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An Intelligent Environmental Plan for Sustainable Regionalisation 

Policies: The Case of Ukraine 

 
Abstract 

This paper introduces an environment-driven, artificial intelligence model for sustainable 

policymaking in European countries, with a focus on Ukraine. It develops regional clusters using 

artificial neural networking; then, it dynamically optimises budgeting allocations. It is a hybrid, 

environment-driven model that clusters regionalised-data using Kohonen’s self-organising map and 

optimises budget allocations using the simplex-modified distribution method (U-V MODI). Model 

benefits focus on regional public policies, environmental development, and core-periphery 

balanced growth. Results reveal an innovative plan that activates the participation of environmental 

stakeholders in public policymaking, reforms regions based on set sustainability criteria, and 

optimises regional funding. 

 

Keywords: Environmental planning, sustainable public policy, environment-driven regional 

policies, artificial neural network methodology  

 

1. Introduction 

Politically biased regionalisation employs a unilateral hierarchical distribution of resources 

that strengthens centralised economic policies. Such comprehensive public policies 

jeopardise horizontal patterns of environmental governance in the European Union (EU) 

(Dąbrowski, 2014). It is important to consider sustainable infrastructure organisation that is 

focused on a transparent, environment-driven diffusion of capital resources (Wren, 2009). 

In the current EU austerity era, a sustainable approach to environmental planning is 

motivated by the depletion of natural resources, the lack of regional funding (Martinez-

Garcia and Morales, 2019), and existing socioeconomic imbalances in Ukraine and other 

European countries (Gløersen et al, 2019). These three motivational indicators have caused 

significant national and international shifts toward centralisation in public policies 

regarding environmental planning. Ukraine has suffered from non-transparent 

administrative public policies. Currently, sub-optimal socioeconomic practices in regional 

public administration and post-Soviet environmental policies still form an obstacle to 

sustainable Ukrainian growth (Pokutsa & Burak, 2016).   

New planning tools and methodologies should reform the on-going difficulties 

regarding EU cohesion policies. Planning models should provide a scalable process of 
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decision-making for implementing environmental public policy (Knights et al., 2014). 

Public policy planning with sustainable design should integrate the economic, 

environmental, and social dimensions and consider many different decentralised forms of 

development (Ezcurra & Rodríguez-Pose, 2013). Biased environmental planning is 

limiting the diversity of managerial perspectives regarding green spaces, nature, hydro 

resources, air quality, and rural well-being (Burak, 2015). Therefore, by emphasising the 

knowledge domain of environment-driven planning and public policymaking, this paper 

focuses on essential sustainability cluster indicators that diverge from current regional 

planning processes.  

The aim of this paper is to explore the dynamic relationship between budget-

constrained regionalisation and environment-driven development. It formulates an 

innovative policymaking model, adopting artificial neural networks (Lein, 2009) and self-

organising map algorithms (Konohen, 1989) to form new sustainable regions. Then, it 

optimises regional funding using a simplified simplex method (U-V MODI) (Limbore, 

2013). As a result, it limits the negative environmental effects of current budget 

constraints, aiming to preserve the EU’s regional public policy.   

Historically, several environmental and economic studies relate to this paper’s 

research aim. Many of these studies focus on European micro- and macro-economic 

policies, which are endangering the Europeanisation process (Broadhurst, 2018). 

Contemporary research indicates that regional resource availability and flexibility in 

environmental planning are the most important factors for sustainable development 

(Gløersen et al., 2019). In alignment with our artificial intelligence (AI) model, we also 

examine contemporary studies of interactive relations among the ‘triple bottom line’ 

parameters for a sustainability framework (Breslow et al., 2018). In addition, Kyriacou et 

al. (2017), investigate general regional inequalities regarding the transition from 

bureaucratic to post-bureaucratic public policies. They argue that European countries’ 
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economic development is pursued mainly through downsizing measures for fiscal 

stabilisation (Cepiku & Mititelu, 2010). Similarly, other studies shift the focus from the 

centralisation to the localisation of environmental development (Mykhnenko & Swain, 

2010; Pike et al., 2017). Finally, other core-periphery models by Rauscher (2009) and 

Catalano et al. (2016) investigate regionalisation through the lens of environmental 

pollution and its impact on the economy.  

Our environment-driven regionalisation model is innovatively different from the 

aforementioned models. Using AI, it aims to form novel, environmentally focused clusters 

and redistribute national funding accordingly. It differs from the existing models by 

deviating from the original Tulsian algorithm (2006), the Angenent algorithm (2003), and 

the Reeb and Leavengood (2018) algorithms. By combining the artificial neural network 

(ANN) and self-organizing map (SOM) algorithms, also employed by Chaudhary et al. 

(2014) and Faezy and Shadloo (2016), we prioritise regional funding policies to provide an 

innovative solution to environmental and socioeconomic obstacles. Similar to Tiwari 

(2006), we take a completely different approach to regionalisation policies by integrating 

environmental development with the funding of socioeconomic schemes. 

 The advantage of the proposed model for academic research is the co-existence of 

AI and a form of simplex method. Simultaneous adoption of intelligent neural networking 

and liner programming solves current obstacles to regionalisation policies by re-

distributing central funding. By doing so, we sustainably optimise the regional budgeting 

of the newly formed clusters. In relation to policymaking, the model’s advantage is the 

implementation of impactful environmental indicators for sustainable regional policies. As 

a result, our model advances clarity regarding the "rules of the game" for all stakeholders, 

budget distribution transparency for environmental planning, and dynamic interaction 

among regional stakeholders and natural resources. 
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Since the early 1990s, Ukraine’s revolving national budget deficits have led to 

systemic micro- and macro- socioeconomic blockages and centralised public policies 

(Tsimbos et al., 2011). This budget allocation policy preserves centralism, limiting rather 

than strengthening sustainable regionalisation in central and eastern European (CEE) 

countries (Schmidt et al., 2018). In addition, such policies restrain current regional 

consumption levels of natural resources in favour of optimal economic valuations 

according to centralised public policies (Jung, 2018).  

Reflecting on our study of hydro-economic imbalances in Ukraine, the trivial 

distribution of public funding has the potential to create ecological disasters for water 

supply networks (Papagiannis et al., 2018). Ukraine is a large country. In Ukrainian 

legislation, the term ‘region’ is frequently used to identify the territories of administrative 

areas centred on large regional cities (Pike et al., 2017; Constitution of Ukraine, Chapter 

IX: Territorial Structure of Ukraine, Article 143). Budget constraints confirm the status of 

each economic centre, reinforcing over-centralised core-periphery funding (Rodden et al., 

2003, Hajkowicz, 2009). Recently, with the emergence of international economic crises, 

budget constraints raise the problem of inefficient regional policies and inadequate funding 

allocations (Singh & Zammit, 2006; Dabrowski, 2014; Kyriacou et al., 2017). Most of the 

CEE countries, including Ukraine, demerit environment-driven regional planning, 

primarily because national reforms entail a very broad public policy agenda (Matei & 

Andrei, 2009). CEE countries’ agendas principally focus on the regional allocation of 

economic resources and competitive clusters, subject to national public policy thresholds 

(Isaksen, 2009). This is also evidenced by the concept of the ecological footprint (Nijkamp 

et al., 2004), which offers an alternative approach to the environmental development of 

Ukrainian regions.  

In our paper, we develop an artificial inteligent two-phased, environmental model 

of sustainable development that is subject to the level of availability of regional-based 
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natural resources. We prioritise environment-driven indicators, which include the land area 

of the natural reserves and national natural parks, green space areas for public use, air 

emissions, and raw water availability by region. We also incorporate economic indicators 

that include all capital-related investments for environmental protection. Finally, socially 

focused indicators include regional policy innovation with respect to the green economy 

and regional stakeholders’ well-being.  

The first phase of this model is to consider and normalise regional resources 

according to the environmental and socioeconomic indicators (see Table 1) in order to 

form sustainable clusters. This initial clustering phase classifies data from resource-based 

indicators into newly formed clusters that are subject to the constraints of local and 

neighbouring regional resources. More specifically, with the first phase of this model, we 

distribute the sustainable indicators, as vectors of similar characteristics, to all current 

neighbouring clusters to form a newly sustainable one. Similar multiple modelling 

approaches (Barrio et al., 2006) are used to predict the potential impacts of climate change 

on species’ distributions.   

The second phase of this model optimises the effects of the ‘triple bottom line’ of 

sustainability—environmental, social, and economic—within the newly formed clusters. 

As part of this, environmental indicators could intelligently contribute by balancing the 

availability of regional resources. Thus, we could potentially deviate from the current 

politically biased public funding policies (Pike et al., 2017). Our model results also 

highlight an environmental plan that hierarchically relates to diverse socioeconomic 

values.    

The novelty of our environmental model is that our cluster formations are 

targeting simultaneously to regional socioeconomic policies and sustainability needs of the 

rural stakeholders. Our AI design for environmental planning provides an integrated public 

policy perspective based on regional indicators. Therefore, our model’s innovative 
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approach contributes to the active participation of regional stakeholders in policymaking 

and potential collaborations among European countries (Wilshusen & MacDonald, 2017). 

Our hybrid model is designed for efficient environmental planning that recognises the 

dynamics of socioeconomic well-being (Smetschka & Gaube, 2020). 

In brief, the methodological contribution of this paper is to enrich the range of 

environmental science and policy methods, providing fertile grounds for sustainable 

growth optimisation based on a contemporary central government funding policy for CEE 

countries. The study’s impact is also particularly important for current centralised 

environmental planning policies, where lack of regional coordination is prominent 

(Schmidt et al., 2018; Schmidt, 2013; Rodhe & Strahl, 1995). 

Sustainable national thresholds in Ukraine should support a bilateral public policy 

system to preserve the environment and ensure ‘safe’ living conditions (Mykhnenko & 

Swain, 2010). Internationally, while the EU remains a centre of economic wealth, the 

nature of sustainable development reveals significant socioeconomic imbalances. A 

dynamic combination of environmental quality and socially responsible behaviour that 

values the sensible consumption of regional resources should underlie our research 

questions.  

Therefore, we are motivated to an integrated environmental elevation, for all 24 

Ukrainian regions, to the optimal sustainable national thresholds. The following are our 

research questions: 

Research question 1: Are current public regionalisation policies best for 

environmental planning and sustainable development? 

Research question 2:  Is it possible to plan environment-driven sustainable 

development by clustering regions according to the availability of their natural resources? 

Research question 3: Is it possible to optimise regional budgeting policies by 

coupling our environment-driven indicators to public budget constraints? 
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In short, we consider our model to be a hybrid, as the scientific methods adopted 

simultaneously enable linear algorithms and intelligent neural networking. 

 

2.  Methodology and Data 

The research methodology is informed by our systematic approach, both qualitative and 

quantitative, and was developed by the authors through a lengthy and complex 

communication process. The data-input for our model parameterisation refers to the 

official data in the annual statistical digest ‘Environment of Ukraine’ (Statistical Yearbook: 

Environment of Ukraine, 2016). Figure 1 illustrates our research approach. 

  

Fig. 1. The research approach 

 

At model phase one, according to our first research question, we are employing an 

artificial neural network (ANN): Kohonen's self-organizing map (SOM) algorithm (Faezy 

Razi & Shadloo, 2016). An ANN is a computational methodology, which allows 
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unsupervised learning and produces a low-dimensional, discrete representation of the 

training samples’ input space. As a result, it identifies each neuron in a unique location 

(row, column) on a two-dimensional space forming a SOM map (Chaudhary et al, 2014). 

An important reason for selecting Kohonen’s ANN methodology is that it features 

maximum transparency and objectivity. Therefore, the result of training depends only on 

the structure of the input data (e.g., environmental indicators), eliminating any externally 

biased policymaking (Rumelhart et al, 1986).   

In our Ukrainian input data, from 2010 to 2016, we select generally accepted 

environmental and socioeconomic impactful criteria that include availability of: i) green 

spaces; ii) air purity; iii) water resources; and iv) natural reserves (Statistical Yearbook: 

Environment of Ukraine, 2016). We use as input data these selected regional criteria, 

focusing on the natural resources’ availability level, to form optimal environmental and 

socioeconomic clusters. We normalise these seven-year-long input data, adjusting values 

measured on different scales to a notionally common scale, using the Statistica 12.0 

software tool. 

Thus, we produce a novel, multi-shape, output data-clustering map, which 

graphically represents our research analysis, according to SOM (Kohonen, 1982). The 

colour indicates the value’s magnitude, relating to the specific weight component of a 

vector. The vector’s weight is indicated from a neuron (i, j) that specifies a particular node 

on the SOM map (Kohonen, 1989). As a result, our input data defines the: i) topological 

relations; ii) activation function; and iii) number of neurons, which determine the scale, the 

colour or the granularity of the resulting model.  

At model phase two, according to our second and third research questions, we 

optimise our clustering maps. This multi-nodal optimisation method aims to plan 

sustainable regionalisation, considering regional environmentally focused resources, as 

resulted from model stage one. Although, it is subject to two mutually inclusive 
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algorithmic constraints. The first constraint refers to the multi-directional ‘movement’ of 

the spending of budget funds in SOM clusters. Contrary to the current core-periphery 

unidirectional budget allocation, SOM method allows multi-directional and multi-level 

budget allocation. The second constraint refers to the budget-constrained public policies’ 

approach that currently reflects the country’s economic plans. It allows budget allocation 

according to the selected environmental indicators (input data at phase one) lifting existing 

regional budget caps. Therefore, these two original model constraints form a type of 

transportation problem, which is common in linear programming (Reeb & Leavengood, 

2018). Consequently, we employ a U-V MODI (modified distribution) method, which 

allows us to prioritise and determine the budgeting stages and the flow of funds (Dantzig, 

1947; Limbore, 2013). Subject to the two constraints introduced in the phase two model, it 

enables dynamic interaction among our newly formed regional clusters. In addition, we 

adopted the U-V MODI method, rather than the simplex method, as it provides the optimal 

funding distribution numbers and the “stage-by-stage” order of their distribution. A step-

wise methodological process is critical for environmental policymaking (Knights et al., 

2014).   

Therefore, in accordance with our second research question, we optimise budget 

costs for environmental funds distribution from a number of ‘supply’ sources to optimise a 

number of ‘demand’ destinations, subject to budgetary constraints (Tulsian, 2006). As a 

result, we multilaterally cluster the Ukrainian regions following a type of environmental 

funds ‘transportation route’. This ‘transportation route’, based on a type of simplex method 

(U-V MODI) (Tiwari, 2006; Reeb & Leavengood, 2018), identifies demand cells (e.g., 

cells with their required costs for environmental protection per capita), and supply cells 

(e.g., actual capabilities of regional budgets), thus breaking down the actual costs incurred 

for sustainability-driven regional policymaking.  
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Finally, in order to satisfy our third research question, we simultaneously set a new 

minimisation objective function. This linear function minimises the total budget 

expenditures of central government. It creates a budget surplus from central funding 

policies, which we re-direct to regional economies. Thus, we maximise regional 

development based on central funding availability. This methodological approach 

contradicts the existing normative one, where regional developmental policies derive 

solely from regional funding. For optimal central government budget allocation we now set 

the health index in neuron C (i,j), as the cluster’s optimal distribution priority criterion. We 

formulate the objective minimisation function according to our U-V MODI algorithm 

(Babu et al, 2014). In this way, we are employing a linear function (see function 8) that 

aims to minimise the total expenditures from central government budgeting policies 

(Singiresu, 2009).  

Our methodological approach innovatively reforms regional funding policies, as 

instead of selecting the lowest cost indicator in the formed clusters, it selects the lowest 

environmental and social indicators (e.g., average health index/region) that comply with 

our objective function of budget cost availability (see Table 4). In addition, we source the 

regional funding from a central surplus, which we methodologically form, based on our 

minimisation function. As a result, we prioritise novel clusters with low environmental 

indicators in an effort to satisfy the triple bottom line of sustainability (Wilshusen and 

MacDonald, 2017).  

There are although certain limitations in our research. Firstly, there is an evident 

public policy need for wider and on time availability of environmental and social 

indicators in the Ukrainian regions to strengthen further our model. Secondly, the SOM 

scale selection is limited to the generalisation capability of the ANN algorithm and the 

SOM map produced. Thirdly, the SOM mapping juxtaposes generalisation and accuracy 

capabilities. Consequently, research studies (Kiang, 2001) recommend using the maximum 
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possible number of neurons in the map, as the initial SOM radius of neuro-training greatly 

affects the capacity for generalisation. Our scientifically acceptable compromise focuses 

on the actual number of SOM nodes (e.g., 24 Ukrainian regions).  

3. The Model 

Our environment-driven model for all Ukrainian regions is a dynamically parameterised 

place-based design for regional policies. Unlike natural systems, regional and urban 

ecosystems are not self-regulating and self-reproducing. Therefore, central and regional 

public policies formulate and implement territorial balance and development through 

specific means of regulation. Our two-phase model engages in the first phase the 

Kohonen’s ANN and SOM method. In the second phase, it engages the U-V MODI 

algorithmic method simultaneously introducing a minimisation function.  

The first phase of our planning model employs an algorithmic logic that relates our 

input data to the clustering process. Table 1 includes the model’s input data, which are the 

5 prominent environment-driven indicators for the 24 Ukrainian regions. The 5 indicators 

are: i) ecological purity of the land area; ii) the green places for public use; iii) the quality 

of drinking water; iv) air pollution; and v) the environmental funding in the region.   

              More specifically, in this first phase we enter, as input data, these 5 indicators (see 

Table 1) to the Kohonen’s SOM algorithm. We ensure normalisation by reducing the input 

data attributes’ values to a confident interval of Cij. Consequently, this self-learning 

algorithm (SOM) through multiple iterations, introduces newly formed clusters of Cij data, 

according to the 5 environmental indicators introduced.  Each newly formed cluster of Cij 

identifies a unique location, where row and column represent a two-dimensional space (see 

representation in Table 2). During creation and training, this self-learning intelligent 

algorithm forms a data array that includes the following input data attributes’ values: i) 

neuron ID; ii) neuron location in the clustering map; and iii) the value of the activation 

function in accordance with the incoming data. The SOM training goes through the 
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following three main processes in order to create the new clusters. The first process is 

competition, the second is cooperation and the third is adaptation (see SOM progress in 

Appendix A). The clustering results of this intelligent reformation are exhibited in Table 2. 

Concluding the first phase of our model, we construct a neutral space to introduce 

the 12 newly formed clusters. These 12 clusters are created from the integration of two or 

more regions, according to the 5 environmental indicators introduced (see Table 1). Our AI 

clustering approach, according to Kohonen's SOM, defines space by the neurons’ average 

activation function values (e.g., i, j). We display these 12 novel clusters in red-green-blue 

(RGB) colour in Table 2 and all summary clustering data in Table 5. Now, in Phase II 

these 12 environment-driven clusters enter the second and final reformation stage of 

optimisation. The optimally produced number of 12 clusters in Phase I is even. Therefore, 

in Phase II, we satisfy the U-V MODI method optimisation requirement for an even 

number of cells (see Table 3).  

Through the prism of the current EU economic crisis, our economic optimisation in 

phase II can inform a constrained core-peripheral policymaking for reducing costs in 

regional budgets. Therefore, it eliminates non-optimal financial directions. Instead, it 

identifies priority areas for rural environmental development by simultaneously 

eliminating the budget gaps between the actual, extant budget costs and the required 

budget costs. 

This formation is a variation of the transportation problem, where in logistics we 

simultaneously calculate the minimum transportation costs of goods and the optimal 

allocation of resources. It is a frequently adopted method in several scientific knowledge 

domains, including environmental engineering (Adhikari, 2014). This linear programming 

formulation is known as the Hitchcock-Koopmans problem (Singiresu, 2009). Thus, we 

engage the U-V MODI method to solve this optimisation problem. We already have 12 

clusters based on the 5 environmental indicators, which we need to optimise.  The 



13 

 

optimisation criterion is formed from an additional 6th indicator, which is the health 

index/region (see Table 6). It is the actual measurable result of the 5 environmental 

indicators forming our 12 clusters (see Table 2).  Consequently, according to the annual 

healthcare report in 2016, the health index/region indicator reports the regional average 

healthcare condition (Ukrainian Ministry of Health, 2017).  This 6th indicator accumulates 

a value, which is pertinent to our 5 environment-driven indicators, and inversely 

proportional to regional malady status (1/n), where n is the average annual number of 

illnesses/region (Ukrainian Ministry of Health, 2017).  

Therefore, we prepare an input data and clustering results (12 clusters) for our U-V 

MODI method in a matrix formation (see Table 3). In this second phase of our intelligent 

model, we consider phase I results as input data that facilitates the selection of regional 

priorities.  A transparent creation of a financing policy that embraces the following 

mandatory requisites per regional cluster: i) current costs for environmental protection; ii) 

required budget costs for environmental protection (needs); and iii) optimisation criteria. 

As a result, among the 12 clusters, we prioritise for regional funding the clusters with the 

minimum health index.  

In accordance with the U-V MODI method, we verify the economic optimality of 

the newly formed clusters (see Table 7) by introducing a linear programming function for 

prioritised funding in phase II.  This function aims to eliminate the budget gaps between 

the current budget costs and the required budget costs, as follows: 

𝑓(𝑥) = ∑ ∑ 𝐶𝑖𝑗𝑋𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1 → 𝑚𝑖𝑛, 𝑋𝑖𝑗 ≥ 0                            (1) 

where Xij - the amount of funding from the budget in i, j cluster,  

Cij – an optimisation criterion for a cluster. 

In accordance with the linear programming formula, variables: x11, x12, ..., x44 – 

denote the amount of funding from the budget in Xi,j cluster . Therefore, we have the linear 

formation of limitations on current budget costs, as follows: 
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x11 + x12 + x13 + x14 ≤ 424.90 (for i = 1 clusters); x21 + x22 + x23 + x24 ≤ 779.30 (for i = 2 

clusters); x31 + x32 + x33 + x34 ≤ 385.3 (for i = 3 clusters); x41 + x42 + x43 + x44 ≤ 1082.8 (for 

i = 4 clusters). 

Consequently, the clusters’ budget funding is formed as follows:  

x11 + x21 + x31 + x41 ≤ 4430.10 (for j = 1 clusters); x12 + x22 + x32 + x42 ≤ 664.82 (for j = 2 

clusters); x13 + x23 + x33 + x43 ≤ 1000.4 (for j = 3 clusters); x14 + x24 + x34 + x44 ≤ 1167.0 

(for j = 4 clusters). 

Finally, we formulate, as follows, the target function considering the sole matrix cells, 

where there is cluster availability: 

f(x) = 0.57x11 + 0.54x12 + 0.56x13 + 0.54x14 + 0.65x21 + 0.60x22 + 0.57x24 + 0.52x31 + 

0.52x33 + 0.44x41 + 0.53x42 + 0.49x44 → min                                       (2) 

More specifically, in cluster ID column we have the region of (1, 2) Lviv, 

Chernihiv. This region, as introduced in Table 7 and according to U-V MODI method, 

exhibits a value of 0.54 [424.90].  Therefore, in Table 3 the lowest average health values 

per cluster of Table 6: 0.44, 0.52, 0.54, 0.57 are prioritised as first funding priority in Table 

3, including (1, 2) Lviv, Chernihiv that requests funding of 424.90 for environmental 

protection. Consequently, we aim to methodologically ensure optimal funding, for this 

prioritised group of four clusters in Table 7, indicating the redistributed funds in the 

following sign: ‘[ ]’. So, on the one hand we have these four priorities (1-4), including: 

(4,1) Dnipropetrivsk, (3,1) Kharkiv and Mykolayiv, (1,2), Lviv and Chernihiv, and (2,4) 

Volyn. On the other hand, we have clusters like (4,4) Kyiv, Kherson, which we eliminate 

through this U-V optimisation. The reason for that elimination is the funding surplus they 

currently receive (115.56%), as our threshold funding value is set to 100% (see Table 3). 

The results of our environment-driven regionalisation model provide a series of 

interesting findings.  
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4. Results 

Our findings provide overwhelming evidence that a mutually inclusive, balanced existence 

can be obtained by averaging sustainable cluster values according to our AI model. The U-

V MODI algorithmic results reveal a sustainable regional design. The following are the 

model findings and results per phase: 

Phase I Results.  

As the algorithmic U-V MODI optimisation process pairs actual funding with requested 

funding, we notice a significant reformation. We find that the 24 Ukrainian regions (see 

Table 1) are integrated into 12 novel, environment-driven clusters. These are as follows: 

(4,1) Dnipropetrivsk (funding priority = 1); (3,1), which is a merger of Kharkiv and 

Mykolayiv (funding priority = 2); reformed (1,2), which is a merger of Lviv and Chernihiv 

(funding priority = 3); and reformed cluster (2,4) Volyn (funding priority = 4). The 

remaining clusters (5-12) are left out of the optimisation process, as these rule-based 

iterations selectively consider all table cells (see Table 7). Therefore, we ensure optimal 

regional sustainability by initiating the optimisation process with the smallest health index, 

0.44, cluster (4,1) (see Table 6). Simultaneously, we redistribute funding as we set the 

minimum threshold ai, or bj that is paired with the corresponding cell to 100%, eliminating 

extra funding. In addition, cluster ranking with networked priority allows us to discover 

rural environmental leaders and those who are lagging behind. 

Currently, the weakest regions in health index, like (4, 1) Dnipropetrivsk, receive 

funding for environmental planning at 514.60 UAH/per capita. Unfortunately, this is only 

30.3% of what regional stakeholders require (1696.90 UAH/capita). Based on their health 

index of 0.44, which is the lowest in the country, their regional well-being clearly needs 

sustainable improvement (see Table 4). Our model with the U-V MODI optimisation 

algorithm prioritises this region’s funding. It provides Dnipropetrivsk with funding in the 

amount of 1082.8 UAH/capita. This amount is more than twice its current funding, 



16 

 

approaching 63,8% of its funding requirement. Correspondingly, the optimisation 

algorithm produces novel funding hierarchies for all 12 environment-driven clusters (see 

Table 4). 

Phase II Results. 

Entering phase II, we noticed that all of the reformed clusters that entered the optimisation 

process could potentially receive a maximum of 100% budget coverage, as we eliminated 

any regions with excess funding (more than 100%). Additionally, our model ensures 

current budgeting for all regions, besides their sustainability profile  (see Table 6, changes 

in coverage column); we notice several regions receiving zero extra budgeting due to their 

low priority coefficient. As a result, we have minimised core-peripheral funding 

imbalances in Ukraine by eliminating overfunded regions like (4,4) Kyiv, Kherson, which 

includes Kyiv, the capital of Ukraine (see Table 6). In addition, we could further explore 

the progress of the final results with this indicative example: cluster (2,4) Volyn (see Table 

7) receives 779.30 UAH/capita but only requires 109.80 UAH/capita (see Table 6, Volyn). 

Consequently, in accordance with our linear formation of limitations on actual budget 

costs, the 669.5 UAH/capita in excess funding (779.30-109.80 = 669.5 UAH/capita)  x21 + 

x22 + x23 + x24 ≤ 779.30 (for i = 2 clusters) is distributed among the two remaining clusters 

(see Table 3). These clusters are cluster (2,2) Zakarpattya and cluster (2,1) Donetsk, 

Zaporizhizhya. Cluster x23 is not in the pattern (see Table 3). Therefore, we allocate the 

first available budgetary funds to cluster (2,2) Zakarpattya (102.56 UAH/capita) and then 

cluster (2,1) Donetsk, Zaporizhizhya receives (669.5 - 102.56 = 566.94 UAH/capita, 

764.4+566.94 = 1331.94 UAH/capita (see Table 4 results).  

The results seem promising for sustainable policymaking, since, according to linear 

optimisation rules, any failing cluster that exits the process offers its funds to the existing 

participating clusters with environmental funding requirements. Therefore, clusters and 

regions that did not receive any funding while optimising (see Table 7) will receive 
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funding on a residual basis, based on the Phase I environment-driven indicators and health 

index from 5-12 (see Table 4). Table 4 allows us to synoptically scrutinise our reformed U-

V MODI process (see Tables 3 to 7). We graphically exhibit the impact of our intelligent 

model in percentage of budget covered in Figure 2.  

 

Fig. 2. Environmental planning: Before and after situation 

Our model results exhibit the elimination of excess funding in certain regions, 

especially when others remain significantly underfunded. Therefore, as the results show, 

all regions secure 100% of their environmental funding. According to this planning 

approach, out of the 12 reformed regions, which were produced from the 5 environmental 

indicators, 9 increase their funding, 2 sustain their current funding, and only 1 receives less 

funding due to the excess funding (more than 100%) already received. Findings reveal a 

dynamic sustainable prioritisation, which encourages substantial changes in European and 

Ukrainian regional policies, based on the availability of impactful natural resource 

indicators (Qaderi & Babanezhad, 2017). Finally, the pre-eminent elements of this novel 

method’s results and findings are graphically summarised in Figure 3.  
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Fig. 3. Findings and results 

 

Overall, our AI model findings and results go beyond current public policymaking, 

as they decentralise environmental conservation forces, leading the EU actors to adopt 

regionally differentiated values in a transparent setup (Bailey & Caprotti, 2014). 

Ultimately, they could transform public policymaking in the maintenance of natural 

resources and potentially calm on-going policymaking debates relating to regional 

autonomy and sustainability in the CEE countries (Mella & Gazzola, 2018). 

5. Conclusion 

Is this environmental planning contribution significant to current EU cohesion policies? 

Yes, as we have supported our second and third research questions and discarded question 

one. Our AI model reflects on 6 micro- and macro- indicators and achieves optimal 

sustainable policymaking, empowering regional environmental development. In addition, it 

allows us to inspire cross-border policymaking, which transitions toward a new European 

cohesion paradigm from smart cities to sustainable cities and regions (Young & 

Lieberknecht, 2018). Its intelligent approach could exclude subjective influencing factors, 



19 

 

inspiring an objective view of sustainable public policies, not only in Ukraine, but also in 

the European Union.   

In relation to our third research question, model results reveal that it is possible to 

optimise the regional budgeting of the 12 newly formed clusters. Its AI algorithmic logic 

systematically optimises macro- and micro- indicators of sustainability. As a result, it 

diverges from the CEE countries’ centralised design, which unilaterally overwhelms 

regional policies. An economic increase for most of the newly formed clusters promotes 

environmental planning and sustainable policymaking. In addition, the simultaneous 

employment of ANN and optimisation algorithms multiplies the impact of the employed 

indicators, facilitating transparent regional innovation in public policies.  

In conclusion, we introduce an intelligent environmental plan that resists the 

‘noisy’ data, which lead to controversial public policymaking; ensures environmental 

funding flexibility, empowering regional stakeholders; and, facilitates intelligent learning. 

The model’s innovative design can provide multilateral flexibility and transparency for 

environmental planning, potential collaborative policymaking among European 

stakeholders, and transferability potential to similar EU countries. Employed as a regional 

policy tool, our model could deliver place-based programming that respects regional 

differentiation, promotes sustainable development, and uses selective prioritisation as a 

leading indicator for multilevel policymaking. 

The long-term benefits of this study focus on environment-driven equilibrium,  

flexible financing policies, and sustainable development. Our national paradigm also 

provides a developmental EU foundation that would increase European environmental 

cooperation. Finally, we would like to believe that our planning approach could signal a 

‘green’ cultural orientation, increase independence in policymaking, and motivate diverse 

sets of stakeholders to converge toward international sustainability-driven alliances. 
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Appendix A  

SOM Process I: Competition  

 Step 1: Initialisation. For all the vectors of synaptic weights, 

w𝑗 = [𝑤𝑗1, 𝑤𝑗2, . . . , 𝑤𝑗𝑚]𝑇 , 𝑗 = 1,2, . . . , 𝑙                                            (1) 

where l – is the total number of neurons, m – is the dimension of the input space, a random 

value from -1 to 1 is selected.  

Step 2: Sub-selection. Choose the vector x = [𝑥1, 𝑥2, . . . , 𝑥𝑚] from the input space. 
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Step 3: Search for a winning neuron. We find the most suitable (winning neuron) i(x) at 

step n, using the minimum Euclidean distance criterion (which is equivalent to the 

maximum of the scalar multiplication w𝑗
𝑇x): 

𝑖(x) = arg 𝑚𝑖𝑛
𝑗

‖x − w𝑗‖ ,    𝑗 = 1,2, . . . , 𝑙                                  (2) 

SOM Process II: Cooperation  

 The winning neuron is located in the centre of the topological neighbourhood of the 

‘cooperating’ neurons. The key question is: how to determine the so-called topological 

neighbourhood of the victorious neuron? For convenience, we denote it by the symbol: hj,i, 

with the centre in the winning neuron i. The topological neighbourhood must be 

symmetrical with respect to the maximum point determined when dj,i = 0, dj,i  is the lateral 

distance between the winning i and the neighboring neurons j. A typical example satisfying 

the condition above, hj,i is the Gaussian function: 

ℎ𝑗,𝑖 = exp (−
𝑑𝑗,𝑖

2

2𝜎2)                                                           (3) 

where σ – is the effective width. Lateral distance is defined as: 𝑑𝑗,𝑖
2 = |𝑟𝑗 − 𝑟𝑖|

2   

in one-dimensional and 𝑑𝑗,𝑖
2 = ‖𝑟𝑗 − 𝑟𝑖‖

2 in the two-dimensional case. Where rj determines 

the position of the excited neuron, and ri - the position of the winning neuron (in the case 

of a two-dimensional grid r = (x, y), where x and y are the coordinates of the neuron in the 

grid). SOM is characterised by a decrease in the topological neighborhood in the learning 

process. This can be achieved by changing σ according to the formula: 

𝜎(𝑛) = 𝜎0 exp (−
𝑛

𝜏1
) , 𝑛 = 0,1,2, …                            (4) 

where τ1 is a constant, n is the learning step, σ0 is the initial value of σ. 

The function hj,i at the end of the ANN SOM training phase should cover only the nearest 

neighbors. 

SOM Process III: Adaptation 
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 The adaptation process involves changing the synaptic weights of ANN. The change in the 

vector of weights of neuron j in the lattice can be expressed as follows: 

Δw𝑗 = 𝜂ℎ𝑗,𝑖(x − w𝑗)                                             (5) 

where η - learning speed parameter. 

As a result, we have the formula of the updated weights vector at the moment of time n: 

w𝑗(𝑛 + 1) = w𝑗(𝑛) + 𝜂(𝑛)ℎ𝑗,𝑖(𝑛)(x − w𝑗(𝑛))                                     (6) 

In the SOM learning algorithm, it is also recommended to change the learning speed 

parameter η depending on the step: 

𝜂(𝑛) = 𝜂0exp (−
𝑛

𝜏2
)𝑛 = 0,1,2, . ..                                               (7) 

where τ2 – is another SOM constant. After updating the scales, we return to step 2 and our 

process repeats cyclically.  

 


