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Abstract 
 

Background: Regular participation in physical activity (PA) has been associated with the 

primary prevention of 25 chronic medical conditions. University is considered as a major 

period of transition as it is associated with full independence from parents for the first time. 

The prevalence of inactivity in university students is reported to be as high as 60%, 

though few studies have focussed on university students or used device-based methods 

to assess physical activity. Previously, researchers in the discipline have used device 

specific, proprietary, dimensionless units called counts to process and report 

accelerometer data. Researchers can now process raw acceleration signals rather than 

rely on proprietary counts. This is advantageous as these transparent methods improve 

comparability across different accelerometers and studies. Currently there is a lack of raw 

accelerometer thresholds for use in university students. Aim: The primary aim of this 

study was to calculate and cross-validate accelerometer thresholds to classify PA and SB 

in university students. Methods: Thirty-five university students enrolled during the 

2018/2019 academic year at Liverpool John Moores University with a mean age of 21.4 

years (n=21 females) completed a circuit of 12 activities in laboratory conditions. Each 

participant wore 3 ActiGraph GT9X accelerometers (both wrists and hip). Thresholds were 

generated using Receiver Operating Characteristic (ROC) curve analysis in a calibration 

group (n= 21) using indirect calorimetry as the criterion reference. Sensitivity, specificity, 

percentage agreement, mean absolute percent error (MAPE), and Cohens’ Kappa 

coefficients were investigated. These thresholds were then fine-turned using equivalency 

analysis. These resultant thresholds were then cross-validated in an independent sample 

(12 participants, n=7 females). Once again, sensitivity, specificity, MAPE, percentage 

agreement and Cohens’ Kappa coefficients were investigated. Results: The final SB 

thresholds range from <8 (hip) to <40 mg (dominant) (sensitivity: 0.76 (non-dominant) to 

0.84 (hip), specificity: 0.81 (hip) to 0.92 (non-dominant), MAPE: 9.5 (dominant) to 20.7 

(hip), percentage agreement: 82.2 (hip) to 87.2 (dominant), Cohens’ Kappa coefficients: 

0.61 (hip) to 0.70 (dominant)). LPA ≥8 to ≥40 mg (sensitivity: 0.25 (hip) to 0.39 (dominant), 
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specificity: 0.82 (dominant) to 0.88 (hip), MAPE: 9.8 (dominant) to 22.7 (hip), percentage 

agreement: 71.6 (non-dominant) to 72.8 (hip), Cohens’ Kappa coefficients: 0.15 (hip) to 

0.21 (non-dominant and dominant)). MPA ≥50 to ≥110 mg (sensitivity: 0.45 (dominant) to 

0.68 (hip), specificity: 0.76 (non-dominant) to 0.83 (hip), MAPE: 6.8 (hip) to 12.7 (non-

dominant), percentage agreement: 69.6 (non-dominant) to 78.8 (hip), Cohens’ Kappa 

coefficients: 0.24 (dominant) to 0.49 (hip)). VPA ≥225 to ≥315 mg (sensitivity: 0.64 (hip) to 

0.72 (dominant), specificity: 0.92 (dominant) to 0.95 (hip), MAPE: 11.3 (hip) to 12.1 (non-

dominant), percentage agreement: 88.5 (dominant) to 90.1 (hip), Cohens’ Kappa 

coefficients: 0.60 non-dominant and dominant) to 0.62 (hip)). MVPA ≥50 to ≥110 mg 

(sensitivity: 0.74 (dominant) to 0.84 (hip), specificity: 0.74 (non-dominant) to 0.85 (hip), 

MAPE: 8.8 (hip) to 13.6 (non-dominant), percentage agreement: 75.0 (dominant) to 84.6 

(hip), Cohens’ Kappa coefficients: 0.50 (non-dominant) to 0.69 (hip)). In comparison to the 

criterion reference, for the non-dominant wrist, the SB threshold provided equivalent 

estimates at ±20%. For the hip placement, MVPA estimates were equivalent at ±15% and 

MPA was equivalent at ±20%. For the dominant wrist placement, SB and MPA were 

equivalent at ±15%. LPA and MVPA estimates were equivalent at ±20%. VPA estimates 

were not statistically equivalent in comparison to the criterion for any placement. 

Conclusion: The thresholds for SB, LPA, MPA and MVPA showed acceptable levels of 

agreement between the accelerometer and criterion reference in regards to specificity, 

MAPE and percentage agreement. VPA was the only threshold to show no equivalency 

between accelerometer and criterion reference (Metamax) on any placement site. The hip 

placement generally provided better agreement between the criterion reference and 

accelerometer and therefore could be considered the optimum placement to provide 

accurate estimates of SB and PA levels of university students. The thresholds generated 

in this study can be used to help researchers estimate the habitual activity levels of 

university students. Future research should aim to validate these thresholds in a free-

living or simulated free-living situations to examine their performance in an ecologically 

valid setting.  
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Chapter 1: Introduction 
 

This chapter provides a brief introduction to the programme of research. A more 

comprehensive overview of the literature and topic is provided in Chapter 2: Literature 

Review.  

 

Definitions 

For the purposes of this thesis, physical activity (PA) is defined as “any bodily movement 

produced by contraction of skeletal muscle that substantially increases energy 

expenditure” (Howley, 2001, p.364). Sedentary behaviour (SB) is defined as “any waking 

behaviour characterised by an energy expenditure <1.5 MET while in a seated, lying or 

reclined position” (Tremblay et al., 2017, p.2). 

 

SB, PA and health outcomes 

Physical inactivity has been identified as the fourth leading risk factor for global mortality 

(Kohl et al., 2012; Newtonraj et al., 2017). It is associated with many chronic diseases, 

non-communicable diseases and premature mortality (Wilmot et al., 2012; Alves et al., 

2016; Peterson et al., 2018). These non-communicable diseases include diabetes, obesity 

and several types of cancers (Alves et al., 2016). However, regular participation in PA has 

been associated with the primary prevention of 25 chronic medical conditions (Rhodes et 

al., 2017). Sedentary behaviour is associated with cardiovascular disease and cancer 

mortality, and these risks are independent of PA (Ekelund et al., 2019a). Physical 

inactivity reportedly costs $53.8 billion worldwide, of which the UK costs are approximately 

£900 million (Ding et al., 2016). Therefore, physical inactivity and sedentary behaviour are 

key public health concerns in contemporary society.  
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University and PA levels 

University is considered a major period of transition within the life course as it is 

associated with moving from the parental home to full residential independence (Rouse 

and Biddle, 2010; Deliens et al., 2015). The number of individuals enrolled in higher 

education during the 2017/18 academic year in the UK was 2.3 million (HESA, 2019). PA 

levels decline in adults aged between 18-24 years old and this occurs at the same time as 

many young people attend higher educational institutions (Gibson et al., 2016). There is a 

lack of consensus in the literature with regards to how active/inactive university students 

are and how much time they spend sedentary (Clemente et al., 2016; Calestine et al., 

2017). This could be down to the differing data collection methods (self-report or device-

based) used within this population. Similar to within the general adult population, much of 

the previous research conducted with university students used self-report measures, 

which may result in individuals to over-estimating the amount of PA achieved (Gibson et 

al., 2016) due recall errors and social desirability bias (Sedgwick, 2014; Arias-Palencia et 

al., 2015; Ekelund et al., 2019b). The reported proportion of students meeting PA 

guidelines ranges from 0.5% (Clemente et al., 2016) to 80% (Rouse and Biddle, 2010) 

depending on the research study and methods employed, therefore there is a lack of 

consensus related to the activity levels of university students.  

 

PA and SB measurement methods 

There are several ways in which PA and SB can be measured or estimated. Each PA and 

SB measure varies in simplicity, precision and information gathered. PA has often been 

estimated using self-report methods such as questionnaires and activity logs (e.g 

International Physical Activity Questionnaire and Global Physical Activity Questionnaire 

(Chastin, Culhane and Dall, 2014; Shim, Oh and Kim, 2014). Device-based PA 

assessment tools include accelerometers, pedometers and heart rate monitors, which do 

not require participants to self-report their activity behaviours and therefore are considered 
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to be less open to social desirability bias (Sedgwick, 2014; Arias-Palencia et al., 2015; 

Ekelund et al., 2019b). Accelerometers are small, device-based methods to collect PA 

data that are used in both free-living and laboratory conditions (de Almeida Mendes et al., 

2018). ActiGraph accelerometers are commercially available and are the most frequently 

used. ActiGraph accelerometers account for approximately 50% of studies published to 

date (Migueles et al., 2019a). ActiGraph acelerometers (various models) has shown high 

intrainstrument and interinstrument reliability (Montoye et al., 2016). Accelerometers can 

be attached to a variety of bodily locations, including the wrist, hip, thigh, ankle and chest 

(Aadland and Anderssen, 2012; Kamada et al., 2016). Some researchers have advocated 

the use of the wrist placement in recent years due to convenience for participants and 

comfort and improvements in wear compliance (Tudor-Locke et al., 2015). It has however, 

been reported that wrist worn accelerometers may over-estimate overall energy 

expenditure when compared to the hip or waist due to arm movements which do not 

involve whole body movement (Ellis et al., 2014). Despite the disadvantages of 

accelerometers being placed on the wrist, this placement has become more popular due 

to reported superior compliance (Ellis et al., 2014; Wolpern et al., 2019). 

 

Raw data analysis 

Previously, researchers used only proprietary “activity counts” to process the acceleration 

signals collected from accelerometers. Activity counts are device specific, proprietary, 

dimensionless units, which compress the acceleration signals into units over a user 

specified time period, known as an  epoch (Innerd, Harrison and Coulson, 2018; Sanders 

et al., 2019). Due to device storage capacities, lack of user-friendly software and lack of 

computer processing abilities, raw acceleration signal analysis was not possible (Troiano 

et al., 2014). Advances in accelerometer technology, computer processing and the 

availability of open-source software, it is now possible to access and process the raw 

acceleration signals from three of the most commonly used accelerometers (GENEActiv, 

Axivity and ActiGraph GT3X+, GT9X). This means that once the raw acceleration data are 
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collected, raw data analysis and processing is subject to researcher-driven data decisions, 

rather than proprietary methods (Fairclough et al., 2016). With greater transparency of 

processing methods between studies, it has potential for comparability across different 

studies and devices. As more researchers use raw data processing and analysis, there is 

an increased need for thresholds (at the wrist and hip) using this processing and analysis 

technique (Fairclough et al., 2016). These thresholds can be developed using calibration 

studies, where participants complete daily activities, specific to their population.  

This chapter has provided a brief introduction to the programme of research. The next 

chapter (2: Literature review) will provide a concise overview of the literature and topic. It 

also outlines the aims and objectives of the research programme. 
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Chapter 2: Literature Review 
 

This chapter provides a concise overview of the literature and topic. It also outlines the 

aims and objectives of the research programme.  

Physical Activity and Sedentary Behaviour 
 

Physical activity (PA) is defined as “any bodily movement produced by contraction of 

skeletal muscle that substantially increases energy expenditure” (Howley, 2001, p.364). 

PA is divided into four intensity categories based on Metabolic Equivalent of Task (METs) 

thresholds: light intensity PA (1.5-2.9 METs, LPA), moderate intensity PA (3.0–5.9 METs, 

MPA), vigorous intensity PA (≥6 METs, VPA) and moderate to vigorous intensity PA (≥3 

METs, MVPA) (de Almeida Mendes et al., 2018). Sedentary behaviour (SB) is defined as 

“any waking behaviour characterised by an energy expenditure <1.5 MET while in a 

seated, lying or reclined position” (Tremblay et al., 2017, p.2). Previously, SB has been 

confused and used interchangeably with the term ‘physical inactivity’ which describes 

individuals who do not meet government PA guidelines. To help with terminology, 

individuals who do not meet PA guidelines are referred to as “inactive” rather than 

sedentary. An individual can be both highly sedentary and considered active because they 

meet the PA guidelines. A new term has been developed to describe this: “active coach 

potatoes” (Lepp and Barkley, 2019, p.2).  

 

PA Guidelines 

 

In 2019, revised PA guidelines were released (CMO, 2019). It is now recommended 

adults should be physically active every day to promote good mental and physical health 

and any PA is better than none. Adults should do activities to develop or maintain strength 

in the major muscle groups; these could include heavy gardening, carrying heavy 

shopping, or resistance based exercises. Muscle strengthening activities should be done 

at least two days a week, but any strengthening activity is better than none. Each week, 
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adults should accumulate at least 150 minutes (2 1/2 hours) of MPA (such as brisk 

walking or cycling); or 75 minutes of VPA (such as running); or even shorter durations of 

very VPA (such as sprinting or stair climbing); or a combination of moderate, vigorous and 

very vigorous intensity activities. Adults should aim to minimise the amount of time spent 

being sedentary, and when physically possible should break up long periods of inactivity 

with a minimum of LPA (CMO, 2019). These guidelines are based on the available 

evidence that documents the associations between PA, SB and health outcomes.  

 

PA, SB and Economic burden 
 

Physical inactivity is positively associated with many chronic conditions but also have 

substantial economic burden (Ekelund et al., 2019a). Physical inactivity reportedly costs 

$53.8 billion worldwide, of which the UK costs are approximately £900 million (Ding et al., 

2016). However, this figure represents the direct costs of physical inactivity; the indirect 

costs of physical inactivity could make this figure considerably higher. In the UK, £455 

million (0.3%) of health care costs are related to the economic burden of physical inactivity 

(Ding et al., 2016). This has decreased since 2006/07 where the estimated cost of PA was 

£0.9 billion (Scarborough et al., 2011). It was reported that 11.6% of all-cause mortality 

deaths are related to SB and direct costs to the NHS were between £0.7-0.8 billion in 

2016/17 (Heron et al., 2019). Getting individuals more active and less sedentary will 

decrease this economic burden on health services such as the NHS. This figure will only 

increase if individuals continue to live a highly sedentary lifestyle and do not become more 

active. 

 

PA, SB and physical health outcomes 

 

PA and SB are associated with health outcomes, which can affect an individual’s overall 

health. It should be noted that PA is negatively associated with disease and premature 
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mortality, whereas SB is positively associated with these outcomes (Nicolson, Hayes and 

Darker, 2019). Physical inactivity has been identified as the fourth leading risk factor for 

global mortality (Kohl et al., 2012; Newtonraj et al., 2017). Physical inactivity is associated 

with many chronic diseases, non-communicable diseases and premature mortality 

(Wilmot et al., 2012; Alves et al., 2016; Peterson et al., 2018). These non-communicable 

diseases include diabetes, obesity and several types of cancers (Alves et al., 2016). 

Physical inactivity causes more than 5 million deaths per year and 9% of these are 

categorised as premature deaths (Ding et al., 2016). Physical inactivity is currently 

responsible for as many deaths as smoking and 6% of the total deaths worldwide (Alves 

et al., 2016). However, regular participation in PA has been associated with the primary 

prevention of 25 chronic medical conditions (Rhodes et al., 2017). It has been observed 

that those who are active (met the government guidelines) have a 31% lower risk of all-

cause mortality compared to those who do not meet the guidelines (Rhodes et al., 2017). 

Individuals who walk for three or more hours per week, at a moderate pace, reduce the 

risk of a coronary event by 35% compare to those individuals who do not. However, 

individuals who become active later in life still receive health benefits of PA and have a 

lower risk of cardiovascular events (Alves et al., 2016). 

 

SB and mortality have a positive dose-response relationship, meaning the more time 

spent sedentary (engaging in activities such as watching TV and sitting), increases the 

risk of mortality (Ekelund et al., 2019a). It should also be noted that SB and its relationship 

to all-cause mortality is independent of PA, as it has been shown that excessive amounts 

of TV viewing are related to all-cause mortality even when individuals have a high level of 

PA (Alves et al., 2016). It is reported that 30% of adults in the UK are sedentary for at 

least 6 hours a day and this is associated with an increased risk of all-cause mortality and 

cardiovascular mortality (Heron et al., 2019). In a recent study by Ekelund et al. (2019a), 

the risk of cardiovascular disease was 32% higher for those individuals who were 

sedentary for longer than 8 hours a day (Ekelund et al., 2019a). When investigating TV 
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viewing time as a sub-category of SB, cardiovascular disease risk was higher for those 

who watched TV for over 5 hours a day (Ekelund et al., 2019a). However, these risks 

were eliminated in individuals who were classified as the most active (>35.5MET-

hour/week) (Ekelund et al., 2019a).  

 

The dose-response relationship between LPA and health outcomes is unclear mainly 

because many studies and self-report tools do not report LPA (Ekelund et al., 2019b). 

However, with the shift towards device-based measures in PA research (e.g. 

accelerometers) this relationship can be investigated. Ekelund et al. (2019b) conducted a 

meta-analysis that investigated dose-response associations between accelerometry 

measured PA, sedentary time and all-cause mortality. The meta-analysis was categorised 

into exposure variables, with the first quarter as reference (the least active individuals). 

The analysis found that having a high sedentary lifestyle (7.5 hours is the reference value; 

most sedentary) combined with high MVPA time (4th quarter (24 minutes a day); most 

active) can benefit health (0.52 min/day; when sedentary time is adjusted for). The largest 

observed mortality risk reduction occurred in those individuals who accumulated 375 

minutes a day of LPA (when investigating LPA only; with no other variables controlled for). 

Individuals who spent ≥9.5 hours sedentary time exhibited a significantly higher risk of 

death. This study demonstrated the protective effect of PA and the detrimental effect of 

SB in an adult population when measured with a device.  

 

University Students 

 

University is a transitional stage for individuals (Deliens et al., 2015) and the amount of 

students enrolled in higher education during the 2017/18 academic year in the UK was 2.3 

million (HESA, 2019). In England, 1.2 million individuals were enrolled for the start of their 

degree on a full-time mode of study with 56% of these being female and 79% of the 

overall university population in England being ≤20 years old (HESA, 2019). University is 



18 
 

considered a major period of transition as it is associated with moving from the parental 

home to full residential independence (Rouse and Biddle, 2010). In 2016, almost half a 

million individuals moved away from home to attend their first year of university, with 

55.8% moving up to 55 miles away from the family home (Donnelly and Gamsu, 2018). 

PA levels decline in adults aged between 18-24 years old and this occurs at the same 

time as many young people attend higher educational institutions (Gibson et al., 2016). 

However, those who graduate from university are more active (meeting the guidelines) 

than those with a high school education (University: men: 54.6% and women: 53.3% 

versus High school: men: 37.2% and women: 37.1%). However, the reason PA is adhered 

better in university graduates is unclear (Towne et al., 2017). Higher education is a period 

characterised by change, uncertainty and adjustment, which can have a negative impact 

on health and well-being (Gibson et al., 2016). The term “unhealthy behaviours” can refer 

to the following; smoking, drug use, alcohol consumption, sedentary lifestyles and 

malnutrition (Lazzeri et al., 2014; Farhud, 2015). These unhealthy behaviours such as 

unhealthy diet and reduced PA levels/increased sedentary lifestyles could be due to the 

progression from controlled environments (“family home” or “school”) to more autonomous 

and self-motivated university environments (Gibson et al., 2016). University students are 

at a stage where they are more responsible and autonomous in the decisions they make 

compared to during childhood and adolescence (Maselli et al., 2018). As such, it is 

important to understand why behaviours change in this sub-group as it represents a large 

proportion of young adults (Rouse and Biddle, 2010) 

 

SB and PA in university students 

 

There is a lack of consensus in the literature with regards to how active/inactive university 

students are and how much time they spend sedentary. However, this could be due to the 

varied data collection methods used to assess PA and SB. Similar to within the general 

adult population, much of the previous research conducted with university students has 
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used self-report measures, which may result in individuals over-estimating or 

underestimating the amount of PA and SB engaged in (Gibson et al., 2016). Self-report 

measures are prone to recall errors and social desirability bias (Sedgwick, 2014; Arias-

Palencia et al., 2015; Ekelund et al., 2019a) which influence the accuracy of the reported 

PA or SB levels. There are a few studies which have used device-based methods to 

examine PA and SB levels within a university student population. One of these was 

conducted by Arigo, Pasko and Mogle (2019) who reported that 40% of American 

students met the guidelines (the guidelines were a minimum of 5 x 30 mins/day of MPA or 

3 x 20 mins/day of VPA or a combination of MPA and VPA) (ACSM, 2013). Males were 

more active than females, with 42% of males reaching the MVPA guidelines compared to 

23% of females. On average individuals spent 26.4 minutes/day engaged in MVPA. 

Similarly to what is reported in child and other adult populations, females were reported to 

have a lower PA levels than their male counterparts (Fagaras, Radu and Vanvu, 2015; 

Arigo, Pasko and Mogle, 2019). The Arigo, Pasko and Mogle (2019) study is in contrast to 

the results of Clemente et al. (2016) who reported that only 5.4% of Portuguese students 

met the MVPA or VPA guidelines (measured using an accelerometer). However, as the 

guidelines at the time stipulated that PA should be completed in bouts of 10 minutes or 

more to benefit health, when this was taken into account an even smaller percentage of 

students (0.5%) met these guidelines. Rouse and Biddle (2010) reported a considerably 

higher figure (80%) meeting the PA guidelines. However, the data were collected using a 

self-report tool (Ecological Momentary Assessment Tool; a diary requesting what 

behaviour was occurring every 15 minutes). Another study that used a self-report 

measure (IPAQ) reported similar results as Rouse and Biddle (2010) with 76% of English 

students meeting the guidelines (Calestine et al., 2017). This study also reported 

sedentary time, which was estimated to be 3 hours a day, which is in contrast to a study 

conducted by Clemente et al. (2016), who used device-based methods and reported that 

university students spent 12 hours per weekday sedentary. Other self-reported evidence, 

for example the study conducted by Calestine et al. (2017), reported that students were 

sedentary for only 3 hours/day. Clemente et al. (2016) also investigated the difference 
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between weekend and weekday SB and PA and differences between genders in a 

population of university students (aged 18-23 years). Findings reported higher SB on the 

weekend in comparison to weekdays (770.87 mins/day vs 751.05 mins/day; investigating 

the overall population), with females also spending significantly more time sedentary (5%) 

than their male counterparts. MPA and VPA differed between genders, with males 

reporting higher PA levels in comparison to females (males spending 65 minutes 

compared to females with 51 minutes in MPA per weekday). Overall, 59% of men and 

35% of females met the guidelines, this figure did not control for bouts of ≥10 minutes. 

When previous studies take into account PA being conducted in bouts of ≥10 minutes, the 

adherence and amount of individuals reaching the guidelines drops dramatically. In 

general, it is difficult to interpret PA and SB levels within the student population due to the 

varied data collection methods used to measure PA and SB. It is also difficult to compare 

studies due to the different methods used. This is one reason standardisation of methods 

are needed.  

 

PA and SB assessment methods  

Measurement of both SB and PA is important for describing the prevalence of disease 

and evaluating the effectiveness of interventions. It is important also to describe the dose-

response relationship because it allows researchers to see how much SB and intensities 

of PA can benefit health and which diseases are associated with different movement 

behaviours (Husu, Vaha-Ypya and Vasankari, 2016). There are several ways in which PA 

and SB can be estimated. Each PA and SB measure varies in simplicity, precision and 

information gathered. PA has often been estimated using self-report methods such as 

questionnaires and activity logs. Self-report measures are cost effective and require low 

participant burden, however, this type of data collection has limitations (Shim, Oh and 

Kim, 2014). The limitations of self-report tools are these are subjective, leading to the 

possible underestimation of SB and overestimation of PA due to recall errors and social 

desirability bias (Sedgwick, 2014; Arias-Palencia et al., 2015; Ekelund et al., 2019b). Self-
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report PA measures, such as questionnaires, are highly prone to inaccuracy due to 

reliance on the ability of participants being able to recall what they have done (Freedson, 

Melanson and Sirard, 1998). This is especially apparent when recall periods are long, with 

previous studies in adults showing that individuals under-estimated sitting time by up to 4 

hours when questionnaires are compared to an accelerometer (Clark et al., 2015).  One 

specific type of subjective method (International Physical Activity Questionnaire; IPAQ) 

has been reported to under-estimate SB by between 2 to 3.5 hours. The IPAQ only has 

two questions relating to SB, which means it is difficult to capture the variability and total 

time of SB that occurs in different contexts (Ku et al. 2018). Questionnaires usually 

contain a set of specific close ended questions, which can impact the precision of the PA 

reported (Freedson, Melanson and Sirard, 1998). Daily activities may be harder to recall 

due to incidental activities being generally less structured and less memorable than 

structure PA. However, even though accelerometers overcome these limitations, 

accelerometers do not provide information on the context (e.g. leisure, occupation and 

transport) the PA is being completed in (Freedson, Melanson and Sirard, 1998; Romanzini 

et al., 2019). This may result in researchers combining both self-report and device-based 

methods to eliminate some of the limitations and provide the most representative set of 

PA data than either method can provide alone.  

Device-based PA assessment tools include accelerometers, pedometers and heart rate 

monitors. Using device-based devices can reduce human error (reporting the incorrect 

amount of PA or omitting completely) and issues associated with recall bias (Ainsworth et 

al., 2011). The research field has moved towards the use of accelerometers as they 

estimate time spent in PA and many components of PA behaviours (frequency, intensity 

and time) but there remains no gold standard accelerometer, which can capture type and 

context of PA (Pfister et al., 2017). The choice of monitor relies on researcher decisions 

such as cost, the specific component of PA of interest and target population (Ainsworth et 

al., 2011).  
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Accelerometers and compliance 

 

Accelerometers are small, device-based methods to collect PA data that are used in both 

free-living and laboratory conditions (de Almeida Mendes et al., 2018). As technology has 

advanced, so have accelerometers. Older models of accelerometers could only measure 

acceleration in a single plane of movement (McGarty, Penpraze and Melville, 2016). More 

recently, several models of accelerometers are able to measure accelerations on all three 

axis of movement: vertical (Y), horizontal right-left (X) and horizontal front back (Z) (de 

Almeida Mendes et al., 2018). ActiGraph accelerometers are the most frequently used of 

commercially available accelerometers and account for approximately 50% of studies 

published (Migueles et al., 2019a). ActiGraph acelerometers (various models) has shown 

high intrainstrument and interinstrument reliability (Montoye et al., 2016).  

Accelerometers can be attached to a variety of bodily locations, including the wrist, hip, 

thigh, ankle and chest (Aadland and Anderssen, 2012; Kamada et al., 2016). Historically, 

the hip placement was the most popular, however, there has now been a shift towards 

placement on the wrist. Wrist worn accelerometers are increasing in popularity to attempt 

to increase wear compliance for two main reasons: convenience for participants and 

comfort as they are small and unnoticeable compared to hip worn accelerometers (Tudor-

Locke et al., 2015; White et al., 2019). Issues such as compliance have been noted as a 

reason for the change and wrist placements have the ability to be worn 24 hours a day  

which provides an opportunity to examine 24hr movement profiles and assess sleep 

(Jungquist et al., 2015). The wrist placement site has become more popular especially as 

large population surveillance studies such as National Health and Nutrition Examination 

Survey (NHANES) demonstrated improved compliance to monitoring protocols (Matthews 

et al., 2012). However, compliance can vary depending on the age of participants 

(Matthews et al., 2012). Compliance has been an issue in accelerometer data collection 

for a few different reasons (e.g. refusal to wear an accelerometer for the required length of 

time or removal of devices). Having greater compliance is important as this allows the 

device to better capture habitual behaviours and provides the most reliable estimates of 
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PA levels (Lee, Macfarlane and Lam, 2013). Despite the advantages gained by increasing 

participant compliance, it has been reported that wrist worn accelerometers may over-

estimate overall energy expenditure when compared to the hip or waist due to additional 

arm movements that are not associated with ambulation or whole body movements (Ellis 

et al., 2014). Wrist worn accelerometers are also suggested to have limited ability to 

differentiate between postural states, which is important when considering SB assessment 

(Duncan et al., 2018). However, despite the disadvantages of wrist worn accelerometer 

placements; researchers are still using this placement site due to the superior compliance 

(Ellis et al., 2014; Wolpern et al., 2019), which will reduce the risk of misclassification and 

selection bias due to the exclusion of participants who do not wear the monitor for the 

required hours per day or days per week (Rowlands et al., 2018a).   

 

Activity Counts and Raw data analysis 

 

Previously, researchers used “activity counts” to analyse the data collected from 

accelerometers. Activity counts are device specific, proprietary, dimensionless units, 

which compress the acceleration signals into units over a user specified time period, 

known as an epoch (Innerd, Harrison and Coulson, 2018; Sanders et al., 2019). Activity 

counts provide an overview of movement, but a fundamental challenge is to determine 

how activity counts equate to more meaningful indicators, such as energy expenditure or 

time spent in MVPA (Welk, 2007). It is challenging to compare between and across 

different monitors when using activity counts due to the differences in how the 

acceleration data is collected, processed, filtered and scaled (Migueles et al., 2017). 

Previously, raw acceleration signal analysis was not possible due to device storage 

capacities, lack of user-friendly software and lack of computer processing abilities 

(Troiano et al., 2014). Now this is possible due to some accelerometers’ (e.g. GENEActiv 

and ActiGraph GT3X+ and GT9X) ability to capture raw acceleration signals and make 

these available for researchers to process. These accelerometers (e.g. GENEActiv and 

ActiGraph GT3X+ and GT9X) have been designed to be worn on both the wrist and hip 
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and can record raw accelerations up to 100Hz (Fairclough et al., 2016; Rowlands et al., 

2016). Saving and processing accelerometer signals for raw data processing removes the 

proprietary nature of activity counts and enables more transparency and the use of 

replicable methods (Rowlands et al., 2016). Once the data are collected, raw data 

analysis is subject to researcher-driven data decisions, rather than proprietary methods 

(Fairclough et al., 2016). There is an increase in comparability between studies as data 

processing methods can be the same. Raw data analysis adds a new layer of complexity 

to the evaluation of device-based research but has clear advantages with respect to data 

standardisation and harmonisation (Welk et al 2017). Raw acceleration signals can be 

analysed using open source packages and a range of methods exist (packages such as 

R) (Innerd, Harrison and Coulson, 2018). GGIR (Migueles et al., 2019b) is one software 

package that facilitates the processing and analysis of data from three most used 

commonly accelerometer sensors (ActiGraph, GENEActiv, Axivity). Data harmonisation 

would facilitate a change in the ability to compare prevalence or levels of activity/inactivity 

across populations, quantify dose-response associations between activity and health and 

identify the factors that impact on these associations (Rowlands et al., 2018b). The 

availability of efficient raw signal data analytic approaches will ultimately encourage 

researchers towards new models of accelerometer data analysis (Troiano et al., 2014).  

 

R software and GGIR 

 

R is free to download and GGIR is an open source R software package (Rowlands et al., 

2016; Migueles et al., 2019b). GGIR comes with core functionalities: load data, extract 

signal metrics and detection of non-wear time and detection of sleep periods. Part 1 in 

GGIR searches for the data and detects from the file which accelerometer has been used 

and then uses this to investigate the calibration error. In calibration studies, only part 1 is 

used (Migueles et al., 2019a). The signal processing includes automatic calibration, 

detection of sustained abnormally high values, detection of non-wear and calculation of 

the average magnitude of dynamic acceleration (Euclidean Norm Minus One, ENMO). 
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GGIR is suitable for a wide range of research applications and unlike other computer 

science software, can be operated without programming expertise. A positive of this is it 

allows researchers to adapt GGIR for their specific needs. GGIR also facilitates a 

reproducible analysis of raw data which is needed in the comparison of published studies 

(Migueles et al., 2019a). This transparency, in theory, enables comparisons between 

acceleration data, regardless of monitor brand (Hildebrand et al., 2014). Raw data 

analysis has clear advantages with respect to data standardisation and harmonisation 

(Welk et al 2017). Data harmonisation would facilitate a change in the ability to compare 

prevalence or levels of activity/inactivity across populations, quantify dose-response 

associations between activity and health and identify the factors that impact on these 

associations (Rowlands et al., 2018b). The availability of efficient raw signal data analytic 

approaches will also ultimately encourage researchers towards new models of 

accelerometer data analysis (Troiano et al., 2014). 

 

A range of outcome variables to describe the activity profile, MVPA and sleep can also be 

calculated (Rowlands et al., 2016). Autocalibration is an important step during signal 

processing as the ENMO statistic is vulnerable to calibration error due to the inherent 

assumption that gravity is measured as 1 g (van Hees et al., 2014; Rowlands et al., 2016). 

However, autocalibration can only occur in studies where the length of monitoring time is 

>24 hours (van Hees et al., 2014). Periods shorter than this may present slight calibration 

errors (Montoye et al. 2018), though one study protocol that was >24 hours used derived 

coefficient from free-living situations matched to the laboratory conditions, in cases were 

the laboratory data did not hold enough non-movement periods to facilitate direct auto-

calibration (Hildebrand et al., 2017).  

 

Determination of transparent, replicated steps to improve raw data comparability across 

different accelerometers are important because they offer the best potential for pooling 
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raw data from multiple studies, comparison across studies and developing highly accurate 

prediction models across different populations and a variety of accelerometer brands 

(Montoye et al., 2016). Pooling data from studies is more viable now than ever before 

because of the transparency raw data analysis has provided (Rowlands et al., 2016). 

Therefore, raw data signal processing provides substantial advantages over traditional 

activity counts-based methods.  

 

Calibration studies  

 

It is becoming increasingly important to ascertain precise and accurate PA measurement 

methods (e.g. accelerometers) to assess the impact of physical inactivity, SB and 

associated health outcomes. Calibration studies can help to achieve this (Bassett, 

Rowlands and Trost, 2012; Arvidsson, Fridolfsson and Borjesson, 2019). Calibration 

studies allow data to be scaled or adjusted to produce more accurate and usable 

estimates (Saint-Maurice et al., 2014). Such studies and the generated thresholds or 

cutpoints help researchers estimate more precisely the activity/inactivity levels of the 

population of interest. This in turn helps researchers understand the prevalence in each 

population and the associated health outcomes (Saint-Maurice et al., 2014).  

There are two types of calibration in reference to wearable activity monitors, namely unit 

and value. Unit calibration is performed to reduce inter-instrument variability and to ensure 

individual activity monitors are correctly measuring the direct signals (e.g. accelerations). 

Value calibration of wearable monitors refers to the process used to convert the direct 

signals into other established measurement units (Bassett, Rowlands and Trost, 2012). 

Value calibration is performed to ensure that a wearable monitor gives the intended 

values for outcome variables. This process involves collecting data on multiple individuals 

as they perform different activities and simultaneously collecting criterion data (Bassett, 

Rowlands and Trost, 2012). Accelerometer calibration is age- and population-specific 

because of maturation and between group differences such as cardiorespiratory fitness 
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and differences in movement behaviours (McGarty, Penpraze and Melville, 2016). 

Therefore, generalised thresholds applied to all populations introduce systematic 

measurement errors and reduce the validity of the results (McGarty, Penpraze and 

Melville, 2016). Population specific thresholds help to better quantify PA as the thresholds 

generated in this population are applied to individuals with similar characteristics and will 

have mirrored typical daily activities (Roscoe, James and Duncan, 2017).  

 

Calibration studies commonly occur in laboratory conditions due to the difficulty of using a 

criterion measure such as energy expenditure in the field (Rowlands and Eston, 2007; 

Hills, Mokhtar and Byrne, 2014). In early laboratory calibration studies, the participants 

would walk at progressively increasing speeds on a treadmill and this would be used to 

calculate accelerometer thresholds (Troiano et al., 2014). Studies that only used treadmill-

based activities were questioned due to the limited range of activities and the lack of 

lifestyle or population specific activities involved, thus not reflecting ‘real-life’ behaviours 

(Arvidsson et al., 2019). It has been reported in previous calibration studies that the 

protocols that use ambulatory movements only, produce considerably lower estimates of 

MVPA compared to calibration studies using a variety of daily activities and then how they 

performed in free-living situations (Welk et al., 2019). However, more recent calibration 

studies have addressed limitations of previous studies and it is now common practice that 

the activities should mirror daily tasks which the population of interest typically engages in 

(Matthew, 2005; Migueles et al., 2017). The activities should range from SB to VPA to 

develop thresholds which provide the optimum estimates of PA (Matthew, 2005; Bassett, 

Rowlands and Trost, 2012). It is also important to conduct cross-validation against an 

independent group to reduce bias and increase the validity of the results (McGarty, 

Penpraze and Melville, 2016). In laboratory calibration studies, indirect calorimetry is one 

of the most commonly used criterion measures in adults (de Almeida Mendes et al., 

2018). This method measures respiratory gas exchange (oxygen uptake and carbon 

dioxide production) to allow for the calculation of energy expenditure (Bassett, Rowlands 
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and Trost, 2012). There are a small number of calibration studies defining raw data 

thresholds in specific populations (Innerd, Harrison and Coulson (2018) (overweight and 

obese adults); Hildebrand et al. (2014) (children and adults); Rowlands et al. (2016) 

(adults)). These studies have started to help the research field by publishing thresholds 

that can be used and compared to other studies. However, no previous study has involved 

specifically young adults or the university students to develop thresholds, which shows a 

gap in the literature. As previously stated university students represent a large proportion 

of young adults, so this is an important group and there is a considerable need for these 

thresholds. 

 

Considering all the points discussed in this literature review surrounding the prevalence of 

inactivity in university students, the associations between SB and PA and health status 

outcomes, the development of raw data analysis and the lack of thresholds in a university 

student population. The aims and objectives of the study were as follows: 

 

Aim 

The primary aim of this study was to calculate and cross-validate accelerometer 

thresholds to classify PA and SB in university students.  

 

Objectives 

Objective 1. To design a calibration study to generate accelerometer and energy 

expenditure data across a range of activities, that simulated daily living in university 

students. 

Objective 2. To calculate and cross-validate accelerometer thresholds to classify 

university students’ SB and PA behaviours generated using a calibration circuit.  
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Chapter 3: Study Methods 
 

Participants: After gaining ethical approval from the University Research Ethics 

Committee (19/SPS/005), participants were invited to take part in the study via recruitment 

emails to course/module leader and posters put up in university social zones. A 

convenience sample of 35 (n= 21 female) undergraduate or postgraduate students 

enrolled at Liverpool John Moores University (LJMU) during the 2018/2019 academic 

year, studying any course at any academic level provided written informed to consent to 

take part. Participants were excluded if they were not aged between 18-25 years, and/or 

not enrolled at LJMU during 2018/2019 academic year, and/or not mobile at the time of 

data collection, and/or were not able to complete vigorous activities, and/or were not able 

to provide informed consent. The participants received a £10 voucher for their 

participation. 

Study design: Cross-sectional study design using a calibration circuit of standardised 

activities (table 1) conducted between February and May 2019.  

Calibration Circuit Protocol: The participants were instructed to refrain from eating, 

consuming caffeine or alcohol, smoking and exercise in the 2 hours prior to data 

collection. The laboratory based calibration circuit took approximately 2.5 hours to 

complete. Table 1 displays the activities included in the calibration circuit. The activities 

selected were informed by previous accelerometer calibration studies, the 2011 

Compendium of Physical Activities and the typical activities that the population of interest 

engages in (Ainsworth et al., 2011). Three SBs (quiet supine rest, seated watching TV 

and seated typing at a computer), three LPA (standing folding clothes, light walk and 

standing stacking items), three MPA (brisk walk, climbing stairs and cleaning) and three 

VPA (running, activity circuit and dribbling a basketball) activities were included, and were 

completed by all participants (table 1). Each activity lasted 5 minutes and was followed by 

a 5 minute rest period, with the exception of a 15 minute quiet supine rest which was 

completed at the start of each data collection session. Each participant completed the 
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remaining activities in a randomised order. The randomisation of activities occurred using 

a research grade randomisation tool (https://randomizer.org). The participants were given 

a demonstration of the next activity during the preceding rest period. The lead researcher 

recorded the time (hours, minutes and seconds) at the start and end of each activity or 

rest period to allow the synchronisation of the accelerometer, calorimetry and activity data. 

Apart from quiet supine rest, the first and last 30 seconds of each activity were discarded 

in case of transitional movements and the remaining 4 minutes was used for analysis 

(Hurter et al., 2018).  

For all treadmill activities (set at a 0% grade/incline; h/p/cosmos; Nussdorf, Germany) 

(light walk, brisk walk and run), the researcher recorded the start of the activity, once the 

participant had reached the intended speed. To account for individual differences in lower 

limb length the Froude Number (Fr) was calculated to standardise treadmill speeds 

between individuals. Fr is a dimensionless variable that allows the comparisons of motion 

between individuals with different gait (Minetti, 2001). By anchoring treadmill speed to Fr 

numbers the relative intensity of the activity was standardised between participants 

(Arvidsson et al., 2019). An Fr of 0.25 represents an individual’s optimal walking speed 

and 0.5 represents the transition from walk to run. After pilot testing (data not shown), the 

following Fr numbers were assigned to each treadmill activity: ‘light walk’ was anchored to 

Fr = 0.175, ‘brisk walk’ Fr = 0.3 and ‘run’ Fr = 0.65. To calculate the participants’ individual 

treadmill speed for each activity the formula: treadmill speed = (limb length * (Gravity 9.81 

* Fr)) was used.  

For consistency, during the climbing stairs activity the researcher walked up and down the 

stairs with each participant to ensure they kept in time with a metronome, which was set at 

80 bpm.  
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Table 1: Standardised activity protocol 

Activity  Description  

Sedentary 

15 minutes of quiet supine Rest Supine lying position on a hospital bed, asked to 
avoid bodily movements and talking 

Seated watching TV Sitting comfortably in a chair, watching TV on a 
computer screen  

Seated typing at a computer Sitting comfortably in a computer, typing a 
paragraph of text 

Light 

Standing stacking items  Standing, putting 6 cans of food varying in weight 
on a shelf and putting them on a desk and 
repeating 

Standing folding clothes Standing at a table, folding a pile of clothing (6 t-
shirts) 

Light walk  Walking on a treadmill at individually calculated 
speed 

Moderate 

Brisk Walk  Walking on a treadmill at individually calculated 
speed 

Climbing stairs Climbing stairs, following a metronome to 
consistently have all participants walk at the same 
speed 

Cleaning Sweeping up confetti with a broom 

Vigorous 

Run  Running on a treadmill at individually calculated 
speed 

Activity Circuit Following standardised video containing 5 minutes 
of continuous upright activities, each lasting 
approximately 30 seconds. 

Dribbling a Basketball Dribbling a basketball around cones.  

 

Outcome measures:  

Demographic questionnaire: Participants’ date of birth (then converted into age on day 

of data collection), gender, ethnicity, permanent home postcode, university home 

postcode and parents’ highest level of educational attainment were collected using a 

demographic questionnaire.  

Anthropometrics: Participants removed their shoes before anthropometric measures 

were taken. Stature and seated stature were assessed to the nearest 1 cm using a 

Stadiometer (model 213; SECA, Hamburg, Germany) and body mass was assessed to 

the nearest 0.1 kg (SECA scale 704; SECA, Hamburg, Germany) using standard methods 
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(Lohman et al. 1988). Each measurement was taken twice, and an average of both 

measurements was calculated.  Body Mass Index (BMI) was calculated via the formula: 

(Weight/(Stature X Stature)).  

Indirect Calorimetry: The Metamax (3B-R2; Cortex, Leipzig, Germany) was used to 

assess energy expenditure during the calibration protocol. The Metamax is a small, 

lightweight, portable indirect calorimeter, which measures the flow of air via a turbine 

connected to a facemask (7450 series silicone V2TM Oro-Nasal Mask, Hans Rudolph, 

Kanas, USA). Similar devices have been recommended for use in calibration studies 

(Welk et al., 2019). Prior to use, the Metamax was calibrated according to the 

manufacturer’s instructions. Participant characteristics (date of birth, gender, body mass 

and stature) and facemask size were inputted into the Metamax software prior to data 

collection. After all sessions were completed, breath-by-breath data were converted into 

time-stamped second-by-second data to allow synchronisation with accelerometer data. 

The Metabolic Equivalent of Tasks (MET) values were calculated for each of the activities. 

This was completed by removing the first and last 30 seconds, averaging the remaining 4 

minutes and finally dividing this by the participant’s measured resting metabolic rate. The 

resting metabolic rate was defined as the mean VO2 value observed during minutes 9-14 

of the quiet supine rest activity. This was used to classify the intensity of the activities for 

threshold generation. The MET thresholds for activity classification were as follows: SB 

(<1.5 METs), LPA (≥1.5-2.9 METs), MPA (≥3.0–5.9 METs), VPA (≥6 METs) and MVPA 

(≥3 METs) (Mendes et al. 2018). 

Accelerometers: All participants wore three ActiGraph GT9x accelerometers (ActiGraph 

Corp, Pensacola, FL, USA) throughout data collection: one on the dominant wrist 

(observed by the researcher when completing the consent form and verbally confirmed by 

the participants), one on the non-dominant wrist and one on the right hip. All 

accelerometers were attached by the researcher prior to the start of the calibration activity 

protocol. The wrist accelerometers were attached via two Link wristbands and the hip was 

placed in a Link belt pouch attached to the participant via an elastic belt. The monitors 
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were initialised to collect data using a sampling frequency of 100Hz. In the current study, 

the epoch length was set at 1 second. Monitors were initialised and downloaded using 

ActiLife (6.13.3; ActiGraph Corp, Pensacola, FL, USA). Once data collection was 

completed, all data was downloaded as .gt3x (raw) files and then converted into .csv files 

to facilitate raw data analysis. The files were then processed using the GGIR package 

(version 1.9-1) (Migueles et al., 2019b) in R (version 1.2.1335; Boston, USA; 

https://www.rstudio.com/). GGIR converted the raw accelerometer signals into an 

omnidirectional measure, which corrected for gravity referred to as Euclidean Norm Minus 

One (ENMO) (Migueles et al., 2019b). For the ENMO metric, negative values were 

rounded up to zero and due to the short data collect period auto-calibration was not 

completed (van Hees et al., 2013).  

Data analysis and threshold generation: ENMO thresholds were generated for SB 

through to VPA using data from 21 participants (calibration group, females n=12) and 12 

participants (females, n=7) were randomly assigned to a cross-validation group. Random 

allocation was achieved by selecting participant numbers “out of a hat”. These groups 

were proportionate to the total sample based on gender, with 63% of the sample allocated 

to the calibration group. 

Threshold generation and cross-validation followed a 3-step process for each placement 

location (non-dominant wrist, dominant wrist, hip). Step 1. Consistent with other studies, 

Receiver Operating Characteristic (ROC) curve analysis was completed using indirect 

calorimetry data as the criterion reference to generate a threshold, Area Under the Curve 

(AUC), sensitivity and specificity for all activity intensities (SB, LPA, MPA, VPA and 

MVPA) using the calibration group data. The novel approach reported in Crotti et al. 

(2019, in review) was also utilised in this study whereby two versions of the ROC curve 

analysis were completed. The pairs analysis is a new novel approach which has not be 

tested in many previous accelerometer studies. This helps better classify SB and PA 

behaviours due to the disproportionate amount of data, as this would influence the ROC 

curve analysis. The traditional approach is often considered arbitrary, unstandardized and 
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can reduce information by pooling findings together. Paired designs allow fair comparison 

between tests (Obuchowski and Bullen, 2018). The first approach used intensity pairs 

(e.g. when calculating a threshold for SB data were included for SB and LPA only, 

referred to as the pairs analysis) and the second approach used all the data from the 

calibration protocol across all intensities. Crotti et al. (2019, in review) reported the pairs 

analysis reduced bias associated with unequal distributions of PA behaviours and 

provided a better estimate of time spent in SB, MVPA and VPA in comparison to the ‘all 

data’ approach. The pairs used for analysis were as follows: SB – LPA, LPA – MPA, MPA 

– VPA.  

 

Figure 1: Illustrative ROC Curve figure 

The Youden Index was used to identify the optimal threshold (Ruopp et al., 2008). 

Agreement between the estimates generated by the thresholds and the criterion measure 

was examined at the individual and group levels using sensitivity, specificity, percentage 

agreement, mean absolute percent error (MAPE), Cohens’ Kappa coefficients and 

equivalency analysis. Cohens’ Kappa coefficients were interpreted  as follows: <0.0 no 

agreement, 0-0.2 slight agreement, 0.21-0.4 fair agreement, 0.41-0.6 moderate 

agreement, 0.61-0.8 substantial agreement and 0.81-1 almost perfect agreement (Landis 

and Koch, 1977). Equivalency analysis was used in this study to determine whether PA 

estimates from the monitor were equivalent to the estimates from the criterion measure on 
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average at the group level (Lee, Kim and Welk, 2014). Equivalence testing has been 

increasingly used in PA research (Kim and Welk, 2015; Boddy et al., 2018; Dixon et al., 

2018). A 95% equivalency test was completed to establish whether 90% CI of the PA 

estimates fell within the zone of equivalence, defined as ±10%, ±15% and ±20% of the 

mean for the criterion reference. This study used paired-data CI because the data from 

the accelerometer and criterion measure were simultaneously measured (Dixon et al., 

2018). 

Step 2. To improve the accuracy of the thresholds, the thresholds identified in Step 1 were 

increased or decreased by 2- mg to improve the performance of thresholds based on the 

balance between group and individual level equivalency. Firstly, thresholds 5 mg 

lower/higher than the threshold identified in Step 1 were examined. From this, equivalency 

analysis was repeated and thresholds were then further refined. Sensitivity, specificity, 

percentage agreement, MAPE, Cohens’ Kappa coefficients and group level equivalency 

were re-examined.  

Step 3. Cross-validation analysis was completed using the thresholds identified in Step 2, 

that were deemed the most appropriate for use based on the balance of individual and 

group level comparability observed. Cross-validation was completed with the 12 

participants not included in the main calibration analysis. Sensitivity, specificity, 

percentage agreement, MAPE, Cohens’ Kappa coefficients and group level equivalency 

were examined. Descriptive statistics and ROC curve analyses were completed using 

SPSS (SPSS windows version 26.0; IBM, Armonk, NY) and all other analyses were 

completed using Microsoft Excel (windows version 16; Microsoft Corporation, Washington, 

USA). 
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Chapter 4: Study Results 
 

Out of the thirty-five participants who took part in the calibration study, thirty-two 

participants had complete datasets and were included in all aspects of analysis. Three 

participants were removed for the following reasons: two participants were excluded 

where indirect calorimetry data was not captured (device or calibration error), and one due 

to missing accelerometer data files. The descriptive statistics for the thirty-two participants 

included in the final sample can be viewed in Table 2. The participants’ calculated Fr 

speeds for the treadmill activities (light walk, brisk walk and run) can be viewed in Table 3. 

The intensity classifications of the activities based on MET values, VO2 and ENMO for 

each placement location can be viewed in Table 4.  

 

Table 2: Means (±SD) or percentage anthropometrics and demographic characteristics 

included in analysis of participants 

Variables Mean (SD) 

Age (y) 21 (0.4) 
Right handed 87.5% 
Sex 60% female 
Stature (m) 1.7 (0.1) 
Body mass (kg) 66.2 (9.1) 
BMI (kg/m2) 22.8 (3.1) 

Degree type 
23% on a Bachelor of Science 
44% on a postgraduate course 

Year of course 
65% on the first year of their respective degrees 
22% on the second year of their respective degrees 
16% on the third year of their respective degrees 

 

Table 3: Means (±SD) and range of Froude speeds for each treadmill activity 

Activity Mean treadmill speed (km/h) 

Light walk 4.3 (0.2) km/h (ranging from 4.0-4.5 km/h) 

Brisk walk 5.6 (0.2) km/h (ranging from 5.1-6.0 km/h) 

Run 8.3 (0.3) km/h (ranging from 7.6-8.8 km/h).  
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Table 4: Means (±SD) Intensity classifications of the standardised activity protocol based 

on MET values, VO2 output and ENMO for each placement location 

Activity  MET 
Value  

VO2 (mL 
O2.kg-

1.min-1) 

Non-Dominant 
ENMO (mg) 

Hip ENMO 
(mg) 

Dominant 
ENMO (mg) 

Sedentary 

15 minutes of quiet 
supine rest 

1.0 (0.0) 4.2 (0.8) 
4.1 (5.4) 
 

1.4 
(2.7) 
 

5.1 (7.0) 

Seated watching TV 1.0 (0.0) 4.2 (1.0) 6.3 
(8.0) 
 

7.3 
(9.4) 
 

5.8 (6.5) 

Seated typing at a 
computer 

1.2 (0.0) 4.8 (0.8) 14.8 
(8.9) 
 

6.1 
(9.2) 
 

18.6 (9.0) 

Light 

Standing stacking 
items 

1.9 (0.1) 7.8 (1.9) 94.0 
(37.6) 
 

7.2 
(6.4) 
 

84.4 (30.6) 

Standing folding 
Clothes 

1.9 (0.1) 7.7 (1.7) 104.2 
(21.8) 
 

8.3 
(6.5) 
 

104.4 (20.7) 

Cleaning 2.8 (0.9)  11.5 (3.3) 104.1 
(38.9) 
 

29.1 (35.8) 
 

121.5 (52.8) 

Moderate 
Light walk  3.3 (0.1) 13.2 (1.4) 116.2 

(42.2) 
 

124.2 
(18.6) 
 

108.9 (34.8) 

Brisk Walk  4.3 (0.2) 17.6 (3.8) 191.2 
(78.3) 
 

197.1 
(25.0) 
 

174.0 (77.7) 

Climbing stairs 5.1 (0.2) 20.7 (4.2) 136.7 
(28.3) 
 

107.8 
(16.1) 
 

123.9 (19.4) 

Activity Circuit 5.8 (0.3) 23.2 (4.6) 271.0 
(59.9) 
 

154.8 
(68.4) 
 

269.3 (64.2) 

Vigorous 

Run  8.0 (0.4) 32.4 (6.6) 659.0 
(158.3) 
 

552.1 
(112.2) 
 

612.6 
(180.2) 

Dribbling a 
Basketball 

6.8 (0.4) 27.8 (9.9) 473.3 
(241.3) 
 

243.3 
(133.1) 
 

532.8 
(169.8) 

 

Threshold Generation: 

Step 1. The ROC Curve generated thresholds developed using pairs of intensities (e.g 

SB-LPA) using the Youden Index presented values ranging from <3 to <40 mg for the 
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upper threshold for SB, ≥3 to ≥40 mg for the lower threshold of LPA, ≥40  to ≥126 mg for 

MPA and ≥250 to ≥328 mg for VPA intensity activity (table 5). The highest thresholds 

were observed for the non-dominant wrist placement, followed by the dominant wrist and 

lastly the hip. The diagnostic accuracy of the thresholds identifying SB or intensity of PA 

for all placements was better than what would be expected by chance (all AUC ≥0.59, 

p<0.05). All thresholds produced higher specificity compared to sensitivity values. 

Sensitivity, specificity, percentage agreement, MAPE and Cohens’ Kappa coefficients 

were generally better for the hip placement (table 6: red indicates poor values, yellow 

represents acceptable values and green indicates good values. This is the same for all 

following tables) than the wrist placements.  

 

Table 5: ROC curve analysis for the pairs analysis  

 ENMO 
Value (mg) 

Area Under 
the Curve 

95% CI Sensitivity  Specificity  

Non-Dominant Wrist 

SB <30 0.98 0.98-0.98 88.6 96.2 

LPA ≥30 0.98 0.98-0.98 88.6 96.2 

MPA ≥126 0.69 0.68-0.69 55.3 74.2 

VPA ≥328 0.87 0.87-0.88 76.5 90.6 

MVPA ≥126 0.67 0.66-0.68 44.0 87.6 

Hip 

SB <3 0.73 0.72-0.74 73.9 62.8 

LPA ≥3 0.73 0.72-0.74 73.9 62.8 

MPA ≥40 0.97 0.97-0.97 89.3 95.6 

VPA ≥250 0.84 0.84-0.85 69.9 94.7 

MVPA ≥40 0.59 0.58-0.60 36.3 95.8 

Dominant Wrist 

SB <40 0.96 0.96-0.97 83.0 96.2 

LPA ≥40 0.96 0.96-0.97 83.0 96.2 

MPA ≥112 0.67 0.66-0.67 58.7 67.3 

VPA ≥310 0.89 0.89-0.90 82.3 89.3 
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Table 6: Sensitivity, specificity, MAPE, percentage agreement, Cohens’ Kappa 

coefficients and Interpretation of Kappa for the pairs analysis 

 Sensitivity Specificity  MAPE 
(%) 

Agreement 
(%) 

Cohens’ 
Kappa 
coefficients  

Interpretation 
of Kappa 
(Landis & 
Koch, 1977) 

Non-dominant Wrist 

SB 0.76 0.91 11.0 85.9 0.67 Substantial 
Agreement 

LPA 0.50 0.75 17.8 68.7 0.22 Fair Agreement 

MPA 0.42 0.83 14.7 71.6 0.25 Fair Agreement  

VPA 0.54 0.94 18.7 87.3 0.53 Moderate 
Agreement 

MVPA 0.64 0.83 18.4 74.3 0.47 Moderate 
agreement 

Hip  

SB 0.52 0.92 24.4 79.2 0.48 Moderate 
Agreement 

LPA 0.48 0.73 18.6 67.2 0.19 Slight 
Agreement 

MPA 0.68 0.79 12.3 75.6 0.43 Moderate 
Agreement 

VPA 0.50 0.96 19.4 87.7 0.52 Moderate 
Agreement 

MVPA 0.84 0.84 11.9 84.0 0.68 Substantial 
agreement 

Dominant Wrist 

SB 0.72 0.90 11.0 83.7 0.62 Substantial 
agreement 

LPA 0.38 0.80 11.3 70.1 0.17 Slight 
Agreement 

MPA 0.44 0.81 13.3 71.2 0.25 Fair Agreement 

VPA 0.56 0.93 18.2 86.3 0.53 Moderate 
Agreement 

MVPA 0.69 0.80 13.4 75.1 0.49 Moderate 
agreement 

 

MVPA ≥112 0.73 0.72-0.74 57.3 85.6 
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The equivalency analysis found non-dominant wrist placement, SB was equivalent at ±20. 

However, no other threshold for this placement exhibited statistically significant 

equivalence in comparison to the criterion reference (Figure 2). For the hip placement, 

MVPA was equivalent at ±15. However, no other threshold estimates exhibited statistically 

significant equivalence in comparison to the criterion reference (Figure 3). For the 

dominant wrist placement, LPA and MVPA were equivalent at ±15. All other placements 

apart from VPA were equivalent at ±20 in comparison to the criterion reference (Figure 4).  

 

Figure 2: pairs analysis results from 95% equivalence testing between thresholds and 

criterion reference (i.e. Metamax; indirect calorimetry) on the non-dominant wrist 

placement in Step 1. The solid line represents the ActiGraph estimates, under which in 

descending order the dashed lines represent ±10%, ±15% and ±20% equivalency for the 

criterion reference.  
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Figure 3: pairs analysis results from 95% equivalence testing between thresholds and 

criterion reference (i.e. Metamax; indirect calorimetry) on the hip placement in Step 1. The 

solid line represents the ActiGraph estimates, under which in descending order the 

dashed lines represent ±10%, ±15% and ±20% equivalency for the criterion reference.  

 

0 5 10 15 20 25 30

SB (<3

mg)

LPA (≥3 

mg)

MPA 

(≥40 mg)

VPA 

(≥250 mg)

MVPA 

(≥40 mg)

SB and PA estimates (minutes)

0 5 10 15 20 25 30

SB (<40

mg)

LPA (≥40 

mg)

MPA 

(≥112 mg)

VPA 

(≥310 mg)

MVPA 

(≥112 mg)

SB and PA estimates (minutes)



42 
 

Figure 4: pairs analysis results from 95% equivalence testing between thresholds and 

criterion reference (i.e. Metamax; indirect calorimetry) on the dominant wrist placement in 

Step 1. The solid line represents the ActiGraph estimates, under which in descending 

order the dashed lines represent ±10%, ±15% and ±20% equivalency for the criterion 

reference.  

The ROC Curve generated thresholds developed for SB and PA variables using all the 

data (i.e. not pairs, all intensities of PA) can be viewed in table 7. The diagnostic accuracy 

of the thresholds for identifying SB or intensity of PA for all placements was close to what 

would be expected by chance or better (AUC ≥0.51, p<0.05). This diagnostic accuracy 

was poorer than observed in the pairs analysis. This analysis produced similar sensitivity 

and specificity values to the pairs analysis and specificity was nearly always larger than 

sensitivity in contrast to what was observed for the pairs analysis. Sensitivity faired best at 

the hip 0.90 (SB) and MAPE faired best at the dominant wrist 9.2% (SB). Sensitivity, 

percentage agreement and Cohen’s Kappa were greatest for the non-dominant wrist 

placement, 0.99 (LPA), 86.3% (VPA) and 0.67 (SB), respectively (table 8). Sensitivity 

values were lower than those in the pairs analysis, whereas specificity values were higher 

than those in the pairs analysis. Percentage agreement and MAPE were similar between 

the two analyses.  
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Table 7: ROC curve analysis for all intensities analysis 

 ENMO 
Value (mg) 

Area Under 
the Curve 

95% CI Sensitivity  Specificity  

Non-Dominant Wrist 

SB <30 0.67 0.67-0.68 94.1 42.5 

LPA ≥30 0.99 0.99-0.99 92.8 97.2 

MPA ≥183 0.51 0.50-0.51 33.1 91.6 

VPA ≥270 0.93 0.93-0.94 79.7 94.1 

MVPA ≥183 0.87 0.87-0.87 91.4 62.2 

Hip 

SB <28 0.90 0.90-0.91 67.3 97.0 

LPA ≥28 0.78 0.78-0.79 92.9 71.3 

MPA ≥50 0.73 0.73-0.74 58.6 97.6 

VPA ≥214 0.94 0.94-0.94 73.5 95.3 

MVPA ≥50 0.93 0.92-0.93 89.6 85.3 

Dominant Wrist 

SB <42 0.98 0.98-0.98 88.5 97.5 

LPA ≥42 0.65 0.65-0.66 86.1 48.2 

MPA ≥220 0.51 0.50-0.51 26.8 96.6 

VPA ≥249 0.94 0.94-0.95 85.3 93.7 

MVPA ≥220 0.88 0.88-0.88 88.1 68.0 
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Table 8: Sensitivity, specificity, MAPE, percentage agreement, Cohens’ Kappa 

coefficients and Interpretation of Kappa for all intensities analysis 

 Sensitivity Specificity MAPE 
(%) 

Agreement 
(%) 

Cohens’ 
Kappa 
coefficients  

Interpretation 
of Kappa 
(Landis & 
Koch, 1977) 

Non-Dominant Wrist 

SB 0.76 0.91 11.0 85.9 0.67 Substantial 
agreement 

LPA 0.68 0.68 35.6 64.8 0.25 Fair 
Agreement 

MPA 0.17 0.94 39.1 73.4 0.15 Slight 
Agreement 

VPA 0.59 0.92 18.7 86.3 0.52 Moderate 
Agreement 

MVPA 0.49 0.93 29.7 73.1 0.43 Moderate 
Agreement 

Hip  

SB 0.90 0.71 28.9 77.1 0.54 Moderate 
Agreement 

LPA 0.48 0.73 17.9 67.2 0.19 Slight 
Agreement 

MPA 0.07 0.95 50.6 71.1 0.02 Slight 
Agreement 

VPA 0.53 0.93 21.4 86.1 0.49 Moderate 
Agreement 

MVPA 0.81 0.85 12.0 83.2 0.66 Substantial 
agreement 

Dominant Wrist 

SB 0.79 0.86 9.2 84.1 0.64 Substantial 
agreement 

LPA 0.68 0.62 40.7 63.2 0.22 Slight 
Agreement 

MPA 0.62 0.65 27.2 64.1 0.23 Fair 
Agreement 

VPA 0.61 0.91 17.8 85.2 0.51 Moderate 
Agreement 

MVPA 0.41 0.97 41.8 71.5 0.40 Fair 
Agreement 

 



45 
 

For the equivalency analysis for the non-dominant wrist placement for all intensities (i.e. 

not pairs), SB was equivalent at ±20%. However, no other threshold for this placement 

exhibited statistically significant equivalence in comparison to the criterion reference 

(figure 5). For the hip placement, MVPA was equivalent at ±20%. However, no other 

threshold for this placement exhibited estimates that were equivalent in comparison to the 

criterion reference (figure 6). For the dominant wrist, SB was equivalent at ±20 and no 

other threshold for this placement exhibited statistically significant equivalence in 

comparison to the criterion reference (figure 7). Overall, the pairs analysis provided a 

better estimate of time spent in SB and intensities of PA at the individual and group level 

analysis due to the slightly better AUC, greater Cohen’s Kappa coefficients and 

percentage agreement and these thresholds were carried on into step 2 of the analysis.  

 

Figure 5: all intensities analysis results from 95% equivalence testing between thresholds 

and criterion reference (i.e. Metamax; indirect calorimetry) on the non-dominant wrist 

placement in Step 1. The solid line represent the ActiGraph estimates, under which in 

descending order the dashed lines represent ±10%, ±15% and ±20% equivalency for the 

criterion reference. 
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Figure 6: all intensities analysis results from 95% equivalence testing between thresholds 

and criterion reference (i.e. Metamax; indirect calorimetry) on the hip placement in Step 1. 

The solid line represent the ActiGraph estimates, under which in descending order the 

dashed lines represent ±10%, ±15% and ±20% equivalency for the criterion reference. 
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Figure 7: all intensities analysis results from 95% equivalence testing between thresholds 

and criterion reference (i.e. Metamax; indirect calorimetry) on the dominant wrist 

placement in Step 1. The solid line represent the ActiGraph estimates, under which in 

descending order the dashed lines represent ±10%, ±15% and ±20% equivalency for the 

criterion reference 

The thresholds that performed better in the equivalency analysis in step 1 were: LPA: ≥30, 

≥3 and ≥40, MPA: ≥126, ≥40 and ≥112 and VPA: ≥328, ≥250 and ≥310 for non-dominant 

wrist, hip and dominant wrist placements respectively.  

Step 2. The thresholds identified in Step 1 were fine-tuned by increasing or decreasing by 

a variety of different mg values to create the most appropriate thresholds based on the 

balance between group and individual level equivalency. Firstly, thresholds 5 mg 

lower/higher than the threshold in Step 1 were examined. Between two and four 

thresholds for SB, MPA and VPA were examined in this analysis step, depending on the 

equivalency results obtained for each mg increment.  The LPA thresholds were the 

product of the optimum upper threshold for SB and lower threshold for MPA and MVPA 

was defined by the MPA threshold therefore LPA and MVPA were not examined 

separately within this analysis step (all figures in the appendix). Based on the balance of 

individual and group level comparability observed (tables 9, 10 and 11), the optimal 

thresholds identified in Step 2 were taken forward to the cross-validation analysis (Step 3). 

The thresholds taken forward were SB: <35, <8 and <40, LPA (by default): ≥35, ≥8 and 

≥40, MPA: ≥110, ≥50 and ≥110 and VPA: ≥315, ≥225 and ≥315 and MVPA (by default): 

≥110, ≥50 and ≥110 for the non-dominant wrist, hip and dominant wrist placements 

respectively.  
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Table 9: Step 2 Non-dominant thresholds developed to increase individual and group level 

agreement 

Non-
dominant 
wrist 
(mg) 

Sensitivity Specificity MAPE 
(%) 

Agreement 
(%) 

Cohens’ 
Kappa 
coefficients  

Interpretation 
of Kappa 
(Landis & 
Koch, 1977) 

SB 
<30  0.76 0.91 11.0 85.9 0.67 Substantial 

Agreement 
<35 0.78 0.89 10.1 85.2 0.66 Substantial 

Agreement 
<40 0.80 0.86 10.3 84.1 0.64 Substantial 

Agreement 
<45 0.80 0.84 11.1 83.1 0.63 Substantial 

Agreement 

LPA 
≥35 0.40 0.80 13.8 70.5 0.19 Slight 

Agreement 

MPA 

≥110 0.47 0.80 13.8 71.2 0.27 Fair agreement 

≥116 0.44 0.82 13.5 71.6 0.26 Fair agreement 

≥121 0.42 0.83 13.7 72.0 0.26 Fair agreement 

≥126 0.40 0.84 14.6 72.2 0.25 Fair agreement 

VPA 
≥300 0.56 0.94 18.5 86.9 0.54 Moderate 

agreement 
≥315 0.55 0.94 18.7 87.0 0.54 Moderate 

agreement 
≥320 0.55 0.95 18.6 87.1 0.54 Moderate 

agreement 
≥325 0.54 0.95 18.7 87.1 0.54 Moderate 

agreement 

MVPA 
≥110 0.68 0.80 16.2 74.6 0.49 Moderate 

agreement 
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Table 10: Hip thresholds developed to increase individual and group level agreement 

Hip (mg) Sensitivity Specificity MAPE 
(%) 

Agreement 
(%) 

Cohens’ 
Kappa 
coefficients  

Interpretation 
of Kappa 
(Landis & 
Koch, 1977) 

SB 
<3 0.50 0.92 25.5 78.8 0.46 Moderate 

agreement 
<8 0.64 0.87 27.0 79.6 0.52 Moderate 

agreement 
<13 0.69 0.82 26.1 78.1 0.50 Moderate 

agreement 
<18 0.77 0.77 25.1 77.2 0.51 Moderate 

agreement 

LPA 
≥8 0.40  0.77 23.1  68.7  0.16  Slight 

agreement 

MPA 
≥45 0.64 0.80 8.3 75.1 0.41 Moderate 

agreement 
≥50 0.55 0.82 8.2 75.1 0.37 Fair agreement 
≥55 0.60 0.81 8.4 

 
75.8 0.40 Fair agreement 

VPA 
≥225 0.52 0.95 23.1 86.8 0.52 Moderate 

agreement 
≥240 0.50 0.97 19.2 87.5 0.53 Moderate 

agreement 
≥245 0.50 0.96 19.2 87.6 0.54 Moderate 

agreement 
≥249 0.50 0.97 19.2 87.7 0.54 Moderate 

agreement 

MVPA 
≥50 0.81 0.86 11.6 83.4 0.67 Substantial 

agreement 
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Table 11: Dominant thresholds developed to increase individual and group level 

agreement 

Dominant 
wrist (mg) 

Sensitivity Specificity MAPE 
(%) 

Agreement 
(%) 

Cohens’ 
Kappa 
coefficients  

Interpretation 
of Kappa 
(Landis & 
Koch, 1977) 

SB 

<40 0.78 0.87 9.1 84.1 0.64 Substantial 
agreement 

<45 0.81 0.86 10.7 84.0 0.64 Substantial 
agreement 

LPA 

≥40 0.37 0.81 11.1 70.6 0.18 
Slight 
agreement 

MPA 

≥107 0.45 0.80 13.2 70.7 0.25 Fair 
agreement 

≥110 0.45 0.80 13.4 70.7 0.25 Fair 
agreement 

≥112 0.44 0.81 13.5 70.8 0.25 Fair 
agreement 

VPA 

≥305 0.57 0.93 35.9 85.9 0.51 Moderate 
agreement 

≥310 0.56 0.93 34.9 85.9 0.51 Moderate 
agreement 

≥315 0.56 0.93 36.0 86.0 0.51 Moderate 
agreement 

MVPA 
≥110 0.70 0.80 13.4 75.1 0.50 Moderate 

Agreement 

 

Figures 8, 9 and 10 display the equivalency analysis for the final, refined thresholds. For 

the non-dominant wrist, the SB threshold provided equivalent estimates to the ±10% zone 

of equivalency in comparison to the criterion reference. MPA and MVPA were equivalent 

at ±15% and LPA was equivalent at ±20%. The VPA threshold did not provide statistically 

equivalent estimates in comparison to the criterion reference. For the hip placement, 

MVPA was equivalent at ±10%. No other threshold provided statistically equivalent 
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estimates in comparison to the criterion reference for the ±10%, ±15% or ±20% 

equivalency zones. For the dominant wrist placement, SB was equivalent at ±10%. LPA 

and MVPA were equivalent at ±15% and MPA was equivalent at ±20%. The VPA 

threshold did not provide statistically equivalent estimates in comparison to the criterion 

reference.  

 

Figure 8: results from 95% equivalence testing between thresholds and criterion reference 

(i.e. Metamax; indirect calorimetry) on the non-dominant wrist placement in Step 2. The 

solid line represents the ActiGraph estimates, under which in descending order the 

dashed lines represent ±10%, ±15% and ±20% equivalency for the criterion reference. 
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Figure 9: results from 95% equivalence testing between thresholds and criterion reference 

(i.e. Metamax; indirect calorimetry) on the hip placement in Step 2. The solid line 

represent the ActiGraph estimates, under which in descending order the dashed lines 

represent ±10%, ±15% and ±20% equivalency for the criterion reference. 
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Figure 10: results from 95% equivalence testing between thresholds and criterion 

reference (i.e. Metamax; indirect calorimetry) on the dominant wrist placement in Step 2. 

The solid line represent the ActiGraph estimates, under which in descending order the 

dashed lines represent ±10%, ±15% and ±20% equivalency for the criterion reference. 

 

Step 3. The optimum thresholds identified in Step 2 were then cross-validated in the 

independent cross-validation group (n=12, females, n=7). Table 12 displays the threshold 

value, sensitivity, specificity, MAPE and Cohens’ Kappa coefficients, which were very 

similar to those to the previous stage. Percentage agreement and MAPE performed better 

in the cross-validation stage compared to the previous stage. In the cross validation, 

Cohens’ Kappa coefficients were highest at the non-dominant wrist placement: 0.69 (SB). 

Sensitivity, specificity and percentage agreement: 0.76 (SB), 0.94 (MVPA) and 89.1% 

(VPA) respectively. MAPE was best at the hip placement: 6.8% (MPA). Cohens’ Kappa 

coefficients of the thresholds in this stage were similar or better to those observed in Step 

2. The lowest Cohen’s Kappa value was for the LPA threshold (0.15, slight agreement) on 

the hip placement and the highest value for SB (0.70, substantial agreement) from the 

dominant wrist placement. On average according to the Cohen’s kappa value and 

interpretation, the hip placement performed the best, followed by dominant wrist and non-

dominant wrist respectively (table 12). 
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Table 12: Cut-points performance on cross-validation group 

 Threshold 
(mg) 

Sensitivity Specificity MAPE 
(%) 

Agreement 
(%) 

Cohens’ 
Kappa 
coefficie
nts  

Interpretation 
of Kappa 
(Landis & 
Koch, 1977) 

Non-Dominant Wrist  
SB <35 0.76 0.92 10.9 87.0 0.69 Substantial 

agreement 
LPA ≥35 0.38 0.83 13.6 71.9 0.21 Fair  

agreement 
MPA ≥110 0.52 0.76 12.7 69.8 0.27 Fair  

agreement 
VPA ≥315 0.67 0.94 12.1 89.1 0.60 Moderate 

agreement 
MVPA ≥110 0.77 0.74 13.6 75.3 0.50 Moderate 

agreement 

Hip  
SB <8 0.84 0.81 20.7 82.2 0.61 Substantial 

agreement 
LPA ≥8 0.25 0.88 22.7 72.8 0.15 Slight  

agreement 
MPA ≥50 0.68 0.83 6.8 78.8 0.49 Moderate 

agreement 
VPA ≥225 0.64 0.95 11.3 90.1 0.62 Substantial 

agreement 
MVPA ≥50 0.84 0.85 8.8 84.6 0.69 Substantial 

agreement 

Dominant Wrist  
SB <40 0.79 0.91 9.5 87.2 0.70 Substantial 

agreement 
LPA ≥40 0.39 0.82 9.8 71.6 0.21 Fair  

agreement 
MPA ≥110 0.45 0.79 9.8 69.6 0.24 Fair  

agreement 
VPA ≥315 0.72 0.92 11.9 88.5 0.60 Moderate 

agreement 
MVPA ≥110 0.74 0.76 12.5 75.0 0.50 Moderate 

agreement 

 

Figures 11, 12 and 13 display the cross-validation equivalency analysis for Step 3. For the 

non-dominant wrist, the SB threshold provided equivalent estimates at ±20% in 

comparison to the criterion reference, no other threshold provided statistically equivalent 

estimates in comparison to the criterion reference. For the hip placement, MVPA 

estimates were equivalent at ±15% and MPA was equivalent at ±20%. No other hip 

threshold provided statistically equivalent estimates in comparison to the criterion 

reference. For the dominant wrist placement, SB and MPA were equivalent at ±15%. LPA 

and MVPA estimates were equivalent at ±20%. VPA was the only threshold that did not 



55 
 

provide statistically equivalent estimates in comparison to the criterion reference for the 

±10%, ±15% or ±20% equivalency zones. 

 

Figure 11: Non-dominant wrist placement cross validation results from 95% equivalence 

testing between thresholds and criterion reference (i.e. Metamax; indirect calorimetry) in 

Step 3. The solid line represents the ActiGraph estimates, under which in descending 

order the dashed lines represent ±10%, ±15% and ±20% equivalency for the criterion 

reference. 
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Figure 12: Hip placement cross validation results from 95% equivalence testing between 

thresholds and criterion reference (i.e. Metamax; indirect calorimetry) in Step 3. The solid 

line represents the ActiGraph estimates, under which in descending order the dashed 

lines represent ±10%, ±15% and ±20% equivalency for the criterion reference.  
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Figure 13: Dominant wrist placement cross validation results from 95% equivalence 

testing between thresholds and criterion reference (i.e. Metamax; indirect calorimetry) in 

Step 3. The solid line represents the ActiGraph estimates, under which in descending 

order the dashed lines represent ±10%, ±15% and ±20% equivalency for the criterion 

reference.  
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Chapter 5: Study Discussion 
 

This study aimed to calculate and cross-validate accelerometer thresholds to classify SB 

and PA behaviours in university students. The thresholds for SB, LPA, MPA and MVPA 

showed acceptable levels of agreement between the accelerometer and criterion 

reference in regards to specificity, MAPE and percentage agreement. VPA was the only 

threshold to show no equivalency between accelerometer and criterion (Metamax) on any 

placement site. The hip placement thresholds were the most accurate in regard to 

sensitivity, specificity, percentage agreement, MAPE and Cohens’ Kappa coefficients. 

Both the wrist placements (non-dominant and dominant) also demonstrated acceptable 

levels of agreement. In terms of percentage agreement, the dominant wrist placement 

demonstrated the lowest agreement between accelerometer and the criterion reference. 

On the other hand, the dominant wrist placement performed best in the equivalency 

analysis though, it should be noted that none of the placement sites had a threshold that 

produced estimates that were equivalent at ±10% in comparison to the criterion reference. 

This indicates that the accelerometer underestimated or overestimated the amount of time 

an individual spent in SB or any intensity of PA. Consistently, LPA was underestimated in 

the cross-validation group, whereas MVPA was consistently overestimated within the 

same group. VPA was the only threshold that did not demonstrate equivalence at any 

level (±10%, ±15% or ±20%) across any of the placement sites, despite this a high level of 

agreement between accelerometer and criterion reference (≥88.5%), moderate and 

substantial agreement based on Cohens’ Kappa coefficients values (≥0.60) and good 

level of MAPE (≤12.1) were observed. The high agreement between accelerometer and 

criterion reference is important because quantities of time accumulated within VPA, MPA 

and MVPA are the most commonly cited outcome measures.  

 

One interesting and unexpected finding in this study is both wrist placements (non-

dominant and dominant) resulted in the same thresholds for MPA, VPA and MVPA. This 



59 
 

could be due to participants using both wrists for all these activities. It might be 

recommended that future studies have activities, which examine the differences between 

wrists, for example by using a writing task. The ENMO values in table 4 show large 

difference between the ENMO values at the wrist compared to that at the hip. This is 

referred to as “decoupling” and refers to the differences observed in values between the 

wrist and hip (Rowlands et al., 2014). The decoupling between the wrist and hip is 

especially apparent in the LPA activities, with the wrist being disproportionally higher than 

the hip during “housework” activities. For example, standing folding clothes, an activity 

which would be considered “housework” had a large decoupling between wrists and hip 

(Hip: 8.3 mg, non-dominant wrist: 104.2 mg and dominant wrist: 104.4 mg). The wrists 

(non-dominant and dominant) ENMO values are approximately 13 times more than that 

observed at the hip. The extent of decoupling of the wrist and hip accelerations and which 

the data from the wrist relate to the data from the hip is suggested to be population 

specific (Rowlands et al., 2014).  

 

Analysis metrics and techniques 

 

Sensitivity: 

 

On average, SB across all placement sites performed the best when referring to sensitivity 

(non-dominant wrist: 0.76, hip: 0.84 and dominant wrist: 0.79). With the hip SB performing 

the best across all thresholds and placement sites (<8 mg) (0.84). Across all placement 

sites, on average LPA performed poorly sensitivity values (non-dominant wrist: 0.38, hip: 

0.25 and dominant wrist: 0.38). LPA performed the worst at the hip in regards to sensitivity 

(≥8 mg), only correct identifying sensitivity 25% of the time.  Sensitivity is the ability to 

correctly identifying whether a behaviour is occurring (Dziak et al., 2019). Even though 

LPA performed poorly across all placement sites (non-dominant: 0.38 and dominant: 

0.39), with the highest placement for LPA (dominant) only capturing this intensity 38% of 

the time. One reason sensitivity for the LPA threshold at the hip was poor could be due to 
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the lack of lower body movement required during two of the activities included in the 

calibration circuit (standing stacking items and folding clothes; table 1). The accelerometer 

therefore could have interpreted these activities at the hip as sedentary due to the lack of 

registered acceleration signals. Montoye et al. (2016) study discovered sensitivity values 

at LPA were better than SB or MVPA. Although, Montoye et al. (2016) used direct 

observation as the criterion reference and had an activity where participants stood without 

completing any other movements. The comparisons between studies might therefore be 

limited, as the current study had no activities where participants stood still.  

 

Specificity: 

Across all placement sites VPA performed the best in regards to specificity (non-dominant 

wrist: 0.94, hip: 0.95 and dominant wrist: 0.92). VPA on the hip placement performed the 

best across all thresholds and placement sites (≥225 mg) (0.95). Across all placement 

sites, on average MVPA performed the worst in regards to specificity (non-dominant wrist: 

0.74, hip: 0.85 and dominant wrist: 0.76). When looking into sensitivity and specificity, it is 

apparent the accelerometer estimates in this study were better at estimating the absence 

of a behaviour rather than detecting the presence of one, as the specificity values on 

average were generally higher than the sensitivity values. Sensitivity and specificity are 

inversely proportionate to each other. In practice, higher specificity would be preferable to 

allow the correct detection of health-enhancing behaviours and therefore allow the 

accurate reporting of PA behaviours however, it is unlikely that these behaviours would be 

overestimated using the generated thresholds, which would reduce the risk of 

misclassified as active when they are inactive.  

 

PA guideline thresholds: 

PA guidelines are concerned specifically with MPA, VPA and MVPA, so it is important to 

highlight these thresholds (MPA/MVPA: ≥50 mg and ≥110 mg, VPA: ≥225 mg and ≥315 
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mg). In the current study, MPA was identified poorly with 45%-68% of the time spent in 

MPA correctly estimated. When these thresholds are used in free-living situations, it could 

be assumed that a maximum of 68% of MPA could be estimated correctly. VPA did 

slightly better, with this being correctly identified between 64%-72%. It could be assumed 

that a maximum of 72% of VPA could be estimated correctly in free-living situations. Out 

of the highlighted thresholds, MVPA performed the best (75%-84%) and would be 

assumed in free-living situations up to 84% of MVPA can be estimated correctly. In this 

study, it should be mentioned that MVPA was consistently overestimated in the group 

level equivalency analysis. This could impact the results collected in free-living studies as 

higher reported MVPA levels than what the participants actually achieve. This would 

influence the accuracy of estimates related to the proportion of a population meeting 

guidelines. It was reported in Hildebrand et al. (2017) sensitivity values were always 

higher than the specificity values. The current study on average produced higher 

specificity values than sensitivity. In the pairs ROC curve approach, there was one 

threshold (hip SB: <3) which had a higher sensitivity value than specificity (sensitivity: 

73.9, specificity: 62.8). In the all activity intensities ROC curve approach, only one SB 

threshold produced a higher sensitivity value than specificity value and this was at the 

non-dominant wrist placement (sensitivity: 94.1 and specificity: 42.5). Hildebrand et al. 

(2017), this study would better classify behaviours than the ones reported in the current 

study with higher sensitivity values.  

 

MAPE: 

Across all the placements, on average MPA demonstrated the lowest MAPE in 

comparison to SB and other intensities of PA, suggesting better individual-level 

agreement (non-dominant wrist: 12.7%, hip: 6.8% and dominant wrist: 9.8%). Across all 

thresholds and placement sites, MPA on the hip performed the best overall (≥50 mg) 

(6.8%). LPA performed the worst (non-dominant wrist: 13.6% and hip: 22.7%). Across all 

thresholds and placement sites, LPA on the hip (≥8 mg) performed the worse (22.7%). 
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MAPE provides an indication of overall measurement error and presents the error as a 

percentage (Nelson et al., 2016). It is also a more conservative estimate of error that 

takes into account both overestimation and underestimation because the absolute value 

of the error is used in the calculation (Lee, Kim and Welk, 2014). In Nelson et al. (2016) 

sedentary activities has the lowest MAPE values across all accelerometer brands (≤17%), 

however, in the current study this was not the same, MPA produced the best MAPE value 

(≤12.7%). However looking at one specific activity (stairs, included in MPA), MAPE was 

lower than (Nelson et al., 2016) (Nelson et al., 2016): 14% vs 6.8%, when looking at the 

hip placement). However, the differences could come from the choice of monitor (research 

grade accelerometer vs commercial monitor), in addition the participants in Nelson et al. 

(2016) self-paced their stairs activities whereas the participants in the current study were 

standardised and the analysis of MAPE for the current study was combined with the other 

MPA activities. The MAPE value of stairs alone is unknown in the current study. When 

comparing the current study to a previous study using an ActiGraph accelerometer (adults 

aged between 18-60 years) in controlled laboratory conditions (Bai et al., 2016), MAPE for 

SB was approximately 45% on the hip (reported on a figure and not mentioned in text). In 

the current study, MAPE for SB was considerably lower (20.7%). However, the difference 

may come from the activities selected as SB, as Bai et al. (2016) use only one sedentary 

posture (seated) which only fulfils one of the characteristics of SB, whereas the current 

study fulfilled two (sitting and lying).   

 

Percentage agreement: 

In reference to percentage agreement, across all placement sites, VPA performed the 

best (non-dominant wrist: 89.1%, hip: 90.1% and dominant wrist: 88.5%). Across all 

thresholds and placement sites, VPA on the hip performed the best (≥225 mg) (90.1%). 

On average, LPA performed the worst across all placement sites (non-dominant wrist: 

71.9, hip: 72.8, dominant wrist: 71.6). Across all thresholds and placement sites, MPA on 

the dominant wrist overall performed the worse (≥110 mg) (69.8%). Percent agreement 
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has been criticized for its inability to account for chance agreement (McHugh, 2012). 

Percent agreement, due to the criticism, is not a widely used metric in adult studies, so 

comparison is limited and many of the previous studies are in habitual free-living 

situations using activity counts. There is a trend between the two studies when looking 

specifically at percent agreement, the agreement at LPA is lower than SB and other 

intensities of PA (Duncan et al., 2018). However, the highest percent agreement in 

Duncan et al. (2018) was always higher than the highest agreement in the current study. 

In both studies VPA had the highest agreement (99.3 vs the current study: 90.1).  

 

Cohens’ Kappa coefficients: 

Across all the placement sites SB demonstrated the highest Cohens’ Kappa coefficients 

(non-dominant wrist: 0.69, hip: 0.61 and dominant wrist: 0.70), with all being interpreted as 

demonstrating substantial agreement. SB on the dominant wrist had the best Cohens’ 

Kappa coefficient value across all thresholds and placement sites (0.70; substantial 

agreement). On average LPA performed the worst across the placements (non-dominant 

and dominant wrist: 0.21 and hip: 0.15) representing only fair or slight agreement. LPA on 

the hip performed the worst across of thresholds and placement sites (0.15, slight 

agreement). The Cohen’s Kappa coefficient examines intrarater reliability and this can aid 

comparisons between studies as this is standardised and the interpretation is consistent 

(McHugh, 2012). The Cohen’s Kappa coefficients observed in this study are slightly lower 

than observed in previous calibration studies on the hip placement (0.75) (Vaha-Ypya et 

al., 2018). However, both of these Cohen’s Kappa coefficients would be interpreted as 

demonstrating substantial agreement. Montoye et al. (2016) conducted a validation in 

laboratory conditions (activities were from SB, LPA and MVPA intensity categories) and 

participant wore an ActiGraph GT3X+ accelerometer on the hip and GENEActiv on the 

wrists, which could already account for some differences. Cohen’s Kappa coefficients in 

(Montoye et al., 2016) were better than any observed in the cross validation group 

(≥0.75). Although, Montoye et al. (2016) used direct observation as the criterion reference, 
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20 Hz sampling frequency and used weighted Cohen’s Kappa coefficients, which allow 

disagreement to be weighted differently 

 

Previous traditional ROC Curve studies: 

One study that used the traditional ROC curve approach in adults was Miller et al. (2015). 

The optimal thresholds in this study were MPA at 91 mg and 414 mg for VPA. In the pairs 

ROC curve analysis approach, the thresholds in the current study were considerably lower 

(MPA: 126 mg and VPA: 328 mg). The differences between studies could be because in 

Miller et al. (2015) only ambulatory (running) activities were completed, whereas the 

current study had a variety of daily activities. Having only ambulatory activities (such as 

running) can be viewed as a limitation because they do not truly reflect ‘real-life’ 

behaviours (Arvidsson et al. 2019). Previous studies reported calibration studies using 

only ambulatory activities produce considerably lower estimates of MVPA compared to 

studies, which mirror daily life. If the thresholds in Miller et al. (2015) and the current study 

were tested, Miller et al. (2015) could produce an underestimation of MVPA as higher 

thresholds will have been used.  

 

New ROC Curve approach: 

This study followed a different ROC curve analysis approach in comparison to many 

previous calibration studies, where intensity pairs were used to calculate the thresholds 

(e.g. when calculating a threshold for SB data were included for SB and LPA only) rather 

than accelerometer data from across the whole SB-VPA continuum. This method was 

used as it in theory removed disproportionate amounts of data, which influenced the ROC 

curve analysis (Obuchowski and Bullen, 2018). The thresholds developed using this 

approach provided a better estimate of time spent in SB and intensities of PA at the 

individual and group level analysis as demonstrated by the superior AUC, Cohen’s Kappa 

coefficients and percentage agreement observed. In previous studies, it was reported the 
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pairs analysis provided a better estimate of time spent in SB, MVPA and VPA (Crotti et al. 

2019, in review). The current study agrees with Crotti et al. (2019, in review) as better 

estimates of time spent in SB and intensities. This ROC curve approach has not been 

tested in many previous studies, therefore it would be suggested that future calibration 

studies adopt both approaches and investigate the difference between the two 

techniques. 

 

Area Under the Curve: 

When compared to Hildebrand et al. (2017) a higher AUC for SB in the ROC curve 

analysis was observed at the hip in the Hildebrand et al. (2017) study in comparison to the 

present study (0.92 vs 0.73; pairs) suggesting better diagnostic accuracy for SB at the hip 

in the Hildebrand study. However, when comparing the traditional ROC curve approach 

(the analysis which included SB and all intensities of PA), in the current study a better 

AUC for the hip at SB (0.90) a closer to Hildebrand et al. (2017) value was discovered. As 

Hildebrand et al, (2017) investigated SB thresholds only, it was reported that the AUC was 

better at the hip compared to the wrist (AUC hip: 0.92 compared to 0.87 at the non-

dominant wrist). Looking into the first phase of the current study (using the ROC curve), it 

disagrees with Hildebrand et al. (2017) as generally the non-dominant wrist performed 

better in the pairs analysis (the current study: non-dominant wrist: 0.98 compare to 0.73 at 

the hip). When looking at the all intensities analysis, the hip AUC was better when 

compared to the non-dominant wrist, which is the same as Hildebrand et al. (2017) (hip: 

0.90 compared to the non-dominant wrist: 0.67). When looking into the stepping activities 

(referred to as MPA in the current study), the hip placement produced higher AUC values 

on both the pairs and all activity intensities ROC curve approaches (0.93; pairs and 0.73; 

all intensities). The differences between the current study and Hildebrand et al. (2017) is 

the criterion reference. The current study used indirect calorimetry and Hildebrand et al. 

(2017) used another accelerometer (activPAL). The activPAL is a thigh-worn device which 

uses accelerometer-derived information about thigh position to determine the start and 
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end of each period spent sitting/lying, standing, and stepping, as well as stepping speed, 

step counts, and postural transitions (Edwardson et al. 2017). ActivPAL has been 

validated in other previous calibration studies investigation SB thresholds (using direct 

observation as the criterion reference) and has produced accurate results. However, the 

use this accelerometer should be considered as this type of accelerometer is primarily an 

inclinometer (which specifically measures angles of a slope and elevation) which may 

present issues when investigating PA as this is not based on postural classifications or 

when PA is in a SB postural classification (Lyden et al. 2017).  

 

ENMO Thresholds: 

Hildebrand et al. (2014) and Hildebrand et al. (2017) used the same data collection 

methods, however MPA and VPA thresholds were reported in 2014 and SB thresholds 

were reported in 2017. The participants in this study were a convenience sample of staff 

and students from the Norwegian School of Sports Sciences with the mean age 34.2 

years. However, one difference between the two published studies was the criterion 

reference: (Hildebrand et al. (2014): indirect calorimetry) and Hildebrand et al. (2017): 

ActivPAL). The ENMO values in Hildebrand et al. (2014) and Hildebrand et al. (2017) are 

both on average higher than the ENMO values in the current study. Hildebrand et al. 

(2014): (hip: 258.7 mg and wrist: 428.8 mg) compared to the current study: (hip: 225 mg 

and wrist: 315 mg), however, the MPA wrist threshold were higher in this study (100.6 mg 

compared to 110 mg). Values reported in Hildebrand et al. (2017): hip 18.7 mg and wrist 

8.4 mg, compared to the current study: hip 14.8 mg and wrist 6.1 mg. Both studies used 

the same data reduction method by downloading the accelerometer data onto its 

proprietary software and converting this into raw data files to process through R, which 

helps with the comparison between studies. However, Hildebrand et al. (2014) used linear 

regression to establish a relationship between the output and VO2. The performance of 

these equations was assessed using 10-cross-validation mode (leave-one-out cross-

validation) and the thresholds were calculated from the regression equations. Unlike the 
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current study, there was no further development or refinement of thresholds (finding the 

optimal thresholds based on individual and group level equivalency, step 2). In Buchan, 

Boddy and McLellan (2019), it was reported an ENMO value on the wrist of 233.9 mg. 

This value is lower than reported in Hildebrand et al. (2017) however is still considerably 

higher than reported in the current study (116.2 mg when compared on similar treadmill 

speeds alone). Hildebrand et al. (2017) used derived coefficient from free-living situations 

matched to the laboratory conditions, in cases were the laboratory data did not hold 

enough non-movement periods to facilitate direct auto-calibration. No auto calibration or 

integration of lab coefficients were used in this study, so could account for some of the 

differences observed. Hildebrand et al. (2017) only used the ROC curve approach, 

whereas the current study analysed the data two steps further to try and obtain the 

optimal thresholds. The difference in accelerometer outputs may also be due to the model 

of accelerometer being different. 

The ENMO values recorded in this study for the treadmill activities were much lower than 

Hildebrand et al. (2017) even though the speeds in the current study were faster (current 

study: light walk: 124.2 mg, brisk walk: 197.1 mg and run: 552.1 mg), compared to 

Hildebrand et al. 2017 who only reported one ENMO value for all stepping activities (240.5 

mg). This is very similar for the non-dominant wrist also; the ENMO values in the current 

study were substantially lower in comparison to Hildebrand et al. (2017) (354.8 mg), as 

the current study reported 116.2 mg, 191.2 mg and 659.0 mg across all treadmill activities 

(on the non-dominant wrist placement). However, Hildebrand et al. (2017) also measure 

free-living stepping and when compared to the current study, is the values were more 

similar (the current study (non-dominant wrist): 191.2 mg and Hildebrand et al. (2017) 

(non-dominant wrist: 110.8 mg). This could suggest participants in the current study 

walked/ran similarly, to how they would in habitual situations. This could be related to 

using Fr speeds, developed for each participant individually, instead of standardising the 

speed for all participants. When comparing the ENMO values to a different study during 

treadmill activities, the values in the present study are substantially lower.  
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Resting Metabolic Rate: 

It is commonly accepted that 1 MET is 3.5 mL/kg/min in adults (Melzer et al., 2016). 

However, the mean resting metabolic rate in this study was 4.2 mL/kg/min. The widely 

accepted 1 MET is 3.5 mL/kg/min has been criticised because resting metabolic rate is 

individualised due to factors such as age, weight status classification and gender 

(McMurray et al., 2014). If studies use 3.5 mL/kg/min to represent 1 MET it is likely to 

misrepresent the expected energy costs of PA in populations. It is therefore 

recommended that researchers use equations that take into account individual 

characteristics to estimate resting metabolic rate, if measures such as indirect calorimetry 

cannot be taken (Melzer et al., 2016).  

 

VO2  differences: 

When comparing VO2 between calibration studies, the VO2 in the current study was 

always higher than Hildebrand et al. (2014). On average, the difference in reported VO2 

between the two studies increased as the intensity of activities increased. The greatest 

difference between VO2 values in the studies was during the step activity. On average the 

VO2 for participants in the current study was 7.7 mL O2.kg-1.min-1 greater than reported by 

Hildebrand et al. (2014) (current study: 20.7 mL O2.kg-1.min-1 compared to 13.0 mL O2.kg-

1.min-1). However this discrepancy could be due to the indirect calorimeter used. In the 

current study, the Metamax was used, whereas Hildebrand et al. (2014) used the 

ergospirometry system. This could reduce the comparability between the two studies as 

these two machines may process and measure gases differently. The individual machines 

were calibrated to the manufacturers’ recommendations. However, the concentration of 

gases varied between the two studies which could have impacted the results collected 

(Hildebrand et al. 2014; 95% oxygen and 5% carbon dioxide, the current study; 5.03% 
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oxygen and 15.08% carbon dioxide). Without comparing these machines independently it 

would not be known how they differ in practice.  

 

Criterion References: 

A study calibrating raw accelerometer thresholds using indirect calorimetry was Montoye 

et al. (2016). The mean age of the sample was similar to the one in the current study (22 

compared to 21 years). The protocol reported in Montoye et al. (2016) is comparable to 

the one in the current study, with both ambulatory and non-ambulatory movements. 

Participants in both studies completed activities such as laundry, sweeping and climbing 

stairs. Montoye et al. (2016) combined MPA and VPA activities into MVPA, whereas the 

current study looked into MPA and VPA separately. The participants in Montoye et al. 

(2016) completed each activities for between 3-10 minutes in a simulated free-living 

environment, whereas the participants in current study completed each activity for a 

structured 5 minutes. When comparing the hip location in Montoye et al. (2016) to the final 

thresholds in the current study, specificity in the current study was always higher than 

sensitivity, which is the same for Montoye et al. (2016). The sensitivity values in Montoye 

et al. (2016) for SB (hip: 88.3, left hand: 97.5 and right hand: 93.1) are higher than 

observed in this study (hip: 0.84; non-dominant: 0.76 and dominant: 0.76). This is the 

same for LPA and MVPA was better in Montoye et al. (2016) compared to the current 

study.  This is also apparent for specificity; Montoye et al. (2016) had better specificity 

values compared to the current study. However the discrepancies between Montoye et al. 

(2016) and the current study could be down to different indirect calorimetry (Oxycon 

Mobile) and accelerometer (GENEActiv) being used. It should be also noted Montoye et 

al. (2016) did not use individual MET values and used the standardised 3.5 mL/kg/min. As 

it was shown in this study, young adults have a higher resting metabolic rate than the 

standardised 3.5 mL/kg/min and variability was observed between participants. Another 

difference between the two studies was Montoye et al. (2016) divided the wrists in right or 

left instead of non-dominant and dominant. This may influence some of the difference 
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found in Montoye et al. (2016) as the participants who are left handed would be used to 

doing the activities with this wrist, and may take preference in their daily lives to use this 

wrist. Whereas, in the current study, this was controlled for and the wrist, dependent on 

the hand the participants’ write with, was analysed as either the non-dominant or the 

dominant wrist. In the current study, there was slight differences between non-dominant 

and dominant wrists (approximately 20 mg across all activities).  

 

Other studies have used indirect calorimetry as a criterion reference (Staudenmayer et al., 

2015), where participants completed structured activities, however, no raw accelerometer 

threshold were developed. Staudenmayer et al. (2015) study used the Oxycon mobile 

indirect calorimetry system and the standardised 3.5 mL/kg/min to define 1 MET. There 

are large discrepancies between some activity and METs values in the current study and 

Staudenmayer et al. (2015). The only similarity in MET values between the two studies is 

the activity slow/light walk (3.3 METs in both studies). However, when looking at climbing 

stairs and “fast”/brisk walk, there is a large difference between values reported (stairs; 

Staudenmayer et al. (2015): 8.08 vs the current study: 5.1 METs) (“fast”/brisk walk; 

Staudenmayer et al. (2015): 5.2 vs the current study: 4.3 METs). It should be noted that in 

Staudenmayer et al. (2015) only minutes 3-5 (each activity was performed for 6 minutes) 

of each activity was the data analysed. As it was recommended in the previous 

paragraph, individual MET values should be used instead of the standardised 3.5 

mL/kg/min as this value does not take into account individual characteristics such as 

stature and body mass.  

 

Hip Placement 

In the current study, it was determined that the hip placement provided the best estimates 

of SB and PA. However, as discussed in the literature review (chapter 2) researchers 

have turned away from hip worn accelerometers as they have been reported in large-
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scale studies such as NHANES to have less wear time than data collection cycles with 

wrist worn accelerometers. Having studies with greater compliance will provide better 

estimates of habitual behaviours and provides the most reliable estimates of PA levels 

(Lee, Macfarlane and Lam, 2013; Hassani et al., 2014). Some hip worn accelerometers 

cannot be worn for 24 hours a day and have to be removed at night time (due to comfort). 

However, a wrist worn accelerometer can be worn for 24 hours a day and provides the 

opportunity to examine sleep, which may not be possible with hip worn accelerometers 

(Jungquist et al., 2015). It is possible when selecting wrist thresholds generated in the 

current study may reduce the accuracy of PA estimates, as agreement was poorer when 

compared to the hip. However, overall the MAPE values on the non-dominant and 

dominant wrist are better than those observed at the hip. Cohens’ Kappa coefficients 

values were also similar between hip (≤0.69), non-dominant (≤0.69) and dominant wrists 

(≤0.70), therefore though the differences were observed, the magnitude of those 

differences may not be meaningful in practice.  

 

Wider context:  

A recent framework has been release providing a theoretical context for the current study 

(Keadle et al. 2019). After a rapid growth of new devices and analysis techniques, it is 

now suggested measurement field adopts a phase-based framework for developing and 

evaluating device-based methods for physical behaviours assessment. This framework 

will help facilitate the development and validation of processing methods to predict 

physical behaviour from devices, which require access to the raw output, rather than 

already processed summary estimates. The current study has followed the recommended 

phase I: laboratory development, where the environment is highly controlled. These 

conditions are optimal for identifying features of the signal that may be valuable for 

distinguishing between different activity intensities or types. However, these controlled 

environments are not reflective of real-world conditions and the results will not reflect how 

a device may perform in a real-world setting. This is due to the transitions between 
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activities not being included and the change between activities happening at irregular 

intervals. The intermediate phases (I and II) focus in the development of new methods 

under controlled laboratory or semi-structured conditions. The thresholds will be more 

reflective of real-world conditions as they progress along the framework, characterised by 

the increasing individual variability. Although, the earlier stages do not reflect real-world 

human behaviour, they are necessary and useful steps in the development process, 

particularly as a device or type of signal from the device is evaluated for the first time. As 

the environment and protocol becomes increasingly variable, we expect performance to 

decline, which may necessitate return to an earlier phase for further refinements and 

optimisation (Keadle et al. 2019). 

 

The next two paragraphs will discuss the following topics: Machine learning approaches 

and threshold free techniques. These paragraphs will outline their purpose, how they 

overcome the issues surrounding thresholds and how they can be implemented.  

 

Alternative approaches 

There are alternative approaches to thresholds or cut-points to classify movement 

behaviours. Machine learning is one of these is one of the emerging techniques used in 

the discipline and has the potential to be a more accurate method to measure PA than 

tradition threshold methods (Ahmadi et al. 2019). Machine learning is an area of research 

concerned with the design and development of algorisms that allow computers to ‘learn’ 

from data. Machine learning has the ability to recognise complex patterns and make 

intelligent decisions based on data is the main focus of this research area (Hagenbuchner 

et al. 2015). Machine learning has the potential to significantly improve the accuracy of 

accelerometer-based assessments of PA. Errors from traditional energy expenditure 

prediction models can be between 25%-50% (Ahmadi et al., 2018). Machine learning 

approaches are suggested to improve the estimates of accelerometer based PA metrics 
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(Freedson et al., 2011). Machine learning approaches allow the identification of activity 

types, which is not possible with simple regression or ROC curve analysis methods. It is 

reported regardless of the data processing approach, wrist worn accelerometers may still 

be more vulnerable to misclassification errors when an activity produces significant arm 

movements (standing folding clothes or cleaning) (Trost, Zheng and Wong, 2014). It is 

also suggested machine learning approaches at the hip and wrist provided highly accurate 

recognition of sedentary behaviours (Kantoch, 2018). However, the current study provided 

highly accurate (≥87% percentage agreement) SB thresholds. It should be highlighted 

Trost, Zheng and Wong, (2014) was a study investigating children and adolescents. There 

have been other machine learning studies completed in a variety of populations such as 

older adults (Sasaki et al., 2016). Machine learning is still a relatively new concept in PA 

research, so has not been widely adopted. However, it should be noted machine learning 

requires extensive expertise so the thresholds approach is more valuable to researchers 

in the PA field without these extensive expertise. Machine learning techniques have 

traditionally been tested in controlled laboratory conditions, however when these models 

are tested under free-living conditions, they perform poorly. One reason for this could be 

due to PA being more incidental and specifically walking could be slower than tested in a 

laboratory condition. This could “confuse” the algorithms and therefore reducing the 

accuracy found in the laboratory condition.  

To overcome some of the issues of accelerometer data, metrics such as average 

acceleration and intensity gradient can be adopted (Rowlands et al., 2018a). These 

metrics provide an indication of PA volume, and a PA intensity profile over a time period. 

However, it should be noted, these metrics have only been tested in school-aged children, 

adolescent girls and adults with type 2 diabetes (Rowlands et al., 2018a; Fairclough et al., 

2019). A new accelerometer metric can be used to describe the minimum acceleration 

value above which a person’s most active X minutes are accumulated (Fairclough et al., 

2019). This does not rely on thresholds produced in calibration studies and all participants 

achieve something, compared to the government guidelines, where people either achieve 
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or do not achieve these recommendations. PA intensity is usually expressed as time 

based on cut points, which have been developed in validation studies. However, these cut 

points are dependent on the sample and protocol, which can leave outcome comparisons 

problematic across population and studies (Rowlands et al., 2018a). This is a relatively 

new concept and it is unknown how this metric is associated with health and well-being of 

individuals compared to those which use the government guidelines. Studies that adopt 

this approach will be highly comparable due to the minimal researcher decision making 

and the standardisation of the data processing methods, and has been suggested to show 

key advantages over thresholds (Rowlands et al., 2018a; Fairclough et al., 2019). Even 

though, this study developed raw accelerometer thresholds, the data is presented in a 

way to allow the use of this new accelerometer metric in the university student population. 

Average ENMO and mean MET values (averaged over all data points within the activities 

period of time) were provided in table 4 in the current study. This will allow comparisons 

between future studies using non-threshold methods.  

 

Strengths and limitations 

The current study has several strengths and limitations which should be highlighted. This 

study used indirect calorimetry as the criterion reference which is a robust measure of 

energy expenditure. Individual MET values were calculated for all individuals across all 

activities. This would have accounted for differing body size and composition. However, it 

should be highlighted that data collection occurred across a variety of time points during 

the day, which could have affected the indirect calorimetry data as resting metabolic rate 

differs throughout the day. Previous literature reported afternoon resting metabolic rate 

being 100 kcal/day higher than in the morning (Haugen et al., 2003). It would be 

recommended that the time of data collection is standardised in future studies to account 

for this circadian variation. The study used multiple accelerometer placement sites, which 

has allowed the development of thresholds for the most commonly used placements (non-

dominant and dominant wrist and hip), which may increase the utility of the thresholds for 
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practitioners. The study developed raw accelerometer thresholds which will allow 

transparency and comparisons between studies, whilst also reporting average ENMO and 

energy expenditure for each activity allowing comparisons to non-threshold derived 

metrics. The study also used ambulatory and non-ambulatory activities to simulate a 

range of daily activities indicative of university students’ typical behaviours. This allowed 

for a thorough examination of accelerometer raw data thresholds across a wide variety of 

activities and intensities. Despite this, the calibration activities took place in a laboratory 

environment, which therefore influences the ecological validity of the study. Furthermore, 

the thresholds were not examined in a free-living situation, therefore their accuracy and 

validity for habitual physical activity monitoring requires further investigation in a free-living 

setting. In addition, Step 2 of the analysis involved fine-tuning the thresholds- this 

approach is relatively new and the utility yet to be fully established. It is unknown whether 

a more traditional ‘hold one out’ cross validation method would have resulted in superior 

performance of the resultant thresholds and warrants further investigation in future 

studies. This study employed the Fr calculation which accounted for the differing limb 

lengths of participants when completing the treadmill activities, which in theory should 

help standardise the effort required across participants. An additional limitation is the short 

length of the data collection period. This did not allow in the use of auto calibration of 

acceleration signals in GGIR.  This may have produced a slight calibration error in the 

results due to the short protocol length as it is suggested the ENMO metric is sensitive to 

poor calibration. Future studies should integrate coefficients from similar samples/studies 

to reduce the potential for calibration errors. Finally, the cohort involved in the study was a 

convenience sample consisting of healthy individuals, therefore the generated thresholds 

may only be applicable to similar participant groups. 

Conclusion 

The thresholds for SB and across all intensities of PA showed acceptable levels of 

agreement between the accelerometer and criterion reference (Metamax) in all placement 

sites in regards to specificity, MAPE and percentage agreement. The most equivalent 
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thresholds in the cross validation group were SB, MPA and MVPA when compared to 

indirect calorimetry. The non-dominant wrist placement demonstrated the poorest group-

level equivalency, with only one threshold being demonstrating group-level equivalence. 

LPA was the overall worst performing threshold across all the placement sites (lowest 

sensitivity, specificity and Cohens’ Kappa coefficients value). The hip placement generally 

provided better agreement between criterion reference and accelerometer and therefore 

could be considered the optimum placement to provide estimates of SB and PA levels of 

university students. These developed thresholds should be examined in free-living studies 

to assess validity and accuracy when estimating the activity levels of university students. 

Lastly, the study protocol, methods and analysis can inform the development of rigorous 

calibration studies and analysis to determine thresholds in the future for a variety of 

populations of interest.  
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Chapter 6: Research Synthesis 
 

The purpose of this short synthesis is to consider the findings in relation to the original aim 

and objectives, key outcomes, key take home messages and what has been learnt 

throughout process.  

 

 Achievement of aim and objectives:  

The main aim of this research study was to calculate and cross-validate accelerometer 

thresholds to classify PA and SB in university students. This was completed and 

addressed through one study (Chapter 3, 4 and 5) investigating the following objectives in 

the same study and chapters:  

Objective 1. To design a calibration study to generate accelerometer and energy 

expenditure data across a range of activities, that simulated daily living in university 

students. 

Objective 2. To calculate and cross-validate accelerometer thresholds to classify 

university students’ SB and PA behaviours generated using a calibration circuit.  

Prior to this research being undertaken, there were no raw accelerometer thresholds for 

use in a university student population. This study has developed these thresholds which 

can now be taken forward into future research studies. The final thresholds from this study 

were as follows: SB ranged from <8 to <40 mg, LPA ≥8 to ≥40 mg, MPA ≥50 to ≥110, VPA 

≥225 to ≥315 mg and MVPA ≥50 to ≥110 mg.  
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Table 13: Summary of wear site, threshold and equivalence  

Threshold (mg) Equivalence level 

Non-Dominant Wrist 
SB (<35) ±20% 
LPA (≥35) >20% 
MPA (≥110) >20% 
VPA (≥315)  >20% 
MVPA (≥110) >20% 

Hip 
SB (<8) >20% 
LPA (≥8) >20% 
MPA (≥50) ±20% 
VPA (≥225) >20% 
MVPA (≥50) ±15% 

Dominant Wrist 
SB (<40) ±15% 
LPA (≥40) ±20% 
MPA (≥110) ±15% 
VPA (≥315) ±20% 
 

Key take home messages: 

The thresholds for SB, LPA, MPA and MVPA showed acceptable levels of agreement 

between the accelerometer and criterion reference in regards to specificity, MAPE and 

percentage agreement. VPA was the only threshold to show no equivalency between 

accelerometer and criterion (Metamax) on any placement site at the group level. This 

study has developed these thresholds, which can now be taken forward into future 

research studies. This study used the traditional ROC curve analysis approach (where SB 

and all levels of PA were included in the analysis) and also used a new approach to 

compare how this affected the thresholds produced (e.g. where SB was paired with LPA 

and these were the only thresholds used in one analysis). Overall, it was determined the 

pairs analysis provided a better estimate of time spent in SB and intensities of PA at the 

individual and group level analysis. This was due to the slightly better AUC, greater 

Cohen’s Kappa coefficients and percentage agreement values observed. These 

thresholds were carried on into step 2 of the analysis to develop the thresholds further to 

find the optimal thresholds based on individual and group level equivalency. In this study, 

it also used Fr numbers to created individual treadmill speeds for each of the treadmill 

activities. This accounted for the differences in limb length of all participants. This in 
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theory should have helped standardise the effort required across all participants. Using 

the indirect calorimetry data, individual resting metabolic rate and MET values for each 

activity were created and this informed the average intensity of each activity. In this study, 

it showed the standardised 3.5 mL O2.kg-1.min-1 is lower than the results discovered in 

this study.  

 

What has been learnt from the process: 

There have been many learning processes during the completion of this degree and 

study. This is the first time I had used specific analysis techniques (e.g. ROC curve and R 

Studio). This was a learning curve and took some time to get used to and a lot of trial and 

error. For future projects that require analysis in R, I will need to develop these skills to get 

the most out of the analysis software. However, for the need of this project, my R skills are 

what were required. At the start of the degree, I found the transition from a structured 

taught degree (e.g. BSc) to a research degree (e.g. MPhil) difficult. This degree relied on 

me to be more independent; however, completing this degree has shaped me to be a 

better researcher as I can better manage my own time. I have learned a multitude of 

different personal and professional skills which I will take forward into future research and 

daily life. 
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Chapter 7: Recommendations 
 

This study has been the first to develop raw accelerometer thresholds in a university 

student population. From this study, it is possible for this research to be developed and 

the recommendations for future research are outlined below: 

 Future research should examine the performance of these thresholds in a free-

living situation or simulated free-living situation. The simulated free-living situation 

will allow researchers to observe behaviours (e.g. activities) being completed and 

use this to assess if the thresholds estimated a similar amount of time (e.g. 

minutes and seconds) in SB and each intensity of PA. 

 The thresholds should be developed using the framework (phase II-IV) in Keadle 

et al. (2019) as the framework is intended to facilitate the development and 

validation of processing methods to predict PA behaviours in research devices. 

The framework is characterised by flexible and progressive processes, 

prespecified milestones for advancement, and allows return to earlier stages for 

refinement and optimisation where necessary.   

 Another study in university students should use these thresholds to assess and 

estimate time spent in SB and PA intensities in habitual settings, as this would 

allow a better understanding of the activity levels of this population.  

 Future studies may compare different degree courses and degree types to assess 

whether this has an impact on time spent in SB and intensities of PA.  

 Raw data approaches and/or standardised approaches should be used in further 

research in this area using accelerometers to increase the comparability between 

studies.  

 It should be recommended to use machine learning approaches to overcome 

some of the limitations of thresholds. 



81 
 

 Future studies should consider implementing multiple accelerometers to increase 

the classification accuracy and allow for comparison between models and 

manufacturers.   
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Appendices 

 

Appendix Figure 1: SB results from 95% equivalence testing between thresholds and 

criterion reference (i.e. Metamax; indirect calorimetry) on the non-dominant wrist 

placement in Step 2. The solid line represents the ActiGraph estimates, under which in 

descending order the dashed lines represent ±10%, ±15% and ±20% equivalency for the 

criterion reference 

 

0 5 10 15 20 25

<30 mg

<35 mg

<40 mg

<45 mg

SB estimates (minutes)



92 
 

 

Appendix Figure 2: MPA results from 95% equivalence testing between thresholds and 

criterion reference (i.e. Metamax; indirect calorimetry) on the non-dominant wrist 

placement in Step 2. The solid line represents the ActiGraph estimates, under which in 

descending order the dashed lines represent ±10%, ±15% and ±20% equivalency for the 

criterion reference. 
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Appendix Figure 3: VPA results from 95% equivalence testing between thresholds and 

criterion reference (i.e. Metamax; indirect calorimetry) on the non-dominant wrist 

placement in Step 2. The solid line represents the ActiGraph estimates, under which in 

descending order the dashed lines represent ±10%, ±15% and ±20% equivalency for the 

criterion reference. 
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Appendix Figure 4: SB results from 95% equivalence testing between thresholds and 

criterion reference (i.e. Metamax; indirect calorimetry) on the hip placement in Step 2. The 

solid line represents the ActiGraph estimates, under which in descending order the 

dashed lines represent ±10%, ±15% and ±20% equivalency for the criterion reference. 
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Appendix Figure 5: MPA results from 95% equivalence testing between thresholds and 

criterion reference (i.e. Metamax; indirect calorimetry) on the hip placement in Step 2. The 

solid line represents the ActiGraph estimates, under which in descending order the 

dashed lines represent ±10%, ±15% and ±20% equivalency for the criterion reference. 
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Appendix Figure 6: VPA results from 95% equivalence testing between thresholds and 

criterion reference (i.e. Metamax; indirect calorimetry) on the hip placement in Step 2. The 

solid line represents the ActiGraph estimates, under which in descending order the 

dashed lines represent ±10%, ±15% and ±20% equivalency for the criterion reference. 
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Appendix Figure 7: SB results from 95% equivalence testing between thresholds and 

criterion reference (i.e. Metamax; indirect calorimetry) on the dominant wrist placement in 

Step 2. The solid line represents the ActiGraph estimates, under which in descending 

order the dashed lines represent ±10%, ±15% and ±20% equivalency for the criterion 

reference. 
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Appendix Figure 8: MPA results from 95% equivalence testing between thresholds and 

criterion reference (i.e. Metamax; indirect calorimetry) on the dominant wrist placement in 

Step 2. The solid line represents the ActiGraph estimates, under which in descending 

order the dashed lines represent ±10%, ±15% and ±20% equivalency for the criterion 

reference. 
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Appendix Figure 9: VPA results from 95% equivalence testing between thresholds and 

criterion reference (i.e. Metamax; indirect calorimetry) on the dominant wrist placement in 

Step 2. The solid line represents the ActiGraph estimates, under which in descending 

order the dashed lines represent ±10%, ±15% and ±20% equivalency for the criterion 

reference. 
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