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ABSTRACT  

 Cold Bitumen Emulsion Mixtures (CBEM’s) are a promising substitute for Hot Mix Asphalt 

(HMA) due to their low environmental impact, cost-effectiveness and low-energy production 

costs. Nevertheless, conventional CBEM has some disadvantages, mainly related to the long 

curing time required to reach its full strength and higher susceptibility to moisture. This paper 

reports the experimental test results of research which aimed to investigate and develop a new 

CBEM containing a waste biomass material, Palm Leaf Ash (PLA), a waste material produced by 

burning palm leaves. The new CBEM was compared with a conventional cold mix (CCM) as a 

control. The tests to assess the mixtures mechanical properties were the Marshall test, indirect 

tensile strength and wheel track test. Durability was evaluated by water sensitivity and ageing tests. 

The results revealed noticeable improvements in the mechanical properties of the CBEMs 

comprising Ordinary Portland Cement (OPC), and raised the possibility of replacing some of the 

OPC with PLA without compromising said improvements.  Results have shown that the new 

CBEMs with PLA achieved outstanding results in comparison to traditional CBEM, with and 

without the addition of OPC. There was also a significant improvement in water sensitivity when 

using PLA. This paper therefore, opens the door for the development of new CBEMs which have 

outstanding mechanical characteristics when made with biomass ash materials. 
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INTRODUCTION 

Cold Bituminous Emulsion Mixtures (CBEMs) can be created using  environmentally friendly 

technologies which produce reduced CO2 emissions (Serfass, 2002), at the same time conserving 

energy as no heat is required during processing, unlike traditional Hot Mix Asphalt (HMA) (Al-

Busaltan, 2012; Chavez-Valencia et al., 2007). However, these  mixtures have relatively  low 

initial strength meaning they require longer curing  times (Ebels, 2008; Brown and Needham, 

2000) and are highly susceptible to water damage (Al Nageim et al., 2012; Thanaya et al., 2009).  

Much research has been carried out to establish the advantages and disadvantages of CBEMs  in 

order to overcome their weaknesses and thus benefit from their obvious advantages (Terrell and 

Wang, 1971; Head, 1974; Li et al., 1998; Suleiman, 2002; Oruc et al., 2007; Al-Busaltan, 2012; 

Brown and Needham, 2000; Pettinari et al., 2014; Dondi et al., 2014).  

Normally,  Ordinary Portland Cement (OPC) is used in the production of  CBEMs to 

overcome low early strength, its subsequent performance the focus of many studies (Oruc et al., 

2007; Schmidt et al., 1973; Al Nageim et al., 2012; Oruc et al., 2006; Niazi and Jalili, 2009; Bocci 

et al., 2011). Researches have examined the incorporation of  OPC into bitumen emulsions to 

control braking behavior, to increase the strength and stiffness of mixtures earlier in the production 

process and the amount of water released by breaking of emulsion (Niazi and Jalili, 2009; 

Miljković and Radenberg, 2015; Tan et al., 2013). Others have shown that the addition of cement 

can reduce the water sensitivity of the mix, this also facilitating the development of its mechanical 

properties over time (Wang et al., 2014). OPC reacts with the water in the emulsion, this resulting 

in an impact on the continuous phase of said emulsion, accelerating emulsion breaking (Zhang et 

al., 2012; Tan et al., 2013). OPC has also been found to decrease the negative influence of free 

water in mixes and improve the adhesion of the binder to the aggregate (Hu et al., 2009). This 
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occurs because when the cement is hydrated, this increases the rate of coalescence, thereby 

increasing binder viscosity (Brown and Needham, 2000). 

From previous studies, it can be concluded that the addition of OPC to CBEM improves its 

characteristics.  This has  encouraged researchers worldwide to use waste and/or by-product 

materials that have hydraulic or pozzolanic characteristics as alternatives to OPC (Al-Busaltan et 

al., 2012c; Thanaya, 2007). Incorporating such materials in CBEM provides two benefits: 

environmental sustainability and economic advantages (Thanaya et al., 2006).  Some waste and 

by-product materials have the potential to work as supplementary cementing materials (SCM), 

facilitating the absorption of trapped water via the hydration process.  The physical and chemical 

properties of these materials also helps with this absorption (Al-Busaltan et al., 2012b). 

Biomass is an organic biological material produced as a  result of human animals and plants 

activities , these materials  used in various civil engineering applications (Melotti et al., 2013). 

Biomass has tested successfully as aggregate, or filler, for concrete construction (Pels et al., 2005), 

bitumen mixtures (Melotti et al., 2013) and for soil stabilization (Nordmark et al., 2011; Basha et 

al., 2005). 

Biomass Ash has already been mixed with OPC as a filler for concrete mixture production to 

provide low-cost and more environmental friendly binders (Arum et al., 2013). Biomass Ash has 

a positive effect on the strength of concrete due to its pozzolanic characteristics. Ash materials 

such as  rice husk, coconut husk, oil palm leaf, bamboo leaf, and peanut shell have been used to 

achieve this (Arum et al., 2013; Al-mulali et al., 2015; Sargın et al., 2013; Ahmad et al., 2012; Al-

Busaltan et al., 2012c). Concrete mixes containing fine Oil Palm Ash (OPA) as cement 

replacement showed superior strengths, less water permeability and less water absorption. Mortar 
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mixes with 20% replacement of cement by fine OPA exhibited higher compressive strengths than 

the 100% cement mortar (Aprianti et al., 2015).  

There are many benefits of using pozzolanic materials in road construction, especially in 

CBEMs. Thanaya et al., (2009) reported that the pozzolanic filler is hardened due to the water and 

cement within the CBEM. Modarres and Ayar (2016) claimed that this material increases the 

Marshall stability, Indirect Tensile Strength (ITS) and moisture resistance, to acceptable levels for 

cold recycled pavements. Al-Hdabi et al.,   improved the mechanical properties of CBEM by using 

Rice Husk Ash while Al-Busaltan et al., (2012b) found that the hydraulic and pozzolanic effects 

of Paper Sludge Ash improved permanent deformation resistance and the water sensitivity of 

CBEMs. Al Nageim et al., (2012) reported that Paper Sludge Ash was better than OPC at 

enhancing the mechanical and durability properties of CBEMs because of its superior ability to 

absorb water,  Al-Busaltan (2012) and Dulaimi et al. (2015) confirming this finding. Some  

pozzolanic materials have also been used as secondary binders (Nunes, 1997). Hesami et al. (2013) 

showed that Biomass fillers increase the viscosity of mastic, the moisture and aging having a 

significant effect on the viscosity of the mastic because of its particle shape and size distribution. 

Lundberg et al., (2016) claimed that the reactions  between fillers and emulsions are significantly 

impacted by high specific surface areas. 

In this research, Palm Leaf Ash (PLA) is used as a filler replacement for OPC in the production 

of CBEMs. So, this research work attempt to characterizing the volumetric, mechanical, and 

durability properties of CBEMs comprising PLA as a filler, partially or totally. PLA is a waste 

material produced from burning palm leaf, the leaves removed when cleaning the palm trees. 

According to the Iraq Central Statistical Organization, there are more than 15 million palm trees 

in Iraq (Central Statistical Organization, 2015), each one producing 25 kg of leaves per annum, 
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meaning that there is approximately 0.375 million tons of palm leaf available, and currently going 

to waste, each year.  

MATERIALS   

Aggregates 

The fine and coarse aggregates used in this research were sourced from local quarries in 

Karbala. The binder course gradation was selected according to Iraqi General Specifications for 

Roads and Bridges, section R9 (GSRB, 2003),  Figure 1 illustrating the midpoint gradation and its 

limits. 

 

 

Fillers 

Three types of fillers were selected: Conventional Mineral Filler (CMF), Ordinary Portland 

Cement (OPC), and Palm Leaf Ash (PLA). CMF was produced during the crushing process applied 

to aggregates. The OPC was provided by the Karbala cement plant, the PLA was produced by 

burning palm leaves.  The properties of the fillers are given in Table 1. From this table it can 

recognize the high surface area of PLA compare with OPC and CMF, this difference in this 

property will influence the rheology properties of the emulsion at mixing and early stage strength 

development. Also, the chemical composition of the three fillers (especially the percentages of 

CaO, Al2O3, SiO3, and Fe2O3 percentages) may indicate the hydraulic properties of the OPC, the 

pozzolanic properties of PLA, and the inert properties of CMF.   

Scanning Electron Microscopy (SEM) was conducted to identify the morphology of each to 

allow a better understanding of their properties, as shown in Figure 2. These morphology 
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characteristics believed to be very influential in mix properties at early stage after mixing; particles 

shape, size, the formation of small channels are highly affect the viscosity of emulsion just after 

mixing with these fillers. Also, the amount of absorb water is highly dependent of surface area and 

the appearance of tiny channels that increase the suction of water (Al-Busaltan et al., 2012a; Al-

Busaltan, 2014).  

 

Bitumen Emulsion 

Bitumen emulsion (BE) was supplied by the local market, its properties were determined in 

lab to ensure their satisfactory according to ASTM D2397/D2397M (ASTM, 2013a). the main 

properties according to the mentioned properties were measured and compared, as detail in Table 

2. 

 

Experimental Program, Test conditions and Methods 

The Preparation and Conditioning of Samples 

As there is no universally accepted design procedure for CBEM’s to date, the design for this 

work was based on the method detailed in the Asphalt Cold Mix Manual MS-14 (Asphalt Institute, 

1989). The Marshall Method for emulsified asphalt-aggregate cold mixture designs was used, with 

some amendments to meet Iraqi specifications. Specimens of CBEMs were prepared using 

different fillers as follows:  

1. Initially, a coating test was conducted to ensure that an acceptable percentage of 

aggregates were coated, MS-14 stating that this percentage should not be less than 50, 

with 75% for base and binder layers, respectively.  Aggregates can be highly sensitive to 
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pre-wetting water content, especially when the gradation comprises a high proportion of 

fine materials. Different pre-wetting water contents were considered to determine the 

lowest percentage needed to achieve suitable levels of coating, judged visually, as 

recommended by MS-14 (Asphalt Institute, 1989), accordingly, the followings were 

followed:  

 Determination of Initial Residual Bitumen Content (IRBC), which was trailed by an 

empirical formula of dense graded. 

P=(0.05A+0.1B+0.5C)x0.7    ……..Eq(1)                                                           

Where:   

P  = percent by weight of emulsified asphalt based on dry aggregates   

A = present of aggregate retained on sieve (No.8) 

B = present of aggregate passing sieve (No.8) and retained on (No.200)   

C = present of aggregate passing (No.200). 

 The Initial Emulsion Content (IEC). value then determined by dividing P by the 

percentage of the residual bitumen content in the emulsion 

IEC=  P/X       ……..Eq(2)                                                                                         

Where:   

IEC = Initial Emulsion Content by mass of total mixture % 

X = residual bitumen content of the emulsion, that may be obtained by heating emulsion until 

whole water content evaporation, then calculation its percentage from total emulsion. 
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 Coating test after that carried out by mixing all of dry aggregates and filler about 1 

minute, and pre-wetted with varied amount of water with IEC value obtained from 

above section. The asphalt emulsion is added later and then mixed for about 2-3 

minutes, repeated these steps until adequate coating. The degree of coating was ensure 

to  be not less than 50 % by visual observation. 

 Optimum Pre-Wetting Water Content (OPWwc)  

The optimum pre- wetting moisture was obtained according to the coating test, which the 

lowest pre-wetting water content was selected when the coating achieved. 

2. Marshall stability tests were used to confirm the optimum pre-wetting water content 

established by the equation recommended in MS-14 (Asphalt Institute, 1989).   According 

to the characteristics of the selected materials, pre-wetting water contents were 3% for 

CMF, 3.5% for OPC and 2.5% for PLA. 

3.  The optimum bitumen emulsion content was determined by using different emulsion 

contents with optimum pre-wetting water content. The Marshall stability test was used to 

identify this optimum value as 11.2% for all mixture types, the optimum total liquid 

contents being 14.2%, 14.7%, and 13.7% for CBEM composed of CMF, OPC and PLA, 

respectively.  

4. For each CBEM variable, three 1,170 g specimens were prepared. Mixing and compacting 

were carried out at lab temperatures. 

5. The materials were mixed in a mechanical mixer; the aggregate, filler and pre-wetting 

water content added and mixed for 60 seconds. The bitumen emulsion was added 

gradually, all mixed together for an additional 60 seconds.   A spatula used to separate the 
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mix from the mixer bowl and additional hand mixing was carried out for more 

homogeneity.  

6. The samples were poured into their molds and directly compacted with 75 blows on each 

side using a standard Marshall Hammer. 

7. Finally, the specimens were subjected to curing according to the test procedure 

requirements. 

Test Conditions and Methods 

Because the characteristics which define the strength of CBEM’s are very sensitive to curing 

time and temperature, sample conditioning occurs in two stages.  Stage one is when the specimens 

are left in their molds at ambient temperature (25 ℃) for 24 hrs. to prevent the specimens from 

disintegrating when extruded from the mold. Stage two varies depending on the test being applied. 

The tests used in this study are described below. 

On the other hand, to control the potential of the error in the obtained results, at least three 

specimens were prepared and averaged. In case of an outliers were happened, additional 

specimen/s prepared and the result averaged to prevent outliers; ±15% of the average was selected 

to specified the outliers.   

Marshall Test  

The strength of, and resistance to plastic deformation of a compacted cylindrical specimen of 

bituminous mixture, is measured when the specimen is loaded diametrically. Table 3 details the 

arrangement for the Marshall test based on ASTM D6927 (ASTM, 2015a). The stage two curing 

protocol was conducted by placing the specimens in an oven for 24 hrs at 40 ºC, then applying the 

test procedure as illustrated in Table 3 below. MS-14 recommends that the Marshall stability for 

CMA should be conducted at 25℃, but 60 ℃ was adopted in this research to accommodate the 
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high temperatures experienced locally and to explore the potential of the CBEMs. Authors believe 

that using the standard testing temperature of Marshall test (i.e., 60 ºC) is more realistic then 25 

ºC in hot climate water countries. 

 

Indirect Tensile Strength (ITS)  

ITS is used to evaluate the potential to resist cracking in bituminous mixtures. The test 

followed was as recommended by ASTM D6931(ASTM, 2012), the test conditions shown in Table 

4. The curing protocols for stage two were 24 hrs at 40 ºC to represent 7-14 days, and 14 days at 

40 ºC to represent full curing age. 

 

 

Wheel Track Test (WTT) 

The Wheel Track Test is carried out by placing the compacted bituminous mixture in a 

reciprocating rolling wheel device. This test provides information about the rate of permanent 

deformation under a moving concentrated load. A laboratory compactor is used to prepare the slab 

or cylindrical specimens. The procedure for the WWT is described in AASHTO T324 (AASHTO, 

2004),  the test conditions summarized in Table 5. This procedure is designed for HMA; in order 

to apply this to CMA, a modification was made, full curing protocol was used (stage two),  14 

days at 40ºC, as recommended by Thanaya (2003), after one day in mold at lab temperature, while 

such curing is just one day after compaction of HMA. The point is to accelerate the removal of 

trapped water, whereas higher temperatures than 40 ºC, may change the rheology of asphalt, while 

lower temperatures could take inappropriate long curing time. This curing temperature is adopted 

by Asphalt Institute in MS-14 (1989)and many other studies as curing temperature.  On other side, 
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the period of 14 days was found to be the appropriate time to remove all trapped water and transfer 

the compacted mix to a state similar to that under full curing. 

Durability Testing 

The durability of asphalt mixtures can be described as variation in the ability of the mix to 

withstand environmental conditions and the impact of traffic during its service life. In this research,  

durability was determined as a ratio of the ITS of conditioned specimens to those of unconditioned 

specimens, expressed in percentages. Water damage and deterioration due to ageing, were also 

used as durability indicators. 

Water damage testing of HMA is described by ASTM, D4867/D4867M (ASTM, 2014). The 

test conditions for water sensitivity are given in Table 6. Water sensitivity for CBEMs can be 

investigated using the same procedure as for HMA, except that the curing protocol is different in 

order to ensure the full strength of the specimens. The following curing protocol was followed, in 

addition to stage one curing, as described previously: 

 For unconditioned specimens: 24 hrs. in an oven at 40 °C. 

 For conditioned specimens: the same procedure as for unconditioned specimens but with 

the specimens also placed in a water bath for 24 hrs. at 60 °C. 

 

One of the main concerns about CBEMs is their low early life strength. According to SHRP 

A383 (Bell et al., 1994), there are two types of ageing;  short-term ageing to simulate the mixture’s 

ageing during the manufacturing stage, and long-term ageing simulating the ageing of the mixture 

on the road during its service life. It is acknowledged that short-term ageing may not be applicable 

for CBEMs, as no heat is applied during the manufacturing process (Al-Busaltan et al., 2012b). 

However, to simulate long-term ageing, the method recommended by the SHRP A383 program 
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can be adopted, the testing conditions summarized in Table 7. This procedure was adopted as 

written for HMA. For CMA, in addition to stage one, the curing times were adopted as follows: 

 Unconditioned specimens protocol: 14 days at 40ºC (Jenkins, 2000). 

 Conditioned specimen protocol: 14 days at 40ºC +5 days at 85ºC 

 

Results and Discussion 

Marshall Test Results 

All CBEMs specimens were tested at a curing age of 2 days. The results are shown in Figures 

3 and 4 for Marshall stability and flow, respectively. From these figures, it can be seen that 

conventional CBEM comprising CMF, shows very low early characteristics; the specification limit 

is at least 7 KN for stability and 2-4 mm for flow. When CMF is replaced by OPC, the performance 

of CBEM is significantly enhanced  at an early age.  This high stability and low flow could be a 

result of increased binding between particles in the mixture as when OPC is used, curing is faster.  

The OPC may be acting as a secondary binder in the CBEM, this overcoming low early strength 

because of the hydration products. The hydration process needs water to start and continue, the 

water trapped between the aggregates and bitumen film consumed during this process.  OPC 

particles are irregular having angular shapes and an  uneven distribution while  the CMF particles 

are more sheet-like, as can be seen in Figures 2 a and b. This may help produce more resistance to 

internal stresses within the mastic micro scale. 

An initial replacement of OPC with up to 25% PLA, resulted in an improvement in the strength 

of the CBEMs, the strength increasing more than CBEMs with only OPC. The reason for this may 

be because of the hydraulic characteristics induced by the new chemical phase for each filler in 
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the new blend; i.e. the mix of OPC and PLA (see the chemical composition of the fillers in Table 

1).  PLA is rich in Ca, Al and Si, these components forming more than 94% of the total solid 

chemical composition of PLA.  This produces different levels of pozzolanic properties, dependent 

on the relationship between the silicate minerals, calcium oxides and hydroxides. When mixed 

with existing road materials, these components harden through hydration and carbonation 

reactions, meaning that the stability of the CBEMs will be enhanced.  

Another reason for better performance might be because of physical characteristics.   PLA has 

a high surface area (see Table 1) which allows for a more chemically active surface. More of the 

water trapped between the aggregate and bitumen films can therefore be absorbed. PLA is also 

very good at absorbing water, as was seen in the water sensitivity test.  PLA also has particles 

which are angular, as shown Figure 2c.  This could also lead to more internal friction between the 

CBEM particles.  

A blend of 0.25PLA+0.75OPC gives more strength than OPC on its own. However, a slight 

decrease in the strength of the CBEMs was seen when increasing the amount of PLA replacing 

OPC. Replacements of OPC with PLA up to 0.75PLA+0.25OPC, showed acceptable strength 

levels, according to Iraqi specifications. Using PLA alone gave low strength because SiO2 contains 

little CaO in comparison to OPC where CaO is the main component of the hydration process. This 

explains the role of the activator for the pozzolanic materials; no hydration activity is expected 

when mixed with water if there are no activation agent materials, such as the presence of OPC.  

Finally, it is worth mentioned that Marshall test at high temperature (i.e., 60 ºC) describes the 

plastic deformation of asphalt mix. However, different mixes show different behaviours; high rate 

of plastic deformation is associated with mixture comprising CMF or PLA individually. While the 

presence of OPC, or the collection of OPC and PLA somehow control the plastic deformation. 
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This imply that the physical and chemical characteristics of the filler type after hydration process 

could help in minimize the plastic characteristics of soft asphalt binder.    

 

Indirect Tensile Strength (ITS) 

The ITS test specimens were prepared following the same procedure as described for the 

Marshall test. The main differences are in the curing protocols as mentioned earlier. Figure 5 shows 

the results for the CBEMs specimens with CMF as a control mixture, OPC and 

0.25OPC+0.75PLA. 

The ITS of CBEM comprising CMF, had inferior cracking resistance strength at 2 days of 

curing. This is a result of the water still trapped between the binder and aggregate surface. After 2 

weeks, the result improved dramatically, by around 67% in comparison to  the early age strength, 

this clear evidence of the effect of water impairing the mixture at an early age. When CMF was 

completely replaced by OPC, two features are of note; the OPC acts as an anti-stripping agent for 

the binder due to the Ca++ present, supplying extra binding and help to grip the aggregates because 

of the presence of hydration products. There is also around 13%  improvement due to improved 

curing. This can be explained by the removal of trapped water and evolution of the hydraulic 

products over time.  

CBEM with 0.25OPC+0.75PLA showed insignificant drop in ITS. The pozzolanic property 

of the PLA in the present of OPC and the hydraulic propriety of the OPC itself, are after 

insignificant change in ITS. At full curing, an 18% improvement was noted because of the curing 

protocol, the same explanation for CBEM comprising OPC applicable here. Finally, it is worth 

mentioned that the obtained ITS still non comparative to that for HMA which show a value not 
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less than 700 KPa, therefore further development for crack resistance of CBEM is still in high 

demand.  

 

Wheel Track Test (WTT) 

Laboratory wheel-tracking tests were applied to evaluate the rutting resistance of the CBEMs. 

The mixtures were prepared following the same procedure as described in previous sections; CMF, 

OPC and 0.25OPC+0.75PLA fillers added to the CBEMs. Figure 6 shows the depth of ruts relative 

to the number of cycles and loadings in each cycle, Figure 7 showing the creep stiffness. 

 

Under testing, the CBEM comprising CMF failed after 4000 cycles; this might be because of 

the weakness of the binder and mastic that grips the coarser aggregates. There is less cohesion of 

mastic materials when CMF is used because it is an in-active filler. However, a significant 

improvement was achieved when OPC and OPC with PLA were introduced. The addition of OPC 

to CBEMs created extra binding that helped resist permanent deformation due to cyclic loading. 

These improvements in rutting resistance were substantiated by the creep stiffness values. It is 

worth mentioned that the obtained rut depth in contrast to that determined in other research work 

for HMA is acceptable, especially for CBEMs comprising OPC or OPC with PLA; 2-4 mm as 

determined in this research work is preferred by highway engineers. 

 

Durability Testing 

Durability tests included water sensitivity and ageing tests, Figure 8 illustrating the results for 

water sensitivity. Because there is an anti-stripping agent in CBEM with added CMF, this mixture 

exhibited high sensitivity to water. In contrast to this, OPC and PLA act as anti-stripping agents 
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with the binder, creating a chemical reaction with water free Ca++, which prevents stripping.  PLA 

may increase binding by decreasing the viscosity of bituminous materials due to a high surface 

area. Conditioning therefore helps to upgrade the mechanical properties of CBEM; indirect tensile 

ratios (ITR) recorded values of 109% and 148.8% for CBEMs comprising OPC and 

0.75OPC+0.25PLA, respectively. The materials became more cohesive and more resistant to water 

damage, satisfying specification requirements; an ITR of at least 70%.  

Figure 9 shows the results of the ageing test, these results indicating the superiority of CBEMs 

composed of OPC, with and without PLA, in comparison to the CMF mixes. This may be a result 

of the angular shape of both the OPC and PLA particles and the high surface area of PLA lowering 

the viscosity of the binder, facilitating a thicker binder film and higher resistance to ageing. 

Conclusions 

Based on the testing program and analysis of the above results, the following can be 

concluded: 

1. PLA has a high surface area that may increase the breaking rate of emulsions. 

2. The pozzolanic properties of PLA makes it possible to substitute most of the OPC with 

PLA. There is the possibility of producing CBEMs which meet specification requirements 

by replacing the CMF with OPC.  Replacing 25-75% of the OPC with PLA can be carried 

out without any significant drop in the mechanical properties of CBEMs; the developed 

mix still met specification requirements.  

3. Remarkable enhancements can be achieved in early cracking resistance by using either 

OPC, or OPC with PLA, as a filler instead of CMF. Indirect tensile strength is enhanced 
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by 78% and 51% when CMF is replaced by OPC, or OPC with PLA, respectively. While, 

these enhancements are dropped to 20% and 7% after full curing.  

4. Conventional CBEM has a high sensitivity to water damage. The addition of OPC, or OPC 

with PLA, overcomes this issue.  PLA with a small amount of OPC, provides very good 

resistance against water damage and is better than using OPC alone. 

5. Conventional CBEM has low resistance to permanent deformation, but replacing the CMF 

with either OPC or OPC and PLA, overcomes this problem.   

6. Almost all CBEMs which had new fillers, had acceptable resistance to ageing.  
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Table 1: Properties of the fillers 

Physical Properties 

Property 
 

Filler type  

CMF OPC PLA 
Specific surface area (m2/kg) 225 410 932 

Density (g/cm3) 2.61  2.987 2.011 

Chemical compositions (XRF), % 
SiO2 34.54 24.910 66.643 

Al2O3 5.67 2.324 8.548 

Fe2O3 2.85 1.125 1.870 

CaO 47.1 64.148 18.902 

MgO 4.35 1.326 1.412 

K2O 1.125 0.760 3.0407 

Na2O 0.285 1.714 2.052 
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Table 2: Properties of bitumen emulsion 
Property Specification Limits Results 

Emulsion type D2397(ASTM, 

2013a) 

Rapid, medium 

and slow-setting 

Medium- setting (CMS) 

Color / appearance   Dark brown liquid 

Residue by Evaporation, % D6934(ASTM, 

2008) 

Min. 57 54.37 

Specific gravity, g/cm3 
D70(ASTM, 2009a)  1.05 

Penetration, mm D5(ASTM, 2015b) 100-250 230 

Ductility, cm D113(ASTM, 2007) Min. 40 42 

Viscosity, rotational paddle 

viscometer 50 ℃ , mPa.s 
D7226(ASTM, 

2013b) 

110-990 220 

Solubility in Trichloroethylene, % D2042(ASTM, 

2015c) 

Min. 97.5 97.7 

Emulsified asphalt/job aggregate 

coating practice 
D244(ASTM, 

2009b) 

Good, fair, poor Fair 

Evaluating Aggregate Coating D6998(ASTM, 

2011) 

 uniformly and thoroughly 

coated 
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Table 3: Marshall test conditions according to ASTM D6927  (ASTM, 2015a)  
Item range Used  

Number of required specimens 3 3 

Rate of load application, mm/min 50 ± 5  50  

Measuring device accuracy  Min. 50 N 0.01 N 

Test temperature, ºC 60 ± 1 60 

Specimen diameters, mm 101.6-101.7 101.6 

Specimen thickness, mm 63.5 ± 2.5 63.5 

Compaction Marshall 75x 2 75x2 

Specimen conditioning before test in water bath,  

or an oven 

30-40 min. 

120−130 min. 

30 min. 

Iraqi roads design requirement for Marshall test of binder course 

Marshall Stability kN, Min. 

Marshall Flow, mm 

7 

2-4 
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Table 4: Test conditions of ITS 
Item range Used  

Number of required specimens 3 3 

Rate of load application mm/min 50 ± 5  50  

Measuring device accuracy  Min. 50 N 0.01 N 

Test temperature ºC 25 ± 2 23 

Specimen diameters mm 101.6, 150 101.6 

Specimen height for selected diameter mm 50.8-65.5  63.5 

Compaction Marshall 75x 2 75x2 

Specimen conditioning before test  2 hr.  2 hr. 

Equation formula  

𝐼𝑇𝑆 =
2𝑃

𝜋 𝑡 𝐷
                                                                                                                                  

Where: 

𝐼𝑇𝑆 = indirect tensile  strength , MPa 

𝑃 = maximum load, N 

𝑡 = specimen hieght immediatly brefore test , mm 

𝐷 = 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 , mm 
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Table 5: Test conditions for Wheel Track Testing for HMA 
Item range value 

No. of required specimens 2 2 

Diameter of rubber wheel 203.2 mm 203.2 mm 

Wide rubber wheel 50 mm 50 mm 

No. wheel passes per min. 50 ∓5 50 

Speed of wheel Max. 0.305 m/s 0.305 m/s 

Load on the wheel 705∓4.5 N 705.5 N 

No. of cycles 10,000 5000 

Specimen thickness 38 - 100 mm 63.5 

Test temperature ºC 25-70 ºC 40 ºC 

Specimens type  Rectangular or Cylindrical Cylindrical 

Specimens diameter 150 mm 150 
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Table 6: Water damage testing conditions 
Item range 

Number of required specimens 3 

Rate of load application, mm/min 50 

Specimen diameters, mm 100  

Specimen height, mm 63.5± 2.5 

Compaction Marshall 75x2 

Test temperature, ºC 25 ± 1 

Calculate the tensile strength ratio 

𝑇𝑆𝑅 =
𝑆𝑡𝑚

𝑆𝑡𝑑
                                                                                                                      

𝑇𝑆𝑅 = 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑟𝑎𝑡𝑖𝑜, % 

𝑆𝑡𝑚 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 − 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝑠𝑢𝑏𝑠𝑒𝑡, 𝑘𝑃𝑎 

𝑆𝑡𝑑 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑟𝑦 𝑠𝑢𝑏𝑠𝑒𝑡, 𝑘𝑃𝑎 
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Table 7: Test conditions for ageing 
Item values 

No. of required specimens 3 

Test temperature, ºC 25 

Specimen diameter  100 

Specimen thickness 30-75 mm 

Compaction Marshall 75x2 

Specimen temp. conditioning 2 hr. before testing 

Calculate the tensile strength ratio 

𝑇𝑆𝑅 =
𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑎𝑓𝑡𝑟𝑒𝑟 𝑎𝑔𝑒𝑖𝑛𝑔

𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑏𝑒𝑓𝑜𝑟𝑒 𝑎𝑔𝑒𝑖𝑛𝑔
                                                                 

where 

𝑇𝑆𝑅 = 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑟𝑎𝑡𝑖𝑜, %; 

Tensile strength after ageing, kPa 

Tensile strength before ageing, kPa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


