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Abstract 85 

 86 

Objectives: 87 

To present the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) 88 

conceptual approach to the assessment of certainty of evidence from modelling studies (i.e. 89 

certainty associated with model outputs).  90 

Study Design and Setting: 91 

Expert consultations and, an international multi-disciplinary workshop informed development of a 92 

conceptual approach to assessing the certainty of evidence from models within the context of 93 

systematic reviews, health technology assessments, and health care decisions.  The discussions 94 

also clarified selected concepts and terminology used in the GRADE approach and by the 95 

modelling community. Feedback from experts in a broad range of modelling and health care 96 

disciplines addressed the content validity of the approach.  97 

Results: 98 

Workshop participants agreed, that the domains determining the certainty of evidence previously 99 

identified in the GRADE approach (risk of bias, indirectness, inconsistency, imprecision, reporting 100 

bias, magnitude of an effect, dose-response relation, and the direction of residual confounding) 101 

also apply when of assessing the certainty of evidence from models. The assessment depends on 102 

the nature of model inputs and the model itself and on whether one is evaluating evidence from a 103 

single model or multiple models. We propose a framework for selecting the best available 104 

evidence from models: 1) developing de novo a model specific to the situation of interest, 2) 105 

identifying an existing model the outputs of which provide the highest certainty evidence for the 106 

situation of interest, either “off the shelf” or after adaptation, and 3) using outputs from multiple 107 

models. We also present a summary of preferred terminology to facilitate communication among 108 

modelling and health care disciplines.   109 

Conclusions: 110 

This conceptual GRADE approach provides a framework for using evidence from models in health 111 

decision making and the assessment of certainty of evidence from a model or models. The GRADE 112 

Working Group and the modelling community are currently developing the detailed methods and 113 

related guidance for assessing specific domains determining the certainty of evidence from 114 

models across health care-related disciplines (e.g. therapeutic decision-making, toxicology, 115 

environmental health, health economics). 116 

  117 
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Introduction 118 

 119 

When direct evidence to inform health decisions is not available or not feasible to measure (e.g. 120 

long-term effects of interventions or when studies in certain populations are perceived as 121 

unethical), modelling studies may be used to predict that “evidence” and inform decision-122 

making.[1, 2] Health decision makers arguably face many more questions than can be reasonably 123 

answered with studies that directly measure the outcomes. Modelling studies, therefore, are 124 

increasingly used to predict disease dynamics and burden, the likelihood that an exposure 125 

represents a health hazard, the impact of interventions on health benefits and harms, or the 126 

economic efficiency of health interventions, among others [1]. Irrespective of the modelling 127 

discipline, decision makers need to know the best estimates of the modelled outcomes and how 128 

much confidence they may have in each estimate.[3] Knowing to what extent one can trust the 129 

outputs of a model is necessary when using them to support health decisions [4].  130 

 131 

Although a number of guidance documents on how to assess the trustworthiness of estimates 132 

obtained from models in several health fields have been previously published [5-16], they are 133 

limited by failing to distinguish methodological rigor from completeness of reporting, and by 134 

failing to clear distinguish among various components affecting the trustworthiness of model 135 

outputs. In particular they lack clarity regarding sources of  uncertainty that may arise from model 136 

inputs and from the uncertainty about a model itself. Modellers and those using results from 137 

models should assess the credibility of both.[4]  138 

 139 

Authors have attempted to develop tools to assess model credibility, but many addressed only 140 

selected aspects, such as statistical reproducibility of data, the quality of reporting[17], or a 141 

combination of reporting with aspects of good modelling practices[7, 18-21]. Many tools also do 142 

not provide sufficiently detailed guidance on how to apply individual domains or criteria. There is 143 

therefore a need for further development and validation of such tools in specific disciplines. 144 

Sufficiently detailed guidance for making and reporting these assessments is also necessary.  145 

 146 

Models predict outcomes based on model inputs – previous observations, knowledge and 147 

assumptions about the situation being modelled. Thus, when developing new models or assessing 148 

whether an existing model has been optimally developed, one should specify a priori the most 149 

appropriate and relevant data sources to inform different parameters required for the model. 150 

These may be either (seldom) a single study that provides the most direct information for the 151 

situation being modelled or (more commonly) a systematic review of multiple studies that identify 152 

all relevant sources of data. The risk of bias, directness and consistency of input data, precision of 153 

these estimates, and other domains specified in the Grading of Recommendations Assessment, 154 
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Development, and Evaluation (GRADE) approach determine the certainty of each of the model 155 

inputs.[22-28] 156 

 157 

When assessing the evidence generated, various disciplines in health care and related areas that 158 

use modelling face similar challenges may benefit from shared solutions. Table 1  presents 159 

examples of selected models used in health-related disciplines in Table 1. Building on the existing 160 

GRADE approach, werefined and expand guidance regarding assessment of the certainty of model 161 

outputs. We formed a GRADE project group comprised of individuals with expertise in developing 162 

models and using model results in health-related disciplines, to create a unified framework for 163 

assessing the certainty of model outputs in the context of systematic reviews [29], health 164 

technology assessments, health care guidelines, and other health decision-making. In this article, 165 

we outline the proposed conceptual approach and clarify key terminology (Table 2). The target 166 

audience for this article includes researchers who develop models and those who use models to 167 

inform health care-related decisions. 168 

 169 

What we mean by a model 170 

 171 

Authors have used the term model to describe a variety of different concepts [2] and suggested 172 

several broader or narrower definitions [6, 30], so even modellers in the relatively narrow context 173 

of health sciences can differ in their views regarding what constitutes a model. Models vary in 174 

their structure and degree of complexity. A very simple model might be an equation estimating a 175 

variable not directly measured, such as the absolute effect of an intervention estimated as the 176 

product of the intervention’s relative effect and the assumed baseline risk in a defined population 177 

(risk difference equals relative risk reduction multiplied by an assumed baseline risk). On the other 178 

end of the spectrum, elaborate mathematical models, such as system dynamics models (e.g. 179 

infectious disease transmission) may contain dozens of sophisticated equations that require 180 

considerable computing power to solve. 181 

 182 

By their nature, such models only resemble the phenomena being modelled – i.e. specific parts of 183 

the world that are interesting in the context of a particular decision – with necessary 184 

approximations and simplifications, and to the extent that one actually knows and understands 185 

the underlying mechanisms.[1] Given the complexity of the world, decision-makers often rely on 186 

some sort of a model to answer health-related questions.  187 

 188 

In this article, we focus on quantitative mathematical models defined as “mathematical 189 

framework representing variables and their interrelationships to describe observed phenomena or 190 

predict future events”[30] used in health-related disciplines for decision-making (Table 1). These 191 

may be models of systems representing causal mechanisms (aka mechanistic models), models 192 
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predicting outcomes from input data (aka empirical models), and models combining mechanistic 193 

with empirical approaches (aka hybrid models). We do not consider here statistical models used to 194 

estimate the associations between measured variables (e.g. proportional hazards models or 195 

models used for meta-analysis). 196 

 197 

The GRADE approach 198 

 199 

The GRADE working group was established in the year 2000 and continues as a community of 200 

people striving to create systematic, and transparent frameworks for assessing and 201 

communicating the certainty of the available evidence used in making decisions in healthcare and 202 

health-related disciplines.[31] The GRADE Working Group now includes over 600 active members 203 

from 40 countries and serves as a think tank for advancing evidence-based decision-making in 204 

multiple health-related disciplines (www.gradeworkinggroup.org). GRADE is widely used 205 

internationally by over 110 organizations to address topics related to clinical medicine, public 206 

health, coverage decisions, health policy, and environmental health.  207 

 208 

The GRADE framework uses concepts familiar to health scientists, grouping specific items to 209 

evaluate the certainty of evidence in conceptually coherent domains. Specific approaches to the 210 

concepts may differ depending on the nature of the body of evidence (Table 2). GRADE domains 211 

include concepts such as risk of bias[28], directness of information [24], precision of an 212 

estimate[23], consistency of estimates across studies[25], risk of bias related to selective 213 

reporting[26], strength of the association, presence of a dose-response gradient, and the presence 214 

of plausible residual confounding that can increase confidence in estimated effects[27].  215 

 216 

The general GRADE approach is applicable irrespective of health discipline. It has been applied to 217 

rating the certainty of evidence for management interventions, health care related tests and 218 

strategies [32, 33], prognostic information[34], evidence from animal studies[35], use of resources 219 

and cost-effectiveness evaluations[36], and values and preferences[37, 38].  Although the GRADE 220 

Working Group has begun to address certainty of modelled evidence in the context of test-221 

treatment strategies[39], health care resource use and costs[36], and environmental health[40], 222 

more detailed guidance is needed for complex models such as those used in infectious diseases, 223 

health economics, public health, and decision analysis.  224 

 225 

Methods 226 

 227 

On May 15 and 16, 2017, health scientists participated in a GRADE modelling project group 228 

workshop in Hamilton, Ontario, Canada, to initiate a collaboration in developing common 229 
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principles for the application of the GRADE assessment of certainty of evidence to modelled 230 

outputs. The National Toxicology Program of the Department of Health and Human Services in the 231 

USA and the MacGRADE Center in the Department of Health Research Methods, Evidence, and 232 

Impact at McMaster University sponsored the workshop which was co-organized by MacGRADE 233 

Center and ICF International.  234 

 235 

Workshop participants were selected to ensure a broad representation of all modelling related 236 

fields (Appendix). Participants had expertise in modelling in the context of clinical practice 237 

guidelines, public health, environmental health, dose-response modelling, physiologically based 238 

pharmacokinetic (PBPK) modelling, environmental chemistry, physical/chemical property 239 

prediction, evidence integration, infectious disease, computational toxicology, exposure 240 

modelling, prognostic modelling, diagnostic modelling, cost effectiveness modelling, biostatistics, 241 

and health ethics. 242 

 243 

Leading up to the workshop, we held three webinars to introduce participants to the GRADE 244 

approach. Several workshop participants (VM, KT, JB, AR, JW, JLB, HJS) collected and summarized 245 

findings from literature and the survey of experts as background material that provided a starting 246 

point for discussion. The materials included collected terminology representing common concepts 247 

across multiple disciplines that relate to evaluating modelled evidence, and a draft framework for 248 

evaluating modelled evidence. Participants addressed specific tasks in small groups and large 249 

group discussion sessions and agreed on key principles both during the workshop and through 250 

written documents.  251 

 252 

Results 253 

 254 

Terminology 255 

 256 

Workshop participants agreed on the importance of clarifying terminology to facilitate 257 

communication among modellers, researchers, and users of model outputs from different 258 

disciplines. Modelling approaches evolved somewhat independently, resulting in different terms 259 

being used to describe the same or very similar concepts or the same term being used to describe 260 

different concepts. For instance, the concept of extrapolating from the available data to the 261 

context of interest has been referred to as directness, applicability, generalizability, relevance, or 262 

external validity. The lack of standardized terminology leads to confusion and hinders effective 263 

communication and collaboration among modellers and users of models. 264 

 265 
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Overcoming these obstacles would require clarifying the definitions of concepts and agreeing on 266 

terminology across disciplines. Realizing that this involves changing established customary use of 267 

terms in several disciplines, workshop participants suggested accepting the use of alternative 268 

terminology while always being clear about the preferred terms to be used and the underlying 269 

concept to which it refers (Table 2). Experts attending a World Health Organization's consultation 270 

have very recently suggested a more extensive set of terms [41]. To facilitate future 271 

communication, participants of this workshop will further collaborate to build a comprehensive 272 

glossary of terminology related to modelling. 273 

 274 

Outline of an approach to using model outputs for decision making 275 

 276 

Workshop participants suggested an approach to incorporate model outputs in health-related 277 

decision making (Figure 1). In this article we describe only the general outline of the suggested 278 

approach – in subsequent articles we will discuss the details of the approach and provide more 279 

specific guidance on its application to different disciplines and contexts.  280 

 281 

Researchers should start by conceptualizing the problem and the ideal target model that would 282 

best represent the actual phenomenon or decision problem they are considering [13]. This 283 

conceptualization would either guide the development of a new model or serve as a reference 284 

against which existing models could be compared. The ideal target model should reflect: 1) the 285 

relevant population (e.g., patients receiving some diagnostic procedure or exposed to some 286 

hazardous substance), 2) the exposures or health interventions being considered, 3) the outcomes 287 

of interest in that context, and 4) their relationships. [42]. Conceptualizing the model will also 288 

reduce the risk of intentional or unintentional development of data-driven models, in which inputs 289 

and structure would be determined only by what is feasible to develop given the available data at 290 

hand.   291 

 292 

Participants identified 3 options in which users may incorporate model outputs in health decision-293 

making (Figure 1): 294 

1. Develop a model de novo designed specifically to answer the very question at hand. 295 

Workshop participants agreed that in an ideal situation such an approach would almost always 296 

be the most appropriate. Following this approach, however, requires suitable skills, ample 297 

resources, and time being available. It also requires enough knowledge about the 298 

phenomenon being modelled to be able to tell whether or not the new model would have any 299 

advantage over already existing models. 300 

2. Search for an existing model describing the same or a very similar problem and use it “off-301 

the-shelf” or adapt it appropriately in order to answer the current question. In practice many 302 

researchers initially use this approach because of the above limitations of developing a new 303 
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model. However, it is often not possible to find an existing model that would be directly 304 

relevant to the problem at hand and/or it is not feasible to adapt an existing model when 305 

found. Any adaptation of a model requires availability of input data relevant for current 306 

problem, appropriate expertise and resources, and access to the original model. The latter is 307 

often not available (e.g. proprietary model or no longer maintained) or the structure of the 308 

original model is not being transparent enough to allow adaptation (“black-box”).  309 

3. Use the results from multiple existing models found in the literature [43]. This approach may 310 

be useful when a limited knowledge about the phenomenon being modelled makes it 311 

impossible to decide which of the available models is more relevant, or when many alternative 312 

models are relevant but use different input parameters. In such situations, one may be 313 

compelled to rely on the results of several models, because selection of the single, seemingly 314 

“best” model may provide incorrect estimates of outputs and lead to incorrect decisions. 315 

Identifying existing models that are similar to the ideal target model often requires performing a 316 

scoping of the literature or a complete systematic review of potentially relevant models – a 317 

structured process following a standardized set of methods with a goal to identify and assess all 318 

available models that are accessible, transparently reported, and fulfil the pre-specified eligibility 319 

criteria based on the conceptual ideal target model. Some prefer the term systematic survey that 320 

differs from a systematic review in the initial intention to use the results: in systematic reviews the 321 

initial intention is to combine the results across studies either statistically through a meta-analysis 322 

or narratively summarizing their results when appropriate, whereas in a systematic survey the 323 

initial intention is to examine the various ways that an intervention or exposure has been 324 

modelled, to review the input evidence that has been used, and ultimately to identity a single 325 

model that fits the conceptual ideal target model the best or requires the least adaptation; only 326 

when one cannot identify a single such model will it be necessary to use the results of multiple 327 

existing models. 328 

 329 

If a systematic search revealed one or more models meeting the eligibility criteria, then 330 

researchers would assess the certainty of outputs from each model. Depending on this 331 

assessment, researchers may be able to use the results of a single most direct and lowest risk of 332 

bias model “off-the-shelf” or proceed to adapt that model. If researchers failed to find an existing 333 

model that would be sufficiently direct and low risk of bias, then they would ideally develop their 334 

own model de novo.  335 

  336 

Assessing the certainty of outputs from a single model 337 

 338 

When researchers develop their own model or when they identify a single model that is 339 

considered sufficiently direct to the problem at hand, they should assess the certainty of its 340 
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outputs (i.e. evidence generated from that model). Note, that if a model estimates multiple 341 

outputs, researchers needs to assess the certainty of each output separately [23-28]. Workshop 342 

participants agreed that all GRADE domains are applicable to assess the certainty of model 343 

outputs, but further work is needed to identify examples and develop specific criteria to be 344 

assessed, which may differ depending on the model being used and/or situation being modelled. 345 

 346 

Risk of bias in a single model 347 

 348 

The risk of bias of model outputs (i.e. model outputs being systematically overestimated or 349 

underestimated) is determined by the credibility of a model itself and the certainty of evidence for 350 

each of model inputs. 351 

 352 

The credibility of a model, also referred to as the quality of a model (Table 2) is influenced by its 353 

conceptualization, structure, calibration, validation, and other factors. Determinants of model 354 

credibility are likely to be specific to a modelling discipline (e.g., health economic models have 355 

different determinants of their credibility than PBPK models). There are some discipline-specific 356 

guidelines or checklists developed for the assessment of credibility of a model and other factors 357 

affecting the certainty of model outputs such as the framework to assess adherence to good 358 

practice guidelines in decision-analytic modelling [18], the questionnaire to assess relevance and 359 

credibility of modelling studies [18, 44, 45], good research practices for modelling in health 360 

technology assessment [5, 6, 8, 9, 12-14], the approaches to assessing uncertainty in read-across 361 

[46], and the quantitative structure-activity relationships [47] in predictive toxicology. Workshop 362 

participants agreed that there is a need for comprehensive tools developed specifically to assess 363 

credibility of various types of models in different modelling disciplines. 364 

 365 

The certainty of evidence in each of the model inputs is another critical determinant of the risk of 366 

bias in a model. A model has several types of input data – bodies of evidence used to populate a 367 

model (Table 2). When researchers develop their model de novo, in order to minimize the risk of 368 

bias they need to specify those input parameters to which the model outputs are the most 369 

sensitive. For instance, in economic models these key parameters may include health effects, 370 

resource use, utility values, and baseline risks of outcomes. Model inputs should reflect the entire 371 

body of relevant evidence satisfying clear pre-specified criteria rather than an arbitrarily selected 372 

evidence that is based on convenience (“any available evidence”) or picked in any other non-373 

systematic way (e.g., “first evidence found” – single studies that researchers happen to know 374 

about or are the first hits in a database search).  375 

 376 

The appropriate approach will depend on the type of data and may require performing a 377 

systematic review of evidence on each important or crucial input variable [48-50]. Some inputs 378 
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may have a very narrow inclusion criteria and therefore evidence from single epidemiological 379 

survey or population surveillance may provide all relevant data for the population of interest (e.g. 380 

baseline population incidence or prevalence).  381 

 382 

The certainty of evidence for each input needs to be assessed following the established GRADE 383 

approach specific to that type of evidence (e.g. estimates of intervention effects or baseline risk of 384 

outcomes)[22, 32, 34, 37]. Following the logic of the GRADE approach that the overall certainty of 385 

evidence cannot be higher than the lowest certainty for any body of evidence that is critical for a 386 

decision [51], the overall rating of certainty of evidence across  model inputs should be limited by 387 

the lowest certainty rating for any body of evidence (in this case input data) to which the model 388 

output(s) was proved sensitive. 389 

  390 

Application of this approach requires a priori consideration of likely critical and/or important 391 

inputs when specifying the conceptual ideal target model and the examination of the results of 392 

back-end sensitivity analyses. It further requires deciding how to judge whether results are or are 393 

not sensitive to alternative input parameters.  Authors have described several methods to identify 394 

the most influential parameters including global sensitivity analysis to obtain “parameter 395 

importance measures” (i.e. information based measures) [52];  or alternatively by varying one 396 

parameter at a time and assessing their influence in “base case” outputs [52] For example, in a 397 

model-based economic evaluation one might  be looking for the influence of sensitivity analysis on 398 

cost-effectiveness ratios at a specified willingness-to-pay threshold. 399 

 400 

Indirectness in a single model 401 

By directness or relevance, we mean the extent to which model outputs directly represent the 402 

phenomenon being modelled. To evaluate the relevance of a model, one needs to compare it 403 

against the conceptual ideal target model. When there are concerns about the directness of the 404 

model or there is limited understanding of the system being modelled making it difficult to assess 405 

directness, then one may have lower confidence in model outputs.  406 

 407 

Determining the directness of model outputs includes assessing to what extent the modelled 408 

population, the assumed interventions and comparators, the time horizon, the analytic 409 

perspective, as well as the outcomes being modelled reflect those that are current interest. For 410 

instance, if the question is about the risk of birth defects in children of mothers chronically 411 

exposed to a certain substance, there may be concerns about the directness of the evidence if the 412 

model assumed short-term exposure, the route of exposure was different, or the effects of 413 

exposure to a similar but not the same substance were measured. 414 

 415 

Assessing indirectness in a single model also requires evaluating two separate sources of 416 

indirectness:  417 

1. indirectness of input data with respect to the ideal target model´s inputs. 418 
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2. indirectness of model outputs with respect to the decision problem at hand. 419 

 420 

This conceptual distinction is important because, although they are interrelated, one needs to 421 

address each type of indirectness separately.  Even if the outputs might be direct to the problem 422 

of interest, the final assessment should consider if the inputs used were also direct for the target 423 

model. 424 

 425 

Using an existing model has potential limitations: its inputs might have been direct for the decision 426 

problem addressed by its developers but are not direct with respect to the problem currently at 427 

hand. In this context, sensitivity analysis can help to assess to what extent model outputs are 428 

robust to the changes in input data or assumptions used in model development.  429 

 430 

Inconsistency in a single model 431 

 432 

A single model may yield inconsistent outputs owing to unexplained variability in the results of 433 

individual studies informing the pooled estimates of input variables. For instance, when 434 

developing a health economic model, a systematic review may yield several credible, but 435 

discrepant, utility estimates in the population of interest. If there is no plausible explanation for 436 

that difference in utility estimates, outputs of a model based on those inputs may also be 437 

qualitatively inconsistent. Again, sensitivity analysis may help to make a judgment to what extent 438 

such inconsistency of model inputs would translate into a meaningful inconsistency in model 439 

outputs with respect to the decision problem at hand.  440 

 441 

Imprecision in a single model 442 

 443 

Sensitivity  analysis characterizes the response of model outputs to parameter variation, and helps 444 

to determine the robustness of model´s qualitative conclusions [52, 53]. The overall certainty of 445 

model outputs may also be lower when the outputs are estimated imprecisely. For quantitative 446 

outputs one should examine not only the point estimate (e.g., average predicted event) but also 447 

the variability of that estimate (e.g., results of the probabilistic sensitivity analysis based in the 448 

distribution of the input parameters). It is essential that a report from a modelling study always 449 

includes information about output variability. Further guidance on how to assess imprecision in 450 

model outputs will need to take into account if the conclusions change according to that specific 451 

parameter. In some disciplines, for instance in environmental health, model inputs are frequently 452 

qualitative. Users of such models may assess “adequacy” of the data, i.e. the degree of “richness” 453 

and quantity of data supporting particular outputs of a model. 454 

  455 
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Risk of publication bias in the context of a single model 456 

 457 

The risk of publication bias, also known as “reporting bias”, “non-reporting bias”, or “bias owing to 458 

missing results”, as it is currently called in the Cochrane Handbook [54], is the likelihood that 459 

relevant models have been constructed but were not published or otherwise made publicly 460 

available. Risk of publication bias may not be relevant when assessing the certainty of outputs of a 461 

single model constructed de novo. However, when one intends to reuse an existing model but is 462 

aware or strongly suspects that similar models had been developed but are not available, then 463 

one may be inclined to think that their outputs might have systematically differed from the model 464 

that is available. In such a case, one may have lower confidence in the outputs of the identified 465 

model if there is no reasonable explanation for the inability to obtain those other models.  466 

 467 

Domains that increase the certainty of outputs from a single model 468 

 469 

The GRADE approach to rating the certainty of evidence recognized three situations when the 470 

certainty of evidence can increase: large magnitude of an estimated effect, presence of a dose-471 

response gradient in an estimated effect, and an opposite direction of plausible residual 472 

confounding.[27] Workshop participants agreed that presence of a dose-response gradient in 473 

model outputs may be applicable in some modelling disciplines (e.g., environmental health). 474 

Similarly, whether or not a large magnitude of an effect in model outputs increases the certainty 475 

of the evidence may depend on the modelling discipline. The effect of an opposite direction of  476 

plausible residual confounding seems theoretically also applicable in assessing the certainty of 477 

model outputs (i.e. a conservative model not incorporating input data parameter in favour of an 478 

intervention but still finding favorable outputs) but an actual example of this phenomenon in 479 

modelling studies is still under discussion.  480 

 481 

Assessing the certainty of outputs across multiple models 482 

 483 

Not infrequently, particularly in disciplines relying on mechanistic models, the current knowledge 484 

about the real system being modelled is very limited precluding the ability to determine which of 485 

the available existing models generates higher certainty outputs. Therefore, it may be necessary 486 

to rely on the results across multiple models. Other examples include using multiple models when 487 

no model was developed for the population directly of interest (e.g. the European Breast Cancer 488 

Guideline for Screening and Diagnosis relied on a systematic review of modelling studies that 489 

compared different mammography screening intervals [55]) or when multiple models of the same 490 

situation exist but vary in structure, complexity, and parameter choices (e.g. HIV Modelling 491 

Consortium compared several different mathematical models simulating the same antiretroviral 492 
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therapy program and found that all models predicted that the program has the potential to 493 

reduce new HIV infections in the population [56]).   494 

 495 

When researchers choose or are compelled to include outputs from several existing models, they 496 

should assess the certainty of outputs across all included models. This assessment may be more 497 

complex than for single models and single bodies of evidence. The feasibility of GRADE’s guidance 498 

to judge the certainty of evidence lies in the availability of accepted methods for assessing most 499 

bodies of evidence from experimental to observational studies. However, the methods for 500 

systematic reviews of modelling studies are less well-established, some stages of the process are 501 

more complex, the number of highly skilled individuals with experience in such systematic reviews 502 

is far lower, and there is larger variability in the results [57]. Additionally, researchers must be 503 

careful to avoid “double counting” the same model as if it were multiple models. For instance, the 504 

same model (i.e. same structure and assumptions) may have been used in several modelling 505 

studies, in which investigators relied on different inputs. When facing this scenario, researchers 506 

may need to decide which of the inputs are the most direct to their particular question and 507 

include in only this model in the review.   508 

 509 

Risk of bias across multiple models 510 

 511 

The assessment of risk of bias across models involves an assessment of the risk of bias in each 512 

individual model (see above discussion of risk of bias in single model) and subsequently making a 513 

judgement about the overall risk of bias across all included models. Specific methods for 514 

operationalizing this integration remain to be developed. 515 

 516 

Indirectness across multiple models 517 

 518 

As for the risk of bias, researchers need to assess indirectness of outputs initially for each of 519 

included models and then integrate the judgements across models. Likewise, specific methods for 520 

operationalizing this integration still remain to be developed. During this assessment researchers 521 

may find some models too indirect to be informative for their current question and decide to 522 

exclude them from further consideration. However, the criteria to determine which models are 523 

too indirect should be developed a priori, before the search for the models is performed and their 524 

results are known. 525 

 526 

Imprecision across multiple models 527 

 528 

The overall certainty of model outputs may also be lower when model outputs are not estimated 529 

precisely. If researchers attempt a quantitative synthesis of outputs across models, they will 530 
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report the range of estimates and variability of that estimates. When researchers choose to 531 

perform only a qualitative summary of the results across models, it is desirable that they report 532 

some estimate of variability in the outputs of individual models and an assessment of how severe 533 

the variability is (e.g. range of estimated effects). 534 

 535 

Inconsistency of outputs across multiple models 536 

 537 

The assessment of inconsistency should focus on unexplained differences across model outputs 538 

for a given outcome. If multiple existing models addressing the same issue produce considerably 539 

different outputs or reach contrasting conclusions, then careful comparison of the models may 540 

lead to a deeper understanding of the factors that drive outputs and conclusions. Ideally, the 541 

different modelling groups that developed relevant models would come together to explore the 542 

importance of differences in the type and structure of their models, and of the data used as model 543 

inputs.  544 

 545 

Invariably there will be some differences among the estimates from different models. Researchers 546 

will need to assess whether or not these differences are important, i.e. whether they would lead 547 

to different conclusions. If the differences are important but can be explained by model structure, 548 

model inputs, the certainty of the evidence of the input parameters or other relevant reasons, one 549 

may present the evidence separately for the relevant subgroups. If differences are important, but 550 

cannot be clearly explained, the certainty of model outputs may be lower.  551 

 552 

Risk of publication bias across multiple models 553 

 554 

The assessment is similar to that of the risk of publication bias in the context of a single model. 555 

 556 

Domains that increase the certainty of outputs across multiple models 557 

 558 

All considerations are the same to those in the context of a single model. 559 

 560 

Discussion 561 

 562 

The goal of the GRADE project group on modelling is to provide concepts and operationalization of 563 

how to rate the certainty of evidence in model outputs. This article provides an overview of the 564 

conclusions of the project group. This work is important because there is a growing need and 565 

availability of modelled information resulting from a steadily increasing knowledge of the 566 

complexity of the structure and interactions in our environment, and computational power to 567 
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construct and run models. Users of evidence obtained from modelling studies need to know how 568 

much trust they may have in model outputs. There is a need to improve the methods of 569 

constructing models and to develop methods for assessing the certainty in model outputs. In this 570 

article we have attempted to clarify the most important concepts related to developing and using 571 

model outputs to inform health-related decision-making. Our preliminary work identified 572 

confusion about terminology, lack of clarity of what is a model, and need for methods to assess 573 

certainty in model outputs as priorities to be addressed in order to improve the use of evidence 574 

from modelling studies.  575 

 576 

In some situations, decision-makers might be better off developing a new model specifically 577 

designed to answer their current question. However, we suggest that it is not always feasible to 578 

develop a new model or that developing a new model might not be any better than using already 579 

existing models, when the knowledge of the real life system to be modelled is limited precluding 580 

the ability to choose one model that would be better than any other. Thus, sometimes it may be 581 

necessary or more appropriate to use one or multiple existing models depending on their 582 

availability, credibility, and relevance to the decision-making context. The assessment of the 583 

certainty of model outputs will be conceptually similar when a new model is constructed, or one 584 

existing model is used. The main difference between the latter two approaches is the availability 585 

of information to perform a detailed assessment. That is, information for one’s own model may be 586 

easily accessible, but information required to assess someone else’s model will often be more 587 

difficult to obtain. Assessment of the certainty evidence across models can build on existing 588 

GRADE domains but requires different operationalization.  589 

 590 

Because it builds on an existing, widely used framework that includes a systematic and 591 

transparent evaluation process, modelling disciplines’ adoption of the GRADE approach and 592 

further development of methods to assess the certainty of model outputs may be beneficial for 593 

health decision making. Systematic approaches improve rigor of research, reducing the risk of 594 

error and its potential consequences; transparency of the approach increases its trustworthiness. 595 

There may be additional benefits related to other aspects of the broader GRADE approach, for 596 

instance a potential to reduce unnecessary complexity and workload in modelling by careful 597 

consideration of the most direct evidence as model inputs. This may allow, for instance, 598 

optimization of the use of different streams of evidence as model inputs. Frequently, authors 599 

introduce unnecessary complexity by considering multiple measures of the same outcome when 600 

focus could be on the most direct outcome measure.  601 

 602 

The GRADE working group will continue developing methods and guidance for using model 603 

outputs in health-related decision-making. In subsequent articles we will provide more detailed 604 

guidance about choosing the “best” model when multiple models are found, using multiple 605 
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models, integrating the certainty of evidence from various bodies of evidence with credibility of 606 

the model and arriving at the overall certainty in model outputs, how to assess the credibility of 607 

various types of models themselves, and further clarification of terminology. In the future we aim 608 

to develop and publish the detailed guidance for assessing certainty of evidence from models, the 609 

specific guidance for the use of modelling across health care-related disciplines (e.g. toxicology, 610 

environmental health or health economics), validation of the approach, and accompanying 611 

training materials and examples. 612 

 613 
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Table 1. Examples of modelling methods in health-related disciplines (not comprehensive)* 618 

 619 

Decision analysis 

models 

Structured model representing health care pathways examining effects of an 

intervention on outcomes of interest. 

Types 

� Decision tree models 

� State transition models  

o Markov cohort simulation 

o Individual based microsimulation (first-order Monte Carlo)  

� Discrete event simulation 

� Dynamic transmission models 

� Agent based models 

Examples 

� Estimation of long-term benefits and harms outcomes from complex 

intervention, e.g. minimum unit pricing of alcohol 

� Estimation of benefits and harms of population mammography screening based 

in microsimulation model, e.g. Wisconsin model from CISNET collaboration[58] 

� Susceptible-Infectious-Recovery transmission dynamic model to assess 

effectiveness of lockdown during the SARS-CoV-2 pandemic[59] 

 

Pharmacology 

and toxicology 

models 

 

Computational models developed to organize, analyse, simulate, visualize or 

predict toxicological and ecotoxicological effects of chemicals. In some cases, these 

models are used to estimate the toxicity of a substance even before it has been 

synthesized. 

Types 

� Structural alerts and rule-based models  

� Read-Across 

� Dose response and Time response 

� Toxicokinetic (TK) and toxicodynamic(TD)  

� Uncertainty factors 

� Quantitative structure activity relationship (QSAR) 

� Biomarker-based toxicity models 

Examples 

• Structural alerts for mutagenicity and skin sensitisation 

• Read-across for complex endpoints such as chronic toxicity 

• Pharmacokinetic (PK) models to calculate concentrations of substances in 

organs, following a variety of exposures QSAR models for carcinogenicity 

• TGx-DDI biomarker to detect DNA damage-inducing agents 

Environmental 

models 

 

The EPA defined these models as: ‘A simplification of reality that is constructed to 

gain insights into select attributes of a physical, biological, economic, or social 

system.’ It involves the application of multidisciplinary knowledge to explain, 

explore and predict the Earth´s response to environmental change, and the 

interactions between human activities and natural processes. 
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Classification (based on the CREM guidance document): 

• Human activity models 

• Natural systems process 

• Emission models 

• Fate and transport models 

• Exposure models 

• Human health effects models 

• Ecological effects models 

• Economic impact models 

• Noneconomic impact models 

Examples 

• Land use regression models 

• IH SkinPerm [60] 

• ConsExpo [61] 

• other exposure models [62] 

Other • HopScore: An Electronic Outcomes-Based Emergency Triage System [63] 

• Computational general equilibrium (CGE) models [64] 

*Although not described in this classification simple calculations incorporating two or more pieces of evidence as 

for example the multiplication of a RR by the baseline risk to obtain the absolute risk difference of an intervention 

is a model, although pragmatic, with their respective assumptions. 

 620 

 621 

Table 2. Selected commonly used and potentially confusing terms used in the context of modelling 622 

and the GRADE approach  623 

 624 

Term General definition 

Sources of evidence 

(may come from in vitro or in vivo experiment or a mathematical model) 

Streams of evidence Parallel information about the same outcome that may have been obtained using 

different methods of estimating that outcome. For instance, evidence of the 

increased risk for developing lung cancer in humans after an exposure to certain 

chemical compound may come from several streams of evidence: 1) mechanistic 

evidence – models of physiological mechanisms, 2) studies in animals – observations 

and experiments in animals from different phyla, classes, orders, families, genera, 

and species (e.g., bacteria, nematodes, insects, fish, mice, rats), and 3) studies in 

humans.  

Bodies of evidence Information about multiple different aspects around a decision about the best 

course of action. For instance, in order to decide whether or not a given diagnostic 

test should be used in some people, one needs to integrate the bodies of evidence 

about: the accuracy of the test, the prevalence of the conditions being suspected, 

the natural history of these conditions, the effects of potential treatments, values 

and preferences of affected individuals, cost, feasibility, etc. 

Quality  
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(may refer to many concepts, thus alternative terms are preferred to reduce confusion) 

Certainty of model 

outputs 

 

Alternative terms: 

▪ certainty of modelled 

evidence 

▪ quality of evidence 

▪ quality of model 

output  

▪ strength of evidence 

▪ confidence in model 

outputs 

In the context of health decision-making, the certainty of evidence (term preferred 

over “quality” in order to avoid confusion with the risk of bias in an individual study) 

reflects the extent to which one’s confidence in an estimate of an effect is adequate 

to make a decision or a recommendation. Decisions are influenced not only by the 

best estimates of the expected desirable and undesirable consequences but also by 

one’s confidence in these estimates. In the context of evidence syntheses of 

separate bodies of evidence (e.g., systematic reviews), the certainty of evidence 

reflects the extent of confidence that an estimate of effect is correct. For instance, 

the attributable national risk of cardiovascular mortality resulting from exposure to 

air pollution measured in selected cities. 

The GRADE Working Group published several articles explaining the concept in 

detail.[22-28, 65] Note that the phrase “confidence in an estimate of an effect” does 

not refer to statistical confidence intervals. Certainty of evidence is always assessed 

for the whole body of evidence rather than on a single study level (single studies are 

assessed for risk of bias and indirectness). 

Certainty of model 

inputs 

 

Alternative term: 

▪ quality of model 

inputs 

Characteristics of data that are used to develop, train, or run the model, e.g., source 

of input values, their manipulation prior to input into a model, quality control, risk of 

bias in data, etc. 

Credibility of a model 

 

Alternative terms: 

▪ quality of a model 

▪ risk of bias in a 

model 

▪ validity of a model 

To avoid confusion and keep with terminology used by modelling community[7] we 

suggest using the term credibility rather than quality of a model. The concept refers 

to the characteristics of a model itself – its design or execution – that affect 

the risk that the results may overestimate or underestimate the true effect. Various 

factors influence the overall credibility of a model, such as its structure, the analysis 

and the validation of the assumptions made during modelling. 

Quality of reporting Refers to how comprehensively and clearly model inputs, a model itself, and model 

outputs have been documented and described such that they can be critically 

evaluated and used for decision-making. Quality of reporting and quality of a model 

are separate concepts: a model with a low quality of reporting is not necessarily a 

low-quality model and vice versa. 

Directness  

Directness of a model 

 

Alternative terms: 

▪ relevance 

▪ external validity 

▪ applicability 

▪ generalizability 

▪ transferability 

▪ translatability 

By directness of a model we mean the extent to which the model represents the 

real-life situation being modelled which is dependent on how well the input data and 

the model structure reflect the scenario of interest. 

Directness is the term used in the GRADE approach, because each of the alternatives 

has been used usually in a narrower meaning. 

 625 
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* There may be either subtle or fundamental differences among some disciplines in how these 626 

terms are being used; for the purposes of this article, these terms are generalized rather than 627 

discipline specific. 628 

 629 

  630 

Jo
urn

al 
Pre-

pro
of



GRADE approach to modelled data • DRAFT: DO NOT DISTRIBUTE 

Page 23 of 30 

Figure 1. The general approach to using modelled evidence and assessing its certainty in health-631 

related disciplines. 632 

 633 

 634 

  635 
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Appendix. List of workshop participants 636 

 637 

Elie Akl (EA)– American University of Beirut, Lebanon 638 

Jim Bowen (JMB)– McMaster University, Canada 639 

Chris Brinkerhoff (CB)– US Environmental Protection Agency, USA 640 

Jan Brozek (JLB)– McMaster University, Canada 641 

John Bucher (JB)– US National Toxicology Program, USA 642 

Carlos Canelo-Aybar (CCA)– Iberoamerican Cochrane Centre, Spain 643 

Marcy Card (MC)– US Environmental Protection Agency, USA 644 

Weihsueh A. Chiu (WCh)– Texas A&M University, USA 645 

Mark Cronin (MC)– Liverpool John Moores University, UK 646 

Tahira Devji (TD)– McMaster University, Canada 647 

Ben Djulbegovic (BD)– University of South Florida, USA 648 

Ken Eng (KE)– Public Health Agency of Canada 649 

Gerald Gartlehner (GG)– Donau-Universität Krems, Austria 650 

Gordon Guyatt (GGu)– McMaster University, Canada 651 

Raymond Hutubessy (RH)– World Health Organization Initiative for Vaccine Research, Switzerland 652 

Manuela Joore (MJ)– Maastricht University, the Netherlands 653 

Richard Judson (RJ)– US Environmental Protection Agency, USA 654 

S. Vittal Katikireddi (SK)– University of Glasgow, UK 655 

Nicole Kleinstreuer (NK)– US National Toxicology Program, USA 656 

Judy LaKind (JL)– University of Maryland, USA 657 

Miranda Langendam (ML)– University of Amsterdam, the Netherlands 658 

Zbyszek Leś (ZL)– Evidence Prime Inc., Canada 659 

Veena Manja (VM)– McMaster University, Canada 660 

Joerg Meerpohl (JM)– GRADE Center Freiburg, Cochrane Germany, University Medical Center 661 

Freiburg 662 

Dominik Mertz (DM)– McMaster University, Canada 663 

Roman Mezencev (RM)– US Environmental Protection Agency, USA 664 

Rebecca Morgan (RMo)– McMaster University, Canada 665 

Gian Paolo Morgano (GPM)– McMaster University, Canada 666 

Reem Mustafa (RMu)– University of Kansas, USA 667 

Bhash Naidoo (BN)– National Institute for Health and Clinical Excellence, UK 668 

Martin O'Flaherty (MO)– Public Health and Policy, University of Liverpool, UK 669 

Grace Patlewicz (GP)– US Environmental Protection Agency, USA 670 

John Riva (JR)– McMaster University, Canada 671 

Alan Sasso (AS)– US Environmental Protection Agency, USA 672 

Paul Schlosser (PS)– US Environmental Protection Agency, USA 673 
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Holger Schünemann (HJS)– McMaster University, Canada 674 

Lisa Schwartz (LS)– McMaster University, Canada 675 

Ian Shemilt (IS)– University College London, UK 676 

Marek Smieja (MS)– McMaster University, Canada 677 

Ravi Subramaniam (RS)– US Environmental Protection Agency, USA 678 

Jean-Eric Tarride (JT)– McMaster University, Canada 679 

Kris Thayer (KAT)– US Environmental Protection Agency, USA 680 

Katya Tsaioun (KT)– John Hopkins University, USA 681 

Bernhard Ultsch (BU)– Robert Koch Institute, Germany 682 

John Wambaugh (JW)– US Environmental Protection Agency, USA 683 

Jessica Wignall (JWi)– ICF, USA 684 

Ashley Williams (AW)– ICF, USA 685 

Feng Xie (FX)– McMaster University, Canada 686 

  687 

Jo
urn

al 
Pre-

pro
of



GRADE approach to modelled data • DRAFT: DO NOT DISTRIBUTE 

Page 26 of 30 

References 688 

 689 

[1] Oreskes N. The role of quantitative models in science. In: Canham CD, Cole JJ, Lauenroth 690 

WK, editors. Models in ecosystem science: Princeton University Press; 2003. p. 13–31. 691 

[2] Frigg R, Hartmann S. Models in Science. In: Zalta EN, editor. The Stanford Encyclopedia of 692 

Philosophy (Spring 2017 Edition)2017. 693 

[3] Guyatt GH, Oxman AD, Kunz R, Vist GE, Falck-Ytter Y, Schunemann HJ, et al. What is 694 

"quality of evidence" and why is it important to clinicians? BMJ. 2008;336:995-8. 695 

[4] Oreskes N. Evaluation (not validation) of quantitative models. Environ Health Perspect. 696 

1998;106 Suppl 6:1453-60. 697 

[5] Briggs AH, Weinstein MC, Fenwick EA, Karnon J, Sculpher MJ, Paltiel AD, et al. Model 698 

parameter estimation and uncertainty: a report of the ISPOR-SMDM Modeling Good Research 699 

Practices Task Force--6. Value Health. 2012;15:835-42. 700 

[6] Caro JJ, Briggs AH, Siebert U, Kuntz KM, Force I-SMGRPT. Modeling good research 701 

practices--overview: a report of the ISPOR-SMDM Modeling Good Research Practices Task 702 

Force-1. Med Decis Making. 2012;32:667-77. 703 

[7] Caro JJ, Eddy DM, Kan H, Kaltz C, Patel B, Eldessouki R, et al. Questionnaire to assess 704 

relevance and credibility of modeling studies for informing health care decision making: an 705 

ISPOR-AMCP-NPC Good Practice Task Force report. Value Health. 2014;17:174-82. 706 

[8] Eddy DM, Hollingworth W, Caro JJ, Tsevat J, McDonald KM, Wong JB, et al. Model 707 

transparency and validation: a report of the ISPOR-SMDM Modeling Good Research Practices 708 

Task Force-7. Med Decis Making. 2012;32:733-43. 709 

[9] Karnon J, Stahl J, Brennan A, Caro JJ, Mar J, Moller J. Modeling using discrete event 710 

simulation: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-4. Med 711 

Decis Making. 2012;32:701-11. 712 

[10] Marshall DA, Burgos-Liz L, MJ IJ, Crown W, Padula WV, Wong PK, et al. Selecting a 713 

dynamic simulation modeling method for health care delivery research-part 2: report of the 714 

ISPOR Dynamic Simulation Modeling Emerging Good Practices Task Force. Value Health. 715 

2015;18:147-60. 716 

[11] Marshall DA, Burgos-Liz L, MJ IJ, Osgood ND, Padula WV, Higashi MK, et al. Applying 717 

dynamic simulation modeling methods in health care delivery research-the SIMULATE 718 

checklist: report of the ISPOR simulation modeling emerging good practices task force. Value 719 

Health. 2015;18:5-16. 720 

[12] Pitman R, Fisman D, Zaric GS, Postma M, Kretzschmar M, Edmunds J, et al. Dynamic 721 

transmission modeling: a report of the ISPOR-SMDM Modeling Good Research Practices Task 722 

Force Working Group-5. Med Decis Making. 2012;32:712-21. 723 

[13] Roberts M, Russell LB, Paltiel AD, Chambers M, McEwan P, Krahn M, et al. 724 

Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices 725 

Task Force-2. Med Decis Making. 2012;32:678-89. 726 

[14] Siebert U, Alagoz O, Bayoumi AM, Jahn B, Owens DK, Cohen DJ, et al. State-transition 727 

modeling: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-3. Med 728 

Decis Making. 2012;32:690-700. 729 

[15] Vemer P, van Voom GA, Ramos IC, Krabbe PF, Al MJ, Feenstra TL. Improving model 730 

validation in health technology assessment: comments on guidelines of the ISPOR-SMDM 731 

modeling good research practices task force. Value Health. 2013;16:1106-7. 732 

Jo
urn

al 
Pre-

pro
of



GRADE approach to modelled data • DRAFT: DO NOT DISTRIBUTE 

Page 27 of 30 

[16] Weinstein MC, O'Brien B, Hornberger J, Jackson J, Johannesson M, McCabe C, et al. 733 

Principles of good practice for decision analytic modeling in health-care evaluation: report of 734 

the ISPOR Task Force on Good Research Practices--Modeling Studies. Value Health. 2003;6:9-735 

17. 736 

[17] Bennett C, Manuel DG. Reporting guidelines for modelling studies. BMC Med Res 737 

Methodol. 2012;12:168. 738 

[18] Peñaloza Ramos MC, Barton P, Jowett S, Sutton AJ. A Systematic Review of Research 739 

Guidelines in Decision-Analytic Modeling. Value Health. 2015;18:512-29. 740 

[19] Philips Z, Bojke L, Sculpher M, Claxton K, Golder S. Good practice guidelines for decision-741 

analytic modelling in health technology assessment: a review and consolidation of quality 742 

assessment. Pharmacoeconomics. 2006;24:355-71. 743 

[20] LaKind JS, O'Mahony C, Armstrong T, Tibaldi R, Blount BC, Naiman DQ. ExpoQual: 744 

Evaluating measured and modeled human exposure data. Environ Res. 2019;171:302-12. 745 

[21] Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, et al. 746 

Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. BMJ. 747 

2013;346:f1049. 748 

[22] Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, et al. GRADE 749 

guidelines: 3. Rating the quality of evidence. J Clin Epidemiol. 2011;64:401-6. 750 

[23] Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, et al. GRADE guidelines: 751 

6. Rating the quality of evidence--imprecision. J Clin Epidemiol. 2011;64:1283-93. 752 

[24] Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, et al. GRADE guidelines: 753 

8. Rating the quality of evidence--indirectness. J Clin Epidemiol. 2011;64:1303-10. 754 

[25] Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, et al. GRADE guidelines: 755 

7. Rating the quality of evidence--inconsistency. J Clin Epidemiol. 2011;64:1294-302. 756 

[26] Guyatt GH, Oxman AD, Montori V, Vist G, Kunz R, Brozek J, et al. GRADE guidelines: 5. 757 

Rating the quality of evidence--publication bias. J Clin Epidemiol. 2011;64:1277-82. 758 

[27] Guyatt GH, Oxman AD, Sultan S, Glasziou P, Akl EA, Alonso-Coello P, et al. GRADE 759 

guidelines: 9. Rating up the quality of evidence. J Clin Epidemiol. 2011;64:1311-6. 760 

[28] Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, Alonso-Coello P, et al. GRADE guidelines: 761 

4. Rating the quality of evidence--study limitations (risk of bias). J Clin Epidemiol. 762 

2011;64:407-15. 763 

[29] Lasserson TJ, Thomas J, Higgins JPT. Chapter 1: Starting a review. In: Higgins JPT, Thomas 764 

J, Chandler J, Cumpston M, Li T, Page MJ, et al., editors. Cochrane Handbook for Systematic 765 

Reviews of Interventions version 60 (updated July 2019): Cochrane; 2019. 766 

[30] Eykhoff P. System identification: parameter and state estimation: Wiley-Interscience; 767 

1974. 768 

[31] Schunemann HJ, Best D, Vist G, Oxman AD, Group GW. Letters, numbers, symbols and 769 

words: how to communicate grades of evidence and recommendations. CMAJ. 2003;169:677-770 

80. 771 

[32] Schunemann HJ, Mustafa R, Brozek J, Santesso N, Alonso-Coello P, Guyatt G, et al. GRADE 772 

Guidelines: 16. GRADE evidence to decision frameworks for tests in clinical practice and 773 

public health. J Clin Epidemiol. 2016;76:89-98. 774 

[33] Schunemann HJ, Oxman AD, Brozek J, Glasziou P, Jaeschke R, Vist GE, et al. Grading 775 

quality of evidence and strength of recommendations for diagnostic tests and strategies. BMJ. 776 

2008;336:1106-10. 777 

Jo
urn

al 
Pre-

pro
of



GRADE approach to modelled data • DRAFT: DO NOT DISTRIBUTE 

Page 28 of 30 

[34] Iorio A, Spencer FA, Falavigna M, Alba C, Lang E, Burnand B, et al. Use of GRADE for 778 

assessment of evidence about prognosis: rating confidence in estimates of event rates in 779 

broad categories of patients. BMJ. 2015;350:h870. 780 

[35] Hooijmans CR, de Vries RBM, Ritskes-Hoitinga M, Rovers MM, Leeflang MM, IntHout J, et 781 

al. Facilitating healthcare decisions by assessing the certainty in the evidence from preclinical 782 

animal studies. PLoS One. 2018;13:e0187271. 783 

[36] Brunetti M, Shemilt I, Pregno S, Vale L, Oxman AD, Lord J, et al. GRADE guidelines: 10. 784 

Considering resource use and rating the quality of economic evidence. J Clin Epidemiol. 785 

2013;66:140-50. 786 

[37] Zhang Y, Alonso-Coello P, Guyatt GH, Yepes-Nunez JJ, Akl EA, Hazlewood G, et al. GRADE 787 

Guidelines: 19. Assessing the certainty of evidence in the importance of outcomes or values 788 

and preferences-Risk of bias and indirectness. J Clin Epidemiol. 2018. 789 

[38] Zhang Y, Coello PA, Guyatt GH, Yepes-Nunez JJ, Akl EA, Hazlewood G, et al. GRADE 790 

guidelines: 20. Assessing the certainty of evidence in the importance of outcomes or values 791 

and preferences-inconsistency, imprecision, and other domains. J Clin Epidemiol. 2018. 792 

[39] World Health Organization. WHO guidelines for screening and treatment of precancerous 793 

lesions for cervical cancer prevention. Geneva, Switzerland: World Health Organization; 2013. 794 

[40] Thayer KA, Schunemann HJ. Using GRADE to respond to health questions with different 795 

levels of urgency. Environ Int. 2016;92-93:585-9. 796 

[41] Porgo TV, Norris SL, Salanti G, Johnson LF, Simpson JA, Low N, et al. The use of 797 

mathematical modeling studies for evidence synthesis and guideline development: A glossary. 798 

Res Synth Methods. 2019;10:125-33. 799 

[42] (NICE) NIfHaCE. The reference case.  Guide to the methods of technology appraisal 2013: 800 

NICE; 2013. 801 

[43] Eyles H, Ni Mhurchu C, Nghiem N, Blakely T. Food pricing strategies, population diets, 802 

and non-communicable disease: a systematic review of simulation studies. PLoS Med. 803 

2012;9:e1001353. 804 

[44] Jaime Caro J, Eddy DM, Kan H, Kaltz C, Patel B, Eldessouki R, et al. Questionnaire to assess 805 

relevance and credibility of modeling studies for informing health care decision making: an 806 

ISPOR-AMCP-NPC Good Practice Task Force report. Value Health. 2014;17:174-82. 807 

[45] (NICE) NIfHaCE. Appendix G: Methodology checklist: economic evaluations.  The 808 

guidelines manual: NICE; 2012. 809 

[46] Schultz TW, Richarz A-N, Cronin MTD. Assessing uncertainty in read-across: Questions to 810 

evaluate toxicity predictions based on knowledge gained from case studies. Computational 811 

Toxicology. 2019;9:1-11. 812 

[47] Cronin MTD, Richarz AN, Schultz TW. Identification and description of the uncertainty, 813 

variability, bias and influence in quantitative structure-activity relationships (QSARs) for 814 

toxicity prediction. Regul Toxicol Pharmacol. 2019;106:90-104. 815 

[48] Brazier J, Ara R, Azzabi I, Busschbach J, Chevrou-Severac H, Crawford B, et al. 816 

Identification, Review, and Use of Health State Utilities in Cost-Effectiveness Models: An 817 

ISPOR Good Practices for Outcomes Research Task Force Report. Value Health. 2019;22:267-818 

75. 819 

[49] Kaltenthaler E, Tappenden P, Paisley S, Squires H.  NICE DSU Technical Support 820 

Document 13: Identifying and Reviewing Evidence to Inform the Conceptualisation and 821 

Population of Cost-Effectiveness Models. London2011. 822 

Jo
urn

al 
Pre-

pro
of



GRADE approach to modelled data • DRAFT: DO NOT DISTRIBUTE 

Page 29 of 30 

[50] Paisley S. Identification of Evidence for Key Parameters in Decision-Analytic Models of 823 

Cost Effectiveness: A Description of Sources and a Recommended Minimum Search 824 

Requirement. Pharmacoeconomics. 2016;34:597-608. 825 

[51] Guyatt G, Oxman AD, Sultan S, Brozek J, Glasziou P, Alonso-Coello P, et al. GRADE 826 

guidelines: 11. Making an overall rating of confidence in effect estimates for a single outcome 827 

and for all outcomes. J Clin Epidemiol. 2013;66:151-7. 828 

[52] Bilcke J, Beutels P, Brisson M, Jit M. Accounting for methodological, structural, and 829 

parameter uncertainty in decision-analytic models: a practical guide. Med Decis Making. 830 

2011;31:675-92. 831 

[53] Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M& Tarantola S. 832 

2008. Global sensitivity analysis. The primer. Chichester, UK: John Wiley & Sons. 833 

[54] Page MJ, Higgins JPT, Sterne JAC. Chapter 13: Assessing risk of bias due to missing results 834 

in a synthesis. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al., editors. 835 

Cochrane Handbook for Systematic Reviews of Interventions version 60 (updated July 2019): 836 

Cochrane; 2019. 837 

[55] Schünemann HJ, Lerda D, Quinn C, Follmann M, Alonso-Coello P, Rossi PG, et al. Breast 838 

Cancer Screening and Diagnosis: A Synopsis of the European Breast Guidelines. Annals of 839 

Internal Medicine. 2020;172:46-56. 840 

[56] Eaton JW, Johnson LF, Salomon JA, Barnighausen T, Bendavid E, Bershteyn A, et al. HIV 841 

treatment as prevention: systematic comparison of mathematical models of the potential 842 

impact of antiretroviral therapy on HIV incidence in South Africa. PLoS Med. 843 

2012;9:e1001245. 844 

[57] Gomersall JS, Jadotte YT, Xue Y, Lockwood S, Riddle D, Preda A. Conducting systematic 845 

reviews of economic evaluations. Int J Evid Based Healthc. 2015;13:170-8. 846 

[58] Mandelblatt JS, Stout NK, Schechter CB, van den Broek JJ, Miglioretti DL, Krapcho M, et al. 847 

Collaborative Modeling of the Benefits and Harms Associated With Different U.S. Breast 848 

Cancer Screening Strategies. Ann Intern Med. 2016;164:215-25. 849 

[59] Davies NG, Kucharski AJ, Eggo RM, Gimma A, Edmunds WJ, Centre for the Mathematical 850 

Modelling of Infectious Diseases C-wg. Effects of non-pharmaceutical interventions on COVID-851 

19 cases, deaths, and demand for hospital services in the UK: a modelling study. Lancet Public 852 

Health. 2020;5:e375-e85. 853 

[60] Tibaldi R, ten Berge W, Drolet D. Dermal absorption of chemicals: estimation by IH 854 

SkinPerm. J Occup Environ Hyg. 2014;11:19-31. 855 

[61] Young BM, Tulve NS, Egeghy PP, Driver JH, Zartarian VG, Johnston JE, et al. Comparison of 856 

four probabilistic models (CARES((R)), Calendex, ConsExpo, and SHEDS) to estimate 857 

aggregate residential exposures to pesticides. J Expo Sci Environ Epidemiol. 2012;22:522-32. 858 

[62] United States Environmental Protection Agency. Human Exposure Modeling - Overview. 859 

In: United States Environmental Protection Agency, editor. 860 

[63] Levin S, Dugas A, Gurses A, Kirsch T, Kelen G, Hinson J, et al. HOPSCORE: AN ELECTRONIC 861 

OUTCOMES-BASED EMERGENCY TRIAGE SYSTEM. Agency for Healthcare Research and 862 

Quality; 2018. 863 

[64] Smith RD, Keogh-Brown MR, Barnett T, Tait J. The economy-wide impact of pandemic 864 

influenza on the UK: a computable general equilibrium modelling experiment. BMJ. 865 

2009;339:b4571. 866 

[65] Hultcrantz M, Rind D, Akl EA, Treweek S, Mustafa RA, Iorio A, et al. The GRADE Working 867 

Group clarifies the construct of certainty of evidence. J Clin Epidemiol. 2017;87:4-13. 868 

Jo
urn

al 
Pre-

pro
of



GRADE approach to modelled data • DRAFT: DO NOT DISTRIBUTE 

Page 30 of 30 

 869 

Jo
urn

al 
Pre-

pro
of



Systema�cally search for exis�ng
models mee�ng pre-specified criteria

Is formal modelling necessary
and/or beneficial?

May forgo formal modelling

Is there just one model?

Is it possible to choose one “op�mal”
model with clearly highest certainty?

Develop your own model
and assess certainty of its outputs

Exis�ng model(s) found?

May need to forgo formal modelling

no

yes

no

no

Can you develop your own model?
no

yes

no

Assess certainty of outputs
for each single model:
1. risk of bias
- credibility of the model itself
- certainty of all its inputs 2.
directness
3. precision
4. consistency
5. risk of publica�on bias

Is it possible and useful to adapt one
of exis�ng “subop�mal” models?

no

yes

yes

Consider model averaging
when appropriate

Use single “op�mal” model off-the-shelf

yes Adapt an exis�ng “subop�mal” model
and assess certainty of its outputs

Use single exis�ng “subop�mal” model
and assess certainty of its outputs

yes

Can you develop your own model?
yes Develop your own model

and assess certainty of its outputs

no

Assess certainty of outputs
across all included models:
1. risk of bias
- credibility of the model itself
- certainty of all its inputs
2. directness
3. precision
4. consistency
5. risk of publica�on bias

Usemul�ple models

?

?

?

?

?

?

?
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What is new 

 

1. General concepts determining the certainty of evidence in the GRADE approach (risk of bias, 

indirectness, inconsistency, imprecision, reporting bias, magnitude of an effect, dose-

response relation, and the direction of residual confounding) also apply in the context of 

assessing the certainty of evidence from models (model outputs).  

2. Detailed assessment of the certainty of evidence from models differs for the assessment of 

outputs from a single model compared to the assessment of outputs across multiple 

models.  

3. We propose a framework for selecting the best available evidence from models to inform 

health care decisions: to develop a model de novo, to identify an existing model the outputs 

of which provide the highest certainty evidence, or to use outputs from multiple models. 

4. We suggest that the modelling and health care decision making communities collaborate 

further to clarify terminology used in the context of modelling and make it consistent across 

the disciplines to facilitate communication. 
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