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Tropical peatlands in Southeast Asia are important ecosystems that play a crucial role

in global biogeochemical cycles, with a potential for strong climate feedback loops.

The degradation of tropical peatlands due to the expansion of oil palm plantations and

their impact on biodiversity and the carbon balance is a global concern. The majority of

conversion of Southeast Asian peatlands to agriculture has been by smallholder oil palm

farmers, who follow more varied cropping systems compared to industrial plantations,

and have better scope for expansion of other alternative varied cropping systems if

supported and encouraged. Using previously-published data on peat physicochemical

properties, biodiversity and greenhouse gas emissions from small-holder oil palm

plantations, we determined that prolonged oil palm monocropping for two generations

would result in loss of carbon and peat functional properties that may lead to potential

declassification of peatlands.We propose intercropping during the early stages of oil palm

as a wise alternative for already-existing plantations in tropical peatlands to ameliorate

some of the negative environmental impacts of oil palm on the physio-chemical properties

of peat. However, we emphasize the need to more fully explore the sustainability of

intercropping systems throughout the life cycle of palm plantations on peatlands, and

integrate with current management practices. We also emphasize the further need for

research to fully assess the impacts of oil palm intercropping compared to widely-

practiced oil palmmonocropping. Finally, we suggest changes in government certification

policies to encourage intercropping practices by smallholders.

Keywords: tropical peatlands, oil palm plantations, intercropping, carbon dioxide, methane, biodiversity, palm oil

certification

INTRODUCTION

Tropical peatlands are important for their ecosystem services and distinct endemic biodiversity
due to unique acidic, nutrient-poor, and waterlogged conditions (Sjögersten et al., 2011; Dohong
et al., 2017). Anoxic conditions inhibit aerobic microbial activity and drive the accumulation
of partially-decomposed plant organic materials, resulting in substantial carbon storage
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(Parish et al., 2008; Miettinen et al., 2012; Hodgkins et al., 2018).
Under undisturbed conditions, tropical peatland acts as a
long-term carbon sink and plays a crucial role in global carbon
cycling, with the potential for strong climate feedback loops
(Dommain et al., 2014; Sjögersten et al., 2014). Peatlands are
frequently converted to agricultural production areas, which
necessitates lowering of the water table by artificial drainage.
Anthropogenic drainage switches peatlands from carbon sinks
to carbon sources due to cessation of peat accumulation and
enhanced aerobic peat decomposition (Hooijer et al., 2012;
Dommain et al., 2018; Leifeld et al., 2019). This land use change
is particularly widespread in Southeast Asian peatlands, where
already 7.8 million ha (50%) were converted to agricultural areas
by 2015 (Miettinen et al., 2016). Southeast Asia has the greatest
proportion of tropical peatlands, with net carbon storage of 69
Gt (Page et al., 2011). This region also faces some of the highest
rates of deforestation in the twenty first century (Hansen et al.,
2013; Page and Hooijer, 2016). Approximately 25% of all forest
degradation in the region occurs in peatlands (Lo and Parish,
2013). Oil palm, an important crop for food, cosmetic and
energy needs, is behind much of this rapid change in the region
(Miettinen and Liew, 2010; Koh et al., 2011). Oil palm is also
expected to expand to other carbon rich tropical peatlands in
the Americas and Africa with increasing global population and
demand (Sayer et al., 2012).

Oil palm is native to West Africa and was first introduced
to Southeast Asia as an ornamental plant, but expanded to
an industrial scale that covers most of the cultivated area in
Malaysia and Indonesia (Sheil et al., 2009). Oil palm plantations
contributed to 75% of peat forest loss in Peninsular Malaysia,
Sumatra and Borneo, between 2007 and 2015 (Miettinen et al.,
2016). Although most of these large-scale land-use changes
are associated with industrial oil palm plantations, there is
considerable cover from smallholder oil palm plantations in
Southeast Asia (Miettinen et al., 2016). However, before 2010
small-holder plantations had a slightly greater cover than
industrial plantations in the region (Wijedasa et al., 2018).
These smallholder plantations generally follow less intensive
management practices by comparison to industrial oil palm
plantations, but practices can vary greatly between land owners
(Azhar et al., 2011). The smallholder plantations generally lack
infrastructure for water table monitoring and thus may have
less intensive drainage than industrial plantations (Dommain
et al., 2016). Whilst almost all of the industrial plantations are
under monocropping, the smallholder plantations tend to plant
other crops, with 39% of independent smallholders and 9% of
managed smallholders in a recent survey planting another crop
(intercropping) in their oil palm fields, out of 300 respondents in
6 different regions in Peninsular Malaysia (Saadun et al., 2018).
In spite of industrial plantations’ omission of intercropping
due to the complexity in mechanizing farm management and
potential lower yield of oil palm, smallholders tend to practice
intercropping for subsistence and extra income between oil
palm fruiting cycles (Nchanji et al., 2016). An extensive study
covering 18,000 ha of smallholders plantations in Peninsular
Malaysia by Yahya et al. (2017) found no significant differences
between monocropping and intercropping systems in terms of

understorey vegetation cover or height. However, canopy cover,
epiphyte cover and oil palm age and height were significantly
reduced in intercropping systems (Yahya et al., 2017).

Industrial oil palm plantations started in the late 1970s but
did not expand to peatlands until more recently around 1990s
and accelerated throughout the 2000s (Miettinen et al., 2012;
Shevade and Loboda, 2019). From the land cover data provided
by Miettinen et al. (2012, 2016), with average oil palm cropping
cycle of 25–30 years (Luskin and Potts, 2011), it is very likely
that most of the oil palm plantations currently in peatlands
are in their first generation or in the early stages of a second
generation. There is therefore a lack of environmental data
describing changes in peat properties following the introduction
of a second oil palm generation, as well as a more general sparsity
of data on variations between cropping systems in peatlands.
In this article, we review the impacts of prolonged oil palm
monocropping and discuss oil palm intercropping systems as an
environmentally wiser use alternative for oil palmmonocropping
in peatlands.

While there have been several recent efforts to restore
disturbed peatlands back to peat swamp forest, a vast majority
remains as agriculture, primarily on repetitive cycles of oil
palm and acacia (Miettinen et al., 2016; Shevade and Loboda,
2019). Considering that there are increasing numbers of oil palm
plantation in peatlands getting into their second generation, there
is a need to understand the impacts of subsequent generations on
peat properties and carbon storage. Furthermore, any approaches
to mitigate the substantial carbon losses and minimize the
impacts of continued cultivation should be viewed as a wiser
(though not sustainable) management of peatlands in the longer
term. This has significant consequences for smallholder farmers
who regularly practice mixed and polyculture agriculture.
As such, here we briefly discuss the ameliorating effects
of intercropping (alley cropping) over monocropping on
peat properties, resultant emissions of greenhouse gases, and
biodiversity, putting the work of multiple studies in the context
of management strategies for oil palm. Taken together, these
studies also cast concern over the sustainability of peat in such
plantations after two generations of monocropping, potentially
leading to the gradual disappearance of peat in all such oil
palm plantations on peatlands, and our findings suggest that
intercropping may slow this process.

IMPACTS OF OIL PALM ON PEAT
PROPERTIES- AMELIORATION OF PEAT
DEGRADATION

The FAO (1988) describes bulk density as arguably the most
important intrinsic peat characteristic, as it is also a characteristic
that is closely related to many other defining peat properties,
and widely used for classification and categorization of peat.
For the establishment of oil palm plantations, peatlands are
drained, completely cleared of vegetation and usually compacted
(Luskin and Potts, 2011). In addition, drainage exposes peat to
oxygen, increasing decomposition and bulk density. Thus, it is
unsurprising that first generation plantations have double the
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bulk density observed in other peat land uses, including drained,
burnt peatlands and some agricultural open areas (Firdaus et al.,
2010; Kononen et al., 2015; Tonks et al., 2017; Dhandapani
et al., 2019a). The FAO (1988) describes the range for bulk
density in tropical peatlands as between 0.05 and 0.5 g cm−3. The
observed bulk density by Dhandapani et al. (2019a) in second
generation monocropping at 0.43 g cm−3 is quite close to the
FAO’s described higher limit for tropical peat. However, in spite
of all the studied agricultural sites being in one single peat dome
and close together, only being few hundred meters away from
each other, second generation intercropping system maintained
the same bulk density as the first generation intercropping or
lower (Table 1).

This significant change in bulk density may both influence,
and be influenced by, other defining peat characteristics such
as organic matter content and moisture retention. The loss of
organic matter content due to increased decomposition over
time, along withmechanical compaction in agriculture peatlands,
results in reduced porosity and denser peat, showing a strong
correlation between loss of organic matter content and increased
bulk density (Tonks et al., 2017). Not surprisingly, second
generation monocropping had decreased organic content and
greatest bulk density among studied cropping systems. First
generation plantations have similar level of organic matter
content as secondary peat forest (Tonks et al., 2017; Dhandapani
et al., 2019c). However, that dramatically changes when the
monocropping is continued to 2nd generation (see example
data in Table 1). This may be due to the increased drainage in
monocropping possibly leading to peat subsidence, without any
addition of peat forming organic material which would normally
occur within a peat swamp forest (Yule and Gomez, 2009).
Monthly monitoring of 2 oil palm and pineapple intercropping
systems and 3 oil palm monocropping systems in the same
peat dome from August 2018 to September 2019, show average
water table for intercropping systems to be 50.6 ± 5.6 and for
monocropping systems to be 69.1 ± 5.4 (Dhandapani and Evers,
Unpublished). During the same monitoring period one of the
other intercropping systems was converted to monocropping,
with additional drainage ditches dug within the plantation
during the conversion (Dhandapani et al. Unpublished). As
a general practice in the Selangor region, intercropping do
not contain additional ditches running within the plantations,
unlike monocropping systems (see Dhandapani et al., 2019a,b)
(Dhandapani, Pers. Obs.). Thus the practice of this less severe
drainage in intercropping systems has the potential to mitigate
some of the longer-term impacts (Dhandapani et al., 2019a).
Whereas, owing to possible increased peat subsidence and the
reduced, homogenous and easily degradable C input to soil
from monocropping (Guillaume et al., 2016; Kerdraon et al.,
2020), organic matter content in the second generation oil palm
intercropping was ∼54%, which does not meet the required 65%
defined by the regional government organizations and followed
by the Roundtable on Sustainable PalmOil (RSPO) (Firdaus et al.,
2010; RSPO, 2019). It also barely passes some other published
definitions that describe 45% organic content requirement for
tropical peatlands (Osaki et al., 2016). This specific property
effectively declassifies the studied 2nd generation monocropping

as non-peatland system for sustainability certification and
government regulations.

Volumetric moisture content was low in monocropping of
both generations, with only second generation monocropping
showing significant and big difference between seasons
(Dhandapani et al., 2019a). The intercropping systems also
showed significant seasonal reduction in moisture in the dry
season (Dhandapani et al., 2019a). This may be due to increased
evaporation in these systems with an open canopy than the
first generation oil palm with a closed canopy. Even bigger
differences in moisture between seasons for second generation
monocropping may be due to the effect of high bulk density on
water retention, as after an intermediate threshold, increased
bulk density linearly relates to decreased moisture (Archer and
Smith, 1973).

Oil palm monocropping have been reported by some studies
to have lower CH4 emissions than natural peatlands, while
others showing contradictory effect (Melling et al., 2005b;
Hassler et al., 2015). Published reviews have not reported
strong land-use effects, however lower emissions generally
related to lower water table and lower litter addition in such
peatlands (Hirano et al., 2009; Couwenberg et al., 2010).
Similar studies for intercropping are scarce, which is evident
from the published reviews of Greenhouse gas emissions or
oil palm in tropical peatlands that do not include any oil
palm intercropping (Couwenberg et al., 2010; Melling and
Hansen, 2011; Evers et al., 2017), however some reviews have
mentioned mixed croplands and shrub lands without a specific
focus on oil palm intercropping (Hergoualc’h and Verchot,
2011, 2014). CH4 emissions in pineapple intercropping sites
were higher than the monocropping sites, although they are
relatively low in comparison to CO2 emissions, and their
relative contribution to net greenhouse gas emissions is low
(Figure 1). However, CH4 emissions in intercropping sites are
still lower than 2mg m−2hr−1 fluxes observed in primary peat
swamp forest in Peninsular Malaysia (Dhandapani et al., 2019c).
Considering these agricultural peatlands are drained, with oil
palm monocropping having more severe drainage, there is a
potential for greater methane emissions from drainage canals
(Manning et al., 2019).

Other than our mentioned studies, there is general lack
of research on the biogeochemical impacts of oil palm
intercropping. Further studies on peat biogeochemistry of these
landscapes are needed to fully assess the environmental impacts
of oil palm intercropping relative to other land-uses, oil palm
monocropping in particular.

IMPACTS OF OIL PALM ON
BIODIVERSITY—AMELIORATION OF
BIODIVERSITY LOSS

Oil palm monocropping severely affect vertebrate and
invertebrate biodiversity in South East Asia (Fitzherbert
et al., 2008; Danielsen et al., 2009; Dhandapani, 2015). This
is particularly important in tropical peatlands that are home
to unique endemic biodiversity such as Borneo roundleaf bat,
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TABLE 1 | Surface (0–5 cm) peat properties.

Properties Season 1st generation

oil palm

2nd generation

oil palm and yam

2nd generation oil

palm and pineapple

2nd generation

oil palm

Oil palm age (years) – 15 1 1–2 3–5

Peat depth (m) – 2.5–3.0 1.5–2.0 2–2.5 0.3–0.5

Coordinates – 3o25′25.8N

101 o20′12.9′′
3o25′22.7N

101 o18′46.7′′
3o25′20.6N

101 o19′56.6′′
3o24′51.3N

101 o19′42.7′′

Peat temperature (◦C) Wet 29.3 ± 0.2 28.9 ± 0.2 28.3 ± 0.1 28.1 ± 0.1

Dry 29.2 ± 0.1 29.6 ± 0.1 27.9 ± 0.1 28.7 ± 0.1

Volumetric moisture (%) Wet 29.4 ± 4 40.4 ± 1.5 73.4 ± 2.5 46.0 ± 1.5

Dry 30.9 ± 1.8 33.1 ± 1.4 56.0 ± 1.7 24.4 ± 1.1

pH Wet 2.76 ± 0.03 3.48 ± 0.09 3.16 ± 0.04 3.38 ± 0.05

Dry 3.34 ± 0.02 3.48 ± 0.06 3.00 ± 0.02 3.73 ± 0.03

Organic matter (%) – 83.8 ± 0.6 80.9 ± 1.3 88.9 ± 0.7 54.4 ± 1.2

Total carbon (%) – 51.0 ± 1.4 46.3 ± 2.9 60.2 ± 2.4 26.4 ± 1.7

Total nitrogen (%) – 2.0 ± 0.1 1.5 ± 0.1 2.3 ± 0.2 0.8 ± 0.1

Bulk density (g cm−3 ) – 0.32 ± 0.01 0.32 ± 0.01 0.28 ± 0.01 0.43 ± 0.01

Data derived from Dhandapani et al. (2019a). Means ± one SEM.

FIGURE 1 | CO2 and CH4 fluxes from 1st and 2nd generation oil palm monoculture, 2nd generation oil palm and yam intercropping, and 2nd generation oil palm and

pineapple intercropping. Data derived from Dhandapani et al. (2019a,b) containing 150 random measurement for each land use, excluding the known data (27

measurements) with autotrophic contributions in 1st generation oil palm monocropping (Dhandapani et al., 2019b). Means ± one SEM. Data in blue represents wet

season and red represent dry season.

tri-colored langur etc. (Yule, 2010). Oil palm, being a non-native
crop, has brought in several invasive pest species that adversely
affect the endemic biodiversity (Dhandapani, 2015). It cannot
be overstated that maintenance of healthy biodiversity is crucial
for the long-term sustainability of an ecosystem and its services,
including agricultural ecosystems (Dislich et al., 2017; Ashraf
et al., 2018). Intercropping of oil palm plants with other crops

automatically increased the plant diversity and provided an
increased range of microhabitats that were beneficial for bats
(Syafiq et al., 2016), invertebrates (Ghazali et al., 2016; Ashraf
et al., 2018), and birds (Yahya et al., 2017). These studies included
wide varieties of intercrops such as pineapple, banana, tapioca,
sugarcane, corn and jackfruit, and included non-peat soils (Syafiq
et al., 2016). Intercropping with flowering plants such as banana
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was particularly beneficial for frugivorous bats (Ghazali et al.,
2016), even though they did not have a similar significant impacts
on fruit feeding butterflies (Asmah et al., 2017). Moreover there
was no big difference in community composition and abundance
for some of the surveyed biodiversity groups (Ghazali et al., 2016;
Asmah et al., 2017), nor a mention of intercropping supporting
crucial forest species. However, all of those studies suggest that
increased habitat complexity with intercropping or polyculture,
as a better management practice than oil palm monocropping
for improving biodiversity.

POLICY AND MANAGEMENT
RECOMMENDATIONS

It is clear that second generation oil palmmonocropping systems
differ significantly from other peat land use, and continuation
of such oil palm monocropping can quicken the potential
declassification of such peatlands. We suggest that natural
peatlands irrespective of their degree of degradation, should
not be converted to oil palm monocropping, due to high peat
carbon loss and changes in habitat characteristics. There is a
need for a new classification unit for these transformed and
newly mineralized ex-peatlands, which are going to increase in
cover in coming decades with progressive generations of oil
palm mono-culture.

Almost all of the oil palm intercropping is practiced by
smallholders (Adila et al., 2017) (Dhandapani, pers. obs.),
where the farmers see opportunity for additional income
between the palm oil production cycles. However, small holding
plantations and industrial plantations differ greatly in terms
of manpower, availability of industrial equipment, financial
spending and technical expertise, that may be the cause of lower
yields in smallholder oil palm plantations (Azhar et al., 2011).
Intercropping may not be a convenient option for industrial
plantation which use industrial equipment for planting and
harvesting. However, the total productivity of intercropping vs.
monocropping oil palm plantations is not well-documented.
Moreover, the price of crude oil palm has been decreasing
since 2016, and intercropping may provide some extra income
from the land for the smallholders, supporting their socio-
economic sustainability.

We envisage paludiculture that maintains high water table
inhibits aerobic decomposition as a way forward in truly
sustaining already converted peatlands. However, considering
the current extensive cover of oil palm plantations in peatlands,
intercropping may be a wise short term alternative. Existing
smallholder plantations could be better managed by practicing
intercropping and polyculture that reduces the need for drainage,
and improves and diversifies carbon inputs because of inputs
from the intercrops. However, it is highly unlikely that carbon
inputs from any crops would support peat formation, considering
even some of the forest species lack the chemical complexity
needed for peat accumulation (Yule and Gomez, 2009).
Moreover, Oil palm intercropping should be incentivised and
encouraged for existing plantations in peatlands for prolonging
peat organic matter properties under oil palm agriculture.

Intercropping is, in the majority, practiced by smallholder
plantations, yet certifications are mostly unaffordable for such
smallholders (Azhar et al., 2017). Certification of smallholder
oil palm produced from intercropping systems should therefore
be incentivized or made more affordable for small holders,
which may well be more “sustainable” than certified palm oil
from industrial monocropping in peatlands. A change in policy
to support easier certification for small holding plantations
may have a significant impact, especially considering 40% of
the world oil palm production comes from smallholding oil
palm plantations (Azhar et al., 2017). However, smallholders
commonly use fire as a management practice, which may offset
any ameliorating properties of intercropping by reducing the C
content to half and doubling the GHG emissions in fire affected
areas compared to nearby unburnt areas (Dhandapani and
Evers, unpublished). Additionally there is a need for increased
awareness about the advantages of intercropping systems, as it is
evident from the survey of Saadun et al. (2018) which showed that
independent smallholders who were better educated had a higher
percentage of intercropping in their plantations than lesser
educated managed smallholders. Managed smallholders are also
dependent on government subsidies and are subjected to several
government restrictions on farm management and oil palm sales
(Saadun et al., 2018). Intercropping should be promoted as a
short-term alternative by the responsible government agencies to
the managed smallholders and further subsidized.

REMAINING RESEARCH QUESTIONS

This work indicates several future areas for research, First,
paludiculture is widely discussed as a sustainable alternative to
other drainage based agriculture in peatlands (Tata, 2019). Even
though there are several native crops suitable for paludiculture,
the environmental, economical and social impacts, and viability
of transforming oil palm agriculture to paludiculture is yet to
be fully researched. Second, oil palm in intercropping sites in
the reported studies were below 3 years of age (Dhandapani
et al., 2019a,b). Intercropping may not be possible when oil palm
plants mature, the canopy closes, and light becomes restricted
for the understorey. These intercropping systems should be
assessed further if they are converted from intercropping to
oil palm monocropping to understand whether intercropping
at initial stages of oil palm is beneficial to peat properties and
the environment in the longer term. Third, while the impacts
of intercropping on CO2 and CH4 fluxes have been observed,
there is no data available on the impacts of conversion on N2O
fluxes. This represents a key knowledge gap because N2O has
a global warming potential up to 298 times CO2 over a 100-
year time scale, and both monocropping and intercropping sites
are known to receive regular inputs of organic and inorganic
fertilizers, frequently in excess of recommended application rates
(Hashidoko et al., 2008; Oktarita et al., 2017). Fourth, root
exudates and oxygen are key regulators of emissions in intact
tropical peatlands (Hoyos-Santillan et al., 2016; Girkin et al.,
2018a,b). However, it is unclear if the same processes apply in
converted oil palm sites or the role of inputs from intercropping
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species. Fifth, broad-scale changes in organic matter chemistry
have previously been reported on conversion of primary forest
to oil palm plantations and between conversion stages (Tonks
et al., 2017; Cooper et al., 2019). Organic matter properties
have also been shown to vary significantly at small spatial scales
within intact tropical peat swamp forests (Girkin et al., 2019).
Dhandapani et al. (2019b) reported changes in surface peat
properties, microbial phenotypic community structure and GHG
emissions depending on sampling proximity to oil palm and
other intercrops. However, the detailed impacts of intercropping
and their rhizospheres on organic matter chemistry throughout
the peat profile, and changes between palm oil generations
remain to be explored. Sixth, several studies report higher total
CO2 emissions in forest than in oil palm plantation (Melling
et al., 2005a,c; Dhandapani et al., 2019a), however that might
very well be due to the near 100% extra autotrophic contribution
in the forest habitats (Hergoualc’h et al., 2017; Murdiyarso
et al., 2017). There is an increasing need to differentiate
heterotrophic and autotrophic CO2 emissions in total CO2

emissions, as only heterotrophic contribution accounts for long-
term carbon loss, while autotrophic contribution is a product of
root respiration in immediate photosynthetic cycle. This becomes
increasingly difficult due to the limited number of studies
reporting the autotrophic and heterotrophic contribution to total
CO2 emissions in these complex ecosystems (Melling et al., 2013;
Dariah et al., 2014; Matysek et al., 2017; Girkin et al., 2018c).

Thus, intercropping represents a management practice with
high potential for ameliorating some adverse effects from oil
palm plantations, although several key research questions remain
to be addressed. There is also a need for more research to

understand a variations in smallholder intercropping practices
on local and regional level. However, it is clear that overall
maintaining carbon stocks and preserving intact peatlands
should be a priority.
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