
Yazdani, D, Omidvar, MN, Cheng, R, Branke, J, Nguyen, TT and Yao, X

 Benchmarking Continuous Dynamic Optimization: Survey and Generalized
Test Suite

http://researchonline.ljmu.ac.uk/id/eprint/13473/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Yazdani, D, Omidvar, MN, Cheng, R, Branke, J, Nguyen, TT and Yao, X (2020)
Benchmarking Continuous Dynamic Optimization: Survey and Generalized
Test Suite. IEEE Transactions on Cybernetics. ISSN 2168-2275

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

1

Benchmarking Continuous Dynamic Optimization:
Survey and Generalized Test Suite

Danial Yazdani, Mohammad Nabi Omidvar, Ran Cheng, Jürgen Branke, Trung Thanh Nguyen, and Xin Yao

Abstract—Dynamic changes are an important and inescapable
aspect of many real-world optimization problems. Designing
algorithms to find and track desirable solutions while facing
challenges of dynamic optimization problems is an active research
topic in the field of swarm and evolutionary computation. To
evaluate and compare the performance of algorithms, it is
imperative to use a suitable benchmark that generates problem
instances with different controllable characteristics. In this paper,
we give a comprehensive review of existing benchmarks and
investigate their shortcomings in capturing different problem
features. We then propose a highly configurable benchmark suite,
the generalized moving peaks benchmark, capable of generating
problem instances whose components have a variety of properties
such as different levels of ill-conditioning, variable interactions,
shape, and complexity. Moreover, components generated by the
proposed benchmark can be highly dynamic with respect to
the gradients, heights, optimum locations, condition numbers,
shapes, complexities, and variable interactions. Finally, several
well-known optimizers and dynamic optimization algorithms are
chosen to solve generated problems by the proposed benchmark.
The experimental results show the poor performance of the
existing methods in facing new challenges posed by the addition
of new properties.

Index Terms—Dynamic environments, Dynamic optimization
problems, Evolutionary dynamic optimization, Moving peaks
benchmark, Tracking moving optimum, Survey.

I. INTRODUCTION

SEARCH spaces of many real-world optimization problems
are dynamic in terms of the objective function, the number

of variables, and/or constraints [1]. Optimization problems
that change over time and need to be solved online by an
optimization method are referred to as dynamic optimization
problems (DOPs) [2]. To solve DOPs, algorithms not only
need to find desirable solutions but also to react to the
environmental changes in order to quickly find a new solution
when the previous one becomes suboptimal [3].

D. Yazdani, R. Cheng and X. Yao are with Shenzhen Key Laboratory
of Computational Intelligence, University Key Laboratory of Evolving In-
telligent Systems of Guangdong Province, Department of Computer Science
and Engineering, Southern University of Science and Technology, Shenzhen
518055, China (e-mails: danial.yazdani@gmail.com, chengr@sustc.edu.cn,
xiny@sustc.edu.cn). Xin Yao is also with the CERCIA, School of Computer
Science, Birmingham B15 2TT, UK.

M. N. Omidvar is with the School of Computing, University of Leeds,
and Leeds University Business School, Leeds LS2 9JT, U.K. (e-mail:
m.n.omidvar@leeds.ac.uk).

J. Branke is with the Operational Research and Management Sciences
Group in Warwick Business school, University of Warwick, Coventry CV4
7AL, United Kingdom (email: Juergen.Branke@wbs.ac.uk).

T. T. Nguyen is with the Department of Maritime and Mechanical Engineer-
ing, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom
(e-mail: T.T.Nguyen@ljmu.ac.uk).

Corresponding author: Ran Cheng.

To comprehensively evaluate the effectiveness of algorithms
designed for DOPs, a suitable benchmark generator is crucial.
A DOP benchmark generator should have the following major
features [1], [2]:

• Easy to implement and analyze; Researchers should
have access to information about the location of the
global optimum and its fitness value, and characteris-
tics of components that form the landscape, such as
their variable interaction structure, shape, and change
intensities. Although this information should not be used
for designing/tuning algorithms and the problem must
remain a black-box for algorithms, it allows researchers
to analyze and measure the behavior and performance of
the algorithms. Additionally, a good benchmark should
not be excessively difficult to implement.

• Flexibility: the benchmark generator should be highly
configurable with respect to different aspects such as the
number of components, shape of components, dimension,
change frequency, and change severity. In addition, the
configuration of any feature should be independent of
other features. This independence allows the researchers
to investigate the effect of each single property on the
behavior of algorithms. Moreover, a good benchmark
should be capable of generating problem instances with
varying degrees of complexity. Many real-world problems
are very hard and complex [1], [2], [4].

• Variety: the benchmark generator should be capable of
generating problems instances with a variety of char-
acteristics such as modularity (fully separable, fully
non-separable, and partially separable), components with
different condition numbers (ill-conditioning), different
intensity of local and global modality (unimodal to
highly multimodal), heterogeneity, balanced to highly
imbalanced subfunctions, low to high-dimensional (large-
scale), different levels of irregularities (smooth to highly
irregular), and symmetric components to highly asym-
metric ones.

Several DOP benchmarks have been proposed in the lit-
erature for different DOP domains [2], [5] such as combi-
natorial [6], [7], continuous [4], [8], multi-objective [9]–[11],
and constrained DOPs [12]–[14]. This paper focuses on dy-
namic continuous unconstrained single-objective optimization
problems. For brevity, we use the term DOP to refer to the
considered DOPs in this paper. Commonly used and well-
known benchmark generators in this domain use the idea of
having several components that form the landscape. In most
existing DOP benchmarks, the width, height, and location of

2

these components change over time [5]. One of the benchmark
generators that is designed based on this idea is the Moving
Peaks Benchmark (MPB) [8], which is the most widely
used synthetic problem in the DOP field [1], [3], [5]. Each
component in MPB is formed by usually a simple peak whose
basin of attraction is determined using a max(·) function.
MPB and its variations have been used in different classes of
DOPs such as tracking moving optimum (TMO) in which the
algorithms search for the best solution in each environment [2],
robust optimization over time (ROOT) in which the algorithms
search for solutions whose quality remain acceptable after
environmental changes [15], [16], multi-objective DOPs in
which there are multiple conflicting objectives [17], large-
scale DOPs, where algorithms faces the scalability issues due
to high-dimensionality of the problem [18], [19], and DOPs
with dynamic constraints in which there are several moving
feasible regions in the landscape [13].

Despite the popularity of the standard MPB, landscapes
generated by MPB consist of components that are smooth,
symmetric, unimodal, separable [18], and easy to optimize,
which may not be the case in many real-world problems. Note
that MPB is capable of using basic functions such as Rastrigin,
Griewank, Ackley, and Rosenbrock as its components instead
of the simple peaks. However, practically it is very challenging
to use the aforementioned basic functions due to their different
characteristics such as shape, gradient, the ratio between the
fitness value drop to the distance to the optimum, and standard
search range. In fact, many basic functions can not be used
as the components of MPB, and for each of the ones that can
be utilized, all the MPB parameters need to be specifically
tuned. On the other hand, using different basic functions in
the MPB to have components with different characteristics is
more challenging and almost impossible in many cases.

In this paper, we propose a generalized MPB (GMPB)
which is capable of generating problems with a variety of
characteristics that can range from fully non-separable to fully
separable structure, from homogeneous to highly heteroge-
neous sub-functions, from balanced to highly imbalanced sub-
functions, from unimodal to highly multimodal components,
from symmetric to highly asymmetric components, and from
smooth to highly irregular components. Therefore, GMPB is a
benchmark generator with fully controllable features that helps
researchers to analyze DOP algorithms and investigate their
efficiencies in facing a variety of different problem charac-
teristics. Although the aforementioned problem characteristics
have been vastly investigated in other fields of evolutionary
computations such as static optimization problems [20]–[22],
and large-scale optimization problems [23], [24], little related
work has been dedicated to the DOP literature.

The major contributions of this paper can be summarized
as follows:
• A comprehensive survey on continuous unconstrained

single-objective DOP benchmarks that investigates their
baselines, dynamics, characteristics, and behaviors. This
survey helps the reader to understand the shortcomings
of the existing benchmarks.

• A new benchmark with the capability of generating a
variety of problem characteristics that have not been

considered in the existing DOP benchmarks. All the char-
acteristics are mathematically formulated into a baseline
function that can be easily configured and controlled
through its parameters. GMPB is capable of generating
problems with any desired combination of characteristics
that can also change over time.

• A detailed analysis of the behavior of several well-known
algorithms on different problem characteristics.

Background information, including the definitions of dy-
namic optimization problems, variable interaction, modularity,
imbalance, heterogeneity, and ill-conditioning, are provided in
Section S-I of the supplementary document. The organization
of the rest of this paper is as follows. Section II provides
a survey of continuous unconstrained single-objective DOP
benchmarks. Section III proposes the generalized MPB. Sec-
tion S-II conducts a comprehensive empirical analysis of the
GMPB. Finally, Section IV concludes the paper and outlines
possible future directions.

II. A SURVEY ON DOP BENCHMARKS

In this section, we review the commonly used and well-
known DOP benchmarks, which are continuous, single-
objective, and unconstrained. In this paper, DOP benchmarks
are categorized as follows:

1) DOP benchmarks whose landscapes are formed by a
single component; and

2) DOP benchmarks whose landscapes are made by jointing
several components. The benchmarks belonging to this
category handle multiple components in two major ways:
a) Using the max(·) function to control the basin of

attraction among multiple components.
b) Partitioning the search space into hypercube based

components.

A. DOP benchmarks whose landscape is formed by a single
component

The AB benchmark [25] is the first in this category, which
uses two 2-dimensional landscapes called A and B, each
with different characteristics. The A landscape consists of
14 sinusoidally shaped peaks, and B consists of 20 peaks,
whose shapes are determined by a sine function, and triangular
and Gaussian probability distributions. Three types of environ-
mental changes are defined as follows: 1) linear translation
of peaks in A; 2) changing the location of the maximum
peak randomly while the rest of the search space remains
unchanged; and 3) switching between landscapes A and B.

Moving parabola (MP) [26] applies linear, circular, and
random dynamics to a simple 3-dimensional sphere function
to shift its location. Given a severity parameter φ̃, the afore-
mentioned three dynamics are formulated as follows:

φ
(t+1)
i = φ

(t)
i + φ̃, (1)

φ
(t+1)
i =


φ
(t)
i + φ̃ sin

2πt

25
i = 1, 3

φ
(t)
i + φ̃ cos

2πt

25
i = 2,

(2)

3

φ
(t+1)
i = φ

(t)
i + φ̃N (0, 1), (3)

where φ(t)i is the offset of the ith dimension in tth environment
for i ∈ {1, 2, 3}, N (0, 1) is a random number drawn from a
Gaussian distribution with mean 0 and variance 1, and φ̃ is
the change severity.

Dynamic rotation (DR) [27] combines the landscape with
a visibility mask, which only allows the fitness of certain
regions of the landscape to be evaluated. The visibility mask
forces the remaining regions to return a predefined undesirable
fitness value. DR uses five types of dynamics: 1) rotating
the objective function around the optimum where there is
no visibility mask; 2) rotating the visibility mask around the
optimum where the objective function is stationary; 3) rotating
the objective function around its optimum while the visibility
mask is static; 4) rotating both the objective function and the
visibility mask around the optimum with the same rotation
angle; and 5) rotating both the objective function and the
visibility mask around the optimum with different rotation
angles.

Composition dynamic benchmark generator (CDBG) [28]
is extended from the static composition functions in [21],
[22]. Since the landscape of CDBG is made by composing
several single-component subfunctions, we cannot categorize
it as a benchmark with joining components. Moreover, since
it uses some standard static basic functions such as Ackley
and Rastrigin in its structure, the number of peaks cannot
be controlled by the user. CDBG uses the environmental
dynamics of the generalized dynamic benchmark generator
(GDBG) [28] for shifting each basic function, which will be
discussed later in this section.

A general framework for inducing artificial changes (IAC)
in optimization problems is proposed in [29]. The utilized
landscapes in IAC contain some basic functions such as
Rosenbrock, Griewank, Ackley, and Rastrigin. IAC contains
four groups of dynamics that can be applied to the landscapes
to generate environmental changes. These dynamics include:
1) rotation; 2) shift; 3) decision variables permutation; and
4) duplication based dynamics where a predefined number of
decision variables are randomly copied to other positions. The
aforementioned dynamics can be applied to the entire land-
scape, or to some regions of the search space. Consequently,
IAC can generate both local or global environmental changes.

B. DOP benchmarks whose landscape is formed by joining
several components

This group of DOP benchmarks is further categorized into
the ones whose landscape is divided using the max(·) function
or partitioning by hypercubes.

1) DOP benchmarks based on the max(·) function: This
group of DOP benchmarks uses a max(·) function to define
the basin of attraction of components, which are usually
single peaks. Branke’s moving peaks benchmark (MPB) [8]
is the most popular benchmark suite in DOPs [1], [5]. MPB
generates a landscape containing several components in which
each component contains a peak whose height, width, and
location change every time the environment changes. MPB is
flexible and can be used to generate scalable functions with a

(a) Landscape generated by (4) (b) Landscape generated by (5)

(c) Landscape generated by (10) (d) Landscape generated by (12)

Fig. 1. Landscapes with 10 components generated by different baselines. All
shared parameter settings, such as component centers’ locations, heights, and
widths, are equal. In Figure 1(c), β is set to zero. Note that in contrary to
the flat regions in Figure 1(c) whose gradient is zero, the gradients in the flat
looking regions in Figures 1(a) and 1(d) have positive non-zero values.

configurable number of components. Each component has the
potential to become the global optimum after an environmental
change. In the first version of MPB [8], the baseline function
was defined as follows:

f (t)(x) = max
i∈{1,...,m}

h
(t)
i

1 + w
(t)
i

∑d
j=1(xj − c

(t)
i,j)

2
, (4)

where m is the number of components (peaks), x is a solution
in the d-dimensional problem space, h(t)i , w(t)

i , and c
(t)
i are

the height, width, and the center of the ith peak in the
tth environment, respectively. Later, a new scenario of MPB
was proposed (Scenario 2), which replaces the peak function
in (4) with the cone function [30] (as in the DF1 benchmark
generator [31], [32]). Scenario 2 has become the standard
configuration of MPB in many studies [33]–[41].

The Scenario 2 baseline function of MPB is as follows:

f (t)(x) = max
i∈{1,...,m}

{
h
(t)
i − w

(t)
i

∥∥∥x− c
(t)
i

∥∥∥} . (5)

Figures 1(a) and 1(b) illustrate MPB landscapes generated
by (4) and (5), respectively. In MPB, the height, width, and
center of all components change from one environment to the
next based on the following update rules:

h
(t+1)
i = h

(t)
i + h̃N (0, 1), (6)

w
(t+1)
i = w

(t)
i + w̃N (0, 1), (7)

c
(t+1)
i = c

(t)
i + v

(t+1)
i , (8)

v
(t+1)
i = s̃ · (1− λ) · u + λ · v(t)

i∥∥∥(1− λ) · u + λ · v(t)
i

∥∥∥ , (9)

where N (0, 1) is a random number drawn from a Gaussian
distribution with mean 0 and variance 1, h̃ is the height
severity, w̃ is the width severity, s̃ is the shift severity, u is a
vector of uniformly distributed numbers in range [−0.5, 0.5],
and λ ∈ (0, 1) is the correlation coefficient. λ = 0 implies
that the peak relocations are uncorrelated whereas they are

4

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x
1

-1

-0.5

0

0.5

x
2

=0

=0.5

=1

Fig. 2. The movement of the peak center through a 2-dimensional subspace
over 10 environmental changes where s̃ = 1. The initial position of peak is
[0,0], and the same random seed is used for each sequence of movements.

fully correlated for λ = 1. The step size of peak movements
is constant and equal to s̃. Figure 2 shows 10 relocations
of a peak center using different values of λ where s̃ = 1.
According to (6) and (7), the default environmental dynamic
for a peak’s height and width in MPB is random change [26]
based on (3). At each environmental change, all components’
parameters change using (6), (7), and (8). Consequently, the
entire search space changes after each environmental change.
Considering this characteristic, an environmental change can
be detected by re-evaluating any solution across the search
space by comparing its current and previous fitness values.
If the values are different, an environmental change can be
detected.

In [42], a control parameter is added to MPB to determine
the percentage of changing components at each environmental
change. As a result, a predefined number of randomly chosen
components will change using (6), (7), and (8), while the
remaining ones will remain unchanged. Therefore, change
detection becomes more challenging for some methods as
only some parts of the environment change [40]. Furthermore,
in order to increase the size of the regions that remains
unchanged after environmental changes, a threshold β is used:

f (t)(x) = max

{
β, max

i∈{1,...,m}

{
h
(t)
i − w

(t)
i

∥∥∥x− c
(t)
i

∥∥∥}} ,
(10)

where β determines the minimum fitness value of the problem
and creates flat regions. The fitness value of any solution
in these flat regions is equal to β. These flat regions make
the problem more challenging since the change detection
has become harder. Figure 1(c) shows a generated landscape
using (10).

In the field of robust optimization over time (ROOT) [15],
the MPB with the baseline (5) is used in many studies [16],
[43]–[47]. However, the values of h̃, w̃, and s̃ are different
for each component. The reason for having different height,
width and shift severities for each component is to create
components with different levels of robustness. Equations (3),
(14), and (18) are used as dynamics in [47] while default MPB
dynamics, i.e. (3) are used in [16], [43]–[46].

The MPB has one global optimum in each environment.
However, most multi-population methods [2] try to cover and
track multiple optima. Note that, although multiple optima are
covered by many DOP algorithms [2], most DOPs only have
single global optimum, despite that there may also exist local
optima. This is different from mutlmodal optimization where
there exist multiple global optima inside the same fitness
landscape [48], [49]. In many DOP algorithms, especially

multi-population methods, covering multiple optima is done in
order to increase and maintain overall diversity, and accelerate
the process of finding new global optimum after environmental
changes. In [50], a multimodal version of MPB with multiple
global optima is proposed. In this benchmark, a predefined
number of components are global optima whose heights are
constant over time, and only their locations and widths are time
varying. There are other local optima whose heights change
over time. However, the upper bound of height value of the
local optima is less than that of the global optima.

Pendulum MPB (PMPB) [51] is a modified version of
MPB in which the environments reappear periodically over
time. PMPB works based on a pendulum length parameter pl
and a direction parameter dir. First, using the baseline (5)
and the dynamics from (6), (7), and (8), pl environments[
f (1), f (2), · · · , f (pl)

]
are constructed. Then, the environmen-

tal parameters of the constructed environments are stored in
an archive to be used for future reappearances. dir shows
the direction of fetching the environmental parameters from
the archive, to retrieve the next environment. The value of
dir changes every pl environmental changes by switching
between right and left. The environments are retrieved from
the archive based on their order and the value of dir. An
example of the pendulum-based environmental changes is:[
f (1), f (2), · · · , f (pl−1), f (pl), f (pl−1), · · · , f (2), f (1), f (2), · · ·

]
.

(11)

Similar to MPB, DF1 [31], [32] generates problem instances
in which the width, height, and location of components change
over time. The baseline function of DF1 is similar to (5),
however, the dynamics are different and a logistic function is
used to generate dynamics. Another benchmark whose land-
scape consists of several components is the Gaussian peaks
benchmark (GPB) [52] which uses the following baseline:

f (t)(x) = max
i∈{1,...,m}

h(t)i exp

−
∥∥∥x− c

(t)
i

∥∥∥2
2
(
w

(t)
i

)2

 . (12)

An example of a generated 2-dimensional landscape by this
benchmark is shown in Figure 1(d). In GPB, the locations
of peaks change in random directions, and the step sizes are
uniformly distributed over an interval controlled by two levels
of severity called abrupt and gradual.

In contrast to the aforementioned landscapes, Blackwell [53]
proposes a minimization benchmark generator denoted as
moving valleys benchmark (MVB). The generated landscapes
by MVB are constructed by several spheric components whose
basins of attractions are determined by a min(·) function.
MVB is constructed using the following baseline function:

f (t)(x) = min
i∈{1,...,m}


d∑
j=1

(
xj − c

(t)
i,j

)2
+
(
h
(t)
i

)2 . (13)

As can be seen in (13), MVB does not use width parameter w
which leads to construct components with identical gradients.
Figure 3(a) illustrates a 2-dimensional landscape generated by
this benchmark.

5

(a) A landscape generated by (13)
with m = 10 and m′ = 6.

(b) A landscape generated by (5)
with m = 100 and m′ = 68.

Fig. 3. Two examples in which some components are covered by larger ones.

One main property of all aforementioned benchmarks in
this part is the dynamic number of visible components m′

in the landscape. A component is visible if it is not cov-
ered by any other larger component. When components are
wider, the possibility of decreasing m′ increases. Among the
investigated benchmarks, MVB has very broad components,
such that it is probable that the smaller components become
hidden under larger ones. For example, as can be seen in
Figure 3(a), the number of components m is set to ten while
the number of visible components m′ is smaller. Furthermore,
the number of visible components drops by increasing m. In
such circumstances, the density of components is increased
such that larger components can cover several smaller close
components. Figure 3(b) shows a generated landscape by (5)
where the number of components m is set to 100. However,
almost a third of them are invisible. Changing the number of
visible components is a challenging property for algorithms
that try to cover and track multiple moving components. This
is due to the fact that the algorithm will lose its track when
a component becomes hidden under a larger component in
an environmental change. In addition to the property of the
varying number of visible component m′, a modified version
of MPB is proposed in [54] where the number of components
m is changing over time.

The generalized dynamic benchmark generator
(GDBG) [28] contains six different types of dynamics
including small step, large step, random, chaotic, recurrent,
and recurrent with noise which are formulated respectively as
follows:

∆φ = γrφ̃‖φ‖, (14)

∆φ = φ̃‖φ‖(γsign(r) + r(γmax − γ)), (15)

∆φ = φ̃N (0, 1), (16)

φ(t+1) = Aφ(t)
1− φ(t)

‖φ‖
, (17)

φ(t+1) = φmin +
‖φ‖
2

(sin(
2π

p
t+ ϕ) + 1), (18)

φ(t+1) = φmin +
‖φ‖
2

(sin(
2π

p
t+ ϕ) + 1) + ñN (0, 1), (19)

where ∆φ is a deviation from the current control parameters,
‖φ‖ is the change range of φ, φ(t) is the offset in tth environ-
ment, φ̃ ∈ (0, 1) is change severity of φ, φmin is the minimum
value of φ, ñ ∈ (0, 1) is noise severity, γ, γmax ∈ (0, 1) and
A are constant values, r ∈ (−1, 1) is a random number drawn
from a uniform distribution, p is the period number, and ϕ is
the initial phase. It is worth mentioning that the random change

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(a) max(·)-function
based basin of attraction.

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(b) Hyper-cube based
basin of attraction.

Fig. 4. Two landscapes with 3 peaks (components) whose basin of attraction is
determined based on their hypercube, or max(·) function. The peak function
is s1 = h−‖x−c‖ from [4] which is a cone function from (5) with w = 1.

in (16) is the same as the dynamic that was used in MPB in (6)
and (7), and in moving parabola in (3). Moreover, the utilized
logistic function for chaotic change in (17) is similar to the
logistic function, which is used in DF1. In [55], [56], other
dynamics are added to GDBG including change in the number
of components and dimensions. Two further DOP benchmarks
use the GDBG dynamics, including CDBG which was de-
scribed in Section II-A, and Rotation DBG (RDBG) [28].
RDBG is constructed based on the baseline of MPB in (4). The
height and width of components change using a dynamic from
GDBG. Furthermore, the location of components changes
using rotation matrices introduced in DR [27]. Since the
relocations of components by the rotation procedure are not
controllable in RDBG, it is not capable of constructing cyclic
environments. In [57], the procedure of rotation in RDGB is
modified in order to control the components’ relocation steps.
This benchmark is capable of constructing cyclic environments
with a predefined cycle length.

Although most DOP benchmarks are scalable, they cannot
produce modular problems whose components contain multi-
ple moving optima. To address this shortcoming, some studies
used composition methods to create modular problems. High-
dimensional MPB (HDMPB) [19] is the first modular DOP
benchmark with multiple component subfunctions, which is
built by the summation of several MPBs to create large-scale
DOPs. CMPB [3], [18] is another benchmark that composes
several MPBs to create modular problem instances. Unlike
HDMPB, CMPB can generate partially separable problems
that could contain fully separable dimensions. In addition,
CMPB is capable of generating modular problems that are
imbalanced and heterogeneous.

2) DOP benchmarks based on hypercube partitioning: The
first DOP benchmark of this category is dividing search space
(DSS) [58] that partitions the search space into subspaces.
Each subspace contains a simple peak function whose summit
is at the center of the subspace. For dividing the d-dimensional
search space, each dimension is equally divided into k seg-
ments resulting in kd subspaces.

Another DOP benchmark in which the idea of space parti-
tioning by hypercubes is Free Peaks (FPs) [4]. FPs is a compli-
cated benchmark generator whose search space is divided into
components using a k-d tree [59]. In each component, there is
only one component that can move inside the hypercube. In
FPs, the basin of attraction of components are determined by
the hypercubes, which is different from other benchmarks such
as MPB, DF1 and GPB. An illustrative example is provided

6

20

40

20

60

F
it
n

e
s
s
 v

a
lu

e

20

80

x
2

0

x
1

0

100

-20
-20

(a)

75

80

85

20

F
it
n

e
s
s
 v

a
lu

e

90

20

x
2

95

0

x
1

0

100

-20
-20

(b)

-15

-10

20

10
4

F
it
n

e
s
s
 v

a
lu

e -5

20

x
2

0

x
1

0

0

-20
-20

(c)

-100

-50

20

0

F
it
n

e
s
s
 v

a
lu

e

20

50

x
2

0

x
1

0

100

-20
-20

(d)

-200

-150

-100

20

-50

F
it
n

e
s
s
 v

a
lu

e 0

20

x
2

0

50

x
1

0

100

-20
-20

(e)

Fig. 5. Five types of components that are used in FPs [4].

in Figure 4 to show the difference between the two types
of the basin of attractions. As can be seen in Figure 4(b),
the landscape generated by hypercube partitioning has sharp
ridges around components. The shape of each component in
FPs is chosen from eight different unimodal basic functions.
From these eight basic functions, three of them are similar to
the components (with w = 1) from (5), (12), and (4). The
shape of the remaining five basic functions of FPs are shown
in Figure 5.

To change the shape of each component, a random shape
function is chosen from the eight basic functions for each
environment. In FPs, contrary to MPB, DF1, and GPB, com-
ponents do not have a width parameter, and their gradients
are determined based on their basic functions. Additionally,
the sizes and locations of hypercubes change over time,
which leads to changing the size of components. Moreover,
component locations inside their respective hypercubes and
their height change over time using a random dynamic step.
In benchmarks such as FPs whose basin of attractions of
components is determined by dividing the landscape into
hypercubes, there is no invisible component (m = m′). In FPs,
a dynamic for changing the number of components/hypercubes
is used to cover problems in which the number of components
changes over time.

Several transformations are used in FPs. An important
and related to single objective DOP transformation of FPs
is ‘setup of dependencies’, which determines the variable
interactions by redefining the distance in the eight basic
functions. However, the study did not provide any analysis
to show the variable interactions when the Euclidean distance
(default distance) is used in comparison to the redefined
version. According to our analysis using DG2 [60], although it
is claimed that the redefinition of distance transformation can
determine variable interactions and produce partially separable
components, it only can generate fully separable and fully non-
separable cases. However, it should be mentioned that this
can potentially change the intensity of variable interactions
and thus affects the hardness of the problem for optimizers.
Furthermore, redefinition of distance transformation can only
affect the complexity of exploring components inside their
hypercubes and it is not capable of changing the separability of
the search space. In fact, the generated landscapes by FPs are

61%19%

11%

4%
4%

MPB
GDBG (CDBG and RDBG)
Shifting environment

DF1
Others

Fig. 6. Distribution of the DOP benchmarks utilization since 1999.

fully non-separable when there is more than one component.
Another transformation used in FPs is ‘setup of domino
convergence’ in which the contribution of each dimension
will be different from other dimensions by redefining distance
in the eight basic functions. Moreover, two transformations
from [20] are used in FPs to add smooth irregularities (without
changing modality condition) and symmetry breaking.

C. Popularity of DOP benchmarks

In this part, we investigate the popularity of DOP bench-
marks in the literature. The search has been conducted using
different engines, including Scopus, Google Scholar, Sci-
enceDirect, IEEE Xplore, ACM Digital Library, and Springer.
As the searching keywords, we used different terms such
as dynamic optimization problems, dynamic environments,
evolutionary dynamic optimization, and uncertain environ-
ments. Then, we have selected references in which DOP al-
gorithms/frameworks were tested on the unconstrained single-
objective continuous DOP benchmarks since 1999. This pro-
cess was done in August 2019, and 176 journal papers, book
chapters, and conference papers have been selected for our
investigation.

Figure 6 illustrates the distribution of the DOP benchmarks
utilization. In this part, we have categorized DOP bench-
marks into five groups; 1) MPB and its modified versions,
2) GDBG [28], [55], [56] which contains all versions of CDBG
and RDBG, 3) DF1, 4) shifting environments in which shift
functions from MP [26] are utilized for moving static functions
such as Sphere, Rastrigin, Griewank, Ackley and Rosenbrock,
and 5) other DOP benchmarks. If, in a reference, more than
one of the above groups of benchmarks is used, we have
considered them in the counter of each used group. As can
be seen in Figure 6, MPB and its modified versions are the
most commonly used benchmark in continuous DOP.

D. Discussion

Table I summarizes the characteristics of problems and com-
ponents that are generated by each reviewed DOP benchmark
in this section alongside the proposed GMPB. As can be seen,
although all the previous DOP benchmarks can generate some
problem characteristics, we cannot find a benchmark generator
exhibiting different combinations of problem characteristics.
One important limitation of the previous benchmarks is that
each of their components consists of a single peak, which is
easy to optimize because they are smooth, symmetric, and
unimodal, which may not be the case of many real-world
problems.

7

TABLE I
CHARACTERISTICS OF THE REVIEWED DOP BENCHMARKS IN SECTION II AND THE PROPOSED GMPB.

Characteristic DOP benchmark

ABb MP DRc DSS MPB DF1 GPB MVB RDBG CDBGc IACc HDMPB CMPB FPs GMPB

Landscape properties

Controllable number of components 5 5 5 3 3 3 3 3 3 5 5 3 3 3 3
Modularity 5 5 5 5 5 5 5 5 5 3 3 3 3 5 3
Heterogeneity 5 5 5 5 5 5 5 5 5 3 3 5 3 5 3
Imbalance 5 5 5 5 5 5 5 5 5 3 3 5 3 5 3

Component properties

Separablea - 3 - 3 3 3 3 3 3 - - 3 3 3 3
Non-separablea - 5 - 5 5 5 5 5 5 - - 5 5 3 3
Ill-conditioning - 5 - 5 5 5 5 5 5 - - 5 5 3 3
Smooth - 3 - 3 3 3 3 3 3 - - 3 3 3 3
Irregular - 5 - 5 5 5 5 5 5 - - 5 5 3 3
Unimodal - 3 - 3 3 3 3 3 3 - - 3 3 3 3
Multimodal - 5 - 5 5 5 5 5 5 - - 5 5 5 3
Symmetric - 3 - 3 3 3 3 3 3 - - 3 3 3 3
Asymmetric - 5 - 5 5 5 5 5 5 - - 5 5 3 3

Basin of attractiond - - - HC MF MF MF MFe MF - - MF MF HC MF

Change

Location of components 3 3 5 5 3 3 3 3 3 3 3 3 3 3 3
Size of components 5 5 5 3 3 3 3 3 3 3 5 3 3 3 3
Shapes of components 3 5 5 5 5 5 5 5 5 5 3 5 5 3 3

Rotation 5 5 3 5 5 5 5 5 5f 3 3 5 5 5 3
Number of visible optima 3 5 5 5 3 3 3 3 3 5 5 3 3 3 3
Condition number of components 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3
Complexity of components 5 5 5 5 5 5 5 5 5 5 3 5 5 5 3

a Determined according to empirical analysis on a dimension-wise manner.
b Component formula has not been provided in [25].
c DR, CDBG, and IAC do not use distance-based component functions to produce multiple components on the landscape.
d Hypercube (HC) and max(·) function (MF) based basin of attractions.
e In MVB, a min(·) function is used to determine the basin of attractions of components.
f The rotation is used to relocate components’ centers.

According to Table I, among all previous DOP benchmarks,
the state-of-the-art FPs is capable of generating components
with a variety of problem properties by using some trans-
formations. However, it still has some considerable limita-
tions. FPs is not easy to understand and hard to implement.
Additionally, some of its transformations cannot be used
simultaneously (such as setup of dependencies and domino
convergence). Moreover, ill-conditioning, irregularities, and
symmetry breaking transformations are static. Furthermore,
components generated in FPs are unimodal because the trans-
formations do not change local modality. Finally, FPs cannot
produce modular, heterogeneous, and imbalanced problems.
In terms of modularity, CMPB [18] is the only benchmark
capable of generating modular, heterogeneous, and imbalanced
problems. In CMPB, an automated weight is assigned to each
subfunction to avoid the situations in which partially separable
subfunctions become dominated by fully-separable dimensions
in terms of contribution to overall fitness value. However, this
circumstance can happen when there are several low dimen-
sional (such as 2 and 3-dimensional) subfunctions. Therefore,
CMPB is not suitable to generate partially separable problem
instances whose number of low-dimensional subfunctions are
more than the ones with higher dimensions. In the next section,
GMPB is introduced, which addresses all the above issues.

III. GENERALIZED MOVING PEAKS BENCHMARK

In this section, the details of the GMPB are given. We start
with the baseline of the traditional MPB (5) and a series
of modifications are proposed in order to incorporate the
following features into the new design:

1) Modularity: Most DOP benchmarks whose generated
landscape contains multiple components (such as MPB, FPs,
and DF1 whose components are single local peaks) are non-
separable in nature [18]; therefore, they are not capable of
generating modular test instances. This limitation motivates the
design of a new benchmark capable of producing modular test
instances with heterogeneity and imbalance characteristics. In
GMPB, subfunctions can vary in size, shape, change intensity,
and contribution to the overall fitness value.

2) Component Complexity: Although most DOP bench-
marks have a multimodal landscape, each component is
unimodal, smooth, regular, separable, and symmetric, which
makes them easy to optimize. GMPB is capable of generating
a wide range of easy to hard to optimize components by adding
the following properties to each component with varying
degree of intensity:

a) Ill-conditioning: Ill-conditioning is an important
property of many real-world problems [20], [24], which cannot
be found in the components generated by most DOP bench-
marks due to the circular nature of the level curves of each
peak. This motivates the design of a new benchmark capable
of generating ill-conditioned peaks whose condition number
changes over time.

b) Asymmetry: In almost all DOP benchmarks, compo-
nents are symmetric which is undesirable for the following
reasons: 1) symmetry of the peaks may be in favor of some
special operators that use Gaussian distributions to generate
new solutions [20], [24]; and 2) they are easy to optimize
on a dimension-wise basis due to their symmetric nature.
The GMPB is capable of generating symmetric to highly
asymmetric components.

8

c) Component separability: In addition, as shown ana-
lytically [18], an n-dimensional peak generated by MPB and
DF1 by (5) is separable which makes it easier to optimize.
As demonstrated in Table I, most other DOP benchmarks
generate components (peaks) that can be optimized in a
dimension-wise manner. These empirical observations suggest
that they are separable. Rotating a component is a way of
changing its variable interaction and making it fully non-
separable, which is more difficult to optimize [20], [24],
[61]. In GMPB, components can be rotated using rotation
matrices to have different degrees of variable interactions.
Using rotation matrices to transform problem spaces has been
used in many benchmarks for static [20], [22], [24], [62]
and dynamic [4], [27], [28], [56], [63] optimization problems.
Moreover, by rotating a component over time, the degree of
variable interactions changes dynamically. In the rest of this
section, the procedure of transforming MPB into GMPB is
described.

d) Component modality: As mentioned in Table I, gen-
erated components of all existing benchmarks are unimodal
which makes them easy to optimize. Components in GMPB
can be unimodal to highly multimodal.

A. Components with varying condition number

According to (5), the width of each component (peak) is the
same in all dimensions, which makes the shape of components
cone-like with circular contour lines (see Figure 7(a)). To
alleviate this, the width of a component is changed from a
scalar variable to a d-dimensional vector. We know that the
Euclidean distance can be shown as square root of a dot
product, i.e., ‖a‖ =

√
aTa. Therefore, MPB can be rewritten

as follows:

f (t)(x) = max
i∈{1,...,m}

{
h
(t)
i − w

(t)
i

∥∥∥x− c
(t)
i

∥∥∥}
= max
i∈{1,...,m}

{
h
(t)
i −

√
ŵ

(t)
i

(
x− c

(t)
i

)> (
x− c

(t)
i

)}
,

(20)

where
√
ŵ

(t)
i = w

(t)
i . Instead of factoring the width we can

represent it as a diagonal matrix W
(t)
i = ŵ

(t)
i I:

f (t)(x) = max
i∈{1,...,m}

{
h
(t)
i −

√(
x− c

(t)
i

)>
W

(t)
i

(
x− c

(t)
i

)}
,

(21)

By allowing the main diagonal elements of W to be set
arbitrarily, the contour lines of the function become ellipses
which are aligned with the coordinate axes. Figure 7(b)
shows an example of the MPB made using (21) with three
components. One of the components (the one with circular
contour) has the same width in each direction which makes
it similar to the components made by (5) . The other two
components have different width values for each dimension
resulting in elliptical contour lines.

By calculating the condition number of the diagonal matrix
W, the ill-conditioning degree of each component can be

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(a) Standard MPB gener-
ated by (5)

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(b) Ill-conditioned MPB
generated by (21)

Fig. 7. Comparing two landscapes with and without ill-conditioning in
components.

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(a) w=[1,1] and c=1

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(b) w=[2,4] and c=2

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(c) w=[8,2] and c=4

Fig. 8. Three different 2-dimensional components with different ill-
conditioning degrees. The values of widths (w) of each peak and their
corresponding condition number (c) are shown.

determined. The condition number of a matrix is generally
calculated through singular value decomposition of the matrix
and finding the ratio between the largest and smallest diagonal
elements of its singular value matrix. Since W is a diagonal
matrix, its singular value matrix has the same diagonal values
but in a sorted order; therefore, the condition number of W
can be calculated without any singular decomposition. Since
the diagonal values of W are squared values of the width
vector, the condition number is equal to the squared condition
number of the component. Consequently, the condition number
of the generated hyper-ellipsoid by the (21) is the square root
of the condition value of W. If all the diagonal values of
W are equal, then the problem is the same as the original
MPB by (5) and the condition number of W will be 1.
This condition number shows that the component does not
have ill-conditioning. However, when the width values are
different in different dimensions, the condition number of W
grows. From a geometric perspective, the condition number
of a hyper-ellipsoid is the ratio of its largest diameter to
its smallest one. Figure 8 illustrates three components with
different ill-conditioning degrees from the geometric point
of view. As demonstrated in Figure 8, by increasing the
difference between width values, the ratio between the largest
and smallest diameters of the ellipsoid component grows.
Consequently, the level of ill-conditioning is increased.

B. Components with varying variable interaction degree

As mentioned before, components of the MPB are circular
peaks, separable, and easy to optimize. However, even after
changing the MPB baseline to (21), peaks remain separable
due to their symmetric nature. To change the principal axes
of the elliptic contour lines, an orthonormal matrix R can be
included as follows:

f (t)(x) = max
i∈{1,...,m}

{
h
(t)
i −

√(
x− c

(t)
i

)>
Ri

(t)>W
(t)
i R

(t)
i

(
x− c

(t)
i

)}
,

(22)

9

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50
x

2

(a) Landscape generated
by by Eq.(22)

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(b) After rotating 45 de-
grees

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(c) After rotating 90 de-
grees

Fig. 9. Clockwise rotating a landscape generated by (27) in 2-dimensional
space

where R
(t)
i is the rotation matrix of component i in tth envi-

ronment. Equation (22) is capable of generating components
with elliptic contour lines whose principal axes are defined by
the rotation matrix R. In (22), the ill-conditioning intensity
of a component can be obtained by calculating the condition
number of R>WR which is equal to the condition number of
W because R is an orthonormal matrix and does not change
the condition number of W after multiplication. Contrary to
the components generated by (5) and (21), each generated
component i by (22) is fully non-separable whose degree of
variable interactions depends on Ri. Figure 9(a) shows the
landscape generated by (22) with three components (same
component centroids as in Figure 7(b)).

The rotation matrix Ri is obtained by rotating the projection
of x onto all xp-xq planes by a given angle θ. The total number
of unique planes which will be rotated is

(
d
2

)
= d(d−1)

2 . For
rotating each xp-xq plane by a certain angle (θ), a Givens
rotation matrix G(p,q) must be constructed. To this end, first,
G(p,q) is initialized to an identity matrix Id×d; then, four
elements of G(p,q) are altered as:

G(p,q)(p, p) = cos
(
θ(t)
)
, (23)

G(p,q)(q, q) = cos
(
θ(t)
)
, (24)

G(p,q)(p, q) = − sin
(
θ(t)
)
, (25)

G(p,q)(q, p) = sin
(
θ(t)
)
, (26)

where G(p,q)(i, j) is the element at ith row and jth column
of G(p,q). Ri in tth environment is calculated by:

R
(t)
i =

∏
(p,q)∈P

G(p,q) ×R
(t−1)
i , (27)

where P contains all unique pairs of dimensions defining all
possible planes in a d-dimensional space. The order of the
multiplications of the Givens rotation matrices is random.
The reason behind using (27) for calculating R is that we
aim to have control on the rotation matrix based on an angle
severity θ̃. Note that the initial R(0)

i for problem instances with
rotation property is obtained by using the Gram-Schmidt or-
thogonalization method on a matrix with normally distributed
entries. Figure 9 shows an example of component rotation in
the proposed benchmark in which by changing the angle of
rotation, the degree of variable interactions changes.

C. Asymmetric components with Irregularities

Although optimizing a rotated component is harder for
many algorithms due to its nonseparable nature [61], each
component can still be considered easy to optimize since the
components generated by (22) are smooth, regular, and uni-
modal. To add irregularity and local optima to the components,
a transformation function is added to (22):

f (t)(x) = max
i∈{1,...,m}

{
h
(t)
i −

√
T
((

x− c
(t)
i

)>
R(t)>, i

)
W(t)T

(
R(t)

(
x− c

(t)
i

)
, i
)}

,

(28)

where T(y, i) : Rd 7→ Rd is calculated as:

T (yj , i) =


exp

(
log(yj) + τ

(t)
i

(
sin (η

(t)
i,1 log(yj)) + sin (η

(t)
i,2 log(yj))

))
if yj > 0

0 if yj = 0

− exp
(

log(|yj |) + τ
(t)
i

(
sin (η

(t)
i,3 log(|yj |)) + sin (η

(t)
i,4 log(|yj |))

))
if yj < 0

(29)

where yj is jth dimension of y, and τ
(t)
i and η

(t)
i,k for

k = 1, · · · , 4 are five dynamic parameters that determine the
intensity of irregularities and modality of the ith component.
Equation (28) is designed in a way that the c positions have
the best fitness values among all optima in their component
and the global optimum is still the c of the component with
the largest height. In GMPB, the term ith component means
the area containing all the points whose Euclidean distances
to the ci is less than those to all cj where i 6= j.

Figure 10 shows the effect of the different values of τ
and η1,2,3,4 on the shape of a component from Figure 10(a).
As can be seen, higher values of τ and η1,2,3,4 increase the
irregularities and number of local optima in the component.
Additionally, according to 10(b) and 10(c), when all four
values of η1,2,3,4 are equal, the component shape is symmetric.
On the other hand, according to Figure 10(d), 10(e) and 10(f),
when η1,2,3,4 are unequal, the component shape is asymmetric.
By changing τ and η1,2,3,4 over time for each component,
their intensity of irregularities, number of local optima, and
asymmetry degree change over time. Figure 11 shows an
example for how the shape of a component changes as
the values of τ and η1,2,3,4 change over time. Furthermore,
Figure 12 shows examples of landscapes with the components
from Figure 7(a) and 9(c) that are made irregular by different
values of τ and η1,2,3,4 for each peak. Equation (28) is the
baseline of GMPB.

D. Modularity, heterogeneity, and imbalance

The modularity can be obtained by composing several
GMPB:

F (t)(x) =

k∑
i=1

f
(t)
i (x) (30)

where f
(t)
i is the ith baseline, and k is the number of

subfunctions in the composition function. Since the baseline
of GMPB is nonseparable, 1-dimensional subfunctions will
be used for generating fully separable dimensions. Each sub-
function in (30) can have a different number of components,
dimensions, and/or change intensities. Consequently, since
each subfunction can have different landscapes with different

10

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(a) τ = 0, η1,2,3,4 = 0

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(b) τ = 0.1, η1,2,3,4 =

5

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(c) τ = 0.1, η1,2,3,4 =

20

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(d) τ = 0.05, η1 = 0,
η2 = 5, η3 = 15, and
η4 = 25

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(e) τ = 0.1, η1 = 0,
η2 = 5, η3 = 15, and
η4 = 25

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(f) τ = 0.2, η1 = 0,
η2 = 5, η3 = 15, and
η4 = 25

Fig. 10. Illustrating the effect of different values of τ and η1,2,3,4 in Eq. (29) on a component.

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(a) 1st Environment.
-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(b) 2nd Environment.
-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(c) 3rd Environment.

Fig. 11. Illustrating the effect of dynamic τ and η1,2,3,4 on shape of a
component.

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(a) Transformed version
of the landscape from Fig-
ure 7(a)

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(b) Transformed version
of the landscape from Fig-
ure 9(c)

Fig. 12. Transforming a landscape with three components using (29) with
τ ∈ U [0, 0.2] and η1,2,3,4 ∈ U [0, 25] for each main peak.

features and challenges, the generated problems by GMPB
can possess the heterogeneity characteristic. A natural result
of composing GMPB baselines in (30) is an exponential
growth in the total number of optima in the landscape that
can turn to the global optimum after environmental changes.
To demonstrate this challenging characteristic, we provide an
illustrative example in Fig 13. In Figure 13(a) and 13(b), two
1-dimensional landscapes with 2 and 5 optima, respectively,
are shown (for simplicity, τ and η1,2,3,4 are set to zero). The 2-
dimensional modular landscape constructed by (30) results in
a total of 10 optima as shown in Figure 13(c). To be specific,
the number of optima in the modular landscapes constructed
by (30) is equal to a product of the numbers of optima in the
subfunctions.

-50 -40 -30 -20 -10 0 10 20 30 40 50
x

1

-250

-200

-150

-100

-50

0

50

100

f 1
(x

1
)

(a) 1D subfunction with
two optima.

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
2

-20

-10

0

10

20

30

40

50

60

70

f 2
(x

2
)

(b) 1D subfunction with
five optima.

-50 -40 -30 -20 -10 0 10 20 30 40 50
x

2

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
1

(c) 2D modular landscape
with ten optima by compos-
ing (a) and (b).

Fig. 13. Exponentially growing number of optima by composing subfunctions
in (30).

-50 0 50x
1

-150

-100

-50

0

50

f 1
(x

1
)

(a) 1D subfunction
with ω=0.5.

-50 0 50x
2

-100

-50

0

50

100

150

200

f 2
(x

2
)

(b) 1D subfunction
with ω=3.

(c) 2D imbalanced landscape
by composing (a) and (b).

Fig. 14. Imbalanced landscape generated by composing two subfunctions
with different weights ω in (32).

According to the nature of baseline in (28), the fitness value
is independent of the dimension number, and it is dependent
on the highest h. Therefore, there is a balance between the
contribution of subfunctions f in (30), which is not common
in many real-world problems [3], [24], [64]. To address this
issue, the contribution of each MPB is normalized according
to its number of dimensions relative to the dimension of the
problem:

F (t)(x) = d−1
k∑
i=1

dif
(t)
i (x) (31)

where d is the dimension of the problem, and di is the dimen-
sion of the subfunction fi. By using (31), the shortcoming of
CMPB [18] regarding dominating contribution of higher di-
mensional subfunctions by low-dimensional ones is addressed.
After normalizing the contribution of each subfunction, an
imbalance coefficient ω will be added to the composition,
which can be utilized to generate different imbalance patterns.

F (t)(x) = d−1
k∑
i=1

ωidif
(t)
i (x) (32)

where ωi controls the contribution of subfunction fi for gener-
ating imbalance. In an imbalanced problem, the contributions
of subfunctions on the overall fitness value are different.
Consequently, some subfunctions become more significant for
optimizers. Figure 14(c) illustrates a 2-dimensional modular
landscape constructed by composing two 1-dimensional sub-
functions shown in Figures 14(a) and 14(b). The range of
fitness values in the subfunction from Figure 14(b) is consid-
erably larger than that of the subfunction from Figure 14(a).
Consequently, the composed problem shown in Figure 14(c) is
an imbalanced problem. According to the illustrated landscape
in Figure 14(c), the progress of optimization by moving toward
the direction of x2 axis is more important than moving in x1.

11

E. Dynamics

For each subfunction fi in (32), the height, width vector,
angle, irregularity parameters in (29) and center of the jth
component change from one environment to the next according
to the following update rules:

c
(t+1)
i,j = c

(t)
i,j + s̃i

r

‖r‖
, (33)

h
(t+1)
i,j = h

(t)
i,j + h̃iN (0, 1), (34)

w
(t+1)
i,j,k = w

(t)
i,j,k + w̃iN (0, 1), (35)

θ
(t+1)
i,j = θ

(t)
i,j + θ̃iN (0, 1), (36)

η
(t+1)
i,j,l = η

(t)
i,j,l + η̃iN (0, 1), l ∈ {1, 2, 3, 4}, (37)

τ
(t+1)
i,j = τ

(t)
i,j + τ̃iN (0, 1), (38)

whereN (0, 1) is a random number drawn from a Gaussian dis-
tribution with mean 0 and variance 1, r is a vector of randomly
generated numbers by N (0, 1), h̃i, w̃i, s̃i, θ̃i, η̃i and τ̃i are
height, width, shift, angle, and irregularity parameters’ change
severities of components in ih subfunction, respectively. wi,j,k
shows the width of jth component in kth dimension of the
ith subfunction. In addition, hi,j , θi,j , and ci,j show height,
angle, and position of jth component in ith subfunction f ,
respectively.

Outputs of equations (33) to (38) are bounded as follows:
hi,j ∈ [hmin, hmax], wi,j,k ∈ [wmin, wmax], ci,j ∈ [Lb, Ub]d,
τ ∈ [τmin, τmax] and η1,2,3,4 ∈ [ηmin, ηmax], and θi,j ∈
[θmin, θmax], where Lb and Ub are maximum and minimum
problem space bounds. For keeping the above mentioned
values in their bounds, a Reflect method is utilized. Assume
a(t+1) = a(t) + b represents one of the equations (34) to (38).
Then, the output based on the reflect method is

a(t+1) =


a(t) + b if a(t) + b ∈ [amin, amax]

2× amin − a(t) − b if a(t) + b < amin

2× amax − a(t) − b if a(t) + b > amax

(39)

The dynamics which are used for GMPB in (34) to (38)
are based on random step, which is also used in MPB. Any
dynamics in (14) to (19) can also be used in GMPB. For
example, researchers who are interested in periodical environ-
mental changes can use the pendulum-based environmental
changes similar to (11), or use the cyclic center relocations
from [57]. To have predictable component relocations, (33)
can be replaced with (8) and (9) (set λ = 1). To have
undetectable environmental changes, a simple noise generator
can be added to the fitness function. In addition, inspired
by (10), the β threshold can be added to the benchmark
to create vast flat regions whose fitness remain unchanged
in environmental changes. By applying the aforementioned
modifications, most change detection methods that work by
re-evaluating solutions [2] cannot work properly. However, it
should be mentioned that in most real-world DOPs, the algo-
rithm will be informed about the environmental changes, and
it is not necessary to use a change detection mechanism [1],
[16]. Moreover, having partial environmental changes can be

TABLE II
SUMMARY OF SCENARIOS’ CHARACTERISTICS INCLUDING SEPARABILITY

(FULLY NON-SEPARABLE (N) AND PARTIALLY SEPARABLE (P)),
COMPONENT MODALITY (MULTIMODAL (M) AND UNIMODAL (U)) AND

ILL-CONDITIONING PLUS ROTATION

Feature Scenario

f1 f2 f3 f4 f5 f6 f7 f8

Separability N N N N P P P P
Component modality U U M M U U M M
Ill-conditioning and rotation 5 3 5 3 5 3 5 3

obtained by assigning different change frequencies to differ-
ent subfunctions or different components. This can be done
using a simple probability based method in which when an
environmental change happens, components or subfunctions
with a predefined probability can be involved in change.
Finally, dynamic constraints can be easily added to GMPB. In
Section S-III of the supplementary document, we have provide
a discussion on the existing dynamic constrained benchmarks
that can be incorporated to the GMPB.

F. Proposed scenarios

We propose eight problem instances exhibiting different
combinations of problem characteristics using the GMPB
benchmark generator. To design these scenarios, the char-
acteristics of components and problems are categorized
into three groups: separability, local-modality, and ill-
conditioning/rotation. The first group is defined according to
the modularity of the problems based on (32). Two groups
of problems are designed according to separability, including
fully nonseparable and partially separable ones. For compo-
nent modality, problems are categorized based on the value
assigned to τ and η1,2,3,4. If the values are set to zero,
components will be smooth, regular, and unimodal. Otherwise,
the problem contains components with different shapes and
various features. Finally, if the rotation matrices are set to
the identity matrix, angle severity is set to zero, and the
width vector has the same value on all dimensions (with
the same random number for all dimensions at environmental
changes), components will have circular contour and become
fully separable. Else, components will be ill-conditioned with
dynamic condition number and variable interactions. The
properties of the eight scenarios and the categories they belong
to are summarized in Table II. The parameter settings of the
problem instances and component characteristics are shown in
Table III. To investigate the efficiency of DOP algorithms on
each scenario with different levels of difficulty, two different
parameter settings are considered for change frequency (ϑ),
shift severity (s̃), and the number of components (m), which
are shown in Table IV. The first being the default settings
while the second group generates more challenging scenarios.

G. Discussion

To study the effect of different component characteristics,
several well-known optimizers are selected and tested on
the generated components by GMPB. The results and the

12

TABLE III
PARAMETER SETTINGS (PART 1) OF SCENARIOS f1 TO f8 FROM TABLE II.

Parameter Symbol Scenario

f1 f2 f3 f4 f5 f6 f7 f8

Number of subfunctions k 1 6
Dimension d 10
Number of fully separable dimensions d′ 0 2
Number of Nonseparable subfunctions d′′ {10} {4, 2, 2}
Angle severities θ̃i 0 π/9 0 π/9 0 U [π/12, π/6] 0 U [π/12, π/6]
Height severities h̃i 7 U [5, 9]
Width severities w̃i 1 U [0.5, 1.5]
Irregularity parameter τ severities τ̃i 0 0.05 0 U [0.025, 0.075]
Irregularity parameter η severities η̃i 0 2 0 U [1, 3]
Weight of subfunction i ωi 1 U [0.5, 3]
Search range [Lb, Ub]d [−50, 50]d
Height range [hmin, hmax] [30, 70]

Width range [wmin, wmax]
d [1, 12]d

Angle range [θmin, θmax] - [−π, π] - [−π, π] - [−π, π] - [−π, π]
Irregularity parameter τ range [τmin, τmax] - - [0, 0.4] [0, 0.4] - - [0, 0.4] [0, 0.4]
Irregularity parameter η range [ηmin, ηmax] - - [10, 25] [10, 25] - - [10, 25] [10, 25]
Number of Environments T 100

TABLE IV
TWO GROUPS OF PARAMETER SETTINGS (PART 2) OF SCENARIOS f1-f8 .

Parameter Symbol Default setting Challenging setting

f1−4 f5−8 f1−4 f5−8

Shift severities s̃i 2 U [1, 3] 4 U [3, 5]
Numbers of components in each subfunction i mi 10 U [5, 15] 25 U [15, 35]
Change frequency ϑ 5000 5000 2500 2500

correspondence analysis can be found in Sections S-II-C1
and S-II-C2 of the supplementary document. To investigate
the performance of existing DOP algorithms on the proposed
GMPB scenarios, a set of 11 different DOP algorithms is
chosen (see Section S-II-B of the supplementary document).
The experimental results on the eight GMPB scenarios can
be found in Sections S-II-D and S-II-E of the supplementary
document. The experimental results clearly indicate the poor
efficiencies of the existing algorithms in handling the chal-
lenges posed by GMPB.

IV. CONCLUSION

In this paper, we have presented a comprehensive review
of continuous single-objective unconstrained dynamic opti-
mization problem (DOP) benchmarks. The critical review of
the existing benchmark suites showed that the landscape of
most well-known DOP benchmarks is made up of one or
more smooth, separable, symmetric, unimodal components
with neutral condition numbers, which are easy to optimize
and not representative of many real-world problems. We also
have observed that there is no DOP benchmark in the literature
capable of generating problems with different combinations of
characteristics. To address the above mentioned shortcomings,
we have proposed a new generalized moving peaks benchmark
(GMPB). GMPB is capable of generating problems and com-
ponents with varieties of properties. GMPB is configurable and
can generate problems ranging from simple unimodal, smooth,
regular, separable, symmetric, balanced, and homogeneous
to highly multimodal, imbalanced, heterogeneous, partially
separable problems with ill-conditioned, highly asymmetric,
irregular, nonseparable components. Moreover, all the afore-
mentioned features are dynamic and change over time in
GMPB. Several well-known optimizers and DOP algorithms

have been used to investigate the performance of the existing
algorithms on the generated problem instances by GMPB. The
experimental results have indicated the poor efficiencies of
the existing algorithms in handling the challenges posed by
GMPB. In the future, some other important characteristics
can also be considered to be added to GMPB, such as
dynamic constraints or multiple conflicting objectives, which
are important classes of DOPs [10]–[12]. In addition, due
to the importance of the discrete and combinatorial DOPs,
investing existing problems and benchmark generators in this
domain is an important topic for future work [6], [7].

REFERENCES

[1] T. T. Nguyen, “Continuous dynamic optimisation using evolutionary
algorithms,” Ph.D. dissertation, University of Birmingham, 2011.

[2] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic opti-
mization: A survey of the state of the art,” Swarm and Evolutionary
Computation, vol. 6, pp. 1–24, 2012.

[3] D. Yazdani, “Particle swarm optimization for dynamically changing
environments with particular focus on scalability and switching cost,”
Ph.D. dissertation, Liverpool John Moores University, Liverpool, UK,
2018.

[4] C. Li, T. T. Nguyen, S. Zeng, M. Yang, and M. Wu, “An open framework
for constructing continuous optimization problems,” IEEE Transactions
on Cybernetics, pp. 1–15, 2018.

[5] C. Cruz, J. R. González, and D. A. Pelta, “Optimization in dynamic
environments: a survey on problems, methods and measures,” Soft
Computing, vol. 15, no. 7, pp. 1427–1448, 2011.

[6] S. Yang, Y. Jiang, and T. T. Nguyen, “Metaheuristics for dynamic
combinatorial optimization problems,” IMA Journal of Management
Mathematics, vol. 24, no. 4, pp. 451–480, 2013.

[7] M. Mavrovouniotis, F. M. Muller, and S. Yang, “Ant colony optimization
with local search for dynamic traveling salesman problems,” IEEE
Transactions on Cybernetics, vol. 47, no. 7, pp. 1743–1756, 2017.

[8] J. Branke, “Memory enhanced evolutionary algorithms for changing op-
timization problems,” in IEEE Congress on Evolutionary Computation.
IEEE, 1999, pp. 1875–1882.

[9] S. B. Gee, K. C. Tan, and H. A. Abbass, “A benchmark test suite for
dynamic evolutionary multiobjective optimization,” IEEE Transactions
on Cybernetics, vol. 47, no. 2, pp. 461–472, 2017.

[10] S. Jiang, M. Kaiser, S. Yang, S. Kollias, and N. Krasnogor, “A scalable
test suite for continuous dynamic multiobjective optimization,” IEEE
Transactions on Cybernetics, pp. 1–13, 2019.

[11] S. Jiang and S. Yang, “Evolutionary dynamic multiobjective optimiza-
tion: Benchmarks and algorithm comparisons,” IEEE Transactions on
Cybernetics, vol. 47, no. 1, pp. 198–211, 2017.

[12] T. T. Nguyen and X. Yao, “Continuous dynamic constrained optimiza-
tion—the challenges,” IEEE Transactions on Evolutionary Computation,
vol. 16, no. 6, pp. 769–786, 2012.

13

[13] C. Bu, W. Luo, and L. Yue, “Continuous dynamic constrained optimiza-
tion with ensemble of locating and tracking feasible regions strategies,”
IEEE Transactions on Evolutionary Computation, vol. 21, no. 1, pp.
14–33, 2017.

[14] Y. Wang, J. Yu, S. Yang, S. Jiang, and S. Zhao, “Evolutionary dynamic
constrained optimization: Test suite construction and algorithm compar-
isons,” Swarm and Evolutionary Computation, vol. 50, p. 100559, 2019.

[15] X. Yu, Y. Jin, K. Tang, and X. Yao, “Robust optimization over time - a
new perspective on dynamic optimization problems,” in IEEE Congress
on Evolutionary Computation (CEC). IEEE, 2010, pp. 1–6.

[16] D. Yazdani, T. T. Nguyen, and J. Branke, “Robust optimization over
time by learning problem space characteristics,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 01, pp. 143–155, 2019.

[17] D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang, “A multi-
objective time-linkage approach for dynamic optimization problems with
previous-solution displacement restriction,” in European Conference on
the Applications of Evolutionary Computation, K. Sim and P. Kaufmann,
Eds. Lecture Notes in Computer Science, 2018, vol. 10784, pp. 864–
878.

[18] D. Yazdani, M. N. Omidvar, J. Branke, T. T. Nguyen, and X. Yao,
“Scaling up dynamic optimization problems: A divide-and-conquer
approach,” IEEE Transaction on Evolutionary Computation, 2019.

[19] W. Luo, B. Yang, C. Bu, and X. Lin, “A hybrid particle swarm
optimization for high-dimensional dynamic optimization,” in Simulated
Evolution and Learning, Y. Shi, K. C. Tan, M. Zhang, K. Tang, X. Li,
Q. Zhang, Y. Tan, M. Middendorf, and Y. Jin, Eds. Springer Lecture
Notes in Computer Science, 2017, vol. 10593, pp. 981–993.

[20] N. Hansen, S. Finck, R. Ros, and A. Auger, “Real-parameter black-
box optimization benchmarking 2009: Noiseless functions definitions,”
INRIA, Tech. Rep. RR-6829, 2010.

[21] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the
cec 2005 special session on real-parameter optimization,” Nanyang
Technological University, Tech. Rep., 2005.

[22] J. J. Liang, P. N. Suganthan, and K. Deb, “Novel composition test
functions for numerical global optimization,” in Swarm Intelligence
Symposium, 2005, pp. 68–75.

[23] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, “Benchmark
functions for the CEC’2010 special session and competition on large-
scale global optimization,” Nature Inspired Computation and Applica-
tions Laboratory, Tech. Rep., 2009.

[24] M. N. Omidvar, X. Li, and K. Tang, “Designing benchmark problems
for large-scale continuous optimization,” Information Sciences, vol. 316,
pp. 419–436, 2015.

[25] H. G. Cobb and J. J. Grefenstette, “Genetic algorithms for tracking
changing environments,” in Proceedings of the 5th International Con-
ference on Genetic Algorithms. Morgan Kaufmann Publishers Inc.,
1993, pp. 523–530.

[26] P. Angeline, “Tracking extrema in dynamic environments,” in Evolu-
tionary Programming VI, P. Angeline, R. Reynolds, J. McDonnell, and
R. Eberhart, Eds. Springer Lecture Notes in Computer Science, 1997,
vol. 1213, pp. 335–345.

[27] K. Weicker and N. Weicker, “Dynamic rotation and partial visibility,”
in Proceedings of the Congress on Evolutionary Computation, 2000, p.
1125–1131.

[28] C. Li and S. Yang, “A generalized approach to construct benchmark
problems for dynamic optimization,” in Simulated Evolution and Learn-
ing, X. L. et al., Ed. Springer Lecture Notes in Computer Science, 2013,
vol. 5361, pp. 391–400.

[29] R. Tinos and S. Yang, “A framework for inducing artificial changes in
optimization problems,” Information Sciences, vol. 485, pp. 486 – 504,
2019.

[30] J. Branke and H. Schmeck, “Designing evolutionary algorithms for dy-
namic optimization problems,” in Advances in Evolutionary Computing,
A. Ghosh and S. Tsutsui, Eds. Springer Natural Computing Series,
2003, pp. 239–262.

[31] R. W. Morrison and K. A. D. Jong, “A test problem generator for
non-stationary environments,” in Proceedings of the 1999 Congress on
Evolutionary Computation-CEC99, vol. 3, 1999, pp. 2047–2053.

[32] R. W. Morrison, Designing Evolutionary Algorithms for Dynamic Envi-
ronments. Springer-Natural Computing Series, 2004.

[33] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments,” IEEE Transactions on Evolu-
tionary Computation, vol. 10, no. 4, pp. 459–472, 2006.

[34] R. Mendes and A. S. Mohais, “DynDE: a differential evolution for
dynamic optimization problems,” in Congress on Evolutionary Com-
putation, vol. 3, 2005, pp. 2808–2815.

[35] M. C. du Plessis and A. P. Engelbrecht, “Using competitive population
evaluation in a differential evolution algorithm for dynamic environ-
ments,” European Journal of Operational Research, vol. 218, no. 1, pp.
7–20, 2012.

[36] C. Li, T. T. Nguyen, M. Yang, M. Mavrovouniotis, and S. Yang, “An
adaptive multi-population framework for locating and tracking multiple
optima,” IEEE Transactions on Evolutionary Computation, vol. 20,
no. 05, pp. 590–605, 2016.

[37] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, M. R. Meybodi, and
M. Akbarzadeh-Totonchi, “mNAFSA: A novel approach for optimiza-
tion in dynamic environments with global changes,” Swarm and Evolu-
tionary Computation, vol. 18, pp. 38–53, 2014.

[38] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, and M. R. Meybodi, “A
novel multi-swarm algorithm for optimization in dynamic environments
based on particle swarm optimization,” Applied Soft Computing, vol. 13,
no. 04, pp. 2144–2158, 2013.

[39] S. Yang and C. Li, “A clustering particle swarm optimizer for locating
and tracking multiple optima in dynamic environments,” IEEE Transac-
tions on Evolutionary Computation, vol. 14, no. 06, pp. 959–974, 2010.

[40] C. Li and S. Yang, “A general framework of multipopulation methods
with clustering in undetectable dynamic environments,” IEEE Transac-
tions on Evolutionary Computation, vol. 16, no. 4, pp. 556–577, 2012.

[41] D. Yazdani, A. Sepas-Moghaddam, A. Dehban, and N. Horta, “A novel
approach for optimization in dynamic environments based on modified
artificial fish swarm algorithm,” International Journal of Computational
Intelligence and Applications, vol. 15, no. 02, pp. 1 650 010–1 650 034,
2016.

[42] H. Richter, “Detecting change in dynamic fitness landscapes,” in
Congress on Evolutionary Computation. IEEE, 2009, pp. 1613–1620.

[43] D. Yazdani, T. T. Nguyen, J. Branke, and J. Wang, “A new multi-
swarm particle swarm optimization for robust optimization over time,”
in Applications of Evolutionary Computation, G. Squillero and K. Sim,
Eds. Springer Lecture Notes in Computer Science, 2017, vol. 10200,
pp. 99–109.

[44] D. Yazdani, J. Branke, M. N. Omidvar, T. T. Nguyen, and X. Yao,
“Changing or keeping solutions in dynamic optimization problems with
switching costs,” in Genetic and Evolutionary Computation Conference,
2018, pp. 1095–1102.

[45] H. Fu, B. Sendhoff, K. Tang, and X. Yao, “Finding robust solutions
to dynamic optimization problems,” in Applications of Evolutionary
Computation, vol. 7835. Lecture Notes in Computer Science, 2013,
pp. 616–625.

[46] Y. nan Guo, M. Chen, H. Fu, and Y. Liu, “Find robust solutions over time
by two-layer multi-objective optimization method,” in IEEE Congress
on Evolutionary Computation (CEC). IEEE, 2014, pp. 1528—-1535.

[47] Y. Huang, Y. Ding, K. Hao, and Y. Jin, “A multi-objective approach to
robust optimization over time considering switching cost,” Information
Sciences, vol. 394-395, pp. 183–197, 2017.

[48] S. Das, S. Maity, B.-Y. Qu, and P. N. Suganthan, “Real-parameter
evolutionary multimodal optimization—a survey of the state-of-the-art,”
Swarm and Evolutionary Computation, vol. 1, no. 2, pp. 71–88, 2011.

[49] R. Cheng, M. Li, K. Li, and X. Yao, “Evolutionary multiobjective
optimization-based multimodal optimization: Fitness landscape approx-
imation and peak detection,” IEEE Transactions on Evolutionary Com-
putation, vol. 22, no. 5, pp. 692–706, 2017.

[50] W. Luo, X. Lin, T. Zhu, and P. Xu, “A clonal selection algorithm for
dynamic multimodal function optimization,” Swarm and Evolutionary
Computation, vol. 50, p. 100459, 2019.

[51] B. Nasiri, M. Meybodi, and M. Ebadzadeh, “History-driven particle
swarm optimization in dynamic and uncertain environments,” Neuro-
computing, vol. 172, pp. 356 – 370, 2016.

[52] J. J. Grefenstette, “Evolvability in dynamic fitness landscapes: a genetic
algorithm approach,” in Proceedings of the 1999 Congress on Evolu-
tionary Computation-CEC99, vol. 3, 1999, pp. 2031–2038.

[53] T. M. Blackwell, “Swarms in dynamic environments,” in Conference on
Genetic and Evolutionary Computation, vol. 2723. Lecture Notes in
Computer Science, Springer, 2003, pp. 19–26.

[54] C. Li, S. Yang, and M. Yang, “An adaptive multi-swarm optimizer for
dynamic optimization problems,” Evolutionary Computation, vol. 22,
no. 4, pp. 559–594, 2014.

[55] C. Li, M. Mavrovouniotis, S. Yang, and X. Yao, “Benchmark generator
for the ieee wcci-2014 competition on evolutionary computation for
dynamic optimization problems,” De Montfort University, Tech. Rep.,
2013.

[56] C. Li, S. Yang, T. T. Nguyen, E. L. Yu, X. Yao, Y. Jin, H.-G. Beyer,
and P. N. Suganthan, “Benchmark generator for cec’2009 competition

14

on dynamic optimization,” Center for Computational Intelligence, Tech.
Rep., 2008.

[57] T. Zhu, W. Luo, and L. Yue, “Dynamic optimization facilitated by the
memory tree,” Soft Computing, vol. 19, no. 3, pp. 547–566, 2014.

[58] K. Trojanowski and Z. Michalewicz, “Searching for optima in non-
stationary environments,” in Congress on Evolutionary Computation,
vol. 3, 1999, pp. 1843–1850.

[59] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517,
1975.

[60] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, “DG2: A
faster and more accurate differential grouping for large-scale black-box
optimization,” IEEE Transactions on Evolutionary Computation, vol. 21,
no. 6, pp. 929–942, 2017.

[61] A. M. Sutton, M. Lunacek, and L. D. Whitley, “Differential evolution
and non-separability: Using selective pressure to focus search,” in
Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO ’07. New York, NY, USA: Association for
Computing Machinery, 2007, pp. 1428–1435.

[62] X. Li, K. Tang, M. N. Omidvar, Z. Yang, , and K. Qin, “Benchmark
functions for the CEC’2013 special session and competition on large-
scale global optimization,” RMIT University, Tech. Rep., 2013.

[63] R. Tinos and S. Yang, “Continuous dynamic problem generators for
evolutionary algorithms,” in Congress on Evolutionary Computation,
2007, pp. 236–243.

[64] B. Kazimipour, M. N. Omidvar, A. Qin, X. Li, and X. Yao, “Bandit-
based cooperative coevolution for tackling contribution imbalance in
large-scale optimization problems,” Applied Soft Computing, vol. 76,
pp. 265–281, 2019.

1

Supplementary Document of ‘Benchmarking
Continuous Dynamic Optimization: Survey and

Generalized Test Suite’
Danial Yazdani, Mohammad Nabi Omidvar, Ran Cheng, Jürgen Branke, Trung Thanh Nguyen, and Xin Yao

CONTENTS

S-I Background 1

S-II Experimental Studies 2
S-II-A Evaluation metrics 2
S-II-B Benchmark Algorithms 2
S-II-C Empirical analysis 3

S-II-C1 The effect of condition num-
ber and variable interaction . 3

S-II-C2 Effect of irregularities of
components 3

S-II-C3 Effect of modularity of prob-
lem 4

S-II-D Investigating the performance of the
DOP algorithms on eight GMPB scenarios 4

S-II-E Investigating the tracking efficiency of
the DOP algorithms on eight GMPB
scenarios 5

S-III A note on constrained DOP benchmarks and
adding constraints to GMPB 5

S-III-A DCOP benchmarks with inflexible
structure 5

S-III-B DCOP benchmarks with controllable
structure 5

References 8

S-I. BACKGROUND

This section covers basic definitions such as dynamic op-
timization problems, variable interaction, imbalance, hetero-
geneity, and ill-conditioning.

a) Dynamic optimization problems: DOPs are usually
represented as follows:

F (~x) = f
(
~x, ~α(t)

)
, (S-1)

where f is the objective function, ~x is a design vector, ~α(t)

are environmental parameters which change over time, t is
the time index with t ∈ [0, T], and T is the problem life
cycle. In this paper, like most previous studies in the DOP
domain, we consider DOPs that change discretely over time,
i.e., t ∈ {1, . . . , T} with stationary periods between changes.
For a DOP with T environmental states, there is a sequence
of T static environments:

F (~x) =
[
f(~x, ~α(1)), f(~x, ~α(2)), . . . , f(~x, ~α(T))

]
. (S-2)

b) Modularity and Variable Interaction: Real-world
problems often have a modular structure [1]. The modularity
is caused by the interaction structure of the decision variables
resulting in a wide range of structures from fully separable
functions to fully nonseparable ones. Variable interaction or
linkage refers to the extent to which the optimum of a variable
depends on the values taken by other decision variables.
For continuous optimization problems, variable interaction is
defined as follows [2]:

Definition 1. [2] Let f : Rn → R be a twice differentiable
function. Decision variables xi and xj interact if a candidate
solution x? exists, such that

∂2f(x?)

∂xi∂xj
6= 0. (S-3)

Some functions exhibit an underlying interaction structure
such that groups of decision variables can be optimized
independently. These functions, which are called partially
separable, are defined as follows:

Definition 2. [1] A function f(x) is partially separable with
m independent components iff:

arg min
x

f(x)=
(
arg min

x1

f(x1, . . .), . . . , arg min
xm

f(. . . ,xm)
)
,

(S-4)

where x = (x1, . . . , xn)
> is a decision vector of n dimensions,

x1, . . . ,xm are disjoint sub-vectors of x, and 2 ≤ m ≤ n. The
function is called fully separable when m = n.

Additive separability is a special type of partial separability,
which is defined as follows:

Definition 3. [1] A function is additively separable if it has
the following general form:

f(x) =

m∑
i=1

fi(xi), m > 1, (S-5)

where fi(·) is a nonseparable subfunction, and m is the
number of nonseparable components of f . The definition of
x and xi is identical to what was given in Def. 2.

Definition 4. [1] A function f(x) is fully nonseparable if
every pair of its decision variables interact.

2

c) Imbalance and heterogeneity: Real-world problems
often exhibit a modular structure with nonuniform imbalance
among the contribution of its constituent parts to the objective
value, commonly known as the imbalance issue [1], [3]–
[5]. A partially separable problem is heterogeneous when its
subfunctions have various characteristics and landscapes [1],
[6]. Additionally, in DOPs, heterogeneity arises when subfunc-
tions have different number of components, dimensions, and/or
change intensities [7].

The imbalance property can be caused as a by-product of
modularity or due to the heterogeneous nature of the input
variables and their domains. For example, model predictive
control (MPC) is a dynamic optimization problem with a wide
range of applications in chemical power plants, robotics, and
power systems, that exhibits modularity, heterogeneity, and
imbalance [8].

d) Ill-conditioning: If the width value of a component
is stretched in the direction of one axis more than the other
axes, it is said that the component is ill-conditioned [9].
Ill-conditioning is an important property of many real-world
problems [1], [9], [10].

S-II. EXPERIMENTAL STUDIES

In this section, we use several well-known optimizers and
DOP algorithms to solve the generated problem instances
by GMPB with various combinations of characteristics. By
investigating the behavior and performance of the algorithms
on the problems with the new properties, we can observe the
shortcomings of the existing DOP methods in facing the new
challenges posed by GMPB.

A. Evaluation metrics

To evaluate the performance and effectiveness of algorithms,
three different evaluation metrics are used in this paper. First,
the offline-error [11] (EO) which is the average error of the
best found position over all fitness evaluations:

EO =
1

Tϑ

T∑
t=1

ϑ∑
c=1

(
f (t)

(
x?(t)

)
− f (t)

(
x∗((t−1)ϑ+c)

))
,

(S-6)

where x?(t) is the global optimum position at the tth environ-
ment, T is number of environments, ϑ is the change frequency,
c is the fitness evaluation counter for each environment, and
x∗((t−1)ϑ+c) is the best found position at the cth fitness
evaluation in the tth environment. Second, the average error
of the best found position in each environment:

EB =
1

T

T∑
t=1

(
f (t)

(
x?(t)

)
− f (t)

(
x∗(t)

))
, (S-7)

where x∗(t) is the best found position in tth environment.
The aforementioned evaluation metrics are performance-based
measurements [12]. The third evaluation metric that we use in
this paper is the average distance to optimum over time [13]:

ED =
1

Tϑ

T∑
t=1

ϑ∑
c=1

∥∥∥x?(t) − x◦((t−1)ϑ+c)
∥∥∥ , (S-8)

where x◦((t−1)ϑ+c) is the closest found position to the global
optimum at the cth fitness evaluation in the tth environment.
ED is an efficiency-based evaluation metric that indicates the
global optimum tracking effectiveness. As shown in [14], ED

values are not related to EO and EB . For example, a position
may be fit, but it resides on a component whose distance to
the global optimum component is far. In addition, when the
component with the highest height is narrow, the fitness of
solutions on its basin of attraction, whose distances to the
global optimum are low, can be very poor in terms of fitness
values.

B. Benchmark Algorithms

To study the effect of different component characteristics
generated by GMPB, three well-known optimizers are se-
lected: particle swarm optimization (PSO) [15], and two ver-
sions of differential evolution (DE): jDE [16], [17] bDE [18],
[19], and covariance matrix adaptation evolution strategy
(CMA-ES) [20].

For PSO, we use the global-best neighbourhood topology
with constriction factor [21]. jDE is a well-known DE ver-
sion that uses DE/rand/1/bin strategy and self adaptive
scaling factor (F) and crossover rate (Cr) [16]. bDE uses
DE/best/2/bin strategy and Brownian particles to improve
the exploitation ability. In addition, bDE uses uniformly ran-
domized F and Cr in each iteration. For CMA-ES, the version
provided in [22] is used.

To investigate the performance of existing DOP algo-
rithms on GMPB, a set of 11 different algorithms is chosen:
AmQSO [23], CPSO [24], DynPopDE [25], FTmPSO [26], an
improved version of DSPSO [27], mCMA-ES [3], mbDE [3],
mjDE [3], mPSO [3], mQSO [28], and RPSO [29]. These
algorithms are representative of different research approaches
from several point of views [12], [30]: 1) different optimizers
with various core procedures are used in the DOP algorithms
including PSO, jDE, bDE, and CMA-ES; 2) different popula-
tion configurations are used among them, for example mQSO
is a multi-population algorithm with constant number of sub-
populations. AmQSO, DSPSO, and CPSO are using an adap-
tive number of sub-populations, regrouping approaches, and
clustering methods respectively. RPSO is a single population
method that uses randomization after environmental changes;
and 3) FTmPSO and DynPopDE use resource allocation
methods.

For a better comparison, some parts of the algorithms are
changed as follows: 1) The procedure of change detection
is removed from all methods. It is assumed that algorithms
are informed about environmental changes like many real-
world cases [31]; 2) All PSO based algorithms use PSO with
constriction factor version [21]. For CPSO, the procedure of
updating Gbest is kept [24]; 3) All methods that use some
knowledge about the shift severity (such as AmQSO and
FTmPSO), use the shift severity calculation method from [32];
and 4) For addressing DSPSO shortcomings and improving its
performance, the velocity of particles is randomized in (-1,1)
after environmental changes. Moreover, the solo particles after
determining species form a sub-population to participate in

3

the optimization process. For CPSO, if all sub-populations are
converged and deactivated, the converged sub-populations are
allowed to do more exploitation until the next environmental
change.

C. Empirical analysis

1) The effect of condition number and variable interaction:
To investigate the impact of ill-conditioning and variable inter-
actions, PSO, CMA-ES, jDE, and bDE are tested on a static
5-dimensional unimodal smooth problem (single component
with τ = η1,2,3,4 = 0) generated by (28). All tests in this
section are repeated 101 times (with different random seeds)
and algorithms stop running when the number of fitness evalu-
ations reaches 2000. In this section, we investigate the impact
of different component characteristics on the performance of
the optimizers by using EO and EB as the performance indica-
tors. In addition, since the test instances in this subsection are
static, ED is not considered for evaluating the tracking ability.
For each result, the average EO is calculated by (S-6), and the
mean error at 500th (E500), 1000th (E1000) and 2000th (E2000)
fitness evaluations are reported (standard error in parenthesis).
For each test, uniformly randomized height, width, location,
and orthogonal matrix are used. In addition, the parameter
settings of PSO, CMA-ES, jDE, and bDE are chosen according
to the provided sensitivity analysis in [7].

Table S-I shows the obtained results by algorithms on
four different problems based on various combinations of
applying rotation (R) and ill-conditioning (I). Across all tests,
the best results based on Eo are obtained by PSO because
of its high convergence speed. In fact, the problems in this
section are smooth and regular; therefore, the PSO which uses
constriction factor and global best neighbourhood topology
converges very fast towards the optimum which signifies a
good exploitation ability. bDE has better local search ability
in comparison to jDE based on E1000 and E2000. bDE uses
the best position in its mutation strategy, which improves its
local search ability in comparison to jDE which performs
better beyond 1000 fitness evaluation. However, due to the
utilized mutation strategy in bDE, its convergence speed is
lower than jDE at the first quarter of the optimization process
when the population diversity is higher. By decreasing the
population diversity, the convergence speed of bDE surpasses
that of jDE. CMA-ES ranks last according to EO due to the
nature of the performance indicator, which is calculated by
averaging the fitness of the best obtained position over time.
The convergence speed of CMA-ES at the initial iterations
of the optimization process is low such that the poor results
in this part cause a poor averaged value over time. The
results obtained by CMA-ES show that it outperforms other
optimizers after 500 fitness evaluations.

According to the Table S-I, the obtained results on problems
without ill-conditioning are exactly the same, irrespective of
whether rotation is present (under the same random seed for
both problems). This indicates that components consist of cone
peaks without ill-conditioning (condition number of zero) are
invariant to rotation. The results show that ill-conditioning
alone (i.e., no rotation) can pose a challenge to optimizers.

TABLE S-I
OBTAINED RESULTS BY PSO, JDE, BDE, AND CMA-ES ON A SINGLE

COMPONENT PROBLEM UNDER DIFFERENT CONDITIONS BASED ON
ROTATION (R) AND ILL-CONDITIONING (I). IN EACH ROW, BEST RESULTS
ARE HIGHLIGHTED ACCORDING TO THE FRIEDMAN TEST WITH α− 0.05.

R I Error Optimizer

PSO jDE bDE CMA-ES

5 5

EO 14.00(1.05) 22.89(2.04) 22.31(1.89) 35.53(2.21)
E500 1.03(0.18) 12.86(2.33) 19.37(3.69) 1.04(0.10)
E1000 0.04(0.018) 6.69(2.03) 0.47(0.27) 9e-4(1e-4)
E2000 0.001(6e-04) 5.36(1.93) 0.003(3e0-4) 5e0-9(0.0)

3 5

EO 14.00(1.05) 22.89(2.04) 22.31(1.89) 35.53(2.21)
E500 1.03(0.18) 12.86(2.33) 19.37(3.69) 1.04(0.10)
E1000 0.04(0.018) 6.69(2.03) 0.47(0.27) 9e-4(1e-4)
E2000 0.001(6e-04) 5.36(1.93) 0.003(3e0-4) 5e0-9(0.0)

5 3

EO 12.66(0.52) 27.90(2.66) 26.44(1.94) 35.83(2.28)
E500 2.45(0.57) 15.82(2.96) 29.58(4.17) 1.20(0.13)
E1000 0.13(0.06) 9.63(2.40) 4.96(1.18) 0.001(1e-4)
E2000 0.04(0.02) 6.97(1.97) 0.39(0.28) 5e0-9(0.0)

3 3

EO 17.84(1.22) 30.18(2.11) 31.39(2.22) 36.18(2.15)
E500 11.87(2.13) 21.34(2.50) 39.20(3.79) 1.18(0.14)
E1000 3.31(0.79) 13.60(2.20) 11.73(2.02) 0.001(0.002)
E2000 1.62(0.48) 10.19(1.87) 1.59(0.46) 6e0-8(0.0)

When the rotation is added to an ill-conditioned component,
the problem becomes more challenging for PSO, jDE and bDE
as a consequence of changing variable interactions from sep-
arable to nonseparable. Note that for each run, the orthogonal
matrix is generated randomly which leads to test instances with
various degrees of variable interaction. Moreover, the results
indicate that CMA-ES is invariant to rotations even when ill-
conditioning is present.

2) Effect of irregularities of components: To investigate the
effect of different levels of irregularity, a 5-dimensional single-
subfunction single-component problem (without rotation and
ill-conditioning) with various combination of τ and η1,2,3,4
values is used in this part. In addition, the component for
each test is symmetric, i.e., η1 = η2 = η3 = η4. Figure S-1
illustrates the effect of different τ and η1,2,3,4 combinations
based on EO on the performance of PSO, jDE, bDE, and
CMA-ES. According to Figures S-1(a), S-1(b), and S-1(b),
the performance of the algorithms drop when irregularity
is added to the component. According to the results, when
η1,2,3,4 ∈ (3, 5) and τ > 0.2 the problem is more challenging.
Based on our investigations, these parameter settings of τ and
η1,2,3,4 create multiple large local optima in the component,
which increases the possibility of premature convergence of
the algorithms. By increasing the value of η, the number of
local optima increases but their size become smaller, which
makes it easier for the algorithms to escape local optima.

By comparing Figures S-1(a), S-1(b), S-1(c), and S-1(d), it
is obvious that jDE performs better than the other methods in
irregular environments. The reason is that jDE has a good
exploration ability helping it to prevent trapping in local
optima. However, as shown in Section S-II-C1 and in Figure S-
1(b) (η = 0 and/or η1 = η2 = η3 = η4 = 0), due
to its inferior convergence speed and exploitation ability, it
performs worse than other methods on regular and smooth
environments. According to Figures S-1(a) and S-1(c), PSO
and bDE significantly suffer from irregularities. The reason is
that both PSO and bDE are susceptible to local optima and

4

(a) PSO (b) jDE

(c) bDE (d) CMA-ES

Fig. S-1. Obtained results (EO) by PSO, jDE, bDE, and CMA-ES on a
5-dimensional single component with different τ and η1,2,3,4 combinations.

premature convergence. Comparing Figures S-1(a) and S-1(c)
indicates that PSO outperforms bDE in irregular environments,
As can be seen in Figure S-1(d), the performance of CMA-
ES deteriorates significantly on irregular problems. In fact,
CMA-ES shows the worst performance on preventing early
convergence among the tested algorithms.

3) Effect of modularity of problem: Finally, to study the
effect of modularity, the following two test problems are
proposed: 1) a fully non-separable 10-dimensional problem
with 10 components (GMPB(1010)); and 2) a partially sep-
arable problem with two fully nonseparable 5-dimensional
subfunctions with 5 components in each (GMPB(55 + 55));
components in both problems are unimodal, smooth, regular,
symmetric, separable, and with condition number of zero.
Table S-II shows the obtained results by different DOP algo-
rithms on the two cases. Each result in Table S-II is obtained
by 31 independent runs on 100 environments and until 500,000
fitness evaluations. The remaining parameters are set the same
as scenario 1 (f1) from Table III.

Both tested problems in this section are 10-dimensional
but one of them is constructed by composition of two 5-
dimensional subproblems using (31). According to [3], [7], the
number of physical peaks in composing MPBs can be up to
the product of number of peaks in all subfunctions. Therefore,
although GMPB(55 + 55) has 5 peaks in each subfunction,
its overall landscape can contain up to 25 physical peaks.
This exponentially growing number of peaks by composing
subfunctions from Eq. (29) is the main reason behind the
worse results of the algorithms on GMPB(55 + 55) compared
to the obtained results on GMPB(1010). FTmPSO outperforms
other methods in both tested problems since it uses a resource
allocation method which improves its performance, especially
when the number of peaks are higher [26].

D. Investigating the performance of the DOP algorithms on
eight GMPB scenarios

In this section, the performance of the DOP algorithms
from Section S-II-B are studied on the eight scenarios of

TABLE S-II
OBTAINED RESULTS (MEAN AND STANDARD ERROR) BY DOP

ALGORITHMS ON GMPB(1010) AND GMPB(55 + 55). THE BEST
OBTAINED RESULTS ARE IN BOLD FOR EB AND HIGHLIGHTED FOR EO

BASED ON THE FRIEDMAN TEST WITH α = 0.05.

Algorithm Error Problem instance

GMPB(1010) GMPB(55 + 55)

AmQSO EO 4.99(0.17) 6.81(0.21)
EB 2.78(0.15) 4.00(0.16)

CPSO EO 10.05(0.35) 10.55(0.24)
EB 7.29(0.31) 7.05(0.19)

DynPopDE EO 13.38(0.41)) 17.04(0.51)
EB 12.63(0.40) 15.99(0.48)

FTmPSO EO 3.25(0.15) 4.57(0.15)
EB 1.99(0.15) 2.54(0.12)

IDSPSO EO 6.56(0.26) 6.85(0.2)
EB 4.30(0.27) 4.90(0.19)

mCMA-ES EO 3.63(0.21) 5.19(0.17)
EB 2.51(0.24) 3.34(0.18)

mbDE EO 6.13(0.22) 8.07(0.22)
EB 3.60(0.21) 4.83(0.18)

mjDE EO 9.10(0.31) 10.13(0.32)
EB 6.24(0.29) 7.21(0.27)

mPSO EO 4.81(0.20) 6.77(0.15)
EB 2.77(0.18) 3.97(0.12)

mQSO EO 8.11(0.21) 10.04(0.25)
EB 6.17(0.18) 7.60(0.22)

RPSO EO 20.78(0.71) 16.14(0.43)
EB 16.62(0.72) 12.72(0.41)

GMPB from Table II. To measure the performance of the DOP
algorithms, EO and EB as two performance-based evaluation
metrics, are used in this part. The obtained results on the
scenarios with the default parameter settings from Table IV are
shown in Table S-III. According to Table S-III, the best results
are obtained for f1 which is the equivalent to the traditional
MPB and the easiest of all scenarios due to lack of modularity,
and having easy to optimize components. f2 has regular and
smooth components but they are ill-conditioned and non-
separable. As expected, mCMA-ES whose performance is
invariant to rotations, obtains the best results on f2. f3 contains
irregular and complex components but they are not rotated
and stretched from any direction. Surprisingly, mCMA-ES
obtains the best EO among the algorithms which was not
expected according to Figure 1(d). The reason behind this
improvement of mCMA-ES in comparison to CMA-ES is
benefiting from the multiple-population approach. In fact, us-
ing multiple-population and re-initializing the explorer (finder)
sub-population after convergence or stagnating, addresses
CMA-ES’s flaw of being stuck in local optima. According
to the results of Table S-III, f4 is the most challenging non-
separable problem because its components are irregular, ill-
conditioned, asymmetric, non-separable whose degrees change
over time. Although the performance of mCMA-ES dropped
considerably in f4, it outperforms all other methods. For
f1-f4, rather than CMA-ES, PSO based algorithms with an
adaptive multi-population approach – i.e., FTmPSO, AmQSO,
and mPSO – outperform other algorithms. One reason is the
superior convergence speed of PSO in comparison to DE-

5

based methods. Another reason is adaptive multi-population
approach that improves the premature convergence issue.
FTmPSO outperforms AmQSO and mPSO because of its
additional mechanisms such as resource allocation [26].

Scenarios f5-f8 are partially separable problems with two
fully separable dimensions. In terms of component charac-
teristics, f5-f8 are similar to f1-f4, respectively. However,
the modularity property of f5-f8 leads to exponential growth
in the number of optima as indicated in Figure 13, which
significantly increases their difficulties. According to Table S-
III, CPSO obtains the best results in f5-f8. As stated before,
the overall landscape of these problems are usually highly mul-
timodal due to their modularity and the exponentially growing
of number of optima. Therefore, CPSO outperforms other al-
gorithms because of its clustering based multi-population and
re-diversification approaches which increase its exploration ca-
pability at the beginning of each environment. For algorithms
with adaptive sub-population generation mechanism such as
FTmPSO, AmQSO, and mPSO, the higher number of peaks in
the landscape results in simultaneous creation and running of
more sub-populations. Consequently, higher numbers of sub-
populations decrease their efficiencies due to higher fitness
evaluation consumptions in each iteration.

Tables S-IV, S-V, and S-VI, show the obtained results on the
scenarios according to the challenging parameter settings from
Table IV where the shift severities, number of components,
and change frequencies are higher. By comparing the reported
results in Tables S-III and S-IV, it can be seen that the
problems with higher shift severities are more challenging.
This performance deterioration is a consequence of larger
displacement of component centers after an environmental
change. Table S-V shows that problems with a higher number
of components are more challenging because finding and cov-
ering higher number of components consumes more computa-
tional resources, which decreases the efficiency of algorithms.
Finally, based on the results of Table S-VI, problems with
higher change frequencies are more difficult because they give
the algorithms less time and computational resource to cover
and track optima in each environment.

E. Investigating the tracking efficiency of the DOP algorithms
on eight GMPB scenarios

In this section, the tracking efficiencies of the DOP algo-
rithms from Section S-II-B are studied on the eight scenarios
of GMPB from Table II. We use ED in this part to measure
the tracking efficiencies of the DOP algorithms. The obtained
results on the scenarios with the default parameter settings
from Table IV are shown in Table S-VII. The results show
that the patterns captured by ED are different from those of
the other performance metrics, i.e., EO and EB . This is due
to the fact that the fitness values of solutions are not always
related to their distance from the global optimum.

According to Table S-VII, the results deteriorate when
the problems are modular(f5-f8). Additionally, the tracking
efficiencies of the DOP algorithms drop in ill-conditioned
and irregular problems. Overall, FTmPSO outperforms other
methods, and mjDE obtains the best results on majority of
cases on f5-f8.

S-III. A NOTE ON CONSTRAINED DOP BENCHMARKS AND
ADDING CONSTRAINTS TO GMPB

Many real-world optimization problems may involve con-
straints. By adding constraints to GMPB, another class of
optimization problems called dynamic constrained optimiza-
tion problems (DCOPs) can be covered. In DCOPs, both
or either of the objective function and/or constraints can
be time-varying. In this section, we investigate the existing
DCOP benchmark generators and analyze their adaptability
and flexibility in order to incorporate constraints into GMPB.
DCOP benchmarks can be categorized into two groups:
• DCOP benchmarks with inflexible structure which are

constructed by combining time dependent variables with
constrained static functions, and

• DCOP benchmarks with controllable structure to build
a landscape with multiple moving disjointed feasible
regions.

A. DCOP benchmarks with inflexible structure

In [33], a set of three DCOP benchmark problems are
conducted. Both objective function and constraint(s) are time-
varying in this set of problem instances. A commonly used
DCOP benchmark is G24 [34]. The idea is to combine existing
static constrained problems with time-dependent parameters
to construct dynamic objective functions and constraints. The
same idea is used to construct DCOPs from static constrained
problem instances in [35]. All the above mentioned DCOP
benchmarks are not suitable to be combined with GMPB since
they are not scalable and flexible. In fact, their mathematical
model is fixed, and the characteristics of their landscapes and
feasible regions cannot be controlled.

B. DCOP benchmarks with controllable structure

In [36], several moving disjointed feasible regions with
different shapes are added to the modified MPB from (10).
Each feasible region is constructed by:

g
(t)
j (x) =

∥∥∥b(t)j x− c′
(t)
j

∥∥∥
p
(t)
j

− r(t)j ≤ 0, j = 1, 2, · · · ,m,

(S-9)

where g(t)j is jth constraint in tth environment that forms a
feasible region, m is the number of feasible regions, c′j is the
center of jth feasible region, rj defines the size of jth feasible
region, bj defines the relative size based on the different spatial
direction of the solution x, and ‖·‖pj

is the pj-norm function.
pj can define the shape of jth feasible region. For example,
the feasible region can be diamond like if pj = 1, or it can
be a ball shape if pj = 2. All the aforementioned parameters
can be time-dependant. Consequently, the location, size, and
shape of each feasible region can change over time. In this
benchmark, when a solution x lies inside the defined region
by any g(t)j , it is considered as a feasible solution. Therefore,
a solution x in tth environment is feasible if:

{∃g(t)j (x)|g(t)j (x) ≤ 0, j = 1, 2, · · · ,m}. (S-10)

This type of feasible regions can be added to GMPB to
construct a DCOP benchmark generator.

6

TABLE S-III
OBTAINED RESULTS (MEAN AND STANDARD ERROR) BY DOP ALGORITHMS ON EIGHT GMPB SCENARIOS FROM TABLE II WITH THE DEFAULT SETTINGS

FROM TABLE IV. THE BEST OBTAINED RESULTS ARE IN BOLD FOR EB AND HIGHLIGHTED FOR EO BASED ON THE FRIEDMAN TEST WITH α = 0.05.

Algorithm Error GMPB Scenario

f1 f2 f3 f4 f5 f6 f7 f8

AmQSO EO 4.99(0.17) 7.76(0.13) 8.14(0.25) 13.07(0.21) 17.41(0.72) 21.07(0.98) 17.78(0.69) 21.34(0.92)
EB 2.78(0.15) 4.02(0.10) 5.83(0.27) 8.57(0.18) 13.73(0.63) 16.33(0.76) 14.24(0.60) 16.89(0.74)

CPSO EO 10.05(0.35) 14.03(0.21) 10.83(0.30) 24.24(0.61) 14.76(0.63) 18.71(0.98) 15.67(0.62) 20.15(0.96)
EB 7.29(0.31) 8.61(0.19) 8.04(0.25) 18.71(0.60) 10.27(0.50) 12.74(0.65) 11.36(0.47) 15.38(0.71)

DynPopDE EO 13.38(0.41) 19.28(0.49) 50.16(2.73) 80.07(4.19) 26.48(1.12) 31.60(1.75) 43.88(2.03) 50.42(2.42)
EB 12.63(0.40) 17.66(0.47) 46.64(2.41) 72.77(3.91) 24.05(1.06) 28.32(1.59) 41.17(1.93) 47.06(2.29)

FTmPSO EO 3.25(0.15) 5.44(0.12) 7.15(0.29) 12.70(0.34) 15.39(0.65) 19.38(0.94) 16.76(0.59) 20.22(0.84)
EB 1.91(0.15) 1.99(0.08) 4.95(0.25) 7.11(0.26) 11.42(0.52) 14.12(0.70) 12.88(0.51) 15.21(0.62)

IDSPSO EO 6.56(0.26) 7.81(0.21) 8.49(0.26) 13.92(0.49) 17.23(0.78) 18.61(0.92) 19.22(0.74) 22.41(1.07)
EB 4.30(0.27) 4.76(0.19) 6.67(0.24) 11.09(0.49) 15.04(0.73) 15.88(0.83) 17.17(0.70) 20.07(0.98)

mCMA-ES EO 3.63(0.21) 4.23(0.06) 5.65(0.24) 7.59(0.24) 15.29(0.66) 17.18(0.86) 17.7(0.65) 19.74(0.88)
EB 2.01(0.24) 1.43(0.06) 3.82(0.24) 5.11(0.22) 12.85(0.59) 14.12(0.75) 15.69(0.61) 17.33(0.78)

mbDE EO 6.13(0.22) 9.03(0.20) 10.94(0.38) 19.66(0.49) 19.07(0.73) 23.21(1.20) 21.21(0.84) 25.39(1.15)
EB 3.60(0.21) 4.85(0.17) 8.46(0.35) 14.94(0.47) 15.38(0.64) 18.46(0.96) 17.77(0.73) 21.13(0.95)

mjDE EO 9.10(0.31) 14.97(0.42) 9.31(0.34) 19.59(1.09) 16.57(0.71) 21.58(1.26) 15.60(0.75) 21.27(1.22)
EB 6.24(0.29) 10.73(0.39) 6.55(0.33) 15.20(0.99) 12.55(0.60) 16.89(1.06) 11.39(0.68) 16.99(1.08)

mPSO EO 4.81(0.20) 7.47(0.12) 8.20(0.27) 12.88(0.27) 17.03(0.65) 20.79(1.08) 18.02(0.67) 21.36(0.93
EB 2.77(0.18) 3.77(0.09) 5.72(0.25) 8.51(0.22) 13.37(0.57) 16.10(0.85) 14.30(0.56) 16.97(0.75)

mQSO EO 8.11(0.21) 10.75(0.16) 11.52(0.38) 17.05(0.43) 17.43(0.75) 20.32(1.10) 18.54(0.8) 21.72(0.97)
EB 6.17(0.18) 7.45(0.15) 9.62(0.34) 13.74(0.38) 14.33(0.67) 16.20(0.91) 15.53(0.73) 17.85(0.79)

RPSO EO 20.79(0.71) 21.26(0.75) 21.08(0.64) 24.03(0.69) 19.25(1.07) 23.45(1.49) 19.56(1.07) 22.31(1.17)
EB 16.62(0.72) 16.11(0.73) 16.33(0.62) 18.76(0.68) 14.71(0.91) 17.38(1.25) 14.97(0.94) 16.44(0.91)

TABLE S-IV
OBTAINED RESULTS (MEAN AND STANDARD ERROR) BY DOP ALGORITHMS ON EIGHT GMPB SCENARIOS FROM TABLE II WITH THE CHALLENGING
SETTINGS FROM TABLE IV FOR THE SHIFT SEVERITIES. THE BEST OBTAINED RESULTS ARE IN BOLD FOR EB AND HIGHLIGHTED FOR EO BASED ON

THE FRIEDMAN TEST WITH α = 0.05.

Algorithm Error GMPB Scenario

f1 f2 f3 f4 f5 f6 f7 f8

AmQSO EO 7.58(0.22) 12.08(0.13) 11.4(0.31) 19.22(0.27) 21.06(0.86) 26.61(1.32) 22.01(0.95) 27.79(1.17)
EB 4.00(0.19) 6.02(0.08) 7.78(0.24) 12.18(0.20) 15.24(0.70) 19.10(0.98) 16.14(0.72) 20.55(0.85)

CPSO EO 13.38(0.36) 19.78(0.24) 13.84(0.49) 32.59(0.66) 17.55(0.75) 22.88(1.18) 18.63(0.90) 24.78(1.19)
EB 8.83(0.29) 11.44(0.21) 9.86(0.40) 24.45(0.61) 11.17(0.50) 14.63(0.78) 12.68(0.66) 17.57(0.85)

DynPopDE EO 23.01(0.52) 38.37(0.62) 69.45(2.81) 111.78(2.91) 38.02(1.54) 45.93(2.46) 55.66(2.78) 65.12(3.01)
EB 21.73(0.51) 35.19(0.63) 64.80(2.53) 103.03(2.60) 34.11(1.41) 40.35(2.18) 52.23(2.61) 60.84(2.82)

FTmPSO EO 4.82(0.22) 7.84(0.14) 9.16(0.35) 16.06(0.35) 19.26(0.89) 24.96(1.22) 20.57(0.90) 25.51(1.08)
EB 2.77(0.22) 2.74(0.10) 6.03(0.31) 8.70(0.26) 13.58(0.67) 17.23(0.87) 14.96(0.68) 18.41(0.80)

IDSPSO EO 8.54(0.32) 10.92(0.17) 11.67(0.45) 18.18(0.52) 19.33(0.87) 23.51(1.02) 24.99(1.03) 30.3(1.39)
EB 5.11(0.30) 6.41(0.16) 9.15(0.42) 14.19(0.52) 15.71(0.78) 19.08(0.85) 21.88(0.93) 26.55(1.24)

mCMA-ES EO 4.66(0.2) 6.18(0.08) 7.32(0.4) 11.65(0.28) 20.03(0.79) 23.86(1.25) 26.13(0.99) 30.2(1.23)
EB 2.20(0.22) 1.90(0.05) 4.66(0.43) 7.39(0.26) 15.24(0.65) 17.65(0.94) 21.81(0.84) 25.91(1.06)

mbDE EO 8.00(0.32) 14.5(0.16) 17.32(0.40) 29.24(0.57) 24.79(0.97) 30.58(1.43) 27.5(1.20) 33.73(1.53)
EB 3.67(0.25) 6.84(0.12) 13.45(0.36) 21.42(0.55) 19.12(0.82) 23.51(1.11) 22.48(1.01) 27.20(1.25)

mjDE EO 12.5(0.39) 22.76(0.48) 13.32(0.5) 27.44(0.69) 19.16(0.93) 26.14(1.56) 19.23(1.02) 25.43(1.32)
EB 8.12(0.32) 15.79(0.47) 8.9(0.38) 20.30(0.67) 13.28(0.77) 19.07(1.24) 13.41(0.80) 18.98(1.08)

mPSO EO 7.16(0.22) 12.19(0.16) 11.62(0.33) 18.52(0.26) 21.03(0.83) 26.97(1.36) 22.21(0.96) 27.69(1.26)
EB 3.62(0.18) 6.05(0.11) 7.98(0.27) 11.63(0.19) 15.04(0.66) 19.43(1.01) 16.29(0.74) 20.46(0.94)

mQSO EO 12.68(0.32) 17.59(0.19) 15.27(0.45) 24.00(0.44) 21.68(0.89) 26.18(1.39) 23.44(1.07) 27.48(1.27)
EB 9.37(0.26) 11.75(0.16) 12.35(0.42) 18.41(0.43) 16.73(0.75) 19.43(1.07) 18.65(0.92) 21.42(1.01)

RPSO EO 23.10(0.71) 26.81(0.67) 23.3(0.63) 27.73(0.73) 19.73(1.04) 24.39(1.37) 20.18(1.14) 23.45(1.24)
EB 16.46(0.67) 18.38(0.63) 16.21(0.65) 19.47(0.69) 14.08(0.83) 15.98(1.01) 14.16(0.94) 15.54(0.95)

In [37], a DCOP benchmark with multiple disjointed mov-
ing feasible regions is proposed, where both objective function
and constraints are based on multi-component baselines. The

baseline in (4) is used as the objective function subjected to:

g(t)(x) = δ(t) − C(t)(x) ≤ 0 (S-11)

where C(·) is a multi-component function (maximization),

7

TABLE S-V
OBTAINED RESULTS (MEAN AND STANDARD ERROR) BY DOP ALGORITHMS ON EIGHT GMPB SCENARIOS FROM TABLE II WITH THE CHALLENGING
SETTINGS FROM TABLE IV FOR THE NUMBERS OF COMPONENTS. THE BEST OBTAINED RESULTS ARE IN BOLD FOR EB AND HIGHLIGHTED FOR EO

BASED ON THE FRIEDMAN TEST WITH α = 0.05.

Algorithm Error GMPB Scenario

f1 f2 f3 f4 f5 f6 f7 f8

AmQSO EO 5.36(0.12) 10.00(0.12) 7.80(0.21) 14.16(0.26) 16.88(0.77) 19.96(0.86) 16.63(0.69) 21.09(0.97)
EB 3.29(0.11) 5.96(0.10) 5.69(0.18) 9.80(0.21) 13.62(0.64) 15.93(0.71) 13.54(0.58) 17.06(0.81)

CPSO EO 8.66(0.21) 15.49(0.21) 9.27(0.23) 24.40(0.42) 13.59(0.58) 17.36(0.80) 13.82(0.58) 19.86(1.00)
EB 6.39(0.19) 10.10(0.19) 7.06(0.21) 19.06(0.40) 9.56(0.45) 11.99(0.57) 10.13(0.45) 14.86(0.79)

DynPopDE EO 11.60(0.34) 18.56(0.54) 48.10(2.08) 67.54(3.21) 24.58(1.04) 27.67(1.22) 35.11(1.60) 42.79(2.11)
EB 10.93(0.33) 16.82(0.52) 44.84(1.91) 61.03(2.89) 22.31(0.96) 24.63(1.07) 32.74(1.52) 39.73(1.97)

FTmPSO EO 3.80(0.13) 7.42(0.09) 6.53(0.15) 13.48(0.21) 15.64(0.70) 18.59(0.78) 15.88(0.62) 20.73(0.88)
EB 2.41(0.12) 3.25(0.06) 4.43(0.13) 7.99(0.16) 12.04(0.56) 13.96(0.60) 12.41(0.52) 16.09(0.69)

IDSPSO EO 6.06(0.18) 8.79(0.20) 8.73(0.24) 14.36(0.47) 17.43(0.82) 19.04(0.79) 18.88(0.85) 22.83(1.01)
EB 4.10(0.16) 6.02(0.19) 7.06(0.24) 11.62(0.45) 15.49(0.80) 16.80(0.72) 17.15(0.82) 20.66(0.95)

mCMA-ES EO 4.41(0.15) 6.06(0.06) 5.11(0.13) 8.49(0.16) 15.27(0.68) 16.82(0.66) 16.98(0.76) 19.56(0.89)
EB 2.56(0.15) 3.31(0.06) 3.42(0.12) 6.14(0.15) 12.96(0.6) 14.13(0.58) 15.19(0.69) 17.28(0.82)

mbDE EO 5.91(0.14) 10.71(0.24) 10.99(0.30) 18.94(0.32) 19.09(0.84) 21.87(0.94) 19.28(0.82) 24.85(1.16)
EB 3.54(0.11) 6.32(0.20) 8.74(0.29) 14.16(0.31) 15.76(0.72) 17.86(0.77) 16.36(0.72) 20.83(0.97)

mjDE EO 9.11(0.19) 16.66(0.34) 9.55(0.24) 20.95(0.49) 15.66(0.83) 21.00(1.23) 14.49(0.71) 21.93(1.11)
EB 6.82(0.18) 12.65(0.33) 7.15(0.22) 16.58(0.46) 12.25(0.75) 17.11(1.09) 11.26(0.62) 18.07(0.97)

mPSO EO 5.25(0.12) 9.78(0.11) 7.60(0.20) 13.86(0.21) 16.77(0.68) 19.80(0.86) 16.89(0.68) 21.31(0.97)
EB 3.27(0.10) 5.81(0.08) 5.46(0.16) 9.58(0.17) 13.53(0.58) 15.81(0.70) 13.81(0.58) 17.25(0.82)

mQSO EO 8.15(0.21) 11.97(0.17) 10.53(0.33) 17.32(0.31) 16.34(0.69) 18.92(0.87) 16.70(0.76) 21.28(1.00)
EB 6.53(0.20) 8.75(0.17) 8.92(0.32) 14.15(0.29) 13.45(0.61) 15.22(0.72) 14.01(0.68) 17.71(0.86)

RPSO EO 22.75(0.81) 24.07(0.79) 22.36(0.90) 25.10(0.71) 17.05(0.99) 20.05(1.11) 16.15(0.90) 21.18(1.12)
EB 18.60(0.73) 18.97(0.77) 18.45(0.88) 19.84(0.71) 12.76(0.87) 14.38(0.92) 11.99(0.76) 14.28(0.90)

TABLE S-VI
OBTAINED RESULTS (MEAN AND STANDARD ERROR) BY DOP ALGORITHMS ON EIGHT GMPB SCENARIOS FROM TABLE II WITH THE CHALLENGING

SETTINGS FROM TABLE IV FOR THE CHANGE FREQUENCIES. THE BEST OBTAINED RESULTS ARE IN BOLD FOR EB AND HIGHLIGHTED FOR EO BASED
ON THE FRIEDMAN TEST WITH α = 0.05.

Algorithm Error GMPB Scenario

f1 f2 f3 f4 f5 f6 f7 f8

AmQSO EO 7.30(0.29) 11.46(0.20) 9.58(0.35) 17.62(0.31) 20.92(0.91) 25.36(1.27) 22.25(0.91) 26.37(1.29)
EB 4.73(0.27) 6.96(0.15) 7.78(0.29) 12.54(0.27) 17.55(0.81) 21.03(1.10) 18.70(0.80) 22.05(1.10)

CPSO EO 12.58(0.50) 22.50(0.27) 13.50(0.40) 33.86(0.58) 18.47(0.78) 25.19(1.34) 19.67(0.86) 26.26(1.29)
EB 10.71(0.48) 16.83(0.26) 10.98(0.36) 27.61(0.52) 13.52(0.58) 18.40(0.98) 14.56(0.66) 20.06(1.01)

DynPopDE EO 23.01(0.52) 38.37(0.62) 69.45(2.81) 111.78(2.91) 38.02(1.54) 45.93(2.46) 55.66(2.78) 65.12(3.01)
EB 21.73(0.51) 35.19(0.63) 64.80(2.53) 103.03(2.60) 34.11(1.41) 40.35(2.18) 52.23(2.61) 60.84(2.82)

FTmPSO EO 4.93(0.25) 9.33(0.16) 9.41(0.23) 18.04(0.39) 18.58(0.79) 23.24(1.14) 20.81(0.83) 24.46(1.06)
EB 2.98(0.26) 4.24(0.10) 6.64(0.20) 11.57(0.32) 14.30(0.63) 17.66(0.89) 16.54(0.70) 19.03(0.80)

IDSPSO EO 8.94(0.28) 11.98(0.27) 10.93(0.39) 17.06(0.53) 19.10(0.97) 21.39(1.02) 21.42(0.95) 24.61(1.22)
EB 6.27(0.25) 7.99(0.25) 8.46(0.36) 13.10(0.47) 16.11(0.88) 17.79(0.88) 18.65(0.88) 21.53(1.10)

mCMA-ES EO 5.65(0.22) 6.53(0.07) 7.08(0.26) 11.06(0.33) 18.75(0.7) 20.23(1.01) 21.39(0.91) 24.06(1.08)
EB 3.43(0.23) 3.46(0.06) 5.25(0.25) 8.56(0.31) 15.95(0.63) 16.77(0.87) 19.27(0.86) 21.54(0.99)

mbDE EO 8.33(0.30) 13.59(0.24) 14.50(0.44) 24.97(0.56) 23.01(1.01) 27.85(1.53) 25.33(1.14) 30.14(1.37)
EB 5.38(0.25) 8.47(0.21) 11.86(0.42) 19.74(0.50) 19.64(0.89) 23.67(1.34) 21.92(10.00) 25.94(1.20)

mjDE EO 12.02(0.30) 23.64(0.97) 13.00(0.33) 30.58(1.62) 18.94(0.86) 27.18(1.72) 19.78(0.89) 27.23(1.33)
EB 9.57(0.27) 19.15(0.92) 10.41(0.31) 25.54(1.53) 15.47(0.78) 22.95(1.54) 16.45(0.82) 23.00(1.15)

mPSO EO 6.70(0.23) 11.50(0.19) 10.12(0.30) 17.67(0.34) 20.30(0.89) 25.31(1.33) 21.74(0.89) 25.85(1.27)
EB 4.20(0.21) 7.00(0.14) 7.51(0.24) 12.68(0.27) 16.96(0.81) 20.81(1.11) 18.22(0.78) 21.65(1.08)

mQSO EO 10.84(0.33) 15.60(0.23) 13.94(0.40) 22.48(0.68) 19.88(0.76) 24.30(1.23) 21.92(1.00) 25.42(1.23)
EB 8.63(0.27) 11.87(0.22) 11.90(0.38) 18.57(0.64) 17.00(0.69) 20.38(1.08) 19.14(0.93) 21.77(1.07)

RPSO EO 23.67(0.85) 28.38(0.70) 26.06(0.92) 29.50(0.78) 23.72(1.26) 28.66(1.67) 23.84(1.15) 28.19(1.38)
EB 18.63(0.73) 20.90(0.65) 20.72(0.77) 21.72(0.76) 17.12(0.99) 20.39(1.34) 17.35(0.90) 20.12(1.08)

and δ controls the size of feasible regions. (4) is used as
C(·) in [37]. In fact, feasible regions are defined using the
constructed components by C(·) whose sizes are defined ac-
cording to the values of δ and the gradients of each component.

Therefore, for a component i in C(·) whose height is larger
than δ, all solutions around its summit whose calculated fitness
values by C(·) are larger than δ, form a feasible region.
Depending on the chosen multi-component function as C(·),

8

TABLE S-VII
OBTAINED RESULTS (MEAN AND STANDARD ERROR BY USING ED) BY DOP ALGORITHM ON EIGHT GMPB SCENARIOS FROM TABLE II WITH THE

DEFAULT SETTINGS FROM TABLE IV. THE BEST OBTAINED RESULTS ARE HIGHLIGHTED BASED ON THE FRIEDMAN TEST WITH α = 0.05.

Algorithm GMPB Scenario

f1 f2 f3 f4 f5 f6 f7 f8

AmQSO 19.85(1.33) 21.69(1.35) 25.37(2.04) 28.39(1.80) 49.51(0.67) 49.40(0.80) 52.60(0.82) 54.28(0.91)

CPSO 36.91(1.02) 34.39(1.86) 38.90(1.16) 39.43(0.93) 52.32(0.54) 54.25(0.63) 55.67(0.61) 56.75(0.57)

DynPopDE 31.95(1.36) 35.11(1.56) 49.55(1.13) 48.05(1.43) 53.77(0.91) 54.47(0.76) 58.26(0.62) 58.37(0.53)

FTmPSO 18.02(1.53) 19.80(1.30) 22.77(1.24) 24.07(0.98) 46.03(0.81) 45.88(0.84) 48.28(0.69) 49.79(0.84)

IDSPSO 22.66(1.09) 25.47(1.40) 37.61(1.94) 41.08(1.68) 69.01(1.34) 69.93(1.42) 76.06(1.54) 79.58(0.83)

mCMA-ES 20.43(1.24) 20.74(1.73) 25.78(1.60) 25.95(1.60) 55.71(0.98) 56.29(0.91) 59.81(0.86) 59.42(0.73)

mbDE 19.69(1.34) 20.83(1.60) 31.01(1.19) 32.56(0.58) 48.28(0.92) 49.11(0.72) 52.21(0.67) 54.04(0.78)

mjDE 28.92(1.48) 29.95(1.07) 33.62(1.30) 35.04(1.67) 44.14(0.70) 46.05(0.72) 48.02(0.71) 49.07(0.93)

mPSO 19.16(1.20) 22.50(1.35) 24.62(1.79) 26.31(1.39) 49.83(0.81) 49.31(0.76) 53.64(0.98) 55.60(0.66)

mQSO 20.29(1.40) 24.25(1.58) 28.88(1.19) 30.92(1.74) 57.56(0.96) 58.43(1.20) 60.53(0.71) 63.60(1.10)

RPSO 57.35(0.96) 62.28(1.90) 59.67(0.78) 60.52(1.72) 60.30(0.79) 60.63(0.74) 61.65(0.63) 60.13(0.68)

the size, location and shape of feasible regions change over
time. In addition, if the value of δ is set to the range of
[hmin, hmax] of the components of C(·), the number of feasible
regions can change over time. GMPB can be embedded in
the proposed benchmark framework in [37] as the objective
function and C(·) in (S-11).

In [38], another multi-component DCOP benchmark gen-
erator is proposed. In this benchmark generator, the baseline
from (4) is used as the objective function subjected to:

g
(t)
j (x) =

d∑
k=1

(
xk − c(t)aj ,k

)2
− r(t)j

2
≤ 0, j = 1, 2, · · · ,m,

(S-12)

where m is the number of feasible regions, rj is the radius
of jth feasible region, d is the dimension of the problem,
and caj

is a center of a component in the objective function
which is used as the center of the feasible region as well.
Consequently, the feasible regions are located around the
components’ summits of the objective function. Therefore,
their locations change by relocating components’ centers.
Moreover, the feasible regions can switch their locations to
other components’ summits in the landscape after environ-
mental changes. In addition, the radius of feasible regions,
which are hyper-balls, can change over time. Similar to the
proposed benchmark in [36], the feasibility of a solution is
determined by (S-10) in this benchmark. This type of feasible
regions around the optima can be easily added to GMPB.

In [39], a DCOP benchmark framework based on modified
multi-component functions is proposed. The embedded multi-
component function needs to be modified based on the ‘field
of components on a zero plane’. To this end, the function f(·)
is modified to max(0, f(·)). This modification is done in order
to avoid any circumstance where there is no feasible solution.
Note that this idea is inspired by (10) with β = 0. In this
benchmark, the problem is defined as:

h
(t)
j (x) = f

(t)
j (x)− g(t)j (x), (S-13)

where f(·) and g(·) are two multi-component based functions
that are modified to the field of components on a zero
plane. A solution x is feasible in the tth environment if
h
(t)
j (x) ≥ 0. By controlling the parameters of the f(·) and
g(·), the feasible regions can be controlled. Therefore, there
are multiple feasible regions whose sizes, shapes, and locations
change over time due to the environmental changes in f(·) and
g(·). GMPB can be used in this framework to build DCOP
benchmark problems.

REFERENCES

[1] M. N. Omidvar, X. Li, and K. Tang, “Designing benchmark problems
for large-scale continuous optimization,” Information Sciences, vol. 316,
pp. 419–436, 2015.

[2] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A competitive divide-
and-conquer algorithm for unconstrained large-scale black-box optimiza-
tion,” ACM Transactions on Mathematical Software, vol. 42, no. 2, p. 13,
2016.

[3] D. Yazdani, “Particle swarm optimization for dynamically changing
environments with particular focus on scalability and switching cost,”
Ph.D. dissertation, Liverpool John Moores University, Liverpool, UK,
2018.

[4] M. N. Omidvar, X. Li, and X. Yao, “Smart use of computational
resources based on contribution for cooperative co-evolutionary algo-
rithms,” in Proceedings of the 13th Annual Conference on Genetic
and Evolutionary Computation, ser. GECCO ’11. Association for
Computing Machinery, 2011, pp. 1115–1122.

[5] M. Yang, M. N. Omidvar, C. Li, X. Li, Z. Cai, B. Kazimipour, and
X. Yao, “Efficient resource allocation in cooperative co-evolution for
large-scale global optimization,” IEEE Transactions on Evolutionary
Computation, vol. 21, no. 4, pp. 493–505, 2017.

[6] B. Kazimipour, M. N. Omidvar, A. Qin, X. Li, and X. Yao, “Bandit-
based cooperative coevolution for tackling contribution imbalance in
large-scale optimization problems,” Applied Soft Computing, vol. 76,
pp. 265–281, 2019.

[7] D. Yazdani, M. N. Omidvar, J. Branke, T. T. Nguyen, and X. Yao,
“Scaling up dynamic optimization problems: A divide-and-conquer
approach,” IEEE Transaction on Evolutionary Computation, 2019.

[8] F. Wang, P. Bahri, P. L. Lee, and I. Cameron, “A multiple model, state
feedback strategy for robust control of non-linear processes,” Computers
& Chemical Engineering, vol. 31, no. 5-6, pp. 410–418, 2007.

[9] N. Hansen, S. Finck, R. Ros, and A. Auger, “Real-parameter black-
box optimization benchmarking 2009: Noiseless functions definitions,”
INRIA, Tech. Rep. RR-6829, 2010.

[10] R. Kannan, S. Hendry, N. Higham, and F. Tisseur, “Detecting the causes
of ill-conditioning in structural finite element models,” The University
of Manchester, Tech. Rep., 2013.

9

[11] J. Branke and H. Schmeck, “Designing evolutionary algorithms for dy-
namic optimization problems,” in Advances in Evolutionary Computing,
A. Ghosh and S. Tsutsui, Eds. Springer Natural Computing Series,
2003, pp. 239–262.

[12] T. T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic opti-
mization: A survey of the state of the art,” Swarm and Evolutionary
Computation, vol. 6, pp. 1–24, 2012.

[13] K. Weicker and N. Weicker, “On evolution strategy optimization in
dynamic environments,” in Proceedings of the 1999 Congress on Evo-
lutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3. IEEE,
1999, pp. 2039–2046.

[14] J. G. O. L. Duhain, “Particle swarm optimisation in dynamically
changing environments - an empirical study,” Master’s thesis, University
of Pretoria, Pretoria, South Africa, 2012.

[15] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Interna-
tional Conference on Neural Networks, vol. 04, 1995, pp. 1942–1948.

[16] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Transactions on Evo-
lutionary Computation, vol. 10, no. 6, pp. 646–657, 2006.

[17] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, and V. Zumer,
“Dynamic optimization using self-adaptive differential evolution,” in
Congress on Evolutionary Computation, 2009, pp. 415–422.

[18] R. Mendes and A. S. Mohais, “DynDE: a differential evolution for
dynamic optimization problems,” in Congress on Evolutionary Com-
putation, vol. 3, 2005, pp. 2808–2815.

[19] M. C. du Plessis and A. P. Engelbrecht, “Using competitive population
evaluation in a differential evolution algorithm for dynamic environ-
ments,” European Journal of Operational Research, vol. 218, no. 1, pp.
7–20, 2012.

[20] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evolutionary Computation, vol. 9,
no. 2, pp. 159–195, 2001.

[21] R. Eberhart and Y. Shi, “Comparing inertia weights and constriction
factors in particle swarm optimization,” in Congress on Evolutionary
Computation, vol. 1, 2001, pp. 84–88.

[22] N. Hansen, “The cma evolution strategy: A tutorial,” INRIA, Tech. Rep.
arXiv:1604.00772v1, 2016.

[23] T. Blackwell, J. Branke, and X. Li, “Particle swarms for dynamic
optimization problems,” in Swarm Intelligence: Introduction and Ap-
plications, C. Blum and D. Merkle, Eds. Springer Lecture Notes in
Computer Science, 2008, pp. 193–217.

[24] S. Yang and C. Li, “A clustering particle swarm optimizer for locating
and tracking multiple optima in dynamic environments,” IEEE Transac-
tions on Evolutionary Computation, vol. 14, no. 06, pp. 959–974, 2010.

[25] M. C. du Plessis and A. P. Engelbrecht, “Self-adapting control pa-
rameters in differential evolution: A comparative study on numerical
benchmark problems,” Journal of global optimization, vol. 55, no. 1,
pp. 73–99, 2013.

[26] D. Yazdani, B. Nasiri, A. Sepas-Moghaddam, and M. R. Meybodi, “A
novel multi-swarm algorithm for optimization in dynamic environments
based on particle swarm optimization,” Applied Soft Computing, vol. 13,
no. 04, pp. 2144–2158, 2013.

[27] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima
by a particle swarm model using speciation,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 4, pp. 440–458, 2006.

[28] T. Blackwell and J. Branke, “Multiswarms, exclusion, and anti-
convergence in dynamic environments,” IEEE Transactions on Evolu-
tionary Computation, vol. 10, no. 4, pp. 459–472, 2006.

[29] X. Hu and R. C. Eberhart, “Adaptive particle swarm optimization: de-
tection and response to dynamic systems,” in Congress on Evolutionary
Computation, vol. 2, 2002, pp. 1666–1670.

[30] C. Cruz, J. R. González, and D. A. Pelta, “Optimization in dynamic
environments: a survey on problems, methods and measures,” Soft
Computing, vol. 15, no. 7, pp. 1427–1448, 2011.

[31] T. T. Nguyen, “Continuous dynamic optimisation using evolutionary
algorithms,” Ph.D. dissertation, University of Birmingham, 2011.

[32] D. Yazdani, T. T. Nguyen, and J. Branke, “Robust optimization over
time by learning problem space characteristics,” IEEE Transactions on
Evolutionary Computation, vol. 13, no. 01, pp. 143–155, 2019.

[33] C. Liu, “New dynamic constrained optimization pso algorithm,” in
International Conference on Natural Computation, vol. 7. IEEE, 2008,
pp. 650–653.

[34] T. T. Nguyen and X. Yao, “Continuous dynamic constrained optimiza-
tion—the challenges,” IEEE Transactions on Evolutionary Computation,
vol. 16, no. 6, pp. 769–786, 2012.

[35] Z. Zhang, S. Yue, M. Liao, and F. Long, “Danger theory based
artificial immune system solving dynamic constrained single-objective
optimization,” Soft Computing, vol. 18, no. 1, pp. 185–206, 2014.

[36] H. Richter, “Memory design for constrained dynamic optimization
problems,” in Applications of Evolutionary Computation, C. Di Chio
et al., Ed. Springer Berlin Heidelberg, 2010, pp. 552–561.

[37] C. Bu, W. Luo, and L. Yue, “Continuous dynamic constrained optimiza-
tion with ensemble of locating and tracking feasible regions strategies,”
IEEE Transactions on Evolutionary Computation, vol. 21, no. 1, pp.
14–33, 2017.

[38] Y. Wang, J. Yu, S. Yang, S. Jiang, and S. Zhao, “Evolutionary dynamic
constrained optimization: Test suite construction and algorithm compar-
isons,” Swarm and Evolutionary Computation, vol. 50, p. 100559, 2019.

[39] G. Pamparà and A. P. Engelbrecht, “A generator for dynamically con-
strained optimization problems,” in Genetic and Evolutionary Compu-
tation Conference Companion. Association for Computing Machinery,
2019, p. 1441–1448.

