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Abstract

Cepheid variable stars have long been used as distance indicators due to their strong

period-luminosity relation. However, the period of a Cepheid is affected by its metal-

licity so any difference in metal-content between calibration Cepheids and Cepheids

being used for distance measure would lead to a systematic error in the distance calcu-

lated. Metallicity measurements are traditionally achieved by spectroscopic analysis

but this can lead to considerable uncertainties. Therefore, the first part of this thesis

looks at using double-mode, or beat, Cepheids to measure metallicity. Specifically, to

measure the metallicity gradient across the Triangulum galaxy, M33. Beat Cepheids

can be used to trace metallicity because their period ratio is sensitive to metal abun-

dance which is well described by pulsation models.

To find variable stars, image subtraction techniques are applied to observations of two

separate datasets of M33. PSF fitting photometry is carried out on the data to produce

calibrated light curves. The is also done to cross-calibrate the two datasets but an

amplitude discrepancy arises in many of the Cepheid light curves. This amplitude

problem is not caused by mismatching of the stars between the datasets, via either

pixel matching or WCS coordinate transform. Nor is there any correlation with the

Cepheid position in M33. Further investigation, beyond the scope of this thesis, into

this issue is required.
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The amplitudes are corrected using a scaling factor so that an Analysis of Variance

routine can be applied on the light curves to find Cepheid periods. Cepheids are only

kept if the ratio between their two strongest periods lies within an appropriate range.

3 beat Cepheids are found, on top of another 5 already known beat Cepheids, in M33.

The metallicities of the beat Cepheids are determined by comparing the period ratios

with beat Cepheids of known metallicity in the Milky Way and Magellanic Clouds.

The galactocentric distances of the stars are determined by deprojecting their celes-

tial coordinates with M33’s inclination and position angles along with the distance.

Therefore, the metallicity of M33 as a function of radius can be immediately obtained,

yielding the metallicity gradient across the galaxy. Using this method the metallicity

gradient of M33 is found to be steeper than measurements made by recent spectro-

scopic analysis of HII regions. This is more in line with what is expected from recent

work deriving the Cepheid Period-Luminosity relation for M33.

There exists a period-age relation for Cepheid variable stars. The second part of the

thesis aims to derive this empirically using observations of 6 stellar clusters in the

Large Magellanic Cloud. The age for each cluster is taken from literature and were

determined by Isochrone fitting. The same image subtraction techniques as used on the

M33 data are used to find Cepheids and their periods in the LMC clusters. Cepheids

are only considered to be cluster members if they fall within the half-light radius of

the cluster and have proper motions matching their host cluster. The mean periods

of the Cepheids in each cluster along with the cluster ages is then used to derive the

period-age relation.

The period-age relation derived here shows a steeper gradient than those produced by

models or previous empirical derivations. There is a large spread in periods of the

Cepheids in any given cluster that increases inversely with cluster age. This effect

cannot be replicated if the cluster’s population is recreated with a single stellar model.
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However, the period spread can be described using stellar models of multiple initial

rotation rates.

LAWRENCE ANTONY SHORT JUNE 25, 2020
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Chapter 1

Introduction

1.1 Stars as Distance Indicators

Humanity has long looked up to the stars and wondered of our place in the Universe.

For millennia a geocentric model was accepted with the Sun and planets orbiting the

Earth. As telescopes improved with the advancement of lens manufacture, Galileo

Galilei could begin to observe the Solar System and Galaxy in much greater detail.

However, measuring the scale of our corner of the Galaxy remained elusive.

1.1.1 Stellar Parallax

During the Earth’s orbit of the Sun nearby stars seem to follow a similar elliptical

orbit while the more distant background stars appear to be fixed in place. Taking two

measurements 6 months apart gives a baseline of 2 astronomical units (AU), where

1 AU is the average distance between the Earth and the Sun, making it possible to

measure the angle, θ, that the star has appeared to move on the sky. This is twice the

parallax angle and is inversely proportional to the distance to the star. Therefore, it

1



1.1. Stars as Distance Indicators 2

Figure 1.1: Determining stellar distance by trigonometric parallax. Where AU stands for as-
tronomical unit and 1 AU is the distance from the Earth to the Sun. Produced for this thesis.

becomes a basic trigonometric problem as shown in Figure 1.1. Setting the distance

between the Earth and Sun, r, to 1 AU, measuring the parallax angle, p, in units of

arcseconds, as well as taking into account the small angle approximation, the distance

to the star in question, d, is yielded in parsecs (pc) as in Equation 1.1. Where 1 parsec

is the distance to a would be object with a parallax angle of 1 arcsecond (1”).

d =
r

tan( θ
2
)
→ 1

p
(1.1)

Before parallax measurements could be made the distance to the Sun needed to be
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accurately determined. In the early 18th century Edmond Halley surmised that by

observing the transit of Venus across the Sun one could infer the size of the Solar

System but Halley died well before the next transit of Venus was due to take place.

The 1760’s saw Venus transit the Sun twice leading to a global concerted effort to

observe the transits from multiple locations around the world which allowed Jerome

Lalande to determine a precise distance to the Sun. This meant that it would now be

possible to measure the parallax angle of another star. Then in the following century

breakthrough came when the first ever measurement of stellar parallax was conducted

by Friedrich Bessel (1838) who successfully determined the distance to the nearby star

61 Cygni. However, ground-based parallax measurements are realistically limited to a

precision of ∼0.01”, even in good seeing conditions, limiting distance measurements

to a few tens of pc. To increase precision, space-based measurements are needed.

Hipparcos

The Hipparcos mission was launched by ESA in 1989 and until its termination in

1993 it measured precise positions and parallaxes of over a hundred thousand stars.

Hipparcoswas able to measure down to a precision of a few milli-arcseconds meaning

that distances of several hundred pc could be determined (ESA, 1997). The first release

of Hipparcos data also included trigonometric parallaxes for 223 classical Cepheids

variables within the Galaxy (Feast and Catchpole, 1997). These measurements were

used to calibrate the zero-point of the Cepheid Period-Luminosity (PL) relation which

allows for distance measurements of tens of Mpc. The Cepheid Period-Luminosity

relation or Leavitt Law is discussed in chapter section 1.1.2.
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Gaia

ESA’s follow-up to Hipparcos is the Gaia mission which was launched in December

2013 (Gaia Collaboration et al., 2016). Gaia is able to measure positions and paral-

laxes with a precision between 10 and 100 µarcseconds leading to distances up to ten

thousand parsecs (Gaia Collaboration et al., 2018). Due to the fact that Gaia surveys

the entire sky as well as possessing excellent astrometric precision it is able to measure

positions and velocities of stars not only in the Milky Way but also in nearby galaxies

such as the Magellanic Clouds meaning that cluster membership of Magellanic Cloud

Cepheids could be determined from the Gaia data releases, this will be discussed in

detail chapter section 4.4.

However, parallax measurements are limited to distances in our Galaxy even with the

most accurate astrometric methods available today. In order to measure to greater dis-

tances another method was needed. This came in the form of the correlation between

the period and luminosity of Cepheid variable stars.

1.1.2 The Leavitt Law

Henrietta Leavitt (1908) had been given the task of finding variable stars1 whilst work-

ing as a ‘Computer’ at the Harvard College Observatory. The ‘Harvard Computers’

were a group of women hired by the Harvard College Director, Edward Pickering,

to analyse large quantities of astronomical data, many of whom went on to publish

significant findings and make important contributions to the field of astronomy (So-

bel, 2018). To find the variable stars Leavitt used a ‘blink comparator’ which rapidly

flashes between two images causing any objects that vary in magnitude to appear as
1A variable star is a star whose brightness or magnitude increases and decreases on a regular period

of time that can easily be measured, hence the name variable.
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‘blinking’ points. Leavitt identified several thousand of these objects and started to

wonder if there was a relationship between the length of the period and the luminosity,

which is the star’s intrinsic brightness or its absolute magnitude (M ). Unfortunately it

is not possible to tell the absolute magnitude of a star just by looking. Instead only the

apparent magnitude (m), how bright an object seems to someone observing, can be de-

termined. In order to calculate the distance to an object something called the ‘distance

modulus’, µ, is used. This is how distance d, in parsecs, to an object is measured by

calculating the difference between the apparent magnitude and absolute magnitude of

a celestial object as in Equation 1.2.

µ = m−M = 5 log10(d)− 5 (1.2)

For this reason Leavitt looked at a specific type of variable star called a Cepheid that

inhabited the Small Magellanic Cloud (SMC) as all of its stars are roughly at the same

distance. She then plotted the apparent magnitude of 25 Cepheid Variables against

the logarithm of the length of their period, as shown in Figure 1.2, and found a linear

relation that is known as the period-magnitude or period-luminosity (PL) relation but

is now commonly referred to as the ‘Leavitt Law’ (LL) (Leavitt and Pickering, 1912).

The absolute magnitude of Galactic Cepheid variables was known, so by assuming this

value was universal, a method of calibrating the distance to any population containing

a Cepheid variable had been found by using the distance modulus equation.

Type Ia Supernova Calibration

In order to measure out to even further distances standard candles brighter than Cepheids

are required. This is where Type Ia Supernovae (SNe) enter the picture as they are

bright enough that they can be observed at distances of Gpc and the maximum lumi-
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Figure 1.2: Small Magellanic Cloud (SMC) Cepheid period-magnitude relation taken from the
paper by Leavitt and Pickering (1912), the panel on the left shows the apparent magnitude on
the y-axis with the period of the Cepheids in days on the x-axis and the panel to the right has
the same y-axis but the x-axis shows the logarithm of the period.

nosity of their light curves was thought to be ubiquitous. However, it was found that

not all SNe reach the same peak brightness but a correction can be applied so that they

can be used as standard candles. This is known as the Phillips (1993) relation which is

determined from the rate of decline of SNe Ia light curves. Furthermore, for them to

be useful they need to be calibrated. This is achieved by observing SNe in relatively

nearby galaxies that also contain observable Cepheids so that their distance modulus

(eq. 1.2) is known from the Leavitt Law (Sandage et al., 1992).

So far only a snapshot of distance measurement astronomy has been presented, the

following section briefly introduces a few other methods. Figure 1.3 shows how these

different methods are related and where Cepheids fit in.
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1.1.3 Cosmological Distance Ladder

Hertzsprung-Russell Diagram

The main tool for studying stars is the Hertzsprung-Russell Diagram (HRD) or Colour-

Magnitude Diagram (CMD), where the effective surface temperature (Teff ) or colour

of a star is plotted against its luminosity or absolute magnitude. Stars of different types

(i.e. stars in different evolutionary stages due to age or mass) each occupy special

regions on a HRD or CMD. An array of a star’s characteristics, its mass, structure,

spectral class etc. can be understood by identifying the position of a star on these dia-

grams. One of the key regions on is the main-sequence2 (MS) which can be fitted with

isochrones3 in order to infer their distance modulus (eq. 1.2). Another useful position

is the tip of the red giant branch4 (TRGB) as it has been found that the absolute bolo-

metric magnitude5 varies by only ∼0.1 magnitudes independent of age and chemical

composition (Lee et al., 1993; Salaris and Cassisi, 1997).

Variable Star Methods

As well as Cepheids other types of variable star exhibit a PL relation such as RR Lyrae

(RRL) and Mira variables, variable stars will be discussed in more detail in section

1.2. The PL relation is not the only way to infer distances from variable stars. Another

method was developed by Walter Baade (1926) and Adriaan Wesselink (1946), they

showed that from the magnitude changes of a Cepheid due to its pulsation, it is possible

to obtain the change in the star’s diameter. The Baade-Wesselink method6 relies on the

fact that variable stars physically expand and contract over the course of their pulsation

2Core Hydrogen burning stars.
3Modelled curves on the HRD showing a population of stars at a constant age and composition.
4The brightest point on the red giant branch marking the onset of Helium fusion in the core.
5The magnitude of the star taking into account electromagnetic radiation at all wavelengths.
6Sometimes referred to as the ‘pulsation parallax’.
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period. This means that not only does the star’s brightness change but also its radial

velocity, which can be measured via spectroscopic methods allowing for the star’s

radius to be determined. This is achieved by calculating the change in radius from

the time integration of its velocity curve and fractional radial changes from periodic

variations in the star’s spectrum and brightness (Di Benedetto, 1997). The spectrum

also yields the effective temperature of the star therefore its luminosity is obtained as:

L = 4πR2σT 4
eff (1.3)

where σ is the Stefan-Boltzman constant7. The luminosity is related to absolute magni-

tude and the star’s apparent magnitude is determined from the flux (F) measured from

Earth. It is possible to estimate a direct distance from these two measurements via:

d =

√
L

4πF
. (1.4)

Galaxies

Distant galaxies in which individual stars cannot be resolved can also be used for dis-

tance measurement. If a distant galaxy is observed with a certain angular resolution

and split into even resolution elements, each section would contain an average number

of unresolved stars with an average luminosity. However, each resolution element will

not actually contain the same number of stars so Poisson fluctuations occur in the flux

measurements of each section across a galaxy. These surface brightness fluctuations

(SBF) scale inversely with distance and so the more distant a galaxy the smoother it

appears to be (Tonry and Schneider, 1988). The Tully-Fisher relationship uses the

properties of a spiral galaxy in order to estimate its distance. The main idea being that

7σ = 5.67× 10−8Wm−2K−4
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as galaxies are self-gravitating systems they would follow the virial theorem. In this

scenario that means that the more mass in a system i.e. the more massive a galaxy, the

faster the stars would orbit its galactic centre. The higher a star’s velocity the larger

the width of its spectral lines, therefore, a direct link between spectral line width and

virial mass can be made. The other key assumption is that the luminosity of a galaxy

scales with mass. Once the luminosity of a galaxy is determined the distance can be

inferred as with previous methods (Tully and Fisher, 2009). However, both of these

approaches are very much reliant on local distance calibration i.e. via the Leavitt Law.

The Hubble Constant

The ultimate goal of distance measurement is to understand the true scale and age

of the Universe. Edwin Hubble (1929) set the ball rolling by discovering that galactic

distances are related to their recession velocities inasmuch as the further away a galaxy

is the faster it is moving away from us. By plotting the distance to other galaxies in the

Local Group and beyond (determined from Cepheids) against velocity measurements

Hubble calculated an expansion rate for the Universe in units of velocity per distance,

now referred to as the Hubble constant (H0). Therefore, the inverse of H0 is in units of

time and is known as the Hubble time, or age of the Universe. Since then, great efforts

have been made to improve upon the value of H0. The most recent and probably most

famous attempts were made by NASA’s WMAP8 (Komatsu et al., 2011) and the ESA’s

Planck mission (The Planck Collaboration, 2006), whose chief objectives were to

observe properties of the Cosmic Microwave Background9 (CMB) in order to reduce

the uncertainty on H0. One way is the Sunyaev-Zel’dovich (SZ) effect, in which a

fraction of CMB photons are scattered by high-energy gas in galaxy clusters causing a

8Wilkinson Microwave Anisotropy Probe
9The now cooled remnant of the first radiation that could travel freely about the Universe.
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shift in their wavelength (Zeldovich and Sunyaev, 1969). As well as the gravitational

lensing of CMB photons by massive structures as predicted by Albert Einstein’s (1915)

theory of general relativity.

The Hubble Constant Discrepancy

There exists an open problem in Astrophysics in that there is a stark difference be-

tween the measurements of H0 from different methods. With measurements of the

CMB using the methods discussed in the previous paragraph within the context of

ΛCMB cosmology, the latest value of the rate of expansion of the Universe from the

Planck Collaboration et al. (2018) is H0 = 67.4 ± 0.5 Km s−1 Mpc−1. However, us-

ing a method involving 19 Cepheid calibrated SNe Ia host galaxies Riess et al. (2016)

measured a value for H0 at 73.24 ± 1.74 Km s−1 Mpc−1. The error bars on the values

from these two methods do not overlap, presenting a difference at a level greater than

3σ. This discrepancy could be down to unforeseen systematic errors or some unknown

physics (Freedman, 2017), in any case this remains a fascinating area for research.

Even these final rungs of the cosmological distance ladder need to be calibrated. This

is why having an accurate Leavitt Law that takes into account all variables is so im-

portant. Every step on the ladder is fortified by the previous one, although now it

is more like a climbing frame with multiple connections stretching between different

methods of measuring distance to various astrophysical phenomena. The calibration

link between the distance tracers is presented in Figure 1.3.
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Figure 1.3: Cosmological distance ladder taken from de Grijs (2011). A schematic showing
the most effective method of measurement at each distance bin. The yellow boxes to the left
show methods based on young (Population I) stars, with boxes highlighted green to the right
for older (Population II) stars and deep red boxes between that use both. The blue boxes up
through the middle represent geometric methods and the light brown at the top are not directly
linked to stellar populations.
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1.2 Variable Stars

1.2.1 Why do Stars Pulsate?

Arthur Eddington (1917, 1918) was the first to propose pulsation theory. Typically

a compression of the stellar envelope leads to an increase in density and temperature

causing a decrease in opacity so that heat energy escapes at a greater rate allowing

the star to remain in equilibrium. However, this does not happen with variable stars.

Instead, during a compression phase there is an increase in opacity of the stellar en-

velope blocking the release of energy, this is occurs near the surface, in the Helium

and Hydrogen ionization zones. Eventually, enough pressure is built up that the enve-

lope is pushed out and then decreases in opacity which starts the cycle all over again.

This driving force behind the pulsation that leads to periodic changes in luminosity is

known as the ‘κ-mechanism’ where the kappa (κ) represents radiative opacity.

1.2.2 The Instability Strip

Variable stars lie in a narrow region on the HRD called the instability strip (IS) where

stars become pulsationally unstable. Towards the blue side of the IS the amount of

material in the stellar envelope above the ionization zones decreases until there is no

longer enough mass to significantly drive pulsations, this defines the hot blue edge of

the IS (Baker and Kippenhahn, 1962, 1965). As the effective temperature decreases,

envelope convection begins stopping the mechanism from efficiently driving pulsation

giving rise to the cooler red edge of the IS (Deupree, 1977).
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1.2.3 Cepheid Variable Stars

Cepheid variable stars are mainly split into two groups, the younger Population I

Cepheids (Type I) and the older Population II Cepheids (Type II).

Type I

Type I, or classical, Cepheids typically have a period range of 1-50 days but some

longer period Cepheids have been observed. They are very bright evolved B-stars go-

ing through the phase of core Helium burning and considered to be of the intermediate

mass range covering ∼4-12 solar masses. As they evolve away from the RGB they

can experience several blue loops (but usually just one) causing them to pass through

the IS at least twice. Pretty much all observed classical Cepheids will be in this blue

loop phase, however, all stars actually pass through the IS as they expand to the base

of the RGB when their core Hydrogen has been exhausted. This first crossing of the IS

is extremely rapid, so it would be highly unlikely to catch a star pulsating during this

stage of evolution.

When the Hydrogen burning in the core ceases, an inert Helium-core is left behind

and Hydrogen burning moves to the shell. Hydrogen-shell burning becomes narrower

and narrower and fresh Helium is supplied to the shell causing the hydrostatic equilib-

rium to be lost and the core begins to contract. While the Helium core contracts, the

star’s shell expands and cools as the star shoots through the instability strip, on its first

crossing, this is known as the sub-giant-branch (SGB) phase. Eventually, the outer

convective envelope of the star reaches deeper into the star’s interior and the trans-

port of energy from the remaining narrow band of Hydrogen-shell burning to the star’s

surface increases. This causes the luminosity of the star to increase and it climbs the

RGB. At the tip of the RGB the Helium-core has contracted enough to ignite. At the
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onset of the Helium burning the star’s luminosity decreases slightly before the temper-

ature begins to increase and the star moves blueward through the instability strip for

the second time. The star will reach a temperature limit and, with most of the core-

Helium exhausted, the star will cool again passing through the instability strip for the

third time. This describes the process of the three instability strip crossings for type I

Cepheids.

The main factor dictating the pulsation properties of a Cepheid is the size of the

Helium-core. This can be affected by several different physical mechanisms such as

mixing-processes, opacity, stellar rotation and mass-loss. One of the mixing-processes

is known as convective core overshooting where during the MS Hydrogen-core burn-

ing, material from the shell is mixed into the core. This causes the core to be larger than

it would be at the end of the MS lifetime if no overshooting had taken place. Events re-

ferred to as dredge-up phases occur during the RGB phase in which processed material

is carried from the core to the surface. The first-dredge up happens at the base of the

RGB when the convective zone deepens and a second occurs later after the blue loop.

The amount of material dredged-up alters the size of the core and changes the chemi-

cal composition at the surface, changing the opacity. The opacity of a star is dictated

by the distribution of iron-group elements and determines the limits of the instability

strip (Bono et al., 2000; Salmon et al., 2012). Stellar rotation causes the MS lifetime

to increase because the mixing process supplies the core with fresh Hydrogen during

the core Hydrogen burning phase. Therefore, at a given age there will be a spread in

Cepheid periods because stars that were rotating would be more massive than those

that were not. As stellar rotation affects the relationship between a Cepheid’s period

and age this issue is discussed in more detail in Chapter 4. Strong stellar winds can

cause some intermediate and high mass stars to experience significant mass-loss. This

affects the size of the star and therefore its evolutionary path altering the luminosity
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and temperature at which it crosses the instability strip, changing its pulsation.

Type II

Type II Cepheids are old (∼ 10Gyr), low mass (< 1M�) metal-poor stars with pulsa-

tion periods similar to those of there Type I counterparts. They were once Horizontal

Branch (HB) stars but they no longer burn Helium in their cores and have evolved to a

region of the HRD slightly brighter than RRL, see Figure 1.4.

Anomalous Cepheids

There also exists a mysterious form of variable star bearing the title of Cepheid, the

anomalous Cepheid. They generally have shorter periods than other Cepheids (∼0.3-2

days) and cross the IS at a luminosity brighter than that of RRL. Like Type II Cepheids

they have similar metal-content to that of RRL but unlike Type II Cepheids they are of

larger mass (Caputo et al., 2004).

For the purposes of this thesis only classical (Type I) Cepheids are important as both

Type II and anomalous Cepheids are too faint to be seen in M33 and too old to be

present in the Large Magellanic Cloud (LMC) clusters being used.

1.2.4 Pulsation Modes

Fundamental

In the fundamental case a single node is present in the in the centre of the star causing

a single pulsation to occur through the Cepheid’s shell. Fundamental light curves

typically show a sawtooth like shape.
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Figure 1.4: Hertzsprung-Russell Diagram showing the position of the IS and the areas where
different types of variable star lie, see text for details. Taken from Christensen-Dalsgaard
(1998).
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Hertzsprung progression

The shape of the fundamental mode light curves is affected by the pulsation period as

can be seen in Figure 1.5 by the presence of a bump moving along the curves as the

period is increased see. This is known as the Hertzsprung progression.

Overtone

Towards the hotter blue edge of the IS multiple ionisation zones can start to appear

within the star’s shell. This can cause multiple nodes to occur leading to shorter sinu-

soidal overtone pulsations. A range of SMC first (1O) and second (2O) overtone mode

Cepheid light curves (Soszyński et al., 2010) can be seen in Figure 1.6.

Beat Cepheids

The topology of the IS is determined by the mode of pulsation of the variables. Cepheid

variable stars typically have two modes of pulsation being either fundamental (P0) or

first overtone (P1) but there also exists a third much rarer kind of variable that pulsate in

the second overtone mode. Fundamental pulsators inhabit the red side of the IS with the

first and second overtones towards the blue side. Sections separating the different types

of pulsator in the IS are blurred and in the transition places variable stars pulsating

in dual modes are found. Cepheids have been found that pulsate simultaneously in

the fundamental and first overtone modes as well as those that pulsate in both the

first and second overtones, these double-mode Cepheid variables are also known as

‘Beat Cepheids’. The period ratios between the two different pulsation modes in beat

Cepheids can be used to study different stellar parameters. For an example of a beat

Cepheid’s light curve folded by its two distinct periods see Figure 1.7.
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Figure 1.5: Light curves of classical Cepheid variable stars pulsating in the Fundamental mode
with increasing periods (indicated to the right of the figure). The Hertzsprung progression can
be seen in the light curves with periods of 8.48 days and above. The data is for OGLE-III
Cepheids in the SMC by Soszyński et al. (2010)
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Figure 1.6: Light curves of classical Cepheid variable stars pulsating in the first and second
Overtones. The right-hand panel shows the first overtone (1O) Cepheids and the left-hand
panel shows the second overtone (2O) pulsators with periods indicated on the right of each
panel. The data is for OGLE-III Cepheids in the SMC from Soszyński et al. (2010)
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Figure 1.7: Light curve of a Cepheid variable star pulsating in two modes simultaneously split
into component periods. The fundamental component in the upper panel and first overtone
underneath. The periods are indicated by each light curve. The data is for OGLE-III Cepheids
in the SMC from Soszyński et al. (2010)
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1.3 Variable Stars as Tools for Astronomy

Metallicity Dependence

Pulsation properties are affected by the chemical composition of a star. This is defined

by three parameters, the Hydrogen mass fraction, X, the Helium mass fraction, Y,

with the third parameter, Z, representing the proportion of all the heavier elements

present which in astronomy are grouped together as metals, where X+Y+Z=1. The

metal-content is also known as the metallicity of a star. If the period of a Cepheid is

affected by metallicity and the metal-content of Cepheids being used in a PL distance

measurement differ from calibrating Cepheids then there exists a systematic error in the

distance determination. Scowcroft et al. (2009) found a discrepancy in the calculated

distance moduli from the Leavitt Law in Cepheids in different parts of the Triangulum

galaxy, M33. This was deemed to be due to there being a steep metallicity gradient

across M33.

Figure 1.8 shows the discrepancy in the zero-points of the Leavitt Laws from two

different regions of M33, deemed to be caused by the Cepheids in the inner field of

M33 having a much higher metallicity than those in the outer field. This suggests that

a Cepheid’s pulsation properties depend upon metallicity. If this is the case then Figure

1.8 suggests that at a given pulsation period, metal-rich Cepheids are brighter than

the metal-poor ones. Therefore, the metallicity of each Cepheid in any given sample

needs to be known in order to correct for this. The best way would be to measure the

metallicity of each star directly, which can be done using spectroscopy.
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Figure 1.8: Figure from (Scowcroft et al., 2009). Wesenheit magnitude Leavitt Law Plot for
inner and outer fields of M33. The two slopes are identical but there is a discrepancy in the
zero points.
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1.3.1 Measuring Metallicity with Variable Stars

Spectroscopy

To obtain accurate metallicity measurements high-precision spectroscopy is required

but with modern instruments this can only be achieved for nearby stars (within the

Galaxy or bright stars in the Magellanic Clouds). Romaniello et al. (2005) used high-

precision spectroscopy to determine the metallicity of 37 Cepheids in the Milky Way

and Magellanic Clouds to asses the influence of metallicity on the Leavitt Law. They

found that the required metallicity correction to a PL relation increases with iron con-

tent and that the stars become fainter as the metallicity increases until solar metallicity,

where there appears to be a flattening or turnover. However, this was only done using

Cepheids with a narrow spread in metallicity. To test this in other galaxies at a wider

range of metallicities one needs to look at greater distances, such as M31 or M33.

The problem with this is that the resolving power, of even the largest telescopes, is

not enough to yield true metal-abundances at extragalactic distances. In fact, in order

to spectroscopically determine the metallicity of Cepheids at the distances of M31 or

M33, at the required resolution, one would need to be able to achieve a signal-to-noise

ratio (SNR) 10x greater that what is possible today. One way to get around this is to

use spectroscopy to measure the metallicity of HII regions and assign that metallic-

ity to any Cepheids in the vicinity. However, this is no substitute for measuring the

metallicity of a star directly.

Thankfully, beat Cepheids are a reliable proxy for determining metallicity. They can

be used to trace metallicity because the period ratio, P1/P0, is sensitive to metal abun-

dance. Furthermore, this is well described by pulsation models.



1.3. Variable Stars as Tools for Astronomy 24

Table 1.1: Beat Cepheids in M33

ID α (J2000.0) δ (J200.0) P0 (days) P1 (days) P10

A 01 34 59.72 30 52 25.2 4.7050 3.3851 0.720
B 01 32 56.82 30 41 33.8 3.9776 2.8611 0.719
C 01 34 33.43 30 51 15.6 3.8271 2.7141 0.709
D 01 33 54.63 30 35 19.8 6.1764 4.3331 0.702
E 01 34 03.97 30 38 08.4 6.1879 4.3348 0.701

Petersen Diagram

Jørgen Otzen Petersen (1973) devised a way to constrain the masses of beat Cepheids

by plotting the ratio of the fist overtone and fundamental periods (P1/P0) of a beat

Cepheid against the logarithm of the fundamental period (log(P0)). Plotting beat

Cepheids on a Petersen diagram can also be used to determine metallicity (Moskalik

et al., 1992) as the P1/P0 ratio exhibits a strong dependence on metallicity as previously

mentioned. Beaulieu et al. (2006) uncovered 5 beat Cepheids pulsating in the funda-

mental and first overtone modes from the CFHT M33 variability survey conducted by

Hartman et al. (2006). The 5 beat Cepheids are presented in Table 1.1 along with their

coordinates, periods (P0 and P1), and their period ratios (P1/P0).

Beaulieu et al. (2006) created a set of stellar equilibrium models using a pulsation code

that takes into account parameters of mass M, luminosity L, effective temperature Teff

and metallicity Z. They used this to compute mass-luminosity (M-L) plots for the 5

beat Cepheids over a range of Teff that covered the width of the IS with a selection of

different metallicities. By superposing modelled evolutionary M-L relations by Bono

et al. (2000) they were able to garner the metallicity of each of the beat Cepheids from

where the M-L tracks crossed. The Z values derived by Beaulieu et al. (2006) are given

in the final column of Table 1.2.

They also plotted the beat Cepheids on a Petersen diagram with comparison to linear

fits of Galactic, SMC and LMC beat Cepheids (Figure 1.9) leading to similar metal-
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Table 1.2: Beaulieu et al. (2006) metallicities of beat Cepheids in M33

ID P10 Distance (kpc) Z
A 0.720 3.5 0.004
B 0.719 3.1 0.005
C 0.709 2.3 0.011
D 0.702 1 0.0125
E 0.701 1 0.0135

licity estimates. Stars A and B fall near the dashed line of the SMC which has a

metallicity of Z=0.004. Stars C, D and E fall between the solid line of the Milky Way,

Z=0.020, and the dotted line of the LMC, Z=0.008. These values are consistent with

the values in Table 1.2.

Buchler and Szabó (2007); Buchler (2008) computed a series of convective models

for which both F and O1 modes would become linearly unstable. Figure 1.9 shows a

Petersen diagram by Beaulieu et al. (2006) presenting beat Cepheids in our own Galaxy

along with those in the SMC, LMC and M33 with Buchler’s (2008) tracks superposed.

Further use of Buchler’s (2008) Petersen diagram metallicity tracks was made by Lee

et al. (2013) when they used them to measure the metallicity of beat Cepheids in M31,

see Figure 1.10.

1.3.2 Further Considerations in Estimating Cepheid Distances

Theoretical Metallicity Effects

The effect of metallicity on the Leavitt Law as determined by Scowcroft et al. (2009)

and Romaniello et al. (2005) seem to be in contradiction. Other empirical relations

such as Macri et al. (2006), Storm et al. (2011) or Mager et al. (2013) are inline

with Scowcroft et al. (2009), in that at a given period, higher metallicity Cepheids are

brighter than their low metallicity counterparts. However, the findings of Romaniello
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Figure 1.9: Figure from Beaulieu et al. (2006). Petersen Diagram for beat Cepheids pulsating
in the fundamental and first overtone modes in our Galaxy (open triangles), the LMC (stars),
the SMC (open circles), and M33 (filled hexagons). The linear fits are displayed for our Galaxy
(solid line), the LMC (dotted line), and the SMC (dashed line).

et al. (2005) back-up what is found with stellar pulsation models. For example Caputo

et al. (2000) and Marconi et al. (2005) both found from their models that increasing

metallicity, at a fixed period, Cepheids become fainter. They also find that as metal-

licity increases the instability strip moves to cooler temperatures i.e. shifts to redder

colours with Marconi et al. (2005) also noting a narrowing of the instability strip.

The use of the Leavitt Law to determine Cepheid distance as been discussed in detail,

but as well as luminosity, a variable star’s pulsation period is tightly correlated with

mass and effective temperature. A relationship between a star’s mass and luminosity

comes out of stellar evolution theory. Also, the effective temperature of a star is in-

dicated by its colour. Therefore, at fixed chemical composition, the brightness of a

Cepheid will be a function of its period and effective temperature. For this reason a

colour index (CI) term can be added to the PL relation to create a period-luminosity-

colour (PLC) relation as in Equation 1.5 (Bono et al., 1999), where 〈Mj〉 is the mean
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Figure 1.10: Figure from Lee et al. (2013). Updated Buchler (2008) Petersen Diagram by
Lee et al. (2013) for beat Cepheids pulsating in the fundamental and first overtone modes in
our Galaxy (green crosses), the LMC (red pluses), the SMC (blue crossed pluses), M33 (open
violet squares) and M31 (black error bars). The lines show where where both F and O1 modes
are linearly unstable at different metallicities.
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magnitude across the given bandpass and P is the period.

〈Mj〉 = α + β logP + γ(CI) (1.5)

Using their convective pulsation models Bono et al. (1999) also find that at a fixed

period metal-rich Cepheids are predicted to be fainter than metal-poor ones. Further-

more, they found that by adopting infrared magnitudes and colors the amplitude of the

metallicity effect is greatly reduced. They also checked the distance modulus to the

LMC while ignoring its metallicity by using the predicted PL and PLC relations with

3 different chemical abundances. In doing this, they showed that estimates based on

the infrared PLC relation were independent of the chosen metallicity, this was not the

case in the optical regime. For the PL relation, the distance modulus decreased with

increasing metallicity.

Extinction & Reddening

In order to truly understand the effect of metallicity one must remove the effect of

interstellar dust. This issue manifests by changing the observed magnitude of a star,

extinction, or shifting the observed colour, reddening. The reddening law, Equation

1.6, describes the relationship between extinction, AX , and reddening, E(X − Y ),

where X and Y represent the required passbands. E(X − Y ), or E(B − V ) in this

case, is also known as the colour excess (CE).

RV =
AV

E(B − V )
(1.6)

To include the effects of interstellar dust the distance modulus equation, introduced



1.3. Variable Stars as Tools for Astronomy 29

earlier as Equation 1.2, needs updating with an extinction term, Equation 1.7.

µ = m−M = 5 log10(d)− 5 + AV (1.7)

In Equation 1.6 the value of RV is not constant as it depends upon the interstellar

medium, making it line-of-sight dependant, but it is typically assumed to have a value

3.1. Lets say that a galaxy has a distance modulus of µ = 24.5 and E(B-V) is 0.1

with RV at 3.1. Therefore, AV would be 0.31 making the distance, d, 689 kpc. Alter-

ing E(B-V) by just 0.05 and propagating through moves the galaxy by nearly 50 kpc.

However, an elegant solution to the reddening problem is to construct the reddening-

free Wesenheit index, W (Madore, 1982; Madore and Freedman, 1991, 2009). This is

defined as:

W = V −RV × (B − V )

= V0 + AV −RV × (B − V )0 −RV × E(B − V )

= V0 −RV × (B − V )0

(1.8)

By using the final form of Equation 1.8 it is possible to create period-Wesenheit rela-

tions to estimate Cepheid distances whilst circumventing the issues of extinction and

reddening. Scowcroft et al. (2009) used a reddening-free Wesenheit index to create the

PL relation shown in Figure 1.8, specifically in the form:

Wvi = V − 2.55(V − I) (1.9)
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1.3.3 Period-Age Relation

As well as the aforementioned PL relation Cepheids also have a Period-Age (PA) re-

lation. Theory suggests that the more massive a star the earlier the star will leave the

main-sequence and evolve to the Cepheid region of the CMD’s IS. The relationship be-

tween a Cepheid variable star’s age and the length of its period has long been theorised

(Kippenhahn and Smith, 1969; Bono et al., 2005; Anderson et al., 2016). Figure 1.11

shows how stellar evolutionary tracks of increasing mass pass though the IS at younger

ages with larger periods. PA relations can be derived observationally by determining

the ages of Cepheids using another method, for example, Cepheids that are hosted by

a stellar cluster whose age can be determined by isochrone fitting. Empirical PA rela-

tions have been derived from Cepheids in young and massive clusters in the LMC by

Efremov (1978, 2003) whose LMC PA relation is included here as Figure 1.12. Hav-

ing a robust Cepheid PA relation means that once the period of any Cepheid is found

its age can be immediately determined. This means that the star formation history of

any region that contains Cepheids can be studied simply. The Cepheid PA relation also

presents the opportunity to test and constrain stellar models.

The key benefits in estimating the Cepheid ages from the PA relation are that they the

observable parameter on which they rely, the period, is only marginally affected by sys-

tematic errors. The age estimates from the PA relation are based on individual objects,

therefore, they supply an accurate age gradient across a galaxy as stellar clusters are

outnumbered by Cepheids. Empirical PA relations however, are subject to drawbacks.

Uncertainties in the distance moduli and reddening of clusters used cause uncertainty

in the PA relation derived from them. There also tends to be a range in periods of the

Cepheids in any single cluster. It tends to be assumed that the temperature width of

instability strip is negligible when deriving Cepheid ages from a PA relation.
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Figure 1.11: Hertzsprung-Russell Diagram with evolutionary tracks for stars of increasing
mass showing how the instability strip period increases as age decreases. The solid black lines
represent evolutionary tracks for stars of metallicity z=0.008 with masses indicated to the left
of each track. The tracks were created using the BaSTI web tools (Pietrinferni et al., 2004).
The period value for each stellar radius was determined using an equation from (Gallenne
et al., 2017). The dash-dot blue and red lines show the positions of the first overtone blue edge
(FOBE) and fundamental red edge (FRE) of the instability strip (Bono et al., 2005).
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Figure 1.12: Different versions of the period-age relation for LMC clusters by Efremov (2003).
See text for details.
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Period-Age-Colour Relation

A period-age-colour (PAC) relation should be used to estimate Cepheid ages because

then the individual Cepheid positions inside the instability strip is accounted for (Bono

et al., 2005). The main drawback with this is that if the PAC relation was to be derived

empirically with an incorrect reddening correction then one would have a PA relation

with unnecessary error added. Also, Bono et al. (2005) found that only when the

uncertainty of the reddening correction is smaller than 0.08 mag for B − V colours

and smaller than 0.07 mag for V − I colours do the the ages derived from the PAC

relation become more precise than ages derived from the PA relation.

Stellar Rotation

One thing that can affect the evolution of a star is its initial rotation rate. Rotation

causes stars’ main-sequence lifetimes to increase due to the mixing process supplying

the core with fresh Hydrogen during the core Hydrogen burning phase. This means that

Cepheids whose progenitors have faster initial rotation rates will show longer periods

than those with slower initial rotation rates at the same age. This affects the PA relation

by causing an increase in the spread of periods observed in Cepheids from a single

cluster. Therefore, rotation rates should be considered when using the PA relation.

The effect of rotation on Cepheid periods will be investigated in Chapter 4 using the

rotation models from the SYCLIST web tool for Geneva stellar models (Georgy et al.,

2013a,b). The models are parameterised by the following equations:

ωini =
Ω

Ωcrit

(1.10)
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Ωcrit =

√
GM

R3
e,crit

(1.11)

Where ωini is the ratio of the star’s initial angular velocity (Ω) to the critical angular

velocity (Ωcrit). The critical limit is defined as where the outward forces due to rotation

and radiation pressure become strong than gravity (Maeder and Meynet, 2000). Ωcrit is

defined in Equation 1.11 where R3
e,crit is the equatorial radius when the star is rotating

at the critical rate (Georgy et al., 2013b). Figure 1.13 shows how the initial rotation

rate of stars influences at which point during their evolution they cross the IS and how

this affects the pulsation period.

1.4 Stellar Populations

1.4.1 Stellar Clusters

Stellar clusters are ideal stellar laboratories as all of the stars are born from the same

gas cloud. Therefore, all of the stars are of the same chemical composition and roughly

the same age.

As previously mentioned the younger a Cepheid the longer its period. Therefore

Cepheids in young clusters will have longer periods than Cepheids in old clusters,

hence clusters are perfect for studying the Cepheid PA relation as they are considered

to be simple stellar populations.
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1.4.2 Measuring Cluster Ages

One method of measuring the age of a stellar clusters is isochrone fitting. An isochrone

is a curve that can be placed on a CMD or HRD that represents a simple stellar popu-

lation inasmuch as that all of the stars represented by the curve are of the same com-

position, age and rotation rate. By plotting several isochrones upon a CMD of a stellar

cluster the age of the cluster can be determined by figuring out which isochrone fits the

data the best. Figure 1.14 shows how the age of stellar cluster M4 can be determined

with the use of isochrones.

The ages of any Cepheids in a cluster are known. Therefore, if one has multiple

Cepheids from different clusters of various ages one can empirically derive the Cepheid

PA relation.
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Figure 1.14: Colour-Magnitude Diagram of Galactic globular cluster M4 with isochrones to
demonstrate how a stellar cluster’s age can be determined. M4 photometry by Stetson et al.
(2014). The isochrones were created using the BaSTI web tools (Pietrinferni et al., 2006). See
text for details.



Chapter 2

Image Subtraction Processing and

Calibration of M33 Data

2.1 M33

M33 (the Triangulum galaxy) is a spiral galaxy and is the third largest galaxy in the

Local Group behind the Andromeda galaxy (M31) and the Milky Way. M33 is a rela-

tively close galaxy, it has been well studied with many parameters known, for example,

it is known to exhibit a metallicity gradient as does the Milky Way and M31 but these

galaxies present observational difficulties. M33 has multiple observational advantages

over other galaxies in the Local Group. Large parts of the Milky Way are obscured

from our view by itself as we are a part of it. Therefore, to study galaxies observa-

tionally we need to look elsewhere. Nearby satellite galaxies such as the Magellanic

Clouds show a flat metallicity distribution. To study more complex systems we are

left with the large spiral galaxies of M31 and M33. M31 is the largest and closest spi-

ral galaxy but has a inclination angle of 77◦ (Athanassoula and Beaton, 2006) to Earth

38
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which means that observations are plagued by crowding as well as increased extinction

and reddening. M33 as an inclination angle of 53◦ (Scowcroft et al., 2009) making it

more ‘face-on’ so we observe less crowding and we can assume that any Cepheids we

observe are at pretty much the same distance. M33 is also a good laboratory for young

stellar tracers as it has a fairly high star-formation-rate (SFR), in fact, it is forming

stars at a higher rate than M31 (Corbelli et al., 2009). Different methods of measuring

M33’s metallicity gradient yield different results. We will present here our reduction

and calibration of M33 data in order to find beat Cepheids and use them to explore

M33’s metallicity gradient.

2.2 Data

2.2.1 Canada France Hawaii Telescope

Hartman et al. (2006) conducted a variability survey on the Triangulum galaxy, also

known as M33, using the Canada France Hawaii Telescope (CFHT) on 27 nights over

17 months beginning August 2003 in which they identified over 36000 variable ob-

jects. CFHT is a 3.6m telescope in Hawaii and uses a one square degree imager called

MegaCam1. This instrument is comprised of 36 CCDs with each being 2048×4162

pixels at 0.187 arcsec pixel−1. The observations are in Sloan-like g’, r’ and i’ band

filters. Figure 2.1 shows a composite colour mosaic stack of the CFHT observations

of M33. The images were initially processed as part of the Queue Service Observing

mode using the ELIXIR pipeline which performs bias, dark frame, flat-field and fringe

corrections.

1Based on observations obtained with the MegaPrime/MegaCam, a joint project of Canada-France-
Hawaii Telescope (CFHT) and CEA/DAPNIA, at the CFHT which is operated by the National Research
Council (NRC) of Canada, the Institut National des Science de l’Univers of the Centre National de la
Recherche Scientifique (CNRS) of France, and the University of Hawaii.
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Figure 2.1: Colour mosaic of M33 created using the CFHT images (Hartman et al., 2006).
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Hartman et al. (2006) produced an initial catalogue of variable point sources using

image subtraction techniques. This works by creating a reference image by averaging

the best seeing images for each filter/chip combination. A transformation of the PSF,

flux and background between the reference and the individual images was found using

software know as ISIS (Alard and Lupton, 1998; Alard, 2000). The transformed

images are subtracted in turn from the reference image resulting in residual images

containing dark and light spots indicating objects that have changed in brightness. To

detect any variable objects, the residual images are divided by the square root of the

original, then the absolute values of the pixels are co–added. This gives an image

clearly showing the variables, with the flux of the point-sources proportional to the

significance of the variability, producing a catalogue of ∼36000 objects. Light curves

were obtained by performing PSF photometry on the residual images. Cepheids were

then identified from the positions of these sources on the CMD reducing the catalogue

to ∼3000 Cepheid candidates.

2.2.2 Isaac Newton Telescope

The Isaac Newton Telescope (INT) is a 2.5m telescope at the Observatorio del Roque

de los Muchachos, La Palma2. The wide field camera consists of four 2048×4096

pixel CCDs, orientated as in Figure 2.2, with a scale of 0.333 arcsec pixel−1. To cover

the entire galaxy four pointings were required, a mosaic image of the four pointings

of the four chips is shown in Figure 2.3 where the overlap regions can also be seen.

The data was taken on 13 nights spread between 3 observing runs over 19 months

beginning February 2008 producing ∼45 epochs in total. The images were initially

2Based on observations made with the Isaac Newton Telescope operated on the island of La Palma
by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de
Astrofsica de Canarias
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Figure 2.2: Configuration of INT chips

processed by David Bersier using the IRAF3 (Image Reduction and Analysis Facility)

CCDPROC package, performing bias, dark frame, flat-field and fringe corrections.

Together, the CFHT and INT data gives∼80 epochs in the r’ band and∼40 in both the

g’ and i’ bands.

3IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the
Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the
National Science Foundation.
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Figure 2.3: Mosaic of r’-band INT Templates
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2.3 Calibration

A large portion of the work for sections 2.3 and 2.4 was carried out by Kevin Tsang

and is also presented in his thesis. The calibration of the INT data with SDSS cat-

alogues (Alam et al., 2015) using PSF fitting photometry with SExtractor and

PSFex (Bertin and Arnouts, 1996) was done by Kevin Tsang, as well as the calibra-

tion of the INT and CFHT, bringing the two datasets onto the same photometric scale.

The creation of the INT templates and the comparison of Kevin Tsang’s calibration to

calibration using IRAF was done by the royal we, as well as the image subtraction and

calibration of light curves presented from section 2.5 onwards.

To calibrate the M33 data, images were taken of the SDSS field Stripe 82 during the

INT observing run in order to work out the response of the CCDs at the INT. Standard

star catalogues of these fields were downloaded from the Sloan Digital Sky Survey

(SDSS) data release 12 (dr12) (Alam et al., 2015) from http://skyserver.sdss.org/dr12/.

Images from the night of October 7, 2009 were chosen as the night with the best seeing.

The stars in each of the INT standard field images are detected using the DAOFIND task

of the DAOPHOT package (Stetson, 1987) within IRAF. The DAOPHOT (Stetson, 1987)

parameters that were changed from default values within IRAF are presented in Table

2.1. The coordinates of these stars are found by getting the World Coordinate System

(WCS) information for the image using the on-line tool http://nova.astrometry.net. For

the parameters and uncertainties associated with the astrometric solution see Appendix

B. Using the WCS data the standard star images can be matched to stars in the down-

loaded SDSS catalogues (Alam et al., 2015). Aperture photometry is then run on the

INT images using the IRAF task PHOT. A configuration file then needs to be created

which includes the transformation equations to match the photometry done on the INT

images with the known magnitudes of the stars from the SDSS catalogue (Alam et al.,
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Table 2.1: Non-default IRAF DAOPHOT (Stetson, 1987) parameters used for comparison with
Kevin Tsang’s photometry.

FWHMPSF 2.5
SIGMA 20.35
EPADU 2.8

READNOISE 6.4
ANNULUS 25.

DANNULUS 25.
SMAXITER 10
SNREJECT 50

2015). The FITPARAMS task is used to solve the transformation equations which take

into account the zero-point (Zp), the airmass (A) and a colour-term (C) as in the form

of Equation 2.1 where m1 and m2 are the coefficients of the fit. The fit is then inverted

producing a calibrated catalogue of stars from the INT images. In this case that fit is

presented in the upper panel of Figure 2.4 as the black circles.

mInst = mSDSS + Zp + (m1× A) + (m2× C) (2.1)

When the field is crowded with many stars close together the photometry becomes

more difficult as it may be hard for software to differentiate one star from another.

Another issue is that if one tries to perform aperture photometry, in which you place an

aperture centred on an object and subtract the average surrounding sky count per pixel

from the pixel count of the object, it might not be possible to use an aperture small

enough to centre on just one object. Fortunately, software exists to deal with these

issues such as the DAOPHOT (Stetson, 1987) package which includes a FIND feature

for locating all the stars on a CCD chip and is especially designed for crowded field

PSF fitting photometry. PSF fitting works by fitting Gaussians over the field to reduce

the effects of star blurring so that magnitudes can be determined for all the stars in the

chip, even the ones that appear to have merged together.
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Table 2.2: Kevin Tsang’s calibration solutions for the INT chips for Equation 2.2.

Filter Z k c d e RMS
Chip 1

g’ -30.411 0.166 -0.143 −0.589× 10−5 1.847× 10−5 0.034
r’ -30.053 0.089 -0.007 −2.524× 10−5 2.571× 10−5 0.027
i’ -29.593 0.056 -0.059 −3.365× 10−5 2.288× 10−5 0.032

Chip 2
g’ -30.063 0.166 -0.134 −1.511× 10−5 −1.595× 10−5 0.036
r’ -29.722 0.089 0.001 2.990× 10−5 −1.667× 10−5 0.031
i’ -29.242 0.065 -0.067 2.382× 10−5 −2.453× 10−5 0.034

Chip 3
g’ -30.273 0.166 -0.147 −6.734× 10−5 2.628× 10−5 0.047
r’ -30.103 0.089 -0.005 0.155× 10−5 1.826× 10−5 0.027
i’ -29.683 0.056 -0.094 −0.804× 10−5 1.914× 10−5 0.028

Chip 4
g’ -30.207 0.166 -0.142 −0.155× 10−5 1.719× 10−5 0.028
r’ -29.902 0.089 0.001 0.212× 10−5 1.892× 10−5 0.027
i’ -29.500 0.056 -0.067 −1.842× 10−5 2.149× 10−5 0.030

Other software exists for performing PSF fitting photometry such as SExtractor

and PSFEx (Bertin and Arnouts, 1996). Using this software Kevin Tsang performed

PSF photometry on the same data to produce transformation equations in that included

a zero-point (Zp) as well as colour (Col), airmass (l) and position terms (X & Y) in

the form of Equation 2.2. The values and uncertainties associated with Equation 2.2

for each chip and filter are presented in Table 2.2. The fit was inverted to produce a

calibrated catalogue of stars from the INT images. In this case that fit is presented in

the upper panel of Figure 2.4 as the grey circles.

mInst = mSDSS + Zp + (k × l) + (c× Col) + (d×X) + (e× Y ) (2.2)

A direct comparison between the IRAF and the SExtractor/PSFEx (Bertin and

Arnouts, 1996) fits is shown in the lower panel of Figure 2.4. Both methods produce

similar results, however the PSF method produces a tighter correlation with the SDSS

data (Alam et al., 2015) especially at the fainter end.
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Figure 2.4: Comparison of r’-band Photometry performed on the INT data of Stripe 82 taken
on the night of October 7, 2009 between the Daophot (Stetson, 1987) package within IRAF
and SExtractor (Bertin and Arnouts, 1996).
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Table 2.3: Numbers of images that went into building the templates for each chip of the INT
M33 data in each filter along with the average seeing for the templates. The pointing regions
are as shown in 2.3.

Chip No. of g’ FWHM No. of r’ FWHM No. of i’ FWHM
images (arcsec) images (arcsec) images (arcsec)

NE
1 4 1.22 14 1.14 3 1.14
2 4 1.44 14 1.23 3 1.18
3 3 1.17 20 1.09 3 1.14
4 4 1.28 13 1.10 3 1.07

NW
1 5 1.14 15 1.13 3 1.07
2 4 1.24 17 1.30 3 1.40
3 4 1.15 17 1.13 3 1.20
4 4 1.14 18 1.13 3 1.10

SE
1 3 1.14 20 1.14 4 1.01
2 3 1.22 21 1.22 5 1.04
3 3 1.11 19 1.11 3 1.00
4 3 1.13 20 1.13 4 1.00

SW
1 3 1.04 16 1.12 4 0.99
2 3 1.14 15 1.21 4 1.07
3 3 1.12 9 1.06 3 1.05
4 3 1.06 12 1.08 3 1.04

2.4 Templates

2.4.1 Image Stacking

Template images were built from the INT data to be used as the reference frames for

image subtraction as well as for photometric calibration. To build the templates we

identified which of the images in each set had the best seeing as well as the least

elongated or skewed stars. We created a Python script which subtracts a background

flux level from each of the images, registered them to the most central image, based on

their WCS information, and measured the average full width half maximum (FWHM)

of the stars in each frame as well the average roundness of each of the stars. On a
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Figure 2.5: Sample of best ‘seeing’ images used produce one of the INT templates

CCD chip each star can be fitted by a Gaussian-function, the FWHM is the radius

which corresponds to half the value of the height of the Gaussian. To calculate which

images provided the roundest stars, the average elongation of the stars in each image

was taken into account. The elongation is calculated by taking a ratio of the number of

pixels across the longest and shortest axes of each star. The closer this value is to 1 the

better. The images whose average FWHM and average elongation that were within 2-σ

of the best image were averaged together to produce the templates. Figure 2.5 shows a

sample of some of the best quality frames that went into producing the template for the

NW region r’-band chip 4. The number of images that went into each of the template

in each filter as well as the average FWHM can be found in Table 2.3.

2.4.2 Template Calibration

The sources in the templates for the M33 INT data are very crowded so aperture pho-

tometry is not possible. Therefore another method is needed for the calibration. The
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photometry on the templates was done by Kevin Tsang via PSF fitting photometry

using PSFex and Sextractor (Bertin and Arnouts, 1996) and using the transfor-

mation equations calculated from the SDSS fields, Equation 2.2.

Using the Stripe 82 solutions for the INT chips, Kevin Tsang transformed the instru-

mental magnitudes of the single-epoch INT M33 images the standard system. Kevin

Tsang then calibrated PSF magnitudes from the INT templates against the calibrated

single-epoch M33 magnitudes. The CFHT stacks are comprised of mosaic frames each

containing 36 sub-images from the 36 CCD chips which do not necessarily behave the

same. Therefore, Kevin Tsang seperated the stars in the CFHT stacks into 36 groups

corresponding to the position of each chip. They were then calibrated separately using

the INT template magnitudes for reference. Figure 2.6 shows two of Kevin Tsang’s

CMDs, the one on the left is produced using stars from the calibrated CFHT catalogue

and the one on the right from INT template stars. Some SDSS data (Alam et al., 2015)

is available for the outer regions of M33, Figure 2.7 shows that comparisons between

the SDSS data (Alam et al., 2015) and the calibrated CFHT stack are in agreement.

Therefore, we can be confident in saying that the photometry and calibration proce-

dures are accurate.

Figure 2.8 shows the positions of the Cepheids from the Hartman et al. (2006) list

on the CMD and, as we can see, the majority of Cepheids are located approximately

between the g’ - r’ values of -0.2 - 1.4 mag. Kevin Tsang found that several of the

Cepheids had anomalous g’ - r’ colours placing them outside the confines of the blue

and red edges of the instability strip in Figure 2.8 removing∼500 candidate Cepheids.
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Figure 2.6: r’ versus g’ - r’ CMDs produced by Kevin Tsang where colour indicates stellar
density, with red representing the least dense regions and violet representing the most dense
regions. Left-hand panel: Stars from the CFHT stack catalogue. Right-hand panel: Stars from
the INT template catalogue. The CFHT catalogue goes ∼1 mag deeper that the INT catalogue.

2.5 Image Subtraction

To find the variable sources in our datasets we use image subtraction methods. This

involves the pixels of one image being subtracted from another to leave behind only

the objects that have changed in brightness. To do this images need to be both astro-

metrically and photometrically aligned. Astrometric alignment of the images entails

making sure that the same stars in each frame are centred on the same pixel which

we implemented using IRAF. To register the images to one another the GREGISTER

package in IRAF was used, which transforms the pixel positions of the stars in one

image to another from transformation equations produced by the package GEOMAP.

GEOMAP produces these equations from the transformation calculated by the pack-

age XYXYMATCH. XYXYMATCH calculated this transformation using the ‘triangles’

algorithm which matches all the possible triangles that can be formed from the point-

sources in each image. Once aligned, we filtered out images with the best astrometric

’seeing’ to be averaged together to build a reference image with a good signal-to-noise

ratio. The images taken on different nights were then individually subtracted from
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Figure 2.7: Comparison between Kevin Tsang’s calibrated CFHT magnitudes and magnitudes
from the SDSS catalogue (Alam et al., 2015). Plot produced by Kevin Tsang.
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Figure 2.8: CMD produced by Kevin Tsang of M33 stars (gray points), Cepheids with anoma-
lous g’ - r’ colours (black points) and Cepheids with acceptable g’ - r’ colours (magenta points).
The blue and red lines mark the approximate edges of the instability strip.
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Table 2.4: Non-default HOTPANTS (Becker, 2015) parameters used for image subtraction.

[-r rkernel] 11 convolution kernel half width
[-nrx xregion] 1 number of image regions in x dimension
[-nry yregion] 2 number of image regions in y dimension
[-nsx xstamp] 20 number of each region’s stamps in x dimension
[-nsy ystamp] 20 number of each region’s stamps in y dimension

[-ko kernelorder] 2 spatial order of kernel variation within region
[-bgo bgorder] 2 spatial order of background variation within region

the reference image using the image subtraction software HOTPANTS (High Order

Transform of PSF And Template Subtraction) (Becker, 2015), based on the ISIS im-

age subtraction package described by Alard and Lupton (1998); Alard (2000). The

images were taken on different nights so are subject to different atmospheric condi-

tions, for this reason the images need to be photometrically aligned before applying

image subtraction so that only the variable objects are left behind. HOTPANTS pho-

tometrically aligns the two images by estimating the size of the Gaussians needed to

make up a convolution kernel from the sizes of the PSFs on the images input by the

user. Using this kernel one image is then convolved so that the photometry matches the

other before the pixels are subtracted. The HOTPANTS (Becker, 2015) parameters that

were changed from default values for the image subtraction are presented in Table 2.4.

Once subtracted all of the non-variable objects should have been removed with only

those that have changed brightness in the time between remaining. Any bad or satu-

rated pixels left over were simply ignored. Figure 2.9 shows a sample of subtracted

frames of the INT images covering 3 epochs. One can clearly see variable sources

changing in brightness between each epoch.

2.5.1 Photometry on Subtracted Frames

The absolute values of the subtracted images were co-added so that they could be put

through SExtractor (Bertin and Arnouts, 1996) in order to identify the positions of
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-

Figure 2.9: Sample of subtracted frames of the INT images covering 3 epochs. One can clearly
see variable sources changing in brightness between each epoch.

all the variable objects in each frame. Using this catalogue, aperture photometry was

performed on each of the subtracted images in IRAF to obtain the flux difference from

the template for each and every epoch. An example of a flux difference light curve for

a Cepheid folded with a period of 4.95 days is given as Figure 2.10.

The flux differences are then added to the base flux values measured by Kevin Tsang

of the stars in the templates giving an equivalent flux value of the star at each epoch

producing full flux light curves.

2.6 Calibrating the Light Curves

The flux light curves can now be converted to magnitude light curves using the trans-

formation equations produced by Kevin Tsang as previously described, Equation 2.2.
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Figure 2.10: Flux difference light curves for an M33 Cepheid folded with a period of 4.95 days
in filters r’, g’ and i’.
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The now magnitude calibrated light curves can be merged with the CFHT light curves

produced by Hartman et al. (2006). The two sets of light curves are matched by the

WCS information for both the CFHT and INT templates and reduced to those that

appear in the Cepheid candidate list as described in section 2.2.1.

2.6.1 Cross-Calibration

The CFHT light curves are on a magnitude scale but were not fully calibrated so the

magnitudes should be considered to be instrumental. The mean magnitudes of the light

curves are taken and used to work out the magnitude offset for each object between the

two datasets. Each CFHT chip was calibrated separately by Kevin Tsang. The offset is

applied to the CFHT light curves to bring them on to the same magnitude level as the

INT light curves. Figure 2.11 shows the now calibrated magnitude folded light curve

for the same Cepheid as in Figure 2.10 for each filter, r’, g’ and i’.

2.6.2 Amplitude Discrepancy

A substantial proportion of the cross-calibrated light curves show a discrepancy in the

amplitudes between the INT and CFHT data. An example of this problem is given as

Figure 2.12 where the folded light curves of a Cepheid give an amplitude difference

between the two datasets of ∼0.3 mags.

To test the possible cause of this we checked whether the there had been a mismatching

of the the stars between the CFHT and INT data. However, the WCS transformations

between the two templates match well as shown in Figure 2.13 with no obvious indi-

cation that there was a mismatching of coordinates.

We also checked if the amplitude differences were caused by either each star’s position
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Figure 2.11: Light curves for the same Cepheid in Figure 2.10 with cross-calibrated INT and
CFHT magnitudes.
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Figure 2.12: Calibrated Light curves showing amplitude difference.
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Figure 2.13: Comparison of the WCS coordinate matching between the INT data and the CFHT
data. Each quadrant shows a light-curve of a Cepheid with the black spots indicating the CFHT
data and the grey spots indicating the INT data. The position of each Cepheid in M33 is shown
and zoomed in centered on where the source was detected for both the INT and CFHT data.
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Figure 2.14: Figure showing the positions of the Cepheids that present an amplitude discrep-
ancy between the CFHT and INT data. The colourbar indicates the amplitude difference in
mags.
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Figure 2.15: Figure showing the INT pixel coordinates for all chips of the Cepheids that present
an amplitude discrepancy between the CFHT and INT (the left-hand panel) data as well as those
that do not (the right-hand panel). The colourbar indicates the amplitude difference in mags.

in M33 or on each chip. Figure 2.14 shows the positions of the matched Cepheids

in M33 that show amplitude differences with the colour scale indicating the r’-band

amplitude difference in mags. There does not seem to be any correlation with position

in M33.

Figure 2.15 shows the pixel INT pixel coordinates for all chips and all regions in the for

Cepheids that present an amplitude discrepancy (the left-hand panel) as well as those

where there is no significant amplitude difference in the Cepheid light curves between

the INT and CFHT data (the right-hand panel). The distribution of Cepheids in INT

chip pixel coordinates is the same for both the problem Cepheids and those that are

fine.
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Figure 2.16: Figure showing the INT pixel coordinates for each of the INT chips in turn of
the Cepheids that present an amplitude discrepancy. Top-left: Chip 1. Top-right: Chip 2.
Bottom-left: Chip 3. Bottom-right:Chip 4. The colourbars indicate the amplitude difference in
mags.
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Splitting the the INT pixel coordinates into the four separate chips also does not shed

any light on the issue. Figure 2.16 shows the INT pixel coordinates of the matched

Cepheids for each of the four chips separately with the colour scale indicating the

r’-band amplitude difference in mags.

One of the parameters that HOTPANTS uses is called stamps, the number of stamps

in the x and y directions on the chip dictate the sub-regions of each image for which

the software calculates a convolution kernel. When performing image subtraction on

the INT data the chips were split into two regions along the y-axis, making each frame

two 2048×2048 pixel frames. The number of stamps was set to 20 along both the x

and y axes making each stamp region 104.2×104.2 pixels. Figure 2.17 shows the pixel

coordinates of the matched Cepheids within the sub-stamp-regions for each of the four

chips separately with the colour scale indicating the r’-band amplitude difference in

mags. There does not seem to be any correlation between the amplitude discrepancy

and position inside a sub-stamp-region.

In short, position in M33 or any particular chip is not the cause of the problem. We

can also be confident that it is not caused by a WCS problem.

The amplitude discrepancy problem remains unsolved. Therefore, a workaround was

devised so that the project could continue. The ratio of the amplitudes were calculated

for each light curve. The amplitudes of the CFHT and INT light curves were calculated

for each object by finding the difference between the brightest and faintest point. Then

the ratio of these values for the INT and CFHT light curves were used as our scaling

factors. This ratio was then used to scale the amplitudes of the INT light curves so that

they matched the CFHT light curves. This was done by multiplying the magnitudes in

each INT light curve by the corresponding amplitude ratio. Figure 2.18 shows the now

scaled folded light curve of the same Cepheid as shown in Figure 2.12.
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Figure 2.17: Figure showing the INT image subtraction sub-stamp-region pixel coordinates for
each of the INT chips in turn of the Cepheids that present an amplitude discrepancy. Top-left:
Chip 1. Top-right: Chip 2. Bottom-left: Chip 3. Bottom-right:Chip 4. The colourbars indicate
the amplitude difference in mags.
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Figure 2.18: Calibrated Light curves showing how amplitude scaling corrects for the discrep-
ancy of the same Cepheid as in Figure 2.12.



Chapter 3

Beat Cepheids in M33

3.1 Beat Cepheids

As discussed in section 1.3.1, Beaulieu et al. (2006) found 5 beat Cepheids from the

Hartman et al. (2006) catalogue of variable stars in M33. They used the period ratios

of these stars to determine their metallicity thus yielding an M33 metallicity gradient

of d logZ
dρ

= −0.2 dex kpc−1 or d[O/H]
dρ

= −0.16 dex kpc−1. It is extremely difficult to

find secondary periods with so few epochs as were available from the CFHT variability

survey. Combined with the INT data the number of data-points available have more

than doubled meaning that it should be easier to search for Cepheids with more than

one period.

Figure 3.1 shows the light curves for the 5 beat Cepheids, labelled A - E, folded by

each period from Beaulieu et al. (2006).

67
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Figure 3.1: Light Curves of the 5 Beat Cepheids in M33 detected by Beaulieu et al. (2006).
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3.1.1 Period Search

An Analysis of Variance (AoV) period search was applied to the combined INT and

CFHT light curves described in Chapter 2 limited to those that were in the Cepheid

candidate list discussed in section 2.2.1. The AoV technique was implemented using

VARTOOLS (Hartman and Bakos, 2016) based on the method developed by Schwarzenberg-

Czerny (1989) and is built upon original code by Devor (2005). This method works

by fitting a model that is a discrete set of step functions to the light curve and out-

puts a periodogram showing peaks representing the most probable periodic signal.

When searching for multiple periods, after the first period is found the light curve is

‘whitened’, as in, the best-fit periodic signal is subtracted from the light curve, the

periodogram is recomputed and then the highest peak in the second periodogram is

determined to be a subsequent period.

The AoV routine was used on all of the merged INT and CFHT light curves for the

stars that are present in the candidate Cepheid list. The period value represented by

the top peak from the pre-whitened periodogram of the first pass was taken to be the

first period. Then, the periods were extracted from the whitened periodogram of the

second pass for the top 3 peaks and only those which would produce a period ratio of

somewhere between 0.66 and 0.78 were kept. Of the 3019 candidate Cepheids, 2576

were matched to INT light curves and 302 of those potentially presented more than

one period which would produce a suitable period ratio for a Cepheid pulsating in both

the fundamental and first overtone modes. Of those 302, 3 Cepheids show promise

as to actually being beat Cepheids. Figures 3.2-3.4 show the light curves of the 3

beat Cepheids folded by each period along with the periodograms showing the peaks

representing the period values.

Empirical evidence would suggest that Cepheids are more frequent in low metallicity
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Table 3.1: Beat Cepheids in M33 from Beaulieu et al. (2006) labelled A - E and from this work
labelled BC1 - BC3.

Label CFHT ID RA (J2000.0) Dec (J2000.0) P0 P1 P1/P0

(hms) (dms) (days) (days)
A 120975 01 34 59.73 +30 52 25.2 4.70497 3.38510 0.7195
B 160511 01 32 56.82 +30 41 33.8 3.97755 2.86107 0.7190
C 133288 01 34 33.43 +30 51 15.6 3.82707 2.71407 0.7091
D 234885 01 33 54.63 +30 35 19.8 6.17640 4.33313 0.7015
E 237301 01 34 03.97 +30 38 08.4 6.18792 4.33481 0.7005

BC1 310187 01 34 20.04 +30 20 19.9 3.02646 2.21359 0.7314
BC2 150017 01 33 05.41 +30 52 03.1 2.88962 2.08356 0.7210
BC3 320829 01 33 55.93 +30 18 45.0 3.64967 2.66287 0.7296

environments. In fact, a higher proportion of stars in the low metallicity Magellanic

Clouds are Cepheids compared to galaxies with higher mean metallicities such as the

Milky Way, M31 and M33. Furthermore, it has been observed that there exists a higher

number of Cepheids in the lower metallicity SMC (Z=0.004) than the LMC (Z=0.008)

(Lemasle et al., 2017; Udalski et al., 2015), even though it is less massive. The oc-

currence of beat Cepheids also seems to increase at low metallicity at the same rate

as other Cepheids so one would expect to find more beat Cepheids in low metallicity

environments. The three new beat Cepheids presented here are all towards the edge of

the galaxy where the metallicity is lower and would seem to back this point up. How-

ever, with so few beat Cepheids found using this dataset compared to what is expected,

we are reluctant to draw any statistical conclusions from this sample.

3.2 Metallicity Gradient Across M33

3.2.1 Period Ratio

The period ratio of a beat Cepheid can be used to determine its metallicity. By using

metallicities of stars in the Milky Way and Magellanic Clouds determined by other



3.2. Metallicity Gradient Across M33 71

Figure 3.2: Light curves and periodograms for the M33 beat Cepheid designated BC1 in Table
3.1. The first and third panels show periodograms the with periods represented by the peaks
that were used to fold the light curves in the second and fourth panels.
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Figure 3.3: Light curves and periodograms for the M33 beat Cepheid designated BC2 in Table
3.1. The first and third panels show periodograms the with periods represented by the peaks
that were used to fold the light curves in the second and fourth panels.
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Figure 3.4: Light curves and periodograms for the M33 beat Cepheid designated BC3 in Table
3.1. The first and third panels show periodograms the with periods represented by the peaks
that were used to fold the light curves in the second and fourth panels.
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Figure 3.5: Positions of Beat Cepheids in M33
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Figure 3.6: Petersen Diagram for M33 compared with other galaxies.

methods, a relation between beat Cepheid period ratio and metallicity can be deter-

mined.

3.2.2 Petersen Diagram

As discussed in section 1.3.1, a Petersen diagram plots the ratio of the fist overtone and

fundamental periods (P1/P0) of a beat Cepheid against the logarithm of the fundamen-

tal period (log(P0)). By plotting beat Cepheids found in M33 with beat Cepheids of

known metallicity in the Milky Way (Z=0.020), LMC (Z=0.008) and SMC (Z=0.004)

on a Petersen diagram comparisons can be made to determine the metallicity of the

M33 beat Cepheids as in Figure 1.9. A Petersen diagram with the 3 new beat Cepheids

discovered in this work is presented here as Figure 3.6.
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3.2.3 Beat Cepheid Metallicities

The equivalent metallicities of the beat Cepheid period ratios are determined using

equations from Sziládi et al. (2007), Equation 3.1, and Kovtyukh et al. (2016), Equa-

tion 3.2. Sziládi et al. (2007) and Kovtyukh et al. (2016) used high resolution spec-

troscopy to determine the metallicities of Galactic beat Cepheids. Kovtyukh et al.

(2016) found [Fe/H] abundances higher than reported by Sziládi et al. (2007). Kov-

tyukh et al. (2016) reasoned this was due to Sziládi et al. (2007) using set grid points

for values of effective temperature and gravity in their stellar models whereas Kov-

tyukh et al. (2016) interpolated between grid point values within the models. This has

lead to determining a shallower gradient from the Kovtyukh et al. (2016) relation than

from the Sziládi et al. (2007) relation. The metallicities of the beat Cepheids found in

M33 as a function of period ratio from both the Sziládi et al. (2007) and Kovtyukh et al.

(2016) relations are presented in Figure 3.7 along with the same for beat Cepheids in

the SMC, LMC, Milky Way and M31.

P1

P0

= −0.0143 logP0 − 0.0265[Fe/H] + 0.7101 (3.1)

P1

P0

= −0.0239 logP0 − 0.0404[Fe/H] + 0.7187 (3.2)

From Figure 3.7 we can see that the metallicity range covered by the beat Cepheids

found in M33 is approximately 1 dex. If a steep metallicity gradient exists across M33

then this would be expected. The Milky Way and M31 are thought to also show metal-

licity gradients but metallicity range covered by beat Cepheids in the Milky Way and

M31 is less than in M33. This could be because stellar populations in the Milky Way

and M31 have a lower range in metallicities than M33 or it could be for observational
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Figure 3.7: [Fe/H] abundances a function of period ration.

reasons as outlined at the beginning of Chapter 2. As in, the fact the large parts of

the Milky Way are obscured from our view and that M31 has a high inclination an-

gle means that maybe beat Cepheids have not been found at the same range of radii,

from their respective galactic centres, than in M33. The same observational problems

do not exist for the Magellanic Clouds, yet, the range in beat Cepheid metallicities,

excluding outliers, is approximately 0.5 dex for both the SMC and LMC. There is no

evidence however to suggest that there is much of a metallicity gradient across either

of the Magellanic Clouds. Therefore, one would expect the metallicity range covered

by beat Cepheids to be fairly narrow for both the SMC and LMC.

The galactocentric distances of the beat Cepheids are derived by deprojecting their

celestial coordinates with an inclination angle of 53◦ and a position angle of 22◦ at a

distance of 840 kpc (Scowcroft et al., 2009). The deprojected distances can be found
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Table 3.2: Metallicities of Beat Cepheids in M33 from Beaulieu et al. (2006) labelled A - E
and from this work labelled BC1 - BC3.

Label P1/P0 Distance [Fe/H] [Fe/H]
(kpc) (Sziládi et al., 2007) (Kovtyukh et al., 2016)

A 0.7195 5.586 -0.717 -0.373
B 0.7190 4.718 -0.671 -0.334
C 0.7091 3.857 -0.280 -0.101
D 0.7015 1.304 -0.105 -0.031
E 0.7005 1.282 -0.066 -0.008

BC1 0.7314 6.510 -1.064 -0.547
BC2 0.7210 5.897 -0.662 -0.306
BC3 0.7296 5.847 -1.040 -0.546

in Table 3.2 alongside the equivalent metallicities corresponding to the period ratios of

the beat Cepheids. Figure 3.8 shows the metallicity gradients derived from M33 beat

Cepheids with metallicities determined from the Sziládi et al. (2007) and Kovtyukh

et al. (2016) equations.

The [Fe/H] values can be converted to 12+[O/H] using Equation 3.3 from Maciel et al.

(2003). Maciel et al. (2003) derived the [Fe/H] to [O/H] from spectra of Galactic disk

stars.

[Fe/H] = 0.0317 + 1.4168[O/H] (3.3)

The metallicity gradients determined in this work as shown in Figure 3.8 are presented

as the following equations. Equation 3.4 shows the [Fe/H] gradient with metallici-

ties determined from the Sziládi et al. (2007) equation and equivalent [O/H] gradient,

Equation 3.5, converted using the equation from Maciel et al. (2003).

d[Fe/H]

dρ
= −0.175 dex kpc−1 (3.4)

d[O/H]

dρ
= −0.124 dex kpc−1 (3.5)
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Figure 3.8: [Fe/H] abundances a function of galactocentric radius.

The metallicity gradients determined in this work as shown in Figure 3.8 are presented

as the following equations. Equation 3.6 shows the [Fe/H] gradient with metallicities

determined from the Kovtyukh et al. (2016) equation and equivalent [O/H] gradient,

Equation 3.7, converted using the equation from Maciel et al. (2003).

d[Fe/H]

dρ
= −0.095 dex kpc−1 (3.6)

d[O/H]

dρ
= −0.067 dex kpc−1 (3.7)

As can be seen in Table 3.3 the metallicity gradients found from using Beat Cepheids

are steeper than most of the gradients found by recent studies of HII regions with the

exception of Garnett et al. (1997). The gradient determined from blue supergiants by
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Table 3.3: M33 metallicity gradient estimates.

Metal Gradient Tracer Distance Source
(dex kpc−1) (kpc)

12+[O/H] -0.11 HII regions 840 Garnett et al. (1997)
12+[O/H] -0.034 HII regions 832 Willner and Nelson-Patel (2002)
12+[O/H] -0.012 HII regions 832 Crockett et al. (2006)
12+[O/H] -0.05 HII regions 840 Viironen et al. (2007)
12+[O/H] -0.027 HII regions 840 Rosolowsky and Simon (2008)
12+[O/H] -0.033 HII regions 840 Bresolin (2011)
12+[O/H] -0.024 HII regions 840 Magrini et al. (2016)
12+[O/H] -0.024 HII regions 878 Lin et al. (2017)
12+[O/H] -0.031 PNe 840 Magrini et al. (2009)
12+[O/H] -0.06 Blue supergiants 820 Urbaneja et al. (2005)

[Fe/H] -0.08 AGB 840 Cioni (2009)
[Fe/H] -0.07 RGB 916 Kim et al. (2002)
[Fe/H] -0.06 RGB 867 Tiede et al. (2004)
[Fe/H] -0.175 Beat Cepheids 840 This work with Sziládi et al. (2007)
[Fe/H] -0.095 Beat Cepheids 840 This work with Kovtyukh et al. (2016)

12+[O/H] -0.124 Beat Cepheids 840 This work with Sziládi et al. (2007)
12+[O/H] -0.067 Beat Cepheids 840 This work with Kovtyukh et al. (2016)

Urbaneja et al. (2005) is in line with the gradient determined using the Kovtyukh et al.

(2016) relation but not as steep as the gradient using the Sziládi et al. (2007) relation.

The slope of the metallicity gradient of a galaxy is dependent on age of the tracers

used (Genovali et al., 2014). Beasley et al. (2015) measured the metallicity of stellar

clusters within the disc of M33 and binned them into age groups. They found that the

M33 disc metallicity gradient is steepest when measured with the oldest clusters and

flattens with younger clusters. HII regions are younger than the beat Cepheids used

for our gradient so it is not necessarily unexpected that we would measure a steeper

gradient than from spectroscopy of HII regions. The metallicity gradient measured

from blue supergiants by Urbaneja et al. (2005) is similar to ours which is not surpris-

ing as they also used individual stars to trace metallicity. Large spiral galaxies tend

to show metallicity gradients like M33 (Zaritsky et al., 1994). Genovali et al. (2014)

used high resolution high SNR spectroscopy to measure the iron abundances of 42
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Galactic Cepheids. From these, they measured a metallicity gradient of 0.06 ± 0.002

dex kpc−1 across the thin disk of the Milky Way. The Milky Way metallicity gradient

measured from Galactic Cepheids is similar to the metallicity gradients measured from

beat Cepheids and blue supergiants for M33. This suggests that the two galaxies are

similar in structure with similar histories. Therefore, studying M33 could help us to

understand the star formation history of the Milky Way.

3.3 Effect of metallicity on Leavitt Law

Metal-poor Cepheids are fainter than metal-rich Cepheids at a given pulsation period,

which has a effect on the zero-point of the Leavitt Law but not the slope (Scowcroft

et al., 2009). Metallicity corrections are required to produce an accurate distance mod-

ulus from the Leavitt Law. Tsang et al. (submitted) found that using the shallower HII

region derived metallicity gradients lead to excessively large metallicity corrections

implying that a steeper metallicity gradient exists in M33 such as the one found by

Urbaneja et al. (2005) from blue supergiants or from this work.



Chapter 4

LMC Cepheid Period-Age Relation

4.1 Stellar Cluster in the Large Magellanic Cloud

4.1.1 Observations

As explained in the introduction (Chapter 1), there exists a period-age (PA) relation

for Cepheid variable stars. To determine this observationally we used data for 8

young massive clusters in the LMC. Young stellar clusters in the Magellanic Clouds

are key for the calibration of the Cepheid PA relation as they are host to a large

number of Cepheids. The Magellanic Clouds have been extensively covered by mi-

crolensing experiments such as OGLE (Udalski et al., 2015) finding thousands of

Cepheids. Also, stellar clusters in nearby galaxies can be observed across the en-

tirety of a galaxy, this allows for the understanding of their spatial distribution within

the host galaxy (Kharchenko et al., 2012). Differentiating which stars are cluster mem-

bers from field stars also becomes more difficult when looking within the Milky Way

(Schmeja et al., 2014), this means that Magellanic Cloud clusters have more well-

defined main-sequences and so are easier to age using isochrones. As well as that, the

82



4.1. Stellar Cluster in the Large Magellanic Cloud 83

number of Cepheids per cluster observed in our own galaxy is far fewer than for Mag-

ellanic Cloud clusters and because clusters have a non-negligible period range then the

mean Cepheid period for Galactic clusters will be off. On top of this, the LMC contains

many Cepheid rich young clusters making it ideal for the calibration of the Cepheids

PA relation (Efremov, 2003). NGC 1866 in particular, plays host to many Cepheids

and has long been used to investigate Cepheid properties (Lemasle et al., 2017) and

test pulsation models (Bono and Marconi, 1997).

Our observations cover ∼45 epochs per cluster with both V and I Bessell filters. The

observations were taken using the 2 m Faulkes Telescope South1 at the Siding Spring

node of the Las Cumbres Observatory in New South Wales, Australia. The data covers

2 observing runs, the first taking place from October 2013 until February 2014 supply-

ing∼15 observations with an exposure time of 15 s and used the Merope Camera. The

second ran from October 2015 until February 2016 supplying ∼30 observations with

an exposure time of 30 seconds and used the Spectral Camera. Each of the clusters

with the full fields of view are shown in Figure 4.1. A full table of the data collected

showing the number of images per cluster on each observing night is included as ap-

pendix A. As the two datasets are of different exposure times and were taken with

different cameras they need to be cross-calibrated which is discussed later in this chap-

ter. Of the 8 clusters 6 were suitable to be used for this work. The cluster NGC 1831

is too old to host Cepheids and we did not find any Cepheids in cluster NGC 1856.

1Initial capital and operational funding for the Faulkes Telescope South was provided by The Dill
Faulkes Educational Trust. Faulkes Telescope South is now operated by Las Cumbres Observatory as a
component of the Las Cumbres Observatory Global Telescope Network.
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Figure 4.1: The full fields of view for each of the LMC clusters in this dataset.
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4.1.2 Measuring the Ages of Clusters

The ages for each of the clusters were taken from literature as shown in Table 4.1 with

the exception of NGC 2031 as the most recent age estimation we came across was

from Mould et al. (1993) so we enlisted the help of another student to obtain a more

accurate value. The age was determined from Isochrone fitting and comparison with

other clusters by Silvia Martocchia using HST photometry. As can be seen if Figure 4.2

the MS turn-off magnitude for NGC 2031 is brighter than that of NGC 1856 meaning it

is safe to say it is younger. In fact, the MS turn-off magnitude for NGC 1856 is ∼17.5

and ∼17.0 for NGC 2031, if compared to the younger NGC 1866 whose MS turn-off

occurs at∼16.5 the age of NGC 2031 can be estimated to be somewhere between these

two other clusters. This leads to NGC 2031 being assigned an age of ∼230 Myrs with

the error estimated to be ±30 Myrs from the measured magnitude difference across

the MS at the turn-off.

The ages of the other clusters were taken from various sources. The age of NGC 1818

was determined by Ahumada et al. (2019) who compared the cluster’s spectrum to that

of LMC cluster templates presented in Santos et al. (1995). The ages of the remaining

clusters were determined using isochrone fitting (see section 1.4.2). For NGC 1831,

NGC 2136 & NGC 2157 see Niederhofer et al. (2015). For NGC 1850 & 1866 see

Milone et al. (2018). For NGC 1856 see Bastian and Silva-Villa (2013).

The age of each of the clusters is presented in Table 4.1 as well as the number of

Cepheids that we selected from each cluster and the range of Cepheid periods found

in each cluster. The method of period determination and my selection criteria will

be discussed later in this chapter. Figure 4.3 shows the range of periods of the four

clusters that contain multiple fundamental mode Cepheids.

The ages of the clusters in our sample has an affect the zero-point of the empirical PA
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Figure 4.2: Comparison of the CMDs of NGC 2031 to NGC 1856 from HST photometry.
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Figure 4.3: Figure showing the period ranges of four of the clusters normalised to the mean,
with higher and lower period populations separated.
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Table 4.1: The age, number of Cepheids, period range and the half-light radius (rh) for each
cluster.

Cluster Age No. of Cepheids Period range rh
(Myrs) (days) (arcsec)

NGC 1818 30±15a 1 40 24.0f

NGC 1831 924±126b 0 -
NGC 1850 80±17c 2+1∗ 7.92 - 18.66 38.9f

NGC 1856 280±50d 0 -
NGC 1866 200±75c 11+2∗ 2.71 - 3.45 49.7g

NGC 2031 230±30e 7+2∗ 2.8 - 3.28 59.6g

NGC 2136 125±50b 2+1∗ 4.41 - 9.13 14.8f

NGC 2157 100±30b 1+1∗ 5.15-7.72 26.3f
∗ Overtone pulsator
a Ahumada et al. (2019)
b Niederhofer et al. (2015)
c Milone et al. (2018)
d Bastian and Silva-Villa (2013)
e This work
f Pasquato and Bertin (2010)
g Noyola and Gebhardt (2007)

relation. Therefore, we are relying on the authors of the papers referenced in 4.1 to

have thoroughly investigated all factors and provide accurate cluster ages. The age of

each cluster is derived from some variant of the method of isochrone fitting. There

are no uncertainties provided for the isochrones as they are built from stellar evolution

models based upon theory. The error of the cluster age comes from cluster param-

eters that affect which isochrone fits the cluster the best on the CMD, chiefly, the

distance modulus, reddening and metallicity. In the case of NGC 2157, Niederhofer

et al. (2015) report an age of 100±30 Myr using models fitted to HST photometry of

the cluster by Fischer et al. (1998). They used a distance modulus of µ = 18.5, the

data was corrected for a reddening value of E(B−V ) = 0.1 and the models used were

for a stellar population of the adopted LMC metallicity of z = 0.008. In Figure 4.4 we

investigate how altering these parameters would affect the age one would determine.

Plot A in Figure 4.4 shows a CMD of NGC 2157 using the Fischer et al. (1998) pho-

tometry with µ = 18.5 and Geneva SYCLIST stellar isochrones (Georgy et al., 2013b)



4.1. Stellar Cluster in the Large Magellanic Cloud 88

of different ages overplotted. The isochrones are for a metallicity of z = 0.006 as this

is the closest to LMC metallicity that they provide and for a stellar population with

an average rotation rate of ω = 0.5. As we can see the isochrone with an age of 100

Myr fits the MS turn-off of the cluster the best. For plot B the we reduced the distance

modulus to µ = 18.0, this makes the cluster seem older with the MS turn-off falling

between isochrones of ∼125-150 Myr. Increasing the distance modulus would make

the cluster seem younger. Fischer et al. (1998) applied the reddening correction using

values outlined in Holtzman et al. (1995). For plot C we changed the reddening to

E(B − V ) = 0.05 and altered the extinction and colour correction in accordance with

Holtzman et al. (1995). This makes the stars in NGC 2157 redder and the absolute

magnitudes fainter with the∼125 Myr isochrone now providing the best fit for the MS

turn-off. Increasing the value of E(B − V ) would have the opposite effect. In plot D

we investigate the effect metallicity has on isochrones, the higher the metallicity the

brighter the ‘hook’ in the isochrone indicating the transition from Hydorgen burning

in the core to the shell. Increasing metallicity also makes the RGB redder and fainter.

From this we can see how using an incorrect metallicity could cause a misjudgement

in determining a cluster’s age.

4.1.3 Data Reduction

The images were initially processed through the ORAC-DR pipeline which performs

bad-pixel masking, bias and dark subtraction, and flat-field corrections. To align the

images we used IRAF to match stellar coordinates, compute the coordinate transforms

and finally register the images.
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Figure 4.4: CMDs of NGC 2157 using Fischer et al. (1998) photometry to investigate how
altering cluster parameters affects isochrone age. Plot A shows a CMD with µ = 18.5 and
Geneva SYCLIST stellar isochrones (Georgy et al., 2013b) of 5 different ages overplotted.
Plot B is the same but with the distance modulus reduced to µ = 18.0. Plot C is the same but
with the reddening changed toE(B−V ) = 0.05 and the extinction and colour correction altered
in accordance with Holtzman et al. (1995). Plot D is the same as plot A but with isochrones of
3 different metallicities at 3 different ages.
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Table 4.2: Non-default HOTPANTS (Becker, 2015) parameters used for image subtraction.

[-r rkernel] 11 convolution kernel half width
[-nrx xregion] 1 number of image regions in x dimension
[-nry yregion] 1 number of image regions in y dimension
[-nsx xstamp] 20 number of each region’s stamps in x dimension
[-nsy ystamp] 20 number of each region’s stamps in y dimension

[-ko kernelorder] 2 spatial order of kernel variation within region
[-bgo bgorder] 2 spatial order of background variation within region

4.2 Image Subtraction

In order to find the variable stars and produce light curves we used image subtraction.

Therefore, we created template images to get reference frames with high a signal-to-

noise ratio. The templates were produced by selecting images from nights with the best

seeing and averaging them together. The images from each epoch are then subtracted

in turn from its corresponding template producing a series of subtracted frames with

light and dark spots indicating objects that have fluctuated in magnitude. We used the

image subtraction software HOTPANTS (Becker, 2015) which is based on the ISIS

image subtraction package (Alard and Lupton, 1998; Alard, 2000). An example of a

template image, single epoch image and resulting subtracted frames is shown in Figure

4.5. For further details in image subtraction see 2.5 and the HOTPANTS (Becker,

2015) parameters that were changed from default values for the image subtraction are

presented in Table 4.2.

4.3 Light Curves

4.3.1 Calibration

Now that we have flux difference light curves for each of the variable objects and the

positions and periods of all the Cepheids we need to cross-calibrate the two datasets in
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Figure 4.5: Image subtraction on LMC clusters

Table 4.3: Non-default IRAF PHOT parameters used for photometry.

FWHMPSF 4.
SIGMA 3.6
EPADU 8.14

READNOISE 11.18
ANNULUS 15.

DANNULUS 10.
SMAXITER 10
SNREJECT 50

order to get magnitude light curves on the same scale. The more recent dataset includes

a larger number of images as well as a longer exposure time therefore producing tem-

plates with a greater depth of view. For this reason we used the photometry on the stars

in the templates produced from the second observing run to produce a catalogue. The

PHOT parameters that were changed from default values within IRAF are presented

in Table 4.3. The photometry of the stars from the templates of the first observing

run were then matched to the catalogue with transformation equations being produced

including a magnitude offset and a colour term.
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Table 4.4: Parameters of LMC cluster photometry where mI=I+I1+I2(V-I) &
mV=V+V1+V2(V-I)

Cluster No. of I1 I2 V1 V2
stars

NGC 1818 262 0.712±0.002 0.011±0.002 1.153±0.003 0.021±0.003
NGC 1850 239 -0.308±0.003 0.003±0.002 -0.815±0.003 0.013±0.002
NGC 1866 263 0.594±0.002 0.007±0.003 1.639±0.002 0.013±0.004
NGC 2031 303 0.364±0.005 0.008±0.003 0.085±0.005 0.008±0.003
NGC 2136 281 0.169±0.003 -0.001±0.003 0.573±0.003 0.007±0.004
NGC 2157 248 -0.205±0.005 0.010±0.003 -1.054±0.005 0.027±0.003

mI = −2.5 logF + I1 + I2(V − I) (4.1)

mV = −2.5 logF + V 1 + V 2(V − I) (4.2)

Where the F is the Flux of the star as measured by IRAF for the I-band in Equation 4.1

and the V-band in Equation 4.2. I1 & V1 are the offsets calculated by IRAF when the

parameters are fitted in the I-band and V-band respectively. I2 & V2 are the coefficients

of the colour correction calculated by IRAF when the parameters are fitted in the I-

band and V-band respectively. The values of I1, I2, V1 and V2 are presented in Table

4.4.

4.3.2 Period Search

To find Cepheids in the data we co-added the absolute values of all of the subtracted

frames for each field so that all of the variable objects appeared as bright points in

the images. We then used SExtrator to find sources. Now that the variable sources

have been identified flux difference light curves can be obtained by performing aperture

photometry on the subtracted frames. Using a Phase Dispersion Minimisation (PDM)

method as decribed by Stellingwerf (1978) on each of the light curves gave me a period
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Figure 4.6: Residuals of cross-calibration of the two datasets for each of the LMC clusters.

for each object. We then folded each light curve by each period and checked them by

eye to see which were true variable stars and which were not. The periods of each of

the Cepheids we found were then compared to known Cepheids which also served to

highlight any new Cepheids that we found.

4.4 Cluster Membership

We found many variable objects in each of the fields we have but we only want

Cepheids and only those that we can be confident are cluster members. The number

of sources detected in the co-added absolute values of the subtracted frames for each

cluster are presented in Table 4.5. The first rejection of stars was done by determining

which Cepheids lie within the half light radius for each cluster. The half light radii of
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Figure 4.7: Magnitude difference light curves for a sample of 6 LMC Cepheids. The green
circles represent the V-band and the red stars are in the I-band.
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Table 4.5: The number of sources detected in the co-added absolute values of the subtracted
frames for each cluster.

Cluster No. of detections
NGC 1818 218
NGC 1850 154
NGC 1866 119
NGC 2031 188
NGC 2136 314
NGC 2157 348

each cluster is given in Table 4.1. Figure 4.8 shows the positions of the Cepheids in

each cluster as well as the boundary of the cluster’s half-light radius.

The second rejection was done by using the proper motions of the stars in each cluster

determined by the Gaia mission (Gaia Collaboration et al., 2016, 2018; Lindegren

et al., 2018). We took into account the proper motions of all of the stars within the

half-light radius for each of the clusters. We then rejected any Cepheids whose proper

motion was more the one sigma from the mean of the stars in each cluster. Figures

4.9 to 4.14 show this for each cluster. The resultant list of Cepheids used for my

Period-Age relation is presented in Table 4.6 along with each star’s coordinates and

their designation in previous publications. The periods of any overtone pulsators have

been fundamentalised using Equation 4.3 from Alcock et al. (1995), where P 1 is the

period of the first overtone Cepheid and P 0 is the corresponding fundamental period.

P 1

P 0

= 0.733 − 0.034 logP 1, 0.1 < logP 1 < 0.7 (4.3)

4.5 Period-Age Relation

For each of the clusters we calculated the mean period for all of the fundamental mode

Cepheids and the fundamentalised periods of the first overtone Cepheids. We used
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Figure 4.8: Position of Cepheids (highlighted by pink circles) in LMC Clusters with pink
dashed rings highlighting the half-light radius of each cluster. The Cepheids lying outside of
the half-light radii have been discounted.
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Table 4.6: LMC Cepheid coordinates

Cluster RA (J2000.0) Dec (J2000.0) P Cepheid
(hms) (dms) (days)

NGC 1818 05 04 14.92 -66 25 52.8 39.999 New
NGC 1850 05 08 43.97 -68 45 27.9 18.6639 OGLE

- 05 08 43.11 -68 45 33.0 8.55965 OGLE
- 05 08 46.25 -68 45 39.6 5.56533, 7.92288∗ OGLE

NGC 1866 05 13 42.31 -65 27 30.0 3.45234 V7a

- 05 13 41.10 -65 27 50.3 3.05501 We 2b

- 05 13 40.58 -65 28 26.1 3.04019 We 8b

- 05 13 40.02 -65 27 43.4 2.85999 We 4b

- 05 13 40.05 -65 28 03.4 3.04855 We 3b

- 05 13 38.83 -65 27 59.2 3.05388 We 11b

- 05 13 38.20 -65 27 56.9 3.17515 We 5b

- 05 13 37.94 -65 27 57.8 2.898 WS 5c

- 05 13 37.66 -65 27 14.5 3.3183 V4a

- 05 13 37.52 -65 28 00.2 3.28999 We 6b

- 05 13 36.33 -65 28 03.7 3.06979 WS 9c

- 05 13 42.81 -65 27 19.6 2.00715, 2.79619∗ V8b

- 05 13 41.84 -65 28 19.5 1.9448, 2.7075∗ V6b

NGC 2031 05 33 42.43 -70 58 52.8 2.97151 V14a

- 05 33 42.41 -70 58 51.3 3.19436 OGLE
- 05 33 42.18 -70 59 18.1 3.04226 OGLE
- 05 33 41.68 -70 59 17.9 3.27879 V8a

- 05 33 40.58 -70 59 15.7 3.03111 V6a

- 05 33 40.48 -70 58 56.7 2.96081 V9a

- 05 33 38.03 -70 59 41.7 2.82426 V11a

- 05 33 42.29 -70 59 15.0 2.05851, 2.86926∗ OGLE
- 05 33 41.45 -70 59 12.5 2.00784, 2.79717∗ OGLE

NGC 2136 05 53 01.21 -69 29 38.0 4.41422 OGLE
- 05 53 57.28 -69 29 14.3 9.1301 OGLE
- 05 52 54.42 -69 29 39.7 3.17456, 4.46552∗ OGLE

NGC 2157 05 57 33.13 -69 12 01.7 7.71987 V2a

- 05 57 34.49 -69 11 33.7 3.64837, 5.1472∗ V3a
∗ Fundamentalised period of overtone pulsation using 4.3
a As designated in Mateo (1992)
b As designated in Welch et al. (1991)
c As designated in Welch and Stetson (1993)
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Figure 4.9: Gaia proper motions of stars inside the half-light radius of NGC 1818. The dashed
black ring in the top right panel indicates 1 sigma from the mean proper motion. The vertical
grey lines in the in the bottom two panels also show one sigma from the mean for the proper
motions in both RA and Dec. Cepheids lying outside these limits have been discounted.

the mean periods to apply a least squares fit in order to derive the PA relation which

is weighted by the errors on the cluster ages. We derived one equation using the six

clusters in my dataset that host Cepheids. However, two of the clusters only include a

single fundamental mode Cepheid each and so we derived a second PA relation using

the four clusters that are home to multiple fundamental mode Cepheids.

The four clusters that have multiple fundamental mode Cepheids show a range of the

periods that increases with the age of the host cluster as can be seen in Table 4.1 and

Figure 4.3. A possible cause for this is discussed in the next section. Therefore, we

have also included two further PA relations, one using just the higher period Cepheids

and another only using the lower period Cepheids. The PA relations that we have

derived are presented in Table 4.7 along with the recent modeled PA relation at LMC

metallicity and average progenitor rotation rate of ω=0.5 by Anderson et al. (2016), and
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Figure 4.10: Gaia proper motions of stars in and around NGC 1850. See Figure 4.9 for details.
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Figure 4.11: Gaia proper motions of stars in and around NGC 1866. See Figure 4.9 for details.
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Figure 4.12: Gaia proper motions of stars in and around NGC 2031. See Figure 4.9 for details.
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Figure 4.13: Gaia proper motions of stars in and around NGC 2136. See Figure 4.9 for details.
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Figure 4.14: Gaia proper motions of stars in and around NGC 2157. See Figure 4.9 for details.

the previous empirical Cepheid PA relation derived from LMC clusters by Efremov

(2003).

The error on cluster isochrones affects the zero-point of the Cepheid PA relation,

whereas, uncertainty on the slope is affected by the period range of cluster Cepheids.

As we can see in Table 4.7, the gradient of the PA relation can be significantly altered

by using either the low or high period Cepheid population as the observed period range

is larger for the younger clusters. Cepheid lifetimes are much longer for lower mass

stars which explains why there are many more Cepheids in the older clusters NGC

1866 and NGC 2031 compared to the other clusters in our sample. Therefore, the

mean periods for these two older clusters is more trustworthy the the mean periods

of Cepheids in the younger clusters. Stellar models have shown that for lower mass,

older, Cepheids the third crossing of the instability strip is the longest. For higher mass

Cepheids, the second and third crossing timescales are very similar and the proportion

of time spent on the first crossing compared to the second and third is increased (An-
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Table 4.7: Period-Age relations log t = α logP +β. Also included are the degrees of freedom,
F-statistic and the probability that the fit happened by chance.

α β df F-stat P-value
Mean from 6 clusters -0.772±0.055 8.703±0.046 4 197.5 <0.001
Mean from 4 clusters -0.758±0.054 8.707±0.040 2 193.6 0.005

Higher Periods -0.577±0.036 8.640±0.031 2 253.7 0.004
Lower Periods -0.994±0.110 8.801±0.071 2 81.3 0.012

Anderson et al. (2016) -0.665 8.628
Efremov (2003) -0.683 8.531

derson et al., 2014). Therefore, it is more likely that Cepheids in younger clusters will

be found at different instability strip crossings, leading to an increased range of peri-

ods. The increased period range will affect the mean period and therefore the slope of

the PA relation.

Figure 4.15 shows our PA relation compared with those of Efremov (2003) and the

modeled relation of Anderson et al. (2016). Efremov’s relation shows a shallower

gradient than ours with a difference of 0.2 dex in age at the shorter period end but

a similar age prediction at the longer period end of the relation. We think there are

two main reasons for this, the first being that the age estimates of the clusters are not as

accurate as they are today. For example, earlier in this Chapter, we discussed how from

literature the most recent age estimation for NGC 2031 came from Mould et al. (1993)

at∼140 Myr whereas Silvia Martocchia found the age to be∼230 Myr. Another factor

could be that the youngest cluster that Efremov used was ∼50 Myr containing a single

Cepheid with a period of ∼20 days whereas we have discovered a ∼40 day period

Cepheid in the younger cluster NGC 1818. These two factors, that of increasing the

ages of the clusters at the short period end and find a long period Cepheid at a much

younger age than Efremov (2003), have caused the larger gradient of our PA relation

derived from LMC clusters.

Using models Anderson et al. (2016) found a gradient for the PA relation for Cepheids
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Figure 4.15: Mean empirical period-age relation derived from Cepheids LMC clusters from
this work compared with the one of Efremov (2003) and recent modelled relations by Anderson
et al. (2016).

at LMC metallicity similar to that of Efremov (2003) but with a higher zero point. The

possible period ranges for 9M� stars entering the IS in the models used by Anderson

et al. (2016) at LMC metallicity are ∼10-20 days for a progenitor rotation rate of

zero, ∼15-55 days for ω=0.5 and ∼30-80 days for ω=0.9. With such a large range of

potential periods for the highest mass (youngest) Cepheids it is possible that the when

deriving the PA relation Anderson et al. (2016) underestimated the period values at the

young end leading to the disparity with our empirical relation.

4.5.1 Rotation effects on PA relation

The large discrepancy between the shortest and longest periods in some of the clusters,

especially NGC 1850, poses an interesting conundrum. If these Cepheids are all cluster
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four different scenarios. Mean relation from all Cepheids in all clusters, mean relation from all
Cepheids minus two of the clusters, mean relation from only higher period Cepheids and mean
relation from lower period Cepheids.

members then what could cause such a large range of periods. As clusters NGC 1818

and NGC 2157 only each include a single Cepheid pulsating in the fundamental mode

we have discounted those two clusters in the this part of the analysis.

We split the Cepheid populations in the four clusters with multiple fundamental mode

Cepheids into higher and lower periods and produced PA relations for each case. The

PA relations for the highest periods and lowest periods are shown in Figure 4.16 along

with the mean PA relation for the four clusters in this case compared with the PA rela-

tion derived from all six clusters. When removing the two clusters which only contain

a single fundamental mode Cepheid each the mean PA relation is almost identical to

the PA relation derived from all of the clusters. The PA relations derived from just

taking into account the longest period Cepheids in each cluster or the shortest period
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Cepheids exhibit a strong relation as shown in Table 4.7 and Figure 4.16. Therefore,

whatever is causing the large spread of Cepheid periods in a single cluster affects the

clusters consistently with the increasing ages of the clusters in this sample.

One potential avenue to explore this phenomenon is by looking at the progenitor rota-

tion rates of the Cepheids. Rotation causes a star’s MS lifetime to increase. At a given

mass the faster the rotation the longer a star spends on the MS. This means that in a

simple stellar population if there exists a range of rotation rates then the faster rotating

stars will take longer to evolve to the IS than low or non-rotating stars of the same

mass. The increased MS lifetime is caused by the mixing process supplying the core

with fresh Hydrogen during the core Hydrogen burning phase. Therefore, at a given

age there will exist larger range of different mass stars across the IS due to the star’s

different progenitor rotation rates than if all of the stars had the same rotation rate on

the MS. This leads to there being a larger range of periods for the Cepheid population

than would be expected if all of the stars had the same initial rotation rates.

The question then becomes whether the observed range of periods in the clusters can be

explained by stellar rotation. Figures 4.17 and 4.18 show how different rotation rates

applied to the Geneva SYCLIST stellar isochrones (Georgy et al., 2013b) affect the

stars’ later evolution through the IS. The dashed grey lines traveling diagonally across

the figures show lines of constant period which are akin to the lines of constant radius

across the HR diagram and have been calculated from period-radius relations derived

by Anderson et al. (2016). Models of a single rotation rate do not cover the observed

periods ranges in these cases instead models from at least two different stellar rotation

rates are needed to recreate the Cepheid period spread for these clusters.
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Chapter 5

Discussion & Future Work

5.1 M33 Data

5.1.1 Summary of Data Calibration

Hartman et al. (2006) conducted a variability survey on the Triangulum galaxy, also

known as M33, using the CFHT on 27 nights over 17 months beginning August 2003

in which they identified over 36000 variable objects producing a catalogue of variable

point sources. Further data was taken using the INT covering 13 nights spread between

3 observing runs over 19 months beginning February 2008 producing ∼45 epochs in

total. To cover the entire galaxy four pointings of the wide field camera were used.

To calculate response of the CCDs at the INT, images taken of the SDSS field Stripe

82 which were calibrated using dr12 standard star catalogues. PSF fitting photometry

was performed by Kevin Tsang to produce transformation Equation 2.2. The fit was

inverted to produce a calibrated catalogue of stars from the INT images.

Template images were built from the INT data to be used as the reference frames

108
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for image subtraction as well as for photometric calibration. The images in each set

that had the best seeing as well as the least elongated or skewed stars were identified

and then averaged together to produce the templates. Image subtraction methods were

used to locate variable sources which involves the pixels of one image being subtracted

from another leaving behind any objects that have changed in brightness. The images

taken on different nights were then individually subtracted from the template using

HOTPANTS (Becker, 2015) which is based on ISIS (Alard and Lupton, 1998; Alard,

2000).

Variable sources were identified by using SExtractor (Bertin and Arnouts, 1996)

on the absolute versions of the subtracted images. Aperture photometry was performed

on each of the subtracted images in IRAF to obtain the flux difference from the tem-

plate for each and every epoch. The flux light curves were converted to magnitude light

curves using the transformation equations produced by Kevin Tsang. The now magni-

tude calibrated light curves were merged with the CFHT light curves and matched by

the WCS information. The mean magnitudes of the light curves are taken and used to

work out the magnitude offset for each object between the two datasets. However, a

substantial proportion of the cross-calibrated light curves show a discrepancy in their

amplitudes.

5.1.2 Conclusions

To test possible causes of the amplitude discrepancy, any mismatching of the stars

between the CFHT and INT data was checked. However, the WCS transformations

between the two templates match well as shown with no obvious indication that there

is any discrepancy in the coordinates. There also does not seem to be any correlation of

amplitude difference with position in M33 or with the pixels coordinates on the CCD
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chips.

A workaround was devised to get past this amplitude discrepancy. The ratio of the

amplitude differences were calculated for each light curve and used to scale the ampli-

tudes of the INT light curves so that they matched the CFHT light curves.

5.1.3 Further Research

Investigations into how much flux needs to be removed or added to the data for each of

the Cepheid variable stars to account for amplitude differences between the light curves

of the INT and CFHT data needs to be done. The photometry and image subtraction

could then be done on smaller regions around where large amplitude differences are

found to see if it related crowding or companion stars.

The INT data is not of the highest quality with many of the nights suffering from poor

seeing. This manifested itself as large amounts of scatter in many of the lights curves.

It is possible that all that is required is higher quality data and that it was not possible

to get a high enough signal-to-noise ratio at the magnitude level of beat Cepheids at the

INT. Some preliminary work was done to compare light curves from the CFHT data

with data taken by the WIYN 3.5m telescope atop the Kitt Peak National Observatory

for the work of Scowcroft et al. (2009). The WIYN data is of similar quality to that

of the CFHT data and the light curves matched well not showing the same amplitude

problem. However, the WIYN data covers just two relatively small regions of M33

meaning it was only possible to compare a limited sample of Cepheids.
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5.2 Beat Cepheids in M33

5.2.1 Summary

An AoV routine was used on all of the merged INT and CFHT light curves for the

stars that are present in the candidate Cepheid list using VARTOOLS (Hartman and

Bakos, 2016). The period value represented by the top peak from the pre-whitened

periodogram was taken to be the strongest period. The top 3 periods were extracted

from the whitened periodogram of the second pass and those that gave a period ratio of

between 0.66 and 0.78 were kept. Of the 3019 candidate Cepheids 3 Cepheids, other

than the 5 found by Beaulieu et al. (2006), showed promise to be beat Cepheids.

By plotting beat Cepheids found in M33 with beat Cepheids of known metallicity in

the Milky Way (Z=0.020), LMC (Z=0.008) and SMC (Z=0.004) on a Petersen diagram

comparisons can be made to determine their metallicity. The equivalent metallicities

of the beat Cepheid period ratios were determined using equations from Sziládi et al.

(2007) and Kovtyukh et al. (2016) who used high resolution spectroscopy to determine

the metallicities of Galactic beat Cepheids. The galactocentric distances of the beat

Cepheids are derived by deprojecting their celestial coordinates with an inclination

angle of 53◦ and a position angle of 22◦ at a distance of 840 kpc.

5.2.2 Conclusions

The metallicity gradient determined in this work, d[O/H]
dρ

= −0.124 dex kpc−1 or

d[O/H]
dρ

= −0.067 dex kpc−1 are steeper than most of the gradients found by recent

studies of HII regions d[O/H]
dρ

= −0.034 − −0.012 dex kpc−1. However, it is more

in line with the older work of Garnett et al. (1997) at d[O/H]
dρ

= −0.11 dex kpc−1.
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Tsang et al. (submitted) found that using the shallower HII region derived metallic-

ity gradients lead to excessively large metallicity corrections implying that a steeper

metallicity gradient exists in M33 such as the one found by Urbaneja et al. (2005) from

blue supergiants, d[O/H]
dρ

= −0.06 dex kpc−1, or from this work.

A possible reason for the discrepancy in metallicity measures between methods could

be that the metallicity gradient derived here is obtained from a small sample of beat

Cepheids. However, the relation between period ratios and metallicity is well described

by pulsation theory and not subject to the same potential systematic errors that can

plague spectroscopic methods. The robustness of the method of using beat Cepheids to

measure metallicity is shown by the fact that the location of beat Cepheids in different

galaxies, i.e. the Milky Way, SMC and LMC, on the Petersen diagram is dependant on

the metallicity of their host galaxy.

5.2.3 Further Research

With the new generation of telescopes such as the LSST, the E-ELT or the JWST,

we are entering a new era of high-precision astronomy. As shown in Chapter 2, the

accuracy of the calibration significantly decreases at magnitudes fainter ∼20.5 in the

r’-band. LSST will be able observe to r’-band magnitudes down to∼24.7 (Ivezić et al.,

2019) meaning the brightest Cepheids could be observed out to 8Mpc and ∼3Mpc for

beat Cepheids of typical magnitude. As M33 is well within this distance, <1Mpc, we

will get much more accurate observations of M33 Cepheids and therefore find numbers

of beat Cepheids closer to what we expect to see. This will lead to an M33 metallicity

gradient of much greater accuracy. We will also be able to do the same for other

galaxies within 3Mpc in which we are not currently able to observe the fainter beat

Cepheids.
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The metallicity of the Cepheids in M33 could be checked using high resolution spec-

troscopy to measure the metallicity gradient and compared with that found by beat

Cepheids and other methods. However, this is not currently possible as we cannot cur-

rently achieve the required signal-to-noise ratio but maybe it will be possible in the

future.

5.3 Cepheid Period-Age Relation

5.3.1 Summary

There exists a period-age relation for Cepheid variable stars. Observations were taken

of 8 LMC stellar cluster using the 2 m Faulkes Telescope South at the Siding Spring

node of the Las Cumbres Observatory. The data covers 2 observing runs, the first

taking place from October 2013 until February 2014 supplying ∼15 observations with

an exposure time of 15 s and used the Merope Camera. The second ran from October

2015 until February 2016 supplying ∼30 observations with an exposure time of 30

seconds and used the Spectral Camera. Of the 8 clusters 6 were suitable to be used for

this work.

The Ages for each of the clusters were taken from literature with the exception of NGC

2031 where the age was determined from Isochrone fitting and comparison with other

clusters by Silvia Martocchia using HST photometry.

In order to find the variable stars and produce light curves image subtraction was im-

plemented using the software HOTPANTS (Becker, 2015) which is based on the ISIS

image subtraction package (Alard and Lupton, 1998; Alard, 2000). The templates for

subtraction were produced by selecting images from nights with the best seeing and
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averaging them together. The images from each epoch are then subtracted in turn from

its corresponding template producing a series of subtracted frames. To find Cepheids

SExtractor was run on images of co-added absolute values of all of the subtracted

frames for each field.

Many Cepheids in the field of each cluster were found but they were not necessarily all

cluster members. The first rejection of stars was done by determining which Cepheids

lie within the half light radius for each cluster. The second rejection was done by

using the proper motions of the stars in each cluster determined by the Gaia mission

(Gaia Collaboration et al., 2016, 2018; Lindegren et al., 2018). Any Cepheids whose

proper motion was more the one sigma from the mean of the stars in each cluster were

rejected.

5.3.2 Conclusions

The mean periods of the Cepheids in each cluster were used to apply a least squares

fit in order to derive the PA relation. One equation was derived using the 6 suitable

clusters in the dataset. However, two of the clusters only include a single fundamental

mode Cepheid each and so a second PA relation was derived using the four clusters

that are home to multiple fundamental mode Cepheids.

The four clusters that have multiple fundamental mode Cepheids show a range of the

periods that increases with the age of the host cluster. Therefore, two further PA rela-

tions were derived, one using just the higher period Cepheids and another only using

the lower period Cepheids. The PA relations as derived in Chapter 4 are presented here

again in Table 5.1 along with the recent modeled PA relation at LMC metallicity and

average progenitor rotation rate of ω=0.5 by Anderson et al. (2016), and the previous

empirical Cepheid PA relation derived from LMC clusters by Efremov (2003).
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Table 5.1: Period-Age relations log t = α logP + β. Same as Table 4.7 in Chapter 4

α β
Mean from 6 clusters -0.772±0.055 8.703±0.046
Mean from 4 clusters -0.758±0.054 8.707±0.040

Higher Periods -0.577±0.036 8.640±0.031
Lower Periods -0.994±0.110 8.801±0.071

Anderson et al. (2016) -0.665 8.628
Efremov (2003) -0.683 8.531

Efremov’s relation shows a shallower gradient than ours with a difference of 0.2 dex in

age at the shorter period end but a similar age prediction at the longer period end of the

relation. This is caused by the increase of the ages of the clusters at the short period

end and finding a long period Cepheid at a much younger age than Efremov (2003),

have caused the larger gradient of my PA relation derived from LMC clusters.

The large discrepancy between the shortest and longest periods in some of the clusters

poses an interesting conundrum. Rotation causes a star’s MS lifetime to increase. At

a given mass the faster the rotation the longer a star spends on the MS. This means

that in a simple stellar population if there exists a range of rotation rates then the faster

rotating stars will take longer to evolve to the IS than low or non-rotating stars of the

same mass. Models of a single rotation rate do not cover the observed periods ranges in

these cases instead models from at least two different stellar rotation rates are needed

to recreate the Cepheid period spread for these clusters.

5.3.3 Further Research

Using the PA relations derived here one could produce an age map of the LMC known

Cepheids available in the OGLE collection of variable stars. Therefore, it is possible

to trace the recent star formation history of the LMC from the period distribution of

its Cepheids (Alcock et al., 1999). This would be possible for the age range in which
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Cepheids can exist, .40 Myr for the longest period Cepheids up ∼250 Myr for the

shortest period Cepheids and everything in between. The methods applied here could

also be reproduced to determine Cepheid PA relations from clusters in the Milky Way

and SMC. Anderson et al. (2016) predicts different Cepheid PA relations at different

metallicities. Therefore, one could expect that PA relations derived from stellar clusters

of galaxies with various metallicities would not be the same.
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Appendix B

Astrometric Solutions

CTYPE1 = ‘RA—TAN-SIP’ / TAN (gnomic) projection + SIP distortions
CTYPE2 = ‘DEC–TAN-SIP’ / TAN (gnomic) projection + SIP distortions
EQUINOX = 2000.0 / Equatorial coordinates definition (yr)
LONPOLE = 180.0 / no comment
LATPOLE = 0.0 / no comment
CRVAL1 = 339.993476555 / RA of reference point
CRVAL2 = -0.182345112321 / DEC of reference point
CRPIX1 = 897.692962722 / X reference pixel
CRPIX2 = 2101.80139878 / Y reference pixel
CUNIT1 = ‘deg ’ / X pixel scale units
CUNIT2 = ‘deg ’ / Y pixel scale units
CD1 1 = -1.42631876294E-06 / Transformation matrix
CD1 2 = -9.21061297676E-05 / no comment
CD2 1 = -9.21228170745E-05 / no comment
CD2 2 = 1.24533286537E-06 / no comment
IMAGEW = 2048 / Image width, in pixels.
IMAGEH = 4096 / Image height, in pixels.
A ORDER = 2 / Polynomial order, axis 1
A 0 2 = -6.94851627342E-07 / no comment
A 1 1 = 1.11522341035E-06 / no comment
A 2 0 = -1.73980485103E-06 / no comment
B ORDER = 2 / Polynomial order, axis 2
B 0 2 = 1.3973258662E-06 / no comment
B 1 1 = -8.73535263928E-07 / no comment
B 2 0 = 5.63709534756E-07 / no comment
AP ORDER= 2 / Inv polynomial order, axis 1
AP 0 1 = -9.94935043145E-06 / no comment
AP 0 2 = 6.95551801661E-07 / no comment
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AP 1 0 = 1.40078123895E-05 / no comment
AP 1 1 = -1.11780676932E-06 / no comment
AP 2 0 = 1.74057212421E-06 / no comment
BP ORDER= 2 / Inv polynomial order, axis 2
BP 0 1 = 1.38832040856E-05 / no comment
BP 0 2 = -1.3982642172E-06 / no comment
BP 1 0 = -9.83238310444E-06 / no comment
BP 1 1 = 8.75389007572E-07 / no comment
BP 2 0 = -5.63071840054E-07 / no comment
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zu prüten. Astronomische Nachrichten, 228:359, October 1926. doi: 10.1002/asna.
19262282003.

N. Baker and R. Kippenhahn. The Pulsations of Models of δ Cephei Stars. With 17
Figures in the Text. Zeitschrift fur Astrophysik, 54:114, January 1962.

Norman Baker and Rudolf Kippenhahn. The Pulsations of Models of Delta Cephei
Stars. II. ApJ, 142:868, October 1965. doi: 10.1086/148359.

N. Bastian and E. Silva-Villa. Constraints on possible age spreads within young mas-
sive clusters in the large Magellanic cloud. MNRAS, 431:L122–L126, Apr 2013.
doi: 10.1093/mnrasl/slt024.

Michael A. Beasley, Izaskun San Roman, Carme Gallart, Ata Sarajedini, and Antonio
Aparicio. Evidence for temporal evolution in the M33 disc as traced by its star
clusters. MNRAS, 451(4):3400–3418, August 2015. doi: 10.1093/mnras/stv943.

J. P. Beaulieu, J. Robert Buchler, J. B. Marquette, J. D. Hartman, and
A. Schwarzenberg-Czerny. Detection of Beat Cepheids in M33 and Their Use as
a Probe of the M33 Metallicity Distribution. ApJ, 653:L101–L104, December 2006.
doi: 10.1086/510453.



Bibliography 126

Andrew Becker. HOTPANTS: High Order Transform of PSF ANd Template Subtrac-
tion. Astrophysics Source Code Library, April 2015.

E. Bertin and S. Arnouts. SExtractor: Software for source extraction. Astronomy
and Astrophysics Supplement Series, 117:393–404, June 1996. doi: 10.1051/aas:
1996164.

F. W. Bessel. On the parallax of 61 Cygni. MNRAS, 4:152–161, November 1838. doi:
10.1093/mnras/4.17.152.

G. Bono, M. Marconi, S. Cassisi, F. Caputo, W. Gieren, and G. Pietrzynski. Classical
Cepheid Pulsation Models. X. The Period-Age Relation. ApJ, 621:966–977, March
2005. doi: 10.1086/427744.

Giuseppe Bono and Marcella Marconi. Cepheids in NGC 1866: a test for pulsational
models. MNRAS, 290(2):353–359, September 1997. doi: 10.1093/mnras/290.2.353.

Giuseppe Bono, Filippina Caputo, Vittorio Castellani, and Marcella Marconi. The-
oretical Models for Classical Cepheids. II. Period-Luminosity, Period-Color, and
Period-Luminosity-Color Relations. ApJ, 512(2):711–723, February 1999. doi:
10.1086/306815.

Giuseppe Bono, Filippina Caputo, Santi Cassisi, Marcella Marconi, Luciano Piersanti,
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J. Marchant, J.-M. Martin-Fleitas, R. Messineo, F. Mignard, R. Morbidelli, E. Pog-
gio, A. Riva, N. Rowell, E. Salguero, M. Sarasso, E. Sciacca, H. Siddiqui, R. L.
Smart, A. Spagna, I. Steele, F. Taris, J. Torra, A. van Elteren, W. van Reeven, and
A. Vecchiato. Gaia Data Release 2. The astrometric solution. A&A, 616:A2, August
2018. doi: 10.1051/0004-6361/201832727.



Bibliography 132

W. J. Maciel, R. D. D. Costa, and M. M. M. Uchida. An estimate of the time variation
of the O/H radial gradient from planetary nebulae. A&A, 397:667–674, Jan 2003.
doi: 10.1051/0004-6361:20021530.

L. M. Macri, K. Z. Stanek, D. Bersier, L. J. Greenhill, and M. J. Reid. A New Cepheid
Distance to the Maser-Host Galaxy NGC 4258 and Its Implications for the Hubble
Constant. ApJ, 652(2):1133–1149, December 2006. doi: 10.1086/508530.

B. F. Madore. The period-luminosity relation. IV. Intrinsic relations and reddenings
for the Large Magellanic Cloud Cepheids. ApJ, 253:575–579, February 1982. doi:
10.1086/159659.

Barry F. Madore and Wendy L. Freedman. The Cepheid Distance Scale. PASP, 103:
933, September 1991. doi: 10.1086/132911.

Barry F. Madore and Wendy L. Freedman. Concerning the Slope of the Cepheid
Period-Luminosity Relation. ApJ, 696(2):1498–1501, May 2009. doi: 10.1088/
0004-637X/696/2/1498.

A. Maeder and G. Meynet. Stellar evolution with rotation. VI. The Eddington and
Omega -limits, the rotational mass loss for OB and LBV stars. A&A, 361:159–166,
September 2000.

Violet A. Mager, Barry F. Madore, and Wendy L. Freedman. The Metallicity Depen-
dence of the Cepheid P - L Relation in M101. ApJ, 777(1):79, November 2013. doi:
10.1088/0004-637X/777/1/79.

Laura Magrini, Letizia Stanghellini, and Eva Villaver. The Planetary Nebula Popu-
lation of M33 and its Metallicity Gradient: A Look Into the Galaxy’s Distant Past.
ApJ, 696(1):729–740, May 2009. doi: 10.1088/0004-637X/696/1/729.

Laura Magrini, Lodovico Coccato, Letizia Stanghellini, Viviana Casasola, and Daniele
Galli. Metallicity gradients in local Universe galaxies: Time evolution and effects of
radial migration. A&A, 588:A91, Apr 2016. doi: 10.1051/0004-6361/201527799.

M. Marconi, I. Musella, and G. Fiorentino. Cepheid Pulsation Models at Varying
Metallicity and ∆Y/∆Z. ApJ, 632(1):590–610, October 2005. doi: 10.1086/432790.

Mario Mateo. Tuning the Cepheid Distance Scale. PASP, 104:824, Sep 1992. doi:
10.1086/133061.

A. P. Milone, A. F. Marino, M. Di Criscienzo, F. D’Antona, L. R. Bedin, G. Da Costa,
G. Piotto, M. Tailo, A. Dotter, and R. Angeloni. Multiple stellar populations in
Magellanic Cloud clusters - VI. A survey of multiple sequences and Be stars in
young clusters. MNRAS, 477(2):2640–2663, Jun 2018. doi: 10.1093/mnras/sty661.

Pawel Moskalik, J. R. Buchler, and Ariel Marom. Toward a Resolution of the Bump
and Beat Cepheid Mass Discrepancies. ApJ, 385:685, February 1992. doi: 10.1086/
170975.



Bibliography 133

J. R. Mould, D. A. Xystus, and G. S. Da Costa. The Age of the Large Magellanic
Cloud Cluster NGC 2031. ApJ, 408:108, May 1993. doi: 10.1086/172573.

F. Niederhofer, M. Hilker, N. Bastian, and E. Silva-Villa. No evidence for significant
age spreads in young massive LMC clusters. A&A, 575:A62, March 2015. doi:
10.1051/0004-6361/201424455.

E. Noyola and K. Gebhardt. Surface Brightness Profiles for a Sample of LMC, SMC,
and Fornax Galaxy Globular Clusters. AJ, 134(3):912–925, Sep 2007. doi: 10.1086/
520061.

M. Pasquato and G. Bertin. On the fundamental line of galactic and extragalactic
globular clusters. A&A, 512:A35, Mar 2010. doi: 10.1051/0004-6361/200912947.

J. O. Petersen. Masses of double mode cepheid variables determined by analysis of
period ratios. A&A, 27:89, August 1973.

M. M. Phillips. The Absolute Magnitudes of Type IA Supernovae. ApJ, 413:L105,
August 1993. doi: 10.1086/186970.

Adriano Pietrinferni, Santi Cassisi, Maurizio Salaris, and Fiorella Castelli. A Large
Stellar Evolution Database for Population Synthesis Studies. I. Scaled Solar Models
and Isochrones. ApJ, 612:168–190, September 2004. doi: 10.1086/422498.

Adriano Pietrinferni, Santi Cassisi, Maurizio Salaris, and Fiorella Castelli. A Large
Stellar Evolution Database for Population Synthesis Studies. II. Stellar Models and
Isochrones for an α-enhanced Metal Distribution. ApJ, 642:797–812, May 2006.
doi: 10.1086/501344.

Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Bacci-
galupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, S. Basak, R. Bat-
tye, K. Benabed, J. P. Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock, J. R. Bond,
J. Borrill, F. R. Bouchet, F. Boulanger, M. Bucher, C. Burigana, R. C. Butler, E. Cal-
abrese, J. F. Cardoso, J. Carron, A. Challinor, H. C. Chiang, J. Chluba, L. P. L.
Colombo, C. Combet, D. Contreras, B. P. Crill, F. Cuttaia, P. de Bernardis, G. de
Zotti, J. Delabrouille, J. M. Delouis, E. Di Valentino, J. M. Diego, O. Doré, M. Dous-
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