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One Sentence Summary: Advances in pancreatic cancer diagnosis can be facilitated 

by the parallel development of mass spectrometry technique and machine learning 

which when conflated produce a significant improvement in diagnostic accuracy up to 

92%. 

  

mailto:yutingchang@ntu.edu.tw


ABSTRACT 

A rapid blood-based diagnostic modality to detect pancreatic cancer with high 

accuracy is an unmet medical need. The study aimed to validate a unique diagnosis 

system using Probe Electrospray Ionization Mass Spectrometry (PESI-MS) and 

Machine Learning to the diagnosis of pancreatic cancer. For a case-control study, 

peripheral blood samples were collected from a total of 322 consecutive patients with 

pancreatic ductal adenocarcinoma (PDAC) and 265 controls with a family history of 

PDAC. All the control subjects were followed up for at least 2 years and confirmed 

free of pancreatic malignancy. Five µl of serum samples from controls and PDAC 

patients were analyzed using PESI-MS system. The mass spectra from each specimen 

were then fed into machine learning algorithms to discriminate between control and 

cancer cases. A total of 587 serum samples were analyzed. The sensitivity of the 

machine learning algorithm using PESI-MS profiles only to identify PDAC cases is 

90.8 % with specificity of 91.7% (95% CI 83.9%-97.4% and 82.8%-97.7% 

respectively). Combined PESI-MS profiles with age and CA19-9 as predictors, the 

accuracy for earlier stage of PDAC (stage 1 or 2) is 92.9% and for advanced stage 

(stage 3 or 4) is 93% (95% CI 86.3-98.2; 87.9-97.4 respectively). PESI-MS profiles 

combined with machine learning is an approach that achieved very high accuracy in 

screening human serum samples for PDAC. The accuracy, low-cost, and simplicity of 

the technique provides an opportunity to detect PDAC at an early stage and must be 

applicable to the examination of at-risk populations.  



INTRODUCTION 

The outlook for pancreatic ductal adenocarcinoma (PDAC) remains dismal due to 

lack of diagnostics effective for early detection, which leads to the diagnosis at 

advanced stage. As the majority of patients presented with advanced disease the 5-year 

survival rates remain below 10%(1). To improve the prognosis of PDAC will require 

earlier detection, ideally utilising diagnostic technique that could be employed in at risk 

populations such as those with diabetes (2).  Currently serum carbohydrate antigen19-9 

(CA19-9) is the most widely used diagnostic test but, due to false-positivity in patients 

with cirrhosis, chronic pancreatitis, cholangitis, other malignancies and false-negativity 

in Lewis blood-type negative patients, cannot be recommended for general 

screening(3). CA19-9 is reported to discriminate between PDAC patients and healthy 

controls or benign pancreatic disease with a sensitivity of 78.2-80.3% and a specificity 

of 80.2-82.8%(4, 5). To improve survival and reduce healthcare expenditure, it is 

estimated that a new diagnostic method will require a minimum sensitivity of 88% at a 

specificity of 85%(6). 

Advances in cancer diagnosis can be facilitated by the parallel development of 

different techniques which when conflated produce a significant improvement in 

diagnostic accuracy. Both mass spectrometry and artificial intelligence are now 

established techniques in the medical armamentarium and machine learning, an 

application of artificial intelligence (AI) that endows systems with the ability to 

automatically learn and improve from experience, has overcome some of the prejudices 

inherent within medicine and is proving capable of solving some of the difficulties 



associated with large and complex datasets. Mass spectrometry is a powerful technique 

for the rapid molecular diagnosis of cancer and probe electrospray ionization (PESI) 

analysis uses a very fine low invasive needle to achieve direct mass spectrometry. The 

probe needle directly collects a small amount of tissue without pretreatment(7) and 

detects sets of low-molecular-weight metabolites and lipids in specimens which 

provide important information for disease detection. For biological samples it is one of 

the commonly used and successful ambient ionization techniques(8, 9). PESI-MS has 

been shown to discriminate renal cell carcinoma, hepatocellular carcinoma and head 

and neck squamous cell carcinoma from surrounding normal tissue(10). Those results 

support the premise that PESI-MS is a versatile and promising technique for the 

identification of a number of different malignancies and when combined with AI as a 

potential screening approach in high risk populations. Recent studies from Germany, 

the USA and France demonstrated that AI algorithms perform better than 

dermatologists at detecting skin cancer(11). We recently demonstrated the potential of 

PESI-MS combined with partial least squares-logistic regression as a diagnostic system 

in animal studies and squamous cell carcinoma(10). The major attraction of PESI-MS 

is that it is a simple, rapid and inexpensive technique which can be easily automated 

and requires minimal sample preparation(12). The present study aims to demonstrate 

that PESI-MS combined with AI can diagnose PDCA using human serum samples, 

facilitating early diagnosis in the clinical setting, potentially improving patient 

outcomes and reducing healthcare costs.  

  



RESULTS 

HIGH-PERFORMANCE METHOD FOR DIAGNOSING PDAC 

The data analysis based on this cohort shows that PESI-MS coupled with SVM 

classifier identified over 90% of PDAC cases as well as over 90% of the non-cancer 

cases with a 91.7% of sensitivity (95% CI 91.6-91.8) and a 90.4% of specificity (95% 

CI 90.2-90.6) respectively based only on the mass spectra from PESI-MS (Table 1 

“spectra only as predictors”, negative ion mode). The performance of this diagnostic 

approach exceeds the expectation required for novel methods for PDAC screening 

and represents a valuable tool for the screening of PDAC. 

In order to improve the accuracy, we have added several parameters as predictors 

for diagnosis (Table 1). In this mode, we considered the PESI-MS spectra and the 

factors “age” and “CA19-9” level as predictors. Inclusion of these two parameters 

drastically improved the sensitivity to 95.1% (95% C.I: 95.0-95.2) at the cost of a 

decreased specificity to 89% (95% C.I: 88.8-89.2) (Table 1).  

 

DISCRIMINATING BETWEEN THE HEALTHY CONTROLS AND DIFFERENT 

STAGES OF PDAC 

All the results presented in this section are based only on PESI-MS peaks as 

predictors (age and CA19-9 excluded). We tested if our system is also able to discern 

the changes in metabolites according to the cancer stage. A partial least 

squares-discriminant analysis (PLS-DA) algorithm (Figure 1A) was employed here to 

discriminate between (a) “Control”, (b) “Earlier PDAC stages” (stages 1 + 2) and (c) 



“Advanced PDAC stages” (stages 3 + 4) based on PES-MS spectra only as predictors. 

The dashed lines drawn around the cluster groups represent the 95% confidence 

interval for the respective cluster. PLS-DA was used because it also computes scores 

vectors that can be used to display a scatter plot of the general clustering of samples. 

The model was built using the combination of both negative and positive ion modes to 

compensate each other for achieving more accurate discrimination. Based on the 

biochemical information captured by PESI-MS, the subjects spontaneously grouped 

into control, early and advanced stage PDAC. At a glance, the control (black triangles) 

and cancer samples (blue and red circles) seem to form two well defined and clearly 

distinct clusters. The results suggest that PESI-MS is able to detect subtle alterations 

in spectra due to progression of PDAC. Comparing the separation of earlier (blue 

circles) with advanced (red circles) cancer stages, the scatter plot also shows two 

distinct clusters but with a slightly higher degree of overlap. This implies that 

different levels of metabolic changes between earlier and advanced cancer stages have 

also been detected by PESI-MS. 

SVM was also applied to discriminate between healthy control patients and 

individual stages of PDAC (Fig. 1B). The results show that, on average, 91.4% of the 

PDAC stage 1 patients were identified and that the higher the PDAC stage the higher 

the sensitivity of the model; over 92% to 97.6% for stages 2, 3 and 4. Table S2 in 

supplementary information shows results of SVM models discriminating between 

control and PDAC stages. 

 



COMBINING INFORMATION FROM BOTH MASS SPECTROMETRY ION 

MODES 

As MS ion mode is likely to capture slightly different molecular signatures from 

samples and the data analysis of each dataset presented slightly different classification 

results, a combination of both datasets should be beneficial for an automated cancer 

diagnostic process. Therefore, PESI-MS data from both ion modes were combined 

and a new specialized ML algorithm, based on SVM, was individually trained and 

tested to diagnose PDAC. Table 2A presents the average classification results 

obtained for the automated cancer diagnosis over 1,000 independent bootstrap 

cross-validations. The results shown in Table 2A suggest that the combination of both 

ion mode datasets is beneficial and the information gained improves the performance 

of the models. On this combined dataset, PESI-MS coupled with SVM detected with 

cancer cases 90.8% of sensitivity and 91.7% of specificity (95% C.I.83.9-97.4 and 

82.8-97.7) respectively. 

 

HEALTHY CONTROLS VS CANCER STAGES ON THE COMBINED MASS 

SPECTROMETRY ION MODES 

Surgical resection is the only potentially curative treatment for PDAC(13). Based on 

the TNM cancer staging system developed by the American Joint Committee on 

Cancer, pancreatic cancers detected in stages 1 and sometimes 2 are potentially 

operable. The results in Table 2B show that PESI-MS coupled with machine learning 

distinguished between healthy controls and subjects with earlier stage of PDAC 



(stages 1 or 2) with sensitivity of 81.2% and specificity of 96.8% (95% CI:57.6-95.4 

and 92.5-100) respectively. Although our method does not formally stage the disease, 

it is clearly able to detect differences between early and advanced tumors. The results 

for the discrimination between healthy controls and subjects with advanced stage 

PDAC (stages 3 or 4) are also reported in Table 3B. 

  



DISCUSSION 

In this study we have successfully developed a novel screening system for 

pancreatic cancer by simultaneously attaining high sensitivity and specificity that 

exceeds the criteria required for PDAC diagnosis and screening. This was realized by 

combination of unique ionization method for mass spectrometry (PESI-MS) and 

machine learning that utilizes all the spectral data obtained by PESI-MS. Since our 

system does not extract the conspicuous spectral peaks from the datasets, judgment of 

cancer is based on the broad collections of spectra even if there are dozens of peaks 

relatively higher contributing to the diagnosis. Taking the diagnostic accuracy up to 

91.2%, this method must open a new avenue in the diagnosis of PDAC ever attained 

by other methods. Another important point that has to be paraphrased here is the 

inexplicability of exact pathophysiological mechanism for drawing a diagnosis. Since 

this method relies on the collections of spectral peaks telling us the diagnosis possibly 

due to changes in metabolism, we cannot definitely narrow down the molecules 

responsible for explaining the molecular mechanisms underlying the cancer. While 

another important direction is to identify the molecules for diagnosis the PDAC, the 

focus of this study is validating the performance of new diagnostic technique. As 

machine learning does not necessarily require us to annotate the molecules underlying 

biologic pathways or modifiable risk factors that are associated with PDAC(14). We 

can employ simple and cost-effective mass spectrometer whose resolution is not high 

enough for identifying the molecules. 

Data-driven machine learning produces consistent results if significant “learning” 



of biochemical changes is achieved by a large cohort of PDAC and healthy controls 

(N=587 in this study). PDAC has been shown to take up to a decade following the 

initial mutation that gives opportunity for earlier diagnosis(15). Furthermore, 2-3 year 

window is open to detect PDAC’s at stage 0 and 1. Although we do not register the 

patients at stage 0 or carcinoma in situ in our cohort, this technique should be 

applicable at these stages, considering this method can achieve an accuracy of 92.2% 

for the detection of early stages of PDAC including stage 1. Therefore, our system is 

promising in PDAC diagnosis that will revolutionize the routine of pancreatic 

diagnosis.  

Metabolomics, including lipidomics, is a feasible way to identify metabolites 

responsible for PDAC detection(16). Mayers and co-workers had shown that a 

metabolic biomarker signature with 9 plasma metabolites plus CA19-9 differentiated 

PDAC from chronic pancreatitis with diagnostic accuracy of 90.6% (95% CI 84.9% 

to 94.6%)(17). In this study although PESI-MS principally measures metabolites and 

lipids we also identified the top 30 discriminating factors, in negative and positive 

modes in the supplementary appendix (figures S2 and S3). Those peaks include lipid 

profiles, phospholipids, sphingolipids and cholesterol sulfates that have also been 

identified in other studies(18). Our system does not deviate from molecular prediction 

method while it focuses on the fingerprint of responsible molecules. 

The serum samples analyzed by PESI-MS do not require any pretreatments such 

as desalting, fractionation or enrichment. In addition, PESI-MS does not require large 

amount of sample for diagnosis, even sub-picoliters of samples are sufficient for 



analysis. In addition to these superior attributes, the advantages of our system lie in low 

invasiveness, robustness and rapidity of measurements, and comprehensive resolution 

of substances in the samples.  

There are limitations associated with the study mainly related to its retrospective 

design.  It must be acknowledged that given a current accuracy of 92.9% there is still 

potential for further improvement of machine learning in PDAC diagnosis.  Because 

our study population was a unique cohort from Taiwan, in other populations specific 

optimization will be required. The new diagnostic technique needs validation in several 

independent prospective world-wide cohorts.  

Improving the outcome of PDAC will require a method which enables early and 

accurate diagnosis. Although the incidence of pancreatic cancer is too low to justify 

whole population screening, the accuracy of 92.9% for earlier PDAC stage combined 

PESI-MS and machine learning potentially justifies the evaluation of high-risk groups. 

Inherited pancreatic cancer syndromes and familial pancreatic cancer are the logical 

targets but other asymptomatic groups could be considered(19, 20). The most obvious 

of these is new-onset diabetes and a study from the Mayo Clinic demonstrated that 

diabetes has a 40% prevalence in PDAC and is frequently new-onset(21).  

In conclusion, AI and machine learning have begun to enter the field of cancer 

diagnostics. Our study clearly demonstrates the feasibility of developing a diagnostic 

test with a comprehensive metabolite profiling MS platform plus machine learning that 

can detect PDAC with greater accuracy than has previously been achieved with either 

conventional tumor markers or a metabolic signature.  There is a need for prospective, 



real-world clinical evaluation of the diagnostic approach rather than only retrospective 

assessment of performance. The next stage is a large-scale diagnostic accuracy study 

among the at-risk populations where the test is intended to be employed. 

 

 

  



MATERIAS AND METHODS 

STUDY POPULATION 

Between January 2005 and December 2017 after obtaining written informed consent 

and before treatment at the National Taiwan University Hospital (NTUH), peripheral 

blood samples were collected from a total of 322 patients (age 63.6 ± 13.0, female = 

45.3%, male = 54.7%) with cytological and/or pathological confirmation of PDAC. 

All the patients’ demographic data, including age, gender, serological studies, image 

studies, survival data, and clinical presentation were collected. Peripheral blood was 

collected from 265 high risk individuals (HRI) age 46.8 ± 14.8 (female 59.6%, male 

40.4%) with a family history of PDAC, participating in a pancreatic cancer screening 

program at the NTUH between January 2005 and December 2015(22). Data from 

control subjects included a detailed family history, a full physical examination, blood 

sampling and magnetic resonance imaging (MRI). All of the control subjects were 

followed up for at least 2 years and confirmed free of pancreatic malignancy. Serum 

collected from PDAC patients and controls was stored at -80˚C until PESI-MS 

analysis. The study was reviewed and approved by the Institutional Review Board of 

NTUH (No. 201301048RIND) and University of Yamanashi (No. 645). Table 3 

shows demographic data of the study subjects. 

 

PESI-MS ANALYSIS 

A PESI-MS system (installation of PESI on a single quadrupole mass 

spectrometer compartment of LCMS-2020; Shimadzu, Kyoto, Japan) was used in the 



study. Five µl of serums were added to 95 µl of 50% ethanol in a 1.5-ml tube and 

vortexed for 2 min. Samples were centrifuged at 150,000 × g for 1 minute, and the 

resultant supernatant collected. Sample analysis by PESI-MS was performed as 

described previously(23). All analyses were performed in both positive and negative 

ion modes for each specimen. The mass spectra from each specimen was generated 

using LabSolutions software (Ver. 5.82 SP1; Shimadzu). PESI is a discontinuous 

ionization method and differs from other ESI methods. The measurement was 

performed for 2 minutes with a time window of 10 sec that demonstrates a stable 

continuous ionization at maximal intensity (ca.50, 000). This window was spread out 

into 10 consecutive sets of spectral data. The m/z of our analysis ranges from 10 to 

2,000, which is divided into 1990 bins, each of which corresponds to a unitary mass 

by taking account of the mass spectral accuracy of Shimadzu PESI-MS 2020. Each 

bin contains information on m/z as well as the peak intensity and they are used to 

construct the database. 

DATA PROCESSING AND MACHINE LEARNING 

To demonstrate the suitability of PESI-MS to detect significant biochemical 

differences between PDAC and control subjects, a specialized machine learning (ML) 

algorithm was trained and tested on each PESI-MS ion mode dataset. The positive ion 

mode dataset contained 583 subjects (318 PDAC and 265 controls) and the negative 

ion mode 587 subjects (322 PDAC and 265 controls). The first objective of the 

algorithm was to accurately distinguish between cancer and control samples. The 

candidate models were trained and tested using 1,000 independent repetitions of a 



bootstrap cross-validation process (the average over the 1,000 independent models is 

reported). Bootstrap is a re-sampling technique that can be applied as cross-validation 

to estimate the performance of a model. The method randomly splits the data into 

training and test sets (see appendix for more information). An independent and 

automated ML classification model is then trained on the training partition of the data 

and tested on the test partition. This whole process including the random splitting of 

the data plus model training and validation, is independently repeated 1,000 times. 

The performance of each model is recorded and the average classification results over 

the 1,000 repetitions is calculated and reported in the results tables. 

The ML algorithm used to build the classification model was a support vector 

machines (SVM)(24) and all algorithms have been implemented in R Statistical 

Package(25). During the model selection phase of the data analysis, other ML 

algorithms, such as random forest(26), partial least squares-discriminant analysis 

(PLS-DA)(27) and convolutional neural networks (CNN)(28) have been tested but 

SVM produced the best overall performance on the datasets available. In particular, 

the CNN models seemed to be overkill for binary classification (see results in 

supplementary appendix). SVM are supervised learning algorithms used for 

regression analysis and classification. By using different kernels, SVM can easily 

perform non-linear classification. SVM results reported here are all based on a radial 

basis kernel as it produced the best performance results on the present dataset. As the 

number of subject samples is large enough and the data do not present too many 

missing values, the different partitions of the data used for analysis have always been 



selected in such a way that there are no subjects with missing values (listwise 

deletion)(29). 

For each ion mode data (positive and negative) two different types of models were 

extensively trained and tested. The first model type used only the PESI-MS peaks as 

predictors (independent variables) to discriminate cancer and control cases. The 

objective is to show that the information from PESI-MS analysis of peripheral blood 

samples alone can discriminate between healthy controls and all 4 stages of PDAC at 

least as well as the tumor marker CA19-9. The second used the PESI-MS peaks (as 

model type 1) plus age and CA19-9 values as predictors. The sensitivity, specificity, 

and accuracy of each model to discriminate PDAC from controls were calculated. 

Figure 1 depicts the workflow of sample collection, sample analysis and data analysis 

processes used in this study. 

SAMPLE EXCLUSION CRITERIA    

Serum samples from all 587 subjects were analyzed via PESI-MS in both negative (n = 587 

samples) and positive (n = 583 samples) ion modes – 4 samples (spectra) from the 

positive ion mode were considered inconsistent and excluded from the analysis. 

When adding CA19-9 as predictors for diagnosis, samples with missing CA19-9 

values were excluded. The numbers then become 515 samples in negative ion mode 

(i.e., 587 excluding 20 PDAC & 52 control samples) and 512 samples in positive ion 

mode (i.e., 583 excluding 19 PDAC & 52 control samples). To form the combined 

positive and negative ion mode data, we only considered samples with CA19-9 values 



recorded in both ion modes (n = 512). 
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Figures  

A) 

               

              

Figure 1: (1A) PLS-DA scores plot for the combined data (- and + ion modes). 

Separation between samples from healthy controls and stage I+II and stage II+IV of 

PDAC. The model was based on the PESI-MS spectra only as predictors. The 

numbers between parentheses represent % of variance from the data explained by 

each principal discriminant. The dashed lines drawn around the clusters represent 



95% CI for the respective cluster. (1B) SVM discrimination results (%) for healthy 

controls vs individual stages of PDAC with 95% CI between parentheses. 

  



 

Figure 2: Workflow of the data collection, sample analysis and data analysis 

processes. 

 

  



Tables 

Table 1. Control vs Cancer: average automated cancer diagnosis classification results obtained over 

1,000 independent models built using bootstrap cross-validation. 

 
SPECTRA ONLY AS 

PREDICTORS 

SPECTRA + AGE + CA19-9 AS 

PREDICTORS 

Ion mode Negative Positive Negative Positive 

Control 265 265 213 213 

Cancer 322 318 302 299 

Total 587 583 515 512 

C
L

A
S

S
IF

IC
A

T
IO

N
 Accuracy % 

(95% C.I.) 

91.1   

(91, 91.2) 

89.1   

(89, 89.2) 

92.8   

(92.7, 92.9) 

92.7 

(92.6, 92.8) 

Sensitivity % 

(95% C.I.) 

91.7   

(91.6, 91.8) 

91.2   

(91, 91.4) 

95.1   

(95, 95.2) 

95.9 

(95.8, 96) 

Specificity % 

(95% C.I.) 

90.4   

(90.2, 90.6) 

86.7   

(86.4, 87) 

89 

(88.8, 89.2) 

87.3 

(87, 87.6) 

 

 

 

 

 

 

 

 

 

 

 

  



Table 2. (2A) Prediction Combining Decisions from Negative and Positive Ion Modes: average 

automated classification results obtained over 1,000 independent bootstrap cross-validations. (2B) 

Cancer Stage Prediction Combining Decisions from Negative and Positive Ion Modes: average 

automated classification results obtained over 1,000 independent bootstrap cross-validations. 

(2A) 

COMBINED SPECTRA (Negative + 

Positive ion modes) ONLY AS 

PREDICTORS 

 

Control 265  

Cancer 318 

Total 583 

C
L

A
S

S
IF

IC
A

T
IO

N
 

Accuracy % 

(95% C.I.) 

91.2 

(86.7, 95.8) 

 

Sensitivity % 

(95% C.I.) 

90.8 

(83.9, 97.4) 

Specificity % 

(95% C.I.) 

91.7 

(82.8, 97.7) 

(2B) 

COMBINED SPECTRA (Negative + Positive ion modes) + AGE + 

CA19-9 AS PREDICTORS 

* Control vs Earlier PDAC stages Control vs Advanced PDAC stages 

Control 213 213 

Cancer 68 231 

Total 281 444 

C
L

A
S

S
IF

IC
A

T
IO

N
 Accuracy % 

(95% C.I.) 

92.9 

(86.3, 98.2) 

93 

(87.9, 97.4) 

Sensitivity % 

(95% C.I.) 

81.2 

(57.6, 95.4) 

92.7 

(84.2, 100) 

Specificity % 

(95% C.I.) 

96.8 

(92.5, 100) 

93.4 

(86.2, 100) 

* Cohen's kappa coefficient for the “Control vs Earlier PDAC stages” model is 𝑘 =  0.8. 

  



Table 3. The demographic data of 322 patiensts with pancreatic ductal adenocarcinoma (PDAC) and 

265 high risk controls (HRCs) 

 PDAC HRC 

 (n=322) (n=265) 

Age (years) 63.675 (24.4-91.7) 46.847 (17.7-88.2) 

Gender     

    Female 146 (45.3%) 158 (59.6%) 

    Male 176 (54.7%) 107 (40.4%) 

Body-mass index* 22.04 (13.3-42.7) 23.24 (15.6-37.7) 

Pancreatic cancer location     

    Head (head/neck/uncinate)** 150 (46.6%)   

    Body 111 (34.5%)   

    Tail 61 (18.9%)   

Stage     

    I 11 (3.4%)   

    II 66 (20.5%)   

    III 60 (18.6%)   

    IV 185 (57.5%)     

CA-19-9*** 4558.46 (0.5-66526.69) 15.21 (0-269.4) 

CEA**** 63.309 (0.1-5783.59) 1.734 (0-9.37) 

OS (month) 11.35 (0.07-94.22)   

 

 

 

  



Supplementary Materials 

Bootstrap resampling 

Bootstrap is a re-sampling technique that can be applied as cross-validation to 

estimate the performance of a model. The method randomly splits the data into 

training and test sets. Bootstrap does this by randomly selecting, with replacement, N 

samples from a set containing exactly N samples. All selected samples, including the 

repetitions, are then used as training set and the non-selected samples (never seen by 

the model) are used as test set(30) effectively having all samples analyzed (N = total 

number of subjects “or PESI-MS spectra” available) in a bag. A single sample is then 

taken out of the bag randomly and its number noted. This sample now forms part of 

the training data, and the sample is placed back into the bag. This random sample 

picking process is repeated until N samples are in the training set. Some samples will 

be used multiple times, and on average, for each bootstrap partition 63.2% of all of the 

samples will be selected for training with the remaining 36.8% used as the test set. 

 

  



Pancreatic cancer data – convolutional neural network model (deep learning) 

 

Figure S1: Partial representation of a sub convolutional neural network (the full one 

is too large to plot) with the best classification results obtained using CNN shown in 

Table A1. 

 

 

Table S1: Results averaged over 1,000 independent modles from classification using 

convolutional neural network. 

control vs cancer (combined dataset 

positive + negative data) 

Accuracy 81.6% 

Sensitivity 86.1% 

Specificity 73.3% 

 



 

Figure S2: Top 30 discriminating factors (PESI-MS peaks plus age and CA19-9) for 

healthy controls vs PDAC using the negative ion mode data. 

 

Figure S3: Top 30 discriminating factors (PESI-MS peaks plus age and CA19-9) for 

healthy controls vs PDAC using the positive ion mode data. 
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Table S2: Control vs Cancer Stages: average automated classification results obtained over 1,000 

independent models built using bootstrap cross-validations. 

 

SPECTRA ONLY AS PREDICTORS 

Control vs Earlier PDAC stages 
Control vs Advanced PDAC 

stages 

Ion mode Negative Positive Negative Positive 

Control 265 265 265 265 

Cancer 77 76 245 242 

Total 342 341 510 507 

C
L

A
S

S
IF

IC
A

T
IO

N
 Accuracy % 

(95% C.I.) 

87.1 

(86.9, 87.3) 

88.1 

(87.9, 88.3) 

91.3 

(91.2, 91.4) 

89.4 

(89.3, 89.5) 

Sensitivity % 

(95% C.I.) 

85.9 

(85.5, 86.3) 

90.2 

(89.8, 90.6) 

89.1 

(88.9, 89.3) 

86.2 

(85.9, 86.5) 

Specificity % 

(95% C.I.) 

88.5 

(88.1, 88.9) 

86.2 

(85.8, 86.6) 

93.4 

(93.2, 93.6) 

92.5 

(92.2, 92.8) 

 

SPECTRA + AGE + CA19-9 AS PREDICTORS 

Control vs Earlier PDAC stages 
Control vs Advanced PDAC 

stages 

Ion mode Negative Positive Negative Positive 

Control 213 213 213 213 

Cancer 68 68 234 231 

Total 281 281 447  444  

C
L

A
S

S
IF

IC
A

T
IO

N
 Accuracy % 

(95% C.I.) 

90.9 

(90.7, 91.1) 

91.6 

(91.4, 91.8) 

91.2 

(91.1, 91.3) 

91.9 

(91.8, 92.0) 

Sensitivity % 

(95% C.I.) 

88 

(87.6, 88.4) 

89.3 

(89.0, 89.6) 

90.4 

(90.2, 90.6) 

93.6 

(93.4, 93.8) 

Specificity % 

(95% C.I.) 

94 

(93.7, 94.3) 

94.1 

(93.8, 94.4) 

92.1 

(91.9, 92.3) 

90.3 

(90.1, 90.5) 

 

 

 


