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Abstract 

The high pollution caused by CO2 emission and the high level of energy 

consumed during cement manufacturing led the researchers to look for alternative 

techniques to reduce these environmental effects. One of these techniques 

includes reducing the content of cement in the mix by replacing it with 

supplementary cementitious materials such as fly ash, slag, silica fume, and so 

on. Many previous studies dealt with the utilizing of the high volume of 

supplementary cementitious materials, such as fly ash and slag. However, limited 

studies investigated the impact of silica fume on mortar or concrete properties in 

percentages of more than 30%. Thus, to produce environmentally friendly 

concrete, this study was performed to investigate the effect of the high 

replacement level of cement with silica fume on the properties of cement mortar. 

Six replacement proportions of silica fume (0%, 30%, 40%, 50%, 60% and 70%) 

were used in this paper. This paper used the flow rate, compressive strength, 

water absorption, bulk density and volume of permeable voids tests to test the 

effect of silica fume on different mortar characteristics. The results indicated that 

the best mixture among all other mixes was found by 50% substitution of silica 

fume. At this percentage, an enhancement in compressive strength of nearly 83%, 

74% and 75% at 7, 28 and 56 days, respectively and an improvement in water 

absorption resistance by 8% compared to the control mixture were achieved.  

Keywords: Bulk density, Compressive strength, High volume fraction, Silica fume.  
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1.  Introduction 

Concrete is the most used building material worldwide [1]. It can be used in various 

construction applications (such as dams, bridges, pavement and buildings). Cement 

is the major binder substance utilized in the manufacturing of concrete [2, 3]. It is 

anticipated that the fabrication of cement will be increased by approximately 400% 

relative to the production levels in 1990 as a result of the considerable expansion 

in the industry of construction [4].  

Carbon emissions have been increased by nearly 30% in the atmosphere over 

the last century [5], which significantly changed the global climate [6-11] and 

consequently it caused serious environmental pollution and global warming [12-

21]. The cement industry alone is in charge of about 5-8% of the CO2 emissions 

worldwide [22-27]. Besides, the cement industry contributes to other air pollutants 

such as nitrogen oxide, sulphur dioxide, and carbon monoxide [28]. Furthermore, 

the cement industry generates about 30 million tons per year worldwide of a solid 

waste material called cement kiln dust [29]; and as it is known that the solid waste 

treatment requires proper landfills and complicated management plans [30-32]. 

Therefore, the cement industry has a significant impact on climate change and 

sustainable development [33, 34]. Additionally, cement manufacture is deemed one 

of the industries that require intensive energy and associated with the consuming 

of natural resources. In order to reduce these effects, supplementary cementitious 

materials (for example silica fume, limestone, fly ash, rice husk ash, and so on) are 

used as an alternative to cement [35, 36]. Additionally, the sludge of water and 

wastewater treatment plants, especially from electrocoagulation plants, was 

recycled in concrete [37-51].  The utilization of such substances in the 

manufacturing of cement has twofold profits by decreasing the negative 

environmental impact of cement and can reduce the volume of solid waste [52]. 

Silica fume (SF) is a by-product material produced during the manufacture of 

silicon metal in the electrical furnace [53]. SF is a non-crystalline (amorphous) 

silica. It has a high pozzolanic reaction when used in cement and concrete [53]. 

Many surveys have been made previously to study the impact of SF on various 

characteristics of concrete and mortar [54]. Bhanja and Sengupta [55] investigated 

the effect of SF (within the range of 0% to 25%) on the mechanical performance of 

concrete with water/binder ratios within the range between 0.26 to 0.42. 

Compressive and splitting tensile strength tests were executed in that study. It was 

demonstrated that the concrete compressive strength and tensile strength improved 

with increasing the SF content. Furthermore, in the same study, it was reported that 

the optimum replacement proportion of SF was depended on the water/ binder ratio 

of the mix. Mohamed [56] studied the effect of different percentages of fly ash 

and/or SF as cement replacement materials on the compressive strength of self-

compacting concrete. It was revealed that replacing the cement with 15% SF gave 

higher strength than those with fly ash and without replacement mixes. A 

comparison between the effect of SF, fly ash and metakaolin on the mechanical and 

durability properties of mortar was performed by Mardani-Aghabaglou et al.[57]. 

It was stated that replacing the cement with 10% SF indicated higher compressive 

strength and lower water absorption than all other mixes. Çakır and Sofyanlı [58] 

investigated the influence of SF on the performance of recycled aggregate concrete 

(RAC). It was concluded that using 10% proportion of SF as cement replacement 

enhanced the mechanical and physical characteristics and significantly decrease the 

volumetric water absorption of RAC in comparison with plain RAC.  
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SF was used in the literature as a cement replacement material within the range 

(5-30%) [59-61]. Limited studies were conducted with higher replacement ratios 

(more than 30%). This is owing to the high initial cost of SF as compared with 

ordinary Portland cement (OPC). However, it was reported previously [62] that 

though the cost of SF concrete was more than OPC concrete, the environmental 

assessment indicated that the CO2 emission was reduced significantly after 

replacing cement with SF. Additionally, it was stated in the same work [62] that 

the extended service life and long term benefits might overcome the high initial 

cost of SF. Therefore, in order to produce environmentally and clean concrete as 

well as to add some data to the open literature about the impact of high volume 

fraction of SF on mortar properties, this experimental study is performed. It aims 

to examine the consequence of the high replacement level of cement with SF (30%-

70%) on some mechanical and durability properties of cement mortar. The 

investigated properties were the flow rate, compressive strength, bulk density, 

water absorption, and volume of permeable voids. 

2. Materials and methodology 

2.1. Materials 

2.1.1. Binder materials  

The materials utilized in the production of mortar were cement and SF. The cement 

used in this investigation was lime cement (Type CEM II/A-L 42.5R). The fineness 

and chemical composition of cement (Table 1) conform to the Iraqi standards NO.5 

[63]. The initial and final setting times of the cement are shown in Table 2. The SF 

was purchased from BASF (Baden Aniline and Soda Factory) company. The 

fineness and chemical properties of SF (which is conformed to ASTM C1240 [64]) 

are illustrated in Table 1. The properties of SF are adopted from Mozan and Khalil 

[65]. Where the same materials were used in this study.  

Table 1. The fineness and chemical composition of cement and SF. 

Oxide Cement SF 

CaO % 62.1 0.65 

SiO2 % 22.1 90.2 

Al2O3 % 4.2 0.24 

Fe2O3 % 3.9 2.4 

MgO % 3.3 0.41 

SO3 % 1.9 0.4 

L.O.I. 3.1 3.33 

Blaine Fineness (m2/kg) 3600 21000 

Table 2. The physical specification of cement. 

Property Value 

Initial setting time (min) 105 

Final setting time (min) 150 

The fineness of the binder materials has a considerable effect on the mechanical 

performance of the mortar and concrete. Shubbar et al. [66] stated that the 

compressive strength obtained is increased with the increasing of the fineness of 

the binder materials. As observed from Table 1 that the SF has higher fineness than 
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the cement, thus it is expected that the presence of the SF would improve the 

performance of the mortar during the hydration reaction. 

2.1.2. Sand 

Natural sand was used that graduated to comply with the Iraqi standard NO.45 [67] 

requirements, the grading of the natural sand is shown in Table 3.  

Table 3. The grading of the natural sand. 

Sieve  

opening, mm 

Accumulative  

passing, % 

10 100 

4.75 100 

2.36 100 

1.18 75 

0.60 36 

0.3 23.5 

0.15 2.5 

2.1.3. Superplasticizer 

Superplasticizer called Glenium 54 conforms to ASTM C494 Type A and F [68] 

was used as a workability adjuster. 

2.1.4. Water 

Tap water (City of Babylon) was used during this investigation. 

2.2. Methodology 

The mix proportions for all mixes were 1:2.75 (cement + SF: sand) and the 

water/binder ratio was fixed as 0.485. Six replacement proportions of SF by weight 

of cement were used: 0%, 30%, 40%, 50%, 60% and 70%. The mixes details are 

presented in Table 4. 

Table 4. Mix proportion details of the mortar  

prepared with different proportions of Cement and SF. 

Mix 

symbol 

Cement 

(g) 

SF 

(g) 

SF 

(%) 

Sand 

(g) 

Water 

(g) 

Superplasticizer, % of 

cement 

0SF 500 0 0 1375 242 0 

30SF 350 150 30 1375 242 0.75 

40SF 300 200 40 1375 242 1.05 

50SF 250 250 50 1375 242 1.5 

60SF 200 300 60 1375 242 2.1 

70SF 150 350 70 1375 242 2.5 

The procedures provided by ASTM C109 [69] for mixing and compaction were 

followed for all mixes. The SF was added together with cement and sand, while the 

superplasticizer was mixed with the mixing water before adding. The flow rate of fresh 

mortar was measured immediately after mixing as described in ASTM C1437 [70]. The 

compressive strength, water absorption, bulk density and volume of permeable voids 

tests were performed for the hardened mortars. The detailed procedures of ASTM C642 
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[71] were taken into account for measuring the water absorption, bulk density, and 

volume of permeable voids using Eqs. (1), (2) and (3), respectively: 

A = 
𝐵−𝐶

𝐵
× 100                                                                                                       (1) 

G = 
𝐶

𝐷−𝐹
× 1000                                                                                                     (2) 

V = 
𝐷−𝐶

𝐷−𝐹
× 100                                                                                                        (3) 

where,  

A : water absorption after immersion (%). 

B : the mass of the wet specimen in the air after immersion (g). 

C : the mass of the oven-dry specimen in the air (g). 

G : dry bulk density (Mg/m3). 

D : the mass of the wet specimen in the air after boiling and immersion (g).  

F : the mass of the wet specimen in water after boiling and immersion (g).  

Standard 50 mm cubes were utilized for the mortar compressive strength, water 

absorption and bulk density tests Three test ages were considered for the compressive 

strength (7, 28 and 56 days) and one age (56 days) for the other tests. A number of 

72 cubes (54 cubes for compressive strength test and 18 cubes for water absorption, 

bulk density and volume of permeable voids tests) were made for this study. 

3.  Results and Discussions 

3.1.  Flow rate 

Results of flow rates of fresh mortars are presented in Fig.1.  

 

Fig. 1. Variation of Superplasticizer dosage  

with the content of silica fume in the Mix. 
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The SP dosage was varied from 0 to 2.5% of cement weight to maintain the 

flow rate values within the range of 200 ±20 mm. It can be shown from the figure 

that, for the flow to be within the specified range, the SP dosage was increased with 

the increase of SF content in the mix. This increase in SP demand is owing to the 

absorption of SP by SF particles as a result of the high surface area of SF which 

leads to reducing the available amount of SP in the solution [60]. 

3.2.  Compressive strength 

The results of the compressive strength of the mortars after 7, 28 and 56 days of 

water curing at ambient temperature are presented in Fig. 2.  

 

Fig. 2. Compressive strength results of mortar prepared with  

different proportions of cement and SF after 7, 28 and 56 days of curing. 

In general, in a comparison with the control mixture (0% SF), it can be observed 

that substitution the cement with up to 70% SF enhanced the compressive strength 

property for all considered ages, except 70% replacement at 28 days which reduces 

the strength by about 13%. This enhancement in the compressive strength could be 

a result of the strengthening of the aggregate-paste bond [72] and chemical reaction 

between SF and calcium hydroxide which produces an additional C-S-H gel that 

thickens the microstructure and leads finally to strength enhancement [73]. At all 

curing ages, the maximum enhancement was recorded for mixtures with 50% SF. 

The improvements related to the control mix were 83%, 74% and 75% at 7, 28, and 

56 days, respectively. Although it decreased the compressive strength at the age of 

28 days, the mixture with 70% proportion of SF awarded minimum strength 

increasing than other SF mixtures at 7 and 56 days (about 4%, and 6%, respectively) 

compared to control mixture. 

It can be seen also from Fig. 2 that the development of strength for replacement 

range of 30%-50% continue approximately in a similar manner at early and later 

ages. Other meaning, the low content of cement did not have a high effect on the 

rate of the pozzolanic reaction of the SF. However, beyond 50% substitution of SF 

(for the 60%-70% replacement levels), the compressive strength of mortar mixtures 
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for all considered ages (7, 28 and 56 days) tended to decrease from its highest value. 

This behaviour could be attributed to the low content of calcium hydroxide (which 

represents the main component that reacts with SF in the pozzolanic reaction) in 

the matrix as a result of the decreasing of cement content that leads finally a part of 

SF to act as a filler [74]. 

3.3.  Water absorption 

The water absorption results of mortars incorporated different proportions of SF as 

a replacement to cement after 56 days are presented in Fig. 3.  

 

Fig. 3. Water absorption results of mortar prepared with  

different proportions of cement and SF after 56 days of curing. 

Water absorption is considered as one of the main mechanisms (in addition to 

the diffusion and permeability) by which the transporting of the aggressive agents 

into the concrete is affected [75]. So, producing concrete with law water absorption 

is necessary to increase the service life of the concrete. As cleared from Fig. 3 that 

the mixtures with 30%, 40% and 70% SF have shown higher water absorption rate 

than that of the control mixture with about 22%, 3% and 18%, respectively. The 

results also indicated that the mixture with 60% SF has almost the same water 

absorption relative to the control mixtures. Additionally, Fig. 3 reveals that the 

mixture with 50% SF reduced the water absorption rate by about 8% relative to the 

control mixture. These findings were harmonious with the enhancement in the 

compressive strength gained for the mixture with 50% SF.  

3.4.  Bulk density 

Figure 4 presents the bulk density results for mortars prepared with different 

proportions of SF as a replacement to cement after 56 days.  
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Fig. 4. Dry bulk density of mortar prepared with  

different proportions of cement and SF after 56 days of curing. 

It was found that the replacing of cement with different percentages of SF 

reduces the bulk density of mortar mixes with disproportionate rates. The lowest 

density of about 6.5% relative to the control mixture was given by 70% 

replacement. However, replacing the cement by 30%, 40%, 50% and 60% of with 

SF caused a reduction in the dry bulk density by about 5.8%, 3%, 3.3% and 2.9%, 

respectively, in comparison to the control mix. The varying in the density of 

hardened concrete or mortar are govern by the cement and water contents, the 

density of aggregate, and the entrapped air or entrained air voids [75]. Therefore, 

accordingly, replacing the cement with a material with lower specific gravity than 

cement such as SF can reduce the density of the hardened mortar. 

3.5.  Volume of permeable voids 

The results of permeable pore space (voids) volume for the mortar incorporated 

different proportions of SF are given in Fig. 5.  

 

Fig. 5. Volume percent of permeable voids of mortar prepared with 

different proportions of cement and SF after 56 days of curing. 
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Results indicated that the higher the SF in the mix up to 60%, the lower the 

volume of permeable voids. This behaviour is attributed to the filling influence and 

the pozzolanic reaction of the SF [76]. However, there was no significant decreasing 

in the volume of permeable voids in comparison with the control mix, where, only 

4% was the decreasing rate of the voids volume at 60% replacement of SF, which 

was the maximum improvement. On the other hand, replacing the cement with 70 % 

SF led to increase the voids volume by 12% related to the control specimen. 

4.  Conclusions 

This study was conducted with the aim of investigating the impact of using a high 

volume fraction of SF on some properties of cement mortar. Based on the results 

of the present study, the following conclusions are noticed: 

• The SF increases the superplasticizer demand in the fresh mortar. The higher 

the SF content in the mix, the higher the SP amount required to maintain the 

specified flow rate. 

• High replacement level of cement with SF up to 50% can significantly enhance 

the compressive strength of mortar at earlier (7 days) and later ages (28 and 56 

days). The optimum enhancement was achieved for the mixture with 50% SF. 

Where, the increasing rates of compressive strength are 83%, 74% and 75% at 

7, 28, and 56 days, respectively in comparison to the control sample. 

• Using higher proportions of SF up to 70% increases the water absorption rate 

of the cement mortar, except the mixture with 50% SF that indicated a lower 

water absorption rate by about 8% relative to the control mix. 

• Replacing the cement with 70% of SF decreased the bulk density of cement 

mortar by 6.5% related to those mixtures without SF.  

• There is no significant enhancement in the volume of permeable pores percent 

after incorporating a high amount of SF in mortar mixes. The farthest 

amendment is realized at 60% SF replacement (about 4%) in comparison to 

the reference sample. 

• It can be concluded from this experimental investigation that it is possible 

to manufacture a green mortar in which the cement can be replaced with 

50% SF with a significant improvement in the mechanical properties and 

water absorption resistance. 

Abbreviations 

BASF Baden Aniline and Soda Factory 

OPC Ordinary Portland cement 

RAC Recycled aggregate concrete 

SF Silica fume 

SP Superplasticizer 
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