic exposure 422 
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of more than 27 days from two sources. Models were trained on half of the data of the two datasets (173 423 

and 251 compounds respectively) as well as on half of their combination (405 compounds) and 424 

respectively evaluated on their other halves. DL models were clearly overfitted to the data. Their ROC 425 

AUC was 1.00 and accuracy, sensitivity, specificity were 0.96 when evaluated on training set, but 426 

dropped when the test set was evaluated. However, the DL model based on the combined dataset did 427 

not show such behaviour with more equivalent performance between training and test set. This 428 

observation could be the combined result of the two-fold increase in the size of the dataset and the 429 

reduction of features from 433 and 417 to 385, corresponding to a decrease in dimensionality by 7.7% 430 

to 11.1%. The applicability domain of the models was determined using distance in the molecular space 431 

to the training set127 and resulted in 19, 38 and 50 compounds lying outside for two test sets and their 432 

combined version respectively. Using a consensus model based on the majority principle, similar 433 

predictive performance was achieved. Of the 107 compounds incorrectly predicted by the consensus 434 

model, 78 were predicted incorrectly by all three models. These incorrectly predicted compounds were 435 

mostly false positives and the authors exemplified the case of flufenoxuron, a benzoylphenyl urea-based 436 

insecticide which is not a hepatocellular hypertrophy inducer in rats but is in mouse carcinogenicity 437 

studies. This highlighted the need for the development of models in other species not only for better 438 

prediction, but also translation between species and understanding of any species-specific mechanisms 439 

involved. 440 

 441 

Mulliner et al. investigated species specific effects by creating hierarchical seven endpoint 442 

hepatopathology trees for human and preclinical findings53. An additional tree was developed for 443 

preclinical findings obtained at doses lower than 500 mg/kg in order to reduce the leverage of high dose 444 

toxicants during model development. The endpoints were organised in three different levels: general 445 

hepatotoxicity, morphological and clinical chemistry findings, hepatocellular and hepatobiliary injuries. 446 

A total of 3,712 compounds were aggregated with overall concordance between human and animal 447 

hepatotoxicity of 77%. Individual SVM classification models were developed for each endpoint using 448 

a genetic algorithm for feature selection. All human endpoints were reasonably well predicted with 449 

accuracies between 0.73 and 0.78 for internal validation. For preclinical endpoints, only general 450 

hepatotoxicity could be modelled confidently for toxicity above 500 mg/kg (ROC AUC of 0.73 and 451 

lower than 0.67 for others in internal validation). Conversely all endpoints with the exception of 452 

hepatobiliary injuries could be modelled for toxicity below such a threshold (accuracies between 0.75 453 

and 0.83 in internal validation). An external validation on 269 proprietary compounds with 14 to 28-day 454 

rat study data showed decreased performance for all models (accuracies between 0.38 and 0.64 and ROC 455 

AUC between 0.51 and 0.68). The reduction in performance observed between internal and external 456 

validation for preclinical data was expected to be similar for human endpoints, more especially when 457 

applying these models on early research drug candidates which do not exhibit similar molecular 458 

properties as drugs.  459 
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 460 

A similar work by López-Massaguer et al.107 relied on an ontology to classify compounds for three 461 

endpoints as well as predict the LOEL of compounds from the eTOX database61. This database was 462 

derived from multiple types of publicly available and confidential preclinical data, in multiple species, 463 

for various administration routes and for different exposure times. Aggregating rat in vivo microscopy 464 

and hepatopathology findings, the authors gathered 164, 94 and 82 positive compounds for the three 465 

endpoints (i.e. degenerative lesions [DEG], inflammatory liver changes [INF] and non-neoplasic 466 

proliferative lesions [PRO]). It is worth noting that the negative compounds that were selected had been 467 

tested at concentrations higher than 1000 mg/kg and had no observed treatment-related and liver-related 468 

histopathology findings (168, 164 and 164 for DEG, INF and PRO respectively). Sensitivities and 469 

specificities of random forest classification models were balanced after both cross and external 470 

validation for PRO (0.70 and 0.50 sensitivities and 0.69 and 0.62 specificities at cross and external 471 

validation respectively) and DEG (0.68 and 0.67 sensitivities and 0.55 and 0.59 specificities at cross and 472 

external validation respectively) while were unbalanced for INF (0.84 and 0. 67 sensitivities and 0.44 473 

and 0.54 specificities at cross and external validation respectively). Partial least square regression 474 

models showed poor fit with low goodness-of-fit (ranging from 0.26 to 0.58), poor predictive 475 

performance (Q² ranging from -0.84 to 0.07) and high standard deviation (ranging from 1 to 2 log units). 476 

This work emphasised the possibility of stringent selection of negative compounds as well as 477 

aggregation of multiple sources of data containing compounds with different routes of administration 478 

and exposure times. 479 

Relying on an hepatopathology-based ontology, as was carried out in the two previous approaches, 480 

Liu et al. introduced a severity grade in their hierarchical approach67. The authors organised their 481 

ontology into three levels: level 1 denoted general hepatotoxicity, level 2 corresponded to the severity 482 

of the hepatotoxicity and level 3 associated with adverse events (e.g. acute liver failure, cholestasis or 483 

AST elevation). A total of 2,017 compounds associated with 403 clinical grade 3 adverse events were 484 

collected from SIDER43,44 and LiverTox50, amongst other, databases. Individual classification random 485 

forest models were built for 22 endpoints. The level 1 classification model, predicting general 486 

hepatotoxicity, showed good sensitivity and ROC AUC but low specificity (0.81, 0.75 and 0.50 487 

respectively). Models based on DILI severity showed more balanced sensitivities and specificities (0.70-488 

0.71 and 0.63-0.70 respectively) resulting in comparable or slightly higher ROC AUC (0.75-0.78). 489 

Adverse events prediction models showed balanced sensitivity and specificity ranging from 0.65 to 0.83 490 

and from 0.63 to 0.79 respectively, as well as reasonable accuracy (0.67-0.78) and a high ROC AUC 491 

(0.71 to 0.87). The 27 models were integrated in a tiered prediction model with high sensitivity (0.82). 492 

Because of the limited size of the external validation dataset, adverse events prediction at level 3 was a 493 

qualitative assessment of the models. Nevertheless, ticrynafen, which had been withdrawn from the 494 

market for association with hepatitis, was predicted by level 3 models to be associated with hepatitis, 495 

acute hepatic failure, and hepatocellular injury.  496 
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Prediction of Specific Modes of Action  497 

Biological mechanism-focused models have been gaining increasing interest in recent years, under the 498 

auspices and needs of the ToxCast and Tox21 initiatives. An example is the work of  Wu et al.103, who 499 

integrated quantitative high-throughput screening bioassay activity data to develop 17 QSAR models. 500 

The profiles of mode of action (MOA) of drugs were predicted with a set of 777 2D molecular 501 

descriptors using random forest models. The accuracies of prediction models ranged between 0.63 and 502 

0.67, which was quite encouraging considering the imbalance in the data. Nevertheless, when predicting 503 

general hepatotoxicity from the predicted MOA profiles, 5-fold cross-validation on a dataset of 222 504 

compounds (155 hepatotoxicants and 178 non-hepatotoxicants with test set included) gave an accuracy 505 

of 0.76 and internal validation on 111 drugs gave accuracy of 0.70. This performance was higher than 506 

when using a standard QSAR model (accuracy of 0.66 for cross-validation). Interestingly, the general 507 

hepatotoxicity model derived from the top four performing MOA profiles prediction models had slightly 508 

higher accuracy on the internal validation set while slightly lower through cross-validation (0.71 and 509 

0.70 respectively). These models could be regarded as underperforming as compared to recent general 510 

hepatotoxicity QSAR models, however, it should be noted that only a small number of MOAs were 511 

considered in this study with regard to the different mechanisms involved in DILI.  512 

 513 

Some other studies on the prediction of MOA profiles have been more focused on specific phenotypes. 514 

For instance, an impairment of the function of export pumps and transport proteins in the liver would 515 

result in the progress of a cholestatic phenotype. The export pumps comprise the biliary salt export pump 516 

(BSEP), the breast cancer resistance protein (BCRP) and the P-glycoprotein (P-gp). The transport 517 

proteins are the organic-anion-transporting polypeptides (OATPs). OATPs are members of the solute 518 

carrier (SLC) family and transport organic anions. Few models have been developed to predict the 519 

inhibition of such proteins. A prospective analysis82 was carried out to identify OATP1B1 and 520 

OATP1B3 inhibitors out of DrugBank128. This screening was based on a training dataset of 1,708 521 

compounds (190 inhibitors and 1,518 non-inhibitors) for OATP1B1 and of 1,725 compounds (124 522 

inhibitors and 1,601 non-inhibitors) for OATP1B3, respectively. An external test set containing 201 523 

compounds for OATP1B1 (64 inhibitors and 137 non-inhibitors) and 209 compounds for OATP1B3 (40 524 

inhibitors and 169 non-inhibitors) was used to assess the validity of the model along with 5-fold and 10-525 

fold cross-validation. Two random forests and four support vector machine classifiers, using MetaCost87 526 

as metaclassifier to deal with the imbalance of the dataset, were generated for each transporter. As the 527 

performance of the models was relatively equivalent – accuracy values and ROC AUC for the test set 528 

in the range of 0.81−0.86 and of 0.81−0.92, respectively – a consensus scoring approach was used, 529 

summing up the prediction scores of each classification model. The screening of DrugBank (6,279 530 

compounds) resulted in the identification and biological testing of the 9 compounds with highest 531 

predicted probability of being OATPB1 and O1TPB3 dual inhibitors and 1 selective inhibitor of 532 

OATP1B3. Only the latter was incorrectly predicted, yielding an accuracy of 90% for OATP1B1 and 533 
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80% for OATP1B3, respectively.  534 

 535 

To compare the prediction of an inhibitory effect of transport proteins to a phenotypic readout, the 536 

relative performance of meta classifiers on unbalanced datasets was studied for OATP1B1 and 537 

OATP1B3 inhibition, human cholestasis and animal cholestasis based on molecular descriptors85,129. 538 

Although imbalance ratios between negatives and positives ranged from 2:1 to 20:1, the balanced 539 

accuracies of models with sensitivity higher than 0.5 ranged from 0.67 to 0.83 for OATPB1, 0.63 to 540 

0.86 for OATP1B3 and 0.64 to 0.78 for human cholestasis on test set and from 0.53 to 0.65 for animal 541 

cholestasis. This emphasised the difficulty in predicting a phenotypic outcome solely from compound 542 

structure. 543 

 544 

Other work focused on the prediction of BSEP and MRP4 inhibition from both statistical and structure-545 

based approaches130. In this study, 57 and 171 compounds along with inhibitory effect on MRP4 and 546 

BSEP were gathered respectively. Bayesian models were trained on simple molecular descriptors and 547 

either extended-connectivity fingerprints maximum diameter 6 (ECFP6) or functional-class fingerprints 548 

maximum diameter 6 (FCFP6). For MRP4, although the models performed well in terms of specificity, 549 

they did not show high sensitivity. Nevertheless, the MRP4 pharmacophore model built on 9 compounds 550 

was able to correctly classify 30 of the 42 actives in the test set and 22 of the 35 inactives, leading to a 551 

sensitivity of 0.71 and specificity of 0.63. The BSEP inhibition prediction model showed more balanced 552 

and higher performance (sensitivity of 0.82 and 0.77, specificity of 0.77 and 0.84 respectively) but the 553 

pharmacophore model had a higher selectivity whilst poor specificity of 0.37. The lower performance 554 

of the MRP4 classification model was probably due to the 3:1 ratio between active and inactive 555 

compounds in the training dataset and to the small size of the dataset comprising only 86 compounds. 556 

This work emphasised not only the usefulness of structure-based modelling when it comes to the 557 

prediction of inhibitory effects of compounds but also the requirement for well-balanced datasets. 558 

 559 

This difficulty to predict a phenotypic outcome of a compound using an imbalanced dataset was tackled 560 

using metaclassifiers and considering the predicted inhibitory effect of compounds on transport proteins 561 

as descriptors84. Cholestasis-focused data were aggregated by mining and manually curating the 562 

literature for human drug-induced cholestasis. A total of 578 compounds were identified, of which 131 563 

were cholestasis positives and 447 were DILI negatives. A k-NN classifier with MetaCost metaclassifier 564 

for data imbalance correction was generated and evaluated through both 10-fold cross-validation and 565 

external testing on a dataset covering multiple levels of hepatotoxicity and including hepatobiliary 566 

injury53. Inclusion of BSEP, BCRP, P-glycoprotein, and OATP1B1 and OATP1B3 inhibition 567 

predictions increased accuracy (0.66 to 0.70) and ROC AUC (0.66 to 0.73) of the model through 10-568 

fold cross validation but decreased for the test set (0.61 to 0.56 and 0.62 to 0.58 respectively). The 569 

authors speculated that this was the result of a different class assignments between the training and test 570 
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sets and argued that almost 20% of the compounds in the external validation set had contradictory labels 571 

with the training set (71 out of 419 shared compounds). Nevertheless, the authors showed that accuracy 572 

and specificity reach their peak only after the inclusion of BSEP predictions, but that when only using 573 

BSEP predictions, the model showed a slight increase in accuracy and specificity of the model but 574 

decreased sensitivity. This suggested that BSEP inhibition conveys most, but not all, of the relevant 575 

information when modelling cholestasis. 576 

 577 

An effort to merge multiple publicly available datasets was undertaken to apply the models obtained to 578 

other datasets and investigate how export pump and transporter inhibition correlate to general 579 

hepatotoxicity59. In this work, the authors gathered nine previously published datasets for model training 580 

(966 compounds) and three datasets for validation (996 compounds). Three random forests classifiers 581 

were built using two sets of molecular descriptors to predict transporter inhibition82,131,132. Accuracy and 582 

ROC AUC of the models ranged from 0.57 to 0.69 and from 0.59 to 0.73 respectively in spite of the 583 

heterogeneity of such a dataset, ranging from in vitro cell-based assay readouts to FDA reports and post-584 

marketing safety data. Nevertheless, the introduction of BSEP, BCRP, P-glycoprotein, and OATP1B1 585 

and OATP1B3 inhibition binary prediction as descriptors slightly decreased the model performance. 586 

The authors argued that this could be the result of mispredictions of such transporter inhibition models 587 

resulting in noise added to the feature matrix and that the inhibition of only one transporter would not 588 

alter the function of hepatocytes. With regards to such possible misclassifications, the use of a hard 589 

threshold at 10 µM to classify a compound as being an inhibitor can lead to misclassification of 590 

compounds with IC50 around such a threshold, thus artificially lowering the performance of the model. 591 

Additionally, such a threshold is not in accordance with the 300 µM value that was suggested to be used 592 

for BSEP inhibition133. QSAR models modelling BSEP inhibition based on the latter threshold showed 593 

very good performance134,135. Finally, the endpoint to be predicted denotes general phenotypic 594 

hepatotoxicity and correlates only with transporter inhibition which is associated mostly with 595 

cholestasis. 596 

 597 

It should also be noted that the BSEP, BCRP, P-glycoprotein, and OATP1B1 and OATP1B3 do not 598 

represent the entirety of transporters. One could also cite the canicular and basolateral multidrug 599 

resistance-associated proteins (MRP1 to MRP6), the organic solute transporters (OSTα/OSTβ), the 600 

multidrug and toxin extrusion transporter 1 (MATE1), the ATP-binding cassette subfamily G member 601 

5/8 (ABCG5/G8), the multidrug resistance protein 3 (MDR3), the ATPase-aminophospholipid 602 

transporter (ATP8B1), the sodium taurocolate co-transporting polypeptide (NTCP), the organic cation 603 

transporters 1 and 3 (OCT1/3), the organic anion transporters 2 and 7 (OAT2/7) and other organic anion 604 

transporting polypeptides (e.g. OATP2B1)136. However, to date, very few inhibition data have been 605 

collected for these targets, making such a modelling exercise rather difficult if not unfeasible. 606 

 607 
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Finally, Peng et al. developed MOA prediction models in the context of steatosis137. Data from 24 in 608 

vitro HTS assays from the ToxCast program were compiled. The agonistic and/or antagonistic activity 609 

toward six transcription factors (namely the pregnane X receptor [PXR], liver X receptor [LXR], aryl 610 

hydrocarbon receptor [AhR], nuclear factor (erythroid-derived 2)-like 2 [Nrf2], PPARα and PPARγ) 611 

were modelled using DRAGON molecular descriptors and random forest models. For each MOA, four 612 

models were developed based on different strategies in feature selection and class balancing (i.e. 613 

majority class undersampling or balanced bagging) and integrated in a consensus model. External 614 

validation of the consensus models showed very good performance for all MOAs (accuracy between 615 

0.74 and 0.96) but for agonistic activity on PPARγ (accuracy of 0.66) for compounds in the applicability 616 

domains. A second validation was carried out by screening 90 chemicals with in vitro steatosis data (six 617 

positives, 84 negatives) without experimental data for the molecular initiating events (MIE) endpoints 618 

considered and gave perfect sensitivity and AUC of 0.72. This exemplified how modelling the MIE can 619 

be successfully integrated in a virtual screening strategy for identifying chemicals causing hepatic 620 

steatosis.  621 

 622 

GENERAL DISCUSSION 623 

Predicting DILI is a vital task, but is fraught with difficulties and complexities brought about from the 624 

data available to model, the number and varieties of phenotypic endpoint and mechanisms and the 625 

requirements of the end user. In the last decade, many QSAR and few rule-of-thumb models have been 626 

developed for the prediction of DILI with the majority of them focused on classification of compounds 627 

based on general hepatotoxicity annotation (Table 2).The good performance of models that have been 628 

developed is very encouraging, highlighting that machine learning methods are able to cope with 629 

complexities of the datasets, even though the data is inherently variable, limited in size and imbalanced. 630 

This is even more exciting considering that hepatotoxicity is an umbrella term for many different and 631 

complex phenotypes that are the integrated result of various mechanisms, and in spite of the paucity of 632 

phenotypically- and mechanistically-based large datasets. It is worth noting that only one regression 633 

model correlating to the severity of clinical outcome has been published so far76. The same applies to 634 

multinomial classification modelling: only one three-level DILI classification model has been 635 

published100. Nevertheless, as no golden standard for DILI annotation has been established, each 636 

annotation uses its own criteria and sources to label compounds102, leading to contradictory 637 

hepatotoxicity labelling of compounds by different authors, thus making the integration of multiple 638 

datasets a difficult endeavour59,121. This stresses the requirement for sensitive biomarkers able to 639 

accurately differentiate medical symptoms of DILI. However, the downside of using more complex 640 

machine learning algorithms is that they lack transparency and accountability. 641 

 642 

Additionally, differences in molecular similarity among datasets77,99,104,109 as well as their evaluation 643 
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with different metrics makes fair comparison between models a challenge138. Among molecular 644 

descriptors, there seems to be a growing trend in using molecular fingerprints only, rather than relying 645 

on physicochemical or topological descriptors, although simple rules of thumbs have been devised from 646 

them. To date only one study has used graph-based molecular structural encoding, thus avoiding the 647 

molecular descriptor calculation and selection step, combined with deep learning algorithms58. Some 648 

other studies have focused on matched molecular pairs – i.e. molecules that are structurally very similar 649 

– with opposing hepatotoxicity annotations30,42,45,47.  650 

 651 

Standard physicochemical and topological descriptors, as well as substructure-based fingerprints in 652 

QSAR models (structural alerts excluded), are poor predictors of the reactivity of the molecules and its 653 

relationship to the metabolism and hence generally do not perform well to predict DILI. In addition, the 654 

development of prediction models able to correctly predict toxicity cliffs (i.e. where a very small change 655 

in the structure of a molecule can alter activity enormously) is a challenging field. Tackling toxicity 656 

cliffs both through better data compilation and more detailed structure evaluation would definitely help 657 

better understanding the mechanisms underlying DILI. Hybrid models integrating molecular descriptors 658 

with in vitro data, whether being transcriptomics47, cell-imaging97 or bioactivity data65,70,137, have also 659 

been developed to enrich the information content and interpretability of the models but with rather 660 

limited predictive performance. Only a few models have included in vivo pharmacokinetic processes, 661 

such as absorption and metabolism inhibition of CYP450 proteins, the formation of GSH adducts and 662 

protein covalent-binding data48,139. Additionally, models focused on the determination of MIE and MOA 663 

show very good performance and are of critical importance for better understanding of DILI 664 

mechanisms. Yet, it is striking that no ensemble read-across approach, combining systems biology 665 

network analysis for the prediction of molecular targets140, MIE or MOA along with 666 

transcriptomics141,142, cell-imaging and metabolomics, has been devised to this date. Such an approach, 667 

similar to the DILIsym143 systems toxicology strategy, could address the limitations of QSAR144 such as 668 

the modelling of chemical mixtures or inorganic compounds (e.g. cisplatin) as well as enhance models 669 

developed this far with the prediction of the exposure. Furthermore, computational structure-based 670 

mechanistic hypothesising is very limited by the lack of three-dimensional structures of proteins at stake. 671 

Additionally, since dose is an important predictor for DILI, the prediction of the toxicological point of 672 

departure145 (POD) is challenge to be addressed. Finally, the most difficult challenge is to address inter-673 

species variability, and the concordance between human and animal toxicity30,100,146 that initiatives, such 674 

as the eTRANSAFE consortium, focus on. 675 

 676 

  677 



24 
 

ACKNOWLEDGEMENTS 678 

The authors thank Peter Hartog for his excellent assistance in generating Figure 1. 679 

FUNDING 680 

This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under 681 

grant agreement No 777365 (“eTRANSAFE”) receiving support from the European Union’s Horizon 682 

2020 research and innovation programme and EFPIA and was part of the EU-ToxRisk project which 683 

received funding from the European Union's Horizon 2020 research and innovation programme under 684 

grant agreement No 681002. 685 

CONFLICT OF INTEREST 686 

The authors declare no conflict of interest.  687 

REFERENCES 688 

(1)  Holt, M.; Ju, C. Drug-Induced Liver Injury. In Annals of 689 
Internal Medicine; 2010; Vol. 137, pp 3–27. 690 
https://doi.org/10.1007/978-3-642-00663-0_1. 691 

(2)  Siramshetty, V. B.; Nickel, J.; Omieczynski, C.; Gohlke, B. O.; 692 
Drwal, M. N.; Preissner, R. WITHDRAWN - A Resource for 693 
Withdrawn and Discontinued Drugs. Nucleic Acids Res. 2016, 694 
44 (D1), D1080–D1086. https://doi.org/10.1093/nar/gkv1192. 695 

(3)  Fung, M.; Thornton, A.; Mybeck, K.; wu, J. H. H.; Hornbuckle, 696 
K.; Muniz, E. Evaluation of the Characteristics of Safety 697 
Withdrawal of Prescription Drugs from Worldwide 698 
Pharmaceutical Markets-1960 to 1999. Ther. Innov. Regul. Sci. 699 
2001, 35 (1), 293–317. 700 
https://doi.org/10.1177/009286150103500134. 701 

(4)  Chen, M.; Vijay, V.; Shi, Q.; Liu, Z.; Fang, H.; Tong, W. FDA-702 
Approved Drug Labeling for the Study of Drug-Induced Liver 703 
Injury. Drug Discov. Today 2011, 16 (15–16), 697–703. 704 
https://doi.org/10.1016/j.drudis.2011.05.007. 705 

(5)  Babai, S.; Auclert, L.; Le-Louët, H. Safety Data and Withdrawal 706 
of Hepatotoxic Drugs. Therapie 2018. 707 
https://doi.org/10.1016/j.therap.2018.02.004. 708 

(6)  van Tonder, J. J.; Steenkamp, V.; Gulumi, M. Pre-Clinical 709 
Assessment of the Potential Intrinsic Hepatotoxicity of 710 
Candidate Drugs. In New Insights into Toxicity and Drug 711 
Testing; InTech, 2013. https://doi.org/10.5772/54792. 712 

(7)  Cheng, A.; Dixon, S. L. In Silico Models for the Prediction of 713 
Dose-Dependent Human Hepatotoxicity. J. Comput. Aided. 714 
Mol. Des. 2003, 17 (12), 811–823. 715 
https://doi.org/10.1023/B:JCAM.0000021834.50768.c6. 716 

(8)  Devarbhavi, H. An Update on Drug-Induced Liver Injury. J. 717 
Clin. Exp. Hepatol. 2012, 2 (3), 247–259. 718 
https://doi.org/10.1016/j.jceh.2012.05.002. 719 

(9)  Zimmerman, H. J. Drug-Induced Liver Disease. Clin. Liver Dis. 720 
2000, 4 (1), 73–96, vi. https://doi.org/10.1016/S1089-721 
3261(05)70097-0. 722 

(10)  Senior, J. R. What Is Idiosyncratic Hepatotoxicity? What Is It 723 

Not? Hepatology 2008, 47 (6), 1813–1815. 724 
https://doi.org/10.1002/hep.22332. 725 

(11)  Kaplowitz, N. Idiosyncratic Drug Hepatotoxicity. Nat. Rev. 726 
Drug Discov. 2005, 4 (6), 489–499. 727 
https://doi.org/10.1038/nrd1750. 728 

(12)  George, N.; Chen, M.; Yuen, N.; Hunt, C. M.; Suzuki, A. 729 
Interplay of Gender, Age and Drug Properties on Reporting 730 
Frequency of Drug-Induced Liver Injury. Regul. Toxicol. 731 
Pharmacol. 2018. 732 

(13)  Zhu, X.-W.; Li, S.-J. In Silico Prediction of Drug-Induced Liver 733 
Injury Based on Adverse Drug Reaction Reports. Toxicol. Sci. 734 
2017, 158 (2), 391–400. https://doi.org/10.1093/toxsci/kfx099. 735 

(14)  Mosedale, M.; Watkins, P. B. Drug-Induced Liver Injury: 736 
Advances in Mechanistic Understanding That Will Inform Risk 737 
Management. Clin. Pharmacol. Ther. 2017, 101 (4), 469–480. 738 
https://doi.org/10.1002/cpt.564. 739 

(15)  Alempijevic, T.; Zec, S.; Milosavljevic, T. Drug-Induced Liver 740 
Injury: Do We Know Everything? World Journal of 741 
Hepatology. 2017. https://doi.org/10.4254/wjh.v9.i10.491. 742 

(16)  Fraser, K.; Bruckner, D. M.; Dordick, J. S. Advancing 743 
Predictive Hepatotoxicity at the Intersection of Experimental, in 744 
Silico, and Artificial Intelligence Technologies. Chem. Res. 745 
Toxicol. 2018, 31 (6), 412–430. 746 
https://doi.org/10.1021/acs.chemrestox.8b00054. 747 

(17)  Noureddin, N.; Kaplowitz, N. Overview of Mechanisms of 748 
Drug-Induced Liver Injury (DILI) and Key Challenges in DILI 749 
Research; 2018; Vol. 1990, pp 3–18. 750 
https://doi.org/10.1007/978-1-4939-7677-5_1. 751 

(18)  Vinken, M. Adverse Outcome Pathways and Drug-Induced 752 
Liver Injury Testing. Chem. Res. Toxicol. 2015, 28 (7), 1391–753 
1397. https://doi.org/10.1021/acs.chemrestox.5b00208. 754 

(19)  O’Connell, T. M.; Watkins, P. B. The Application of 755 
Metabonomics to Predict Drug-Induced Liver Injury. Clin. 756 
Pharmacol. Ther. 2010, 88 (3), 394–399. 757 
https://doi.org/10.1038/clpt.2010.151. 758 



25 
 

(20)  Przybylak, K. R.; Cronin, M. T. D. In Silico Models for Drug-1 
Induced Liver Injury -- Current Status. Expert Opin. Drug 2 
Metab. Toxicol. 2012, 8 (2), 201–217. 3 
https://doi.org/10.1517/17425255.2012.648613. 4 

(21)  Chan, R.; Benet, L. Z. Evaluation of the Relevance of DILI 5 
Predictive Hypotheses in Early Drug Development: Review of: 6 
In Vitro Methodologies vs. BDDCS Classification; 2018; Vol. 7 
7. https://doi.org/10.1039/c8tx00016f. 8 

(22)  Kuijper, I. A.; Yang, H.; Van De Water, B.; Beltman, J. B. 9 
Unraveling Cellular Pathways Contributing to Drug-Induced 10 
Liver Injury by Dynamical Modeling. Expert Opin. Drug 11 
Metab. Toxicol. 2017, 13 (1), 5–17. 12 
https://doi.org/10.1080/17425255.2017.1234607. 13 

(23)  Bhattacharya, S.; Shoda, L. K. M.; Zhang, Q.; Woods, C. G.; 14 
Howell, B. A.; Siler, S. Q.; Woodhead, J. L.; Yang, Y.; 15 
McMullen, P.; Watkins, P. B.; et al. Modeling Drug- and 16 
Chemical-Induced Hepatotoxicity with Systems Biology 17 
Approaches. Front. Physiol. 2012, 3 DEC (December), 1–18. 18 
https://doi.org/10.3389/fphys.2012.00462. 19 

(24)  Roth, R. A.; Ganey, P. E. Intrinsic versus Idiosyncratic Drug-20 
Induced Hepatotoxicity--Two Villains or One? J. Pharmacol. 21 
Exp. Ther. 2010, 332 (3), 692–697. 22 
https://doi.org/10.1124/jpet.109.162651. 23 

(25)  Corsini, A.; Ganey, P.; Ju, C.; Kaplowitz, N.; Pessayre, D.; 24 
Roth, R.; Watkins, P. B.; Albassam, M.; Liu, B.; Stancic, S.; et 25 
al. Current Challenges and Controversies in Drug-Induced 26 
Liver Injury. Drug Saf. 2012, 35 (12), 1099–1117. 27 
https://doi.org/10.2165/11632970-000000000-00000. 28 

(26)  Ludwig, J.; Axelsen, R. Drug Effects on the Liver - An Updated 29 
Tabular Compilation of Drugs and Drug-Related Hepatic 30 
Diseases. Dig. Dis. Sci. 1983, 28 (7), 651–666. 31 
https://doi.org/10.1007/BF01299927. 32 

(27)  O’Brien, P. J.; Irwin, W.; Diaz, D.; Howard-Cofield, E.; Krejsa, 33 
C. M.; Slaughter, M. R.; Gao, B.; Kaludercic, N.; Angeline, A.; 34 
Bernardi, P.; et al. High Concordance of Drug-Induced Human 35 
Hepatotoxicity with in Vitro Cytotoxicity Measured in a Novel 36 
Cell-Based Model Using High Content Screening. Arch. 37 
Toxicol. 2006, 80 (9), 580–604. https://doi.org/10.1007/s00204-38 
006-0091-3. 39 

(28)  Suzuki, A.; Andrade, R. J.; Bjornsson, E.; Lucena, M. I.; Lee, 40 
W. M.; Yuen, N. A.; Hunt, C. M.; Freston, J. W. Drugs 41 
Associated with Hepatotoxicity and Their Reporting Frequency 42 
of Liver Adverse Events in VigiBaseTM. Drug Saf. 2010, 33 (6), 43 
503–522. https://doi.org/10.2165/11535340-000000000-44 
00000. 45 

(29)  Chen, M.; Suzuki, A.; Thakkar, S.; Yu, K.; Hu, C.; Tong, W. 46 
DILIrank: The Largest Reference Drug List Ranked by the Risk 47 
for Developing Drug-Induced Liver Injury in Humans. Drug 48 
Discov. Today 2016, 21 (4), 648–653. 49 
https://doi.org/10.1016/j.drudis.2016.02.015. 50 

(30)  Fourches, D.; Barnes, J. C.; Day, N. C.; Bradley, P.; Reed, J. Z.; 51 
Tropsha, A. Cheminformatics Analysis of Assertions Mined 52 
from Literature That Describe Drug-Induced Liver Injury in 53 
Different Species. Chem. Res. Toxicol. 2010, 23 (1), 171–183. 54 
https://doi.org/10.1021/tx900326k. 55 

(31)  Kotsampasakou, E.; Montanari, F.; Ecker, G. F. Predicting 56 
Drug-Induced Liver Injury: The Importance of Data Curation. 57 
Toxicology 2017, 389 (June), 139–145. 58 

https://doi.org/10.1016/j.tox.2017.06.003. 59 
(32)  Luo, G.; Shen, Y.; Yang, L.; Lu, A.; Xiang, Z. A Review of 60 

Drug-Induced Liver Injury Databases. Arch. Toxicol. 2017, 91 61 
(9), 3039–3049. https://doi.org/10.1007/s00204-017-2024-8. 62 

(33)  Cruz-Monteagudo, M.; Cordeiro, M. N. D. S.; Borges, F. 63 
Computational Chemistry Approach for the Early Detection of 64 
Drug-Induced Idiosyncratic Liver Toxicity. J. Comput. Chem. 65 
2008, 29 (4), 533–549. https://doi.org/10.1002/jcc.20812. 66 

(34)  Zimmerman, H. . Hepatotoxicity: The Adverse Effects of Drugs 67 
and Other Chemicals on the Liver., 2nd ed.; Lippincott 68 
Williams and Wilkins: Philadelphia, 1999. 69 

(35)  Guo, J. J.; Wigle, P. R.; Lammers, K.; Vu, O. Comparison of 70 
Potentially Hepatotoxic Drugs among Major US Drug 71 
Compendia. Res. Soc. Adm. Pharm. 2005, 1 (3), 460–479. 72 
https://doi.org/10.1016/j.sapharm.2005.06.005. 73 

(36)  Richard, A. M.; Judson, R. S.; Houck, K. A.; Grulke, C. M.; 74 
Volarath, P.; Thillainadarajah, I.; Yang, C.; Rathman, J.; 75 
Martin, M. T.; Wambaugh, J. F.; et al. ToxCast Chemical 76 
Landscape: Paving the Road to 21st Century Toxicology. Chem. 77 
Res. Toxicol. 2016, 29 (8), 1225–1251. 78 
https://doi.org/10.1021/acs.chemrestox.6b00135. 79 

(37)  EPA’s National Center for Computational Toxicology. ToxCast 80 
Database (invitroDB) 81 
https://epa.figshare.com/articles/ToxCast_Database_invitroDB82 
_/6062623. https://doi.org/10.23645/epacomptox.6062623.v2. 83 

(38)  Dix, D. J.; Houck, K. A.; Martin, M. T.; Richard, A. M.; Setzer, 84 
R. W.; Kavlock, R. J. The ToxCast Program for Prioritizing 85 
Toxicity Testing of Environmental Chemicals. Toxicol. Sci. 86 
2007, 95 (1), 5–12. https://doi.org/10.1093/toxsci/kfl103. 87 

(39)  Xu, J. J.; Henstock, P. V.; Dunn, M. C.; Smith, A. R.; Chabot, 88 
J. R.; de Graaf, D. Cellular Imaging Predictions of Clinical 89 
Drug-Induced Liver Injury. Toxicol. Sci. 2008, 105 (1), 97–105. 90 
https://doi.org/10.1093/toxsci/kfn109. 91 

(40)  Ekins, S.; Williams, A. J.; Xu, J. J. A Predictive Ligand-Based 92 
Bayesian Model for Human Drug-Induced Liver Injury. Drug 93 
Metab. Dispos. 2010, 38 (12), 2302–2308. 94 
https://doi.org/10.1124/dmd.110.035113. 95 

(41)  Greene, N.; Fisk, L.; Naven, R. T.; Note, R. R.; Patel, M. L.; 96 
Pelletier, D. J. Developing Structure-Activity Relationships for 97 
the Prediction of Hepatotoxicity. Chem. Res. Toxicol. 2010, 23 98 
(7), 1215–1222. https://doi.org/10.1021/tx1000865. 99 

(42)  Rodgers, A. D.; Zhu, H.; Fourches, D.; Rusyn, I.; Tropsha, A. 100 
Modeling Liver-Related Adverse Effects of Drugs Using 101 
Knearest Neighbor Quantitative Structure-Activity 102 
Relationship Method. Chem. Res. Toxicol. 2010, 23 (4), 724–103 
732. https://doi.org/10.1021/tx900451r. 104 

(43)  Kuhn, M.; Campillos, M.; Letunic, I.; Jensen, L. J.; Bork, P. A 105 
Side Effect Resource to Capture Phenotypic Effects of Drugs. 106 
Mol. Syst. Biol. 2010, 6 (343), 1–6. 107 
https://doi.org/10.1038/msb.2009.98. 108 

(44)  Kuhn, M.; Letunic, I.; Jensen, L. J.; Bork, P. The SIDER 109 
Database of Drugs and Side Effects. Nucleic Acids Res. 2016, 110 
44 (D1), D1075–D1079. https://doi.org/10.1093/nar/gkv1075. 111 

(45)  Liew, C. Y.; Lim, Y. C.; Yap, C. W. Mixed Learning 112 
Algorithms and Features Ensemble in Hepatotoxicity 113 
Prediction. J. Comput. Aided. Mol. Des. 2011, 25 (9), 855–871. 114 
https://doi.org/10.1007/s10822-011-9468-3. 115 

(46)  Liu, Z.; Shi, Q.; Ding, D.; Kelly, R.; Fang, H.; Tong, W. 116 



26 
 

Translating Clinical Findings into Knowledge in Drug Safety 1 
Evaluation - Drug Induced Liver Injury Prediction System 2 
(DILIps). PLoS Comput. Biol. 2011. 3 

(47)  Low, Y.; Uehara, T.; Minowa, Y.; Yamada, H.; Ohno, Y.; 4 
Urushidani, T.; Sedykh, A.; Muratov, E.; Kuz’min, V.; 5 
Fourches, D.; et al. Predicting Drug-Induced Hepatotoxicity 6 
Using QSAR and Toxicogenomics Approaches. Chem. Res. 7 
Toxicol. 2011, 24 (8), 1251–1262. 8 
https://doi.org/10.1021/tx200148a. 9 

(48)  Sakatis, M. Z.; Reese, M. J.; Harrell, A. W.; Taylor, M. A.; 10 
Baines, I. A.; Chen, L.; Bloomer, J. C.; Yang, E. Y.; Ellens, H. 11 
M.; Ambroso, J. L.; et al. Preclinical Strategy to Reduce Clinical 12 
Hepatotoxicity Using in Vitro Bioactivation Data for >200 13 
Compounds. Chem. Res. Toxicol. 2012, 25 (10), 2067–2082. 14 
https://doi.org/10.1021/tx300075j. 15 

(49)  Chen, M.; Zhang, J.; Wang, Y.; Liu, Z.; Kelly, R.; Zhou, G.; 16 
Fang, H.; Borlak, J.; Tong, W. The Liver Toxicity Knowledge 17 
Base: A Systems Approach to a Complex End Point. Clin. 18 
Pharmacol. Ther. 2013. 19 

(50)  Hoofnagle, J. H. LiverTox: A Website on Drug-Induced Liver 20 
Injury. Drug-Induced Liver Dis. 2013, 725–732. 21 
https://doi.org/10.1016/B978-0-12-387817-5.00040-6. 22 

(51)  Zhu, X.; Kruhlak, N. L. Construction and Analysis of a Human 23 
Hepatotoxicity Database Suitable for QSAR Modeling Using 24 
Post-Market Safety Data. Toxicology 2014, 321 (1), 62–72. 25 
https://doi.org/10.1016/j.tox.2014.03.009. 26 

(52)  Leeson, P. D. Impact of Physicochemical Properties on Dose 27 
and Hepatotoxicity of Oral Drugs. Chem. Res. Toxicol. 2018, 31 28 
(6), 494–505. https://doi.org/10.1021/acs.chemrestox.8b00044. 29 

(53)  Mulliner, D.; Schmidt, F.; Stolte, M.; Spirkl, H. P.; Czich, A.; 30 
Amberg, A. Computational Models for Human and Animal 31 
Hepatotoxicity with a Global Application Scope. Chem. Res. 32 
Toxicol. 2016, 29 (5), 757–767. 33 
https://doi.org/10.1021/acs.chemrestox.5b00465. 34 

(54)  Huang, R. A Quantitative High-Throughput Screening Data 35 
Analysis Pipeline for Activity Profiling; Zhu, H., Xia, M., Eds.; 36 
Methods in Molecular Biology; Springer New York: New York, 37 
NY, 2016; Vol. 1473, pp 111–122. https://doi.org/10.1007/978-38 
1-4939-6346-1_12. 39 

(55)  Huang, R.; Xia, M.; Sakamuru, S.; Zhao, J.; Shahane, S. A.; 40 
Attene-Ramos, M.; Zhao, T.; Austin, C. P.; Simeonov, A. 41 
Modelling the Tox21 10 K Chemical Profiles for in Vivo 42 
Toxicity Prediction and Mechanism Characterization. Nat. 43 
Commun. 2016. https://doi.org/10.1038/ncomms10425. 44 

(56)  Ai, H.; Chen, W.; Zhang, L.; Huang, L.; Yin, Z.; Hu, H.; Zhao, 45 
Q.; Zhao, J.; Liu, H. Predicting Drug-Induced Liver Injury 46 
Using Ensemble Learning Methods and Molecular Fingerprints. 47 
Toxicol. Sci. 2018, No. August, 1–8. 48 
https://doi.org/10.1093/toxsci/kfy121. 49 

(57)  Copple, I. M.; den Hollander, W.; Callegaro, G.; Mutter, F. E.; 50 
Maggs, J. L.; Schofield, A. L.; Rainbow, L.; Fang, Y.; 51 
Sutherland, J. J.; Ellis, E. C.; et al. Characterisation of the NRF2 52 
Transcriptional Network and Its Response to Chemical Insult in 53 
Primary Human Hepatocytes: Implications for Prediction of 54 
Drug-Induced Liver Injury. Arch. Toxicol. 2019, 93 (2), 385–55 
399. https://doi.org/10.1007/s00204-018-2354-1. 56 

(58)  Xu, Y.; Dai, Z.; Chen, F.; Gao, S.; Pei, J.; Lai, L. Deep Learning 57 
for Drug-Induced Liver Injury. J. Chem. Inf. Model. 2015, 55 58 

(10), 2085–2093. https://doi.org/10.1021/acs.jcim.5b00238. 59 
(59)  Kotsampasakou, E.; Montanari, F.; Ecker, G. F. Predicting 60 

Drug-Induced Liver Injury: The Importance of Data Curation. 61 
Toxicology 2017, 389, 139–145. 62 
https://doi.org/10.1016/j.tox.2017.06.003. 63 

(60)  Steger-Hartmann, T.; Pognan, F.; Sanz, F.; Diaz, C. A. In Silico 64 
Prediction of in Vivo Toxicities (ETox)—The Innovative 65 
Medicines Initiative Approach. Toxicol. Lett. 2009, 189 (2009), 66 
S258. https://doi.org/10.1016/j.toxlet.2009.06.374. 67 

(61)  Cases, M.; Briggs, K.; Steger-Hartmann, T.; Pognan, F.; Marc, 68 
P.; Kleinöder, T.; Schwab, C. H.; Pastor, M.; Wichard, J.; Sanz, 69 
F. The ETOX Data-Sharing Project to Advance in Silico Drug-70 
Induced Toxicity Prediction. Int. J. Mol. Sci. 2014, 15 (11), 71 
21136–21154. https://doi.org/10.3390/ijms151121136. 72 

(62)  Pognan, F. Detection, Elimination, Mitigation, and Prediction 73 
of Drug-Induced Liver Injury in Drug Discovery. In Drug-74 
Induced Liver Toxicity, Methods in Pharmacology and 75 
Toxicology; Chen, M., Will, Y., Eds.; Springer, 2018; pp 21–76 
43. https://doi.org/10.1007/978-1-4939-7677-5_2. 77 

(63)  Sanz, F.; Pognan, F.; Steger-Hartmann, T.; Díaz, C. Legacy 78 
Data Sharing to Improve Drug Safety Assessment: The ETOX 79 
Project. Nature Reviews Drug Discovery. October 13, 2017, pp 80 
811–812. https://doi.org/10.1038/nrd.2017.177. 81 

(64)  Jiang, L.; He, Y.; Zhang, Y. Prediction of Hepatotoxicity of 82 
Traditional Chinese Medicine Compounds by Support Vector 83 
Machine Approach. Int. Conf. Syst. Biol. ISB 2014, No. 84 
81173522, 27–30. https://doi.org/10.1109/ISB.2014.6990426. 85 

(65)  Muller, C.; Pekthong, D.; Alexandre, E.; Marcou, G.; Horvath, 86 
D.; Richert, L.; Varnek, A. Prediction of Drug Induced Liver 87 
Injury Using Molecular and Biological Descriptors. Comb. 88 
Chem. High Throughput Screen. 2015, 18 (3), 315–322. 89 
https://doi.org/10.2174/1386207318666150305144650. 90 

(66)  Zhao, P.; Liu, B.; Wang, C. Hepatotoxicity Evaluation of 91 
Traditional Chinese Medicines Using a Computational 92 
Molecular Model. Clin. Toxicol. 2017, 55 (9), 996–1000. 93 
https://doi.org/10.1080/15563650.2017.1333123. 94 

(67)  Liu, L.; Fu, L.; Zhang, J. W.; Wei, H.; Ye, W. L.; Deng, Z. K.; 95 
Zhang, L.; Cheng, Y.; Ouyang, D.; Cao, Q.; et al. Three-Level 96 
Hepatotoxicity Prediction System Based on Adverse Hepatic 97 
Effects. Mol. Pharm. 2019, 16 (1), 393–408. 98 
https://doi.org/10.1021/acs.molpharmaceut.8b01048. 99 

(68)  Huang, S. H.; Tung, C. W.; Fülöp, F.; Li, J. H. Developing a 100 
QSAR Model for Hepatotoxicity Screening of the Active 101 
Compounds in Traditional Chinese Medicines. Food Chem. 102 
Toxicol. 2015, 78, 71–77. 103 
https://doi.org/10.1016/j.fct.2015.01.020. 104 

(69)  Lu, Y.; Liu, L.; Lu, D.; Cai, Y.; Zheng, M.; Luo, X.; Jiang, H.; 105 
Chen, K. Predicting Hepatotoxicity of Drug Metabolites Via an 106 
Ensemble Approach Based on Support Vector Machine. Comb. 107 
Chem. High Throughput Screen. 2017, 20 (10), 839–849. 108 
https://doi.org/10.2174/1386207320666171121113255. 109 

(70)  Liu, J.; Mansouri, K.; Judson, R. S.; Martin, M. T.; Hong, H.; 110 
Chen, M.; Xu, X.; Thomas, R. S.; Shah, I. Predicting 111 
Hepatotoxicity Using ToxCast in Vitro Bioactivity and 112 
Chemical Structure. Chem. Res. Toxicol. 2015, 28 (4), 738–751. 113 
https://doi.org/10.1021/tx500501h. 114 

(71)  Wu, Q.; Cai, C.; Guo, P.; Chen, M.; Wu, X.; Zhou, J.; Luo, Y.; 115 
Zou, Y.; Liu, A.; Wang, Q.; et al. In Silico Identification and 116 



27 
 

Mechanism Exploration of Hepatotoxic Ingredients in 1 
Traditional Chinese Medicine. Front. Pharmacol. 2019, 10 2 
(May), 1–15. https://doi.org/10.3389/fphar.2019.00458. 3 

(72)  Takeshita, J. ichi; Nakayama, H.; Kitsunai, Y.; Tanabe, M.; Oki, 4 
H.; Sasaki, T.; Yoshinari, K. Discriminative Models Using 5 
Molecular Descriptors for Predicting Increased Serum ALT 6 
Levels in Repeated-Dose Toxicity Studies of Rats. Comput. 7 
Toxicol. 2018, 6, 64–70. 8 
https://doi.org/10.1016/j.comtox.2017.05.002. 9 

(73)  Toropova, A. P.; Toropov, A. A. CORAL: Binary 10 
Classifications (Active/Inactive) for Drug-Induced Liver Injury. 11 
Toxicol. Lett. 2017, 268, 51–57. 12 
https://doi.org/10.1016/j.toxlet.2017.01.011. 13 

(74)  Zhang, H.; Ding, L.; Zou, Y.; Hu, S. Q.; Huang, H. G.; Kong, 14 
W. B.; Zhang, J. Predicting Drug-Induced Liver Injury in 15 
Human with Naïve Bayes Classifier Approach. J. Comput. 16 
Aided. Mol. Des. 2016, 30 (10), 889–898. 17 
https://doi.org/10.1007/s10822-016-9972-6. 18 

(75)  Schöning, V.; Krähenbühl, S.; Drewe, J. The Hepatotoxic 19 
Potential of Protein Kinase Inhibitors Predicted with Random 20 
Forest and Artificial Neural Networks. Toxicol. Lett. 2018, 299 21 
(October), 145–148. 22 
https://doi.org/10.1016/j.toxlet.2018.10.009. 23 

(76)  Chen, M.; Borlak, J.; Tong, W. A Model to Predict Severity of 24 
Drug-Induced Liver Injury in Humans. Hepatology 2016, 64 25 
(3), 931–940. https://doi.org/10.1002/hep.28678. 26 

(77)  Hammann, F.; Schöning, V.; Drewe, J. Prediction of Clinically 27 
Relevant Drug-Induced Liver Injury from Structure Using 28 
Machine Learning. J. Appl. Toxicol. 2019, 39 (3), 412–419. 29 
https://doi.org/10.1002/jat.3741. 30 

(78)  Chen, M.; Borlak, J.; Tong, W. High Lipophilicity and High 31 
Daily Dose of Oral Medications Are Associated with 32 
Significant Risk for Drug-Induced Liver Injury. Hepatology 33 
2013, 58 (1), 388–396. https://doi.org/10.1002/hep.26208. 34 

(79)  Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; Kegelmeyer, W. P. 35 
SMOTE: Synthetic Minority Over-Sampling Technique. J. 36 
Artif. Intell. Res. 2002, 16, 321–357. 37 
https://doi.org/10.1613/jair.953. 38 

(80)  Galar, M.; Fern, A.; Barrenechea, E.; Bustince, H. A Review of 39 
Ensembles for the Class Imbalance Problem. 2012, 42 (4), 463–40 
484. 41 

(81)  Kotsiantis, S.; Kanellopoulos, D.; Pintelas, P. Handling 42 
Imbalanced Datasets : A Review. Science (80-. ). 2006, 30 (1), 43 
25–36. https://doi.org/10.1007/978-0-387-09823-4_45. 44 

(82)  Kotsampasakou, E.; Brenner, S.; Jäger, W.; Ecker, G. F. 45 
Identification of Novel Inhibitors of Organic Anion 46 
Transporting Polypeptides 1B1 and 1B3 (OATP1B1 and 47 
OATP1B3) Using a Consensus Vote of Six Classification 48 
Models. Mol. Pharm. 2015, 12 (12), 4395–4404. 49 
https://doi.org/10.1021/acs.molpharmaceut.5b00583. 50 

(83)  Wang, H.; Liu, R.; Schyman, P.; Wallqvist, A. Deep Neural 51 
Network Models for Predicting Chemically Induced Liver 52 
Toxicity Endpoints from Transcriptomic Responses. Front. 53 
Pharmacol. 2019, 10 (FEB), 1–12. 54 
https://doi.org/10.3389/fphar.2019.00042. 55 

(84)  Kotsampasakou, E.; Ecker, G. F. Predicting Drug-Induced 56 
Cholestasis with the Help of Hepatic Transporters—An in 57 
Silico Modeling Approach. J. Chem. Inf. Model. 2017, 57 (3), 58 

608–615. https://doi.org/10.1021/acs.jcim.6b00518. 59 
(85)  Jain, S.; Kotsampasakou, E.; Ecker, G. F. Comparing the 60 

Performance of Meta-Classifiers—a Case Study on Selected 61 
Imbalanced Data Sets Relevant for Prediction of Liver Toxicity. 62 
J. Comput. Aided. Mol. Des. 2018, 32 (5), 583–590. 63 
https://doi.org/10.1007/s10822-018-0116-z. 64 

(86)  Breiman, L. Bagging Predictions. Mach. Learn. 1996, 24 (2), 65 
123–140. 66 

(87)  Domingos, P. MetaCost: A General Method for Making 67 
Classifiers Cost-Sensitive. In Proceedings of the fifth ACM 68 
SIGKDD international conference on Knowledge discovery and 69 
data mining - KDD ’99; ACM Press: New York, New York, 70 
USA, 1999; Vol. 25, pp 155–164. 71 
https://doi.org/10.1145/312129.312220. 72 

(88)  Egan, W. J.; Zlokarnik, G.; Grootenhuis, P. D. J. In Silico 73 
Prediction of Drug Safety: Despite Progress There Is Abundant 74 
Room for Improvement. Drug Discov. Today Technol. 2004, 1 75 
(4), 381–387. https://doi.org/10.1016/j.ddtec.2004.11.002. 76 

(89)  Hewitt, M.; Enoch, S. J.; Madden, J. C.; Przybylak, K. R.; 77 
Cronin, M. T. D. Hepatotoxicity: A Scheme for Generating 78 
Chemical Categories for Read-across, Structural Alerts and 79 
Insights into Mechanism(s) of Action. Crit. Rev. Toxicol. 2013, 80 
43 (7), 537–558. 81 
https://doi.org/10.3109/10408444.2013.811215. 82 

(90)  Pizzo, F.; Lombardo, A.; Manganaro, A.; Benfenati, E. A New 83 
Structure-Activity Relationship (SAR) Model for Predicting 84 
Drug-Induced Liver Injury, Based on Statistical and Expert-85 
Based Structural Alerts. Front. Pharmacol. 2016, 7 (NOV), 1–86 
15. https://doi.org/10.3389/fphar.2016.00442. 87 

(91)  Liu, R.; Yu, X.; Wallqvist, A. Data-Driven Identification of 88 
Structural Alerts for Mitigating the Risk of Drug-Induced 89 
Human Liver Injuries. J. Cheminform. 2015, 7 (1), 4. 90 
https://doi.org/10.1186/s13321-015-0053-y. 91 

(92)  Clark, R. D.; Wolohan, P. R. N.; Hodgkin, E. E.; Kelly, J. H.; 92 
Sussman, N. L. Modelling in Vitro Hepatotoxicity Using 93 
Molecular Interaction Fields and SIMCA. J. Mol. Graph. 94 
Model. 2004, 22 (6), 487–497. 95 
https://doi.org/10.1016/j.jmgm.2004.03.009. 96 

(93)  Matthews, E. J.; Ursem, C. J.; Kruhlak, N. L.; Benz, R. D.; 97 
Sabaté, D. A.; Yang, C.; Klopman, G.; Contrera, J. F. 98 
Identification of Structure-Activity Relationships for Adverse 99 
Effects of Pharmaceuticals in Humans: Part B. Use of (Q)SAR 100 
Systems for Early Detection of Drug-Induced Hepatobiliary and 101 
Urinary Tract Toxicities. Regul. Toxicol. Pharmacol. 2009, 54 102 
(1), 23–42. https://doi.org/10.1016/j.yrtph.2009.01.009. 103 

(94)  Liu, Z.; Shi, Q.; Ding, D.; Kelly, R.; Fang, H.; Tong, W. 104 
Translating Clinical Findings into Knowledge in Drug Safety 105 
Evaluation--Drug Induced Liver Injury Prediction System 106 
(DILIps). PLoS Comput. Biol. 2011, 7 (12), e1002310. 107 
https://doi.org/10.1371/journal.pcbi.1002310. 108 

(95)  Myshkin, E.; Brennan, R.; Khasanova, T.; Sitnik, T.; 109 
Serebriyskaya, T.; Litvinova, E.; Guryanov, A.; Nikolsky, Y.; 110 
Nikolskaya, T.; Bureeva, S. Prediction of Organ Toxicity 111 
Endpoints by QSAR Modeling Based on Precise Chemical-112 
Histopathology Annotations. Chem. Biol. Drug Des. 2012, 80 113 
(3), 406–416. https://doi.org/10.1111/j.1747-114 
0285.2012.01411.x. 115 

(96)  Chen, M.; Hong, H.; Fang, H.; Kelly, R.; Zhou, G.; Borlak, J.; 116 



28 
 

Tong, W. Quantitative Structure-Activity Relationship Models 1 
for Predicting Drug-Induced Liver Injury Based on FDA-2 
Approved Drug Labeling Annotation and Using a Large 3 
Collection of Drugs. Toxicol. Sci. 2013, 136 (1), 242–249. 4 
https://doi.org/10.1093/toxsci/kft189. 5 

(97)  Zhu, X. W.; Sedykh, A.; Liu, S. S. Hybrid in Silico Models for 6 
Drug-Induced Liver Injury Using Chemical Descriptors and in 7 
Vitro Cell-Imaging Information. J. Appl. Toxicol. 2014, 34 (3), 8 
281–288. https://doi.org/10.1002/jat.2879. 9 

(98)  Zhu, X. W.; Xin, Y. J.; Chen, Q. H. Chemical and in Vitro 10 
Biological Information to Predict Mouse Liver Toxicity Using 11 
Recursive Random Forests. SAR QSAR Environ. Res. 2016, 27 12 
(7), 559–572. 13 
https://doi.org/10.1080/1062936X.2016.1201142. 14 

(99)  Zhang, C.; Cheng, F.; Li, W.; Liu, G.; Lee, P. W.; Tang, Y. In 15 
Silico Prediction of Drug Induced Liver Toxicity Using 16 
Substructure Pattern Recognition Method. Mol. Inform. 2016, 17 
35 (3–4), 136–144. https://doi.org/10.1002/minf.201500055. 18 

(100)  Hong, H.; Thakkar, S.; Chen, M.; Tong, W. Development of 19 
Decision Forest Models for Prediction of Drug-Induced Liver 20 
Injury in Humans Using A Large Set of FDA-Approved Drugs. 21 
Sci. Rep. 2017, 7 (1), 17311. https://doi.org/10.1038/s41598-22 
017-17701-7. 23 

(101)  Kim, E.; Nam, H. Prediction Models for Drug-Induced 24 
Hepatotoxicity by Using Weighted Molecular Fingerprints. 25 
BMC Bioinformatics 2017, 18 (Suppl 7). 26 
https://doi.org/10.1186/s12859-017-1638-4. 27 

(102)  McEuen, K.; Borlak, J.; Tong, W.; Chen, M. Associations of 28 
Drug Lipophilicity and Extent of Metabolism with Drug-29 
Induced Liver Injury. Int. J. Mol. Sci. 2017, 18 (7). 30 
https://doi.org/10.3390/ijms18071335. 31 

(103)  Wu, L.; Liu, Z.; Auerbach, S.; Huang, R.; Chen, M.; McEuen, 32 
K.; Xu, J.; Fang, H.; Tong, W. Integrating Drug’s Mode of 33 
Action into Quantitative Structure-Activity Relationships for 34 
Improved Prediction of Drug-Induced Liver Injury. J. Chem. 35 
Inf. Model. 2017, 57 (4), 1000–1006. 36 
https://doi.org/10.1021/acs.jcim.6b00719. 37 

(104)  Li, X.; Chen, Y.; Song, X.; Zhang, Y.; Li, H.; Zhao, Y. The 38 
Development and Application of in Silico Models for Drug 39 
Induced Liver Injury. RSC Adv. 2018, 8 (15), 8101–8111. 40 
https://doi.org/10.1039/c7ra12957b. 41 

(105)  Papa, E.; Sangion, A.; Taboureau, O.; Gramatica, P. 42 
Quantitative Prediction of Rat Hepatotoxicity by Molecular 43 
Structure. Int. J. Quant. Struct. Relationships 2018, 3 (2), 49–44 
60. https://doi.org/10.4018/ijqspr.2018070104. 45 

(106)  Ambe, K.; Ishihara, K.; Ochibe, T.; Ohya, K.; Tamura, S.; 46 
Inoue, K.; Yoshida, M.; Tohkin, M. In Silico Prediction of 47 
Chemical-Induced Hepatocellular Hypertrophy Using 48 
Molecular Descriptors. Toxicol. Sci. 2018, 162 (2), 667–675. 49 
https://doi.org/10.1093/toxsci/kfx287. 50 

(107)  López-Massaguer, O.; Pinto-Gil, K.; Sanz, F.; Amberg, A.; 51 
Anger, L. T.; Stolte, M.; Ravagli, C.; Marc, P.; Pastor, M. 52 
Generating Modeling Data from Repeat-Dose Toxicity Reports. 53 
Toxicol. Sci. 2018, 162 (1), 287–300. 54 
https://doi.org/10.1093/toxsci/kfx254. 55 

(108)  Chan, R.; Benet, L. Z. Evaluation of DILI Predictive 56 
Hypotheses in Early Drug Development. Chem. Res. Toxicol. 57 
2017, 30 (4), 1017–1029. 58 

https://doi.org/10.1021/acs.chemrestox.7b00025. 59 
(109)  He, S.; Ye, T.; Wang, R.; Zhang, C.; Zhang, X.; Sun, G.; Sun, 60 

X. An In Silico Model for Predicting Drug-Induced 61 
Hepatotoxicity. Int. J. Mol. Sci. 2019, 20 (8), 1897. 62 
https://doi.org/10.3390/ijms20081897. 63 

(110)  Wang, Y.; Xiao, Q.; Chen, P.; Wang, B. In Silico Prediction of 64 
Drug-Induced Liver Injury Based on Ensemble Classifier 65 
Method. Int. J. Mol. Sci. 2019, 20 (17), 4106. 66 
https://doi.org/10.3390/ijms20174106. 67 

(111)  Aleo, M. D.; Shah, F.; Allen, S.; Barton, H. A.; Costales, C.; 68 
Lazzaro, S.; Leung, L.; Nilson, A.; Obach, R. S.; Rodrigues, A. 69 
D.; et al. Moving Beyond Binary Predictions of Human Drug-70 
Induced Liver Injury (Dili) Towards Contrasting Relative Risk 71 
Potential. Chem. Res. Toxicol. 2019, No. Dili. 72 
https://doi.org/10.1021/acs.chemrestox.9b00262. 73 

(112)  Williams, D. P.; Lazic, S.; Foster, A. J.; Semenova, E.; Morgan, 74 
P. Predicting Drug-Induced Liver Injury with Bayesian 75 
Machine Learning. Chem. Res. Toxicol. 2019, 76 
acs.chemrestox.9b00264. 77 
https://doi.org/10.1021/acs.chemrestox.9b00264. 78 

(113)  Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting 79 
System. 2016. https://doi.org/10.1145/2939672.2939785. 80 

(114)  Klekota, J.; Roth, F. P. Chemical Substructures That Enrich for 81 
Biological Activity. Bioinformatics 2008, 24 (21), 2518–2525. 82 
https://doi.org/10.1093/bioinformatics/btn479. 83 

(115)  Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J 84 
Chem Inf Model. 2010, 50 (5), 742–754. 85 
https://doi.org/10.1021/ci100050t. 86 

(116)  Cronin, M. T. D.; Enoch, S. J.; Mellor, C. L.; Przybylak, K. R.; 87 
Richarz, A. N.; Madden, J. C. In Silico Prediction of Organ 88 
Level Toxicity: Linking Chemistry to Adverse Effects. Toxicol. 89 
Res. 2017, 33 (3), 173–182. 90 
https://doi.org/10.5487/TR.2017.33.3.173. 91 

(117)  Ellison, C. M.; Madden, J. C.; Judson, P.; Cronin, M. T. D. 92 
Using in Silico Tools in a Weight of Evidence Approach to Aid 93 
Toxicological Assessment. Mol. Inform. 2010, 29 (1–2), 97–94 
110. https://doi.org/10.1002/minf.200900006. 95 

(118)  Stepan, A. F.; Walker, D. P.; Bauman, J.; Price, D. A.; Baillie, 96 
T. A.; Kalgutkar, A. S.; Aleo, M. D. Structural Alert/Reactive 97 
Metabolite Concept as Applied in Medicinal Chemistry to 98 
Mitigate the Risk of Idiosyncratic Drug Toxicity: A Perspective 99 
Based on the Critical Examination of Trends in the Top 200 100 
Drugs Marketed in the United States. Chem. Res. Toxicol. 2011, 101 
24 (9), 1345–1410. https://doi.org/10.1021/tx200168d. 102 

(119)  Yu, K.; Geng, X.; Chen, M.; Zhang, J.; Wang, B.; Ilic, K.; Tong, 103 
W. High Daily Dose and Being a Substrate of Cytochrome P450 104 
Enzymes Are Two Important Predictors of Drug-Induced Liver 105 
Injury. Drug Metab. Dispos. 2014, 42 (4), 744–750. 106 
https://doi.org/10.1124/dmd.113.056267. 107 

(120)  Leeson, P. D.; St-Gallay, S. A.; Wenlock, M. C. Impact of Ion 108 
Class and Time on Oral Drug Molecular Properties. 109 
Medchemcomm 2011, 2 (2), 91–105. 110 
https://doi.org/10.1039/c0md00157k. 111 

(121)  García-Cortés, M.; Lucena, M. I.; Pachkoria, K.; Borraz, Y.; 112 
Hidalgo, R.; Andrade, R. J. Evaluation of Naranjo Adverse 113 
Drug Reactions Probability Scale in Causality Assessment of 114 
Drug-Induced Liver Injury. Aliment. Pharmacol. Ther. 2008, 27 115 
(9), 780–789. https://doi.org/10.1111/j.1365-116 



29 
 

2036.2008.03655.x. 1 
(122)  Björnsson, E. S.; Hoofnagle, J. H. Categorization of Drugs 2 

Implicated in Causing Liver Injury: Critical Assessment Based 3 
on Published Case Reports. Hepatology 2016, 63 (2), 590–603. 4 
https://doi.org/10.1002/hep.28323. 5 

(123)  Teschke, R.; Eickhoff, A.; Frenzel, C.; Wolff, A.; J., S. Drug 6 
Induced Liver Injury: Accuracy of Diagnosis in Published 7 
Reports. Ann. Hepatol. 2014, 13 (2), 248–255. 8 

(124)  Yap, C. W. PaDEL-Descriptor: An Open Source Software to 9 
Calculate Molecular Descriptors and Fingerprints. J. Comput. 10 
Chem. 2011. 11 

(125)  Adamson, G. W.; Lynch, M. F.; Town, W. G. Analysis of 12 
Structural Characteristics of Chemical Compounds in a Large 13 
Computer-Based File. Part II. Atom-Centred Fragments. J. 14 
Chem. Soc. C Org. 1971, No. 3702, 3702. 15 
https://doi.org/10.1039/j39710003702. 16 

(126)  Mauri, A.; Consonni, V.; Pavan, M.; Todeschini, R. Dragon 17 
Software: An Easy Approach to Molecular Descriptor 18 
Calculations. Match 2006, 56 (2), 237–248. 19 

(127)  Tetko, I. V; Sushko, I.; Pandey, A. K.; Zhu, H.; Tropsha, A.; 20 
Papa, E.; Todeschini, R.; Fourches, D.; Varnek, A. Critical 21 
Assessment of QSAR Models of Environmental Toxicity 22 
Against. Osiris 2008, 1733–1746. 23 

(128)  Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, 24 
A.; Banco, K.; Mak, C.; Neveu, V.; et al. DrugBank 3.0: A 25 
Comprehensive Resource for “omics” Research on Drugs. 26 
Nucleic Acids Res. 2011, 39 (Database issue), D1035-41. 27 
https://doi.org/10.1093/nar/gkq1126. 28 

(129)  Jain, S.; Ecker, G. F. In Silico Approaches to Predict Drug-29 
Transporter Interaction Profiles: Data Mining, Model 30 
Generation, and Link to Cholestasis. In Experimental 31 
Cholestasis Research; Vinken, M., Ed.; Humana Press: New 32 
York, 2019; pp 383–396. https://doi.org/10.1007/978-1-4939-33 
9420-5_26. 34 

(130)  Welch, M. A.; Kock, K.; Urban, T. J.; Brouwer, K. L. R.; 35 
Swaan, P. W. Toward Predicting Drug-Induced Liver Injury: 36 
Parallel Computational Approaches to Identify Multidrug 37 
Resistance Protein 4 and Bile Salt Export Pump Inhibitors. 38 
Drug Metab. Dispos. 2015, 43 (5), 725–734. 39 
https://doi.org/10.1124/dmd.114.062539. 40 

(131)  Montanari, F.; Pinto, M.; Khunweeraphong, N.; Wlcek, K.; 41 
Sohail, M. I.; Noeske, T.; Boyer, S.; Chiba, P.; Stieger, B.; 42 
Kuchler, K.; et al. Flagging Drugs That Inhibit the Bile Salt 43 
Export Pump. Mol. Pharm. 2016, 13 (1), 163–171. 44 
https://doi.org/10.1021/acs.molpharmaceut.5b00594. 45 

(132)  Montanari, F.; Zdrazil, B.; Digles, D.; Ecker, G. F. Selectivity 46 
Profiling of BCRP versus P-Gp Inhibition: From Automated 47 
Collection of Polypharmacology Data to Multi-Label Learning. 48 
J. Cheminform. 2016, 8 (1), 1–13. 49 
https://doi.org/10.1186/s13321-016-0121-y. 50 

(133)  Dawson, S.; Stahl, S.; Paul, N.; Barber, J.; Kenna, J. G. In Vitro 51 
Inhibition of the Bile Salt Export Pump Correlates with Risk of 52 
Cholestatic Drug-Induced Liver Injury in Humans. Drug 53 
Metab. Dispos. 2012, 40 (1), 130–138. 54 
https://doi.org/10.1124/dmd.111.040758. 55 

(134)  Xi, L.; Yao, J.; Wei, Y.; Wu, X.; Yao, X.; Liu, H.; Li, S. The in 56 
Silico Identification of Human Bile Salt Export Pump 57 
(ABCB11) Inhibitors Associated with Cholestatic Drug-58 

Induced Liver Injury. Mol. Biosyst. 2017, 13 (2), 417–424. 59 
https://doi.org/10.1039/c6mb00744a. 60 

(135)  Warner, D. J.; Chen, H.; Cantin, L.-D.; Kenna, J. G.; Stahl, S.; 61 
Walker, C. L.; Noeske, T. Mitigating the Inhibition of Human 62 
Bile Salt Export Pump by Drugs: Opportunities Provided by 63 
Physicochemical Property Modulation, In Silico Modeling, and 64 
Structural Modification. Drug Metab. Dispos. 2012, 40 (12), 65 
2332–2341. https://doi.org/10.1124/dmd.112.047068. 66 

(136)  Pauli-Magnus, C.; Meier, P. J. Hepatocellular Transporters and 67 
Cholestasis. J. Clin. Gastroenterol. 2005, 39 (4 SUPPL.), 103–68 
110. 69 

(137)  Gadaleta, D.; Manganelli, S.; Roncaglioni, A.; Toma, C.; 70 
Benfenati, E.; Mombelli, E. QSAR Modeling of ToxCast 71 
Assays Relevant to the Molecular Initiating Events of AOPs 72 
Leading to Hepatic Steatosis. J. Chem. Inf. Model. 2018, 58 (8), 73 
1501–1517. https://doi.org/10.1021/acs.jcim.8b00297. 74 

(138)  Mellor, C. L.; Marchese Robinson, R. L.; Benigni, R.; Ebbrell, 75 
D.; Enoch, S. J.; Firman, J. W.; Madden, J. C.; Pawar, G.; Yang, 76 
C.; Cronin, M. T. D. Molecular Fingerprint-Derived Similarity 77 
Measures for Toxicological Read-across: Recommendations for 78 
Optimal Use. Regul. Toxicol. Pharmacol. 2019, 101 (October 79 
2018), 121–134. https://doi.org/10.1016/j.yrtph.2018.11.002. 80 

(139)  Liu, Y. Incorporation of Absorption and Metabolism into Liver 81 
Toxicity Prediction for Phytochemicals: A Tiered in Silico 82 
QSAR Approach. Food Chem. Toxicol. 2018, 118 (April), 409–83 
415. https://doi.org/10.1016/j.fct.2018.05.039. 84 

(140)  Peng, Y.; Wu, Z.; Yang, H.; Cai, Y.; Liu, G.; Li, W.; Tang, Y. 85 
Insights into Mechanisms and Severity of Drug-Induced Liver 86 
Injury via Computational Systems Toxicology Approach. 87 
Toxicol. Lett. 2019, 312 (April), 22–33. 88 
https://doi.org/10.1016/j.toxlet.2019.05.005. 89 

(141)  Su, R.; Wu, H.; Xu, B.; Liu, X.; Wei, L. Developing a Multi-90 
Dose Computational Model for Drug-Induced Hepatotoxicity 91 
Prediction Based on Toxicogenomics Data. IEEE/ACM Trans. 92 
Comput. Biol. Bioinforma. 2018, 5963 (c). 93 
https://doi.org/10.1109/TCBB.2018.2858756. 94 

(142)  Wu, Y.; Wang, G. Machine Learning Based Toxicity 95 
Prediction: From Chemical Structural Description to 96 
Transcriptome Analysis. Int. J. Mol. Sci. 2018, 19 (8), 2358. 97 
https://doi.org/10.3390/ijms19082358. 98 

(143)  Battista, C.; Howell, B. A.; Siler, S. Q.; Watkins, P. B. An 99 
Introduction to DILIsym® Software, a Mechanistic 100 
Mathematical Representation of Drug-Induced Liver Injury; 101 
2018; pp 101–121. https://doi.org/10.1007/978-1-4939-7677-102 
5_6. 103 

(144)  Cherkasov, A.; Muratov, E. N.; Fourches, D.; Varnek, A.; 104 
Baskin, I. I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y. 105 
C.; Todeschini, R.; et al. QSAR Modeling: Where Have You 106 
Been? Where Are You Going To? J. Med. Chem. 2014, 57 (12), 107 
4977–5010. https://doi.org/10.1021/jm4004285. 108 

(145)  Wang, D. Infer the in Vivo Point of Departure with ToxCast in 109 
Vitro Assay Data Using a Robust Learning Approach. Arch. 110 
Toxicol. 2018. 111 

(146)  Olson, H.; Betton, G.; Robinson, D.; Thomas, K.; Monro, A.; 112 
Kolaja, G.; Lilly, P.; Sanders, J.; Sipes, G.; Bracken, W.; et al. 113 
Concordance of the Toxicity of Pharmaceuticals in Humans and 114 
in Animals. Regul. Toxicol. Pharmacol. 2000, 32 (1), 56–67. 115 
https://doi.org/10.1006/rtph.2000.1399. 116 



30 
 

 1 
 2 


