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1. Introduction 

The Leap Motion controller (LM) can reconstruct joint centres and a hand skeleton in real-

time without the need of markers. Compared to a gold-standard optoelectronic system, the 

LM is inaccurate when calculating angles between two adjacent finger segments [1]. 

Artificial neural networks (NN) learn multi-dimensional patterns between two data sets and 

after training can predict output data based on input data presented to it.  

 

2. Research question 

Can an artificial Neural Network improve the accuracy of angles calculated from Leap 

Motion data? 

 

3. Methods 

Two young, healthy adults were fitted with 16 clusters (48 markers) on the dorsum of the 

hand and each phalanx. Markers were captured with 15 Vicon cameras (Vicon Nexus 2.5). 

The LM was placed ∼25 cm underneath the hand and captured 3D finger joint 

(carpometacarpal, metacarpophalangeal, proximal interphalangeal (PIPJ), distal 

interphalangeal) and tip coordinates. The systems were synced and 15 cycles of self-selected 

hand movements were collected in D-Flow at 300 Hz (Motek Forcelink, Amsterdam). Vicon 

marker data was imported into Visual3D (C-Motion) where functional joint centres were 

computed (GILETTE algorithm). The first 8 principle components of LM and Vicon data 

(explaining 97.6% of data variance) were used to train a backpropagation NN in Matlab 

including 10 fold-cross validation. After training, the NN performance was tested with 

previously unseen test data set (10% of all data). Computed and predicted joint centre 

locations were correlated. Joint angles were calculated in Matlab using the cosine rule, for 

LM, Vicon computed and NN predicted joint centres. The RMSE was calculated between 

Vicon and NN joint centres as well as joint angles. 

 

4. Results 

Correlation coefficients (R) between 0.94–0.99 were calculated between computed and 

predicted functional joint centres (Fig. 1) across the 10-fold validation (r2=0.89–0.99). The 

RMSE between computed and predicted joint centre locations ranged from 0.13mm to 

2.05mm (mean: 0.55 mm). RMSE increased from proximal to distal end of each finger. The 

RMSE between Vicon joint angles and NN predicted joint angles at the Index PIPJ (Fig. 2) 

was 6.45°, compared to 12.54° between the LM and Vicon data, reflecting an error reduction 

of 48.56% when the NN was applied. 

 



 
Fig. 1. Correlation between Vicon computed (X-axis) and Neural (Y-Axis) network predicted 

joint centre coordinates. Strength of the correlation was assessed by calculating the 

correlation coefficient (R) and coefficient of determination (r²). a) Correlation of joint centre 

X coordinates (R=0.98953, r²=0.9792) b) correlation of joint centre Y coordinates 

(R=0.97689, r²=0.9543) c) correlation of centre Z coordinates (R=0.99238, r²=0.9848). 

 

 
Fig. 2. Flexion/Extension angles at the Proximal Interphalangeal joint from reconstructed test 

data for the neural network (previously unseen data). Angles (degree) computed using cosine 

rule for the Leap Motion input data (blue), Vicon target data (black) and Neural Network 

prediction (red). 

 

 

5. Discussion 

The neural network was able to improve the accuracy of the LM as shown by the angle error 

reduction between NN and Vicon, compared to LM and Vicon. The angles were computed 

using cosine rule, which is limited if the angle of interest is close to 0°, however, despite this 

the results are convincing. In future, the LM will be used to assess movement limitations in 

patients. 
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