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Abstract
We show the surprising result that the cutpoint isolation problem is decidable for probabilistic finite
automata where input words are taken from a letter-bounded context-free language. A context-free
language L is letter-bounded when L ⊆ a∗1a∗2 · · · a∗` for some finite ` > 0 where each letter is distinct.
A cutpoint is isolated when it cannot be approached arbitrarily closely. The decidability of this
problem is in marked contrast to the situation for the (strict) emptiness problem for PFA which is
undecidable under the even more severe restrictions of PFA with polynomial ambiguity, commutative
matrices and input over a letter-bounded language as well as to the injectivity problem which is
undecidable for PFA over letter-bounded languages. We provide a constructive nondeterministic
algorithm to solve the cutpoint isolation problem, which holds even when the PFA is exponentially
ambiguous. We also show that the problem is at least NP-hard and use our decision procedure to
solve several related problems.
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1 Introduction

Probabilistic finite automata (PFA) are an extension of classical nondeterministic finite
automata (NFA) where transitions, for each state and letter, are represented as probability
distributions. The PFA model was first introduced by Rabin [23].

There are a variety of classical problems for PFA. Let P denote a PFA, Σ an alphabet
and λ ∈ [0, 1] a probability. The acceptance probability of P on a word w ∈ Σ∗ is denoted
fP(w). A central question is (strict) emptiness of cutpoint languages: does there exist a finite
input word w for which fP(w) ≥ λ (or fP(w) > λ for strict emptiness). Another important
problem is that of cutpoint isolation — to determine if λ can be approached arbitrarily
closely, i.e., for each ε > 0, does there exist a word w ∈ Σ such that |fP(w)− λ| < ε (or the
converse, does there exist δ > 0 such that |fP(w) − λ| ≥ δ for all w ∈ Σ∗)? The value-1
problem is a special case of the cutpoint isolation when λ = 1 [13]. In the injectivity problem
we must determine if fP(w) is injective (i.e. do there exist two distinct words with the
same acceptance probability?) In the λ-probability problem we must determine if there exists
w ∈ Σ∗ such that fP(w) = λ.

The emptiness problem is undecidable for rational matrices [22], even over a binary
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20:2 Decidability of cutpoint isolation for PFA on letter-bounded inputs

alphabet when the PFA has dimension 46 [6], later improved to dimension 25 [18]. The
injectivity problem for PFA is undecidable [3], even for polynomially ambiguous PFA [2].

The main focus of this paper is the cutpoint isolation problem. The authors of [5] show
that the problem of determining if a given cutpoint is isolated (resp. if a PFA has any
isolated cutpoint) is undecidable and this was shown to hold even for PFA with 420 (resp.
2354) states over a binary alphabet [6]. The cutpoint isolation problem, in the special case
where λ = 1 (the value-1 problem), is also known to be undecidable [13]. The problem is
especially interesting given the seminal result of Rabin that if a cutpoint λ is isolated, then
the cutpoint language associated with λ is necessarily regular [23].

Most problems are undecidable for PFA and there exist very few algorithmic solutions [13].
Various classes of restrictions on PFA are possible, related to the number of states, the
alphabet size and whether one defines the PFA over the algebraic reals or the rationals.
Recent work has studied PFA with finite, polynomial or exponential ambiguity (in terms
of the underlying NFA) [10], PFA defined for restricted input words (e.g. those coming
from bounded or letter-bounded languages) [3, 4], commutative PFA, where all transition
matrices commute, for which cutpoint languages and non-free languages generated by such
automata become commutative [2] or other structural restrictions on the PFA such as
#-acyclic automata, for which some problems become decidable [13], including the value-1
problem. Such #-acyclic automata impose a restriction on the structure of the PFA (as we
shall see, we only restrict the input words).

A natural restriction on PFA was studied in [4], where input words of the PFA are
restricted to be from a letter-bounded language (also known as a letter-monotonic language)
of the form L = a∗1a

∗
2 · · · a∗` with distinct letters ai ∈ Σ. This is analogous to a 1.5-way PFA,

whose read head may “stay put” on an input letter but never moves left. This may model a
situation where we have some finite number of probabilistic events and we know that there
is a fixed order and number of transitions between them, but with each event being applied
an arbitrary number of times. The model is also related to “promise problems” whereby we
restrict the decision question to a subset of possible inputs [16]. Letter-bounded languages
allow a natural and substantial extension to decision questions on a unary alphabet.

The emptiness and λ-probability problems for PFA on letter-bounded languages were
shown to be undecidable for high (finite) dimensional matrices via an encoding of Hilbert’s
tenth problem on the solvability of Diophantine equations and Turakainen’s method to
transform weighted integer automata to probabilistic automata [25]. These undecidability
results also hold for polynomially ambiguous PFA with commutative matrices [2].

The authors of [10] studied decision problems for PFA of various degrees of ambiguity.
The degree of ambiguity (finite, polynomial or exponential) of a PFA is a structural property,
giving an indication of the number of accepting runs for a given input word. The degree of
ambiguity of automata is a well-known and well-studied property in automata theory [26].
The authors of [10] show that the emptiness problem for PFA remains undecidable even for
polynomially ambiguous automata (quadratic ambiguity), show PSPACE-hardness results
for finitely ambiguous PFA and that emptiness is in NP for the class of k-ambiguous PFA
for every k > 0. The emptiness problem for PFA was later shown to be undecidable for
linearly ambiguous automata [9].

1.1 Our Contributions
It is natural to consider the decidability of the cutpoint isolation problem for polynomially
ambiguous PFA on letter-bounded or commutative languages, given that the (strict) emptiness
problems for such automata are undecidable [2]. In the present paper we prove the surprising
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result that the cutpoint isolation problem is in fact decidable, even if the PFA is exponentially
ambiguous, matrices are non-commutative, and the input language is not just the letter-
bounded language a∗1 · · · a∗` but instead a more general letter-bounded context-free language.
The results are shown in Table 1.

Problem Polynomial ambiguity
Letter-bounded Polynomial ambiguity;
CFL input; letter-bounded input;

Exponential ambiguity commutative matrices

(Strict) Emptiness
Undecidable [9, 10,22]

⇐= Undecidable [2]⇐=
Cutpoint isolation Undecidable [5, 10] Decidable =⇒

Table 1 The decidability of problems under different restrictions on the PFA. The main result of
this paper is shown in boldface. Symbol =⇒ denotes that decidability is implied by the decidability
of the more general model; ⇐= denotes that undecidability is implied by the more restricted model.

The result is surprising since in order to solve the cutpoint isolation problem, we must
solve two subproblems. Either the cutpoint λ can be reached exactly (the λ-probability
problem), or else it can only be approximated arbitrarily closely and is only reached exactly
in some limit. As mentioned, the emptiness problem for cutpoint languages is undecidable
for polynomially ambiguous PFA on letter-bounded languages, even when all matrices
commute [2]. The proof of this result shows a construction of a PFA for which determining
if a given λ ∈ [0, 1] is ever reached (i.e., the λ-probability problem) is undecidable. This may
at first seem to contradict the results of this paper, since the λ-probability problem is one of
the two subproblems to be solved for cutpoint isolation. Why is there no contradiction then?
It comes from the fact that as the powers of matrices used in the PFA constructed in [2]
increase, the PFA valuation tends towards the limit value λ. Therefore, this λ is always
non-isolated and hence the cutpoint isolation problem for such constructed PFA and λ is
decidable. However, determining if the PFA ever exactly reaches λ is undecidable. So, there
is no contradiction with the results of this paper. Our main result is stated as follows.

I Theorem 1. The cutpoint isolation problem for probabilistic finite automata where inputs
are constrained to a given letter-bounded context-free language is decidable. Moreover, if the
cutpoint is isolated, then a separation bound ε > 0 can be computed such that no input word’s
acceptance probability lies within ε of the cutpoint.

The proof of Theorem 1 is found in Section 3. Our proof technique for showing the
decidability of cutpoint isolation for PFA on letter-bounded languages uses the following
crucial facts. If a PFA over a letter-bounded context-free language can approach some
given cutpoint λ arbitrarily closely, then the PFA can reach λ exactly if we allow a subset
of the matrices to be taken to one of their ‘limiting powers’. We use the property that
each limiting power (of which there may be finitely many) of a stochastic matrix can be
computed in polynomial time (see Lemma 5), as well as a crucial property from linear algebra
that dominant eigenvalues (those of strictly largest magnitude) of a stochastic matrix are
necessarily of magnitude 1, roots of unity and they have equal geometric and algebraic
multiplicities (see Lemma 4). Since the input words of the PFA come from a letter-bounded
CFL, we also use the fact that a letter-bounded language is context-free if and only if its
Parikh image is a stratified semilinear set (see Proposition 3).

The combination of these ideas allows us to derive Algorithm 1, which works as follows.

CONCUR 2020



20:4 Decidability of cutpoint isolation for PFA on letter-bounded inputs

We initially set all variables as free (rather than fixed), and compute the Parikh image p(L)
of the given letter-bounded CFL L. Using the fact that p(L) is a semilinear set, we compute
which letters can be taken to arbitrarily high powers and which letters have fixed finite values.
We then use the technical Proposition 6 which states that if we can reach λ then we can
either do so by setting all free variables to an infinite power (which we denote by ω), or else
we can compute an integer C such that the value of one of free variables must be less than C.
We then either set all free variables as ω in the first case, or nondeterministically choose one
of the free variables and assign it a value less than C in the latter case. In the second case we
also update the semilinear set and repeat the above procedure until no free variables remain.
Finally, we verify that the PFA has exactly the value λ for the chosen values of the variables.

The crucial Proposition 6 is somewhat technical, but relies on splitting a product of
stochastic matrices into a summation involving dominant and subdominant eigenvalues (a
subdominant eigenvalue being one with magnitude strictly less than 1) and then applying the
spectral decomposition or Jordan normal form of each stochastic matrix in order to derive
the constant C which bounds the value of one of free variables.

Combining our proof technique with a result of Rabin [23], we derive the following result.

I Corollary 7. The emptiness problem is decidable for probabilistic finite automata on
letter-bounded context-free languages when the cutpoint is isolated.

The undecidability of the emptiness problem for PFA over letter-bounded inputs shown in [2]
therefore only applies when the cutpoint is non-isolated.

The provided algorithm is nondeterministic in nature although we do not have an upper
bound on its complexity. We can however provide the following lower bound via an adaptation
of a proof technique from [2] which proved the NP-hardness of the injectivity problem for
linearly ambiguous three-state probabilistic finite automata over letter-bounded languages.

I Theorem 10. Cutpoint isolation is NP-hard for 3-state PFA on letter-bounded inputs.

Our procedure also allows us to answer some equivalent problems (in Section 5), for
example: given a PFA, λ ∈ [0, 1] and a maximum number k ∈ N of alternations between
input letters, determine if λ is isolated. We also prove the value-1 problem is decidable over
letter-bounded context-free language inputs.

2 Preliminaries

2.1 Probabilistic Finite Automata on Letter-Bounded Inputs
We denote by Fn×n the set of all n × n matrices over some field F. We will primarily be
interested in rational matrices. We use a nonstandard form of Dirac bra-ket notation in several
calculations, to simplify the notation in some complex formulae. If u = (u1, . . . , un)> ∈ Cn
is a column vector, then we write |u〉 = u and 〈u| = u> where u> denotes the transpose of
u, i.e., 〈u| = (u1, . . . , un). Note that Dirac bra-ket notation ordinarily defines that 〈u| = u∗

where u∗ denotes the conjugate transpose of u, however we will not use this notion at any
point. Note that |u〉 〈v| is just a rank 1 matrix u>v. We use 〈ei| and |ei〉 to denote the i’th
basis row/column vector respectively.

A PFA P with n states over an alphabet Σ is defined as A = (〈u| , {Ma|a ∈ Σ}, |v〉) where
〈u| ∈ Rn is the initial probability distribution; |v〉 ∈ {0, 1}n is the final state vector and each
Ma ∈ Rn×n is a (row) stochastic matrix. For a word w = w1w2 · · ·wk ∈ Σ∗, we define the
acceptance probability fP : Σ∗ → R of P as:

fP(w) = 〈u|Mw1Mw2 · · ·Mwk
|v〉 ,
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which denotes the acceptance probability of w.1
For any λ ∈ [0, 1] and PFA P over alphabet Σ, we define a cutpoint language to be:

L≥λ(P) = {w ∈ Σ∗|fP(w) ≥ λ}, and a strict cutpoint language L>λ(P) by replacing ≥ with
>. The (strict) emptiness problem for a cutpoint language is to determine if L≥λ(P) = ∅
(resp. L>λ(P) = ∅). Our main focus is on the cutpoint isolation problem, now defined.

I Problem 2 (Cutpoint isolation). Given a PFA P and cutpoint λ ∈ [0, 1], determine if for
each ε > 0 there exists some w ∈ Σ∗ such that |fP(w)− λ| < ε.

Let Σ = {a1, a2, . . . , a`} be an alphabet with ` > 0 distinct letters. A language L is called
letter-bounded if L ⊆ a∗1a∗2 · · · a∗` . If L is letter-bounded and also a context-free language, then
it is called a letter-bounded context-free language. We are interested in cutpoint isolation for
PFA whose inputs come from a given letter-bounded context-free language.

For a letter-bounded language L ⊆ a∗1a∗2 · · · a∗` , define its Parikh image2 as

p(L) = { (k1, . . . , k`) : ak1
1 ak2

2 · · · a
k`

` ∈ L}.

Recall that a subset Q ⊆ N` is called linear if there are vectors q0, q1, . . . , qr ∈ N` such that

Q = { q0 + t1q1 + · · ·+ trqr : t1, . . . , tr ∈ N }.

We say that a linear set Q is stratified if for each i ≥ 1 the vector qi has at most two nonzero
coordinates, and for any i, j ≥ 1 if both qi and qj have two nonzero coordinates, i1 < i2 and
j1 < j2, respectively, then their order is not i1 < j1 < i2 < j2, i.e., they are not interlaced.
A finite union of linear sets is called a semilinear set, and a finite union of stratified linear
sets is called a stratified semilinear set.

We will need the following classical fact about context-free languages.

I Proposition 3. If L is a context-free language, then its Parikh image p(L) is a semilinear
set that can be effectively constructed from the definition of L [21].

I Remark 1. There is a nice characterization of the letter-bounded context-free languages.
Namely, a letter-bounded language L ⊆ a∗1a

∗
2 · · · a∗` is context-free if and only if p(L) is a

stratified semilinear set [14,15].
Let A1, . . . , A` ∈ Qn×n be row stochastic matrices. Let u ∈ Qn be a stochastic vector

(the initial vector) and v ∈ {0, 1}n (the final state vector). Let L ⊆ a∗1a
∗
2 · · · a∗` be a letter-

bounded context-free language, and let λ ∈ [0, 1] be a cutpoint for which we want to decide
if it is isolated or not, that is, whether λ belongs to the closure of { 〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉 :
ak1

1 ak2
2 · · · a

k`

` ∈ L}.
If λ is not isolated, then there are two scenarios: either there exists k1, k2, . . . , k` ∈ N such

that 〈u|Ak1
1 Ak2

2 · · ·A
k`

` |v〉 = λ, or else λ is never reached but only approached arbitrarily
closely. In the second case there is a sequence of tuples {(km1 , km2 , . . . , km` )}∞m=1 such that

λ = lim
m→∞

〈u|Ak
m
1

1 A
km

2
2 · · ·Ak

m
`

` |v〉

and, furthermore, for every t ∈ {1, . . . , `}, either kmt = k1
t for all m ≥ 1, i.e. kmt is fixed, or

kmt is strictly increasing and Ak
m
t
t converges to a limit as m→∞.

1 Some authors interchange the order of u and v and use column stochastic matrices, although the two
definitions are trivially isomorphic.

2 In general, the Parikh image of L ⊆ Σ∗ is defined as p(L) = { (|w|a1 , . . . , |w|a` ) : w ∈ L} where |w|ai

denotes the number of occurrences of letter ai in word w.
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20:6 Decidability of cutpoint isolation for PFA on letter-bounded inputs

We will use the notation Aω to denote the set of all limits of the sequence {Ak}∞k=1 (see
Lemma 5 below for a detailed explanation). It follows that if λ is not isolated, then there
exists a choice of variables k1, k2, . . . , k` ∈ N ∪ {ω} such that

λ ∈ 〈u|Ak1
1 Ak2

2 · · ·A
k`

` |v〉 .

Note that if kt = ω, then Aωt is a finite set. In this case we substitute all limits of Aωt in the
above formula, and so 〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉 also becomes a finite set.3

2.2 Algebraic numbers
A complex number α is algebraic if it is a root of a polynomial p ∈ Z[x]. The defining
polynomial pα ∈ Z[x] for α is the unique polynomial of least degree with positive leading
coefficient such that the coefficients of pα do not have a common factor and pα(α) = 0. The
degree and height of α are defined to be that of pα.

In order to do computations with algebraic numbers we use their standard representations.
Namely, an algebraic number can be represented by its defining polynomial and a sufficiently
good complex rational approximation. More precisely, α will be represented by a tuple
(pα, a, b, r), where pα ∈ Z[x] is the defining polynomial for α and a, b, r ∈ Q are such that
α is the unique root of pα inside the circle in C with centre a+ bi and radius r. As shown

in [19], if α 6= β are roots of p ∈ Z[x], then |α− β| >
√

6
d(d+1)/2Hd−1 , where d and H are the

degree and height of p, respectively. So, if we require r to be smaller than half of this bound,
the above representation is well-defined.

Let ||α|| be the size of the standard representation of α, that is, the total bit size of a, b, r
and the coefficients of pα. It is well-known fact that for given algebraic numbers α and β,
one can compute 1/α, ᾱ and |α| in time polynomial in ||α||, and one can compute α + β

and αβ and decide whether α = β in time polynomial in ||α||+ ||β||. Moreover, for a real
algebraic α, deciding whether α > 0 can be done in time polynomial in ||α||. Finally, there is
a polynomial time algorithm that for a given p ∈ Z[x] computes the standard representations
of all roots of p. For more information on efficient algorithmic computations with algebraic
numbers the reader is referred to [1, 8, 17,20].

2.3 Spectral decomposition and Jordan normal forms
We define the spectrum (set of eigenvalues) of A ∈ Rn×n as σ(A) = {λ1, . . . , λn} arranged
in monotonically nonincreasing order, i.e. |λi| ≥ |λj | for all 1 ≤ i < j ≤ n and we define
σ̂(A) ⊆ σ(A) as the set of eigenvalues of A of absolute value 1. We call eigenvalues σ̂(A)
dominant eigenvalues and eigenvalues σ(A) \ σ̂(A) subdominant eigenvalues.

Given A = (aij) ∈ Fm×m and B ∈ Fn×n, we define the direct sum A⊕B of A and B by:

A⊕B =
[
A 0m,n

0n,m B

]
, where 0n,m is the n×m zero matrix.

We will use both the spectral decomposition theorem and the Jordan normal form of
stochastic matrices in later proofs. For background, see [11].

Let Ai ∈ Qn×n be a matrix (we use notation Ai since it will prove useful in the proof
of Proposition 6), and let {λi,1, . . . , λi,ni} be the eigenvalues of Ai listed according to

3 If {Ak}∞k=1 has a unique limit A′, then we will identify the set Aω = {A′} with the matrix A′ and write
Aω = A′. Also, if all kt’s are finite or if all limits are unique, we identify the number 〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉
with the one element set {〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉}.
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their geometric multiplicities4. Then Ai can be written in Jordan normal form Ai =
S−1
i (J`i,1(λi,1) ⊕ · · · ⊕ J`i,ni

(λi,ni
))Si, where Si is an invertible matrix (det(Si) 6= 0) and

J`i,j
(λi,j) is a `i,j × `i,j Jordan block for 1 ≤ j ≤ ni ≤ n, with ni the number of Jordan

blocks of Ai and `i,j the size of the Jordan block corresponding to eigenvalue λi,j , such that
`i,1 + · · ·+ `i,ni

= n. Jordan block J`i,j
(λi,j) corresponds to the jth eigenvalue λi,j of Ai and

has the form:

J`i,j
(λi,j) =


λi,j 1 0 · · · 0
0 λi,j 1 · · · 0
0 0 λi,j · · · 0
...

...
...

. . .
...

0 0 0 · · · λi,j

 ∈ C`i,j×`i,j

The matrix Si contains the generalised eigenvectors of Ai. Noting that
(
x
y

)
= 0 if y > x, we

now see that

J`i,j (λi,j)ki =



λki
i,j

(
ki

1
)
λki−1
i,j

(
ki

2
)
λki−2
i,j · · ·

(
ki

`i,j−1
)
λ
ki−(`i,j−1)
i,j

0 λki
i,j

(
ki

1
)
λki−1
i,j · · ·

(
ki

`i,j−2
)
λ
ki−(`i,j−2)
i,j

0 0 λki
i,j · · ·

(
ki

`i,j−3
)
λ
ki−(`i,j−3)
i,j

...
...

...
. . .

...
0 0 0 · · · λki

i,j


∈ C`i,j×`i,j

=
∑

0≤m≤`i,j−1
λki−m
i,j

(
ki
m

) ∑
1≤p≤`i,j−m

|ep〉 〈em+p|

 (1)

The spectral decomposition of a matrix is a special case of the Jordan normal form.
Namely, any diagonalizable matrix Ai ∈ Qn×n can be written as

Ai = S−1
i (λi,1 ⊕ · · · ⊕ λi,n)Si =

n∑
j=1

λi,j |vi,j〉 〈ui,j | , (2)

where σ(M) = {λi,1, . . . , λi,n} is the set of eigenvalues of Ai, |vi,j〉 is the j’th column of S−1
i

and 〈ui,j | is the j’th row of Si. Thus we have Aki =
∑n
j=1 λ

k
i,j |vi,j〉 〈ui,j |.

We will also require the following technical lemma concerning the dominant eigenvalues
of stochastic matrices.

I Lemma 4 ( [11, Theorem 6.5.3]). Let λ be a dominant eigenvalue of a stochastic matrix
A ∈ Rn×n. Then λ is a root of unity of order no more than n. Moreover, the geometric
multiplicity of λ is equal to its algebraic multiplicity. In other words, the Jordan blocks that
correspond to λ have size 1× 1.

We also require the following lemma.

I Lemma 5. For any stochastic matrix A, the sequence {Ak}∞k=1 has a finite number of
limits. Namely, there exist a computable constant d such that, for each r = 0, . . . , d− 1, the
subsequence {Adm+r}∞m=1 converges to a limit, and this limit can be computed in polynomial
time given d and r.

4 Note that ni is the number of linearly independent eigenvectors of Ai or the number of Jordan blocks
in the Jordan normal form of Ai. The matrix Ai is diagonalizable if and only if ni = n. Jordan normal
forms are unique up to permutations of the Jordan blocks.
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20:8 Decidability of cutpoint isolation for PFA on letter-bounded inputs

Proof. Let A be a stochastic matrix. As shown in [7], we can compute in polynomial time the
Jordan normal form of A and a transformation matrix S such that A = S−1JS. Note that A
may have complex eigenvalues, so all computations are done using standard representations
of algebraic numbers as explained in Section 2.2.

By Lemma 4, all dominant eigenvalues of A are roots of unity of orders no more than n,
and their Jordan blocks have size 1× 1. If λ is a root of unity of order p, then {λk}∞k=1 is a
periodic sequence with period p. On the other hand, if J`(λ) is a Jordan block corresponding
to an eigenvalue λ such that |λ| < 1, then limk→∞ J`(λ)k is equal to the zero matrix.

Let d be the least common multiple of the orders of the roots of unity among the
eigenvalues of A. Now if λ is a dominant eigenvalue of A, then the values of λdm+r = λr do
not depend on m, where r = 0, . . . , d− 1. Hence Jdm+r converges to a limit when m→∞.
This limit is equal to a matrix J ′ obtained from J by replacing all dominant λ with λr

and all Jordan blocks corresponding to subdominant eigenvalues with zero matrices. So,
limm→∞Adm+r = S−1J ′S.

This shows that {Ak}∞k=1 has at most d limits. Finally, we note that d may be exponential
in the dimension of A. However, if {Ak}∞k=1 has a single limit, then this limit can be computed
in polynomial time. J

3 Decidability of Cutpoint Isolation

In this section we will give a proof of Theorem 1 which is our main result. The crucial
ingredient of our proof is the following technical proposition which will be proven in Section 4.

I Proposition 6. Let J = {1, 2, . . . , `} be indices, λ ∈ [0, 1] a cutpoint, and let JF ⊆ J be
such that kt is a free variable, for t ∈ JF , and kt is assigned a fixed finite value, for t ∈ J \JF .
Then

either λ ∈ 〈u|Ak1
1 Ak2

2 · · ·A
k`

` |v〉, where kt = ω for all t ∈ JF ,
or else there exists a constant C > 0 such that λ ∈ 〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉 implies kt < C

for at least one t ∈ JF .
Moreover, we can decide whether the first case holds and compute the constant C in the
second case.

Below we give a high-level description of the main algorithm (Algorithm 1), which gives
a formal proof of Theorem 1, and explain how Proposition 6 is used there.

Let L ⊆ a∗1a∗2 · · · a∗` be a given letter-bounded CFL. We start by considering all indices
J = {1, . . . , `} as free (i.e. their value is not fixed and they will later be given a fixed
value from N ∪ {ω}) and iteratively fix them until no free indices remain. We first use
Parikh and Ginsburg’s results (Proposition 3) to compute the Parikh image p(L). Then we
nondeterministically choose a linear subset Q and use it to determine the indices which can
be taken to arbitrary high values while staying within Q. These indices will correspond to
the “free variables” in the algorithm.

Let JF be a set of such indices (which will be called R in Algorithm 1). We then set kt
for t ∈ J \ JF to appropriate finite values, while kt with t ∈ JF remain free variables. We
wish to determine if there is a choice of kt ∈ N ∪ {ω} for t ∈ JF such that

λ ∈ 〈u|Ak1
1 Ak2

2 · · ·A
k`

` |v〉 ,

that is, whether λ can be reached by setting each free variable kt either to some finite value or
else to ω, an “infinite” power. Proposition 6 then tells us that either all free variables should
be set at ω in order to reach λ (and this is decidable), or else there exists a computable
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constant C such that if we can reach λ by some choice of these free variables, then some
kt < C for an index t ∈ JF .

In the first case, we set all free variables to ω. In the second case, we nondeterministically
choose some free variable, fix its value in the range [0, C) and then update our linear set Q to
satisfy a new constraint. The procedure repeats iteratively until all free variables have been
assigned a fixed value. The algorithm then verifies if this choice of variables gives a solution.

Stage one (Nondeterministic iterative fixing of free variables):
Let T = J = {1, 2, . . . , `}.
Compute the Parikh image p(L) and nondeterministically choose one of its finitely
many linear subsets Q = { q0 + t1q1 + · · ·+ trqr : t1, . . . , tr ∈ N } ⊆ p(L).a
while T 6= ∅ do

Let R be the set of indices j ∈ T such that at least one qi with i ≥ 1 has a nonzero
jth coordinate.b
For each j ∈ T \R, the jth coordinate of all vectors from Q is equal to the jth
coordinate of q0.c So, we set kj for j ∈ T \R to be the jth coordinate of q0.
Then, for j ∈ R, compute the limits Aωj with indices respecting set Q
(see Remark 2 below for details).
Check whether λ ∈ 〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉, where kj = ω for all j ∈ R.
If yes, return True and stop.
Otherwise, assuming all indices kj for j ∈ J \R are fixed and R is the set of free
variables, use Proposition 6 to compute the constant C > 0 such that
λ ∈ 〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉 implies kj < C for at least one j ∈ R.
Then nondeterministically choose j ∈ R, fix kj ∈ [0, C) and set T ← R \ {j}.
Next, for the chosen index j, find those indices i in {1, . . . , r} for which qi has a
nonzero jth coordinate. Without loss of generality, suppose {1, . . . , s} are these
indices.
Fixing kj ∈ [0, C), restricts parameters t1, . . . , ts in Q to a finite set of possible
values since the vector q0 + t1q1 + · · ·+ tsqs must have kj in its jth coordinate.
Nondeterministically choose one of these values for t1, . . . , ts or return False and
stop, if such a choice is impossible.
Let Q← { (q0 + t1q1 + · · ·+ tsqs) + ts+1qs+1 + · · ·+ trqr : ts+1, . . . , tr ∈ N }.d

Stage two (Verifying the computation):
At this stage we have fixed all variables k1, k2, . . . , k` to some finite values.
Compute 〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉 for the obtained values of k1, . . . , k` ∈ N.
Return True if λ = 〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉 or False, otherwise.
End.

Algorithm 1 Nondeterministic algorithm deciding whether a given cutpoint is isolated.

a Here we use the fact that if λ can be approached arbitrarily closely in p(L), then λ can be approached
by staying within one of the finitely many linear subsets of p(L).

b Thus R is the subset of indices from T that can be taken to arbitrarily large powers simultaneously.
c This is because for j ∈ T \R all qi with i ≥ 1 have zero jth coordinate.
d Thus (q0 + t1q1 + · · ·+ tsqs) becomes the new value of q0 in Q.

I Remark 2. To compute the limits Aωj with indices respecting set Q, note that the projection
of Q on the jth coordinate is equal to { q0,j + t1q1,j + · · ·+ trqr,j : t1, . . . , tr ∈ N }, where qi,j
is the jth coordinate of qi. The set 〈q1,j , . . . , qr,j〉 = {t1q1,j + · · ·+ trqr,j : t1, . . . , tr ∈ N }
is a finitely generated subsemigroups of (N,+). Let d = gcd(q1,j , . . . , qr,j), then there is a
number s > 0 such that for any t ≥ s, we have t ∈ 〈q1,j , . . . , qr,j〉 if and only if d divides t.

CONCUR 2020
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This is a well-known property of the subsemigroups of (N,+) [24]. Thus the limits Aωj with
indices respecting Q are equal to Aωj = A

q0,j

j (Adj )ω, where the limits (Adj )ω are computed
using Lemma 5.

It remains to prove that we can compute a separation bound ε > 0 between λ and the
closest acceptance probability of P for any input word w ∈ L. Algorithm 1 has two stopping
conditions, either by returning True in Stage one (which we discount since it implies the
cutpoint is not isolated), or else after Stage two.

Algorithm 1 has two sources of nondeterminism in Stage one: in the choice of linear
subset Q and then during the while loop in the choice of j ∈ R and kj ∈ [0, C). We will
evaluate every choice of linear subset Q and every choice of j and kj to cover all possible
cases, updating a global variable ε at the end of every nondeterministic branch. Initially,
we set ε←∞, and let ε1, ε2 be additional global variables that are set ε1 ← ε2 ←∞ at the
beginning of every nondeterministic branch.

During the execution of Stage one we use Proposition 6 to compute C such that if all
free variables are above C then we are at least some ε′ > 0 away from λ. Note that ε′ is
less than half of the distance between λ and some limit values. For each iteration of the
while loop, we set ε1 ← min{ε1, ε′} to keep track of the minimal value. During Stage two,
all variables have a fixed finite value, and we set ε2 ← | 〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉 − λ| which is
greater than zero assuming λ is isolated. Finally, we set ε← min{ε, ε1, ε2} > 0.

After inspecting all possible nondeterministic runs of the algorithm, the obtained value
of ε gives us the separation bound. Indeed, during the execution of the above procedure, ε
is updated to the minimum of ε1 and ε2, where ε1 is less than half of the distance between
λ and some limit values and ε2 keeps track of the distance between λ and the values
〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉 when each index kj is less than the corresponding constant C.

4 Proof of Proposition 6

We begin with a proof sketch. Since each Ai is stochastic, σ̂(Ai) contains at least one
eigenvalue 1 and all other eigenvalues in σ̂(Ai) are roots of unity by Lemma 4. All eigenvalues
in σ(Ai) \ σ̂(Ai) have absolute value strictly smaller than 1. Our approach is to rewrite the
expression

〈u|Ak1
1 Ak2

2 · · ·A
k`

` |v〉 (3)

into the sum of two terms (which will be denoted by S0 and S1) such that S0 determines the
limit behaviour as all free variables tend towards infinity, since they control only dominant
eigenvalues, while S1 is vanishing, since at least one free variable controls a subdominant
eigenvalue. We can then reason that if all free variables simultaneously become larger, then
Eqn (3) tends towards a set of computable limits with some vanishing terms. Therefore we
can determine either that we can reach λ when all free variables are ω, or else we can prove
that Eqn (3) is within any ε > 0 of a limit value once all free variables are sufficiently large,
which proves the proposition (by setting ε as less than the smallest difference from a limit
value and λ). We now proceed with the formal details.

First, we consider the simpler case when all matrices are diagonalizable and then show
how to extend this argument to the general case.
Diagonalizable matrices. Let us first assume that all matrices are diagonalizable. By the
spectral decomposition theorem (see Eqn (2)), we may write a matrix Aki

i as:

Aki
i =

n∑
j=1

λki
i,j |vi,j〉 〈ui,j | , (4)
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where {λi,1, . . . , λi,n} are the eigenvalues of Ai repeated according to their multiplicities, and
the vectors |vi,j〉 and 〈ui,j |, for 1 ≤ j ≤ n, are related to the eigenvectors of Ai. Now, we
can write:

〈u|Ak1
1 Ak2

2 · · ·A
k`

` |v〉 = 〈u|

∏̀
i=1

 n∑
j=1

λki
i,j |vi,j〉 〈ui,j |

 |v〉
=

∑
j1,...,j`∈[1,n]

λk1
1,j1

λk2
2,j2
· · ·λk`

`,j`
〈u|v1,j1〉 〈u1,j1 |v2,j2〉 〈u2,j2 | · · · |v`,j`

〉 〈u`,j`
|v〉

Let us thus define Θj1,...,j`
= 〈u|v1,j1〉 〈u1,j1 |v2,j2〉 〈u2,j2 | · · · |v`,j`

〉 〈u`,j`
|v〉. The above sum

can be split in two: the first summand containing terms where only dominant eigenvalues are
to the power of free variables, and the second containing terms with at least one subdominant
eigenvalue to the power of a free variable (these two terms are labelled S0 and S1 below).
This is a useful decomposition since any term which contains a subdominant eigenvalue
taken to the power of a free variable will tend towards zero as the values of all free variables
(simultaneously) increase. Thus we can write 〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉 = S0 + S1, where

S0 =
∑

j1,...,j`∈[1,n]
∀t∈JF : |λt,jt |=1

λk1
1,j1

λk2
2,j2
· · ·λk`

`,j`
Θj1,...,j`

,

S1 =
∑

j1,...,j`∈[1,n]
∃t∈JF : |λt,jt |<1

λk1
1,j1

λk2
2,j2
· · ·λk`

`,j`
Θj1,...,j`

.

By Lemma 4 the dominant eigenvalues are roots of unity, and so S0 assumes only finitely
many different values as kt with t ∈ JF vary, while kt with t ∈ J \ JF are fixed.

Suppose S1 in not an empty sum since otherwise S1 = 0. Then there exists t ∈ JF and
jt ∈ [1, n] such that |λt,jt | < 1. Let ρ be the maximum among such values, that is,

ρ = max{ |λt,j | : t ∈ JF , j ∈ [1, n] and |λt,j | < 1 }.

Suppose kt ≥ C for t ∈ JF , where C is some constant to be chosen later. Then S1 can be
estimated as follows: since for every choice of j1, . . . , j` in the summation S1 there is t ∈ JF
with |λt,jt

| ≤ ρ < 1 and |λi,j | ≤ 1 for all other λi,j , we have

|S1| ≤ C1ρ
C , where C1 =

∑
j1,...,j`∈[1,n]

∃t∈JF : |λt,jt |<1

|Θj1,...,j`
|.

Notice that for any rational ε > 0, we can compute C ∈ N such that |S1| ≤ C1ρ
C < ε. Now,

S0 gives a finite number of limit values for 〈u|Ak1
1 Ak2

2 · · ·A
k`

` |v〉. If λ is not equal to any
of them, then choose ε > 0 to be less than half the minimal distance between λ and those
limit values. Using this ε, we compute C as above. By definition of C, if all kt ≥ C for
t ∈ JF , then the distance between 〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉 and one of the limit values of S0
is less than ε. Thus 〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉 cannot be equal to λ when all kt ≥ C for t ∈ JF .
Hence if λ = 〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉, then there is t ∈ JF such that kt < C.
The general case. We now show how to extend the proof to the case when some matrices
are non-diagonalizable.

Let ai,j =
∑j−1
s=1 `i,s be the sum of the sizes of the first j − 1 Jordan blocks of matrix

Ai, so that ai,1 = 0, ai,2 = `i,1, ai,3 = `i,1 + `i,2 etc. Then we see that by using Eqn (1),

CONCUR 2020
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Aki
i = S−1

i (J`i,1(λi,1)ki ⊕ · · · ⊕ J`i,ni
(λi,ni

)ki)Si has the form

S−1
i

 ∑
1≤j≤ni

∑
0≤m≤`i,j−1

λki−m
i,j

(
ki
m

) ∑
1≤p≤`i,j−m

|eai,j+p〉 〈eai,j+m+p|

Si

=
∑

1≤j≤ni

∑
0≤m≤`i,j−1

λki−m
i,j

(
ki
m

) ∑
1≤p≤`i,j−m

S−1
i |eai,j+p〉 〈eai,j+m+p|Si


=

∑
1≤j≤ni

∑
0≤m≤`i,j−1

λki−m
i,j

(
ki
m

) ∑
1≤p≤`i,j−m

|vi,ai,j+p〉 〈ui,ai,j+m+p|

 ,

where Si =
∑n
q=1 |eq〉 〈ui,q| and S

−1
i =

∑n
q=1 |vi,q〉 〈eq|, with eq the qth basis vector. Here

we used the property that 〈ei|ej〉 = 0 for any i 6= j. We may now compute that:

〈u|Ak1
1 Ak2

2 · · ·A
k`

` |v〉

= 〈u|
∏̀
i=1

 ∑
1≤j≤ni

∑
0≤m≤`i,j−1

λki−m
i,j

(
ki
m

) ∑
1≤p≤`i,j−m

|vi,ai,j+p〉 〈ui,ai,j+m+p|

 |v〉
= 〈u|

∏̀
i=1

 ∑
1≤j≤ni

∑
0≤m≤`i,j−1

λki−m
i,j

(
ki
m

)
Ψi,j,m

 |v〉
=

∑
j1,...,j` | jq∈[1,nq ]

m1,...,m` | mq∈[0,`q,jq−1]

 ∏
1≤t≤`

λkt−mt
t,jt

(
kt
mt

) 〈u|Ψm1,...,m`

j1,...,j`
|v〉 ,

where Ψi,j,m =
∑

1≤p≤`i,j−m
|vi,ai,j+p〉 〈ui,ai,j+m+p| and

Ψm1,...,m`

j1,...,j`
= Ψ1,j1,m1Ψ2,j2,m2 · · ·Ψ`,j`,m`

.

We may split the above summation, as before, into two parts corresponding to products
containing only dominant eigenvalues to powers of free variables and those containing at
least one subdominant eigenvalue to the power of a free variables. By Lemma 4, Jordan
blocks corresponding to dominant eigenvalues have size 1× 1, that is, if |λt,jt

| = 1 for t ∈ JF ,
then `t,jt = 1 and hence mt = 0. So, we can write

〈u|Ak1
1 Ak2

2 · · ·A
k`

` |v〉 = S0 + S1,

where

S0 =
∑

j1,...,j` | jq∈[1,nq ]
m1,...,m` | mq∈[0,`q,jq−1]

∀t∈JF : |λt,jt |=1

( ∏
t∈JF

λkt
t,jt

)
Θm1,...,m`

j1,...,j`
,

S1 =
∑

j1,...,j` | jq∈[1,nq ]
m1,...,m` | mq∈[0,`q,jq−1]

∃t∈JF : |λt,jt |<1

( ∏
t∈JF

λkt−mt
t,jt

(
kt
mt

))
Θm1,...,m`

j1,...,j`
and (5)

Θm1,...,m`

j1,...,j`
=
( ∏
t∈J\JF

λkt−mt
t,jt

(
kt
mt

))
〈u|Ψm1,...,m`

j1,...,j`
|v〉 .
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Note that kt’s in the formula for Θm1,...,m`

j1,...,j`
are fixed since t /∈ JF and so At is not a free

matrix. In other words, Θm1,...,m`

j1,...,j`
does not depend on free variables ki for t ∈ JF . This also

implies that S0 assumes only finitely many different values as kt with t ∈ JF vary since by
Lemma 4 the dominant eigenvalues are roots of unity.

Again using the fact that Jordan blocks corresponding to the dominant eigenvalues have
size 1×1, we can rewrite the product inside the formula for S1 from Eqn (5) as follows∏

t∈JF

λkt−mt
t,jt

(
kt
mt

)
=

∏
t∈JF

|λt,jt |=1

λkt
t,jt
·
∏
t∈JF

|λt,jt |<1

λkt−mt
t,jt

(
kt
mt

)
.

Suppose S1 in not an empty sum since otherwise S1 = 0. Then there exists t ∈ JF and
jt ∈ [1, nt] such that |λt,jt

| < 1. Let ρ be the maximum among such values, that is,

ρ = max{ |λt,j | : t ∈ JF , j ∈ [1, nt] and |λt,j | < 1 }.

Notice that every summand in S1 has at least one |λt,jt | ≤ ρ < 1 with t ∈ JF , and |λi,j | ≤ 1
for all other λi,j . Also,

(
kt

mt

)
≤ kmt

t ≤ knt since mt ≤ n. So every summand in S1 can be
estimated by the expression

C1 ·
∏
t∈JF

|λt,jt |<1

ρktknt , where C1 is a computable constant.

We have ρkkn → 0 when k →∞, and for any rational δ > 0 we can compute C such that
ρkkn < δ for k ≥ C. If in addition we assume that 0 < δ < 1 and that kt ≥ C for all t ∈ JF ,
then |S1| ≤ C1n

2`δ.
Now, S0 gives a finite number of limit values for 〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉. If λ is not equal
to any of them, then choose a rational 0 < δ < 1 such that ε = C1n

2`δ is less than half the
minimal distance between λ and those limit values. Using this δ, we compute C as before.
By definition of C, if all kt ≥ C for t ∈ JF , then the distance between 〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉
and one of the limit values of S0 is less than ε. Thus 〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉 cannot be equal
to λ when all kt ≥ C for t ∈ JF . Hence if λ = 〈u|Ak1

1 Ak2
2 · · ·A

k`

` |v〉, then there is t ∈ JF
such that kt < C.

5 Other decidability results and NP-hardness

In this section we utilise Theorem 1 to obtain some related decidability results. The first
of these combines Theorem 1 with a seminal result of Rabin and allows us to use our
decidability result for cutpoint isolation to solve the emptiness problem for PFA on letter-
bounded context-free languages when the cutpoint is isolated. We again highlight here that
the emptiness problem is undecidable in general on letter-bounded languages, even when all
matrices commute and the PFA is polynomially ambiguous [2].

I Corollary 7. The emptiness problem is decidable for probabilistic finite automata on
letter-bounded context-free languages when the cutpoint is isolated.

Proof. A seminal result of Rabin [23] showed that given a n-state PFA P acting on an
alphabet Σ and isolated cutpoint λ ∈ [0, 1] such that λ is isolated by ε > 0 (i.e. |P(w)−λ| > ε

for all w ∈ Σ∗), then there exists a DFA D such that L<λ(P) = L(D), where L(D) denotes
the language accepted by the DFA D. Moreover, Rabin showed that the number of states of
D is no more than

(
1 + |F |

ε

)n−1
where F is the set of final states of P.
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We note that the proof of Theorem 1 not only determines if a cutpoint is isolated but
also determines an ‘isolation bound’ ε > 0 if it is isolated. In this case we can use Rabin’s
result to construct an equivalent DFA D< recognising L<λ(P). By inverting final and non
final states of D<, we can construct D≥ which recognises L≥λ(P). Finally we note that if λ
is isolated then L<λ(P) = L≤λ(P) and thus D< and D≥ recognise the same languages as
L≤λ(P) and L>λ(P), respectively. Hence the emptiness problem is decidable. J

We now show that the value-1 problem for PFA on letter-bounded CFL inputs is decidable.
This problem is undecidable for standard PFA but decidable for #-cyclic automata [13].

I Corollary 8. The value-1 is decidable for probabilistic finite automata on letter-bounded
context-free languages.

Proof. This is trivial since the value-1 problem is equivalent to the isolation of the cutpoint 1
for a PFA [13]. J

Finally we note that Theorem 1 trivially allows us to determine if a given cutpoint is
isolated for a PFA which is allowed a fixed maximum number of alternations between input
letters (in any order), where each letter may be taken to an arbitrarily high power.

I Corollary 9. Given a probabilistic finite automaton P on alphabet Σ = {a1, . . . , a`},
cutpoint λ ∈ [0, 1] and maximum number k > 0 of alternations between input letters, then
determining if the cutpoint is isolated is decidable.

Proof. We may apply Algorithm 1 on P and λ with each language from the following (finite)
set of letter-bounded languages Λ = {w∗1w∗2 . . . w∗k|wi ∈ Σ}.

This defines the set of inputs where we alternate between the input letters a maximum
of k times (analogous to how counter automata models are often studied with a maximum
number of alternations between increasing and decreasing the counters). If any L ∈ Λ on
Algorithm 1 returns that the cutpoint is not isolated then λ is not isolated for P with a
maximum number of alternations k, otherwise the cutpoint is isolated. J

In the remainder of this section, we give a lower bound on the complexity of the cutpoint
isolation problem for 3-state PFA on letter-bounded inputs (noting that the encoded PFA
are polynomially rather than exponentially ambiguous).

I Theorem 10. Cutpoint isolation is NP-hard for 3-state PFA on letter-bounded inputs.

Proof. We use a reduction from the subset sum problem, defined thus: given a set of positive
integers S = {x1, x2, . . . , xk} ⊆ N and a natural number T ∈ N, does there exist a subset
S′ ⊆ S such that

∑
`∈S′ ` = T? This problem is well known to be NP-complete [12]. We

define the set of matrices M = {Ai, Bi|1 ≤ i ≤ k} ⊆ Q3×3 in the following way:

Ai = 1
xi + 1

1 xi 0
0 1 xi
0 0 xi + 1

 , Bi = 1
xi + 1

1 0 xi
0 1 xi
0 0 xi + 1


Note that Ai and Bi are thus row stochastic. Let u = (1, 0, 0)> be the initial probability
distribution, v = (0, 1, 0)> be the final state vector and let P = (〈u| , {Ai, Bi}, |v〉) be our
PFA. We define the cutpoint λ = T

y , where y =
∑k
j=1(xj + 1). Define letter-bounded

language L = (a1|b1)(a2|b2) · · · (ak|bk) ⊆ a∗1b∗1a∗2b∗2 · · · a∗kb∗k (thus L is letter monotonic) and
define a morphism ϕ : {ai, bi|1 ≤ i ≤ k}∗ → {Ai, Bi|1 ≤ i ≤ k}∗ in the natural way (e.g. the
morphism induced by ϕ(ai) = Ai and ϕ(bi) = Bi). Now, for a word w = w1w2 · · ·wk ∈ L,
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note that wj ∈ {aj , bj} for 1 ≤ j ≤ k. Define that v(ai) = xi and v(bi) = 0 and inductively
extend to v : Σ∗ → N by defining v(w1w2 · · ·wk) = v(w1) + v(w2 · · ·wk) with v(ε) = 0. In
this case, we see that (due to the structure of Ai and Bi):

〈u|ϕ(w1w2 · · ·wk) |v〉 = v(w)∏k
j=1(xj + 1)

Note of course that the factor 1∏k

j=1
(xj+1)

is the same for any w ∈ L.

Assume that there exists a solution to the subset sum problem, i.e., there exists S′ ⊆ S
such that

∑
`∈S′ ` = T . Then consider word w = w1w2 · · ·wk such that wj = aj if xj ∈ S′

and wj = bj otherwise. In this case,
∑k
i∈S′ xi = v(w) and thus 〈u|ϕ(w1w2 · · ·wk) |v〉 =

T
y = λ. If no solution exists, then for any word w = w1w2 · · ·wk, |v(w)− T | ≥ 1, and so
|〈u|ϕ(w1w2 · · ·wk) |v〉 − λ| > 1∏k

j=1
(xj+1)

and thus λ cannot be arbitrarily approximated.

Clearly the representation size of the PFA P and λ are polynomial in the representation
size of the subset sum problem instance and therefore we are done. J

6 Conclusion

In this work we showed that the cutpoint isolation problem is decidable for PFA when the
input words are constrained to come from a letter-bounded context-free language, even for
exponentially ambiguous PFA. This is in contrast to the situation for the (strict) emptiness
problem and the injectivity problem, which are undecidable even over more restricted PFA
for which all matrices commute, the PFA is polynomially ambiguous and the input words
are over a simple letter-bounded language a∗1 · · · a∗` . We show that if the cutpoint is isolated
for words over the input language, then the emptiness problem becomes decidable. We also
show that the value-1 problem is decidable for these restricted input words.

It would be interesting to determine the complexity of the cutpoint isolation problem
more precisely. We show an NP-hard lower bound in Theorem 10. The algorithm we provide
may belong to NP, however there are some issues with showing this upper bound, namely
that the number of limits of a stochastic matrix may be exponential in its dimension and the
value of constant C from Proposition 6 may be exponential in terms of the bit size of the
matrices, making the verification stage of an NP algorithm difficult to achieve. Extending
the results to more general bounded languages would also be an interesting future work.
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