
A NOVEL COMPONENT BASED FRAMEWORK FOR

COVERT DATA LEAKAGE DETECTION

Hanaa Nafea

A thesis submitted in partial fulfilment of the requirements of

Liverpool John Moores University for the Degree of Doctor of

Philosophy

November 2019

i

Abstract

Cyber-attacks are causing billions of dollars of losses every year and data breaches

are one of the major causes of these losses. The problem of data breach/leakage is

attributed as a serious threat to organisations where any incident can inflict cost that

is not only limited to monetary value but also can cause damage to organization

goodwill, branding and reputation. Steganography is the practice of writing hidden

messages via a medium in such a way that only the sender and the intended

recipient know about the hidden message. Steganography is categorised into

different forms including text, image, audio, video and network/protocol

steganography. Network steganography is increasingly being used by malwares to

facilitate the data leakage. This study focuses on aspects of network steganography

at different levels of network packets.

The existing tools for data leakage prevention and detection are often bypassed by

the use of sophisticated techniques such as network steganography for stealing the

data. This is due to several weaknesses of the existing detection systems. First,

these techniques have high time and memory training complexities as well as large

training data sets. These are challenging issues as the amount of data generated

every second becomes very large in many realms. Secondly, the number of their

false positives is high, making them inaccurate. Finally, there is a lack of a

framework catering for needs such as raising alerts as well as data monitoring and

updating/adapting of a threshold value used for checking packets for covert data.

To overcome these weaknesses, this study proposes a novel framework that

includes elements such as continuous data monitoring, threshold maintenance and

alert notification. The study also proposes a model based on statistical measures to

detect covert data leakages especially with regard to non-linear chaotic data. The

main advantage of the proposed framework is its capability of providing more

efficient results with tolerance/threshold values. Experiment outcomes indicate that

the proposed framework performs better in comparison with state-of-the-art

techniques in terms of accuracy and efficiency. Additionally, the proposed

ii

mathematical model can also be used for on-the-fly detection of covert data as

opposed to offline processing methods.

Keywords: Data Leakage, Data Leakage Prevention, Steganography, Covert

Channel, Phase Space Reconstruction, TCP/IP protocol.

iii

Acknowledgement

First, great thanks to my Almighty God, Allah, the most merciful and the most

generous, for his blessings that have given me the ability, strength and determination

to complete a PhD at this prestigious institution and for everything else he has given

me.

And I thank Allah, because without HIS support, blessing, love, and guidance, this

work would not have been possible.

I am extremely grateful for the mentorship of Prof. Kashif Kifayat and Prof. Qi Shi my

director of studies, my supervisors Prof. Abir Hussain and Dr. Bob Askwith. I am very

fortunate that I have the opportunity to be guided by this immensely skilful and

diverse team who have enabled me to think from various perspectives that I would

not be capable of and for that I am highly appreciative and gracious.

I would also like to thank my husband Dr. Sultan Hijazi, who has supported me not

just throughout my research but also throughout my life. Without him, I would never

have reached this far. His endless support, encouragement, patience and confidence

in me have never gone unappreciated, and it has played a huge part in the

completion of this research.

Also, I feel a deep sense of gratitude to the spirit of my father (may Allah have mercy

on him); and my mother. Also I extend sincere esteem, gratitude and a special

thanks to my sons Faisal and Abdulmajeed and my daughter Elyana for

encouragement, support and patience during the period of this research.

I want to dedicate this thesis to dearly beloved Husband and my sons and my

daughter.

iv

Table of Contents

ABSTRACT ... I

ACKNOWLEDGEMENT .. III

CHAPTER 1 INTRODUCTION ... 1

1.1 OVERVIEW .. 1

1.2 CYBER SECURITY: SCALE OF THE PROBLEM ... 1

1.2.1 Cyber Attacks .. 3

1.3 STEGANOGRAPHY FOR DATA BREACHES/STEALING ... 5

1.4 COVERT CHANNELS ... 7

1.5 INTRUSION DETECTION SYSTEM (IDS) .. 11

1.6 RESEARCH GAPS AND MOTIVATION .. 12

1.7 RESEARCH AIM AND OBJECTIVES ... 14

1.8 RESEARCH SCOPE AND NOVELTY ... 16

1.9 RESEARCH FINDINGS ... 18

1.10 THESIS ORGANIZATION .. 19

CHAPTER 2 DATA STEALING .. 21

2.1 OVERVIEW .. 21

2.2 DATA LEAKAGE ... 21

2.3 DATA STEALING ATTACKS .. 22

2.3.1 SQL Injection Attacks ... 23

2.3.2 Data Stealing Malwares ... 23

2.3.3 Phishing Attacks .. 24

2.3.4 DNS Poisoning .. 25

2.3.5 DMA Attacks .. 25

2.3.6 Backdoors .. 25

2.3.7 Key Loggers ... 26

2.4 STEGANOGRAPHY ... 27

2.4.2 Steganography Techniques ... 29

2.5 TCP/IP-BASED STEGANOGRAPHY .. 30

2.6 COVERT CHANNELS ... 34

2.6.1 Data Leakage through Covert Channels .. 34

v

2.6.2 Application Layer as Covert Channels ... 35

2.7 SUMMARY ... 39

CHAPTER 3 RELATED WORKS ... 40

3.1 OVERVIEW .. 40

3.1.1 Deep Packet Inspection and Deep Content Inspection 41

3.1.2 Data Leakage Detection .. 44

3.2 DETECTION ALGORITHMS IN NETWORK PROTOCOLS .. 46

3.2.1 Covert Channels in Internet Protocol ... 47

3.2.2 Covert Channels in Transport Control Protocol .. 52

3.2.3 Covert Channels in UDP .. 55

3.2.4 Covert Channels in HTTP .. 55

3.2.5 Covert Channels in RTP and RTCP ... 57

3.2.6 Data Leakage Analysis .. 58

3.2.6.1 Covert Storage Channel Detection Techniques .. 59

3.2.6.2 Covert Storage Channel Detection in Cloud Storage 65

3.2.6.3 Covert Storage Channel Detection in Wearables 66

3.2.6.4 Covert Timing Channel Detection Techniques ... 67

3.3 COMPARISON OF EXISTING TECHNIQUES .. 72

3.4 TOOLS AND TECHNOLOGIES ... 73

3.5 SUMMARY ... 78

CHAPTER 4 COVERT DATA MONITORING FRAMEWORK AND STATISTICAL

DETECTION MODEL ... 80

4.1 OVERVIEW .. 80

4.2 PROPOSED COVERT DATA MONITORING AND DETECTION FRAMEWORK 80

4.3 COVERT DATA DETECTION FRAMEWORK DESIGN .. 83

4.4 COVERT DATA MONITORING FRAMEWORK OPERATION AT RUNTIME 87

4.5 PROPOSED ALGORITHM FOR FOLDING NON-LINEAR CHAOTIC RANDOM DATA 90

4.5.1 Conversion of data series into stationary series ... 91

4.5.2 Obtaining the Auto Correlation and Partial Auto Correlation Factors 91

4.5.3 Estimation of Embedding Dimension ... 92

4.6 STATISTICAL ALGORITHM FOR MAINTAINING THRESHOLDS 92

4.7 PROPOSED STATISTICAL ALGORITHM FOR QUANTIFICATION OF OUTLIERS 95

4.8 PROPOSED STATISTICAL THRESHOLD CREATION ALGORITHM 98

4.9 PROPOSED ALGORITHM FOR QUANTIFICATION OF OUTLIERS 105

vi

4.10 SUMMARY ... 107

CHAPTER 5 IMPLEMENTATION & EVALUATION ... 109

5.1 OVERVIEW .. 109

5.2 TESTING STRATEGY .. 109

5.3 IMPLEMENTATION OF STATISTICAL THRESHOLD CREATION ALGORITHM 109

5.4 EXPERIMENTS ... 117

5.4.1 Experiment 1 – Demo Data (User Created) .. 117

5.4.2 Experiment 2 – Demo Data (Random) ... 132

5.4.2.1 Set-up for Experiment .. 132

5.4.2.2 Operating System .. 132

5.4.2.3 Code for Covert Data Creation ... 132

5.4.2.4 Source of Data ... 132

5.4.2.5 Server and Client ... 133

5.4.2.6 Data Capture .. 133

5.4.3 Experiments 3, 4 and 5 .. 135

5.5 OUTCOMES OF EXPERIMENTS .. 137

5.6 COMPARISON AND PERFORMANCE DISCUSSION .. 139

5.7 ACHIEVEMENTS ... 142

5.8 SUMMARY ... 143

CHAPTER 6 CONCLUSIONS AND FUTURE WORK .. 145

6.1 CONCLUSIONS .. 145

6.2 FUTURE WORK .. 148

6.2.1 Worm Detection Using Phase Space Reconstruction 148

6.2.2 Anomalous Behaviour Detection in Heart Beat Pulses 148

6.2.3 Sensor Data on Wireless Networks or Internet of Things (IoT) 148

6.2.4 Distributed Covert Channel Detection Using Data Mining Approaches 148

REFERENCES ... 150

vii

Table of Figures

Figure 1.1: Distribution of the root cause of the data breaches (Source: [3]) 2

Figure 1.2: Global Data Breach Statistics (Source: [3]) .. 2

Figure 1.3: A total average of mega data breaches (Source: [3]) 2

Figure 1.4: A total average of mega data breaches (Source: [4]) 3

Figure 1.5: The average number of breached records by country in 2018 (Source:

[4]) ... 4

Figure 1.6: Attack phases of information hiding techniques (Source: [18])................. 8

Figure 2.1: Steganography at different levels of OSI Model (Source: [78]) 28

Figure 2.2: Basic IPv4 TCP/IP Header (Source: [78]) .. 31

Figure 2.3: Linux 2.0 ISN generator (Source: [22]) ... 33

Figure 2.4: TCP Header Structure (Source: [45])………………………………………36

Figure 2.5: IP Header Structure (Source: [45])…………………………………...…… 36

Figure 2.6: HTTP Header Reordering (Source: [90])……………………………..……37

Figure 2.7: Case modification resulting in encoded message (0x72) (R) ..………….37

Figure 2.8: Use of optional fields for covert communication (Source: [90])………… 38

Figure 2.9: Addition of new fields for covert communication (Source: [90])…………38

Figure 2.10: White-spacing characters for introduction of encoded message ….…..39

Figure 3.1: Transfer-coding and Content-Length fields cannot appear together 43

Figure 3.2: Header detection of message headers with the upper case 58

Figure 3.3: High level design diagram of covert timing channel 58

Figure 3.4: Keyboard JitterBug scenario .. 68

Figure 4.1: High Level architecture of the proposed covert data monitoring

framework ... 82

Figure 4.2: Framework components and interoperations ... 83

Figure 4.3: Covert data monitoring framework at runtime .. 88

Figure 4.4: Flowchart for determining the number of folds / parameters for correlating

non-linear chaotic random data using ARIMA – Training Process 90

Figure 4.5: Flowchart for creation of features and threshold calculation for a profile -

Training Process ... 93

viii

Figure 4.6: Flowchart for quantification of outliers – the process to decide if a certain

packet is marked as malicious or normal .. 97

Figure 5.1: ACF plot for stationary ISNs with delayed coordinate at m =4, where

dataset is collection of 1000 ISNs ... 1100

Figure 5.2: PACF plot for stationary ISNs with delayed coordinate data at m=4,

where dataset is collection of 1000 ISNs .. 110

Figure 5.3: Dickey-Fuller test for proving that ISN series have been made stationary

at m= 4 after applying delayed coordinate method for phase space

reconstruction based statistical analysis ... 111

Figure 5.4: Average changes in threshold value with respect to data sizes and time

required for creation of training model ... 112

Figure 5.5: Network data packet capturing ... 113

Figure 5.6: Network data packet capturing using Wireshark tool 114

Figure 5.7: Detailed information of network data packet .. 114

Figure 5.8: One-dimensional ISN data ... 115

Figure 5.9: Three-dimensional differential model plot (Line Format and Scatter

Format) ... 116

Figure 5.10: Second order statistic feature vector – variance between vectors in R

 .. 116

Figure 5.11: Network configuration within Ubuntu .. 119

Figure 5.12: Network configuration within Kali ... 1200

Figure 5.13: Flowchart for forging network packet with covert data used by

Covert_TCP.c.. 120

Figure 5.14: Ubuntu terminal window showing successful compiling of Covert_TCP.c

 .. 123

Figure 5.15: Compiled file Covert_TCP2.c ... 124

Figure 5.16: Temporary folder (tmp) showing the send.txt file that contains covert

data to be send from source 192.168.0.5 to destination 192.168.0.6.............. 124

Figure 5.17: Ubuntu terminal showing the command used to send the file (send.txt)

from source 192.168.0.5 to destination 192.168.0.6 125

Figure 5.18: Kali terminal window showing successful compiling of Covert_TCP.c 126

ix

Figure 5.19: Creation of “rec” folder within temporary folder (tmp) where data will be

received .. 126

Figure 5.20: Location for compiled covert_tcp2 file within “rec” folder in tmp 127

Figure 5.21: Kali terminal showing execution of covert_tcp2 file where it is listening

for data from source IP 192.168.0.5 and saves received data in file ‘receive.txt’

 .. 127

Figure 5.22: /tmp/rec folder showing receive.txt file ... 128

Figure 5.23: Wireshark showing data packets .. 128

Figure 5.24: Second order variance computation snippet 135

Figure 5.25: Discrete Legendre based method (covert embedding)………………..136

Figure 5.26: Showing algorithm accuracy for contiguous covert ISNs……………..137

Figure 5.27: Showing algorithm accuracy for a normal stream of data…………….138

Figure 0.28: Showing algorithm accuracy for a normal stream of data…………….138

x

Table of Equations

Equation 4.1: ISNs in phase space .. 98

Equation 4.2: ISNs in 4-dimensional phase space ... 98

Equation 4.3: Generic representation of univariate time series 99

Equation 4.4: Generic representation of AR model .. 100

Equation 4.5: Generic representation of MA model .. 100

Equation 4.6: Generic representation of ARMA model ... 100

xi

Table of Tables

Table 1.1: Data hiding malwares (Source: [14]) ... 10

Table 3.1: Difference between Deep Packet Inspection and Deep Content Inspection

in the context of common attributes. ... 42

Table 3.2: Comparison of Host and Network based Data Leakage Prevention

Methods .. 42

Table 3.3: Summary of IP based Covert Channel Approaches 50

Table 3.4: Summary of related work with regard to covert channels in TCP 54

Table 3.5: Summary of UDP based Covert channels ... 55

Table 3.6: Summary of HTTP based covert channel detection solutions 56

Table 3.7: Summary of covert channels in RTP and RTCP 58

Table 3.8: Summary of data leakage detection techniques 72

Table 3.9: Network Steganography Tools and Techniques [88]…………………… 76

Table 4.1: TCP header value illustration .. 84

Table 4.2: Proposed algorithm for quantification of outliers 106

Table 4.3: References to framework elements, relevant sections and equations used

in the proposed algorithm in Table 4.2 .. 107

Table 5.1: Results indicating amount of time required for training with data sizes and

percentage movement in threshold value ... 112

Table 5.2: Performance comparison between Support Vector Machine and proposed

detection model ... 140

xii

List of Symbols

Symbol Description

ISN(i) Initial Sequence Number Where i = 1, 2, .
. . . . N – m +1. N is the number of ISNs
and m is the dimension.

x(n), y(n), z(n) and w(n) Coordinates that is used to create a
phase space dataset

Rm Realm in m dimensions

ri The four dimensional phase vector

di,j Euclidean distance between two vectors

d(k) Matrix holding distance between vectors.
Where dk,k=0

𝜇𝑘 The mean value of row vector 𝑑(𝑘).

𝜎𝑘
2 Represents variance of Euclidean

distances between the specified vector ri
and all other vectors in R

𝜎2 Matrix holding variance of all distance in
d(k)

𝑣𝑎𝑟𝜎 Variance of variance vectors in 𝜎2

M Number of readings (vectors)

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐼𝑆𝑁 Threshold for normal ISN

Lag-order the number of lagged difference

p-value probability value or significance

xiii

List of Acronyms

Symbol Description

ICT Information Communication Technology

TCP Transmission Control Protocol

UDP User Datagram Protocol

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

RTP Real-Time Transport Protocol

RTCP Real-Time Transport Control Protocol

ISN Initial Sequence Number

DNS Domain Name Service

DMA Direct Memory Access

SCTP Stream Control Transmission Protocol

ACK Acknowledgement

RST Reset

URG Urgent Pointer

SYN Synchronize

FIN Final

Chapter 1 Introduction

1

Chapter 1 Introduction

1.1 Overview

This chapter presents an introduction to cyber security and its practice to protect

systems and networks. This includes cyber-attacks and data leakage challenges for

the understanding of the attack processes and main causes. The chapter also

discusses data leakage detection and its current issues, and presents the research

gap and motivation for proposing better solutions. It then describes the research

questions and objectives set out by this project as well as the methodologies

proposed. This is followed by the summary of the main project contributions and the

outline of the thesis structure.

1.2 Cyber Security: Scale of the Problem

The rapid expansion of Information and Communication Technologies (ICT) and its

integration with other technologies have changed traditional networks into more

smart and intelligent networks. These technologies provide efficient services to

businesses at affordable cost through the Internet. However, the highly

interconnected critical infrastructures and businesses have created many cyber

security threats and challenges, which become main concerns for online businesses

and their operations. Due to cyber-attacks, businesses have faced millions of dollars’

loss every year and this loss is increasing day by day. There are around 24,000

malicious mobile applications blocked every day. In 2017, there is a 92% increase in

new types of malwares [1]. According to an official annual cybercrime report in 2019,

it is predicted that cybercrime will cost the world $6 trillion annually by 2021 [2].

These losses have been encountered due to data damage, theft, alteration, misuse

of confidential personal and financial data, online fraud, and unavailability of

businesses caused by the attacks, detection and restoration of hacked data and

systems as well as reputational damage. In all data breaches, malicious attacks are

on the highest position as shown in Figure 1.1 [3].

Chapter 1 Introduction

2

Figure 1.1: Distribution of the root cause of the data breaches (Source: [3])

According to IBM [3], the average individual cost due to data lost or stolen is $148

and it is higher in the USA and Canada, as shown in Figure 1.2. An estimated

average cost of one million record breaches in 2018 is $39.49 million as illustrated in

Figure 1.3.

Figure 1.2: Global Data Breach Statistics (Source: [3])

Figure 1.3: A total average of mega data breaches (Source: [3])

Chapter 1 Introduction

3

In February 2016, the (US) Inland Revenue Service (IRS) reported a massive data

breach where more than 700,000 social security numbers and other sensitive

information were stolen [4].

According to [4], the consolidated average per capita cost for all countries is $154

compared to $145 average from the previous year. The US and Germany as in

previous years have a trend towards the highest per capita cost which is at $217 and

$211, respectively, while India and Brazil have the lowest costs at $56 and $78,

respectively (See Figure 1.4 for details). The statistics are skewed as western

developed countries are having more data available in electronic format as opposed

to developing countries.

Figure 1.4: A total average of mega data breaches (Source: [4])

In Figure 1.4, though the amount of data available electronically may be smaller, the

average number of records lost due to data breaches is high for Arabian, Indian and

US regions.

1.2.1 Cyber Attacks

There is a range of cyber-attacks to compromise the confidentiality, integrity and

availability of the systems. Confidentiality and integrity are important attributes that

Chapter 1 Introduction

4

are associated with a shared resource. For example, confidentiality indicates who

has access to a resource, whereas the integrity indicates who can alter a resource.

In the context of shared resources, knowing where data can flow becomes a critical

piece of information that can help to define the security parameters of shared

resources. The top of the list is DDOS (Distributed Denial of Service), SQL injection,

phishing and malware attacks that are explained further below:

Figure 1.5: The average number of breached records by country in 2018 (Source: [4])

 Malware attacks are based on malicious programs developed to destroy

specific computing systems or steal private information and money [4].

Malware attacks include Viruses, Spyware, Worms, and Trojans.

 Password attacks allow attackers to bypass the authentication procedures in

secure systems. Password attacks can be divided into two types. Firstly,

brute-force attack is where an attacker uses a specific tool executing on a

target machine for all possible combinations of letters, numbers and symbols

to get a correct password. Although this method may take too long to get the

correct password, the systems with short passwords can be easily cracked by

this method. Secondly, dictionary attack is where an attacker uses a malicious

tool containing a dictionary of different common word combinations that users

usually use, e.g. birthday dates or names, to obtain a correct password.

Chapter 1 Introduction

5

 In denial-of-service attacks, an attacker sends a high volume of data traffic to

a targeted network system to interrupt or bring down its services.

 In SQL injection attacks, an attacker uses malicious code for database

manipulation to access the information that may contain sensitive company

data or user information. This type of attack causes more damage to business

database systems.

 Advanced Persistent Threats (APT) are one of the most dangerous attacks

where attackers use different techniques such as socially engineered Trojans,

phishing emails and malicious websites to exploit the weaknesses and

vulnerabilities of computer systems. The risk of these APT attacks is

increasingly extreme when exploiting a new unknown vulnerability (zero-day

vulnerability) where vendors and system developers have not got any

information about this vulnerability and do not know how to patch it. Also an

attacker could create a fake website that contains malicious links to exploit

vulnerabilities on client devices [5]. Once a vulnerability on a client device is

exploited, the attacker could steal credentials and gain unauthorised access

to the device [6].

 Backdoors are one of the biggest security threats on organizations’ networks

as they can exist in networks without the network administrator’s knowledge

and be used to launch the other attacks mentioned above [7]. There are two

common ways to create backdoors on computer systems: using shellcode

and using covert channel communication. This study focuses on the backdoor

attacks created using shellcode, which are referred to as Backdoor Shells [8].

Attacks such as SQL injection, phishing attacks, key loggers, man-in-the-middle,

backdoors and steganography-based covert channels are used for data breaching.

1.3 Steganography for Data Breaches/Stealing

Steganography is an act of hiding the data in another message. It is also used to

hide a message within a digital image [9, 10]. Every image has the least significant

bits, these bits are mostly empty or altered, and no significant change in the image

can be encountered by casual viewers. Steganography has been observed for data

Chapter 1 Introduction

6

breaches for the past 15 years but now it is getting more complicated as hackers use

this method to send malwares. When the attackers deploy steganography, they

modify the simple images in order to hide the original data [11]. According to an FBI

investigation held in 2017 [12], around 19k important data files had been stolen from

a known US company. These kinds of threats have been marked as the major

problem for US companies. Around $225 million to $600 million losses are faced by

US companies every year due to such thefts.

Attackers never want their paths to be discovered. In order to hide their tracks, the

attackers try to keep the communication masked by using covert channels.

Steganography is one technique for covert communication. Information hiding

techniques are known as a five-fold goal in which finding out the target, scanning for

vulnerabilities, gaining unprivileged access, staying undetected and finally covering

their tracks are performed one by one. Figure 1.6 shows the classification of

information-hiding techniques. It shows how different attack phases are used by

malware software [13]. The most recent malware found in the last few years makes

use of steganography to steal valuable or private data.

These types of data hiding techniques make it difficult for intrusion detection

mechanisms to identify data leakages. Furthermore, these techniques can be

randomly used by attackers to make it harder to detect. Therefore, this area has

great potential in terms of research and development. Table 1.1 [14] shows some

examples of information hiding malware. Information hiding methods are also

increasingly used in advanced persistent threats.

According to Lori Cameron [14], in the near future, cybercrimes will get more stealth

and commoditization of malware, and focus on exploitation of the Internet of Things

(IoT) related devices. It means that the cybercriminals are developing new

techniques to make it harder to detect and trace back the malware to its origin. This

is the main reason for them to use steganography for information hiding.

Chapter 1 Introduction

7

1.4 Covert Channels

Covert channels are gaining more popularity than encryption techniques among

cybercriminals. It is a newly discovered technique that is used to perform the

communication more secretively [15]. Stenographic techniques are being used by

the covert method of communication to hide the information among original text or

images as explained in section 1.2. In [16], the SCTP (Stream Control Transmission

Protocol) stenographic method’s idea is presented that can pose a threat to network

security. It describes possible security attacks in SCTP with countermeasures.

SCTP-specific stenographic methods can be divided into three groups: (1) methods

that modify the content of SCTP packets, (2) methods that modify how SCTP

packets are exchanged, and (3) methods that modify both the content and the way

they are exchanged. Using INIT and INIT ACK chunks, Data chunks, SACK chunks,

AUTH chunks, PAD chunks and Variable parameters can modify the SCTP content

via a stenographic method. For modifying the SCTP packet exchange routine, Multi-

Homing and Multi-Streaming techniques are used. As a result, this analysis

emphasises how important it is to investigate further over the network protocols. The

art of covert sending of information has also been applied to many other protocols

such as TCP/IP, UDP, ICMP, HTTP and others. TCP is more reliable as it provides

the delivery reliability of packets to the receiver while UDP is non-reliable and does

not give information about the packets. A covert channel is a communication channel

that is not designed and/or not intended to exist, and that can be used to transfer the

information in a manner that violates the existing security policy.

The past researches have shown that the covert channels are divided into three

major types on the basis of the following characteristics:

 Covert Timing Channels

 Covert Storage Channels

 Covert Network Channels

Covert Timing Channels

Covert timing channels take the advantage of system performance and components

to send a secret message. They may also use the system resources and timing to

Chapter 1 Introduction

8

share confidential data from one source to another. Attackers gained these

advantages for detecting the covert channels [17].

Covert Storage Channels

Storage based covert channels use the method of sending intended hidden

information by using the common area between processes in the main memory of

the system. In this type of covert channel, some processes write directly or indirectly

into certain shared resources while other processes read them [17].

Attack
Phases

Scanning Annonymisation
of names, IP
spoofing,
location
spoofing

 Hiding
scanning

Gaining
Access

 Hiding
infection
process

Hiding
infection
process

Hiding
infection
process

Masquerading
malicious apps

Maintaining Hiding C&C Hiding data Hiding C&C Masquerading

Information Hiding

Identities Communication Content Executable /Code

Anonymisation

N
e
tw

o
rk

/

M
e

d
ia

S
te

g
a

n
o
g

ra
p
h

y

T
ra

ff
ic

 T
y
p

e

O
b

fu
s
c
a

ti
o

n

Encryption Masquerading

& Obfuscation

Chapter 1 Introduction

9

Access traffic exfilteration or
C&C traffic,
tunnelling

traffic processes &
apps

Figure 1.6: Attack phases of information hiding techniques (Source: [18])

 Covert Network Channels

The main aim of covert network channels is to hide secret data inside network data

carriers/packets, i.e. normal network traffic of users. In an ideal situation, the hidden

data exchange cannot be detected by third parties who are unaware of the covert

channel’s usage [19]. Recently attackers have used the network protocols to perform

the covert channels-based communications. The main advantage of this technique is

the stealthy nature of communication possibility over the network. The HTTP network

protocol and TCP/IP are known types of covert network channels. HTTP based

network channels have the following techniques to perform the covert

communication over the internet [20]:

Malware/exploit kit Information- hiding method Purpose

Vawtrak/ Neverequest Modification if the Least-
significant bites (LSBs) of
Favicons

Hiding URL to download a
configuration file

Zbot Appending data at the end of
a JPG file

Hiding configuration data

Lurk/Stegoloader Modification of the LSBs of
BMP/PNG files

Hiding encrypted URL for
downloading additional
malware components

AdGholas Data hiding in images text
and HTML code

Hiding encrypted
malicious Java Script
code

Android/Twitter. A Impersonating a
pornography player or an
MMS app

Tricking users into in
stalling malicious apps
and spreading infection

Fakem RAT Mimicking MSN and Yahoo
Messenger conversation
traffic

Hiding command and
control (C&C) traffic

Carbank/Anunak Abusing Google cloud-
based services

Hiding (C&C) traffic

Spy Note Trojan Impersonating Netflix app Tricking users into
installation malicious app
to gain access to
confidential data

Tesla Crypt Data hiding in HTML
comments tag of the HTTP
404 error message page

Embedding C&C
commands

Chapter 1 Introduction

10

Cerber Image steganography Embedding malicious
executable

SyncCrypt Image steganography Embedding core
components of
ransomware

Stegano/Astrum Modifying the colour space of
the used PNG image

Hiding malicious code
within banner ads

DNSChanger Modification of the LSBs of
PNG file

Hiding malware AES
encryption key

Sundown Hiding data in white PNG
files

Exfiltrating user data and
hiding exploit code
delivered to victims

Table 1.1: Data hiding malwares (Source: [14])

 Redirects

 Cookies

 Referrer

 HTML tag elements

 Active Content

 Arbitrary headers

 HTTP timing channel

 Webpage browsing pattern

 Reordering of header files

While in the TCP/IP type of covert network channel, TCP/IP based modification is

performed for a stenographic covert channel over network protocol header values to

perform secret communication [16, 17, 21, 22].

There is no doubt that timing channels are the most common covert channels.

Because of this, a large amount of research has been carried out to propose

solutions to their detection and prevention, so it is a relatively mature topic from the

research point of view. However, covert network channels based on steganography,

which do not rely on timing to pass secret information, are increasingly attracting

cybercriminals to exploit their potentials, as there is little research on effective and

efficient methods for their detection. This is the main reason for this study to focus on

network steganography based covert channels, instead of covert timing channels, to

bridge the existing gap in the research area.

Chapter 1 Introduction

11

1.5 Intrusion Detection System (IDS)

Intrusion is a set of actions that make an attempt to challenge the integrity, discretion

or accessibility of a resource [23]. Bace and Mell [24] provide a more

comprehensive definition of intrusion detection “as a collection of practices and

mechanism used to detect the errors that may lead to security failures with use of

anomaly detection, misuse detection and diagnosing intrusions and attacks”. The

objective of an IDS is to alert administrators of suspicious activities and also in some

cases to avert any attacks.

Historically, network security administrators conducted Intrusion Detection (ID)

manually to monitor the network traffic for anomalies. This early form of ID is

ineffective in the implementation of an automated audit log file that allowed quick

searching for irregularities [23]. The introduction of these logs is helped with the

manifestation of ID into forensic techniques where the administrator is responsible

for collecting the information and identifying issues only after incidents have occurred

rather than when the process of intrusion is taking place. Researchers in [25]

proposed an IDS that reviewed the audit data and produced the first version of a

real-time IDS to block the cyber-attack in real-time.

Now the focus has shifted towards the enhancing of security measures as newer

attack techniques continue to spawn data on the network. Due to this ever-changing

situation, the researchers and developers realised that defending against changing

threats must include seeking to improve the methods for threat identification.

The use of an IDS for detecting the data leakage is the right approach, i.e. the IDS

should have the ability to detect the covert channels where important data can be

leaked. Different methods such as misuse detection [26] can be used to detect such

malicious activities. The main shortcoming of these methods is that industrial

standard tools are still using the payload field as a target for detecting the data

leakage while trends are indicating data leakage through covert channels.

Chapter 1 Introduction

12

1.6 Research Gaps and Motivation

Data leakage is one of the major issues in Cyber Security and leads to companies’

financial and reputational losses. In most cases, data leakage happens when the

confidential data is stolen in bulk or entire databases are hacked. For this purpose,

hackers have adopted different security bypassing techniques for stealing

confidential files, and covert channels are one of them [27], which are very hard to

detect as the stolen data is blended in a form of small binary values in some

components of network packets such as ISN (Initial Sequence Number) and Flags.

An ISN refers to a unique 32-bit sequence number assigned to each new connection

on a Transmission Control Protocol (TCP)-based data communication, which is

commonly used for steganography-based covert channels. This is called network

steganography. It is one of the areas, which almost all existing tools have failed to

address as it is very dynamic and random in nature. Furthermore, now hackers use

the same methods to deliver infected payloads to victim machines [28, 29].

Based on existing literature [30-32], covert channel detection techniques are

categorised into pattern, machine learning and statistics-based approaches. The

pattern-based approaches have a common denominator of matching a captured

packet header against a known pattern in order to identify if the packet has covert

data in the header [33]. These techniques provide the high accuracy and speed of

detection but fail to cope with new threat vectors and incomplete data sets and incur

high maintenance requirements. The machine learning-based approaches [30-32,

34] have used a set of rules created from the complex data sets for classification.

These methods overcome some shortcomings of the pattern-based approaches,

improve the ability to cope with incomplete data sets, and offer further insights into

latent information within the data sets. However, the benefits are offset by the

shortcomings of large system footprints, low speed of detection and high

maintenance requirements. Finally, the statistical approaches [35] measure

deviations from expected stochastic behaviour, which are effectively capable of

handling incomplete data sets. Additionally, these approaches offer the speed of

detection and ability to detect new threat vectors. The main shortcoming of these

approaches is the possibility of high false positive results.

Chapter 1 Introduction

13

It has been identified that the common problem with existing approaches is the

inability to detect new attack vectors, particularly when the attack vectors are

masked, i.e. the data leakage commences via the field in the packet header where

the data can be non-linear [36-38]. A non-linear type of covert data means that the

change of output is not proportional to the change of input. Unlike linear covert data

with rather simple dynamics, non-linear covert data has very complex dynamical

behaviour, so it is not easy to reverse-engineer from the covert data to its original

data. When non-linear data is sensitive to initial conditions, it becomes non-linear

chaotic data. Sensitivity to the initial conditions means that each point in a chaotic

system is arbitrarily and closely approximated by other points. A classic example is

double pendulums where if the starting point of releasing a pendulum is slightly

different, then the trajectory taken by them is very different. Effectively, this means

that machine learning or pattern finding-based approaches may not be suitable as

they work on the realms of fixed pattern locations. Thus the pattern and machine

learning-based approaches fail immediately in such cases, as there is no fixed

pattern and the classification of non-linear data is mathematically not viable [37, 39].

Chaos theory focuses on the study of different states of dynamic systems which are

highly random and irregular in nature. Chaotic approaches have been widely used to

investigate and describe highly complex and nonlinear systems which have vastly

different outcomes [40-42]. It has also been acknowledged that the concept of chaos

is radically different from statistical randomness [43]. Chaos theory is used to check

how a system evolves over time in a nonlinear, deterministic, and dynamic manner

[44]. On the other hand, statistical approaches have some degree of effectiveness.

However, the approaches similar to machine learning-based ones have failed due to

the chaotic nature of non-linear data being leaked via packet headers [45]. In

addition, it is difficult for existing techniques to differentiate between normal data and

the data masked to appear as normal data. Additionally, it is also observed that

various techniques suggested in the literature have failed to cope with the diversity of

fields in the TCP header and new unknown threats [39].

After the above investigation, it is clear that there is a need to develop a more

efficient technique to detect the data leakage in the network data streams. This

Chapter 1 Introduction

14

research gap is the main motivation to propose the novel technique in this thesis to

handle data leakage in the network data streams. More specifically, there is a need

to design a novel component-based monitoring framework to detect data leakage,

analyse the TCP traffic for covert data and quantify the data leakage without the use

of data signature patterns. In addition, it is necessary to establish thresholds that can

be used to identify outliers while performing data leakage detection. This research

has taken all these requirements into account for the framework design.

1.7 Research Aim and Objectives

The main aim of this research is to propose a novel component-based framework to

detect data leakage at the transport layer. This study proposes a framework based

on statistical measures to detect covert data leakages more efficiently with adaptable

threshold values. It focuses on TCP because TCP is widely used to provide reliable

Internet communications and becomes a highly preferable target for attackers to

exploit for cover communications but the current research has limitations in tackling

such threats. That is why this study is motivated to rectify the problems. The

significance of the proposed framework is about offering continuous data monitoring,

threshold maintenance, alert notification and capability of providing more efficient

results with tolerance/threshold values than the existing work.

In order to achieve the above aim, the project objectives and adopted methodology

are given as follows:

Objectives Methodology

1. To do a detailed background study of different

types of data leakage attacks, use of

steganography for data leakage, covert channels,

available tools and technologies, and different

protocol parameters that can be used for covert

communication.

This objective is successfully

completed by studying a

varied range of existing books,

magazines, research papers

and PhD theses. The

outcome of this objective is

Chapter 1 Introduction

15

presented in Chapter 2.

1. 2. To perform detailed literature research in

different covert channel detection methods and

identify research gaps. The scope of covert

channel detection on protocols such as TCP and

UDP is very large, which is defined in the header

fields and various combinations of header fields

used for the purpose of covert communication.

Existing research into the detection of covert

channels on the header fields of those protocols

is assimilated in order to understand the

weaknesses of existing techniques.

A detailed study of different

research papers has been

conducted in the area of data

leakage detection, which is

further expanded toward

covert channel detection in

different protocols such as

TCP, IP and others. This

objective has been

successfully completed, and

the details are presented in

Chapter 3.

2. 3. To design a novel component-based

monitoring framework for the detection of data

leakage at the transport layer of network traffic,

which should have the following abilities:

a. To analyse TCP traffic for covert data and

quantify data leakage without the use of

data signature patterns.

b. To establish the thresholds used to identify

outliers while performing data leakage

detection.

A complete framework has

been produced. It has different

components, offering different

processes to perform different

operations locally and interact

with other components. Each

component is described in

detail in Chapter 4.

3. 4. To implement and evaluate the proposed

solution based on a selected data set and live

experiments.

5. All components of the

proposed framework to detect

covert channels have been

implemented. Furthermore, its

Chapter 1 Introduction

16

4. This includes developing an experimental

environment to test different data leakage

scenarios through covert communication, and

creating a simulation testbed where a socket-

based client-server system is used to send covert

data in the header field (specifically Initial

Sequence Number) of the TCP protocol. The

environment is also extended using virtual

machines where a client and a server are over a

virtual network. Every received packet is passed

through the covert channel detection algorithm

proposed in this thesis in order to indicate if the

packet contains covert data with an associated

probability.

evaluation and testing have

been completed using a

selected data set and live

network traffic. As part of the

implementation, a client server

testbed has been developed,

which exchanges covert

communication. Overall, the

objective has been

successfully fulfilled, and the

details are presented in

Chapter 5.

6. 5. Write up the thesis. The thesis is completed.

1.8 Research Scope and Novelty

The scope of this study is limited to detecting data leakage through the method of

covert channels in TCP packet ISN and other values. There are many other methods

used for data leakage such as encryption and steganography. This study focuses on

aspects of network steganography at different levels of network packets. The

existing techniques are not able to detect new attack vectors, particularly when the

attack vectors are masked. The proposed framework provides multiple aspects for

detecting the non-linear chaotic covert data leakages.

The main contributions of this research in the detection of covert data in the context

of TCP packet headers are as follows:

1. The first contribution of this research is the design of a data monitoring

framework that can detect the real-time concealed data in a multitude of fields

on a TCP header, whilst having a very small system footprint. It features a

Chapter 1 Introduction

17

flowchart that evaluates covert channels for buffered data collection. The

existing frameworks in literature can neither handle network based covert data

monitoring nor detect the non-linear covert data in header fields. The existing

studies do not provide a satisfactory level of accuracy, especially with regard

to the detection of the concealed data within chaotic background noise such

as in the case of initial sequence numbers.

2. A statistical threshold calculation technique that adopts a hybrid (based on

regressive auto-correlation and classical statistics) approach to the

calculation, which addresses the existing studies’ weaknesses. The resultant

calculated threshold value is based on expected values across multiple

operating systems to achieve the longevity with regard to the threshold validity

and hence ensure that various flavours of operating systems are not

susceptible to leakage. The literature has shown a number of successful

techniques that work in a dichotomous manner in order to indicate if the

packet/data being scanned is covert or not. However, these techniques suffer

from high false positive rates as well as low performance, which have been

eliminated by the proposed statistical threshold technique where the result of

packets containing covert data is presented with a degree of threshold

probability.

3. A statistical technique quantifies the level of covert communication by

computing the deviation of observed data from the expected threshold value.

The technique is a two-stage analysis process where a deviation score is

calculated in real-time over a buffer of collected TCP headers as well as over

a larger collection of TCP headers. This offers insights into temporal data

leakage detection for larger data collections informing the analyst of time-

based indicative analysis as well as on-the-fly outlier analysis which are

improvements on the existing detection techniques that analyse the packets

based on a strict set of rules and miss deviation computation over buffered

and collection data.

Chapter 1 Introduction

18

4. Furthermore, the proposed framework is novel because not all deviation

scores produced are tagged as data leakage incidents but instead the

proposed solution focuses on further analysis using a novel approach to the

quantification of skewed results, which informs about the probability of data

leakage as detailed in Section 4.8 of Chapter 4. This process uses moving

average for decision making about data leakage, thereby increasing the level

of accuracy as well as reducing the likelihood of Type I and Type II errors.

Type I and Type II are two types of errors used for statistical testing to check

whether test results are true or false. A Type I error refers to a false positive

finding whereas a Type II error is a false negative finding. The moving

average offers the smoothing of erratic data and provides the ability to

observe trends that facilitate in reducing the likelihood of the aforementioned

errors. This forms a basis for the continuous improvement of a threshold

value rather than a strict value, which strives to reduce Type I and Type II

errors, thus forming a closed loop. Most of the existing techniques do not offer

this feature and are hence categorised as open loops.

1.9 Research Findings

This research has recognised a security weakness with regard to data leakage that

occurs over non-conventional channels also known as covert channels. This

weakness is primarily caused by the presumption that the existing data leakage

monitoring techniques and tools should be applied to TCP headers, which is

essentially a limitation of the existing work as it allows such covert communication to

go undetected and unnoticed.

This study has also identified other limitations of existing techniques in order to

discuss their inherent problems. It has been observed that existing techniques do not

offer sufficient evaluation in the context of cases where data in the header field is

complex. The application of these techniques to covert data in fields where

background noise is chaotic produces flawed and incorrect results. Besides, this

research also highlighted the reliability and accuracy in a dynamic real-time TCP-

based communication.

Chapter 1 Introduction

19

This research has devised a novel component-based monitoring framework that can

accurately detect the covert data leakage over TCP headers despite chaotic

background data. However, it has been found that some of the techniques proposed

in this thesis provide deviated results in certain known cases, so further research is

required to apply statistical techniques such as multi-modality for further

improvements.

1.10 Thesis Organization

The remainder of the thesis is arranged into five chapters as follows:

Chapter Two: Data Stealing

This chapter starts with an overview of data leakage and its terminologies as well as

the description of different types of attacks that cause data leakage/stealing/breach.

The detailed background of steganography and covert channel techniques in

computer network protocols are also discussed. The covert channel details include

how malicious users use different types of networks packets for covert

communication.

Chapter Three: Related Works

This chapter discusses the related work and existing studies in the domain to

analyse their advantages and limitations to find the research gap stated earlier. The

existing studies have been evaluated in terms of their measures and metrics

required for the detection and prevention of data leakage.

Chapter Four: Covert Data Monitoring Framework and Statistical Detection

Model

The chapter presents the design of the proposed covert data-monitoring framework

for TCP header fields. The sections of this chapter present the novel algorithm for

the detection of concealed data within non-linear chaotic data, threshold value

calculation, deviation quantification from the threshold, and outlier scoring in real-

time for buffered data collection and larger data sets. This chapter also presents an

Chapter 1 Introduction

20

autocorrelation method for computing dimensions and forming a vector for random

data. Moreover, it discusses the software solutions detailing how the framework and

statistical detection techniques are implemented and how the software is used to

evaluate the proposed techniques.

Chapter Five: Implementation and Evaluation

This chapter details the implementation and evaluation of the work proposed in the

previous chapter to check the success of the covert data monitoring framework. This

allows the validation of the project claims, aims and objectives as well as

requirements discussed in the previous chapters.

Chapter Six: Conclusion and Future Works

This chapter enumerates the conclusions of the research work presented in this

thesis, including the summaries and characteristics of the proposed systems and

contributions. Future research directions are also discussed in this chapter for further

improvements on the proposed work.

Chapter 2 – Data / Information Stealing / Leakage / Breaches

21

Chapter 2 Data Stealing

2.1 Overview

This chapter presents the details of data leakage and the possible types of attacks.

After a detailed discussion on data leakage attacks to understand the main causes

behind these attacks, the steganography background, techniques and types are

discussed to understand their technical processes. This includes TCP/IP based

steganography and its characteristics. Covert channel details and data leakage

through a covert channel in computer network protocols are also discussed. In the

last section, data leakage prevention tools and technologies are discussed to

understand the domain and possibilities to design more optimal solutions.

2.2 Data Leakage

Data leakage is one of the concepts where any confidential or private data is

disclosed intentionally or unintentionally without the permission of the data owner

[46]. Other terms of data leakage include data spill, information disclosure and

information leakage [47].

Data leakage is one of the emerging security threats to organisations’ internal or

external sources. According to authors in [35], attacks can be classified based on the

source of attacks. Attacks initiated by an entity inside the security perimeter (an

“insider”) are known as insider attacks. In these attacks, the attacker accesses the

system resources without their authority’s approval. Attacks initiated by an entity

outside the security perimeter (an “outsider”) are known as outside attacks. On the

Internet, potential outside attackers exist in different forms such as amateur

pranksters, organized criminals, international terrorists, and hostile governments.

According to authors in [46], there are three physical players (organisation, attackers

and organisational assets) and four logical players (security mechanisms,

vulnerabilities, threats and security risks) in the security domain. The organisation

Chapter 2 – Data / Information Stealing / Leakage / Breaches

22

assets are mainly based on data and information that are store in databases. The

organisation tries to minimise the security risk by applying appropriate security

mechanisms such as firewalls, intrusion detection and prevention tools. For example,

the Symantec solution [48] is one of the data leakage tools deployed in Amazon Web

Services or as Single Server support, and Kaspersky’s data leakage prevention

plugin [49] is adopted by Microsoft Exchange.

Security patches are applied to patch the vulnerabilities exposed by software from a

certain vendor. However, the integration of multiple vendors’ patches further opens

vulnerable areas (channel), which can be used for data leakage. For example,

Microsoft windows regularly provide Windows Updates to close identified security

vulnerabilities. However, Samba is a very popular file and print service that uses the

SMB/CIFS protocol. It has 114 published vulnerabilities [50] that cannot be patched

by Microsoft and could be used for data leakage. The DROWN vulnerability was

announced on the 11th March 2016 and patched by Microsoft on the 12th April 2016

[50], which was previously unknown due to missed integration tests.

2.3 Data Stealing Attacks

Google, University of California Berkeley, and the International Computer Science

Institute conducted detailed studies to assess the risks of credential threats [51]. The

studies conducted in March 2016 and March 2017 identified 788,000 potential

victims of off-the-shelf key loggers and 12.4 million potential victims of phishing

attacks, resulting in 1.9 billion usernames and passwords exposed via data breaches

and merchandised on the black market. The studies also found that there were 4,069

different phishing attack tool kits and 52 different key loggers responsible for the data

breaches. Around 3,000 black hat hackers used phishing kits which emulated Gmail,

Yahoo, and Hotmail logins to steal 1.4 million credentials. The HawkEye was the

most popular tool used by 470 hackers to generate 409,000 reports from injected

devices [52].

Chapter 2 – Data / Information Stealing / Leakage / Breaches

23

There are a number of different attacks that cause data breaches or leakages, such

as SQL injection, phishing, backdoors and keyloggers. Some of them are further

described in the subsections below.

2.3.1 SQL Injection Attacks

SQL Injection Attacks (SQLIAs) are considered as a threat to vulnerable database

systems. In this type of attack, the attacker manipulates the input box by using

different SQL statements in an application to gain unauthorised access to databases

and change the data.

Applications without validated input become prone to such attacks easily. Different

classical types of SQL injection cause different types of damage, e.g. tautologies-

based, piggy-backed query, logically incorrect, union query, stored procedure, and

inference-based attacks. More advanced types include fast flux [53] and

compounded SQL injection attacks, where the compounded attacks include SQL

injection + DDoS attacks, SQL injection + DNS hijacking, and SQL injection +

insufficient authentication [54]. Research in different directions has been done to

improve the SQLIA detection, e.g. using machine learning and role-based access

control [55]. In [56], anomalistic test queries are classified using a trained support

vector machine for data sets with illegitimate queries (e.g. those including quotation

marks) to improve detection accuracy. Furthermore, in [57], a new approach is

introduced where the instruction set is randomized due to instances of the language

which are created and cannot be predicted by an attacker. Hence, when the attacker

injects malicious queries, the database parser terminates untranslated queries.

2.3.2 Data Stealing Malwares

Malware is generally a piece of malicious software designed to pose different types

of threats. Nowadays, these are widely used to steal data. Data-stealing malware is

often used by attackers for financial benefits and get valuable information from the

Internet. It is usually the second or third component of a sequential multi-pronged

attack. According to trends in micro reports, data-stealing malware is also used for

terrorism to launch attacks against government targets [58].

Chapter 2 – Data / Information Stealing / Leakage / Breaches

24

Researchers discussed in [59] that Bitdefender has shown a new multi-staged

malware attack termed as “Operation PZChao” that is spreading in Asia and the

USA. The initial delivery of the malware is carried via a phishing email. This email

has two parts including a VBS file attachment and a 7zip file that is self-extracting.

Both parts are defined based on their functionality and details in the provided link in

the phishing email.

Some more examples on data stealing malwares are as follows:

Bot site scripting: In this type of attack, a bot duplicates a website and scrapes

usernames from the website with poorly designed logins. The attacker develops a

large number of bots from different IP addresses to avoid the application firewall

which detects multiple failed attempts [60].

Credential stuffing: This is one of the biggest security problems launched in 2017

where 2,227 breaches were reported. Such attacks are automated and launched

using special malware such as Sentry MBA that repeats attempts to take over

corporate or personal accounts [60].

Beta bot: This is a Trojan that maligns computers to try to block user access to

security websites and also disables their antivirus and malware scan software. This

malware is known as Neurevt. It is a sophisticated information stealer that began as

a banking Trojan, but now it includes features that allow its operators to practically

take over a victim’s machine, steal sensitive information and shut down more than 30

popular anti-malware products. Beta bot’s main features are a browser form grabber,

an FTP and mail client stealer, a robust rootkit, the ability to download additional

malware, and the ability to execute commands [61].

2.3.3 Phishing Attacks

A phishing attack is a way of tricking users to provide private information without

their knowledge. Commonly, such attacks use electronic messaging like email or

web links to provide a fake link to the original site for malicious purposes. Phishing is

a hybrid attack combining social engineering and technological aspects [62].

Chapter 2 – Data / Information Stealing / Leakage / Breaches

25

Phishing is more effective when it is launched by someone who is close to or at least

known to a targeted user. Such phishing is known as social phishing. It is reported in

[63] that 72 percent of users responded to a forged phishing email that looked like it

was from friends.

2.3.4 DNS Poisoning

Domain Name System (DNS) cache poisoning is an attack type that usually exploits

the loopholes in DNS to redirect the Internet traffic from an intended system. The

intended system is a system controlled by the attacker or a system that the attacker

wants the traffic to go to. The fact that this poisoning can carry and grow from one

DNS server to another makes it more dangerous [64]. It is also known as DNS

spoofing since some kind of false DNS data is fed into the DNS resolver’s cache

which ultimately makes the server return the results that are not actually asked. This

includes false IP addresses and website addresses.

2.3.5 DMA Attacks

Direct Memory Access (DMA) is a process that enables an I/O device to send or

receive the data from the main memory to enhance the operation performance by

bypassing the CPU. It is normally controlled by a DMA controller which is installed as

a chip [65]. DMA attacks come under the category of side-channel attacks in which

an attacker intrudes into a machine or any other device by exploiting DMA. The

attacker uses vulnerabilities present in high-speed expansion ports.

I/O attacks are launched by an attacker through read or write access to DRAM

through DMA. Morgan, et al. [66] discussed a design weakness in the configuration

of the I/O Memory Management Unit (IOMMU) that can be exploited to facilitate such

attacks. Stewin and Bystrov [67] discussed DMA malware and its effectiveness and

implemented DAGGER to show how stealthy DMS malware works.

2.3.6 Backdoors

A backdoor in a computer system environment is a term used as a point of entry that

is not documented or intended to use under normal circumstances. It is a portal

Chapter 2 – Data / Information Stealing / Leakage / Breaches

26

through which an attacker gains access to a system’s resources, thus evading

security mechanisms through the doors that are not normally monitored. A backdoor

is used by an administrator for maintenance or for other purposes by attackers or

intelligence agencies [68].

Clements and Lao [69] discussed backdoor attacks in neural network operations.

Neural networks are a growing field of research where the attackers find ways to

attack and gain access to resources and cause misclassification. Detecting a

backdoor is a difficult task as it establishes secret channels for communication.

Thomas and Francillon [70] presented a framework that is able to detect eleven

diverse types of backdoors.

2.3.7 Key Loggers

A key logger is a spying program that is used to record every keystroke made by a

user on a system’s keyboard. The recorded data can be used for gaining un-

authorised or fraudulent access to private and secret information, e.g. passwords,

PINs, etc. Key loggers are normally integrated into viruses and malware too [71].

New technologies have opened new ways of implementing key loggers too.

Hussain, et al. [72] showed that built-in motion sensors in smartphones can serve as

a key logger to infer user taps on smartphone touchscreens and use the recorded

data for malicious purposes. Furthermore, Solairaj, et al. [73] described certain

common techniques to detect key logger software, e.g. Anti-Hook techniques,

HoneyID, Spyware detection, bot detection, safe access to password-protected

accounts and the dendritic cell algorithm. The US Department of Homeland Security

conducted research to investigate the crimeware and discussed that crimeware is an

illegal action [74]. This research concluded that crimeware is a ubiquitous fact and

one of the online interactions. After installation of crimeware, it benefits attackers in

terms of denial-of-service extortion, click fraud, spamming and theft of confidential

data.

Chapter 2 – Data / Information Stealing / Leakage / Breaches

27

2.4 Steganography

Steganography is the art of writing a hidden message through a covert medium

where only the sender and the intended recipient know about the hidden message.

Unlike cryptography, steganography messages are hidden and undetectable through

human eyes. Essentially, it is not only the art of hiding data but also hiding related

facts. However, steganography has been widely used by hackers to leak the data or

steal information [75]. This strategy makes it very difficult to detect data leakage. The

following sub-sections discuss steganography in more detail. Steganography refers

to a technique for hiding secret data in other contents, which plays an important role

in modern cyber-attacks. In particular, it is used as an underlying technique by

malware to conceal their contents and/or command & control communication (C2)

channels.

2.4.1 Types of Steganography

Depending on the nature of a covert object, steganography can be categorised into

five types:

1. Text Steganography: This type of steganography involves modifying a text

layout based on rules such as using the nth character or altering white space

between words or lines [76]. Several methods are available for this type of

steganography that include linguistic, random and statistical methods.

2. Image Steganography: This type of steganography hides information behind an

image, i.e. message insertion may be encoded and every bit of the information in

the image is selectively embedded in the noisy areas to avert attention. The

message may also be randomly distributed in the image. Authors in one paper

[77] have presented image steganography to prevent data leakage in certain

scenarios.

3. Audio Steganography: The data in this type of steganography is embedded by

slightly altering the binary sequence of a sound file. This type of steganography is

more difficult than other media methods. It ranges from simple to complex

algorithms that insert information in the form of signal noise. There are different

Chapter 2 – Data / Information Stealing / Leakage / Breaches

28

categories of audio steganography used to hide the information into auditory data

such as least significant bit coding, echo coding, phase coding and spread

spectrum coding. These methods are different in implementation, covertness and

bandwidth. This is a more powerful method that uses principles of digital signal

processing.

4. Video Steganography: Video files are interlaced images and audio files where

the image and audio techniques apply to video files. A large amount of data can

be leaked using a steganography method, as small distortions in a video file are

often unobserved by humans.

5. Network/Protocol Steganography: This type refers to embedding information

within messages and network control protocols in network communication. In the

OSI layered network model, covert channels are used for steganography. Figure

2.1 shows how steganography can be implemented at different levels [78]. This

study also focuses on a similar domain, i.e. detection of network steganography.

Figure 2.1: Steganography at different levels of OSI Model (Source: [78])

Network steganography is increasingly being used by malware in today’s world to

facilitate data leakage. Authors in [79] discussed network steganography and

threw light on malicious purposes of attackers for data leakage using

Chapter 2 – Data / Information Stealing / Leakage / Breaches

29

steganography. Some steganography techniques and countermeasures are also

discussed in the paper.

2.4.2 Steganography Techniques

1. Spatial Domain Methods: This type of method is applicable to image and

video contents where secret data is embedded directly in the intensity of

pixels. The pixel value of an image is changed during the process of hiding

the data. The spatial domain methods can be categorised as follows:

a. Least Significant Bit Insertion: This is the simplest approach where the

Least Significant Bit (LSB) of a byte is replaced with a bit of a covert

message. The technique is useful for both audio and video

steganography and the result looks identical to the human eye.

b. BPCP: In this method, the segmentation of an image is used to

measure its complexity. The complexity is then used to determine a

noisy block that is then replaced with a binary pattern mapped from the

secret data to be transferred.

c. PVD: In this method, consecutive pixels are selected for embedding

covert data. The payload is determined by computing the difference

between two consecutive pixels.

2. Spread Spectrum Technique: In this method, covert data is spread over a

wide frequency of bandwidth. The ratio of signal to noise in every frequency

band is made small enough so that it becomes difficult to detect the presence

of the data.

3. Transform Domain Technique: This method of steganography uses

algorithms such as Discrete Fourier Transformation, Discrete Cosine

Transformation, Discrete Wavelet Transformation, Lossless or Reversible

Methods for hiding a message in the frequency domain.

4. Distortion Technique: In this technique, a secret message is stored by

distorting signals. A sequence of modifications is applied to an image by an

encoder. The corresponding decoder measures differences between the

original cover and the distorted cover to detect a sequence of modifications

and hence recover the secret message.

Chapter 2 – Data / Information Stealing / Leakage / Breaches

30

5. Masking and Filtering: Masking and filtering techniques are mostly applied

on 24 bit and greyscale images. Information is hidden in a way similar to a

watermark. Masking images entails changing the luminance of the masked

area. A small luminance change is less detectable thus averts unwanted

attention. Masking is more robust than LSB in the context of compression,

cropping and image processing.

2.5 TCP/IP-based Steganography

Steganography can be implemented in different fields of TCP/IP. However, in the

past, stenographic techniques failed in TCP because of the different probability

distributions of unmodified TCP/IP implementations [80]. In some cases, the

implementations of these protocols are outside the relevant specification as in

stenographic implementation. It is important to know the applicable standards and

implementation details. The upgraded versions of TCP/IP have extra scope for

stenographic coding as compared to the older versions. For example, RFC 1323 is

an extension of RFC 793 and RFC 791 and has additional header options to use for

stenographic purposes. However, the IP part still has limited scope due to its

properties. Figure 2.2 shows the structure of a TCP/IP header.

Chapter 2 – Data / Information Stealing / Leakage / Breaches

31

Figure 2.2: Basic IPv4 TCP/IP Header (Source: [78])

The further fields of the TCP/IP header are discussed below, which are used in

steganography [78]:

a) Type of service (ToS): It is the second 8 bits field in the IPv4 packet header.

The precedence field denotes the importance of the packet with three bits for

delay, throughput and reliability as shown below. Most networks do not use

these fields, so they can be used as a carrier for steganography [78].

However, it can be easily detected as the unused field is set to zero in almost

all operating systems.

7 6 5 4 3 2 1 0

Precedence Type of Service Unused (0)

Chapter 2 – Data / Information Stealing / Leakage / Breaches

32

b) IP flags: IP packets have two flags, Do Not Fragment (DF), and More

Fragments (MF). DF indicates that if the packet cannot be sent without being

fragmented, it should be discarded. MF shows 0 if the packet contains the last

fragment or has not been fragmented. The DF bit can be used for

stenographic signalling as mentioned in [81].

c) Fragment offset: IP fragment offset fields facilitate a packet receiver to

reorganize the fragmentation of the packet in the right order. This field can be

used for TCP/IP based steganography.

d) IP options: This field can also serve as a means for carrying stenographic

materials. However, since IP packets rarely contain “options”, their potential

for use in steganography is limited.

e) TCP timestamp: The TCP timestamp option enables a host to measure the

round trip time of a path, and also solves problems related to sequence

number wrap-around. The timestamp option consists of two 32 bit fields, TS

Value and TS Echo reply. Giffin, et al. [82] proposed a covert channel based

on the TCP timestamp.

f) Packet order: This field can also be used as a means for carrying hidden and

stenographic contents. However, since packets are very rarely reordered,

that is why this field is easily detectable when used for steganography.

g) Packet timing: A type of covert channel can be created by manipulating

timing between packets. These are termed as timing covert channels. Packet

timing can carry covert information.

h) TCP sequence number: The TCP sequence number is a 32-bit field used in

the TCP header. It supports features such as flow control and reliability,

provided by TCP. Each packet of data transmitted over a TCP stream is

assigned a unique sequence number. This field is one of the best possible

Chapter 2 – Data / Information Stealing / Leakage / Breaches

33

carriers of steganography, because of the random nature that this field

possesses and its size that is large enough to carry a big chunk of information

easily. However, the data transmission rate has to be chosen carefully to

avoid detection. ISNs are used which must not be easily guessable by those

who are not involved in the connection [83]. ISNs are generated in such a way

that they do not overlap in sequence number spaces. Similarly, if a connection

is in the TIME-WAIT state and ready to start again, the ISN for that tuple pair

should increase monotonically too.

The framework proposed in this thesis uses the ISN number. Therefore, it is

important to understand how it is generated and used. Rowland described a practical

implementation of steganography using TCP ISNs, named as covert TCP, in [84]

with further details discussed below.

ISNs are generated from different operating systems. The Linux 2.0 ISN producer

(shown in Figure 2.3) is based on RFC 1948 [83]. Linux is an open source operating

system designed for embedded servers and systems. It is based on a modular

design, which schedules applications and processes, handles network access and

oversees file systems and services. Linux 2.0 offers a superior terminal for

developing and experimenting new security solutions due to its openness that is

lacking in other operating systems such as Windows. Most existing security solutions

work on the Linux platform although they can be adapted to other operating systems

as well.

Figure 2.3: Linux 2.0 ISN generator (Source: [22])

Chapter 2 – Data / Information Stealing / Leakage / Breaches

34

It uses SHA-1 to hash a block of sixteen 32-bit words, including words 9–11 set to

the source and destination IP addresses and ports of a packet, and the other 13

words filled with a secret initialised during the computer boot process. Instead of

using the values predefined in the SHA-1 standard for the initial state, the first 5

words of the block are used. To obtain an ISN, the second word of the hash is

selected and the current time (in microseconds) added.

In terms of the importance of ISN values in detecting covert channels, different

studies [85] [22] discussed the behaviour of ISN random number generation in

different operating systems. This helps to find hidden patterns in random data.

2.6 Covert Channels

Covert channels are communication channels that are used to transfer sensitive or

private data between two parties covertly. The concept of the covert channel does

not lie in the data hiding but the hiding of the entire communication channel. Covert

channels are broadly divided into storage and timing covert channels. Storage covert

channels exploit access to system resources while timing covert channels exploit the

timing between sending and receiving packets. Various fields where such channels

can be designed are discussed further below.

2.6.1 Data Leakage through Covert Channels

It is understood that data leakage can be caused as a result of:

- Data leakage from actual payload where the payload of a TCP/IP stream is

extracted or listened to by two parties when they are communicating.

- Data leakage where actual payload is held on covert channels such as in the

TCP/IP packets header field. The payload held in covert channels is

extremely dangerous as leakage solutions mainly monitor the payload section

of a packet, not its header.

According to authors in [86], covert channels are described as a technique for

secretly communicating between two or more parties, assuming that the normal data

Chapter 2 – Data / Information Stealing / Leakage / Breaches

35

channel is under continuous surveillance due to low-level messages containers

modifications. In paper [87], the channels are divided into two main types:

1. Covert Storage and Timing Channels: A covert channel, which involves direct

or indirect writing to a storage location by one process followed by direct or

indirect reading by another process, is called a covert storage channel. A

covert timing channel involves one process signalling information to another

by modulating its system resources. This manipulation results in real-time

observations from the second process to receive the information.

2. Noisy and Noiseless Channels: A noiseless channel uses resources that are

exclusively available for two parties to conduct uninterrupted communication

between them. On the other hand, a noisy channel utilises shared resources,

so it is required to distinguish between data from a particular sender and other

data from other senders.

2.6.2 Application Layer as Covert Channels

In the TCP/IP stack, the top layer is called an application layer that is provided by a

software application, not the operating system. Any data exchange between a user

and the transport layer (the layer underneath the application layer) is performed via

the application layer. Since messages created at this level use the transport layer for

data delivery purposes, these high-level data streams are not altered by security

applications and hence have the highest susceptibility to covert channels hidden in

the messages. A message sent by Alice is guaranteed to reach Bob unaltered and

un-scanned. Additionally, in the cases where networks employ proxy servers, the

syntax of messages transferred remains unchanged, does not alter control fields or

data in a significant way, and allows the creation of noiseless covert channels.

Figure 2. and Figure 2. illustrated the structure of the TCP and IP header and

possible covert channel fields.

Chapter 2 – Data / Information Stealing / Leakage / Breaches

36

Figure 2.4: TCP Header Structure (Source: [45])

Figure 2.5: IP Header Structure (Source: [45])

According to [88, 89], there are five different methods for implementing a covert

channel with the application layer header as explained below:

1. Reordering of Fields

According to authors in [87], headers in the HTTP envelope change from

implementation to implementation. This variation could be used to encode a covert

payload. The concept of pattern variation is changed which allows the automatic

adoption of the generic hiding method without the re-implementation of the method

itself. Authors claimed that a pattern catalogue allows the researchers to modify and

Chapter 2 – Data / Information Stealing / Leakage / Breaches

37

extend the covert channel patterns collection in a moderated process. Figure 2.

shows HTTP header reordering.

Figure 2.6: HTTP Header Reordering (Source: [90])

2. Modification of Letter Cases

Fields in the protocol header are case insensitive [87, 91]. This means that the field

name case is ignored by the standard HTTP specification. Figure 2. shows the

encoded bits of the ASCII code in lower-case (binary ones) and upper-case (binary

zeros) letters.

Figure 2.7: Case modification resulting in encoded message (0x72) (R) (Source: [90])

3. Use of Optional Fields and Flags

Chapter 2 – Data / Information Stealing / Leakage / Breaches

38

Figure 2. shows a possible covert channel implementation where a wildcard in the

header indicates that any file type is allowed as a response, while a filtered list of

responses indicates an encoding. Here, a normal wildcard is considered as binary

zero, and filtered file types are considered as binary ones [87]. This is indicated with

red encircles in Figure 2..

Figure 2.8: Use of optional fields for covert communication (Source: [90])

4. Adding of New Fields

Figure 2. shows additional fields in a covert implementation. Most applications are

configured to ignore unrecognised headers and hence will treat the request and

response with a new field which is not there. In this covert implementation, the covert

payload is held in a new field [92].

Figure 2.9: Addition of new fields for covert communication (Source: [90])

5. Use of White Spacing Characters

Chapter 2 – Data / Information Stealing / Leakage / Breaches

39

Web browsers do not differentiate between one or more spaces separating HTTP

header values. Hence, by changing the number of white spaces, a covert channel

can be created. Figure 2. shows [SP] as binary zero and [HT] as binary one, making

a covert message as 01001000 which is equivalent to ASCII H [87].

Figure 2.10: White-spacing characters for introduction of encoded message (Source: [21, 90])

2.7 Summary

Chapter 2 presented the details of data leakage and the possible types of attacks.

The detailed discussion is presented based on the existing literature in the area of

covert communication using network protocols. After the detailed discussion, this

chapter describes data leakage attacks, the steganography background, its types

and techniques, including TCP/IP based steganography and its characteristics.

Covert channels and data leakage through them in computer network protocols are

also discussed. In the last section, data leakage prevention tools and technologies

are outlined to understand the scope and possibilities for designing more optimal

solutions. This chapter provides the background information on the thesis research

topic and lays down a foundation to conduct a more focused review of the research

area in Chapter 3 and subsequently the proposed research in the other chapters.

The next chapter will provide a critical review of the related work on existing data

leakage frameworks and their limitations and also set out necessary metrics for the

framework design.

40

Chapter 3 Related Works

3.1 Overview

This chapter discusses the related work on deep packet inspection and deep content

inspection for data leakage detection. Related algorithms are critically reviewed

based on the existing literature to measure the detection and prevention metrics of

data leakage through network protocols. Covert channels are also discussed in

terms of their involvement in the transport control protocols: User Datagram Protocol

(UDP), Hypertext Transfer Protocol (HTTP), Real-time Transport Protocol (RTP) and

Real-time Transport Control Protocol (RTCP). The findings from the review provide a

solid rationale for the development of the framework proposed in this thesis to detect

and prevent data leakage.

The main focus of our research is on a data leakage security weakness. Covert

channels are one of the attacks that transfer stolen information through networks.

These attacks occur over non-conventional channels known as covert channels. A

covert channel is exploited by a process to transfer the information which violates the

security policy [93]. This issue leads to security violation and loss of sensitive or

private data together with other losses such as reputation. To address this issue, the

existing data leakage monitoring techniques and tools have applied to TCP headers.

However, these tools and techniques have their limitations and are not able to detect

certain covert channels.

A literature review was conducted to identify the limitations of existing detection and

prevention techniques and find out research gaps. One of the limitations identified

from the literature review is that the existing solutions are unable to properly deal

with covert data in the header field of network data packets [94]. The accuracy and

reliability of deviation from norms in dynamic real-time TCP-based communication

are also assessed.

The data leakage prevention approaches are categorised into host-based and

network-based solutions [95]. Network-based solutions are used to scan the data

Chapter 3 – Related Works

41

traffic at network access points and examine the data traffic of various applications

while further filtering and blocking the inbound traffic that can cause potential leaks.

The solutions can also block access to URLs containing inappropriate content and

stop confidential data loss over IP network connections. These solutions block the

rules and prevent the data access. Although these solutions block the rules for data

access, it is believed that the real value of the solutions comes from their ability to

collate forensic information by providing a feature to track the data traffic [95]. On the

other hand, host-based solutions are applied at the endpoint, e.g. PCs, laptops and

other user devices. Host-based solutions are often based on data encryption on the

persistent store (when not in use), monitoring of host operations and setting up

security policies to restrict the transfer of sensitive data to a limited number of

authorised users. Host-based solutions are managed by centralised data security

policies, where the solutions can track, discover, notify and protect the data at rest.

These solutions can be used in an isolated manner or can be used to complement

each other.

Network-based data leakage and host-based data leakage solutions are used to

prevent data leakage at access points and host sides. The subsequent subsections

will discuss existing solutions to deep packet and content inspection and data

leakage detection as well as their advantages and limitations.

3.1.1 Deep Packet Inspection and Deep Content Inspection

Network-based data leakage detection is further complemented with host-based

approaches. These approaches focus on the analysis of un-encrypted network data

through a Deep Packet Inspection (DPI) approach [96]. The DPI solution inspects

every packet in order to check the occurrence of sensitive data as defined in a

sensitive data database [95]. This solution generates alerts when sensitive data is

found in outgoing data traffic from the network. The solution offers good data

leakage protection. However, it requires to store the sensitive data in plaintext in the

detection system. It is undesirable to hold the plaintext for comparison purposes as

the machine performing the comparison could be compromised, thus revealing all

the sensitive data. It also does not support the outsourcing of data leakage detection

Chapter 3 – Related Works

42

to a third party because it would learn the sensitive data [35]. It is noteworthy that

the data processing on data leakage detection consumes heavy computation power.

This leads to involving the outsource of the task to a third party. However, the

sensitive network data traffic and sensitive databases are in plaintext format, so the

data security is at risk for outsourcing [92, 95]. DPI checks network packets for

anomalies based on rules that operate on the layer 3/4 of the OSI stack, to pass,

block or raise alerts about the packets [96].

Another technique for data leakage prevention is Deep Content Inspection (DCI).

The DCI method keeps track of contents across multiple packets where signature

matching is needed across these packets. Signature matching is a technique for

organizing, retrieving, and navigating the software libraries. DCI analyses the

passing data based on rules that operate on the layer 7 of the OSI stack. Studies

[97, 98] mention various methods for content matching with their root in the field of

data mining. For instance, content matching at layer 7 can be achieved by holding

attributes such as keywords, regular expressions, file types, file sizes, senders and

recipients. Another DCI technique is machine learning such as a vector space

model. Vectors represent documents, and vector features represent their frequency.

These vectors are used to create probabilistic models based on decisions made on

the fly regarding leakage prevention. Table 3.1 illustrates differences between the

DCI and DPI techniques as well as their common attributes. Table 3.2 presents the

comparison of host and network-based data leakage prevention methods.

Attribute DCI DPI

OSI Stack
Layer

Layer 7 (Application) Layer 3 / 4 (Network / Transport)

Inspection

Ability to understand the
information in packets as it
works across multiple packets.

Ability to read packet headers in
order to read elements such as
sender, destination, port,
application type and other packet
level information.

Protection Data inspection Low level packet inspection

Prevention

Rule based analysis where
rules are based on data
keywords, file types, etc.
Also, a strict set of conditions is
in place (set by administrators)

Rules are based on packet
headers.

Chapter 3 – Related Works

43

with regard to the holding of
data on devices.

Known
leakage
causes

Malicious insider
loss of data due to failing of
data storage conditions.

Network attackers (generally
external).

Table 3.1: Difference between Deep Packet Inspection and Deep Content Inspection in the

context of common attributes.

Approach
Type

Prevention/Analysis
Method

Work By Issue

Host Based

Encrypt Data

All shared data
is encrypted and
decrypted by
users with
private keys.

Key exchange problem,
Trust between two parties,
Authentication and integrity
checking.

Policy based
restriction on shared
data

In order to
secure the data,
policies are
created on
shared folders
for protecting
the access.

Legal and policy
restrictions.

Monitoring Tools

Monitoring tools
are used to log
methods for
accessed data,
time, etc.

Lack of network visibility,
Balancing active and
passive network monitoring.

Network
Based

Deep Packet
Inspection (DPI)

DPI works by
inspecting
network traffic
for sensitive
data and
comparing it
against sensitive
data database. It
triggers alerts
when a match is
found between
the sensitive
data and
database.

 Works on plaintext
sensitive data and can be
easily read from network
packets.

 Data inspection
consumes more
processing power.

 Outsourcing it to a third
party is risky due to the
plaintext sensitive
network traffic and
database. Both sensitive
data and sensitive data
database can be
compromised.

Entropy Analysis or
Theoretic Analysis

This technique
is used to hide
information.

Process complexity, low
entropy data sources.

Table 3.2: Comparison of Host and Network based Data Leakage Prevention Methods

Chapter 3 – Related Works

44

3.1.2 Data Leakage Detection

To prevent the data leakage, authors in [99] formulated the data leakage prevention

problem as Partially Observable Markov Decision Processes. The model created

encodes a mechanism for monitoring an invisible recipient’s data. The technique is

called digital watermarking. The authors presented an optimal information sharing

strategy for data leakage and monitoring the malicious data on the recipient side.

The paper provides a test case where only one recipient either leaks all the received

data or no leakage data. Another test case considers a fuzzy recipient who leaks a

certain percentage of data that it receives. The final test case allows the sender to

share the data with a set of fuzzy recipients. The experimental results from these test

cases show the effects of different settings on the data leakage cost, fuzziness level

and trust of the sender on recipients. This model is tightly coupled with the

monitoring mechanism; the efficiency of the monitoring mechanism decides the

effectiveness of data leakage detection.

In [47, 100], the authors provided an introduction to leakage detection systems. The

specific case discussed in this study is a collection of evidence in case of data

leakage. The authors proposed the use of a strategy that includes the distribution of

data by a distributor to agents upon explicit or sample-based requests. The data

distribution includes a recording of the data which is given to agents, the creation of

fake objects that act as a watermark for forensic analysis in case of leakage, and

creation of a guilt module for finding out a guilty agent(s) when leakage occurs. The

authors also discussed the methods of watermarking used for embedding unique

objects in non-significant sections of data. They looked into relevant documents and

media and surveyed various associated watermarking methods. Through

experiments, the authors concluded that the distribution of fake objects along with an

old method of watermarking can provide security as a detection method.

Furthermore, this method can find guilty agents to assist in forensic analysis.

In [101, 102], the authors implemented a security analysis method for certifying the

security of an application by analysing its information flow by using a program in a

static state. The technique is based on a lattice model as described by [103] that

Chapter 3 – Related Works

45

guarantees that the application never leaks information to any insecure storage. In

[102], the technique is extended to include a method or procedure calls as well as

access to global variables of an application. The technique can be used as a guiding

model or a testbed for applications during their software development phase.

However, the authors did not discuss the case where an application is already

deployed in a corporate environment.

In [104], the authors used the strategy of honeypots for detection, identification and

gathering information about malicious senders in the context of data leakage. A

honeypot is a trap set to detect, deflect or in some cases counteract the attempts of

unauthorised usage of production systems. It appears to be part of a network but

remains isolated and protected. Its value lies in being probed, attacked and

compromised. Hence, honeypots have no production value and should not work with

any legitimate traffic or events. According to [104], the main difference between a

regular honeypot and the authors’ implementation is that the honeypot is inside a

corporate network rather than being invisible and it is openly advertised so that all

the network traffic goes through it. The authors have concluded that the honeypot

can positively contribute towards the early detection of data leakage.

Another approach to data leakage prevention is discussed in [105] where authors

proposed shadow execution. This means that two instances of the same application

run but with different initialisation strategies. One of them is public with access to the

Internet, while the other is private with no access to the Internet. The public copy is

initialised with different inputs and restrictions, whereas the private copy is initialised

with actual user data. The results obtained from the public copy are used by the

private copy in order to successfully communicate over the network while ensuring

that no data leakage occurs.

Statistical techniques are the ones involving data capturing followed by the

measurement of deviation from expected stochastic behaviour, i.e. they are

appropriate for the cases where observations are not reproducible exactly. Other

measurements include the audit of records, categorisation of various activities,

amount of activity and also system resource usage. A deviation is calculated by

Chapter 3 – Related Works

46

comparing a current result to a pre-known/calculated stochastic expectation. If the

measure is outside a postulated threshold, the result is categorised as a

failure/leakage activity. There are other approaches that link a failure to the amount

of irregularity for the data under observation, which is considered as an outlier if it is

not within a postulated threshold such as guilt model. In [47], the authors discussed

a guilt model in detail and explained with an instance where, upon the distribution of

a data set (T) by the distributor to agents, the distributor discovers that a subset (S)

of T is leaked. A target (t) is found in the possession of S. Since agents U1 to Un are

in the possession of T, each of them is effectively suspected. However, a set (U) of

agents may argue that they are innocent and S is obtained by t through other means,

for instance guessing or from publicly available data. In this case, the goal is to

estimate the likelihood/probability that S came from U rather than from other

sources. Clearly, the bigger the S, the more difficult for U to argue that the data is

created from publicly available sources. Conversely, the smaller the S and rarer the

object in S, the more difficult for U to argue that these are not involved in the

leakage. So the goal is not only to find evidence that U is involved in the leakage, but

also which one of U is more likely to be the leaker. Hence, Ui is guilty if it contributes

to one or more objects to target t. This guilt event is denoted by Gi for agent Ui and

the event that agent Ui is guilty of leaked set S is expressed by Gi|S. Thus the

objective is to calculate the probability of P(Gi|S), i.e. the probability that agent Ui is

guilty, given evidence S.

Although the guilt model presents a solution to identifying a possible agent(s) which

caused data leakage. It does not provide a facility to prevent data leakage in the first

place. Also, the model lacks the ability to completely prevent data leakage.

3.2 Detection Algorithms in Network Protocols

This section covers the existing research work on network covert channel detection

for different protocols.

Chapter 3 – Related Works

47

3.2.1 Covert Channels in Internet Protocol

Internet Protocol (IP) works within the TCP/IP protocol to provide the encapsulation

of segments received from the transport layer with the IP header and ensures its

delivery to the next layer using IP addresses from one endpoint to another endpoint

over the Internet. IP types fall into two forms including version 4 (IPv4) and version 6

(IPv6). The following literature summarizes covert channels within the IP, alongside

different strategies used to achieve steganography.

Whenever attackers attack, the main task of traffic normalizers and protocol

scrubbers is to eliminate the ambiguities that may be found in the traffic stream. The

authors in [106] described how active wardens, or traffic normalizers, perform the

following tasks one by one:

 Modifying the incoming/outgoing packets

 Modifying reserved fields to zero

 Setting all the padding to zero

Such traffic normalizers or active wardens are parts of end hosts over the network.

Traffic normalizers also use the header fields for steganography sometimes, setting

them to zero or rewriting according to different situations. The Time to Live (TTL)

field is usually eliminated by the active wardens and set the same for all the packets

in the flow. The authors in [107] used Jitterbug, a type of keyboard, to exfiltrate the

typed data. It is done by putting some kind of device between the keyboard and the

victim machine. Each keyboard press passes the code to transfer a packet over the

network, while the delays between key presses are considered as covert timing

channels. The Jitterbug keyboard encodes binary 0 and 1 values. When 0 is added,

the delay is multiplied by a window value w, whereas for 1 the delay is multiplied by

w/2. Timing channels are known to be the most commonly used covert channel for

steganography. The authors in [37] used an improved timing channel that is based

on replay attacks, in which saved real IPDs (Inter-Packet Delays) are used as

samples. The samples are divided into two groups: binary 1 and binary 0. 1 is sent

for replaying IPDs randomly and 0 for replaying the groups. Timing channels with

reduced robustness are a new attraction in the steganography field. It also

Chapter 3 – Related Works

48

overcomes the challenges like volatile network traffic and imprecise timekeeping

mechanisms. This approach also works well within dynamic network protocols.

The authors in [108] proposed a new method that is based on a packet timing

channel. It takes inter-packet times of any normal traffic and IPDs of continuous

packets at inter-transmission times: T1; T2; … Tn, and then masks the message to

be shared by performing one-time pad encryption. This method provides better

synchronization using a key hashed with random numbers that make it stealthier for

encoding covert bits into the least significant bits of IPDs. This improved approach

does not only give a lower false-positive rate but also shows the capacity increase by

hundreds of bits per second depending on the network jitter.

In [109, 110], a new covert channel is introduced in which the authors used the

traceroute command to record the IP header’s record route option. It presents a

protection strategy by steganalysis and uses a sniffing module to help in hiding a

message in the valid IP header’s record route option. To keep the selection

procedure of IP packets, a hidden algorithm is generated to choose them randomly.

This approach’s covert memory option makes it unique from all the previous

contributions to steganography techniques.

Allix [111] proposed a new approach for a timing covert channel where an attacker

has two control machines A and B with each having a connection to a common

server C. If machine A sends a single packet, then machine B sends two packets,

which is interpreted as value 0. Conversely, if machine A sends two packets, then

machine B sends one, which is interpreted as value 1. The study further showed

that, when complex detection techniques like neural network or SVM are used, the

approach gives fewer false positives.

Another model-based timing covert channel [112] mimics the statistical properties

and contains a filter, an analyser, an encoder and a transmitter. It takes real traffic

behaviour into account through the filter and passes the IPDs to the next module for

analysis. Then an appropriate distribution function is chosen for encoding. Finally,

covert packets are transferred. In [113, 114], detection by fragmentation is

introduced in which the different statistical numbers of fragments, fragments sizes,

rates or unrelated presences are used for testbeds. It also uses a known method for

Chapter 3 – Related Works

49

the elimination of original IP packets by re-fragmenting. PMTUD (Path MTU

Discovery) and PLPMTUD (Packetization Layer Path MTU Discovery) are also used.

Experiments proved that the proposed method works well for the covert

communication containing a 100MB file with 1MB of hidden data. If the

communication of the hidden data takes 13 minutes, then the risk of being detected

is very low.

The researchers in [115] showed a novel reordering approach that is robust and

resilient in nature to external reordering. It also has built-in error detection and

correction capabilities that are achieved by assigning random symbols to each

different permutation of consecutive packets and making subsets of permutations.

To make code words, an innate reordering scheme is used. This method shows an

error rate of only 0.1% because of its external reordering effects. Coding efficiency is

checked by sending 2 bits per packet to increase the capacity level. In [116], a new

class strategy of mitigating timing channels is introduced. The key point in this

approach is the future availability of the packets which are predicted. So, a mitigator

is able to detect the number of packets leaked. It uses an adaptive mechanism to

generate epoch-based mitigators. Black box mitigation is used for timing channel

changes; it is capable of finding out timing channel bounds. The main contribution of

this approach is that it gives the information of control flow through storage channels.

While in [117], Huffman coding is used to improve timing channel performance by

taking robustness, accuracy, capacity and covertness into account, as the

performance is an important part of covert communication no matter whether it is

considered by the attacker side or the victim side. In this approach, to increase the

capacity and covertness, the redundancy of letters is used. Also certain parameters

are investigated for experimental results. If covert communication takes place at a

rate of 58.35 bps while the RTT is estimated at 35ms, the accuracy rate increases by

250%. Even if N-ary is kept as low as 2, the rate can be raised by 50.7% to

25.12bps.

Potential risks of covert communication are practically proven in [118] showing how

the high bandwidth of memory buses and redesigning of timing channels help in the

conduction of covert communication. Cloud computing is considered as a robust

Chapter 3 – Related Works

50

data transmission domain. To prove that the proposed solution in [118] works well, a

testbed is created in the Amazon EC2 cloud and attacks are sent from a host

machine. Even high bandwidth with the reliable transmission of covert channel

attacks is shown as possible intake. In addition, the author in [119] described a new

packet length based approach in which a covert channel uses a secret sharing

scheme for exploiting a covert medium of communication. Different security

analysis mechanisms are used to overcome the downsides of the previous

approaches. For example, a new covert path is discovered on VoLTE (Voice over

LTE) that is used for covert communication by postponing or extending its silence

period [36]. The silence period is considered as a normal phenomenon for voice

communication and its suspicion is quite undetectable. To increase the robustness,

the Gray code along with the silence periods is employed against all noise channels

regardless of whether they are intended or unintended. Experiments were made on

the VoLTE traffic to find out the effectiveness of covert channels in terms of voice

quality, robustness and detectability. This approach outperforms in robustness

against channel jitter.

In [120], the authors proposed a model based on generic detection to prevent covert

channel communication in networks. This model is based on a supervised machine

learning approach where data sets are generated and applied on IP, TCP and DNS

protocols. After various experiments, this study revealed that SVM is optimal and

effective for detecting the covert channels in the TCP/IP protocol suite. Authors also

pointed out that SVM has not got sufficient results against the DNS protocol. It is

observed that a decision tree works well on DNS, but it is not feasible to detect new

attack vectors, especially when attacks are vector masked

Table 3.3 provides a summary of IP based covert channels strategies.

 Author Year Strategy

Zander, et al. [106] 2006 Active wardens are used to change TTL (Time to live)
values. Covert communication is held by varying the
TTL field values in IP headers in the traffic
normalization process.

Shah, et al. [107] 2006 A keyboard device JitterBug is introduced. This
device is placed between a victim and an attacker’s

Chapter 3 – Related Works

51

communication server, and for every key stroke a
secret message is delivered.

Cabuk, et al. [121] 2006 A timing channel based on replay attack is improved
by dividing a hidden text in two groups of IPDs 0 and
1. One group of IPDs sends binary 0, while the other
sends binary 1.

Trabelsi, et al. [109,
110]

2007 A covert channel is proposed and implemented, in
which the use of the "traceroute" command and IP
header’s option of Record routes are taken into
account to perform hidden communication.

 Allix [111] 2007 The count of replies while having a conversation
between two endpoints on the Internet is kept as a
threshold and considered as 0 or 1 to deliver covert
communication.

Gianvecchio, et al.
[112]

2008 This approach uses 4 modules to generate covert
communication, named as filter, analyser, encoder
and transmitter that work step by step to bend an
original message with a hidden message.

Mazurczyk and
Szczypiorski [113],
[114]

2009 A new potential covert communication method is
introduced for dealing with oversized IP packets: IP
fragmentation, PMTUD (Path MTU Discovery) and
PLPMTUD (Packetization Layer Path MTU
Discovery). It is proposed for both IPv4 and IPv6.

El-Atawy and Al-Shaer
[115]

2009 Reordering messages in some special manner is
used to send out hidden information.

Askarov, et al. [116] 2010 Black box mitigation is used for timing channel
changes, which is capable of finding out timing
channel bounds.

Wu, et al. [117] 2012 Huffman coding is used to improve timing channel
performance by taking robustness, accuracy, capacity
and covertness into account.

Wu, et al. [118] 2015 Potential risks of covert communication in cloud
computing are practically proven, showing how the
high bandwidth of memory buses and redesigning of
timing channels help in the conduction of covert
communication.

Lu, et al. [119] 2016 A packet length-based approach is proposed in
which a covert channel uses a secret sharing
scheme to exploit a covert medium for
communication.

 Zhang, et al. [36] 2018 A new covert path is discovered on VoLTE (Voice
over LTE) where covert communication is modulated
by postponing or extending silence periods.

Ayub, et al. [120] 2019 This genetic approach is used to detect network
storage covert channels by supervised machine
learning classification techniques. SVM is used for
covert channel detection in transport and network

Chapter 3 – Related Works

52

layers and achieved better results in the application
layer.

Table 3.3: Summary of IP based Covert Channel Approaches

3.2.2 Covert Channels in Transport Control Protocol

TCP provides an end-to-end connection-oriented service. Chakinala, et al. [122]

introduced a reordering scheme in which a timing covert channel is created by

reordering TCP segments and making use of the Sequence Number field. The

mathematical model used performs an information-theoretic formula to prove that the

Nash equilibrium exists. New distance metrics are created using a permutation

strategy to perform error correction through codes. Their results show a good

correlation between simulated and theoretical findings. The effects of these

combinatorial bounds are checked on various topologies to prove the best results as

compared to the other approaches. In [123], the Cloak named software is developed

and implemented to help in mimicking TCP-based flow packets by ten different

encoding and decoding techniques for the development of covert communication. It

uses Enumerative Combinatorics for encoding a hidden message into different TCP

flows while only a fixed number of TCP packets are used. The former faces decoding

problems which occur due to inherent channels timing. Cloak uses a two-step

detection algorithm and is considered the best solution but in a controlled

environment. Moreover, Luo, et al. [124] proposed a storage covert channel

strategy by modifying the Acknowledge Sequence Number field. It does not make

amendments directly to the IP or TCP header files unlike the previous approaches. A

new covert channel which encodes covert messages into the TCP acknowledgments

(ACKs) is called CLACK. It uses a partial encoding technology to hide covert

messages. Its variable network delay between packets and packet reordering

technique make it resilient in nature. CLACK is implemented and validated on a

testbed.

In [125], the authors introduced ACKLeaks as a combinatorial approach for a covert

channel in which covert messages are embedded with TCP ACK type packets from

TCP connections (single or multiple). ACKLeaks uses a combinatorial approach to

evade content-based detection. It is possible for the same ACKLeaks to exploit the

Chapter 3 – Related Works

53

existing connections of TCP. ACKLeaks is also augmented with another approach

for WebLeaks. Both approaches are considered the best for information leakage.

This is confirmed through extensive experiments for the evaluation of their

performance. In [126], another approach is implemented for a timing covert channel

using TCP-Script, which embeds a secret message in a normal TCP packet flow,

and then TCP feedbacks are exploited. To increase the decoding accuracy, TCP

reliability and feedback services are used. The secret message is coded as an array

of integers, where each integer is pre-agreed between the encoders and decoders.

All the integers are encoded to a burst with TCP data segments one by one, with an

encoding period. The two adjacent data packets are separated with an appropriate

time interval. This timing covert channel is robust in nature and works against

network jitter, packet loss and reordering, but its capacity is very low and easy to get

deducted from normal traffic, which makes this approach weaker.

In [127, 128], the authors applied a RSTEG (Retransmission Steganography)

method to TCP packets in which all TCP retransmission mechanisms are used: RTO

(Retransmission Timeout), FR/R (Fast Retransmit/Recovery) and SACK (Selective

ACK). The main idea behind this is not that it invokes the retransmission intentionally

on receiving successful TCP segments but that the steganogram is sent as a

retransmitted segment in place of user data over the payload field. To avoid

detection, RSTEG is kept near the normal traffic to make the retransmission look

intentional. Hash functions are used to make covert segments. The only limitation

this method faces is that normal networks are not used for the retransmissions.

The authors in [129] showed that 10 fold techniques are used for encoding

messages covertly into TCP-based communication; N packets of X flows allow

different combinations to be checked to ensure the accuracy. It is an active detection

method. It helps in mimicking TCP-based flow packets by issuing ten different

encoding decoding techniques for developing covert communication. It uses

Enumerative Combinatorics for encoding a hidden message into different TCP flows

while only a fixed number of TCP packets are used. The authors in [130]

investigated the IP Identification header fields of IP. They examined various IP

header fields and their potential for being exploited in the context of the transmission

Chapter 3 – Related Works

54

of secret information. The paper presents a software implementation that performs

detailed network data packet analysis. It summarises potential detection and

prevention techniques discussed in the aforementioned sections.

Table 3.4 illustrates the covert channels in TCP and their strategies.

Author Year Strategy

Chakinala,
et al. [122]

2006 A TCP sequencing packets ordering channel strategy is
used for covert communication based on mathematical
techniques like eigenvalues, permuters and a distance
bounded model to achieve message hiding.

Luo, et al.
[123]

2007 Cloak named software is developed and implemented that
helps in mimicking TCP-based flow packets by issuing ten
different encoding decoding techniques for developing
covert communication.

Luo, et al.
[125]

2008 An approach is used for a TCP-based timing channel, where
TCPScript is used to address the shortcomings of encoding
data. TCPScript helps in embedding messages to be shared
into TCP data bursts while TCPpsilas feedback shows that
the chosen technique works well to enhance accuracy.

Luo, et al.
[126]

2009 A technique for covertly sending messages between two
communication endpoints is presented. The TCP packet
ACK flag is used for the purpose. A software tool named
CLACK is developed to perform the ACK-based encoding
before the covert communication happens.

Mazurczyk,
et al. [127],
[128]

2010 RESTG (Retransmission Steganography) for TCP is used
where a retransmission packet does not reply with the
original packet but carries the steganogram.

Luo, et al.
[129]

2011 A combinatorial approach is designed in which WebLeaks
and ACKLeak are used as two covert channels that are
capable of leaking the information of a web session through
the acknowledgment traffic. 10 fold techniques are used for
encoding messages covertly into TCP-based
communication; N packets of X flows allow different
combinations to be checked to ensure the accuracy.

Table 3.4: Summary of related work with regard to covert channels in TCP

Chapter 3 – Related Works

55

3.2.3 Covert Channels in UDP

An approach to covert channels in UDP creates a covert message space by looking

into the datagram for the presence or absence of the Checksum field. This field is

trusted as an option in UDP. The TCP based approaches introduced earlier can

possibly be applied to the UDP Checksum field. UDP has 3 fields [130] where secret

data can be covertly hidden, which are Source address, Length and Checksum.

The authors in [131] proposed covert channel tunnelling based on format

transforming encryption for TCP traffic by using the protected static protocol. This

allows TCP traffic to be converted into UDP traffic using a hidden Markov model.

This model uses a protocol proxy to avoid side-channel analysis. The proposed

framework includes a facility for the conversion from TCP traffic into UDP traffic,

observation-based format transforming encryption (FTE) and a detection

mechanism.

Table 3.5 shows the UDP based covert channels and their strategies.

Author Year Strategy

Thyer [130] 2008 UDP packets allow embedding or updating to 3 options in
UPD headers for covert communication, which are known as
Source Address, Length and Checksum.

Oakley, et
al. [131]

2020 This technique is based on tunnelling and FTE to covert
TCP traffic into UDP traffic.

Table 3.5: Summary of UDP based Covert channels

3.2.4 Covert Channels in HTTP

In [90], the authors introduced an approach to hiding data in HTTP packets. HTTP

treats all resultant linear or white spaces or characters (optional line feed [CLRF],

spaces [SP] and tabs [HT]) in the header in exactly the same way as it treats a single

space character. For example, [HT] is considered as binary 1 and [SP] as binary 0.

As HTTP headers never come in any specific order it is possible to embed hidden

data in the header’s ordering. Even the header’s case insensitivity has the

advantage of using any capitalization as a header value, which could be used to

Chapter 3 – Related Works

56

make a covert channel. Van Horenbeeck [132] presented a tool named Wondjina

used to create a tunnel by using the HTTP Entity Tag (ETag) that allows one client to

check whether it is locally in a cached current copy. Even a Content-MD5 header is

able to transfer up to 128 bits of packet data per HTTP message. Similarly, the

approach used in [133] uses the last approach along with an Access-Control-Allow-

Origin approach and Content-Location header information. According to [87, 134],

the detection for this type of approach checks network communication for

compliance with a standard specification used. Any abnormalities and variations to

the standard are considered as leakage. For example, Figure 3.1 shows that

transfer-coding and content-length fields cannot be sent together. In HTTP, the

header chunked transfer encoding is a data transfer mechanism in which data is sent

in chunks from source to destination. In such cases, the transfer encoding is used

instead of the content-length as the total size of the content is dynamically set and it

is unknown.

Table 3.6 shows the HTTP based covert channel detection solutions.

Figure 3.1: Transfer-coding and Content-Length fields cannot appear together (Source: [90])

Author Year Strategy

Kwecka [90] 2006 The capitalization of words is used in the HTTP header
as a covert channel to hide information.

 Van
Horenbeeck
[132]

2006 An approach is introduced in which covert data is hidden
in HTTP/2.

Duncan and 2010 HTTP header fields are used to hide information to cover
the HTTP network traffic by making selected arbitrary

Chapter 3 – Related Works

57

Martina [133] files compressed and encrypted using a stream cipher.

Table 3.6: Summary of HTTP based covert channel detection solutions

3.2.5 Covert Channels in RTP and RTCP

Paper [135] shows how to create new covert channels using RTP (Real-Time

Protocol) and RTCP (Real Transmission Control Protocol) along with delayed audio

packet steganography, where 8-bits Padding fields are used. The RTP extension

header of a variable length generates random initial values of 16-bits Sequence

Numbers along with the 32-bits Timestamp field in the very first RTP network packet.

The experiment result shows that covert data can be sent unidirectionally at the

speed of 1.3mbs with 96% of the covert bandwidth value.

In [136], another approach is introduced, which uses a SIP (Session Initiation

Protocol)/SDP (Session Description Protocol) strategy to create a covert channel

during the signalling phase of a VoIP (Voice over IP) call. SIP/SDP has fewer

utilized or free fields that always use the network-based steganography. This

approach allows 2,000 unidirectional bits to transfer over the covert channel. The

VoIP exchange of information is very low as compared to other covert channels in

different protocols.

Paper [137] shows a technique used to illustrate how timing channels use timing

features for covert communication. It is introduced using the same timing channels

but unlike the previous approaches that are constructed on a single transport layer

protocol, this technique is based on both RTP and RTCP protocols at the application

layer. The features like Run Length Code and Multi Zero Code are used to enhance

the robustness and unpredictability features of covert channels.

According to [138], the detection for this type of approach to covert channels

compares messages with signatures of known covert channels, which are stored in a

database. For example, Figure 3.2 shows the detection of a header as the Apache

server only allows the generation of message headers with the upper case. Table

3.7 shows the covert channels in RTP and RTCP and their strategies.

Chapter 3 – Related Works

58

Figure 3.2: Header detection of message headers with the upper case (Source: [90])

Author Year Strategy

Mazurczyk and
Szczypiorski
[135]

2008 Two strategies are used. The first includes applying all
the IP, TCP and UDP approaches to hiding data with
RTP (Real-Time Protocol) and RTCP (Real Time Control
Protocol). The second uses LACK (Lost Audio Packets
Steganography) to achieve the capability of hybrid
storage timing covert channels for data hiding.

Mazurczyk and
Szczypiorski
[136]

2008 An approach is introduced in which a SIP (Session
Initiation Protocol) strategy is used to create covert
channels during the signalling phase of a VoIP (Voice
over IP) call.

Lizhi, et al.
[137]

2012 This technique illustrates how timing channels use timing
features for covert communication. It is introduced using
the same timing channels but unlike the previous
approaches constructed on a single transport layer
protocol, this technique is based on both RTP and RTCP
protocols at the application layer. The features like Run
Length Code and Multi Zero Code are used to enhance
the robustness and unpredictability features of covert
channels.

Table 3.7: Summary of covert channels in RTP and RTCP

3.2.6 Data Leakage Analysis

To determine from forensic logs if any unauthorised data is leaked, the following

analysis methods are used [139-141]:

 Univariate Analysis: In this type of analysis, measurements are obtained for an

individual variable or an attribute to measure the overall irregularity. Such

analysis methods are often utilised when the value of a specific variable or one

variable is involved. They are also used as a prerequisite to ensure that the

Chapter 3 – Related Works

59

collected data series is stationary so that correlated patterns within the data can

be obtained.

 Multivariate Analysis: In this case, measurements are obtained for more than one

variable. Techniques such as Principal Component Analysis, Multiple Regression

Analysis or Partial Least Squares are used to identify prevailing patterns in the

data that are categorised as trends and hence depict outliers that are being

monitored. This type of analysis has known advantages to reduce the probability

of the Type I error and the capability of decomposing correlated measurements

into new sets of uncorrelated measurements that are beneficial for pattern

recognition. Additionally, they provide better accuracy in the context of monitoring

as leakages can be simultaneous across header fields.

 Time-Based Reference: In aggregation with other statistical analysis techniques,

a time-based reference analysis method is used to observe the chronology of

events. It is an important form of analysis where the header of a packet has no

noticeable leakage; however the leakage is based on the delay of packets being

delivered to their destination [121, 142].

3.2.6.1 Covert Storage Channel Detection Techniques

Misuse detection is relevant in the context of covert storage channels and their

detection is normally performed at the boundary of the network, e.g. firewalls or by

intrusion detection systems. Usually, these systems are fully capable of eliminating

any covert data on storage channels by the use of traffic normalising devices [143].

For instance, a firewall on the perimeter network could be configured to clear

optional header fields of protocols when it is aware that those fields/features are not

supported in the infrastructure (for example, the Type of Service (TOS) field in IP

headers). Other such cases include the Identifier (ID) field on an IP packet that is

used to identify the packet and re-assemble the original message at a destination.

The field can be manipulated in such a way that the first byte represents the ID

legibly, while the second byte acts as a covert bit carrier [144]. Similarly, it is possible

to detect a covert storage channel that uses Do-Not-Fragment (DF) and More

Chapter 3 – Related Works

60

Fragment (MF) to transmit covert bits. If a detection mechanism is in place, then the

presence of covert communication can be informed by the MF field set to 1 even

when the last fragment of the last message (original message) is less than the

packet size and hence should be set to zero.

To detect an ISN value being used as a covert storage channel, an ISN generation

model is proposed that predicts an ISN value in a TCP session based on the

previous value of ISN generated by the operating system used [85, 145, 146]. It is

difficult to generate unpredictable numbers using a computer, as pseudo random

number generation functions are fixed algorithms that repeat a number and produce

the same result on a different machine that can be used to predict output values.

Even if a random number generator function is not known, the generation of the

same sequence of numbers based on limited system internal states can be used to

create a specific algorithm. Through the use of a neural network, a model can be

prepared that can compare a predicted ISN value to the actual value and compute a

difference. A large difference can suggest that the value is not set by the original

stack and hence is a covert value [147]. As discussed earlier, a Markov model is a

technique that is proposed for checking TCP protocol packets to ensure that a

packet follows the given rules, and in case it does not do so, the presence of a

covert communication is indicated [148]. The known TCP states are defined as

states of the Markov model. For various protocols, different models can be

generated and used together with the Kullback-Leiblei (KL) [149] method for

checking if a data set presents a divergence from valid transmission. KL divergence

helps to measure the loss of information when approximation is made.

Zhai, et al. [148] analysed various redundancies in the TCP protocol and proposed a

model called TCP Markov Model (TMM) for various application scenarios. The

method is different from SVM or Neural Network for the detection of covert channels.

This method does not get trained using abnormal data and instead uses actual

normal data for discovering potential covertness. Their experiments have shown a

good detection performance, but it has been found that if the embedding probability

is less than 0.2, the model becomes unstable, i.e. the detection probability

decreases as the divergence of normal and abnormal data becomes low.

Chapter 3 – Related Works

61

As mentioned earlier, covert channels can be created using a 1-bit-per-packet noisy

covert channel using the Time to Live (TTL) field as suggested in [106, 150].

Zander, et al. [106] proposed improved 1-bit-per-packet covert channel encoding in

the TTL field by analysing the initial TTL values and normal TTL occurring in the

network. The use of two different starting values of TTL in packets has been

suggested in [106], where a high value is deemed as binary 1 and a low value as

binary 0. Their technique offers high detection using normal initial TTL and needs to

be deployed as an active warden on the edge or perimeter of the network similar to

the case in [150], but this technique suffers from low performance about detection.

One of various techniques that have been used for compromising active wardens to

continue scanning and normalizing the network traffic flow is that of protocol

switching. Protocol Switching Covert Channels (PSCCs) transfer covert information

by sending network packets with different selected protocols. Wendzel and Zander

[151] offered the first detection method for detecting PSCCs. The algorithm

distinguishes between normal and covert traffic by studying the maximum rate of

PSCC traffic. It is observed that using C4.5 (Decision Tree) low and high rates of

PSCCs can be detected. The detection accuracy is 98 to 99% for channels with >= 4

bits/second, but with channels of only 1bit/second the accuracy is 96%. However,

with 99% accuracy, the false positive rate of 1% could be problematic as most traffic

is marked as normal traffic, i.e. covert traffic goes through undetected.

For covert storage channel detection, another path outside rule-based techniques is

AI-based. AI techniques offer the ability to learn the behaviours of various attack

vectors and consequently build rules for detecting the attacks or even similar attacks.

One of the first data mining techniques is applied to IPv6 in [152] and it uses Fuzzy

Logic. The fuzzy logic-based detection is applied to the Network Time Protocol

(NTP) protocol and the results show that the system can accurately detect covert

data with high accuracy and a low false positive rate of about 2%. However, the

experimental data sources are different which may have biased data sets. An a-priori

algorithm is used to detect router header misuse attacks with a detection rate of 72%

in [153]. The low detection rate could be attributed to the choice of features selected

for creating the initial model. These features include host IP, Host Port, TCP Flag

Chapter 3 – Related Works

62

and State, Protocol and Requested Service. Saad, et al. [154] also used a fuzzy

Logic-based approach to detect ICMPv6 Flooding Attack with high accuracy and a

low root mean square error (0.26). The approach evaluated 2,000 records of normal

and abnormal traffic using 1,000 to 1,500 pings as flooding ICMPv6 rates. However,

the method is unable to detect DoS or DDoS attacks.

Zulkiflee, et al. [155] introduced SVM to detect IPv6 attacks where the features

selected for creating the model included Time Interval, Source IP, Source Port,

Destination Port and Protocol. For experimentation [155] authors used real network

traffic with the average accuracy of 99.95%. Salih, et al. [156] used the Naïve Bayes

algorithm to detect IPv6 covert channels. Their research work used ten features for

the classification stage that included Traffic Class, Flow Label, Hop Limit, Source

Addresses, Hop Limit, Next Header, Payload Length, ICMPv6 Type, UCMPv6 Code,

ICMPv6 Payload and Reserve Bit. The detection accuracy reported is 94.55%

proving the effectiveness of the Naïve Bayes algorithm. The algorithm is suitable for

linear data and is unable to extract patterns from random/pseudo random data sets

as they tend to be non-linear/chaotic. The problem with this type of approach is that

it identifies a set of features that include non-qualified ones to be used in attack

detection. One of these features is packet capturing time that leads to the

misclassification of the packet. During model creation, the classifier considers time

intervals between packets as a relevant feature to indicate an attack that effectively

means if the intervals are outside the specified intervals, the packets are considered

as being used for covert communication. This leads to a lot of false positives.

Another method of covert data communication using storage channels is by the use

of a packet length. In [157] the authors proposed a scheme for embedding covert

data by modulating the length of link layer frames. The method is applied to 256

frame lengths to embed covert bytes. The frame length distribution is random and

does not imitate the normal network traffic flow. Another scheme is proposed by Yao

and Zhang [158] where the authors used the length of a packet to transfer a covert

message. The authors created a covert channel in which a sender and a receiver

shared a periodically updated matrix with elements representing unique unsorted

packet lengths. The sender, using the bits hidden in the message, determines the

Chapter 3 – Related Works

63

matrix row and randomly chooses a packet length from that row. The receiver finds

the gained packet length in the matrix and again constructs the bit of the message

according to the row number. In both schemes, the sender and receiver share a

secret matrix with the cells representing unique lengths. However, as the packet

length distribution of the covert channel is not equal to the packet length distribution

of normal traffic, this type of covert channel is discoverable. Nair, et al. [159]

proposed a detector that analyses the length distribution of datagrams for an

application. The data is collected for a sufficiently long time to study the packet

length distribution. It is observed that in the time series of IP datagrams, the nature

of packet lengths is randomly distributed. As a result of the random distribution, they

claim that none of the existing techniques can be used, hence they proposed the

creation of a two-dimensional feature space that is used to train a steganalytic

classifier, where a packet length vector is determined for a datagram stream to train

the classifier. The Fischer Liner Discriminant (FLD) is used to reduce the

dimensional space to a single dimension followed by a Linear Discriminant Analysis

(LDA) classifier to train a single dimension feature. The experiments conducted with

a moderate payload have shown very high accuracy.

Chow, et al. [160] used Kullback-Leibler divergence also known as relative entropy.

Unlike the previous work on the computation of an irregularity index based on the

Mahalanobis distance, they used the difference between two sets of probability

distributions: a theoretical model for the expectation of normal traffic and a real

model using the frequency distribution of TCP flags. During detection, the TCP flag

frequency distribution of network traffic is computed for each unique IP pair. For the

evaluation of accuracy and efficiency, they used real regular data traffic and covert

storage channel messages using various encoding schemes. The relative entropy

revealed the dissimilarity of a different frequency distribution as compared to a

normal profile. It is noticed that when TCP flags are uniformly distributed, the

detection of the covert storage channel is simpler but the vice versa can be

challenging. Also, the normal profile requires adaptation and possible better

granularity for various behaviours.

Chapter 3 – Related Works

64

The approach to detecting payload tunnels, e.g. HTTP tunnelling using behaviour

profile, was first introduced by Pack, et al. [161]. The behaviour profile is created

using several metrics that include the average packet size, ratio of large and small

packets, pattern of changes in the packet size, number of packets sent and received,

and duration of connection between a host and a destination. Similarly to [160], if the

behaviour diverges from normal HTTP behaviour, it is attributed as an HTTP tunnel,

indicating that a covert storage channel is used. A tool is developed by Borders and

Prakash [162] for detecting outbound HTTP tunnels using a similar approach to

[161]. The tool created a training model by analysing HTTP traffic over some time.

Once the training is complete, it is then able to detect any deviations from the normal

profile and present results in metrics such as the request size, request irregularity,

time between requests, time of the data and outbound bandwidth usage.

Tumoian and Anikeev [147] provided methods that can automatically create ISN

generation models for an operating system. They created and trained the model

based on nightly runs in order to maintain the system with the ever changing ISN

generation principle. Their investigations indicate the detection of covert channels

with acyclic connections. They used the NUSHU source code for the creation of a

covert channel. NUSHU creates a covert channel by sensing the establishment of a

connection and then replacing the kernel generated ISN with a covert ISN. The delta

value between the kernel generated ISN and NUSHSU’s covert ISN is saved before

sending the packet. When a packet containing ACK returns, NUSHU calculates the

original ACK by getting the covert ACK and adding delta to it.

Along with the above, a different dimension about the detection of anomalies is the

sheer amount of anomalous data or the amount of data being generated in the

network. The existing detection systems are not able to process the data in a perfect

way. Furthermore, as traditional methods are solely based on either anomaly

detection or deep packet inspection, it is often subjected to raising false alarms such

as in [163, 164] where the authors suggested a collaborative method for mitigation

by employing alerting correlation and mitigation in multistage workflow that is

supported by software defined networking (SDN). SDN is responsible for decoupling

the data plane from the control plane and hence able to support access to data on

Chapter 3 – Related Works

65

different network layers and change data flows in the network. In [164], the authors

presented a multistage covert storage channel detection and mitigation model that

takes advantage of SDN. Various elements of SDN, e.g. a monitor, a correlator and

a controller, play separate yet complementary roles that help in processing of big

data. Their experiment in a simulated network indicated a low false positive rate.

However, the experiment did not accommodate or simulate an increase in sequence

numbers. Yao and Zhang [158] also used SDN to access critical information about

network flows and improved the efficiency and accuracy of detection and mitigation.

In this case, the effectiveness is evaluated on a realistic testbed GENI (Global

Environment of Network Innovations) as opposed to its predecessors. The overall

results are not different from its counterparts.

3.2.6.2 Covert Storage Channel Detection in Cloud Storage

Recent work is extended from the covert storage channel realms to cloud storage

services. Hovhannisyan, et al. [165] exposed some vulnerability in de-duplication

services offered on cloud based storage, which can be used as a covert channel.

The data de-duplication is a mechanism for reducing storage cost by the elimination

of redundant data, hence each data chunk is identified with a unique value that is

used for comparing and locating duplicate files on the server [166]. Rather than

storing multiple copies of a file, the server only stores the original file. To detect de-

duplication, there are tools such as transmission time detection in which files already

on the server are smaller than the ones not on the server, so the bandwidth

consumption would be higher for the files that need to be synchronised with those on

the server. In a single-bit covert channel, the sender program resides on a victim’s

machine and the receiver program on an attacking machine. If the sender has two

files denoted as 0 and 1 and wants to send file 1 to the receiver, then it will send file

1 to the cloud and the receiver will receive it. If the sender wants to send file 0 to the

receiver, it uploads file 0 to the cloud. If the receiver finds out that file 1 is being

uploaded faster than file 0, then it is possible to infer that de-duplication has occurred

and file 1 sent by the sender, i.e. indicating that 1 is transmitted. Similarly, the

receiver can infer the sending of 0. The authors also proposed a multiple bit per file

method in which a single file can be represented by multiple bits. The coding scheme

Chapter 3 – Related Works

66

is tested extensively on different cloud storage systems. Caviglione, et al. [167]

analysed various schemes that can be used as covert channels in personal cloud

storage services which include volumes-based, throttle-based, timing and storage-

based, type-based, timestamp-based, uploading of new files, renaming files,

movement of files, size modulation, alteration of file, type of device and modification

of folder. As with typical protocol-based covert messaging, in this context headers

are changed too. They implemented two methods and tested their performance in

terms of bandwidth and robustness. The results indicate the possibility of the

communication channel being used as a covert channel. To mitigate the risk, they

proposed energy-based and design-based techniques. The research is still in early

stages and promises countermeasures in the future.

3.2.6.3 Covert Storage Channel Detection in Wearables

Denney, et al. [168] worked on a new covert storage channel in the context of

wearables. According to the authors, a covert sender application can create a

notification using a varied range of notification ID numbers as a coded message. A

covert receiver application can read an incoming notification and interpret the

encoded covert message. Using the notification ID, the actual text can be disguised

to increase secrecy. The authors demonstrated the functionality and feasibility of the

covert channel and are working on methods to block such a covert message sending

technique.

On the other side of the spectrum is the usage of covert storage channels for

sending secure data. Singh at al. proposed an approach that uses covert

communication to enhance Vehicular Ad-hoc Networks (VANETs) security [169]. The

model proposed uses a covert storage channel to communicate secure data while

unimportant data is transmitted via an overt channel. It is noteworthy, however, that

the suggestion of using the covert channel for useful purposes does not change the

fact that the covert channels are dangerous ongoing threats that will need to be

closed.

Chapter 3 – Related Works

67

3.2.6.4 Covert Timing Channel Detection Techniques

In [170, 171], the authors discussed the use of delay time between packets for data

encoding as a channel for sending covert information. Figure 3.3 shows an example

of a high-level design diagram of a covert timing channel. Effectively, this means that

attackers do not need to create a new set of data packets and use the time between

packets to encode data. In this method, there is no secret information embedded in a

header or payload and it is covert timing that is used for encoding messages. The

authors proposed a methodology for detecting covert timing channels based on how

closely a source comes to achieve a given channel capacity. They used the

statistical analysis of inter-packet delays for classifying between regular traffic and

the traffic that communicates through the modulation of inter-packet delays [172].

Figure 3.3: High level design diagram of covert timing channel (Source: [173])

As mentioned earlier, the disruptions of covert timing channels add random delays to

network traffic, and reduce the channel time capacity and system performance. To

disrupt covert timing channels, the authors in [174-176] dedicated their effort

towards the design of systems. In [177, 178], the authors eliminated covert timing

channels in their system design. More recent research works investigated the

design, detection and countermeasures of covert timing channels [121, 179, 180].

Several design issues related to covert timing channels are discussed in [121],

including one of the first developments to defend against IP covert timing channels.

In their scenario, a machine is compromised and the defensive perimeter

(represented by a firewall or intrusion detection system) monitors the

Chapter 3 – Related Works

68

communications outside the corporate network. It is noteworthy here that a covert

timing channel can be used to pass information through the defensive edge

perimeter undetected. The authors developed a detection mechanism by the

identification of the regularity of inter-transmission times. In their design, a message

sender and a receiver agree upon the length of a transmission interval as ω

milliseconds (ms). To signal bit value ‘1’, the sender transmits a packet in the middle

of the time interval, and to signal bit value ‘0’, the sender remains silent during the

interval. This scheme achieves a rate of 16.67 bit/s with a 2%-character decoding

error (ω = 60 ms) in an experimental setting with the average Round Trip Time (RTT)

between the sender and receiver being 31.5 ms. Their coding scheme limits the data

rate achievable for the timing channel and assumes that the sender and receiver

have synchronised time. A constant shift in delay and jitter can have a cascade

effect that causes subsequent bits to be decoded incorrectly. This method is also

used in [126], where the authors have expanded the scheme specifically for TCP

packets. The major advantage of the expanded scheme is that when a packet is lost,

a bit is flipped but the synchronisation remains unaffected. Further, it is noted that

when the pattern of the bits is uniform, the distribution of inter-packet delays is close

to the Geometric distribution. This will enhance the channel capacity and decoding

accuracy.

In [107], the authors built a device called Keyboard JitterBug that slowly leaks

information being typed over the network. JitterBug is an example of a passive

covert timing channel, so no new traffic is created to transmit information. Figure 3.4

shows a scenario where JitterBug can be used.

Figure 3.4: Keyboard JitterBug scenario (Source: [180])

Chapter 3 – Related Works

69

In this scenario, JitterBug creates small delays in key-presses to affect the inter-

packet delays of a networked application. It transmits a 1 bit by increasing an inter-

packet delay or a value that is modulus of 𝜔 milliseconds (ms) and transmits a 0 bit

by increasing an inter-packet delay to a value that is modulus of [
𝜔

2
] ms. It is noted

that when ω is small, the distribution of JitterBug traffic is very similar to normal

(legitimate) network traffic. Also, for avoiding patterns in inter-packet delays being

multiples of 𝜔 and [
ω

2
], a random sequence 𝑠𝑖 is subtracted from original inter-packet

delays before the modulus operation can be carried out. To improve the

performance, they used a 4-bit to 1-keypress encoding scheme. As the timing

channel rate is tightly bound to human input and is very low, it can be detected only

by a sophisticated detection algorithm such as the one in [180].

Broadly, there are two classes of detection tests that are used in the implementation

of countermeasures for protection against covert timing channels, i.e. shape tests

and regularity tests. In shape tests, the shape of traffic is described using its mean,

variance and distribution (first-order statistics). In regularity tests, the regularity of

traffic is described using correlations in the data (second-order statistics) and other

such statistics measures.

Peng, et al. [181] presented that the Kolmogorov–Smirnov test (KS-Test) is effective

for watermarked inter-packet delays in the form of a covert timing channel, which is

also discussed in [182]. The watermarked inter-packet delays are shown to have the

sum of normal and uniform distributions. The KS-Test can be used to determine if a

certain sample comes from an appropriate distribution. In the KS-Test, the distance

between the test sample and the training set represents legitimate or illegitimate

behaviour. If the test score is small, it shows that the sample is close to legitimate

behaviour. If the test score is large, then it indicates the possible occurrence of a

covert timing channel. The KS-Test is not dependent upon a specific distribution (it

is non-parametric and distribution free), thus it applies to various types of traffic (with

different distributions).

Chapter 3 – Related Works

70

In [121, 183], the authors presented a method for detecting a covert timing channel

through regularity. This detection determines whether or not the variance of inter-

packet delays is relatively constant. The premise is that in most network traffic

cases, the variance of inter-packet delays changes over time, whereas in the case of

covert timing channels, the variance of inter-packet delays remains relatively

constant, assuming that the encoding scheme does not change.

In the regularity test, the standard deviation of inter-packet delays is measured. If the

sample has a low regularity score, then it indicates that the sample is highly regular,

signalling the possibility of a covert timing channel. In the regularity test, a sample is

separated into sets of ω inter-packet delays and then for each set, its standard

deviation is computed. This method is used to detect the network covert timing

channels and increase the bandwidth of the covert channel.

In [180], the authors introduced a new entropy-based approach that can be used for

various covert timing channels. The authors observed that the creation of a covert

timing channel has an effect on the entropy of the original process, which means a

change in the process entropy provides a clue for detection. By entropy, they mean a

measure of complexity or regularity that can be measured using the average entropy

per random variable. The authors used this observation, made use of entropy and

corrected conditional entropy for the detection of covert timing channels. In their

experiments they can detect the covert timing channels with abnormal regularity

using the corrected conditional entropy. Their experiments also show that using

entropy they can detect various covert timing channels including those with a

distribution close to that of legitimate traffic (for example JitterBug), which could not

be detected using the previous detection methods.

The method used in [121] for protection against covert timing channels is referred to

as ε-similarity. In ε-similarity, the measure of the proportion of similar inter-packet

delays is monitored. Clusters are prepared based on the centroid of similar packet

delays at multiple time intervals. Although this technique has the advantage of

limited access to an application where inter-packet delays are expected to be large

(namely in [37]), it would not serve as a technique for generic purposes as offered by

Chapter 3 – Related Works

71

[180, 183]. Another statistical measure is introduced in [179], where a mean-max

ratio is computed to test bimodal or multimodal distributions that could be introduced

by binary or multi-symbol covert channels. The assumption in [179] is that traffic with

inter-packet delays follows a normal distribution and hence mean-max ratio ≈ 1,

while legitimate traffic does not follow a normal distribution.

In [184], the authors proposed the usage of multiple signal processing techniques to

distinguish adversaries from benign workloads. They suggested that when two

processes are communicating and creating conflict misses, they are taking cache

spaces from each other and thus can be negatively correlated. By filtering the non-

negative correlated part of these processes, the repetitiveness of cache occupancy

can be traced, leading to cache timing channel detection.

Various detection techniques for covert channels have various costs in terms of

processing power and sensitivity in their execution. Protocol-based detection is

simple to implement and has a low processing power requirement. However, it can

only detect badly written implementations. Signature-based detection is more

sensitive and will raise notifications when protocol implementation signatures do not

match. The processing requirement for signature-based detection is higher than

protocol-based detection. However, it is not as high as the behaviour-based

detection of malicious packets, which is most sensitive and efficient but has a very

high false positive rate.

According to [185, 186], the detection techniques are standardised and a mandatory

field is used to hold a payload. For instance, the TCP header’s sequence number

field gets a random ISN and the SYN flag is set to 1 to initiate communication with a

server. Upon the completion of a three-way handshake, the sequence number is

incremented by the length of data and so on until the FIN flag is set to close the

connection. To use an ISN as a message, its sender can create the ISN to be the

message that needs transmitting. Such a case of using a message as an ISN is

impossible to detect. It can be prevented by the use of proxy servers. However, most

corporate networks do not use proxy servers and instead reside behind a firewall.

This is a problem that needs addressing.

Chapter 3 – Related Works

72

3.3 Comparison of Existing Techniques

Based on the existing literature [30-32], covert channel detection techniques are

categorised into pattern, machine learning and statistics-based approaches. The

pattern-based approaches have a common denominator of matching a captured

packet header against a known pattern to identify if the packet has covert data in the

header [33]. These techniques provide the high accuracy and speed of detection but

suffer inability to cope with new threat vectors, incomplete data sets and high

maintenance requirements. The machine learning-based approaches [30-32, 34] use

a set of rules created from complex data sets for classification. These methods

overcome some shortcomings of the pattern-based approaches, improve the ability

to cope with incomplete data sets and further offer insights into latent information

within the data sets. However, the benefits are offset by the shortcomings of large

system footprints, low speed of detection and high maintenance requirements.

Finally, the statistical approaches [35] measure deviations from expected stochastic

behaviour, which are capable of handling incomplete data sets. Additionally, these

approaches offer the speed of detection and ability to detect new threat vectors. The

main shortcoming of these approaches is the possibility of false positive results.

Table 3.8 provides an analysis summary of these covert channel detection

techniques together with their benefits and limitations.

Techniques
Concept
Definition

Sub-
techniques

Benefits Limitations

Pattern-
Based

Scoring of
captured data
using
matching
patterns

N/A High
accuracy

 High speed
of detection

 Easy
implementati
on

 Unable to
cope with
new threats

 Partially
autonomous

 High
maintenance
requirement

Machine
Learning-
Based

Classification
of complex
data sets
using training
models based
on partially

1. Partially
observable
Markov
decision
process

2. Clustering

 Tolerant of
incomplete
data sets

 Ability to
handle
complex

 Low speed of
detection

 Have a large
system
footprint

 High

Chapter 3 – Related Works

73

complete data
sets

and outlier
detection

3. 3. Bayesian
technique

multivariate
data sets

 Ability to
assess and
learn from
data

 Offer latent
insights

maintenance
requirement

Statistical Methods that
measure
deviations
from expected
stochastic
behavior, i.e.
they are
suitable for the
cases where
observations
are not exactly
reproducible

1. Guilt model
2. Univariate

methods

3. Multivariate
methods

4. Time based
reference
methods

 High
accuracy

 High speed
of detection

 Ability to
detect new
threats

 No initial
requirement
for a highly
trained
stochastic
model for
defining
system
boundaries

 Offer
deviation-
based
scoring

 Difficult to
create
thresholds

 Possibility for
the Type I
and Type II
errors

Table 3.8: Summary of data leakage detection techniques

3.4 Tools and Technologies

Data Leakage Prevention (DLP) solutions are designed to detect data breach

incidents/cases in a timely fashion [187]. They involve the identification, monitoring

and protection of three specific groups of data:

1. Data At Rest (also sometimes referred to as Risk) (DAR) – DAR refers to the

data that is recorded and stored in filing systems, persistent storages

(databases) or other mediums [97]. The data can be considered secure only if

the following conditions are met:

Chapter 3 – Related Works

74

a. Encryption has been applied to the medium where data is stored. This

encryption is required to be strong so that any brute force attack can be

averted.

b. The key that is used to decrypt the data, is not stored on the same

medium and not present on other nodes associated with the medium.

The key is random and of a sufficient length required by the strong

encryption algorithm used.

(Failing the above conditions, the data in question is susceptible to

leakage and hence vulnerable).

2. Data in Use (DIU) – DIU refers to the data that is not in the DAR state, i.e. it is

being used on a node and hence could be in memory, cache, etc. [97]. Such

data can be considered secure only if the following conditions are met:

a. Access to the memory/cache is controlled. For instance, the process

that adds the data to a cache is the only process that can access that

part of the cache.

b. No matter how the process ends, e.g. termination of the process tree or

even shutdown of the computer, the data cannot be retrieved from the

memory or cache other than by going back to the DAR state.

3. Data In Motion (DIM) – DIM refers to the data that is transferred between two

nodes on a network [97, 98]. Such data can be considered secure only if the

following conditions are met:

a. Both receiver and source nodes are capable of protecting the data to

the level as mentioned in the above two data groups.

b. The communication between the nodes is identified (the user is

known), authenticated (the user’s identity is confirmed using a

password, etc.), authorised (the user is allowed to access the data in

question) and private (eavesdropping is not possible).

Considering the enormity of the threat of data leakage, some researchers have

considered the matter of detection and leakage. The existing research is mainly

categorised into content and behaviour-based methods.

Chapter 3 – Related Works

75

The content-based approach includes rule and classifier-based methods. A rule-

based method offers various rules that are defined as the words and terms that can

appear in data. When used to protect against information leakage, these rules

determine the confidentiality level of the terms appearing in the data to inform

whether an alert need to be raised. Various research papers [188-191] have

discussed this approach, including commercial products from Symantec

(https://www.symantec.com/products).

The classifier based methods consist of various classification and machine learning

techniques such as Support Vector Machine (SVM) [192, 193] and naïve Bayes

[190, 194]. In this case, the data is represented as vectors with the terms and their

frequencies being their features. These vectors are used to create a learning

set/training model for the probabilistic classification of the data in the network to

determine if it is being leaked or not [34].

The behaviour-based approach for the detection and prevention of data leakage

emphasises anomalies in behaviour. The anomalies can be in certain

communications or throughout their organisation. Existing studies have proposed the

use of decision trees to categorise illegitimate traffic.

However, the aforementioned approaches fail to block leakage in the case where

part of the data being shared is already published and only a small part of the data is

marked for confidentiality. The reason for the failure to detect such leakage could be

the following:

- Rule-based systems are binary in nature and hence too rigid. They tend to

suffer from high false positive rates. In statistics, when performing multiple

comparisons, a false positive ratio is the probability of falsely rejecting the null

hypothesis for a particular test. The false positive rate is used to measure

accuracy for a test where the result of packets containing covert data is

presented with a degree of threshold probability. The false positive

rate is calculated as FP/FP+TN, where FP is the number of false

positives and TN is the number of true negatives. Organisations set rule-

https://www.symantec.com/products

Chapter 3 – Related Works

76

based systems with high thresholds to reduce the false positive detection. It is

due to these high false positives that rule-based systems are not very

common commercially.

- Classifiers such as SVM and naïve Bayes also fail to detect the leakage, as

these are statistical approaches. All statistical systems work on most

significant features when creating training models.

- Behaviour-based models are not used in such cases as information is sent to

an intended recipient and the majority of information is published.

In the past 19 years, research and development in the area of network

steganography have expanded, resulting in many techniques and tools being

produced. Table 3.9 shows a list of the most cited tools [195], followed by their brief

descriptions.

Tool Year Description

hCovert 2005 Covert channel using HTTP GET requests between

webservers

VoVoIP 2007 Embedding data in PCM voice traffic exchanges

SteganRTP 2007 Uses RTP of VoIP as payload medium

Gary-World

Team’s

2008 Covert channel projects using TCP and IP headers

[88]

Steganography

Studio

2009 Training suite on network steganography tradecraft

NetCross 2010 Utilizes the DNS protocol to establish covert comm.

OpenPuff 2011 Multiprotocol embedding toolkit

SoCat 2013 Network relay transfer between two independent

data channels

Table 3.9: Network Steganography Tools and Techniques [88]

hCOVERT: It is a steganography communication tool used to create a covert

channel using an HTTP GET request to convey its message to a webserver and

webserver log parsing to retrieve the message. This tool can send and receive

messages [http://druid.caughq.org/]

http://druid.caughq.org/

Chapter 3 – Related Works

77

VoVoIP: The Voice over Voice over IP tool is a proof of concept attack which

demonstrates a new type of VoIP threat, a VoIP covert channel. With VoVoIP, a

hidden conversation can be embedded and further compressed into regular PCM-

based voice traffic (i.e. G.711 codec) [http://voipcc.gtisc.gatech.edu/].

SteganRTP: It is a steganography tool able to establish a full-duplex steganography

data transfer protocol utilizing Real-time Transfer Protocol (RTP) packet payloads as

the covert medium [196].

Steganography Studio: This is a tool to learn, use and analyse key steganography

algorithms. It implements several algorithms highly configurable with a variety of

filters. It can be downloaded from: http://stegstudio.sourceforge.net/.

NetCross: It is a tunnelling software tool particularly useful in restricted (read

firewalled) network environments, which is able to establish IP tunnels exploiting

Domain Name Resolution requests/responses. The current implementation is quite

unstable and mostly intended for testing and research purposes

[https://sourceforge.net/projects/netcross/].

OpenPuff: This is a professional new steganography tool that supports many carrier

formats for images, audio, video, flash-Adobe and Windows executables authored by

Cosimo Oliboni [https://embeddedsw.net/OpenPuff_Steganography_Home.html]:

 Images (BMP, JPG, PCX, PNG, TGA)

 Audio (AIFF, MP3, NEXT/SUN, WAV)

 Video (3GP, MP4, MPG, VOB)

 Flash-Adobe (FLV, SWF, PD

SOCAT: It is a multipurpose relay (SOcket CAT) and command-line based utility that

establishes two bidirectional byte streams and transfers data between them. The life

cycle of a socat instance typically consists of four phases.

 In the init phase, the command-line options are parsed and logging is

initialized.

http://voipcc.gtisc.gatech.edu/
http://stegstudio.sourceforge.net/
https://sourceforge.net/projects/netcross/
https://embeddedsw.net/OpenPuff_Steganography_Home.html

Chapter 3 – Related Works

78

 During the open phase, socat opens the first address and then the

second address.

 In the transfer phase, socat watches both streams' read and write file

descriptors via select (). When data is available on one side and can be

written to the other side, socat reads it, performs newline character

conversions if required, and writes the data to the write file descriptor of

the other stream. It then continues waiting for more data in both

directions.

 When one of the streams reaches the end, the closing phase begins.

Based on the literature review in the previous sections, it can be concluded that

existing solutions do not meet new threat vectors and incomplete data sets and incur

high maintenance requirements of a covert data leakage monitoring framework.

Furthermore, it is identified that the most common weakness of existing approaches

is incapability to detect new attack vectors, particularly when the attack vectors are

masked, i.e. the data leakage is via some fields in network packet headers where

data can be non-linear [107, 120, 175].

Pattern and machine learning-based methods have failed in the cases where there is

no fixed pattern and classification of non-linear data as discussed in [107, 176].

Statistical approaches do offer some degree of effectiveness, but again similar to

machine learning-based approaches, they have failed due to the chaotic nature of

non-linear data leaked via network packet headers [78, 177]. Overall, this is difficult

for existing techniques to differentiate between normal data and the data masked to

appear as normal data. Additionally, it is observed that various techniques proposed

in the literature fail to cope with the diversity of fields in the TCP header. Due to this

inability, they are not suitable for managing new unknown threats [176].

3.5 Summary

This chapter has presented the related work on deep packet inspection and deep

content inspection. Existing data leakage approaches and available detection

techniques for network protocols have been discussed based on the existing

Chapter 3 – Related Works

79

literature to establish the effectiveness of the current data leakage detection and

prevention. More specifically, covert channels have been analysed in terms of their

involvement in the transport control protocols including UDP, HTTP, RTP and RTCP.

Existing detection techniques have been evaluated with regard to their strengths and

weaknesses. The findings from the review confirm that a novel framework is required

in order to rectify the weaknesses of the existing techniques to more effectively

detect data leakage through covert channels in TCP packet headers.

80

Chapter 4 Covert Data Monitoring
Framework and Statistical Detection
Model

4.1 Overview

This chapter presents the detail of a proposed covert data monitoring framework for

TCP header fields involving network steganography. This includes a high-level

overview of the framework and its components. The monitoring and detection

phases of the framework are then described, including a process used to overcome

the limitations of existing approaches, an effective and efficient outlier monitoring

method for covert data detection, and an algorithm used to create and maintain

thresholds for the quantification of outliers.

4.2 Proposed Covert Data Monitoring and Detection Framework

It is clear from the previous chapters that the existing approaches lack the capability

to guard against covert data leakage within the realms of network-based

communication. Therefore, there is a need for a more capable covert data

monitoring solution that can cope with the challenges and uncertainty presented by

the chaotic nature of data in a complex network communication environment. In

particular, a novel scheme is required to maintain thresholds for non-linear chaotic

random natured data, and a viable approach is needed to analyse irregularity in an

accurate and durable way to handle a tolerable timeframe.

To address the above need, a novel covert data monitoring framework is proposed

here to specifically monitor complex non-linear chaotic random dynamic data with a

degree of uncertainty. It focuses mainly on protection against data leakage over

covert channels. The proposed framework also focuses on the detection of both

deliberate and covert data leakage and endeavours to notify the detected incidents

to relevant authorised parties. The proposed framework uses statistical measures to

detect covert data leakages more efficiently with adaptable threshold values.

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

81

The framework is a hybrid based on various components that operate and reside on

the hosts protected against data leakage. There is a degree of collaboration between

various host components in order to ensure that the framework’s threshold profiler

remains updated autonomously. Furthermore, it is designed as a self-contained

solution with a small system footprint, while ensuring that its detection speed

remains high and the results remain effective. The framework uses a statistical

approach for monitoring, detection and decision-making. The framework resides on

the top of an operating system and has the capability to obtain the data from the

network layer and utilise operating system functions such as notifications as shown

in Figure 4.1.

The proposed framework operates by monitoring incoming network data in real-time

and comparing it with the threshold profiles managed by the threshold profiler

component. The threshold profiles are designed specifically to cope with dynamic

non-linear chaotic random data and they are calculated using a novel threshold

calculation/adaptation algorithm. It is by comparing the real-time data against the

threshold values that a small modal change in header field values can indicate a

leakage, which also takes a small amount of time. The framework is designed to

refine the threshold profiles periodically using a threshold adaptation algorithm. This

adaptation allows the framework to evolve and also ensures that unknown data

leakage strategies and attacks can be combated.

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

82

Figure 4.1: High Level architecture of the proposed covert data monitoring framework

The framework is so distinct where not all deviation scores derived by the decision-

maker component are flagged as data leakage incidents but instead, these are

further analysed using a novel approach to the quantification of skewed results,

which informs the probability of data leakage. The process uses an approach to

moving average for decision making about data leakage, which helps to increase the

level of accuracy and reduce the likelihood of the Type I and Type II errors.

As part of the proposed framework, a simple scenario is assumed where a

target/victim machine or any single machine in the network of any size is infected

with malware which establishes an external covert link using TCP, collects

confidential files, divides them into small pieces and blends them into normal

Operating System

Data
Logger

Analysis and Monitoring
Components

Threshold Profiler and
Adaption

Monitoring

Training
Data

Chaotic
Data

Correlator

Decision Maker

Notifier

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

83

network traffic for transmission to a malicious recipient. It is also assumed that the

proposed framework is installed at the external link of the network.

4.3 Covert Data Detection Framework Design

Figure 4.2: Framework components and interoperations

Before explaining the details of various techniques involved in the proposed covert

data-monitoring framework, it is essential to understand various components of the

framework itself. This section explains the overall design of the framework by

referring to Figure 4.2 that illustrates its components and interoperations for covert

data leakage detection. These components are explained below:

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

84

1. Network Data Capturing: This component is responsible for collecting different

protocol data, e.g. TCP/IP packets. It collects all packets irrespective of the

protocol used and then filters them to TCP ones. Once the packets are collected

and filtered, their header values are selected, including Initial Sequence Number

(ISN), Reserved, Options, Padding, Type of Service, Flags (e.g. URG, ECE and

ECN) and Fragment Offset with their details given in Table 4.1.

Field Name Description of Field

Sequence Number This field is used to set a number for each TCP packet
so that the TCP stream can be sequenced properly.

Acknowledgement
Number

Upon receiving a packet, this field is set in a reply to
indicate that the packet is received successfully.

Data Offset This field indicates the length of a TCP header and
points to where the data part of the TCP packet
begins.

Flags The following describes the function of the flags when
the field is set to 1:
CWR: Sending host responded in the congestion
control mechanism.
ECE: ECN – Echo
URG: Urgent Pointer field is used.
ACK: Acknowledgement field is valid.
PSH: Segment requests a push.
RST: Reset of the connection.
SYN: Synchronization.
FIN: No more data from the sender.

Window Size of the sender’s receive window.

Checksum Indication to check if the header is damaged.

Urgent Pointer First urgent data byte in the packet.

Options Various TCP options.

Data Upper layer information.

Table 4.1: TCP header value illustration

The data is collected using tools such as WinDump [197] that provides

functionality for filtering out various fields of the header. For example,

extractingISN provides packets with ISNs indicated by the SYN flag set to 1. The

captured packets provide all the data needed by the Analysis Components, e.g.

unused header bit fields, modification of header fields and header fields where

random numbers are required.

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

85

2. Analysis Components: The purpose for this set of components is to offer

different types of analysis that can be applied to captured-network data. The

components are enumerated as follows:

a. Randomness Monitoring Component: In TCP/IP communication, TCP

sequence numbers are used to coordinate the transmission and receiving

of data reliably. The SYN flag when set to 1 indicates that a new ISN has

to be created. When SYN is clear, the accumulated sequence number of

the first data bytes of the packet for a given session is indicated. The

sequence number in the TCP header comprises a random initial number

that is used for the communication between two network nodes. It is

mandatory and has a maximum value of 232 bits. To ensure the integrity of

the TCP/IP connection, every stream is assigned a unique random

sequence number. This is done so that attackers may not be able to

perform blind spoofing (a practice where ISN can be guessed) and change

the data integrity of a packet. However, these random unique sequence

numbers can be generated out of certain data, which can be used as ISNs

to make the sequence number field in the TCP header as a covert channel

to cause data leakage through unconventional methods. The purpose of

this component is to provide features for checking the randomness of the

TCP header ISN field to prevent ISN-spoofing attacks using the following

subcomponents:

i. ISN: The purpose of this subcomponent is to extract ISNs from the

packets collected. Its embedding dimension is equal to the number

of dimensions used to create an ISN threshold. A delayed

coordinate method is used to compute those dimensions and a

vector representing an ISN. This component has been implemented

using two different methods, first-order differential equation and

discrete legendary polynomial.

ii. Feature and Variance Calculator: The purpose of this component is

to create a feature matrix by calculating the distances between a

given vector and every other vector. This is followed by a statistical

calculation of variance within the population of training vectors.

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

86

iii. ISN Threshold: A threshold value is computed in order to create a

boundary for anomaly detection.

iv. Classifier: The purpose of this subcomponent is to use the ISN

threshold and a given vector to determine whether the vector is an

outlier or within the normal population.

b. Header Flag Set-up Component: Several TCP/IP header fields are

reserved for the future use or remain unused during the whole

communication process, e.g. Reserved, Options and Type of Service.

These fields can be used as holders for encoded secret data. Overall there

are 64 possible combinations for a 6-bit flag field out of which 29 are valid

and others remain invalid [198]. For example, an Urgent Pointer field (a

16-bit) in the TCP header becomes redundant when the URG flag is not

set [199]. Similarly, Fisk, et al. [200] identified an RST flag for data hiding.

Zhao et al. [45] indicated that when IP packets are fragmented, Fragment

Offset informs a receiving machine wherein a particular fragment of the

overall message can be located. However, when DF (Do not Fragment)

Flag is set, Fragment Offset can be used for sending secret data. The

purpose of this component is to provide features so that invalid header

flags can be identified using the following subcomponents:

i. Packet Header Filter: The purpose of this subcomponent is to filter

the header part of a packet for analysis. The packet consists of a

header and a payload. The solution proposed in this thesis only

focuses on headers for covert communication.

ii. Valid Header Signatures: This subcomponent is a persistent store

for valid header signatures against which the filtered header

packets are compared.

iii. Comparator for Indicating Invalid Headers: The purpose of this

subcomponent is to compare collected headers against the valid

header signature database.

The leakage analysis using the two different components is conducted at the

packet level, i.e. using a time-delay method (where it employs KS-Test or

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

87

Regularity Test techniques for measuring dispersion), an initial sequence

number randomness method (where it employs a phase space reconstruction

technique for finding random number outliers) and a flag setting method

(where it employs a technique for finding valid flag settings).

3. Notification Module: The purpose of this module is to raise an alert(s) when a

data leakage case is detected. The alerts are logged with a responsible set of

users notified using a mail plugin.

The framework design described above is a generic representation of how the

various components fit together to form a complete unit for data leakage detection.

4.4 Covert Data Monitoring Framework Operation at Runtime

This section provides a detailed explanation of the various components of the

proposed framework at runtime. Their operations are categorised into six different

phases that are illustrated with different colours in Figure 4.3. Note that the flowchart

attempts to present a success time scenario and potential consequences but it does

not depict cases of failure at runtime.

Trainer Phase (Green)

It is part of the training phase. During the initial trainer stage, the framework initiates

the computation of an optimal number of dimensions to find a correlation between

various points of the data series. Note that this phase is only triggered once for a

data type in the ISN field and no subsequent computation is required unless a data

type changes. The training data is computed from a single set of series that is

transformed into multiple dimensions using the delayed coordinate mechanism.

Threshold Calculator (Blue)

It is also part of the training phase. During the threshold calculation stage, the

system collects the network data and stores them in the persistent storage. Note that

it is presumed that the data collected at this stage is free of any covert data leakage

activity. To calculate a threshold, an iterative process is required that would consume

the trainer data and compute the threshold value.

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

88

Threshold Value (Grey)

The threshold value is stored in the persistent storage. Note that the threshold value

can be computed by Threshold Calculator using the trainer data or adapted via the

Adapt Threshold phase as a result of outlier detection.

Figure 4.3: Covert data monitoring framework at runtime

Data Monitoring Phase (Orange)

Start

Trainer
Threshold
Calculator

Data
Monitor

Outlier
Analysis

Score
Warrants

Notification
Notify

Adapt
Threshold

Outlier Detected

No Yes

Threshold
Value

Iterative

Continuous Data
Monitoring

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

89

This phase of the proposed framework is where the real-time monitoring of TCP

packets is conducted. The monitoring includes the comparison of a computed third-

order feature variance value to the threshold value from the previous phase. Note

that during runtime this phase does not require lots of hardware resources as the

comparison is conducted with a small buffered set of incoming TCP packets.

Outlier Analysis Phase (Purple)

Once the data monitoring phase raises an alarm regarding a breach of the threshold

value, the statistical outlier analysis phase is started. This phase uses deviation to

calculate the amount of movement in the third-order feature variance value and

computes a moving average value by comparing it to historic values computed over

the last four periods. Only if the average value is skewed towards a breach, then the

notification phase begins, and otherwise, the alarm is recorded but no notification

event is raised. This is to reduce the number of the Type I and Type II errors.

Notification Phase (Cyan)

The notification phase is an alert system that proactively raises an alarm and also

records the data leakage breach. It is one of the requirements for the covert data-

monitoring framework, which is not available in the related work. Notification

methods include calls to low-level functions of the operating system to take remedial

actions and disable the network interface as well as functions to send alert emails to

the system administrator.

Threshold Adaptation (Red)

The threshold adaptation phase includes threshold recalculation if the amount of

skew found during the outlier analysis is larger than the expected. The adaptation

forms a closed-loop whereby the threshold value can be recomputed proactively to

increase the likelihood of detecting outliers and improve the overall accuracy of the

framework. The newly adapted threshold value is stored in Threshold Value’s

persistent storage.

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

90

4.5 Proposed Algorithm for Folding Non-Linear Chaotic Random

Data

As described in [85], the ISNs generated by operating systems by using Linux 2.0

ISN generator. Which are pseudo-random numbers that have initial relation to ISNs

generated in the past. To forecast a future value in a series, several methods are

available, e.g. trend curve based prediction for linear systems as well as logarithmic

regression and Auto Regressive Integrated Moving Average (ARIMA) [85] for non-

linear data. ARIMA is used to compute the number of initial values (dimensions) that

are used to compute a future value. In this case, ARIMA is employed to compute the

embedding dimension that is the number of past values used to predict future values

so that the next ISN value can be calculated and compared to the ISN value within

the packet. The comparison is critical because if the values are different beyond the

threshold value, the packet is considered as an outlier.

The coefficients of the ARIMA model are used as an embedding dimension for the

conversion of non-linear random chaotic data to a vector. The summary of the

procedure is presented in Figure 4.4 with its details given in the sub-sections below.

Figure 4.4: Flowchart for determining the number of folds / parameters for correlating non-

linear chaotic random data using ARIMA – Training Process

Data Series

Estimation of embedding
dimension

Obtain Auto Correlation Factor
and Partial Auto Correlation

Factor
Transformation

Differencing

Are series
stationary?

No Yes

No

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

91

4.5.1 Conversion of data series into stationary series

To compute the ARIMA model [201] parameters and the embedding dimension, it is

essential to ensure that the data series concerned are stationary. Note that ISNs

appear to be independent, but dependent on past values [85] and the stationarity of

the series is the way to model the dependence. Stationary series mean that

statistical properties such as mean, variance and autocorrelation are constant from

period to period. Note that in non-linear random chaotic data, it requires several

passes before the series becomes stationary. Generally, there are two types of non-

stationary series: one with a non-constant mean and one with non-constant variance.

If the mean is not constant then the series is made stationary using a different

process, whereas if the variance is not constant, then power transformation is

applied to the series. Applying power transformation removes a shift from data

distribution, making the distribution normal while applying differencing removes a

systematic time-dependent structure. The proposed solution does not consider

applying power transformation to retain the data distribution without removing the

time-dependent patterns from the data, thus retaining the data width (not

transforming it into a normal distribution). That’s why Figure 4.4 only shows the

application of the differencing method.

4.5.2 Obtaining the Auto Correlation and Partial Auto Correlation Factors

Auto Correlation Factor (ACF) means similarity in a series based on time lags, while

Partial Autocorrelation Factor (PACF) means conditional correlation. Both ACF and

PACF are used for predicting parameters of the ARIMA model. If ACF or PACF

shows a damped sinusoidal feature, then no order is given to parameters.

Otherwise, if ACF and PACF cut off at a certain time lag, then the cutting value forms

the value of the parameter. By looking at the ACF and PACF plots of the different

series, it tentatively identifies the numbers of AR and/or MA terms that are needed.

Autocorrelation and partial autocorrelation are measures of association between

current and past series values and indicate which past series values are most useful

in predicting future values [202]. With this knowledge, it is possible to determine the

order of processes in an ARIMA model. More specifically,

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

92

 ACF: At lag k, this is the correlation between series values that are k intervals

apart.

 PACF: At lag k, this is the correlation between series values that are k

intervals apart, accounting for the values of the intervals between.

4.5.3 Estimation of Embedding Dimension

As mentioned in Section 4.5.2, the cut-off at a certain time lag forms the embedding

dimension that is used as the number of dimensions required for each vector

representing a non-linear random chaotic number.

4.6 Statistical Algorithm for Maintaining Thresholds

This section discusses the components required for the statistical algorithm that is

used for maintaining thresholds.

Figure 4.5 illustrates the process of maintaining thresholds. This is a highly critical

case as it allows corporate data to be leaked without even raising alerts.

Furthermore, it is a noiseless storage covert channel for data leakage and hence it

can very quickly allow the receiver side to collate data. Indeed, this flaw needs to be

patched as it has far-reaching implications.

According to [203, 204], it is difficult to generate an unpredictable number using a

computer. The reason for this is that computers are designed to strictly execute a

defined set of commands in a repeatable and accurate way. A fixed algorithm is

used to produce the same result on a different computer that can hence effectively

predict output values (provided that the internal state of a remote system is

accurately reconstructed) [203].

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

93

Figure 4.5: Flowchart for creation of features and threshold calculation for a profile - Training

Process

TCP/IP
Packets

One-Dimensional Non-
Linear Chaotic Random

Data

Delayed Coordinate Mechanism
to form Vector Based on
Number of Dimensions

Σ From ARIMA
Dimension Estimator

Euclidean Distance Between
Vectors in Hyperspace for

Feature Matrix

Second order
statistic feature

vector σ2

Third order statistic
feature variance of

σ2

Threshold
Calculator

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

94

Figure 4.5 shows the process followed for the maintenance of thresholds, where the

one-dimensional non-linear data is expanded in terms of previous values to compute

a threshold value.

It is observed through a Pseudo-Random Number Generator (PRNG) that the

algorithm starts generating the same set of sequences over again because of the

limited number of internal states that can be used by the algorithm [205]. It is also

observed that the PRNG used for sequence numbers in TCP headers follows

patterns (based on different implementations) in operating systems [206]. In addition,

this is realised through Phase Space Analysis as well [203], showing that a

correlation between subsequent results is followed when generating random

numbers.

The aforementioned property between generated random numbers can be used to

find out if a subsequent random number is correlated in a specific way.

Chaotic systems can be found widely in the nonlinear field. A chaotic system is

usually characterised by the dynamical invariants such as correlation dimension,

Lyapunov exponent, etc. These invariants can reflect objectively the internal

characteristics of a chaotic system. One of the highly popular methods for the

solution of these invariants is phase space reconstruction. Its purpose is to construct

a system state by using its historical entries and viewing it in a higher dimensional

space so that any recognisable patterns can be observed for chaotic data.

For the purpose of creating TCP/IP packets, PRNGs are used to generate a

sequence of numbers that approximates to properties of random numbers. It is the

randomness of ISNs that makes it difficult for attackers to predict them. However,

random numbers generated using an algorithm are actually pseudo-random, not truly

random. This makes the communication open to vulnerability. It is the uniqueness of

ISNs within a given time frame that ensures that fragments of different packets are

not assembled into one packet on the receiving end. A PRNG in operating systems

is modelled as a function with a short random seed as its input and the output being

indistinguishable from truly random bits. Various implements for PRNGs exist that

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

95

implement a deterministic function [207]. Herring and Palmore [208] reported that

pseudo-random number generators are derived from deterministic chaotic dynamic

systems, thus making a connection between chaos and pseudo-random number

generators.

Chaos can be defined as a random and non-uniform phenomenon in the

deterministic non-linear system that can be revealed using chaos theory. With

conventional methods such as the Fourier transformation, chaos looks like noise,

while within the realm of phase space, chaos has structure [38].

Phase space reconstruction is a very useful nonlinear or chaotic signal processing

technique to find out about dynamic systems. Topologically, the phase space and

original system are equivalent and hence it is possible to recover the non-linear

dynamics of the generating system [209]. The implication is that the complete

dynamics of the system are accessible in this space.

4.7 Proposed Statistical Algorithm for Quantification of Outliers

This section details the quantification of outliers when detected. Note that the actual

quantification algorithm is discussed in Section 4.9.

With header fields that can take random data, it becomes highly dynamic and difficult

to monitor for covert data leakage. Therefore, when a threshold breach is reported it

does not automatically indicate a data leakage event. Instead, each such event

where a deviation from the threshold is noted is subjected to further analysis to

quantify the outlier. As mentioned in Section 3.3 that indicates the shortcomings of

related techniques, the framework presented in this thesis proposes a state-of-the-

art quantification algorithm that is aligned with the requirements.

The proposed quantification algorithm provides a score to each outlier detected, thus

forming a dual-stage analysis process. In the first stage, the actual event of outlier

detection is reported, and the second stage scores the deviation in relation to the

threshold to measure the extent of the breach. This improves the accuracy of

detection and reduces the likelihood of the Type I and Type II errors.

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

96

The illustration of the outlier quantification process is presented in Figure 4.6. It can

be observed that the initial stage of outlier detection is aligned with threshold

computation as shown in Figure 4.5, while the latter parts of the process delve into

reasoning about whether the detected outlier warrants a notification to be triggered.

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

97

Figure 4.6: Flowchart for quantification of outliers – the process to decide if a certain packet is

marked as malicious or normal

Buffering to keep last [x]
headers

Incoming
TCP/IP
packets

Delayed Coordinate Mechanism to
form Vector Based on Number of

Dimensions

Euclidean Distance Between
Vectors in Hyperspace for Feature

Matrix

Second order statistic
feature vector σ2

Third order statistic
feature variance of σ2

Σ From ARIMA Dimension
Estimator

From Threshold
Calculator Σ

No Yes

Outlier Data +
Notifier

Genuine
Data

Is third order
statistic >

threshold?

No
Warrants

Notification

Yes

To Threshold
Adaptation

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

98

4.8 Proposed Statistical Threshold Creation Algorithm

The starting point for the analysis of any non-linear data set (for instance, initial

sequence numbers generated for packet creation in TCP/IP communication) is the

construction of a phase space or creation of a portrait of its phase space. The state

of the system is described as the state of its variables, and n state variables

observed at time t form a vector in an n dimensional space called phase space. The

state of the system typically changes with time and hence the vector in the phase

space describes the trajectory of the system or evolution/dynamics of the system. It

is this shape of trajectory that hints/indicates about the system. Chaotic or periodic

systems are characteristics in the phase space.

To reveal the hidden structure of a random number phase space, its construction

using “delay coordinates” is widely used. For given ISN(i) numbers, the phase space

(data sets) is constructed as follows:

𝑌𝑖 = (𝐼𝑆𝑁(𝑖), 𝐼𝑆𝑁(𝑖 − 1), … , 𝐼𝑆𝑁(𝑖 − (𝑚 − 1))

Equation 4.1: ISNs in phase space

where i = 1, 2, n – m +1, n is the number of ISNs, and m is the dimension.

Vector Yi is the new phase space (data set) that is formed from time-delayed values

of the initial ISN value scalar measurements. This has been calculated using two

different methods: the first-order differential equation and discrete Legendre

polynomials with their details given below.

First-order Difference Method

The first-order difference (as shown in Equation 4.2) is constructed as follows [85]:

𝑥(𝑖) = 𝑌1 − 𝑌2

𝑦(𝑖) = 𝑌2 − 𝑌3

𝑧(𝑖) = 𝑌3 − 𝑌4

𝑤(𝑖) = 𝑌4 − 𝑌5

Equation 4.2: ISNs in 4-dimensional phase space

where i = n, n-1, n-2,…, 5. x(i), y(i), z(i) and w(i) are called point coordinates that are

used to create a phase space data set. The collection and subtraction of five ISN

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

99

values help to generate four different streams of data from a single data series, i.e. it

helps to construct different coordinates which are actually the delay coordinates.

Establishing these vectors collectively in the realm of Rm forms a phase space.

Chaos theory dictates that phase space vectors are fully representative of the non-

linear dynamics of the original data set when the embedding dimension m is large

enough.

For optimal embedding m, according to [209], the observation of a real process

generally does not yield all of its state variables. This is generally due to the reason

that either not all state variables are known or not all of them can be measured.

It is clear that the numbers generated are the result of unknown regression with

dependent components. As they are unknown, it can be assumed that they are

formed of independent variables y1, y2, y3.., yt where yt+1 is dependent upon the

value of yt. This type of time series is known as a univariate time series (the series

with single observations recorded over regular intervals). In a univariate time series,

the past value of an independent variable is used to calculate the value of a new

independent variable as depicted in the following equation:

𝑦𝑡 = 𝛽𝑦𝑡−1 + 𝜀

Equation 4.3: Generic representation of univariate time series

Here, β is a constant and ε is an error value. It is clear from Equation 4.3 that

sometimes when the set of explanatory variables required by a regression model is

unavailable (true for random numbers generated as a function of time with unknown

other variates), then it becomes a beneficial choice to use only a single variable to

forecast future values.

Among the models available for modelling univariate series are:

1. AutoRegressive Model (AR)

2. Moving Average Model (MA)

3. AutoRegressive Moving Average Model (ARMA)

4. AutoRegressive Integrating Moving Average Model (ARIMA)

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

100

In the AR model, yt depends only upon its own past values yt-1, yt-2, yt-3, etc. Thus yt =

f(yt-1, yt-2, yt-3, …, εt), where εt is a noise or error term. A common representation of

an autoregressive model depending upon p past values is called an AR(p) model

and represented as:

𝑦𝑡 = 𝑐 +∑𝜑𝑖𝑦𝑡−𝑖

𝑝

𝑖=1

+ 𝜀𝑡

Equation 4.4: Generic representation of AR model

Here, c is a constant and 𝜑𝑖 is used for coefficient. For Equation 4.4, it is important to

know that the value of p is about how far back in time the value of y should be picked

to estimate yt. Generally, in a real-life phenomenon, it is observed that past values

up to 3 steps (i.e. forming an AR(3) model) are sufficient [210]. In this context, it is

critical to computing p so that accuracy can be obtained.

In the MA model, yt depends only on its error terms, εt-1, εt-2, εt-3, etc. and 𝜇 is the

mean. A common representation of a moving average model where it depends on q

past values is called a MA(q) model and defined as:

𝑦𝑡 = 𝜇 + 𝜀𝑡 +∑𝜑𝑖𝜀𝑡−𝑖

𝑞

𝑖=1

Equation 4.5: Generic representation of MA model

The ARMA model refers to a combined usage of the AR and MA models, denoted as

ARMA(p,q). The time series data has a mean 𝜇 zero which is already subtracted.

Hence, it is represented as:

𝑦 = 𝜀𝑡 + 𝑐 + ∑𝜑𝑖𝜀𝑡−𝑖

𝑞

𝑖=1

+∑𝜑𝑖𝑦𝑡−𝑖

𝑝

𝑖=1

Equation 4.6: Generic representation of ARMA model

ARIMA is a forecasting technique applied to many real-time series, which is based

on an autoregressive part and a contribution from a moving average. It operates on

time series that are stationary and helps to project the future values of a series

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

101

based entirely on its past values. As the inherent property of univariate time series is

a correlation on past p / q independent variables, it is critical to make them

stationary. The first difference of a time series is the series of changes from one

period to the next. If yt denotes the value of the time series y at period t, then the first

difference of y at period t is equal to yt-yt-1. If the first difference of y is stationary and

also completely random (not autocorrelated), then a random walk model can

describe y: each value is a random step away from the previous value. If the first

difference of y is stationary but not completely random, i.e. its value at period t is

auto correlated with its value at earlier periods, then a more sophisticated forecasting

model such as exponential smoothing or ARIMA may be appropriate. Note that non-

stationary series regressions may result in spurious regressions, i.e. the cases

where the regression equation shows a significant relationship between two

variables when there is none. Box-Jenkins methodology is used for the estimation of

univariate series that are stationary:

1. ACF – It refers to the way that the observations in a series are related to each

other and is measured by simple correlation between the current observation

(yt) and the observation in the pth period from the current one (i.e. yt-p). It is

defined as:

𝜌𝑘 = 𝐶𝑜𝑟𝑟(𝑦𝑡, 𝑦𝑡−𝑝) =
𝐶𝑜𝑣(𝑦𝑡, 𝑦𝑡−𝑝)

√𝑣𝑎𝑟(𝑦𝑡)√𝑣𝑎𝑟(𝑦𝑡−𝑝)

Equation 4.7: Autocorrelation (ACF)

Here, Cov is covariance and var is variance. pk informs about how many

periods back one should look into for creating the stationary series.

2. PACF – It refers to the degree of correlation between yt and yt-p, which is

defined as:

𝜌𝑘 = 𝐶𝑜𝑟𝑟(𝑦𝑡 , 𝑦𝑡−𝑝) =
𝐶𝑜𝑣(𝑦𝑡, 𝑦𝑡−𝑝|𝑦𝑡−𝑝−1, 𝑦𝑦−𝑝−2)

√𝑣𝑎𝑟(𝑦𝑡|𝑦𝑡−𝑝−1, 𝑦𝑡−𝑝−2)√𝑣𝑎𝑟(𝑦𝑡−𝑝|𝑦𝑡−𝑝−1, 𝑦𝑡−𝑝−2)

Equation 4.8: Partial Correlation (PACF)

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

102

The ACF or PACF is available for various values of lags of autoregressive and

moving average components, i.e. p and q.

Discrete Legendre polynomials

A refined approach to estimating derivatives uses discrete Legendre polynomials

suggested by [211]. This concept can be generalized to irregular sampling and

relates the jth derivative at xi to a weighted sum of the p nearest points to each side

of xi as:

𝒅𝒋

𝒅𝒕𝒋
𝒙𝒊 ≈

𝒋!

𝒄𝒋,𝒑(𝜟𝒕𝒊,𝒏)
∑ 𝒓𝒋,𝒑,𝒏

(𝒊)

 𝒏=−𝒑

𝒙𝒊+𝒏

Equation 4.9: Discrete Legendre polynomials

Here, r is the weight being assigned, and n is a total number of points. In this case,

equal weights to all data points are tried. Once a data point is suspected, its weight

can be increased or decreased to highlight it. cj,p is a normalization constant. t is the

time interval and Δt is the time difference.

Equation 4.10: Equal weightage to all data points

In Equation 4.10, Δti,n = ti+n− ti and, the weights are given by the discrete Legendre

polynomials r(i)
j,p,n = rj,p (Δti,n) that can be calculated recursively by the relation:

 𝒓𝒋,𝒑,𝒏
(𝒊)

=
𝟏

𝒄𝒋𝒑𝒋
[𝜟𝒕𝒊,𝒏

𝒋
− ∑ 𝒓𝒌,𝒑,𝒏

(𝒊)
𝒋−𝟏

𝒌=𝟎
∑ 𝜟𝒕

𝒊,𝒍𝑻 𝒌(𝒊),𝒑,𝒍

𝒋
𝒋−𝟏

𝒌=𝟎
]

Equation 4.11: Recursively calculation by the relation

for 2p≥j with r(i)
0,p,n=1/c0. The normalization constants cj can be determined by the

condition:

 𝒄𝒋,𝒑(𝜟𝒕𝒊,𝒏) = ∑ (𝜟𝒕𝒊,𝒏)
𝒋
 𝒓𝒋,𝒑,𝒏
(𝒊)

𝒑

𝒏=−𝒑

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

103

 ∑ (𝒓𝒋,𝒑,𝒏
(𝒊))𝟐 = 𝟏

𝒑

𝒏=−𝒑

Equation 4.12: Normalization

It should be noted that the discrete Legendre polynomials are not a discretization of

the common Legendre polynomials. Instead, for p→∞, they converge to the latter. By

changing the parameter p (the number of points forward and backward to each side

that is included for estimating the derivatives) it is possible to control the smoothing

of the data. That is, some noise can be averaged out which makes this procedure

more robust for noise than other methods. For estimating the optimal value of p, a

procedure is discussed in [211, 212]. In general, it is recommended to choose

a p value of the order of the embedding dimension, i.e. of the order of the highest

derivative that needs to be estimated. In the limited case of choosing p as small as

possible, this approach reduces to a central difference quotient.

Finite-differencing is generally not the best method for estimating derivatives of

discretely sampled, noisy functions.

In this research project, a chosen data set was used and then the aforementioned

procedure was applied along with an ISN legality algorithm.

Dimension Calculation

Based on Equation 4.2 & 4.9, the four-dimensional phase vector ri is constructed as:

𝑟𝑖 = [𝑥(𝑖), 𝑦(𝑖), 𝑧(𝑖),𝑤(𝑖)], 𝑖 = 1, 2, … , 𝑗, 𝑗 = 𝑁 − 4

Equation 4.13: Four-dimensional phase vector

Let R represent the phase space data set formed from Equation 4.13 and Equation

4.14, where the number of phase space vectors in R is N – 4:

𝑅 = [𝑟1, 𝑟2, … , 𝑟𝑗]

Equation 4.14: Representation of phase space data set

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

104

In order to extract features / patterns from R, the distance between two vectors ri and

rj is calculated in the phase space as follows:

𝑑𝑖,𝑗 = √(𝑥(𝑖) − 𝑥(𝑗))
2
+ (𝑦(𝑖) − 𝑦(𝑗))

2
+ (𝑧(𝑖) − 𝑧(𝑗))

2
+ (𝑤(𝑖) − 𝑤(𝑗))

2

Equation 4.15: Euclidean distance between two vectors ri and rj

Computing the distances between two vectors in R forms a 2-dimensional matrix as

shown below:

𝐷 =

(

𝑑1,1 𝑑1,2⋯ 𝑑1,𝑗
𝑑2,1 𝑑

2,2
⋯ 𝑑2,𝑗

⋮ ⋮⋯ ⋮
𝑑𝑘,1 𝑑𝑘,2⋯ 𝑑𝑘,𝑗
⋮ ⋮⋯ ⋮

𝑑𝑗,1 𝑑𝑗,2⋯ 𝑑𝑗,𝑗)

Equation 4.16: 2 dimensional distance matrix formed by Euclidean distances between two

vectors in R

Here, k = 1, 2, … j, A row vector represents the distances between a specified vector

and all the vectors in R, hence the row size is j. As the distance between a vector

and itself is always zero, it makes the diagonal entries of zeros.

𝑑(𝑘) = [𝑑𝑘,1, 𝑑𝑘,2, … , 𝑑𝑘,𝑗], 𝑘 = 1, 2, … , 𝑗

Equation 4.17: Row vector d(k)

Note that in Equation 4.17, dk,k = 0. The variance of row vector d(k) is calculated as

follows:

𝜎𝑘
2 =

1

𝑗 − 1
∑(𝑑𝑘,𝑖 − 𝜇𝑘)

2, 𝑖, 𝑘 = 1,2, … , 𝑗

𝑗

𝑖=1

Equation 4.18: Variance of row vector d(k)

Here, k is the mean value of row vector d(k). k
2 represents the variance of

Euclidean distances between the specified vector rk and all other vectors in R. Upon

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

105

calculation of the variance, the variance vector σ2 is obtained as shown in Equation

4.19.

𝜎2 = [𝜎1
2,𝜎2

2, … , 𝜎𝑗
2]

Equation 4.19: Variance vector σ2

Furthermore, Equation 4.20 below calculates the variance of vector 2. In this

research project, the computed variance is based on 1,000 ISNs that can be

obtained by an ISN training sequence. Here μσ represents the mean value of those

in σ2. It is expected that the variation in distance will be of the same order, so 10% of

the variance is selected as a threshold as shown in Equation 4.21. The justification

of 10% as the threshold is to ensure that the false positive rate remains low.

𝑣𝑎𝑟𝜎 =
1

𝑗 − 1
∑(𝜎𝑖

2 − 𝜇𝜎)
2, 𝑖 = 1,2, … , 𝑗

𝑗

𝑖=1

Equation 4.20: Variance of each variance vector σ2

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐼𝑆𝑁 =
𝑣𝑎𝑟𝜎
10

Equation 4.21: Threshold for normal ISN

4.9 Proposed Algorithm for Quantification of Outliers

The statistical model created in Section 4.8 provides threshold values that can be

used for checking if covert non-linear random data is normal. However, to do so, the

realm of the collected data set is transformed into a phase space so that a

comparison can be made.

To identify that an incoming ISN is malicious or non-malicious based on the

proposed detection model, an algorithm is presented in Table 4.2 based on the

computations detailed in Section 4.8. For any incoming ISN, the coordinates of the

multiple-dimensional phase vector are created based on the Step 2 of the algorithm

in the table. This ensures that the coordinates are brought into the phase space

using the same delayed coordinate technique that is used for the creation of the

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

106

detection model. This is followed by the calculation of the distances between the

vector p(a, b, c, d) and all the vectors ri in the training data set R to obtain Euclidean

distance vector d = [dj,1, dj,2,…,dj,j]. The second-order variance σ2
j of this distance

vector is then calculated. This procedure is reapplied to ISN(j-1) and ISN (j-2) to get

σ2
j-1 and σ2

j-2. These results are used to calculate third order feature varσ that is then

compared with threshold 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐼𝑆𝑁. ISN is considered normal if the third-order

feature is greater than the threshold and covert if it is smaller than the threshold.

1. Capture incoming ISN (j).

2. Compute p(a, b, c, d) using follows:

𝑎 = 𝐼𝑆𝑁(𝑗) − 𝐼𝑆𝑁(𝑗 − 1)

𝑏 = 𝐼𝑆𝑁(𝑗 − 1) − 𝐼𝑆𝑁(𝑗 − 2)

𝑐 = 𝐼𝑆𝑁(𝑗 − 2) − 𝐼𝑆𝑁(𝑗 − 3)

𝑑 = 𝐼𝑆𝑁(𝑗 − 3) − 𝐼𝑆𝑁(𝑗 − 4)

OR

𝑑𝑗

𝑑𝑡𝑗
𝑥𝑖 ≈

𝑗!

𝑐𝑗,𝑝(𝛥𝑡𝑖,𝑛)
∑ 𝑟𝑗,𝑝,𝑛

(𝑖)

 𝑛=−𝑝

𝑥𝑖+𝑛

3. Calculate distances between the vector p(a, b, c, d) and the vectors ri in the

training data set R to obtain the distance vector d = [dj,1, dj,2,…,dj,j].

4. Get the second-order statistics σ2
j = variance(d).

5. Repeat Step 1 to 4 for ISN(j-1) and ISN(j-2) to obtain σ2
j-1 and σ2

j-2.

6. Calculate the third-order statistics by calculating variance of all obtained

variances using varσ = var(σ2
j, σ2

j-1, σ2
j-2).

7. Compare varσ with 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐼𝑆𝑁.

8. If varσ is greater than 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐼𝑆𝑁 then ISN is non malicious.

9. If varσ is less than 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐼𝑆𝑁 then ISN is malicious.

10. Score varσ of malicious ISN to determine the degree to which the outlier resides

outside the expected score. The score is based on the weighted moving average

of historical data.

11. If the expected score warrants a notification trigger then ISN is considered

malicious.

Table 4.2: Proposed algorithm for quantification of outliers

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

107

Framework
(Figure 4.1)

Framework
Component
(Figure 4.3)

Threshold
Maintaining
Algorithm
Flowchart
(Figure 4.5)

Outlier
Quantification
Algorithm
Steps
(Table 4.3)

Relevant
Equations
(Section
4.8)

Section

Training
Data

Trainer Delayed
Coordinate
Mechanism

 Euclidean
Distance
Calculator

 Second-
order
variance

 Third-order
variance

 4.1, 4.2,
4.3

Chaotic
Data
Correlator

Trainer ARIMA
Dimension
Calculator

 4.4, 4.5,
4.6

4.5

Threshold
Profiler and
Adaptation

Threshold
Calculator

 Threshold
Calculator

 4.7, 4.8,
4.9, 4.10,
4.11, 4.12,
4.13, 4.14,
4.15

4.6

Data
Logging and
Monitoring

Data
Monitor

 1, 2, 3, 4, 5, 6 4.1, 4.2,
4.3, 4.4,
4.5, 4.6

Decision
Maker

Outlier
Analysis and
Score
Warrants
Notification

 7, 8, 9, 10 4.7

Table 4.3: References to framework elements, relevant sections and equations used in the

proposed algorithm in Table 4.2

As the components and equations used for the framework specification are

introduced in the different sections of this chapter, Table 4.3 is provided for their

easy references to link them together.

4.10 Summary

It is realised that the phase space reconstruction can be used to find temporal

patterns as long as the embedding dimension is large enough that it is realised using

Chapter 4 – Covert Data Monitoring Framework and Statistical Detection Model

108

the auto-correlation model. The threshold value for the identification of covert non-

linear chaotic random data is successfully created. This value will be used for the

experiments to be detailed in the next chapter.

109

Chapter 5 Implementation &
Evaluation

5.1 Overview

This chapter presents the implementation and evaluation of the proposed framework.

The implementation includes outlier detection. The evaluation is based on a set of

experiments to demonstrate the framework performance. The experiment results are

also used for a comparison with related work.

5.2 Testing Strategy

A testing strategy used for the evaluation of the framework presented in Chapter 4

has different phases for conducting experiments, including data capturing, pre-

processing and threshold calculation. More specifically, the following steps are

adopted for the testing strategy:

 To test the framework with real traffic and hidden data, ISN values are collected

from a live network data stream.

 Tools such as TCPDump, Wireshark, Capsa, Soft Perfect Network Protocol

Analyser and Ethreape are used for capturing the network traffic.

 The data leakage detection algorithm in Table 4.2 is implemented and tested

based on the collected network traffic to gather necessary data for the algorithm

evaluation.

 Experiments on an independent data set are conducted to determine

ThresholdISN used in the algorithm.

5.3 Implementation of Statistical Threshold Creation Algorithm

Auto Correlation Function (ACF) is one of the tools used to find patterns in the data

[202]. Specifically, the ACF informs about the correlation between points separated

by various time lags. So, the ACF informs about how correlated past data points are

to future data points, for different values of the time separation.

Chapter 5 – Implementation & Evaluation

110

Figure 5.1: ACF plot for stationary ISNs with delayed coordinate at m =4, where data set is

collection of 1000 ISNs

Partial Auto Correlation Function (PACF) is the correlation between two points that

are separated by some number of periods, n, but with the effect of the intervening

correlations removed. Hence, better correlation effectively means better temporal

data patterns which are useful for the analysis of covert data within ISNs.

Figure 5.2: PACF plot for stationary ISNs with delayed coordinate data at m=4, where data set

is collection of 1000 ISNs

Chapter 5 – Implementation & Evaluation

111

Figure 5.3: Dickey-Fuller test for proving that ISN series have been made stationary at m= 4

after applying delayed coordinate method for phase space reconstruction based statistical

analysis

Figure 5.2 shows the ACF plot for stationary ISNs with a delayed coordinate at m =4,

where the dataset is collection of 1000 ISNs. Figure 5.2 shows the PACF plot for

stationary ISNs with delayed coordinate data at m=4, where the dataset is collection

of 1000 ISNs [202]. It is noticed that ACF and PACF are residing outside thresholds,

indicating the auto regression of some order will be required. This is tested using the

Dickey-Fuller Test (See Figure 5.3) to prove that the series is made stationary, which

extracts a larger set of temporal patterns useful for the analysis here.

The experiments in this study are conducted on Ubuntu Linux VM that is mounted

using Oracle Virtual Box on a Windows 7 computer. The choice of the operating

system is dictated by the specification of a covert data creation code called

Covert_TCP.

As mentioned earlier, the Covert_TCP code is used for creating TCP packets. The

code written in C and is compiled on an Ubuntu Linux terminal. The code requires

the passing of a switch value that informs the generation of TCP packets where ISN

is the choice for covert channel communication.

Between a server and a client, there is also a TCP Dump program (that is shipped

with Ubuntu Linux) used to capture the TCP packets sent from the server to the

client. This program only requires an IP address and a port number that it needs to

bind itself to, as well as a location where it should write captured TCP packets. The

captured TCP packets are written in a *.pcap file.

The amount of data collected has a direct relation to the accuracy of threshold

values. For the purpose of computing a threshold value, the following strategies are

applied to ensure that the threshold value obtained has the least skewness and the

Chapter 5 – Implementation & Evaluation

112

subset of collected data for processing is not too large. To evaluate this, the

following data sizes 100, 350, 700, 1,000, 2,000 and 3,000 are used and the amount

of percentage change in the threshold value is measured to ensure durability and

precision. Note that experiments are conducted over increments in the data size of

100. During the experiments, it is noticed that the duration of computation values and

the average difference in the maximum and minimum values of the threshold is

significant.

Data Size

(Number of

Packets)

Duration for

Threshold

Computation

(hours)

Average

Maximum

Difference in

Threshold Values

(%)

Average Minimum

Difference in

Threshold Values

(%)

100 0.5 81.41 53.56

350 1.25 69.62 39.15

700 1.75 21.96 7.82

1000 2 3.38 1.15

2000 5.25 2.91 0.97

3000 9 2.33 0.69

Table 5.1: Results indicating amount of time required for training with data sizes and

percentage movement in threshold value

Figure 5.4: Average changes in threshold value with respect to data sizes and time required for

creation of training model

(%)

Chapter 5 – Implementation & Evaluation

113

The results from the computation of threshold values using these data sizes are

presented in Table 5.1 and shown in Figure 5.4. The results from this experiment

indicate that using 1,000 packets as the data size provides us with the most

balanced value with respect to the training period as well as the asymptotic point

where the amount of gain that can be achieved by using any higher data size

approaches 0. Hence, for the testbed configuration in this study, the 1,000 data size

and its corresponding value for the threshold are chosen. Note that this is not

constant globally and can change based on hardware metrics available while

computing the threshold value.

In order to test the proposed solution on real traffic and hidden data, ISN values are

collected from live network data streams from various applications such as web

browser, messenger and email client. The network packets contain the source IP

address that shows the origin of network traffic. Figure 5.5 shows a high-level

overview of how network packets are captured. Technically, link-layer network

access allows this activity after packets bypass through the protocol stack which also

includes kernel-level packet filtering.

Figure 5.5: Network data packet capturing

Wireshark is used for capturing network traffic. Note that the captured packets are

actually just a copy of the original network packets, so these applications allow us to

capture the network flow using the backend library WinPCap. WinPCap is a well-

known driver that helps to gain low-level access to network layers. Figure 5. shows

an example of a network packet that has been captured by Wireshark. It shows live

Chapter 5 – Implementation & Evaluation

114

traffic with detailed information about network packets, protocol types, source and

destination IP addresses, and general information about packets. Dumpcap is one of

the tools within Wireshark for the purpose of capturing network packets from the live

network and also saving the stream of packets into a file (*.pcap). The pcap file can

then be exported as a *csv file that contains a selected feature set essential for the

detection of covert data. The main purpose is to gain such information from the

network packets and Wireshark provides the needed information of TCP as shown in

Figure 5..

Figure 5.6: Network data packet capturing using Wireshark tool

Figure 5.7: Detailed information of network data packet

Chapter 5 – Implementation & Evaluation

115

Figure 5. shows the ISN values collected through the data collection phase

described above. It can be observed that these series appear to be completely

random and do not show any dependencies among successive data coordinates.

However, Figure 5. shows some form of emergent patterns because it is the result of

a systematic interaction of its component parts. It also indicates that phase space

reconstruction provides a useful result with regard to the dynamics of ISN values.

Figure 5.8: One-dimensional ISN data

Figure 5.9: Three-dimensional differential model plot (Line Format and Scatter Format)

Chapter 5 – Implementation & Evaluation

116

Establishing these vectors collectively in the realm of Rm forms a phase space.

Chaos theory dictates that phase space vectors are fully representative of the non-

linear dynamics of the original data set when the embedding dimension m is large

enough.

As defined in Chapter 4, Equation 4.13 can be used to construct four-dimensional

phase vectors ri to form phase space data set R defined in Equation 4.14. To extract

features / patterns from R, the distance between any two vectors in R needs to be

calculated based on Equation 4.15. These distances then form a 2-dimensional

matrix illustrated in Equation 4.16. For each row of the matrix, Equation 4.18 is

applied to calculate a variance. These variances are represented a vector shown in

Equation 4.19. Finally, this variance vector is used to compute overall variance 𝑣𝑎𝑟𝜎

based on Equation 4.20. Figure 5. illustrates the second-order statistic feature vector

(variance) results and shows the results of the computed overall variance.

Figure 5.10: Second order statistic feature vector – variance between vectors in R in the

presence of threshold values

For the experiment conducted in this study, 𝑣𝑎𝑟𝜎 is computed based on ISNs

extracted from 1,000 collected TCP packets as proved by the experimentation

Chapter 5 – Implementation & Evaluation

117

shown in Figure 5.4, which produces 𝑣𝑎𝑟𝜎 = 2.62E+33. 10% of the 𝑣𝑎𝑟𝜎 value is then

chosen as 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐼𝑆𝑁 according to Equation 4.21, i.e. 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐼𝑆𝑁 = 2.62E+32.

So far, the implementation of the threshold computation has been presented as well

as the embedding dimension for the delayed coordinate system. In the next sections,

the threshold value is used to quantify outliers where the data in ISN fields are

injected using a number of strategies. This helps with a complete evaluation of the

proposed algorithm in Chapter 4. These sections begin by creating an

experimentation whereby the new quantification algorithm is tested by creating a

covert message. The performance of the algorithm is tested together with state-of-

the-art existing work to prove that the use of ThresholdISN is more successful in

terms of locating malicious ISNs in a given data set.

5.4 Experiments

The methodology for testing the proposed data leakage detection algorithm was

used earlier in similar research works that include Support Vector Machine based

algorithms [213] for the detection of covert data and covert ISNs [145]. The

experiments in this study are explained stepwise through the algorithm and

presented alongside the mathematical outcome for the reader to understand the

workings clearly. The workings are depicted for shorter covert tests while for larger

data sets, the results have been appended.

5.4.1 Experiment 1 – Demo Data (User Created)

This experiment is conducted in accordance with the steps of the proposed algorithm

in Table 4.2. The implementation detail of each step is presented separately below.

Algorithm step 1: Capture incoming ISN

Keep the most recent 4 ISNs where Excel is used to create the ISN numbers. As an

example, encode text “OLA QUE PASA” to ASCII numbers and then to ASCII

CHARACTER * 256 * 65536, as shown in the table below:

Index Character ASCII Covert ISN

1 O 79 1.33E+09

2 L 76 1.28E+09

3 A 65 1.09E+09

Chapter 5 – Implementation & Evaluation

118

4 Q 81 1.36E+09

5 U 85 1.43E+09

6 E 69 1.16E+09

7 P 80 1.34E+09

8 A 65 1.09E+09

9 S 83 1.39E+09

10 A 65 1.09E+09

The encoding of ASCII is performed by the <ASCII CODE> * 256 * 65536. Here, the

ASCII code for character O is 79 (Hex). This encoding enables the transformation of

‘O’ into the realm of ISN numbers. Using the above method, packets are sent to the

destination host that expects to receive the information from the server. The

capturing of the ISN field of each incoming packet is used to reconstruct a message.

This has been practically implemented using two virtual machines and a covert

channel code.

In the testbed proposed in this study, two Linux-based machines are installed in a

virtual box. Here, Ubuntu 16.04 and Kali are used. One of the virtual machines (VMs)

acts as a sender and the other as a receiver. Here, the Ubuntu machine is

considered as a sender machine, while Kali Linux acts as a receiver machine.

For sending the data from one machine to another, an internal network is created

between the two machines. First, change the adapter settings of the virtual box

manager of each machine from Settings>Network>Adapter 1> Attached to: >Internal

Network.

In the next step, the IP addresses of the VMs are changed by selecting Ubuntu Linux

IP Settings to System Settings… > Network > Wired > Options > IPv4 Settings >

Method: Manual and adding the information shown in Figure 5.11. Note that any IP

address can be used.

Chapter 5 – Implementation & Evaluation

119

Figure 5.11: Network configuration within Ubuntu

Similarly, these steps are followed on Kali Linux by setting Wired connection > Wired

settings > Settings > IPv4 Select IPv4 method as Manual and editing the addresses

as illustrated in Figure 5.12.

Chapter 5 – Implementation & Evaluation

120

Figure 5.12: Network configuration within Kali

Now both machines are on the same network. In the next step, covert channels are

implemented using the Covert TCP tool in [214]. The tool is executed on both

machines and its flow diagram is depicted in Figure 5.13.

Chapter 5 – Implementation & Evaluation

121

Figure 5.13: Flowchart for forging network packet with covert data used by Covert_TCP.c

Chapter 5 – Implementation & Evaluation

122

For hiding data in IPv4 packets and making it a successful covert channel for

communication between two ends over the network, the following steps are followed

by the Covert TCP tool as illustrated in Figure 5.13:

1. At first, all the important data is captured and represented by the following

variables and structures:

 source_address

 dest_address

 placeholder

 protocol

 tcp_length

 tcphdr tcp

 send_socket

 recv_socket

2. Once all the data is stored, decide on the basis of different checks whether to

choose the IPID (IP Identification) based encoding or hide the message within the

sequence numbers.

3. Continue if IPID is checked for its Boolean value to be true.

4. To perform the actual encoding, a forge_packets function is called to execute an

actual data hiding process. The following entities are used for hiding a message

in the IP header:

 ip_id

 ip_fragoff

 ip_ttl

 ip_protocol

 ip_check

 ip_sender

 ip_daddr

5. Afterwards, an IN_chksum function is called that encodes each alphabet of the

hidden message with every packet by sequentially adding a 16-bit word at the

end of IPID.

Chapter 5 – Implementation & Evaluation

123

6. Finally, all the forged packets are dropped into the send structure by calling a

send_socket function.

To configure the sender machine (Ubuntu), the following process is implemented:

i. We compiled the code file from the terminal using command cc covert_tcp.c –

o covert_tcp2.c (note that your file should be in the same directory as the one

you are compiling from, and otherwise use command cd ~/Desktop to change

the directory if your code file is at Desktop).

ii. The above command creates a compiled file named as covert_tcp2.c in the

same directory as shown in Figure 5.14.

Figure 5.14: Ubuntu terminal window showing successful compiling of Covert_TCP.c

iii. Now enter cd. to change the directory back to the root

iv. Manually place the compiled form of the code (covert_tcp2.c) in Home >

Ubuntu > test (make a new folder named ‘test’ here) as illustrated in Figure

5.15.

Chapter 5 – Implementation & Evaluation

124

Figure 5.15: Compiled file Covert_TCP2.c

v. Place the text file (name as send.txt), which the sender wants to send out, in

Computer > tmp as illustrated in Figure 5.16.

Figure 5.16: Temporary folder (tmp) showing the send.txt file that contains covert data to be

send from source 192.168.0.5 to destination 192.168.0.6
vi. The following command is run from the terminal by the sender, which is also

shown in Figure 5.17:

Chapter 5 – Implementation & Evaluation

125

sudo /home/ubuntu/test/covert_tcp2.c –dest 192.168.0.6 –source

192.168.0.5 –source_port 9999 –dest_port 8888 –file /tmp/send.txt

Figure 5.17: Ubuntu terminal showing the command used to send the file (send.txt) from

source 192.168.0.5 to destination 192.168.0.6
Similarly, the receiver machine (Kali) is set up as follows:

vii. Compile the code file from the terminal using command cc covert_tcp.c –o

covert_tcp2.c.

viii. This creates a compiled file named as covert_tcp2.c, which is shown in Figure

5.18.

Chapter 5 – Implementation & Evaluation

126

Figure 5.18: Kali terminal window showing successful compiling of Covert_TCP.c
ix. Enter cd .. to change the directory back to the root.

x. Open a ‘tmp’ folder from the terminal using command cd ~/tmp and then create

a new sub-folder ‘rec’ using command mkdir rec, as shown in Figure 5.19.

Figure 5.19: Creation of “rec” folder within temporary folder (tmp) where data will be received

xi. Manually place the compiled form of the code (covert_tcp2.c) in Computer >

tmp > rec (see Figure 5.20).

Chapter 5 – Implementation & Evaluation

127

Figure 5.20: Location for compiled covert_tcp2 file within “rec” folder in tmp

xii. Run the following command by the receiver as shown in Figure 5.21:

sudo tmp/rec/covert_tcp2.c –dest 192.168.0.6 –source 192.168.0.5 –

source_port 9999 –dest_port 8888 –server –file /tmp/rec/receive.txt

Figure 5.21: Kali terminal showing execution of covert_tcp2 file where it is listening for data

from source IP 192.168.0.5 and saves received data in file ‘receive.txt’

Chapter 5 – Implementation & Evaluation

128

xiii. The above command creates a new text file with name “receive.txt” defined in

the command (see Figure 5.22).

Figure 5.22: /tmp/rec folder showing receive.txt file

Wireshark is a packet capture and analysis tool widely used by both the research

and development community. The Wireshark screen in Figure 5.23 shows that the

covert data sent from the sender machine to the receiver machine is added in the

IPIDs of the receiving packets (e.g. the IPID of the first receiving packet contains ‘T’).

Figure 5.23: Wireshark showing data packets

Chapter 5 – Implementation & Evaluation

129

The above method for the generation of covert network packets has been used in

[215, 216] for detection algorithm testing. It has also been employed for the

evaluation of a Support Vector Machine based detection model in [213].

 Algorithm step 2: Compute p(a, b, c, d)

This computation has produced the following results by using the distance between

vectors:

Algorithm step 3: Calculate distance between the vectors

 This step is to obtain the distance vector d = [dj,1, dj,2,…,dj,j]. A snippet of the

distance calculation is shown below:

Chapter 5 – Implementation & Evaluation

130

Algorithm Step 4: Get the second-order statistics

This step is to computeσ2
j = variance(d) for ISN(j), which has resulted in σ2

j =

3.56E+17.

Algorithm Step 5: Obtain σ2
j-1 and σ2

j-2

Repeat step 1 to 4 for ISN(j-1) and ISN(j-2) with the distance calculation results

shown below:

Chapter 5 – Implementation & Evaluation

131

Based on the above results, σ2
j-1 and σ2

j-2 for ISN(j-1) and ISN(j-2) have been

calculated as σ2
j-1 = 3.76E+17 and σ2

j-2 = 3.74E+17, respectively.

Algorithm Step 6: Calculate the third-order statistics

Based on the computed results forσ2
j, σ2

j-1 and σ2
j-2, the variance calculation has

produced varσ= var(σ2
j, σ2

j-1, σ2
j-2) = 1.14E+32.

Algorithm steps 7, 8 and 9: Compare varσ with 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐼𝑆𝑁

If varσ is greater than 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐼𝑆𝑁 then the ISNs are non-malicious, and otherwise

they are malicious. As 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐼𝑆𝑁 was computed earlier as 2.62E+32 and varσis

equal to 1.14E+32, covert ISNs are confirmed due to varσ< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐼𝑆𝑁.

Chapter 5 – Implementation & Evaluation

132

5.4.2 Experiment 2 – Demo Data (Random)

The objective of this experiment is to reinforce the ThresholdISN model by using it as

a benchmark value for testing independent TCP packets in the context of sending

information as covert ISN values in the TCP headers. The difference form the

previous experiment is the ThresholdISN value produced by the proposed data

leakage detection algorithm, which is constant.

5.4.2.1 Set-up for Experiment

The following explains the set-up of an experiment that is conducted for testing the

ThresholdISN using an independent data set.

5.4.2.2 Operating System

The set-up of the experiment was conducted on Ubuntu Linux VM that is mounted

using Oracle Virtual Box on a Windows 7 computer. The choice of the operating

system is dictated by the specification of the covert data creation code called

Covert_TCP (https://dunnesec.com/category/tools/covert_tcp/).

5.4.2.3 Code for Covert Data Creation

As mentioned above, the Covert_TCP code is used for creating TCP packets. The

code written in C is compiled on an Ubuntu Linux terminal. The code requires the

passing of a switch value that informs the creation of TCP packets where ISNs are

the choice for covert channel communication.

5.4.2.4 Source of Data

The source of plaintext data that is sent via Covert_TCP from the server-side to the

client side is created by Lorem Ipsum Generator (https://www.lipsum.com/). The

generator is instructed to generate a number of random words without the

consideration of some characteristics such as grammar usage. This has been the

best source of data as it is truly random and hence fulfilling one of the critical

requirements of the experiment conducted in this study.

https://dunnesec.com/category/tools/covert_tcp/
https://www.lipsum.com/

Chapter 5 – Implementation & Evaluation

133

5.4.2.5 Server and Client

The experiment requires two instances of Covert_TCP, which run on the same

Ubuntu Linux VM.

The server instance of Covert_TCP requires:

- A folder containing a file ‘send.txt’ that contains random text generated using

Lorem Ipsum Generator.

- Source IP address and port number for socket creation.

- Destination IP address and port number to send the data to or where the

client is listening on.

- Switch value to inform that the passed data must be transformed and sent

using the ISN field in the TCP header.

The client instance of Covert_TCP requires:

- A folder where the received data will be placed.

- Source IP address and port number for socket creation.

- Destination IP address and port number it is listening on.

- Switch value to inform that incoming TCP packets require the ISN field to be

transformed back to plaintext.

5.4.2.6 Data Capture

Between the server and the client, there is also a TCP Dump program (that is

shipped with Ubuntu Linux), that is used to capture the TCP packets sent from the

server to the client. This program only requires the IP address and port number that

it needs to bind itself to and the location where it should write captured TCP packets.

The captured TCP packets are written in a *.pcap file. The captured data in the

*.pcap file is processed using Wireshark to export the ISN field from TCP packets to

a *.csv file.Data Leakage Detection Algorithm

Having captured the TCP packets, the step 2 of the algorithm in Table 4.2 is

executed to calculate p(a, b, c, d) with a snippet of the calculated results shown

below:

Chapter 5 – Implementation & Evaluation

134

The step 3 of the algorithm is then activated to generate distance vector d = [dj,1,

dj,2,…,dj,j]. The main purpose of this step is generating the distance vector.

The following shows a snippet of the results from the Euclidean distance calculation

between a test vector and the training vectors.

The above calculated results allow the step 4 of the algorithm to computeσ2
j =

variance(d). The following shows a snippet of the results from the variance

computation, which denote the amount of change to each distance calculation. The

different values are showing the amount of change from each distance.

Chapter 5 – Implementation & Evaluation

135

Figure 5.24: Second order variance computation snippet

Afterwards repeat the above steps for ISN(j-1) and ISN(j-2) to obtain σ2
j-1 and σ2

j-2,

as defined in the step 5 of the algorithm.

Based on the above computed variances, the step 6 of the algorithm calculates varσ

= var(σ2
j, σ2

j-1, σ2
j-2), resulting in varσ = 1.02E+32.

By comparing varσwith 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐼𝑆𝑁, the decision on whether the ISNs are malicious

can be made, as specified in the steps 7, 8 and 9 of the algorithm. Similar to the first

experiment, covert ISNs are found due to varσ(= 1.02E+32) < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐼𝑆𝑁 (=

2.62E+32).

Again, the steps 10 and 11 of the algorithm are not included in the experiment.

The results of this experiment reiterate that the ThresholdISN value produced by the

proposed data leakage detection algorithm in Table 4.2 is constant. Here the

constant value refers to the fact that the test data is not a subset of original modelling

as observed in the previous experiment.

5.4.3 Experiments 3, 4 and 5

The scenarios of the experiments are explained below:

 Experiment 3 - The data for this experiment has been strategically created in

order to have covert sequence numbers in an alternate pattern, whereby, the

first TCP packet has a true ISN, while the second TCP packet has a covert

ISN inserted into the sequence number field.

 Experiment 4 – The data for this experiment has been created in order to

have covert sequence numbers appearing together in a bulk of six

consecutively placed TCP packets followed by a true sequence number.

Chapter 5 – Implementation & Evaluation

136

 Experiment 5 – The data for this experiment has no covert entries and all

sequence numbers are true.

The set-up of the experiments is the same as the one for the second experiment

introduced in sections 5.4.2.2 – 5.4.2.7.

This experiment has been done with the help of a Discrete Legendre polynomial

instead of the first-order difference. The data for this experiment was recorded using

the same testbed described before. 2,000 ISN samples have been gathered from the

network packets collected on the testbed.

The 2,000 ISN samples were divided into sets of 1,400 and 600. All the initial training

phase steps (see section 5.2) were performed to find a phase space and the

variance for 1,400 ISNs. The remaining 600 ISN values were used for covert

embedding with 200 ISNs chosen randomly. The threshold is then calculated. An

image has been used to perform covert embedding in this experiment. The image

was converted to a 32 bit. The grey level values were then embedded using

randomly picked ISN numbers, sometimes adding to the ISN numbers and

sometimes simply replacing them, while making sure that the overall value does not

exceed the limit for a 32-bit number (4,294,967,295). The result of applying the

algorithm in Table 4.2 to this experiment is given in Figure 5.25. The results indicate

the covert and overt classifier results.

Figure 5.25: Discrete Legendre based method (covert embedding)

Chapter 5 – Implementation & Evaluation

137

5.5 Outcomes of Experiments

In experiment 3, it is found that with an alternate pattern of covert ISNs injected into

TCP packets, the proposed algorithm in Table 4.2 is successful in locating malicious

entries of the covert data in TCP packets. The number of true negatives is 3 out of 4

while the number of false negatives is 1 out of 4, causing a Type II error. Figure 5.26

shows the algorithm accuracy for alternate covert ISNs with ½ of packets being

covert.

Figure 5.26: Showing algorithm accuracy for alternate covert ISNs with 1/2 of packets being

covert

In experiment 4 with six consecutive entries of covert ISNs injected into TCP

packets, the algorithm is not very successful in locating malicious entries of the

covert data. The number of true negatives is 1 out of 4 while the number of false

negatives is 3 out of 4, causing a Type II error. In the case where all entries are

found to be covert, the algorithm is found to be very effective. Figure 5.27 shows the

accuracy for contiguous covert ISNs.

0 TP 0

TNType II FN

Actual

Actual

ComputedComputed

Chapter 5 – Implementation & Evaluation

138

Figure 5.27: Showing algorithm accuracy for contiguous covert ISNs

In experiment 5 with all true entries of ISNs in TCP packets, the algorithm is very

successful in identifying normal entries of the data because all entries are found to

be covert. The number of true positive is 4 out of 4. Figure 2.28 shows the algorithm

accuracy for a normal stream of data.

Figure 5.28: Showing algorithm accuracy for a normal stream of data

So far, the evaluation of the outlier quantification algorithm is presented. The covert

data is injected into the ISN field on a TCP packet using a strategy for ASCII

conversion, while ensuring that covert data is sent in the contiguous stream,

0 TP 0 FP

4 TN12 FN

Computed Computed

Actual

Actual

Actual

Actual

Computed Computed

16 TP

Chapter 5 – Implementation & Evaluation

139

alternate method, or with a known gap of valid sequence numbers. It was observed

that Type II errors are found low to the amount of 20% for 2 out of 5 experiments,

while a Type I error is found for making decisions about data leakage, thereby

increasing the level of accuracy as well as reducing the likelihood of Type I and Type

II errors. It is worthwhile noting that these experiments helped with establishing the

boundaries of the algorithm without an initial requirement for a highly trained

stochastic model for defining system boundaries. Furthermore, the quantification

algorithm is also tested on valid sequence number data in isolation to evaluate errors

raised. The algorithm performed as expected in four instances and did not report any

Type I and Type II errors.

In summary, the results from the experiments show that the proposed statistical

algorithm is effective in detecting non-linear chaotic data that is communicated in a

covert manner using TCP/IP packet headers. The results also demonstrate that the

negative Type II errors of the algorithm are minimal. Moreover, differently from the

existing systems that operate in offline mode, the proposed system offers online

covert channel detection, making it more efficient in providing notification in real-time

rather than raising alerts passively later.

In the following sections, the proposed work in Chapter 4 is compared with related

works.

5.6 Comparison and Performance Discussion

The basis of data embedding is proposed in [145] and used in several works from

the literature including [213] and [215]. In [213] and [215], ISN or IP ID fields are

used to leak data as covert channels. Furthermore, the research work proposed in

[213] and [215] uses Support Vector Machine (SVM), that is proved to be highly

effective to detect covert channels, for other techniques. As SVM is the best

currently used approach for covert data channel detection, it becomes an obvious

choice to compare the proposed algorithm in Table 4.2 against this detection

methodology.

The comparison uses ASCII values ranging from 0 to 127 and embeds them in ISN

or IP ID fields. Using this methodology, it is possible to pass data between hosts

Chapter 5 – Implementation & Evaluation

140

during the initial connection request phase. As mentioned in the last section, the

experiments have generated and passed data using the same methodology. To

collect data packets, the Wireshark application is used [217] together with WinDump

[197] tools. A simple filter is added to the tools to get all initial packets with SYN set

to 1, i.e. request for connection. After collecting these TCP/IP packets, the ISNs are

extracted from them.

Method Support
Vector
Machine

Support Vector
Machine

Proposed
Detection Model

Number of
Features

3 1 1

Training ISN Data 10,000 10,000 1000

Accuracy of
Result

99% 92% 98%

Detection Method Offline Offline Online

Average Timing
to detect (based
on encoded data)

35.3s 15.3s 3.03s

Table 5.2: Performance comparison between Support Vector Machine and proposed detection

model

Table 5.2 shows the results of the proposed detection algorithm against two different

SVM-based systems. The results are produced based on experiments conducted on

the Windows 7 operating system where for all the cases the training data is created

using the Covert_TCP tool. The training and covert data is stored in the operating

system for analysis in SVM-cases 1 and 2. For the proposed model, the covert data

is sent over the network and analysed by the model on the fly.

In case 1, the SVM system used three features: Sequence Number, TCP Control

Flag and TCP Checksum fields to create a training model. The training model used

10,000 packets to create pattern classification. This model was then used in offline

mode where data analysis was not done in real-time to detect covert packets. It took

an average of 35.3s to indicate if a certain packet is covert or otherwise. The

accuracy of the system was found to be 99%. In case 2, the SVM system used only

one feature, Sequence Number, to create a training model. This model was also

created using 10,000 packets and used in offline mode to detect a covert packet at

an average of 15.3s, but its accuracy decreased to 92%. Finally, the proposed model

Chapter 5 – Implementation & Evaluation

141

was trained online where only 1,000 TCP/IP packet headers were used in real-time

to create a training model. It is observed that the model detected covert data at an

average of 3.03s with 100% accuracy.

Table 5.2 shows that the proposed detection algorithm outperforms the SVM-based

approach in each performance metric apart from the number of features in the

second SVM case. As mentioned, the algorithm exploits the facts that ISNs are

pseudo-random numbers and they appear to be chaotic and can be predicted with

certain accuracy. This greatly reduces the complexity of the proposed algorithm,

which makes it simpler to implement. Note that Table 5.2 indicates that the accuracy

of SVM decreases if non-linear data is used instead of linear chaotic data. SVM is

unable to detect non-linear chaotic data. In order to boost the accuracy of SVM, the

number of features to be considered in a TCP packet needs be increased to three,

i.e. the Sequence Number, TCP Control Flag and TCP Checksum fields. The

purpose of increasing the number of features was to improve the accuracy of SVM.

Hence, the computational complexity of SVM for the purpose of training is evaluated

as O (number of samples x number of features) that includes solving convex

optimisation. However, the proposed method only uses a single feature and does not

contain any convex optimization issue. This leads to the computational complexity of

the method being O (3 x number of samples). This effectively means the proposed

method is able to not only provide higher accuracy with a lower number of features,

but also offer those results in a fraction of the time. By using third-order statistical

features, the method has identified normal and stego ISNs with an accuracy rate of

100%. For the Windows 7 operating system, the proposed model needs to be

created once with 1,000 normal ISNs, while SVM uses 10,000 ISNs to train its

model, including 5,000 normal and 5,000 stego-ISNs. Here, the stego-ISNs are used

in order to simulate existing network conditions where data leakage is carried in

chunks, not in a continuous stream. Finally, the proposed method is deployed online

for steganalysis, whereas SVM works only in offline mode. It is hence possible that a

covert message passes through before the completion of the SVM model training or

steganalysis.

Chapter 5 – Implementation & Evaluation

142

Finally, the proposed framework has the capabilities of notification, continuous data

monitoring and threshold adaptation. The threshold adaptation offers the

improvement of a threshold value based on active data monitoring and outlier

detection, making the framework self-improvable over time.

5.7 Achievements

The following enumerates the original research objectives and the achievement of

those objectives through this study:

1. To do a detailed background study of different types of data leakage attacks,

use of steganography for data leakage, covert channels, and different packet

parameters which can be used for covert communication.

This objective is successfully completed by studying a range of existing

research literature as well as by keeping abreast with known vulnerabilities.

The outcome of this objective is presented in Chapter 2.

2. To perform detailed literature research in different covert channel detection

methods and identify research gaps.

The scope of covert channel detection on protocols such as TCP and UDP is

very large, which is defined in the header fields and various combinations of

header fields that are used for the purpose of covert communication. Existing

research into the detection of covert channels on the header fields of those

protocols is assimilated in order to understand the weaknesses of existing

techniques. This objective is successfully presented in Chapter 3.

3. To design a novel component-based monitoring framework to detect data

leakage at the transport layer of networks in real-time. Furthermore, the

framework should have the following abilities:

a. To analyse real-time TCP traffic for covert data and quantify data

leakage without the usage of data signature patterns.

b. To establish thresholds that can be used to identify outliers while

performing data leakage detection.

Chapter 5 – Implementation & Evaluation

143

The novel covert data detection framework is proposed in Chapter 4 and the

various components of the framework are realised through the proposed

algorithms for the purposes of threshold maintenance and outlier

quantification. A statistical approach is used for the detection of covert non-

linear data as opposed to a data signature-based approach. Also, a strict

classifier-based approach built on the support vector machine or a weighted

approach used by neural networks is discounted due to their incapability to

work with non-linear data as well as the high cost of training model creation.

The details of the framework are specified in Chapter 4.

4. To implement and evaluate the proposed solution using a data set.

The proposed algorithms are implemented using the R-programming

language and tested with various tools. The data set used for the testing is a

random set of covert ISNs. The experiments conducted include the use of the

Covert_TCP tool for server client-based network packet ISN spiking on a

single machine as well as the extension of the above onto virtual machines

using Kali and Ubuntu flavours. The full details are presented in Chapter 5.

The objective is completed by the creation of a simulation test where a

socket-based client-server system was used to send covert data in the header

field (specifically Initial Sequence Number) of the TCP protocol. The

environment is later extended to virtual machines where a client and a server

are over a virtual network. Every received packet is passed through the

proposed covert channel detection algorithm in order to indicate if the packet

contains covert data with an associated probability. The further detail of the

testbed is provided in Chapter 5.

5.8 Summary

This chapter has presented the experiment set-up and results for the performance

evaluation of the proposed framework. A comparison with the related work in the

field of covert data detection has also been provided to demonstrate the advantages

of the framework over the related work. The stego-ISN and Covert_ISN tools are

used based on various metrics to check the framework performance in terms of its

Chapter 5 – Implementation & Evaluation

144

detection accuracy. Overall, the experiment results have proved that the proposed

detection and data leakage detection algorithms are suitable for finding stego-ISNs.

Chapter 6 – Conclusion and Future Works

145

Chapter 6 Conclusions and Future
Work

This chapter summarises the main findings of this study, including the research work

conducted and the experiment evaluation performed. The chapter also discusses

future directions for further developing the proposed framework.

6.1 Conclusions

A statistical technique helps with the quantification of the level of covert

communication by computing the deviation of observed data from an expected

threshold value. The technique has a two-stage analysis process where a deviation

score is calculated in real-time over a buffer of collected TCP headers as well as

over a larger collection of TCP headers. It offers an insight into temporal-based data

leakage detection for larger data collections informing an analyst of time-based

indicative analysis as well as on-the-fly outlier analysis which are both improvements

on existing detection techniques. Furthermore, the proposed framework is novel in

that not all deviation scores computed are flagged as data leakage incidents but

instead the framework offers further analysis using a novel approach to the

quantification of skewed results which informs about the probability of data leakage.

The process uses a moving average approach for making decisions about data

leakage, thereby increasing the level of accuracy as well as reducing the likelihood

of Type I and Type II errors.

TCP/IP used for data transmission over the Internet is an ideal medium for

steganography, and attacks based on covert channels make Internet-based

communication vulnerable. As mentioned in Chapter 2, covert communication takes

full advantage of reserved fields in the TCP/IP header and modifies or inserts values

in those header fields for covert communication which is difficult to detect as

conventional intrusion detection tools do not scan for vulnerabilities in the header

part of a data packet. In Chapter 3, it is found from the literature review that there are

not many research works that are actively working in this area of covert channel

Chapter 6 – Conclusion and Future Works

146

communication and those that are active are using techniques that are

computationally complex, have lower accuracy, require a large amount of training

data, and more importantly work only offline. Such approaches are not suitable for

practical implementation.

This study has analysed a number of covert communication channels and existing

methods for the detection of covert communication via a number of header fields. It

has identified the ISN header field that requires further research due to its random /

chaotic nature. The proposed work in this thesis is able to analyse ISNs and prove

that though they appear random, their dynamic non-linear features have a structure

when their realm is changed to phase space reconstruction. A statistical model is

thus created in this study for computing a threshold used by the proposed data

leakage detection algorithm to determine malicious and non-malicious ISNs. This

state-of-the-art algorithm works in tandem with a live network (online) to offer low

computational complexity, high accuracy and greater speed, in addition to better true

negative and true positive rates.

The following summarises the characteristics of the proposed framework and

contributions thereof:

1. Pseudo Random Number Generators are hypothesised that they are a

deterministic chaotic system and are able to apply chaos theory for analysing

collected ISNs. Chapter 2 has shown through the literature review that

random numbers used within the ISN field of IP-based communication are

generated on various operating systems using their own algorithms that are

presented as pseudo-random numbers. Furthermore, it is shown that these

numbers (although appearing to be random) do follow a pattern in

hyperspace. These characteristics are then used to do further research work

where a PRNG is considered to be deterministic. A delayed coordinate-based

mechanism has been used for the study of non-linear data. This

reconstruction preserves the properties of the non-linear dynamic system that

does not change under smooth coordinate changes. The autocorrelation

factor informs us about the embedding dimension that is later used in the

delayed coordinate computation. The above helps us with making a concrete

Chapter 6 – Conclusion and Future Works

147

premise that the initial sequence numbers used on operating systems are in

fact pseudo-random and hence deterministic. The literature study did not

reveal machine learning, pattern or statistical methods for such scenarios

other than the support vector machine or neural networks that however are

dealing with ASCII data but not non-linear data. The author believes that this

study contributes towards a better understanding of pseudo-random numbers

and a smoothing process within the realms of network data packets.

2. There is not any framework found in the existing literature that could be used

to develop various components for monitoring network traffic for the detection

of outliers. This thesis has proposed a novel framework where its distinct

components with their purposes are described in Chapter 4, including an

outlier detection component, a notification component and a threshold re-

computation component in case of skewness. This framework is then used as

a blueprint to create effective algorithms for the components in Chapter 4.

3. A statistical model is proposed in this thesis for the quantification of outliers.

The process of computing thresholds requires a small initial training data

footprint, thus making thresholds operating system specific and

computationally less complex. Furthermore, in order to calculate a threshold,

there is no requirement to pass malicious ISNs to the model in order to train it.

4. A data leakage detection algorithm has also been proposed that can reliably

detect malicious and non-malicious ISNs. This algorithm is based on the

above statistical model for the threshold computation. The computational

complexity of the proposed algorithm is found to be lower than the Support

Vector Machine system, where the algorithm has a complexity of O (3 x

number of samples), while the other system operates with the complexity of O

(number of samples x number of features). Note that the number of samples

used for the algorithm is much smaller than that for the other system (see

Table 5.2).

In summary, the new framework offers continuous data monitoring, threshold

maintenance and alert notification. Its main advantage is the capability of providing

more efficient results with tolerance/threshold values than the existing work.

Chapter 6 – Conclusion and Future Works

148

6.2 Future Work

6.2.1 Worm Detection Using Phase Space Reconstruction

It is interesting to see that conventionally, the detection of specific worms relies on

their signatures. However, extending the proposed approach in this thesis should be

able to show that specific worms occupy specific regions of a phase space. The

invariant subspace of a worm would separate it from normal traffic, thus detecting

the traffic that is malicious. This would provide better solutions to worm detection.

6.2.2 Anomalous Behaviour Detection in Heart Beat Pulses

Electrocardiogram data is time-series data where patterns such as low amplitude

and high frequency can possibly indicate heart problems. The patterns can be further

studied using statistical models where thresholds can be established before further

actions are taken. There is a lack of a framework catering for needs such as raising

alerts as well as data monitoring and updating/adapting of a threshold value used for

checking packets for covert data. The proposed monitoring and detection framework

is useful for continuous data monitoring, threshold maintenance and alert notification.

6.2.3 Sensor Data on Wireless Networks or Internet of Things (IoT)

There is a lot of sensor data that is collected from wireless networks or IoTs. The

data like the case addressed in this thesis may appear extremely random but would

have hidden structures that can be studied using chaos theory and phase space

reconstruction. Issues such as deviation from typical system behaviour may indicate

problems with the network or anomalous activity on the network. The proposed

monitoring and detection framework is useful for continuous data monitoring,

threshold maintenance and alert notification suitable for resource limited sensor

nodes and things.

6.2.4 Distributed Covert Channel Detection Using Data Mining Approaches

When considering a more scalable and flexible detection solution, a distributed

covert channel detection methodology comes to the forefront. This methodology has

not been considered in this thesis as its objectives are different. However, it is

something that is becoming more prevalent especially within the context of machine

Chapter 6 – Conclusion and Future Works

149

learning where training models need online and offline creation more often. In

machine learning-based covert channel detection cases, this could be taxing on a

single processor and hence paper [218] has proposed the usage of distributed covert

channel detection.

The phase space-based transformation motivated from the work for studying non-

linear dynamic systems has essentially helped with the transformation of single

dimension ISN data to multi-dimensional vectors. It is this process of the

transformation that puts things in perspective for this research work. The proposed

framework is used for continuous data monitoring, threshold maintenance and alert

notification and to detect covert data leakages especially with regard to non-linear

chaotic data. The main advantage of the proposed framework is its capability of

providing more efficient results with tolerance/threshold values. The proposed

mathematical model can also be used for on-the-fly detection of covert data as

opposed to offline processing methods.

As part of my future work, I will investigate the effectiveness of my model for other

operating systems such as Windows.

150

References

[1] C. Wueest, "Internet Security Threat Report (ISTR): Financial Threats Review
2017," Symantec, July, vol. 18, p. 2017, 2017.

[2] C. C. Magzine. (2017). Cybersecurity Ventures Official Annual Cybercrime
Report. Available: https://cybersecurityventures.com/cybercrime-damages-6-
trillion-by-2021/

[3] IBM. (2018). 2018 Cost of Data Breach Study, Global Overview. Available:
https://www.ibm.com/security/data-breach

[4] H. M. s. Government. (2015). Information security breaches survey 2015
Available: https://www.gov.uk/government/publications/information-security-
breaches-survey-2015

[5] N. Nissim, A. Cohen, C. Glezer, and Y. Elovici, "Detection of malicious PDF
files and directions for enhancements: a state-of-the art survey," Computers &
Security, vol. 48, pp. 246-266, 2015.

[6] Y. F. Nia and A. Nowroozi, "Behavior and system based backdoor detection
focusing on CMD phase," in 2015 12th International Iranian Society of
Cryptology Conference on Information Security and Cryptology (ISCISC),
2015, pp. 128-133: IEEE.

[7] S. H. Sellke, C.-C. Wang, S. Bagchi, and N. Shroff, "TCP/IP timing channels:
Theory to implementation," in IEEE INFOCOM 2009, 2009, pp. 2204-2212:
IEEE.

[8] D. Chiu, S.-H. Weng, and J. Chiu, "Backdoor use in targeted attacks," A Trend
Micro Research Paper, 2017.

[9] (17-Feb). Stealing data using steganography. Available: ttps://www.c-
sharpcorner.com/news/stealing-data-using-steganography

[10] (17-Feb). Steganographic Hacking - How it Works. Available:
https://adamlevin.com/2018/02/22/steganographic-hacking-works/

[11] (17-Feb). Magento Malware Uses Steganography to Steal Payment Card
Data. Available: https://www.securitynewspaper.com/2016/10/18/magento-
malware-uses-steganography-steal-payment-card-data/

[12] (17-Feb). Insider uses steganography to steal trade secrets for China ⋆
Security On Demand. Available: https://www.securityondemand.com/news-
posts/insider-uses-steganography-steal-trade-secrets-china/

[13] (17-Feb). Hackers’ latest weapon: Steganography. Available:
https://publications.computer.org/computer-magazine/2018/11/15/how-
steganography-works/

[14] L. M. Cameron. With Cryptography Easier To Detect, Cybercriminals Now
Hide Malware In Plain Sight. Call It Steganography. Here’s How It Works.

https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://www.ibm.com/security/data-breach
https://www.gov.uk/government/publications/information-security-breaches-survey-2015
https://www.gov.uk/government/publications/information-security-breaches-survey-2015
www.c-sharpcorner.com/news/stealing-data-using-steganography
www.c-sharpcorner.com/news/stealing-data-using-steganography
https://adamlevin.com/2018/02/22/steganographic-hacking-works/
https://www.securitynewspaper.com/2016/10/18/magento-malware-uses-steganography-steal-payment-card-data/
https://www.securitynewspaper.com/2016/10/18/magento-malware-uses-steganography-steal-payment-card-data/
https://www.securityondemand.com/news-posts/insider-uses-steganography-steal-trade-secrets-china/
https://www.securityondemand.com/news-posts/insider-uses-steganography-steal-trade-secrets-china/
https://publications.computer.org/computer-magazine/2018/11/15/how-steganography-works/
https://publications.computer.org/computer-magazine/2018/11/15/how-steganography-works/

151

Available: https://publications.computer.org/computer-
magazine/2018/11/15/how-steganography-works/

[15] Y.-H. Jin et al., "A rapid advice guideline for the diagnosis and treatment of
2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version),"
Military Medical Research, vol. 7, no. 1, p. 4, 2020.

[16] S. Zander, G. Armitage, and P. Branch, "A survey of covert channels and
countermeasures in computer network protocols," IEEE Communications
Surveys & Tutorials, vol. 9, no. 3, pp. 44-57, 2007.

[17] B. Panajotov and A. Mileva, "Covert Channels in TCP/IP Protocol Stack," ICT
innovations web proceedings, pp. 190-199, 2013.

[18] K. Cabaj, L. Caviglione, W. Mazurczyk, S. Wendzel, A. Woodward, and S.
Zander, "The new threats of information hiding: the road ahead," IT
Professional, vol. 20, no. 3, pp. 31-39, 2018.

[19] W. Mazurczyk, K. Szczypiorski, and B. Jankowski, "Towards steganography
detection through network traffic visualisation," in 2012 IV International
Congress on Ultra Modern Telecommunications and Control Systems, 2012,
pp. 947-954: IEEE.

[20] E. Brown, B. Yuan, D. Johnson, and P. Lutz, "Covert channels in the HTTP
network protocol: Channel characterization and detecting Man-in-the-Middle
attacks," Journal of Information Warfare, vol. 9, no. 3, pp. 26-38, 2010.

[21] B. Panajotov and A. Mileva, "Covert Channels in TCP/IP Protocol Stack," in
ICT Innovations 2013 Web Proceedings, 2013.

[22] S. J. Murdoch, "Covert channel vulnerabilities in anonymity systems,"
University of Cambridge, Computer Laboratory2007.

[23] R. Heady, G. F. Luger, A. Maccabe, and M. Servilla, The architecture of a
network level intrusion detection system. University of New Mexico.
Department of Computer Science. College of Engineering, 1990.

[24] R. Bace and P. Mell, "NIST special publication on intrusion detection
systems," BOOZ-ALLEN AND HAMILTON INC MCLEAN VA2001.

[25] K. K. Abhaya, R. Jha, and S. Afroz, "Data mining techniques for intrusion
detection: A review," International Journal of Advanced Research in Computer
and Communication Engineering, vol. 3, no. 6, pp. 6938-6942, 2014.

[26] Z. Dewa and L. A. Maglaras, "Data mining and intrusion detection systems,"
International Journal of Advanced Computer Science and Applications, vol. 7,
no. 1, pp. 62-71, 2016.

[27] J. Cao et al., "Covert Channels in SDN: Leaking Out Information from
Controllers to End Hosts," in International Conference on Security and Privacy
in Communication Systems, 2019, pp. 429-449: Springer.

[28] S. Zander, G. Armitage, and P. Branch, "Covert channels and
countermeasures in computer network protocols [reprinted from ieee

https://publications.computer.org/computer-magazine/2018/11/15/how-steganography-works/
https://publications.computer.org/computer-magazine/2018/11/15/how-steganography-works/

152

communications surveys and tutorials]," IEEE Communications Magazine, vol.
45, no. 12, pp. 136-142, 2007.

[29] S. Zander, G. Armitage, and P. Branch, "Covert channels and
countermeasures in computer network protocols [reprinted from ieee
communications surveys and tutorials]," IEEE Communications Magazine, vol.
45, no. 12, pp. 136-142, 2007.

[30] M. Alam and S. Sethi, "Covert Channel Detection framework for cloud using
distributed machine learning," CoRR-Computing Research Repository-arXiv,
2015.

[31] T. Sohn, J. Seo, and J. Moon, "A study on the covert channel detection of
TCP/IP header using support vector machine," in International Conference on
Information and Communications Security, 2003, pp. 313-324: Springer.

[32] K. Cabaj, W. Mazurczyk, P. Nowakowski, and P. Żórawski, "Towards
Distributed Network Covert Channels Detection Using Data Mining-based
Approach," in Proceedings of the 13th International Conference on
Availability, Reliability and Security, 2018, pp. 1-10.

[33] C. Zhiyong and Z. Yong, "Entropy based taxonomy of network convert
channels," in 2009 2nd International Conference on Power Electronics and
Intelligent Transportation System (PEITS), 2009, vol. 1, pp. 451-455: IEEE.

[34] W. De Mulder, "Optimal clustering in the context of overlapping cluster
analysis," Information Sciences, vol. 223, pp. 56-74, 2013.

[35] A. S. Coronado, "Computer Security: Principles and Practice," Journal of
Information Privacy and Security, vol. 9, no. 2, pp. 62-65, 2013.

[36] X. Zhang, Y.-A. Tan, C. Liang, Y. Li, and J. Li, "A covert channel over volte via
adjusting silence periods," IEEE Access, vol. 6, pp. 9292-9302, 2018.

[37] S. Cabuk, "Network covert channels: Design, analysis, detection, and
elimination," Purdue University, 2006.

[38] Y. Kang, X. Li, Y. Lu, and C. Yang, "Application of chaotic phase space
reconstruction into nonlinear time series prediction in deep rock mass," in
Fuzzy Systems and Knowledge Discovery, 2008. FSKD'08. Fifth International
Conference on, 2008, vol. 5, pp. 593-597: IEEE.

[39] D. Llamas, C. Allison, and A. Miller, "Covert channels in internet protocols: A
survey," in Proceedings of the 6th Annual Postgraduate Symposium about the
Convergence of Telecommunications, Networking and Broadcasting, PGNET,
2005, vol. 2005.

[40] M. Ławniczak, S. Bauch, and L. Sirko, "Handbook of Applications of Chaos
Theory," ed: CRC Press, Boca Raton USA eds. Christos Skiadas and
Charilaos Skiadas, 2016.

[41] C. Frazier and K. M. Kockelman, "Chaos theory and transportation systems:
Instructive example," Transportation Research Record, vol. 1897, no. 1, pp. 9-
17, 2004.

153

[42] L. Sardonini, "Invariants estimation in nonlinear time series," alma, 2007.

[43] Q. Lü, G. Shen, and R. Yu, "A chaotic approach to maintain the population
diversity of genetic algorithm in network training," Computational Biology
Chemistry, vol. 27, no. 3, pp. 363-371, 2003.

[44] X. Haibo and Z. Laibin, "Development actualities of pipeline leak-detection
technologies at home and abroad," Oil Gas Storage Transportation research
part F: traffic psychology and behaviour, vol. 20, no. 1, pp. 1-15, 2001.

[45] H. Zhao and Y.-Q. Shi, "Detecting covert channels in computer networks
based on chaos theory," Information Forensics and Security, IEEE
Transactions on, vol. 8, no. 2, pp. 273-282, 2013.

[46] A. Shabtai, Y. Elovici, and L. Rokach, A survey of data leakage detection and
prevention solutions. Springer Science & Business Media, 2012.

[47] P. Papadimitriou and H. Garcia-Molina, "Data leakage detection," Knowledge
and Data Engineering, IEEE Transactions on, vol. 23, no. 1, pp. 51-63, 2011.

[48] G. Clayton. (2015, 14 May). Data Loss Prevention and Monitoring in the
Workplace: Best Practice Guide for Europe. Available:
http://www.symantec.com/connect/sites/default/files/21263455_EMEA_WP_D
LP_Monitoring_workplace_09_12.pdf

[49] Kaspersky. (2015, 14 May). Kaspersky Security 9.0 for Microsoft Exchange
Servers. Available: https://support.kaspersky.co.uk/11619

[50] R. B. Security. (2016, 16 April). Bad Luck Over The Upcoming Badlock
Vulnerability? Available: www.riskbasedsecurity.com/2016/03/bad-luck-over-
the-upcoming-badlock-vulnerability/

[51] K. Thomas et al., "Data breaches, phishing, or malware? Understanding the
risks of stolen credentials," in Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security, 2017, pp. 1421-1434.

[52] K. Thomas et al., "Data breaches, phishing, or malware?: Understanding the
risks of stolen credentials," in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp. 1421-
1434: ACM.

[53] J. P. Singh, "Analysis of SQL Injection Detection Techniques," arXiv preprint
arXiv:1605.02796, 2016.

[54] Z. S. Alwan and M. F. Younis, "Detection and prevention of SQL Injection
attack: A survey," vol, vol. 6, pp. 5-17, 2017.

[55] A. Joshi and V. Geetha, "SQL Injection detection using machine learning," in
2014 International Conference on Control, Instrumentation, Communication
and Computational Technologies (ICCICCT), 2014, pp. 1111-1115: IEEE.

[56] P. R. McWhirter, K. Kifayat, Q. Shi, and B. Askwith, "SQL Injection Attack
classification through the feature extraction of SQL query strings using a Gap-
Weighted String Subsequence Kernel," Journal of information security and
applications, vol. 40, pp. 199-216, 2018.

http://www.symantec.com/connect/sites/default/files/21263455_EMEA_WP_DLP_Monitoring_workplace_09_12.pdf
http://www.symantec.com/connect/sites/default/files/21263455_EMEA_WP_DLP_Monitoring_workplace_09_12.pdf
https://support.kaspersky.co.uk/11619
www.riskbasedsecurity.com/2016/03/bad-luck-over-the-upcoming-badlock-vulnerability/
www.riskbasedsecurity.com/2016/03/bad-luck-over-the-upcoming-badlock-vulnerability/

154

[57] S. W. Boyd and A. D. Keromytis, "SQLrand: Preventing SQL injection
attacks," in International Conference on Applied Cryptography and Network
Security, 2004, pp. 292-302: Springer.

[58] T. Micro, "Data-stealing malware on the rise: Solutions to keep businesses
and consumers safe," Retrived from http://us. trendmicro.
com/imperia/md/content/us/pdf/threats/securitylibrary/data_stealing_malware_
focus_report_-_june_2009. pdf, 2009.

[59] B. Research, "New Data-Stealing, Cryptomining Malware Campaign on the
Rise," 2018.

[60] F. Labs. (2018, 2 May). How Malware can Steal your Data and What you can
do to Stop It. Available: https://interact.f5.com/rs/653-SMC-
783/images/EBOOK_How-Malware-Can-Steal-Your-Data.pdf

[61] W. Ashford, "Rise in data-stealing Betabot malware," ed: Computer Weekly,
2018.

[62] J. A. Chaudhry, S. A. Chaudhry, and R. G. Rittenhouse, "Phishing attacks and
defenses," International Journal of Security and Its Applications, vol. 10, no. 1,
pp. 247-256, 2016.

[63] T. N. Jagatic, N. A. Johnson, M. Jakobsson, and F. Menczer, "Social
phishing," Communications of the ACM, vol. 50, no. 10, pp. 94-100, 2007.

[64] C. Hoffman, "What is DNS Cache Poisoning?," ed: How to Geek, 2017.

[65] Techopedia. (1-Feb). Direct Memory Access (DMA). Available:
https://www.techopedia.com/definition/2767/direct-memory-access-dma

[66] B. Morgan, E. Alata, V. Nicomette, and M. Kaâniche, "Bypassing IOMMU
protection against I/O attacks," in 2016 Seventh Latin-American Symposium
on Dependable Computing (LADC), 2016, pp. 145-150: IEEE.

[67] P. Stewin and I. Bystrov, "Understanding DMA malware," in International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, 2012, pp. 21-41: Springer.

[68] K. Zetter, "Acker Lexicon: What is a Backdoor?," ed: Wired, 2014.

[69] J. Clements and Y. Lao, "Backdoor Attacks on Neural Network Operations," in
2018 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), 2018, pp. 1154-1158: IEEE.

[70] S. L. Thomas and A. Francillon, "Backdoors: Definition, Deniability and
Detection," in International Symposium on Research in Attacks, Intrusions,
and Defenses, 2018, pp. 92-113: Springer.

[71] Techopedia. (2016, 1-Jan). Keylogger. Available:
https://www.techopedia.com/definition/4000/keylogger

[72] M. Hussain et al., "The rise of keyloggers on smartphones: A survey and
insight into motion-based tap inference attacks," Pervasive and Mobile
Computing, vol. 25, pp. 1-25, 2016.

http://us/
https://interact.f5.com/rs/653-SMC-783/images/EBOOK_How-Malware-Can-Steal-Your-Data.pdf
https://interact.f5.com/rs/653-SMC-783/images/EBOOK_How-Malware-Can-Steal-Your-Data.pdf
https://www.techopedia.com/definition/2767/direct-memory-access-dma
https://www.techopedia.com/definition/4000/keylogger

155

[73] A. Solairaj, S. Prabanand, J. Mathalairaj, C. Prathap, and L. Vignesh,
"Keyloggers software detection techniques," in 2016 10th International
Conference on Intelligent Systems and Control (ISCO), 2016, pp. 1-6: IEEE.

[74] A. Emigh, "The crimeware landscape: Malware, phishing, identity theft and
beyond," Journal of Digital Forensic Practice, vol. 1, no. 3, pp. 245-260, 2006.

[75] S. Z. Goher, B. Javed, and N. A. Saqib, "Covert channel detection: A survey
based analysis," in High Capacity Optical Networks and Emerging/Enabling
Technologies, 2012, pp. 057-065: IEEE.

[76] U. Budhia and D. Kundur, "Digital video steganalysis exploiting collusion
sensitivity," in Sensors, and Command, Control, Communications, and
Intelligence (C3I) Technologies for Homeland Security and Homeland
Defense III, 2004, vol. 5403, pp. 210-222: International Society for Optics and
Photonics.

[77] M. Jain and S. K. Lenka, "A Review on Data Leakage Prevention using Image
Steganography," Department of Computer Science and Engineering, Mody
University of Science and Technology ISSN, vol. 23197323, 2016.

[78] T. G. Handel and M. T. Sandford, "Hiding data in the OSI network model," in
International Workshop on Information Hiding, 1996, pp. 23-38: Springer.

[79] S. Wendzel, W. Mazurczyk, L. Caviglione, and M. Meier, "Hidden and
uncontrolled–on the emergence of network steganographic threats," in ISSE
2014 Securing Electronic Business Processes: Springer, 2014, pp. 123-133.

[80] S. Das, S. Das, B. Bandyopadhyay, and S. Sanyal, "Steganography and
Steganalysis: different approaches," arXiv preprint arXiv:.02211, 2011.

[81] K. Ahsan and D. Kundur, "Practical data hiding in TCP/IP," in Proc. Workshop
on Multimedia Security at ACM Multimedia, 2002, vol. 2, no. 7.

[82] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts, "Covert messaging
through TCP timestamps," in International Workshop on Privacy Enhancing
Technologies, 2002, pp. 194-208: Springer.

[83] S. Bellovin, "Defending against sequence number attacks RFC 1948," 1996.

[84] C. H. Rowland, "Covert channels in the TCP/IP protocol suite," vol. 2, no. 5,
1997.

[85] M. Zalewski. (2001, 17 April). Strange attractors and tcp/ip sequence number
analysis. Available: http://lcamtuf.coredump.cx/newtcp/

[86] M. A. N. Mahajan and I. Shaikh, "Detecting Covert Channels in TCP/IP
Header with the Use of Naive Bayes Classifier," 2015.

[87] S. Wendzel, S. Zander, B. Fechner, and C. Herdin, "Pattern-based survey and
categorization of network covert channel techniques," ACM Computing
Surveys (CSUR), vol. 47, no. 3, p. 50, 2015.

[88] T. G. Handel and M. T. Sandford II, "Hiding data in the OSI network model," in
Information Hiding, 1996, pp. 23-38: Springer.

http://lcamtuf.coredump.cx/newtcp/

156

[89] J. Classen, M. Schulz, and M. Hollick, "Practical covert channels for WiFi
systems," in Communications and Network Security (CNS), 2015 IEEE
Conference on, 2015, pp. 209-217: IEEE.

[90] Z. Kwecka, "Application layer covert channel analysis and detection,"
Edinburgh Napier University, 2006.

[91] J. P. Black, "Techniques of network steganography and covert channels," San
Diego State University, 2014.

[92] W. Stallings, Cryptography and Network Security, 5th Edition ed. New York:
Prentice Hall, 2008.

[93] S. Z. Goher, B. Javed, and N. A. Saqib, "Covert channel detection: A survey
based analysis," in High Capacity Optical Networks and Emerging/Enabling
Technologies, 2012, pp. 057-065: IEEE.

[94] S. Zander, G. Armitage, and P. Branch, "A survey of covert channels and
countermeasures in computer network protocols," IEEE Communications
Surveys Tutorials, vol. 9, no. 3, pp. 44-57, 2007.

[95] X. Shu and D. D. Yao, "Data leak detection as a service," in Security and
Privacy in Communication Networks: Springer, 2012, pp. 222-240.

[96] P.-C. Lin, Y.-D. Lin, Y.-C. Lai, and T.-H. Lee, "Using string matching for deep
packet inspection," Computer, vol. 41, no. 4, pp. 23-28, 2008.

[97] S. Nawafleh, M. Hasan, Y. Nawafleh, and S. Fakhouri, "Protection and
defense against sensitive data leakage problem within organizations,"
European Journal of Business and Management, vol. 5, no. 23, pp. 87-95,
2013.

[98] H. Sethuraman and M. Abdul Haseeb, "Data loss/leakage prevention," ed,
2013.

[99] J. Marecki, M. Srivatsa, and P. Varakantham, "A Decision Theoretic Approach
to Data Leakage Prevention," in Social Computing (SocialCom), 2010 IEEE
Second International Conference on, 2010, pp. 776-784: IEEE.

[100] P. Papadimitriou and H. Garcia-Molina, "A model for data leakage detection,"
in Data Engineering, 2009. ICDE'09. IEEE 25th International Conference on,
2009, pp. 1307-1310: IEEE.

[101] A. Kundu. (2006, 16 January). Information Leaks and Safe Web Services.
Available: http://www.techrepublic.com/resource-
library/whitepapers/information-leaks-and-safe-web-services/

[102] R. Yokomori, F. Ohata, Y. Takata, H. Seki, and K. Inoue, "Analysis and
implementation method of program to detect inappropriate information leak,"
in Quality Software, 2001. Proceedings. Second Asia-Pacific Conference on,
2001, pp. 5-12: IEEE.

[103] S. Kuninobu, Y. Takata, H. Seki, and K. Inoue, "An information flow analysis
of programs based on a lattice model," Technical report of IEICE SS
20002000.

http://www.techrepublic.com/resource-library/whitepapers/information-leaks-and-safe-web-services/
http://www.techrepublic.com/resource-library/whitepapers/information-leaks-and-safe-web-services/

157

[104] M. McCormick, "Data theft: a prototypical insider threat," in Insider Attack and
Cyber Security: Springer, 2008, pp. 53-68.

[105] R. Capizzi, A. Longo, V. Venkatakrishnan, and A. P. Sistla, "Preventing
information leaks through shadow executions," in Computer Security
Applications Conference, 2008. ACSAC 2008. Annual, 2008, pp. 322-331:
IEEE.

[106] S. Zander, G. Armitage, and P. Branch, "Covert channels in the IP time to live
field," 2006.

[107] G. Shah, A. Molina, and M. Blaze, "Keyboards and Covert Channels," in
Usenix security, 2006, vol. 6, pp. 59-75.

[108] S. Zander, G. Armitage, and P. Branch, "Stealthier inter-packet timing covert
channels," in International Conference on Research in Networking, 2011, pp.
458-470: Springer.

[109] Z. Trabelsi, H. El-Sayed, L. Frikha, and T. Rabie, "Traceroute based IP
channel for sending hidden short messages," in International Workshop on
Security, 2006, pp. 421-436: Springer.

[110] Z. Trabelsi, H. El-Sayed, L. Frikha, and T. Rabie, "A novel covert channel
based on the IP header record route option," International Journal of
Advanced Media and Communication, vol. 1, no. 4, pp. 328-350, 2007.

[111] P. Allix, "Covert channels analysis in TCP/IP networks," IFIPS School of
Engineering, University of Paris-Sud XI, Orsay, France2007.

[112] S. Gianvecchio, H. Wang, D. Wijesekera, and S. Jajodia, "Model-based covert
timing channels: Automated modeling and evasion," in International Workshop
on Recent Advances in Intrusion Detection, 2008, pp. 211-230: Springer.

[113] W. Mazurczyk and K. Szczypiorski, "Steganography in handling oversized IP
packets," in 2009 International Conference on Multimedia Information
Networking and Security, 2009, vol. 1, pp. 559-564: IEEE.

[114] W. Mazurczyk and K. Szczypiorski, "Evaluation of steganographic methods
for oversized IP packets," Telecommunication Systems, vol. 49, no. 2, pp.
207-217, 2012.

[115] A. El-Atawy and E. Al-Shaer, "Building covert channels over the packet
reordering phenomenon," in IEEE INFOCOM 2009, 2009, pp. 2186-2194:
IEEE.

[116] A. Askarov, D. Zhang, and A. C. Myers, "Predictive black-box mitigation of
timing channels," in Proceedings of the 17th ACM conference on Computer
and communications security, 2010, pp. 297-307: ACM.

[117] J. Wu, Y. Wang, L. Ding, and X. Liao, "Improving performance of network
covert timing channel through Huffman coding," Mathematical and Computer
Modelling, vol. 55, no. 1-2, pp. 69-79, 2012.

158

[118] Z. Wu, Z. Xu, and H. Wang, "Whispers in the hyper-space: high-bandwidth
and reliable covert channel attacks inside the cloud," IEEE/ACM Transactions
on Networking, vol. 23, no. 2, pp. 603-615, 2015.

[119] X. Lu, Y. Wang, L. Huang, W. Yang, and Y. Shen, "A Secure and Robust
Covert Channel Based on Secret Sharing Scheme," in Asia-Pacific Web
Conference, 2016, pp. 276-288: Springer.

[120] M. A. Ayub, S. Smith, and A. Siraj, "A Protocol Independent Approach in
Network Covert Channel Detection," in 2019 IEEE International Conference
on Computational Science and Engineering (CSE) and IEEE International
Conference on Embedded and Ubiquitous Computing (EUC), 2019, pp. 165-
170: IEEE.

[121] S. Cabuk, C. E. Brodley, and C. Shields, "IP covert timing channels: design
and detection," in Proceedings of the 11th ACM conference on Computer and
communications security, 2004, pp. 178-187: ACM.

[122] R. Chakinala, A. Kumarasubramanian, R. Manokaran, G. Noubir, C. P.
Rangan, and R. Sundaram, "Steganographic communication in ordered
channels," in International Workshop on Information Hiding, 2006, pp. 42-57:
Springer.

[123] X. Luo, E. W. Chan, and R. K. Chang, "Cloak: A ten-fold way for reliable
covert communications," in European Symposium on Research in Computer
Security, 2007, pp. 283-298: Springer.

[124] X. Luo, E. W. Chan, and R. K. Chang, "CLACK: A network covert channel
based on partial acknowledgment encoding," in 2009 IEEE International
Conference on Communications, 2009, pp. 1-5: IEEE.

[125] X. Luo, P. Zhou, E. W. Chan, R. K. Chang, and W. Lee, "A combinatorial
approach to network covert communications with applications in web leaks,"
in 2011 IEEE/IFIP 41st International Conference on Dependable Systems &
Networks (DSN), 2011, pp. 474-485: IEEE.

[126] X. Luo, E. W. Chan, and R. K. Chang, "TCP covert timing channels: Design
and detection," in 2008 IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC (DSN), 2008, pp. 420-429:
IEEE.

[127] W. Mazurczyk, M. Smolarczyk, and K. Szczypiorski, "Retransmission
steganography applied," in 2010 International Conference on Multimedia
Information Networking and Security, 2010, pp. 846-850: IEEE.

[128] W. Mazurczyk, M. Smolarczyk, and K. Szczypiorski, "On information hiding in
retransmissions," Telecommunication Systems, vol. 52, no. 2, pp. 1113-1121,
2013.

[129] X. Luo, E. W. Chan, P. Zhou, and R. K. Chang, "Robust network covert
communications based on TCP and enumerative combinatorics," IEEE
Transactions on Dependable and Secure Computing, vol. 9, no. 6, pp. 890-
902, 2012.

159

[130] J. Thyer, "Covert data storage channel using ip packet headers," SANS
Institute, 2008.

[131] J. Oakley, L. Yu, X. Zhong, G. K. Venayagamoorthy, and R. Brooks, "Protocol
Proxy: An FTE-based Covert Channel," Computers Security, p. 101777, 2020.

[132] M. Van Horenbeeck, "Deception on the network: thinking differently about
covert channels," 2006.

[133] R. Duncan and J. E. Martina, "Steganographic Message Broadcasting using
Web Protocols," in proceedings of: Simposio Brasilerio de Seguranca (SBSeg
2010), Fortaleza, Brasil, 2010.

[134] J. Jaskolka, R. Khedri, and K. E. Sabri, "Investigative support for information
confidentiality part I: Detecting confidential information leakage via protocol-
based covert channels," Procedia Computer Science, vol. 34, pp. 276-285,
2014.

[135] W. Mazurczyk and K. Szczypiorski, "Steganography of VoIP streams," in OTM
Confederated International Conferences" On the Move to Meaningful Internet
Systems", 2008, pp. 1001-1018: Springer.

[136] W. Mazurczyk and K. Szczypiorski, "Covert Channels in SIP for VoIP
signalling," in International Conference on Global e-Security, 2008, pp. 65-72:
Springer.

[137] Y. Lizhi, H. Yongfeng, Y. Jian, and L. Bai, "A novel covert timing channel
based on RTP/RTCP," Chinese Journal of Electronics, vol. 21, no. 4, pp. 711-
714, 2012.

[138] R. Goudar and P. More, "Hybrid Covert Channel an Obliterate for Information
Hiding," in Proceedings of the Third International Conference on Trends in
Information, Telecommunication and Computing, 2013, pp. 609-613: Springer.

[139] C. J. Huberty and J. D. Morris, "Multivariate analysis versus multiple
univariate analyses," Psychological bulletin, vol. 105, no. 2, p. 302, 1989.

[140] K. Clarke and R. Warwick, "An approach to statistical analysis and
interpretation," Change in marine communities, vol. 2, pp. 117-143, 1994.

[141] A. Liu, J. Chen, and L. Yang, "Real-time detection of covert channels in highly
virtualized environments," in International Conference on Critical Infrastructure
Protection, 2011, pp. 151-164: Springer.

[142] V. Berk, A. Giani, G. Cybenko, and N. Hanover, "Detection of covert channel
encoding in network packet delays," Rapport technique TR536, de
lUniversit√© de Dartmouth, vol. 19, 2005.

[143] C. Kreibich, M. Handley, and V. Paxson, "Network intrusion detection:
Evasion, traffic normalization, and end-to-end protocol semantics," in Proc.
USENIX Security Symposium, 2001, vol. 2001.

[144] C. Wang, C. Zhang, B. Wu, Y. a. Tan, and Y. Wang, "A novel anti-detection
criterion for covert storage channel threat estimation," Science China
Information Sciences, vol. 61, no. 4, p. 048101, 2018.

160

[145] C. H. Rowland, "Covert channels in the TCP/IP protocol suite," First Monday,
vol. 2, no. 5, 1997.

[146] S. M. Bellovin and F. Gont, "Defending against sequence number attacks,"
2012.

[147] E. Tumoian and M. Anikeev, "Network based detection of passive covert
channels in TCP/IP," in Local Computer Networks, 2005. 30th Anniversary.
The IEEE Conference on, 2005, pp. 802-809: IEEE.

[148] J. Zhai, G. Liu, and Y. Dai, "A covert channel detection algorithm based on
TCP Markov model," in Multimedia Information Networking and Security
(MINES), 2010 International Conference on, 2010, pp. 893-897: IEEE.

[149] S. Kullback and R. A. Leibler, "On information and sufficiency," The annals of
mathematical statistics, vol. 22, no. 1, pp. 79-86, 1951.

[150] H. Qu, P. Su, and D. Feng, "A typical noisy covert channel in the IP protocol,"
in Security Technology, 2004. 38th Annual 2004 International Carnahan
Conference on, 2004, pp. 189-192: IEEE.

[151] S. Wendzel and S. Zander, "Detecting protocol switching covert channels," in
Local Computer Networks (LCN), 2012 IEEE 37th Conference on, 2012, pp.
280-283: IEEE.

[152] L. Y. L. Yao, L. Z. L. ZhiTang, and L. S. L. Shuyu, "A fuzzy anomaly detection
algorithm for ipv6," in Semantics, Knowledge and Grid, 2006. SKG'06. Second
International Conference on, 2006, pp. 67-67: IEEE.

[153] Z. Liu and Y. Lai, "A data mining framework for building intrusion detection
models based on IPv6," in International Conference on Information Security
and Assurance, 2009, pp. 608-618: Springer.

[154] R. M. Saad, S. Ramadass, and S. Manickam, "A study on detecting ICMPv6
flooding attack based on IDS," Australian Journal of Basic and Applied
Sciences, vol. 7, no. 2, pp. 175-181, 2013.

[155] M. Zulkiflee, M. Azmi, S. Ahmad, S. Sahib, and M. Ghani, "A framework of
features selection for ipv6 network attacks detection," WSEAS Trans
Commun, vol. 14, no. 46, pp. 399-408, 2015.

[156] A. Salih, X. Ma, and E. Peytchev, "Detection and classification of covert
channels in IPv6 using enhanced machine learning," 2015.

[157] M. Padlipsky, D. Snow, and P. Karger, "Limitations of end-to-end encryption in
secure computer networks," MITRE CORP BEDFORD MA1978.

[158] Q.-z. Yao and P. Zhang, "Coverting channel based on packet length,"
Computer engineering, vol. 34, no. 3, pp. 183-185, 2008.

[159] A. S. Nair, A. Sur, and S. Nandi, "Detection of packet length based network
steganography," in Multimedia Information Networking and Security (MINES),
2010 International Conference on, 2010, pp. 574-578: IEEE.

161

[160] J. Chow, X. Li, and X. Mountrouidou, "Raising flags: Detecting covert storage
channels using relative entropy," in Intelligence and Security Informatics (ISI),
2017 IEEE International Conference on, 2017, pp. 25-30: IEEE.

[161] D. J. Pack, W. Streilein, S. Webster, and R. Cunningham, "Detecting HTTP
tunneling activities," MASSACHUSETTS INST OF TECH LEXINGTON
LINCOLN LAB2002.

[162] K. Borders and A. Prakash, "Web tap: detecting covert web traffic," in
Proceedings of the 11th ACM conference on Computer and communications
security, 2004, pp. 110-120: ACM.

[163] Y. Sun, L. Zhang, and C. Zhao, "A Study of Network Covert Channel
Detection Based on Deep Learning," in 2018 2nd IEEE Advanced Information
Management, Communicates, Electronic and Automation Control Conference
(IMCEC), 2018, pp. 637-641: IEEE.

[164] H. Song and X. Li, "Collaborative detection of covert storage channels," in
Military Communications Conference, MILCOM 2016-2016 IEEE, 2016, pp.
515-520: IEEE.

[165] H. Hovhannisyan, K. Lu, R. Yang, W. Qi, J. Wang, and M. Wen, "A novel
deduplication-based covert channel in cloud storage service," in Global
Communications Conference (GLOBECOM), 2015 IEEE, 2015, pp. 1-6: IEEE.

[166] L. C. Han, "Multi-bit data de-duplication-based cloud storage channel covert,"
Measurement, vol. 144, pp. 52-57, 2019.

[167] L. Caviglione, M. Podolski, W. Mazurczyk, and M. Ianigro, "Covert channels in
personal cloud storage services: The case of Dropbox," IEEE Transactions on
Industrial Informatics, vol. 13, no. 4, pp. 1921-1931, 2017.

[168] K. Denney, A. S. Uluagac, K. Akkaya, and S. Bhansali, "A novel storage
covert channel on wearable devices using status bar notifications," in
Consumer Communications & Networking Conference (CCNC), 2016 13th
IEEE Annual, 2016, pp. 845-848: IEEE.

[169] A. Singh and K. Manchanda, "Establishment of bit selective mode storage
covert channel in VANETS," in Computational Intelligence and Computing
Research (ICCIC), 2015 IEEE International Conference on, 2015, pp. 1-4:
IEEE.

[170] Y. Shoukry, J. Araujo, P. Tabuada, M. Srivastava, and K. H. Johansson,
"Minimax control for cyber-physical systems under network packet scheduling
attacks," in Proceedings of the 2nd ACM international conference on High
confidence networked systems, 2013, pp. 93-100: ACM.

[171] V. Berk, A. Giani, G. Cybenko, and N. Hanover, "Detection of covert channel
encoding in network packet delays," Rapport technique TR536, de lUniversite
de Dartmouth, p. 19, 2005.

[172] R. Soltani, D. Goeckel, D. Towsley, and A. Houmansadr, "Fundamental Limits
of Covert Packet Insertion," arXiv preprint arXiv:1903.11640, 2019.

162

[173] S. H. Sellke, C.-C. Wang, S. Bagchi, and N. Shroff, "TCP/IP timing channels:
Theory to implementation," in INFOCOM 2009, IEEE, 2009, pp. 2204-2212:
IEEE.

[174] J. Giles and B. Hajek, "An information-theoretic and game-theoretic study of
timing channels," Information Theory, IEEE Transactions on, vol. 48, no. 9,
pp. 2455-2477, 2002.

[175] W.-M. Hu, "Reducing timing channels with fuzzy time," Journal of computer
security, vol. 1, no. 3-4, pp. 233-254, 1992.

[176] M. H. Kang, I. S. Moskowitz, and S. Chincheck, "The pump: A decade of
covert fun," in Computer Security Applications Conference, 21st Annual,
2005, pp. 7 pp.-360: IEEE.

[177] J. Agat, "Transforming out timing leaks," in Proceedings of the 27th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
2000, pp. 40-53: ACM.

[178] R. A. Kemmerer, "A practical approach to identifying storage and timing
channels: Twenty years later," in Computer Security Applications Conference,
2002. Proceedings. 18th Annual, 2002, pp. 109-118: IEEE.

[179] V. Berk, A. Giani, and G. Cybenko, "Covert channel detection using process
query systems," Proceedings of FLOCON 2005, 2005.

[180] S. Gianvecchio and H. Wang, "Detecting covert timing channels: an entropy-
based approach," in Proceedings of the 14th ACM conference on Computer
and communications security, 2007, pp. 307-316: ACM.

[181] P. Peng, P. Ning, and D. S. Reeves, "On the secrecy of timing-based active
watermarking trace-back techniques," in Security and Privacy, 2006 IEEE
Symposium on, 2006, pp. 15 pp.-349: IEEE.

[182] P. Yang, H. Zhao, and Z. Bao, "A probability-model-based approach to detect
covert timing channel," in Information and Automation, 2015 IEEE
International Conference on, 2015, pp. 1043-1047: IEEE.

[183] K. S. Lee, H. Wang, and H. Weatherspoon, "PHY covert channels: Can you
see the idles?," in 11th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), 2014, pp. 173-185.

[184] H. Fang, F. Yao, M. Doroslovački, and G. Venkataramani, "Negative
Correlation, Non-linear Filtering, and Discovering of Repetitiveness for Cache
Timing Channel Detection," in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019,
pp. 2522-2526: IEEE.

[185] D. M. Dakhane and P. R. Deshmukh, "Active warden for TCP sequence
number base covert channel," in Pervasive Computing (ICPC), 2015
International Conference on, 2015, pp. 1-5: IEEE.

[186] A. Sur, A. S. Nair, A. Kumar, A. Jain, and S. Nandi, "Steganalysis of network
packet length based data hiding," Circuits, Systems, and Signal Processing,
vol. 32, no. 3, pp. 1239-1256, 2013.

163

[187] R. Tahboub and Y. Saleh, "Data leakage/loss prevention systems (DLP)," in
Computer Applications and Information Systems (WCCAIS), 2014 World
Congress on, 2014, pp. 1-6: IEEE.

[188] J. I. Helfman and C. L. Isbell, "Ishmail: Immediate identification of important
information," in AT&T Labs, 1995: Citeseer.

[189] W. W. Cohen, "Learning rules that classify e-mail," in AAAI spring symposium
on machine learning in information access, 1996, vol. 18, p. 25: California.

[190] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz, "A Bayesian approach
to filtering junk e-mail," in Learning for Text Categorization: Papers from the
1998 workshop, 1998, vol. 62, pp. 98-105: Madison, Wisconsin.

[191] J. Staddon, P. Golle, M. Gagn√©, and P. Rasmussen, "A content-driven
access control system," in Proceedings of the 7th symposium on Identity and
trust on the Internet, 2008, pp. 26-35: ACM.

[192] W. W. Cohen and Y. Singer, "Context-sensitive learning methods for text
categorization," ACM Transactions on Information Systems (TOIS), vol. 17,
no. 2, pp. 141-173, 1999.

[193] H. Drucker, D. Wu, and V. N. Vapnik, "Support vector machines for spam
categorization," IEEE Transactions on Neural networks, vol. 10, no. 5, pp.
1048-1054, 1999.

[194] J. Hovold, "Naive Bayes Spam Filtering Using Word-Position-Based
Attributes," in CEAS, 2005, pp. 41-48.

[195] J. Collins and S. Agaian, "Trends toward real-time network data
steganography," arXiv preprint arXiv:1604.02778, 2016.

[196] SteganRTP - RTP Covert Channel. Available:
https://sourceforge.net/projects/steganrtp/

[197] WinDump. (2006, 17 May). WinDump - tcpdump for Windows using WinPcap.
Available: www.winpcap.org/windump/

[198] D. Llamas, "Covert channel analysis and data hiding in tcp/ip," Napier
University, 2004.

[199] A. Hintz, "Covert channels in TCP and IP headers," Presentation at DEFCON,
vol. 10, 2002.

[200] G. Fisk, M. Fisk, C. Papadopoulos, and J. Neil, "Eliminating steganography in
Internet traffic with active wardens," in Information Hiding, 2002, pp. 18-35:
Springer.

[201] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[202] (3-May). Autocorrelation and Partial Autocorrelation Functions. Available:
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/com.ibm.s
pss.modeler.help/timeseries_acf_pacf.htm

https://sourceforge.net/projects/steganrtp/
www.winpcap.org/windump/
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/com.ibm.spss.modeler.help/timeseries_acf_pacf.htm
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/com.ibm.spss.modeler.help/timeseries_acf_pacf.htm

164

[203] H. Abarbanel, Analysis of observed chaotic data. Springer Science &
Business Media, 2012.

[204] P. Berge, Y. Pomeau, and C. Vidal, Order within chaos. Wiley and Sons,
1984.

[205] L. Kocarev, "Chaos-based cryptography: a brief overview," Circuits and
Systems Magazine, IEEE, vol. 1, no. 3, pp. 6-21, 2001.

[206] S. J. Murdoch and S. Lewis, "Embedding covert channels into TCP/IP," in
Information hiding, 2005, pp. 247-261: Springer.

[207] L. Dorrendorf, Z. Gutterman, and B. Pinkas, "Cryptanalysis of the windows
random number generator," in Proceedings of the 14th ACM conference on
Computer and communications security, 2007, pp. 476-485: ACM.

[208] C. Herring and J. I. Palmore, "Random number generators are chaotic,"
Communications of the ACM, vol. 38, no. 1, pp. 121-122, 1995.

[209] F. Takens, "Detecting strange attractors in turbulence," Lecture notes in
mathematics, vol. 898, no. 1, pp. 366-381, 1981.

[210] H. F. Lopes. (2016, 23rd September). AR, MA and ARMA models. Available:
http://hedibert.org/wp-content/uploads/2016/04/ar-ma.pdf

[211] J. F. Gibson, J. Doyne Farmer, M. Casdagli, and S. Eubank, "An analytic
approach to practical state space reconstruction," Physica. D, Nonlinear
phenomena, vol. 57, no. 1-2, pp. 1-30, 1992.

[212] J. Lekscha and R. V. Donner, "Phase space reconstruction for non-uniformly
sampled noisy time series," Chaos: An Interdisciplinary Journal of Nonlinear
Science, vol. 28, no. 8, p. 085702, 2018.

[213] T. Sohn, J. Seo, and J. Moon, "A study on the covert channel detection of
TCP/IP header using support vector machine," in International Conference on
Information and Communications Security, 2003, pp. 313-324: Springer.

[214] D. Morgan. (4 May). CS530L - Security Systems. Available: http://www-
scf.usc.edu/~csci530l/downloads/

[215] K. Ahsan, "Covert channel analysis and data hiding in TCP/IP," Canada,
University of Toronto, 2002.

[216] E. Zielinska, W. Mazurczyk, and K. Szczypiorski, "Trends in steganography,"
Communications of the ACM, vol. 57, no. 3, pp. 86-95, 2014.

[217] Wireshark, "Wireshark Go Deep," ed: Online, 2010.

[218] K. Cabaj, W. Mazurczyk, P. Nowakowski, and P. Żórawski, "Towards
Distributed Network Covert Channels Detection Using Data Mining-based
Approach," in Proceedings of the 13th International Conference on
Availability, Reliability and Security, 2018, p. 12: ACM.

http://hedibert.org/wp-content/uploads/2016/04/ar-ma.pdf
http://www-scf.usc.edu/~csci530l/downloads/
http://www-scf.usc.edu/~csci530l/downloads/

