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This study provides a novel methodology to predict monthly water demand based on several weather
variables scenarios by using combined techniques including discrete wavelet transform, principal com-
ponent analysis, and particle swarm optimisation. To our knowledge, the adopted approach is the first
technique to be proposed and applied in the water demand prediction. Compared to traditional methods,
the developed methodology is superior in terms of predictive accuracy and runtime. Water consumption
coupled with weather variables of the Melbourne City, from 2006 to 2015, were obtained from the South
East Water retail company. The results showed that using data pre-processing techniques can signifi-
cantly improve the quality of data and to select the best model input scenario. Additionally, it was noticed
that the particle swarm optimisation algorithm accurately predicts the constants of the suggested model.
Furthermore, the results confirmed that the proposed methodology accurately estimated the monthly
data of municipal water demand based on a range of statistical criteria.
� 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Forecasting studies demonstrate that by 2075 about 9 billion of
the world population would face water scarcity around the world,
including Australia. Melbourne City suffered from several droughts
in the past, and, according to the climate models, it will face a drier
climate in the future. Thus, this region will be subjected to increas-
ing water stress and water security challenges (Hemati et al.,
2016). Additionally, different studies demonstrated that the con-
tinuous discharge of wastewater to the surrounding environment
is intensifying the problem of water sacristy as it pollutes the
freshwater resources such as Al-Marri et al. (2020), Alnaimi et al.
(2020) and Alyafei et al. (2020). Toth et al. (2018) stated that
municipal water consumption is driven by complicated interac-
tions between human and natural system factors at various spatial
and temporal scales, for example, it has been found that the
increase of greenhouse gases concentrations intensifies the
impacts of global warming with a high level of uncertainty. How-
ever, the majority of the literature has only considered economic
and policy factors that are characterised by a known future evolu-
tion. A few numbers of the previous studies have focused on the
weather factors that have an uncertain evolution. Therefore, addi-
tional models and methodologies are needed to assess the effects
of climatic factors for short- and medium-term scenarios.

A medium-term forecast of municipal water demand can play a
vital role in the water industry. For example, an accurate medium-
term forecast could address the issue of uncertainty by proactively
optimising the operation of water pump that enhance the quality
of delivered water to the customers and minimise the power
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Table 1
The descriptive statistics of significant parameters.

Variable Mean Max. Min. Std. Dev.

Water 11,412 17,122 9432 1467
Tmax 21 30 13 5
Tmin 10 16 4 3
Tmean 15 23 9 4
Rain 55 158 1 31
Eva 4 8 1 2
Srad 15 26 6 6
VP 12 17 9 2
RHmax 50 65 32 8
FAO56 3 6 1 2

Max. = maximum value, Min. = minimum value, Std. Dev. = standard deviation.
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consumption (Ajbar and Ali, 2015; Zubaidi et al., 2018c). In this
context, various methods have been employed to forecast the
future water demand, but the need to find more reliable, capable
and effective water demand model to optimise the operation of
the existing water system has encouraged researchers to evolve
innovative techniques (Adamowski et al., 2012).

Donkor et al. (2014), De Souza Groppo et al. (2019), and Rahim
et al. (2020) reviewed various techniques and models that have
been used in previous studies to predict urban water demand.
These studies indicated that conventional models are lacking pre-
cision when predicting water demand, which can cause substantial
problems in the operation system of the water supply. Addition-
ally, the data analytic techniques have an effective impact for
improving the accuracy of water demand prediction models.

Al-Sulttani et al. (2017) mentioned that utilising conventional
trial-and-error procedures to calculate the constants of the predic-
tion models is difficult and complex. Therefore, employing an opti-
misation technique is a considerably more effective method to
tackle nonlinear problems. Recently, particle swarm optimisation
(PSO) has been recognised as an innovative technique that could
be successfully used to determine the coefficients of the prediction
models in different fields, including, but not limited to, structural
engineering (Hanoon et al., 2016), environmental engineering
(Al-Sulttani et al., 2017), and electronic engineering (Jawad et al.,
2020).

Araghinejad (2014) stated that hybrid techniques are being
evolved to meet the new requirements of water prediction that
resulted from the variability of weather factors, socio-economic
factors, and policy of local authority. The hybrid technique means
developing one model as a primary model and the rest to support
(manipulating the data) and optimise the primary model. Hybrid
models have been applied in different scenarios, and the results
revealed their ability to simulate the water demand by capturing
the trend and seasonality with reasonable accuracy based on the
scale of error such as in Altunkaynak and Nigussie (2018), Seo
et al. (2018) Zubaidi et al. (2018b), Zubaidi et al. (2020b) and
Zubaidi et al. (2020a).

Brentan et al. (2017) and Gagliardi et al. (2017) mentioned that
urban water demand prediction is characterised by high levels of
uncertainty resulting from the natural variability of water con-
sumption. Accordingly, there is an increasing interest to develop
precise methodologies for water demand estimation to improve
the planning, design and operation of the municipal water system,
and to reduce the level of uncertainty.

In light of the above, this research proposes a novel methodol-
ogy that combines the particle swarm optimisation (PSO) algo-
rithm with two data preprocessing techniques, namely discrete
wavelet transform (DWT) and principal component analysis
(PCA) to improve the performance precision of medium-term
water demand anticipating by defining the coefficients of the sug-
gested model.

To the best of the authors’ knowledge, this is the first time to
use this novel methodology to predict medium-term urban water
demand based on nine weather factors. This research study shows
the ability of PSO technique to locate the best values of coefficients
for the water demand model that gives the minimal error between
the observed and predicted municipal water. Accordingly, the
model can insight decision-maker with a scientific tool to assess
the influence of global warming on water demand for a medium-
term scale.
2. Studied area and data set

The present study used monthly data on municipal water con-
sumption and weather factors time series for South East Water
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(SEW) utility. SEW is one of the retail water utility that purchases
water wholesale from the Melbourne Water company in
Melbourne City, Australia. SEW provides water and wastewater
services to more than 1.7 million people who live in the area.
The served area covers about 3640 km2 that is a home for more
than 727,000 customers, and many commercial, and industrial
organisations (SEW, 2016).

The collected data included the municipal water consumption
(megalitre, ML), maximum temperature (Tmax) (�C), minimum
temperature (Tmin) (�C), mean temperature (Tmean) (�C), rainfall
(Rain) (mm), evaporation (Eva) (mm), solar radiation (Srad) (MJ/
m2), vapour pressure (VP) (hpa), maximum relative humidity
(RHmax) (%), and potential evapotranspiration (FAO56) (mm) from
2006 to 2015. Table 1 provides descriptive statistics of the signifi-
cant parameters.
3. Methodology

This section explains, in detail, the development of the pro-
posed novel methodology. A number of techniques have been con-
sidered during the development of the utilized methodology,
including:

1- DWT method was applied, with different orders and kinds of
mother wavelet, to denoise water consumption and weather
variables time series.

2- PCA technique was used to choose the optimum scenario of
model input.

3- PSO approach was employed to define the coefficients of the
suggested model of water demand prediction.

4- Finally, the novel methodology, for prediction of municipal
water demand, was developed basing on the studied
weather variables with a minimum scale of error.

To simplify the application of the developed methodology, it
can be divided into three subsections: data pre-processing tech-
niques, particle swarm optimisation algorithm, and performance
evaluation criteria.

3.1. Data pre-processing techniques

Data preprocessing techniques can be categorised into three
steps: normalisation, cleaning, and selecting the best model inputs.

3.1.1. Normalisation
The natural logarithm function has been widely applied in

regression modelling to reduce multicollinearity among predictor
variables (Zubaidi et al., 2018a). Accordingly, SPSS 24 statistics
package was employed for normalising data of water consumption
and weather variables via natural logarithm.
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3.1.2. Cleaning
Noise and outliers may cause an undesirable influence on data

analyses and consequently on the performance of the proposed
model. Therefore, data cleaning is necessary to detect and remove
or treat undesirable values (Tabachnick and Fidell, 2013). In this
study, the box and whisker approach was used via SPSS version
(24) statistics package to clean the data from outliers and this step
has a substantial positive impact on the precision of the proposed
prediction model. Also, the discrete wavelet transform (DWT) was
employed to denoise the time series of all variables. The DWT
method was used here because of its efficiency for denoising time
series, and it is more appropriate for hydrology applications
(Okkan and Ali Serbes, 2013). Additionally, the DWT method has
been used in various disciplines such as the forecast of irrigation
water (Zhang et al., 2019), estimation of relative humidity
(Bayatvarkeshi et al., 2018), simulation of water demand
(Adamowski et al., 2012), and simulation of evapotranspiration
(Patil and Deka, 2015).

In the present study, the wavelets were considered to denoise
the time series in order to increase the correlation coefficient
between water consumption and weather variables data, which
consequently enhances the predictive accuracy of the developed
model. The basic of the wavelet transform is to contain scaling
and shifting of a mother wavelet along with a time series. The
mathematical representation of the DWT method is described
in Eq. (1) (Dohan and Whitfield, 1997; Sekar and Mohanty,
2020):

DWT m;nð Þ ¼ 1ffiffiffiffiffiffi
2m

p
X

k
x k½ �W 2�mn� k

� � ð1Þ

where W(n) is the mother wavelet, while m and k are the scaling
and shifting indices, respectively. The small transformation coeffi-
cients are typically considered as noise and can be removed without
affecting the time series quality. The selection of the mother wave-
let type is an essential step in the application of DWT method; thus,
the performance of various types of wavelets was assessed. This
study used five types of wavelets, namely Haar, Daubechies (db),
Coiflets (coif), Symlets (sym) and Discrete Meyer Wavelet (dmey)
to reduce the uncertainty of outcomes. These five types of wavelets
were studied using MATLAB toolbox.

3.1.3. Selecting the best model inputs
In this research, principal component analysis (PCA) is

employed to select the best scenario of predictors (weather vari-
ables) that used to simulate municipal water demand data using
SPSS version (24) statistics package. PCA converts a dataset of orig-
inal predictors into a new dataset of uncorrelated derived predic-
tors that retain as much of the original variation as possible, and
these predictors are named principal components (PCs). The latter
are the outcomes of linear functions of the original predictors. Dur-
ing the PCA procedure, variances’ sums are equal for both the orig-
inal and derived predictors. The first PC represents the highest
value of variance in the data that can be utilised to describe the
original observations (Eq. (2)), and then, the second-highest vari-
ance represents by the second PC (Eq. (3)). The rest of the PCs
can be gained using the same technique. In the PCA analysis, the
dimensionality of the original dataset can be decreased by employ-
ing the first few PCs (Haque et al., 2018; Sarwar et al., 2019;
Sonawane and Kulkarni, 2018).

PC1 ¼ a11x1 þ a12x2 þ � � � þ a1kxk ¼
Xk

j¼1

a1jxj ð2Þ

PC2 ¼ a21x1 þ a22x2 þ � � � þ a2kxk ¼
Xk

j¼1

a2jxj ð3Þ
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where x1, x2, . . ., xk refer to the original predictors in the data matrix
and aij refer to the eigenvectors.

Recently, two different studies (Gedefaw et al., 2018) and
(Haque et al., 2018) have proved that PCA technique plays a con-
siderable role to locate the influential variables in urban water
demand modelling compared to different statistical approaches.

According to Tabachnick and Fidell (2013), the needed size of
the sample dataset (N) depends on the predictors’ number as
shown in Eq. (4).

N � 50 + 8 m ð4Þ
m = number of predictors variables.

3.2. Particle swarm optimisation based modelling

PSO is an optimisation technique that has been successfully
applied recently in different fields to choose the optimal solution,
such as wireless sensor networks (Dash et al., 2019), single server
optimisation (Alharkan et al., 2020), and smart agriculture (Jawad
et al., 2020).

PSO is an evolutionary computation algorithm based on the nat-
ural system that is usually applied in settling optimisation prob-
lems, and it has few parameters compared with other intelligent
algorithms (Banerjee and Dwivedi, 2018; Xu et al., 2018). In this
study, it is applied to obtain the best coefficients of a prediction
model that offers the minimum error between observed and pre-
dicted water demand as shown in Fig. 1.

In each iteration process, the velocity and position of each par-
ticle, in the swarm, is updated based on the local best (Pbest) and
the global best (gbest) values. Pbest value refers to the memory of
the particle about its own best position (best fitness), and gbest
value is referring to the global knowledge of the optimal position,
or the optimal position in their neighbourhood. The positions of
the particle are changed via adding velocity and updating, this
has been illustrated in Eqs. (5) and (6) (Jawad et al., 2020). The pro-
cess of the PSO algorithm continues updating according to achiev-
ing an appropriate gbest or the pre-set number of iterations (kmax)
is attained. The number of iterations is determined as 500 to con-
firm that the variances of objective functions are still constant for
the long-term. The PSO algorithm has been coded before the appli-
cation of the MATLAB software.

Vid kþ 1ð Þ ¼ xVid kð Þ þ c1r1 kð Þ Pbestid � Xidð Þ
þ c2r2 kð Þ gbestid � Xidð Þ ð5Þ

Xid kþ 1ð Þ ¼ Xid kð Þ þ Vid kþ 1ð Þ ð6Þ
where Vid is the particle velocity, Xid indicates the particle posi-

tion; k is the number of iterations;x is the inertia weight; r1(k) and
r2(k) are random values ranging between 0 and 1; c1 and c2 are
acceleration constants that are often equals; c1r1(k)(Pbestid � Xid)
and c2r2(k) (gbestid � Xid) representing the updating of particles.
Following Jawad et al. (2020), the value of x = 0.7,
c1 = c2 = 1.494, and swarm size range from 10 to 50.

The relationship between the predicted water demand (bQ ) and
the weather variables (X) (model input) can be expressed in Eq. (7).

bQ ¼ Wo þ
Xn
i¼1

Wiþ2 i�1ð Þ � X2i
i ð7Þ

where W is the unknowing coefficient.
The performance criteria applied in this research are classified

as absolute, relative, and dimensionless errors. These types of
errors include the mean squared error (MSE), the mean absolute
relative error (MARE), the coefficient of efficiency (CE) as shown
in Eqs. (8), (9), and (10), respectively. Also, the Bland-Altman plot,



Fig. 1. Flowchart of the water demand equation based on the PSO algorithm.
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chi-square goodness-of-fit test and Augmented Dickey-Fuller test
were used to assess the residual analysis. Moreover, T-test was
used to examine the difference between the means of the observed
and predicted water demand.

MSE ¼
PN

i¼1 Qi � bQ i

� �2

N
ð8Þ
MARE ¼ 1
N

XN
i¼1

Qi � bQ i

��� ���
Qi

ð9Þ
CE ¼ 1�
Pn

i¼1 Qi � bQ i

� �2

Pn
i¼1 Qi � Qi

� �2 ð10Þ

where bQ i = predicted water demand, Qi= observed water consump-
tion, Qi= mean of observed water demand, N = data size.
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4. Results and discussion

4.1. Input data analysis

Time series for water consumption (dependent variable) and
weather factors (independent variables) were normalised and
cleaned as mentioned earlier in Sections 3.1.1 and 3.1.2. Five
mother wavelets (coif5, sym5, db5, dmey and Haar) were used
individually for the purpose of time series denoising. Their effects
on the correlation coefficient between dependent and indepen-
dents data are investigated. In general, all kinds of mother wavelets
improve the correlation coefficients values between water con-
sumption and weather variables, but dmey yielded the highest R
compared with the rest types of wavelets. For example, the corre-
lation coefficient between water consumption and maximum tem-
perature are 0.82, 0.81, 0.80, 0.80 and 0.74 for dmey, db5, sym5,
coif5 and Haar, respectively. The results of the correlation analysis
between water consumption and weather variables for raw and
denoised data can be seen in Table 2. Apparently, the data pre-
processing techniques increased the quality of data for dependent
and independent time series, for example the correlation



Table 2
Correlation matrix between water demand and weather variables for denoise data.

Weather variables

Data Tmax Tmin Tmean Rain Eva Srad VP RHmax FAO56

Raw 0.72 0.62 0.69 �0.43 0.75 0.65 0.5 �0.74 0.71
Denoised 0.82 0.71 0.78 �0.6 0.83 0.72 0.57 �0.83 0.77
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coefficient (R) between water consumption and Rhmax increase
from �0.74 to �0.83.

After cleaning data, PCA technique was applied to select the
best scenario for model inputs. PCA, as a factor analysis technique,
was performed with the eigenvalue equal to one to enhance the
strength of the factors. The results reveal that the value of the
Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO) is
0.86 > 0.6 and the Barlett’s Test of Sphericity value is 0.0 < 0.05,
accordingly, factor analysis is suitable (Pallant, 2011). Also, the
results show that two principal components (PCs) have eigenval-
ues more than one and explain 94.2% of the total variance.

Table 3 presents the rotated component matrix that has the
independent variables heavily loaded in PC1 and PC2. Pallant
(2011) stated that the multicollinearity exists among independent
variables based on each PC if they have correlation equal to 0.9 and
above. Therefore, Tmax, Eva and RHmax from PC1 and Rain from
the PC2 were selected as the best potential scenario of prediction
model inputs.

The size of the sample required for the model was calculated by
using Eq. (4), which showed that 82 50þ 8� 4ð Þ were needed. In
this research, the number of cases is N = 120 that is way more than
the required size. The relationship between predicted water

demand (bQ ) and the weather variables (model input) Rhmax,
Tmax, Eva, and Rin can be expressed in Eq. (11).

bQ ¼ W0 þW1 � Rhmaxð ÞW2 þW3 � Tmaxð ÞW4 þW5

� Evað ÞW6 þW7 � Rinð ÞW8 ð11Þ

where, W0 to W8 are the unknowing coefficients.
The PSO optimisation algorithm was applied to find the best

value of the coefficients in the next subsection.
Fig. 2. Objective function versus iteration (PSO).
4.2. Analysis of the PSO technique

The size of the swarm was varied to analyse the number of the
particle that offered better performance for convergence and
processing time. Following Jawad et al. (2020), this research
applies five swarm sizes (10, 20, 30, 40, and 50-particle swarms)
to gain the minimum objective functions (MAE). The results show
that swarm 40 offers the minimum objective function
(MAE = 0.05563) after 380 iterations as presented in Fig. 2, which
Table 3
Rotated Component Matrix.

Weather variables Principal components

1 2

Tmax 0.983
Tmin 0.974
Tmean 0.980
Rain 0.963
Eva 0.88
Srad 0.922
VP 0.910
RHmax �0.869 0.445
FA 0.960
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reveals that the variance of the objective function becomes con-
stant after 380 iterations that support our selection 500 iterations.

After applying the PSO algorithm (swarm 40), as shown above
in Fig. 2, the coefficients of the Eq. (11) were obtained as tabulated
in Table 4.

Therefore, the new values of the constants could be substituted
in Eq. (11) to produce a new water prediction model, as presented
in Eq. (12).

WD ¼ �3:4337� 102 þ 2:3664� 102 � Rhmaxð Þ�127

þ 32:7605� Tmaxð Þ�646 þ 3:5268� 102

� Evað Þ2:1128�10�4 þ 2:9901� 102� Rinð Þ�6:3185 ð12Þ
4.3. Performance evaluation

The performance of the proposed methodology was evaluated
using mean squared error (MSE), mean absolute relative error
(MARE) and coefficient of efficiency (CE), as presented in Table 5.
The latter clearly shows that the proposed methodology offers a
good scale of error based on MSE and MARE criteria, and a good
coefficient of efficiency (equals to 90%) according to Dawson
et al. (2007).

Also, Bland–Altman plot was considered to estimate the degree
of the systematic variance, the scatter of the values, and also to
Table 4
The coefficients of the suggested equation obtained
by PSO technique.

Coefficient Value

W0 �3.4337 � 102

W1 2.3664 � 102

W2 �127
W3 32.7605
W4 �646
W5 3.5268 � 102

W6 2.1128 � 10-4

W7 2.9901 � 102

W8 �6.3185



Table 5
Performance evaluation tests.

MSE MARE CE

0.0057 0.0055 0.9

Fig. 3. Bland-Altman plot of the relationship between observed and predicted
municipal water.
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check whether there was a relation between the observed and pre-
dicted error, as shown in Fig. 3. What is interesting about the data
in Fig. 3 is that 96% of data are distributed between bounds of
acceptance range; red and green bounds (mean� 2� std).

Furthermore, to examine the robustness of the proposed
methodology, three tests were employed for residual. First, the
chi-square goodness-of-fit test was used to check the normality,
while the second one was the Augmented Dickey-Fuller test that
was used to examine randomness. Finally, T-test was conducted
to examine the difference between the means of two groups (i.e.,
observed and predicted water demand). The results showed that
the residuals are normally distributed and random. Additionally,
the outcomes of the T-test revealed that the magnitude of P-
value was more than 0.05 meaning that the null hypothesis that
there was no significant difference between the observed and pre-
dicted water, i.e., time series cannot be rejected.

The results disclosed that the PSO algorithm yields excellent
coefficients of water demand model. The use of a combined
methodology (WDT-PCA-PSO) technique leads to a good matching
between the predicted and actual water demand data.
5. Conclusion

This study proposed a novel methodology to estimate the
monthly municipal water demand using ten-years data consider-
ing some weather variables in Melbourne City. The methodology
encompasses three hybrid techniques, namely WDT, PCA and
PSO. This hybridization proves its powerful ability to enhance the
predictive accuracy of the developed model; it is capable to accu-
rately predict the water demand basing on various statistical mea-
sures, such as MSE = 0.0057, MARE = 0.0055, CE = 0.9 and a Bland–
Altman plot accuracy 96%. These findings are of great importance
to both policy-makers and stakeholders in planning, reviewing
and comparing the availability of water resources and the increase
in water demand. Further research should be conducted to exam-
ine the effects of weather factors on the prediction of water
demand using different scales.
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