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ABSTRACT 

Background: Chronic kidney failure (CKF) patients experience impaired functional 

cardiovascular reserve with reduced oxygen consumption at peak exercise (VO2peak). 

No studies have examined whether this is related to impaired cardiovascular 

compliance as a consequence of loss of adaptive structural alterations, resulting from 

chronic uremia or hypertension.  

Study Design: Prospective matched cohort study. 

Setting & Participants: We assessed CKF in parallel with patients with essential 

hypertension but without cardiovascular disease (CVD). The CKF subjects were either 

scheduled for kidney transplantation or transplant-waitlisted. 80 CKF and 80 essential 

hypertension subjects matched in age, sex and BMI were evaluated. 61 CKF patients 

(76.3%) were dialysis-dependent. 

Predictor: CKF versus essential hypertension without CVD. 

Measurements and outcomes: VO2peak was measured during maximal exercise 

testing. 2D-echocardiography and arterial applanation tonometry were performed prior 

to exercise testing. To evaluate for the difference in VO2peak between the study 

groups, statistically significant predictors of VO2peak in multiple regression models 

were additionally assessed by fitting models comprising the interaction term of patient 

group with the predictor variable of interest. 

Results: VO2peak was significantly lower in CKF than essential hypertension subjects 

(18.8 vs. 24.5 ml/min/kg, p<0.001). Independent predictors of VO2peak for CKF 

included LV filling pressure (E/mean e') (unstandardized regression coefficient, b=-5.1) 

and pulse wave velocity (PWV) (b=-4.0); in essential hypertension, these were LV 

mass index (b=0.2), LV end-diastolic volume index (LVEDVI) (b=0.4), peak heart rate 

(HR) (b=0.2) and PWV (b=-8.8). The interaction effect of VO2peak between patient 
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groups with LV mass index (∆B=-0.2, p<0.001), LVEDVI (∆B=-0.4, p<0.001) and peak 

HR (∆B=-0.1, p<0.01) were significantly stronger in the hypertension group whereby 

higher values led to greater VO2peak.  

Limitations: Skeletal muscle strength was not assessed. 

Conclusion: This study suggests that maladaptive LV changes as well as blunted 

chronotropic response are important mechanistic factors resulting in reduced 

cardiovascular reserve in CKF patients, beyond predominantly vascular changes 

associated with hypertension. 
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INTRODUCTION 

Patients with chronic kidney failure (CKF) are at high risk of cardiovascular 

disease (CVD)1.  Complex changes in both the cardiac and vascular systems result in 

structural and functional changes that can lead to reduced exercise tolerance, quality 

of life, increased morbidity and ultimately premature death2.  CKF causes arterial 

stiffening resulting in reducing arterial cushioning of phasic pressure changes3. The 

resulting increase in left ventricular (LV) afterload combined with a host of metabolic 

stimuli including inflammation, oxidative stress, renin-angiotensin system activation, 

changes in phosphate metabolism and production of FGF-23 promotes an increase in 

LV mass and reduced myocardial perfusion4 5-7. The hemodynamic sequelae of such 

morphological alterations imply a high cardiac energy expenditure and elevated 

oxygen consumption in the myocardium.  

The LV abnormalities in CKF reflect both myocyte hypertrophy and ultra-

structural changes such as myocardial fibrosis8. These changes result in impaired 

myocardial relaxation and elevation of LV filling pressure8,9. This impairment in 

diastolic function along with more subtle changes in systolic function leads to a high 

incidence of heart failure (HF)3,6,10 with a reduction in exercise capacity11.  Oxygen 

consumption at peak exercise (VO2peak) is a metric that provides an index of exercise 

capacity and represents the cardiovascular system’s ability to take up, distribute and 

utilize oxygen at maximal exercise.  Reduced values of VO2peak have been shown to 

predict prognosis in the HF population12,13.  Several studies have also demonstrated a 

reduced VO2peak in patients with CKF14-16 and this was also associated with poor 

survival14,17. The precise relationship between adverse structural alterations of the 

cardiovascular system and VO2peak in CKF patients is currently unknown.  

In this study, we hypothesized that increased LV mass, filling pressure and 
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arterial stiffness are associated with reduced VO2peak in patients with CKF. Using a 

control group of patients with treated essential hypertension but without CVD we also 

investigated the hypothesis that the main determinants of structural and functional 

cardiovascular changes and VO2peak in CKF are a result of mechanisms other than 

hypertension.  

 

METHODS 

Study Design and Clinical Data 

Inclusion criteria were patients aged ≥18 who were either waitlisted or 

scheduled for kidney transplantation at our center, University Hospitals Coventry and 

Warwickshire NHS Trust, United Kingdom. In parallel, individuals with treated 

essential hypertension but without evidence of CVD (HF, ischemic heart disease, 

cerebrovascular disease), diabetes or secondary causes of hypertension were 

recruited at random from the community through primary care database. In both 

groups, patients with pre-existing chronic lung disease were excluded.  All recruited 

patients underwent cardiopulmonary exercise testing (CPET), arterial applanation 

tonometry and a study-specified echocardiogram. For patients who were hemodialysis 

dependent, these assessments were carried out on the first non-dialysis day that was 

at least 12 hours after the last dialysis session in order to avoid the effects of 

hemodialysis-induced myocardial stunning18 and minimize the impact of volume load 

variability on the indices of cardiovascular structure and function19.  Between April 

2010 and December 2012, 150 CKF patients were screened and 136 individuals were 

included in the study (three unable to exercise due to physical limitations, eleven did 

not provide consent). Among the essential hypertension subjects, 80 individuals were 

recruited following the exclusion of 5 who had physical co-morbidities precluding 
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exercise testing. All blood samplings and clinical assessments (including office 

brachial blood pressure, echocardiography and vascular tonometry) were performed 

prior to exercise testing. The study was approved by the Black Country Research 

Ethics Committee (REC:09/H1202/113) and adhered to the Declaration of Helsinki. 

Written informed consent was obtained from all eligible participants. 

Cardiopulmonary Exercise Testing 

The CPET was conducted using an electronically braked, upright cycle 

ergometer to maximal tolerance incorporating an individualized work rate. An 

experienced blinded investigator carried out all exercise testing. Before each test, the 

equipment was calibrated using standard reference gases and a 3-litre syringe. Care 

was taken to ensure each study patient understood the maximal exercise test protocol. 

This included explanation of the anticipated early symptoms of lactic acid associated 

leg fatigue or discomfort that must not lead to premature cessation of pedaling or 

incremental loading. Each patient rested for 3 minutes followed by 3 minutes of 

unloaded pedaling prior to workload increments and continuous 12-lead ECG was 

recorded. Continuous breath-by-breath gas exchange analysis (VIASYS, 

MasterScreen CPX®, Hoechberg, Germany) was performed. All patients were 

repeatedly encouraged to continue until symptom limited volitional fatigue. 

The VO2 at the point of anaerobic threshold  (VO2AT) was determined by the V-

slope method in conjunction with analyses of the ventilatory equivalents and end-tidal 

gas tension plots20. VO2peak was measured as the highest VO2 achieved during the 

final 20-second averaging of peak exercise. The predicted VO2peak was determined 

by the Wasserman and Hansen equation20.  

Echocardiographic Study 

2-dimensional, Doppler and tissue Doppler transthoracic echocardiography was 
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performed using Vivid 7, GE Healthcare, Horten, Norway ultrasound system according 

to a standardized study protocol. Calculations included LV ejection fraction according 

to quantitative biplane Simpson’s method, LV end-diastolic volume, LV mass and left 

atrial (LA) volume. Mass and volume measures were indexed to body surface area. 

Tissue Doppler imaging of the mitral annulus, sequentially at the lateral and septal 

annular sites were obtained from the apical 4-chamber view. The ratio of early 

transmitral flow velocity to averaged annular (septal and lateral) mitral velocity 

(E/mean e') was taken as an estimate of LV filling pressure. All measurements were 

undertaken according to the American Society of Echocardiography21 and analyzed 

offline (EchoPac, GE Healthcare) by a blinded investigator. 

Evaluation of Vascular Compliance 

Pulse wave analysis was performed on the radial artery and aortic (carotid-

femoral) pulse wave velocity (PWV) was determined by sequential recording of ECG-

gated carotid and femoral waveforms using the high fidelity micromanometer (SPC-

301, Miller Instrument, Houston, Texas). As augmentation index is influenced by heart 

rate (HR), an index adjusted to a HR of 75 beats/minute (AIx75) was recorded22. All 

measurements were derived using a validated radial-to-aortic transfer function 

(SphygmoCor, AtCor Medical Pty Ltd, Australia). An experienced operator, masked to 

the echocardiographic and CPET data, made all measurements in triplicate. Mean 

values of all tonometric measurements were used for analysis.  

Statistical Methods 

CKF patients were initially matched to the essential hypertension without CVD 

subjects in age, sex and body mass index (BMI) in a 1:1 ratio using a propensity score 

matching algorithm 23,24. The dataset of a study population consisting of 80 patients in 

each group was subsequently analyzed. Data were presented as mean, median or 
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frequencies depending on the distribution and type of the variable. VO2peak corrected 

for body weight (ml VO2, min-1 kg-1) was the outcome variable of primary interest in 

this study and was therefore used as the dependent variable for regression modeling 

analyses.  

To identify important predictors of VO2peak a sequence of regression modeling 

analyses were conducted. First CKF and essential hypertension participant data was 

analyzed separately to determine the variables that were predictive of VO2peak within 

each group. Variables that were statistically significant (p<0.05) in the univariate 

analysis were included in the initial multiple linear regression modeling. Stepwise 

elimination, repeated with forward and backward variable selection techniques were 

performed to determine the most important predictors in a multiple regression model 

for each of the groups. Additional to the demographics (age, sex, and BMI), 

adjustments were also made for hemoglobin and duration of hypertension. Logarithmic 

transformation of non-normal distributed data was performed prior to regression 

analysis. Parameter estimate, standard error and 95% confidence interval (CI) were 

calculated for each variable.  

To evaluate the potential adaptive functional cardiovascular changes that 

account for the difference in VO2peak between the two patient groups, variables that 

were statistically significant predictors of VO2peak in multiple regression models were 

additionally assessed by fitting models comprising the interaction term of patient group 

(binary variable) with the predictor variable of interest. The estimate of the interaction 

effect is denoted ∆B and may be interpreted as the difference of the slopes of the 

predictor between the groups. These models were adjusted for age, sex, BMI, 

hemoglobin, duration of hypertension and β-blocker usage. All hypothesis tests were 

two sided and a p–value <0.05 was considered to indicate statistical significance. SAS 

software, version 9.3 (SAS Institute Inc.) was used. (See Supplementary extended 
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methods). 

 

RESULTS 

Clinical characteristics 

 Descriptive characteristics of all the study participants are presented in Table 1. 

CKF patients and subjects with essential hypertension without CVD were adequately 

matched in age (53.3 vs. 53.4 years, p=0.8), sex (male: 56.3 vs. 51.2%, p=0.2) and 

BMI (27.2 vs. 27.6 kg/m2, p=0.6). The use of β-blockers was higher in the CKF 

patients (32.5 vs. 13.8%, p<0.01). Hemoglobin (11.8 vs. 14.2 g/dl, p<0.001), albumin 

(4.4 vs. 4.7 g/dl, p<0.001), LDL-cholesterol (92.8 vs. 112.1 mg/dl, p<0.001) and 

glycated hemoglobin (HbA1c, 5.4 vs. 5.6%, p=0.02) were lower in the CKF patients 

compared to the essential hypertension group.   

 Echocardiographic and applanation tonometric findings of the two groups are 

summarized in Table 2. LV mass index was significantly higher in the CKF than the 

essential hypertension group (109.1 vs. 87.5 g/m2, p<0.001). LV end-diastolic volume 

index (LVEDVI, 48.3 vs. 44.8 ml/m2, p=0.1) was not significantly different between the 

groups. Criteria for LV hypertrophy were present more frequently in CKF patients than 

the hypertensive subjects (45.0 vs. 18.7%, p<0.001). The latter group had a higher LV 

ejection fraction (66.2 vs. 62.6%, p<0.01) than the CKF patients. The measures of 

vascular compliance were not significantly different in both groups.  

Functional cardiovascular reserve in CKF versus essential hypertension 

The metabolic measures of CPET for the two groups are shown in Table 3. All 

patients performed exercise to a level accompanied by a respiratory exchange ratio 

(RER, ratio of CO2 production to O2 consumption) of >1.15. The mean of RER at the 

point of VO2AT for the study populations was 0.9±0.1. Relative to the essential 
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hypertension subjects, the CKF patients had a significantly lower VO2peak (18.8 vs. 

24.5 ml min-1 kg-1, p<0.001; 73.4 vs. 92.9 % predicted, p<0.001) and VO2AT (11.2 vs. 

13.8 ml min-1 kg-1, p<0.001; 43.9 vs. 52.9 % predicted, p<0.001). Essential 

hypertension subjects achieved a longer endurance time (11.9 vs. 10.8 minute, 

p=0.001), tolerated a greater workload (159.9 vs. 106.3 Watt, p<0.001) and more 

reached their predicted peak HR (92.2 vs. 79.7%, p<0.001) compared to CKF 

individuals. 

Independent predictors of VO2peak  

Univariate linear regression analyses for the two groups are presented in Table 

4. Differences between the CKF and essential hypertension populations in the 

unstandardized regression coefficients (b) and estimated regression lines for 

regressing VO2peak onto individual cardiovascular measures are highlighted by 

Figure 1. Increasing LV mass index was positively associated with higher VO2peak in 

the essential hypertension subjects (b=0.21, p<0.001) but not in the CKF population 

(b=-0.01, p=0.9). Higher LVEDVI was associated with a significantly higher VO2peak 

in the hypertensives (b=0.41, p<0.001) but not in the CKF cohort (b=0.01, p=0.7). 

Higher LV filling pressure (E/mean e') was significantly negatively associated with 

VO2peak in the CKF (b=-5.10, p<0.001) but not in the essential hypertension cohort 

(b=-1.37, p=0.7). LV ejection fraction had no association with VO2peak in either group. 

Both AIx75 and PWV had an inverse relationship with VO2peak in the CKF as well as 

the essential hypertension cohorts. 

Cardiac structural variables and VO2peak in the multiple regression models 

 Results of multiple linear regression models for the CKF and essential 

hypertension without CVD populations are presented in Table 5. In the CKF 

population (adjusted R2=0.45), higher E/mean e' was significantly associated with a 
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lower VO2peak (b=-3.55, p=0.001) after adjusting for demographics, hemoglobin and 

duration of hypertension. In the essential hypertension cohort (adjusted R2=0.66), 

larger LVEDVI (b=0.21, p=0.002), LV mass index (b=0.10, p=0.01) and higher peak 

HR were significant predictors of higher VO2peak (b=0.12, p<0.001).  

Associations between cardiac structural variables and VO2peak 

 The effects of the cardiac structural variables on VO2peak in the two groups 

were compared in a model that included the group x predictor interaction terms, 

adjusting for demographics, hemoglobin and duration of hypertension. The regression 

slope for LV mass index predicting VO2peak was steeply more positive in the essential 

hypertension population compared to that of the CKF cohort (∆B=-0.17, 95% CI -0.24 

– -0.10, p<0.001) (Figure 2A). The regression slope for LVEDVI and VO2peak in the 

essential hypertension subjects was also significantly more positive than the CKF 

population (∆B=-0.36, 95% CI -0.47 – -0.24, p<0.001) (Figure 2B).  

Association of arterial stiffness and VO2peak 

 PWV and AIx75 were significant independent predictors of VO2peak in the CKF 

and the essential hypertension subjects (Figure 1E-F; Table 4). Importantly, the 

interaction effect between patient group and both measures of arterial stiffness was 

not significantly different adjusting for demographics, hemoglobin and duration of 

hypertension (Figure 2C-D). Therefore, there is no evidence to suggest that the 

association of arterial stiffness with VO2peak differs between the groups. 

Peak heart rate predicts VO2peak but this relationship is blunted in CKF 

 HR at peak exercise and oxygen pulse were higher among the essential 

hypertension subjects than the CKF cohort (Table 3). HR at peak exercise was also a 

significant independent and adjusted predictor of VO2peak in the essential 

hypertension but not among the CKF patients. The lower peak HR observed in the 
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CKF subjects could be related to a greater use of β-blocker (Table 1). Therefore, the 

effect of peak HR and oxygen pulse on VO2peak were each directly compared 

between the groups in a model that included the group x peak HR or group x oxygen 

pulse interaction terms, adjusting for β-blocker, demographics, hemoglobin and 

duration of hypertension. The regression slope of peak HR was steeper in the 

essential hypertension cohort compared to that of the CKF group (∆B=-0.11, 95% CI -

0.18 – -0.03, p<0.01) (Figure 3A). A similar relationship of oxygen pulse with VO2peak 

was also demonstrated by a steeper regression slope in the essential hypertension 

cohort than the CKF group (∆B=-0.37, 95% CI -0.68 – -0.06, p=0.02) (Figure 3B). 

 

DISCUSSION 

 To our knowledge, this is the first prospective study to evaluate measures of 

arterial-ventricular structure and function and their association with functional 

cardiovascular reserve in subjects with CKF.  While CPET has been used extensively 

in patients with HF, data on objective indices of cardiovascular reserve in patients with 

CKF are scarce. In this study, we have established that VO2peak in ambulant patients 

with CKF was reduced to under 75% of the predicted value.  We have previously 

demonstrated that reduced values of VO2peak, VO2AT and endurance time are 

associated with an increased risk of premature death among CKF patients17. The 

current study demonstrated that each of these parameters was significantly reduced in 

the CKF group compared to the cohort of essential hypertension without CVD. A 

comparable reduced value of VO2peak at 18.6 ml min-1 kg-1 was documented in two 

prior cycle ergometric studies of patients with CKD by Sietsema et al.14,25 but data on 

the percent-predicted VO2peak, VO2AT and other measures of cardiovascular reserve 

were not available for comparison. In comparison to the patients of Sietsma et al., the 

hemoglobin concentration of our patients was similar (11.8 vs. 11.2 g/dl), but our 
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patients were older (53.3 vs. 46.0 years), had a higher BMI (27.2 vs. 24.5 kg/m2) and a 

lower number of male patients (56.3 vs. 65.0 %); each of these factors might result in 

a lower VO2peak. However, lower prevalence of diabetes (15.0 vs. 18.5 %) and the 

shorter dialysis vintage in our CKF cohort (32.0 vs. 41.5 months) could positively 

impact upon effort tolerance14,25.  

Because the prevalence of hypertension in patients with CKF is near universal, 

we compared the results on our patients with CKF with those of a similar group of 

essential hypertension but without CVD in an effort to differentiate the cardiovascular 

effects of CKF from those of hypertension alone. LV mass was significantly greater in 

the CKF population than the hypertensive controls confirming previous reports that 

hypertension alone does not lead to the myocardial disease known as ‘uremic 

cardiomyopathy’8. The increase in LV mass although paralleled with the high 

prevalence of hypertension in CKF patients26 is thought to be a compensatory 

response to both sustained pressure and volume overload. According to the paradigm 

of adaptive ventricular response to chronic pressure overload in essential 

hypertension, progressive increase in LV mass with thickening of the ventricular wall 

that serves to stabilize and maintain normal wall stress is associated with an increased 

cardiac output and preload27,28. In this study, we demonstrated that incremental LV 

mass changes and end-diastolic volumes in the CKF subjects were not positively 

associated with increments in the VO2peak which contrasted significantly with the 

essential hypertension controls. Even though myocardial growth and remodeling may 

be dynamic adaptive processes that occur early in the course of kidney failure, 

sustained cardiac afterloads exacerbated by uremia in CKF patients could therefore 

lead progressively to maladaptive hypertrophy. A plausible mechanism for this finding 

is that ultra-structural changes within the myocardium such as capillary deficit, fibrillar 

collagen accumulation, fibrosis and calcification alter the compliance and contractility 
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of the LV in patients with CKF to a greater extent than occurs in hypertension resulting 

in a reduced functional cardiovascular reserve5,29   

While the LV ejection fraction in the CKF patients was significantly lower than 

that of hypertensive subjects, this was not predictive of VO2peak.  This finding is 

unsurprising as epidemiological data have shown that up to 50% of patients with HF in 

the absence of significant coronary artery disease have preserved LV ejection 

fraction30. The underlying hemodynamic mechanism leading to exercise intolerance, 

dyspnea and thereby reduced VO2peak31 in these patients is probably mediated at 

least in part by the increased diastolic LV stiffness32,33. A recent experimental study 

has also indicated that in uremia, the Na+/Ca2+ exchanger mediated calcium extrusion 

from the cytosol of cardiac myocytes is abnormally reduced resulting in impaired 

myocyte relaxation34. The uremic milieu itself may impact adversely on the functional 

cardiovascular reserve as the serum and ultrafiltrate of end-stage kidney disease 

patients have previously been shown to possess negative inotropic and chronotropic 

properties10,35. The latter could explain the blunted HR response to maximal exercise 

in CKF (Figure 3). The suggestion that uremic-related factors may cause blunting of 

the cardiovascular reserve is also supported by published data, albeit from small 

studies which documented improvement in VO2peak following kidney 

transplantation36,37 or augmentation of uremic clearance by intensive nocturnal 

hemodialysis38.  

Higher LV filling pressure was a powerful independent determinant of a reduced 

VO2peak in subjects with CKF.  The elevated LV filling pressure estimate provided by 

E/mean e' reflects the state of impaired cardiomyocyte relaxation39. In CKF, the 

cumulative burden of myocardial fibrosis and LV hypertrophy could cause a reduction 

in the mean e' velocity which further decreases with age40. The resulting impaired LV 

relaxation is a hallmark of diastolic dysfunction33 which has been shown to cause a 
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similar reduction in VO2peak as with systolic dysfunction according to HF studies31. 

We observed an inverse relationship between LV filling pressure and VO2peak in the 

CKF group which differed markedly from the essential hypertension controls.  

However, the similar measure of LV filling pressure in the two cohorts (Table 2) and 

the lack of association between LV filling pressure and VO2peak in the hypertensives 

suggest that additional mechanistic factors are responsible for the reduced functional 

cardiovascular reserve in CKF.  

 Indices of arterial stiffness were similar between the CKF and hypertensive 

cohorts (Table 2). PWV and AIx75 were significant independent predictors of VO2peak 

(Table 4) in both cohorts. Analysis of individual group interaction with each of the 

arterial measures demonstrated an inverse relationship with VO2peak in both cohorts 

that were not significantly different (Figure 2). Besides being an indirect index of 

arterial stiffness, AIx75 is a measure of pulse wave reflection that calculates how much 

of the central pulse pressure is attributable to accelerated pressure wave reflection41. 

This pathological wave reflection increases cardiac loading and prejudices the 

diastolic coronary perfusion41-43 which could aggravate the cardiovascular reserve. We 

postulate that the potential contribution of large artery compliance to functional 

cardiovascular reserve may, in part, be mediated by LV compliance44,45 and the loss of 

adaptive functional LV changes in the CKF.  

Limitations  

 Exercise training has been shown to improve VO2peak46 but data on muscle 

mass or strength were not collected in this study. Despite these, extensive evaluation 

of the ventricular-vascular function and dynamics were carried out resulting in novel 

and important information on how these cardiovascular alterations could adversely 

impact the VO2peak in CKF. Also, Painter et al.47 had previously shown that muscle 
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conditioning through supervised five-month exercise training and normalization of 

hematocrit improved but failed to normalize VO2peak in hemodialysis-dependent 

patients, indicating other physiological contributors to the reduced cardiovascular 

reserve in these patients. 

In conclusion, our study shows that there are complex cardiovascular 

alterations in CKF that are associated with reduced functional cardiovascular reserve. 

Our findings provide a pathophysiological background for appreciating the association 

between the maladaptive ventricular-vascular dynamics and reduced VO2peak in CKF.  
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Figure Legends 
 

Figure 1: Scatterplots of cardiovascular measures with VO2peak among the  

CKF and essential hypertension (HTN) cohorts 

Grey circles represent the HTN cohort and the black circles represent the CKF cohort. 

The dashed and straight lines are unadjusted regression lines for the CKF and the 

HTN cohorts respectively. b, unstandardized regression coefficient: change in ml 

VO2peak, min-1 kg-1 per one unit change of variable. aLog-transformed. *p–value<0.05. 

 

Figure 2: Difference of changes in VO2peak with LV mass index (A), LVEDVI (B) and  

arterial stiffness (C, D) between the CKF and essential hypertension (HTN) 

cohorts 

∆B is the difference in the parameter estimates between the regression lines for the 

HTN and CKF groups. Group interaction with LV mass index (A), LVEDVI (B), PWV 

(C) and AIx75 (D) were adjusted for demographics, hemoglobin and duration of 

hypertension. Dash line=HTN, straight line=CKF. aLog-transformed. *p–value<0.05. 

 

Figure 3: Changes in VO2peak with peak HR (A) and oxygen pulse (B) differ between  

      the CKF and essential hypertension (HTN) cohorts 

∆B is the difference in the parameter estimates between the regression lines for HTN 

and CKF groups. Group interaction with peak HR (A) and oxygen pulse (B) were 

adjusted for β-blocker usage, demographics, hemoglobin and duration of 

hypertension. Dash line=HTN, straight line=CKF. *p–value<0.05.  
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Supplementary Materials 
 
 
Supplementary extended methods 

- Clinical Data 

- Evaluation of Vascular Compliance 

- Statistical Methods 

 

Table S1: Characteristics of the CKF cohort 

Data are mean ± SD, median (IQR) or frequencies (%). P–value by independent-samples 

t-test or Mann-Whitney U (continuous variables) and χ
2
 (categorical variables). BMI, body 

mass index; BP, blood pressure; ACEi, angiotensin-converting-enzyme inhibitor; ARB, 

angiotensin-receptor blocker; eGFR, estimated glomerular filtration rate; HbA1c, glycated 

hemoglobin; LDL, low density lipoprotein (in mg/dl to mmol/l, x0.02586). Phosphate in 

mg/dl to mmol/l, x0.3229; creatinine in mg/dl to μmol/l, x88.4. *p–value<0.05. 

 

Table S2: Multiple regression analysis of VO2peak in the CKF and the essential  

hypertension populations 

aAll models adjusted for demographic variables age, sex, BMI, hemoglobin and 

duration of hypertension. bLog-transformed prior to analysis. b, unstandardized 

regression coefficient: change in ml VO2peak, min-1 kg-1 per one unit change of 

variable. †Final model derived through variable selection process from variables in 

models. *p–value<0.05. 
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Table 1: Characteristics of the study population 

Variables †CKF (n=80) HTN (n=80) p–value 

Age, years 53.3 ± 9.1 53.4 ± 8.2 0.8 

Male, n (%) 45 (56.3) 41 (51.2) 0.2 

BMI, kg/m2 27.2 ± 4.7 27.6 ± 3.6 0.6 

Smoking, n (%) 41 (51.3) 43 (53.7) 0.8 

Hypertension, n (%) 71 (88.8) 80 (100.0) <0.01* 

Duration of hypertension, months 120 (48 – 228) 60 (36 -120) 0.02* 

Systolic BP, mm Hg 135.8 ± 23.9 140.9 ± 12.8 0.1 

Diastolic BP, mm Hg 79.1 ± 11.6 85.4 ± 9.8 0.001* 

Pulse pressure, mm Hg 57.0 ± 18.3 55.5 ± 12.1 0.5 

Antihypertensives    

  ACEi/ARB, n (%) 25 (31.3) 47 (58.8) <0.001* 

  Calcium antagonist, n (%) 42 (52.5) 34 (42.5) 0.2 

  β-blocker, n (%) 26 (32.5) 11 (13.8) <0.01* 

  Diuretics, n (%) 12 (15.0) 35 (43.8) <0.001* 

Co-morbidities    

  Diabetes mellitus, n (%) 12 (15.0) 0  

  Prior cardiovascular disease, n (%) 10 (12.5) 0  

  Dialysis, n (%) 61 (76.3) 0  

       Dialysis vintage, months 32 (15 – 60) -  

       Urea reduction ratio, % 69.8 ± 8.6 -  

Biochemical    

  Creatinine, mg/dl - 0.8 ± 0.2  

  eGFR, ml/min/1.73m2 - 92.6 ± 15.2  

  Hemoglobin, g/dl 11.8 ± 1.3 14.2 ± 1.2 <0.001* 

  C-reactive protein, mg/dl 0.3 (0.0 – 0.7) 0.3 (0.3 – 0.4) 0.8 

  Albumin, g/dl 4.4 (4.2 – 4.5) 4.7 (4.6 – 4.8) <0.001* 

  Phosphate, mg/dl 4.6 (3.7 – 5.3) 3.4 (3.1 – 3.7) <0.001* 

  HbA1c, % 5.4 (5.2 – 5.9) 5.6 (5.4 – 5.9) 0.02* 

  LDL cholesterol, mg/dl 92.8 ± 38.7 112.1 ± 34.8 <0.001* 

Data are mean ± SD, median (IQR) or frequencies (%). P–value by paired-samples t-test or 

Wilcoxon (continuous variables) and χ
2
 (categorical variables). BMI, body mass index; BP, 

blood pressure; ACEi, angiotensin-converting-enzyme inhibitor; ARB, angiotensin-receptor 

blocker; eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin; LDL, low 

density lipoprotein (in mg/dl to mmol/l, x0.02586). Phosphate in mg/dl to mmol/l, x0.3229; 

creatinine in mg/dl to μmol/l, x88.4.  †
For clinical characteristics of dialysis-dependent and 
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non-dialysis CKF cohort, please refer to Table S1 (supplementary). *p–value<0.05. 
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Table 2: Measures of cardiac function and vascular compliance 

Variables CKF (n=80) HTN (n=80) p–value 

Cardiac     

  LV mass index, g/m2 109.1 ± 33.4 87.5 ± 17.1 <0.001* 

  LV geometry, n (%)   <0.001* 

    Normal geometry 12 (15.0) 27 (33.7)  

    Concentric remodeling 32 (40.0) 38 (47.6)  

    Concentric hypertrophy 24 (30.0) 6 (7.5)  

    Eccentric hypertrophy 12 (15.0) 9 (11.2)  

  LVEDVI, ml/m2 48.3 ± 18.1 44.8 ± 10.1 0.1 

  LA volume index, ml/m2 25.4 (18.6 – 31.6) 25.7 (19.8 – 30.5) 0.7 

  LV ejection fraction, % 62.6 ± 7.9 66.2 ± 5.7 <0.01* 

  Transmitral E/A 0.8 (0.7 – 1.0) 1.0 (0.8 – 1.2) <0.001* 

  Deceleration time, ms 222.4 ± 64.6 202.0 ± 50.4 0.03* 

  Mean e', m/s 8.6 ± 2.2 8.9 ± 2.2 0.4 

  E/mean e' 8.3 (6.6 – 10.5) 8.3 (7.0 – 9.1) 0.2 

Vascular    

  Tr, ms 135.7 ± 11.8 137.4 ± 12.2 0.4 

  AIx75, % 26.9 ± 11.8 25.4 ± 11.9 0.5 

  PWV (m/s) 8.4 (7.3 – 9.7) 8.5 (7.9 – 9.6) 0.4 

  Ea, mmHg/ml 2.6 ± 1.2 2.4 ± 0.7 0.09 

Data are mean ± SD, median (IQR) or frequencies (%). P–value by paired-samples t-test or 

Wilcoxon (continuous variables) and χ
2
 (categorical variables). LV, left ventricular; LVEDVI, LV 

end-diastolic volume index; LA, left atrium; E/A, the ratio of peak early to late transmitral 

ventricular filling velocities; mean e', averaged septal and lateral annular mitral velocity; Tr, 

time to reflection; AIx75, augmentation index adjusted to heart rate of 75 beats/min; PWV, 

pulse wave velocity; Ea, arterial elastance. *p–value<0.05. 
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Table 3: Measures of functional cardiovascular reserve 

Data are mean ± SD and median (IQR). P–value by paired-samples t-test or Wilcoxon test. 

VO2peak, oxygen consumption at peak exercise; VO2AT, oxygen consumption at the point of 

anerobic threshold; VE-VCO2, ventilatory equivalent for carbon dioxide; RER, respiratory 

exchange ratio of CO2 production to O2 consumption; HR, heart rate. *p–value<0.05. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variables CKF (n=80) HTN (n=80) p–value 

VO2peak, ml min-1 kg-1 18.8 ± 4.1 24.5 ± 7.1 <0.001* 

VO2peak, % predicted 73.4 ± 15.0 92.9 ± 20.4 <0.001* 

VO2AT, ml min-1 kg-1 11.2 ± 2.1 13.8 ± 3.6 <0.001* 

VO2AT, % predicted VO2peak 43.9 ± 8.7 52.9 ± 11.4 <0.001* 

VE-VCO2 slope 29.3 (27.4 – 33.9) 28.5 (26.7 – 30.9) 0.06 

Maximal work load, Watt 106.4 ± 38.8 159.3 ± 59.9 <0.001* 

Endurance time, min 10.8 (9.2 – 12.1) 11.9 (10.5 – 12.8) 0.003* 

RER at VO2AT 0.9 ± 0.1 0.9 ± 0.1 0.7 

RER at peak exercise  1.3 ± 0.1 1.2 ± 0.1 <0.001* 

HR at peak exercise, beat min-1 132.8 ± 22.5 155.4 ± 19.4 <0.001* 

HR at peak exercise,% predicted 79.7 ± 12.9 92.2 ± 14.1 <0.001* 

Oxygen pulse, ml O2 min-1 10.4 (9.0 – 14.0) 11.7 (9.1 – 14.8) 0.04* 
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Table 4: Univariate regression analysis of VO2peak in the study population   

Variables 
CKF HTN 

b 95% CI b 95% CI 

Age -0.08 -0.18 – 0.02 -0.34 -0.53 – -0.16† 

Sex (Female) -2.89 -4.61 – -1.17† -6.48 -9.35 – -3.61† 

BMI -0.16 -0.35 – 0.03 -0.11 -0.56 – 0.34 

Smoking (Ever) -0.73 -2.54 – 1.09 -1.40 -4.62 – 1.81 

Duration of hypertension -0.01 -0.02 - -0.01¥ -0.01 -0.02 – 0.02 

Diabetes (Present) -1.64 -4.16 – 0.89 - - 

Dialysis vintage -0.01 -0.04 – 0.01 - - 

HR at peak exercise 0.02 -0.02 – 0.07 0.17 0.10 – 0.25† 

AIx75 -0.10 -0.17 – -0.02‡ -0.23 -0.35 – -0.10† 

aPWV -3.96 -7.53 – -0.40¥ -8.77 -16.77 – -0.78¥ 

LV mass index -0.01 -0.03 – 0.03 0.21 0.13 – 0.30† 

LA volume index -0.05 -0.13 – 0.03 0.07 -0.15 – 0.28 

LV ejection fraction 0.05 -0.07 – 0.16 -0.22  -0.50 – 0.06 

LVEDVI 0.01 -0.04 – 0.06 0.41 0.28 – 0.54† 

Transmitral E/A -2.90 -5.76 – 0.04 6.45 0.95 – 11.94¥ 

aE/mean e' -5.10 -7.40 – -2.81† -1.37 -8.97 – 6.22 

Hemoglobin 0.72 0.05 – 1.39¥ 1.45 0.14 – 2.76¥ 

C-reactive protein -0.05 -0.13 – 0.03 -0.55 -1.55 – 0.46 

Albumin 0.26 -0.03 – 0.56 0.91 0.18 – 1.64¥ 

Phosphate -1.49 -3.68 – 0.69 -4.25 -10.10 – 1.61 

HbA1c -0.56 -1.55 – 0.43 -4.00 -8.32 – 0.32 

LDL cholesterol -0.27 -1.21 – 0.66 -0.47 -2.35 – 1.41 

Urine PCR 0.00 -0.01 – 0.01 -0.06 -0.15 – 0.04 

a
Log-transformed prior to analysis. b, unstandardized regression coefficient: change in ml 

VO2peak, min-1 kg-1 per one unit change of variable. Statistical significance of the 

regression coefficient as determined by p–value: ≤0.001
†
, ≤0.01

‡
, <0.05

¥
. 
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Table 5: Multiple regression analysis of VO2peak in the CKF and the essential   

    hypertension populations 

aModels b 
Standard 

Error 
95% CI p–value 

CKF (n = 80); (unadjusted R2 = 0.51, adjusted R2 = 0.45) 

    Intercept 33.18 5.64 21.90 – 44.46 <0.001* 

    bE/mean e' -3.55 1.05 -5.66 – -1.45 0.001* 

    AIx75 -0.07 0.04 -0.15 – 0.02 0.1 

    bPWV -1.31 1.67 -4.66 – 2.03 0.4 

Essential hypertension (n = 80); (unadjusted R2 = 0.71, adjusted R2 = 0.66) 

    Intercept -12.02 18.26 -48.52 – 24.47 0.5 

    Transmitral E/A 1.76 2.12 -2.47 – 5.99 0.4 

    LVEDVI 0.21 0.07 0.09 – 0.34 0.002* 

    LV mass index 0.10 0.04 0.02 – 0.17 0.01* 

    AIx75 -0.06 0.06 -0.17 – 0.05 0.3 

      bPWV -1.97 3.03 -8.02 – 4.09 0.5 

    HR at peak exercise 0.12 0.03 0.07 – 0.18 <0.001* 

    Albumin 0.24 0.27 -0.30 – 0.79 0.4 

 a
All models including final models (see Table S2 - supplementary) adjusted for 

demographic variables age, sex, BMI, hemoglobin and duration of hypertension. 
b
Log-

transformed prior to analysis. b, unstandardized regression coefficient: change in ml 

VO2peak, min-1 kg-1 per one unit change of variable.  *p–value<0.05. 

 
 
 

 

 

 

 

 


