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Abstract

The use of online server applications has increased in recent years. To achieve the benefits of
these technologies, cloud computing, with its ability to use virtual machine technologies to
overcome limitations and guarantee security and quality of service to its end user customer, is
being used as a platform to run online server applications. This however brings about a number
of security issues aimed specifically at virtual machine technologies. A number of security
solutions like virtual machine introspection, intrusion detection and many more, have been
proposed and implemented, but the question to combat security issues in near or even real time
still remains. To help answer the above question or even move a step further from the existing
solutions, which still use data mining techniques to combat the security issues of virtualisation,
we propose the novel use of predictive analytics for risk analysis and management of security
threats in virtualised information systems as well as design and implement a novel predictive
analytics framework used to design build and implement the same predictive analytics model
In this project, we adopt the use of predictive analytics and demonstrate how it can be used for
managing risks and security of virtualised environments. An experimental testbed for the
simulation of attacks and data collection is set-up. Exploratory data analytics process is carried
out to prepare the data for predictive modelling. A linear regression predictive model is built
using the results from the exploratory data analytics using linear regression algorithm. The
model is then validated and tested for predictive accuracy using Naive Bayes and logistic
algorithms respectively. Time series algorithms are then used to build a time series predictive
model that will predict attacks (DoS attacks in this case) in real time using new data. Designing
and implementing the proposed predictive analytics model, which is aimed at monitoring,
analysing and mitigating security threats in real time successfully demonstrates the use of
predictive analytics modelling as a security management tool for virtualised information

systems as a novel contribution to virtualisation security.



Thesis Organisation

This thesis has seven chapters, each with the relevance to contribute to answering thequestion
of using predictive analytics in information systems for security management for virtualised

systems. The thesis is split into four parts:

Chapter 1: Introduction

1.1 Introduction

Section 1.1 introduces the topic in question by providing an overview of what the
research covers. The chapter provides a brief overview of the project through the thesis
statement, which highlights the activities carried out in the thesis. An outline of the
research aims and objectives of the project as well as the tasks that are followed in the
predictive modelling process are also described. The motivation for this project together
with the contribution to the body of knowledge and to the most needed virtualisation

security in cloud computing are also discussed in this chapter.

Section 1.2 explores virtualisation technologies together with their security issues and
expected security solutions in depth. This chapter describes the different architectures
and types of virtualisation that are available. The advantages and disadvantages of
virtualisation in cloud computing together with the collective security issues faced by
the different types of virtualisation are highlighted. The implications of various
activities such as weak implementations and data control that cause risks to
virtualisation are discussed. Security vulnerabilities and threats to different attack
vectors such as the hypervisor or the guest operating systems are also covered in this

chapter.



Chapter 2: Evaluation of Existing Solutions

Chapter is divided into two parts due to the nature of the project, which endeavours to

combine two different technologies to achieve one goal.

The first part of the chapter discusses and evaluates current and existing security
solutions for virtualised environments with an emphasis on those that are relevant to
the project. It describes the different methods and approaches used in implementing
security solutions to various parts of virtualisation and identifies the techniques used to
achieve these security solutions. This part also investigates how these security solutions
are implemented, as well as the advantages and disadvantages of these solutions to

virtualisation.

The second part of this chapter defines predictive analytics. This part of the chapter
explores the concepts of predictive analytics; the tools and techniques used in predictive
analytics and identifies those that are relevant to the topic in question. The chapter
illustrates the traditional predictive analytic processes and provides a simple predictive
analytics framework followed in the project. An in-depth insight of the various tools
and techniques available, how they are used and implemented in different applications
to achieve the required predictive value is also explored and explained. The chapter
also discusses the relevance of real time monitoring in conjunction with analytics to
help combat security threats in virtualisation. A discussion of what big data analytics is

and how it relates to predictive analytics is discussed in this chapter.
Chapter 3: Design Structure, Methodologies and Experiments

Chapter 3 is split into two main parts; the first part discusses the design structure of
this project and the second part of the chapter discusses the methodologies of the
project.



3.1 Design structure

- In the design part of the chapter, an architectural overview of the set-up
environment is presented. The chapter highlights and describes the various
components like the programming applications interface, the reporting and
analytics tools, the monitoring and data collection tools used, together with the host
and the virtual machine matrices that are being monitored. It provides an
architectural overview of how the test lab is prepared and set up for the experiments
and then discusses in brief what each component in the architecture is and what its
relevance to the project is.

4.2 Methodologies

- The second part of the chapter discusses the methodology followed. The chapter
highlights and explains the proposed predictive analytics process, the data
collection and preparation processes as well as an explanatory data analysis process
together with the model design and deployment process. A model evaluation and
testing process is also described in this chapter, the choice of predictive analytics

platform with the choice of virtualisation used are also highlighted.

Chapter 5: Attack Simulation and Results

Chapter 5 presents the attack simulation framework together with the attack simulation
processes followed in the project. The chapter identifies and discusses the types of attacks being
simulated with an emphasis on denial of service attacks (DDoS). An illustration of how these
attacks are simulated to gather information for the creation of the predictive analytics dataset
is also presented. The results of the simulation and the sample of the generated data are also
presented in this chapter. The chapter also discusses the attack simulation and detection

components used.



Chapter 6: Predictive Analytics Applied and Conclusion

Chapter 6 where the application of predictive analytics is illustrated and chapter 7 where the

conclusion of the project is presented.
Chapter 6 Predictive Analytics Applied

Chapter 6 illustrates how predictive analytics is applied to the generated dataset. The
chapter presents how predictive models are built using different algorithms such as
linear regression, logistic regression, Naive Bayes and time series predictive models
and then presents the results in the form of the graphs and listings. The chapter
illustrates how the built models are validated using the same algorithms and how the
built models are applied to new data to test the predictive value and lastly how the built
models are deployed into day to day activities for the prediction of attacks DDoS in this

case.
Chapter 7 Conclusion

Chapter 7 is the final part of the thesis. It provides the conclusion of the project by
highlighting the summary of the thesis, the contributions made to the body of knowledge,

suggestions for future work, limitations of the project and the final remarks.
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1. Introduction and Background Information

1.1

Introduction

Despite the ever-growing demand for cloud computing and the many benefits it brings to both

service providers and end users, security still remains a challenge in cloud computing. To solve

the security issues of cloud computing, multi-tenant infrastructures are being used to help

address security issues like integrity, confidentiality, availability, identification and

authentication that affect cloud computing. Multi-tenant infrastructures consist of several

virtual machines running on the same physical platform using virtualisation technologies

(Brohi et al., 2012, Padhy et al., 2011, Suresh and Kannan, 2014). Cloud computing has

adopted the use of virtualisation to take advantage of the security properties such as;

Confidentiality, which is offered through the isolation of the operating system running
on the guest operating systems from the physical hardware. Improved confidentiality
is achieved through the isolation of not only the software running on the same hardware
but also between the guest operating system and the physical system (Khalil et al.,
2014, Sugerman et al., 2001). This provides a level of security because unsecure
activities on one virtual machine can run alongside critical ones on a different virtual
machine with a very low risk of compromise through the host operating system
(Loganayagi and Sujatha, 2012, Lombardi and Di Pietro, 2011, Luo et al., 2011).

Integrity by ensuring that the Virtual Machine Monitor (VMM) has full low-level
visibility of operation and is able to intervene in the operations of guest machines.
Integrity is achieved through one of the properties that ensure that nothing happens in
the virtual machine that the hypervisor cannot observe or intervene in (Padhy et al.,
2011). This property allows the hypervisor not only to have full low-level visibility of

operation, but also to intervene in the operations of the virtual machines regardless of



the state. This gives cloud computing a level of security by ensuring that all virtual
machines observed have their states captured, analysed and easily restored.

e Availability of resources by making it easy to capture and restore the system state with
very little down time (Pearce et al., 2013, Popek and Goldberg, 1974, Sahoo et al.,
2010). Availability is offered through the ease with which the virtual machine state is
captured, duplicated and restored as well as through the abstraction which allows the
virtual machine to be moved between platforms with very little downtime (Padhy et
al., 2011). Virtualisation facilitates aggregation of multiple standalone systems into a
single hardware platform (Chung et al., 2013). This hides the complexity ofmanaging

physical systems, which simplifies resource scalability that cloud computing requires.

Virtualisation is a very broad concept that goes back in time and it is applied to devices,
applications, operating systems, storage systems, machines and networks (Pearce et al., 2013,
Popek and Goldberg, 1974, Sahoo et al., 2010). Virtualisation is the use of an encapsulating
layer known as the virtual machine monitor (VMM) that surrounds the operating system and
provides the same processes as that of an actual physical machine. Virtualisation as defined by
the National Institute of Standards and Technology (NIST) is the simulation of software and/or
hardware upon which other software runs (Brooks et al., 2012, Pearce et al., 2013). The
simulated environment is called the virtual machine (VM) also referred to as the guest
operating system (guest OS) and is managed by a virtual machine monitor (VMM) also known
as the hypervisor. A VMM is a highly privileged piece of software running parallel or
underneath an operating system. It is designed to be an efficient, isolated duplicate of the
physical machine (Brooks et al., 2012, Popek and Goldberg, 1974). A single VMM can run on
multiple networked physical systems and offers a level of abstraction above the hardware, on
which multiple processes can run concurrently. The abstraction of the operating system is when

a virtual machine monitor creates a software environment equivalent to that of the host system



but which is decoupled from the physical hardware state giving virtualisation its security

benefits.

An example of abstraction layer in a virtualised system is illustrated in Figure 1-1 below.
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Figure 1-1 Extra layer of abstraction that a VMM offers
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1.2 Virtualisation Architectures

Virtualisation comes in many forms distinguished simply by different computing architectures.

There are two main types of virtualisation architectures known as:

1. Type I architecture also referred to as Bare Metal virtualisation which is installed
directly onto the hardware as the primary boot system. The VMM in this type of
architecture, executes at the highest level of privilege and has full control of all virtual
machines installed on it. Entries and exits from the guest operating systems to the

physical hardware are through the VMM as illustrated the Figure 1-2 below.
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Figure 1-2 hypervisor installed directly onto the hardware

The use of a VMM in this instance introduces a new layer of abstraction into cloud
computing. The hypervisor is responsible for emulating software or hardware
configurations to the virtual machines. This type of architecture however, creates a large
attack surface area for the environment because once the VMM is compromised the entire
system from the hardware to the existing virtual machines will be affected. Security for this
type of virtualisation architecture is dependent on the individual security of each of its
components, from the hypervisor and host operating system to guest operating systems,

applications and storage (Brooks et al., 2012).

2. Type II architecture mostly referred to as hosted virtualisation is installed right on top
of a host operating system of the physical hardware, and shares the physical resources
of the host operating system in order for it to handle Input/output (I/O) processes as

illustrated in Figure 1-3 below:
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This type of architecture does not require hardware-specific drivers for I/O operations,

but allows the use of virtual machines within an existing environment (Sugerman et al.,

2001). The hypervisor in this type of environment needs to emulate every instruction it

registers and must register to a certain set of instructions. This becomes a challenge

because there is lack of proper specifications, and deciding if the guest machines have

the right privilege from root operation is difficult.

The VMM controls the flow of instruction between the virtual machine and the underlying

physical hardware as shown in Figures 1-2 and 1-3 respectively. Virtualisation can be applied

to all the components of the computer system such as the server, applications, desktop and

network. For example, server virtualisation also known as full virtualisation refers to the

consolidation of the physical server where a VMM is installed directly onto the physical

hardware and offers an abstraction of resources of the physical system from the guest operating

system. It separates the underlying resources from the virtual machines. This type of

virtualisation is where the operating systems with the applications they contain run on top ofa

virtual hardware. Each instance of the operating system together with the applications that run



on it are simulated in a separate virtual machine. The VMM controls the flow of instructions
between the guest operating system and the physical hardware and has the ability to partition
the system’s resources as well as isolate the virtual machines resources from each other’s
resources so that each guest operating system can only access its own resources. The VMM in
this case also provides networking capabilities to the virtual machines that allow them to
communicate with one another whilst limiting access to the physical hardware. If there is more
than one virtual machine available in the virtual environment, the VMM can implement virtual
hubs and switches through the virtual network allowing the virtual machines to communicate
with each other. This can pose a threat to the system as it makes it difficult to monitor and
regulate traffic. Monitoring of traffic in a fully virtualised environment is done through a virtual
machine that has privileges and has full visibility of the network traffic using the API allocated
to it (Brooks et al., 2012). This however, can be an operational risk because the physical
network tools that monitor traffic as it flows across different routers and switches, might not
have the ability to monitor traffic that is running in a virtualised environment. The APIs may
also provide additional ways for attackers to attempt to monitor network communications that
may lead to performance degradation or denial of service activities to occur due to high
volumes of traffic (Chung et al., 2013). Full system virtualisation is widely used for a variety
of applications, such as the consolidation of physical servers (Armstrong et al., 2008), isolation

of guest OSs, and software debugging (Bratus et al., 2008).

Although a Type-II VMM is hosted, full virtualisation is not necessarily a Type-II VMM. Full
virtualisation depends on the host OS and does not share the host resources; Type-II VMM on
the other hand sits alongside the host OS and shares the host’s resources. Removing the
dependency of operating systems on a system’s physical state by installing multiple VMs on
one VMM, full virtualisation provides an isolation of the guest operating systems running on

the same hardware and protects against the operating system from being a single point of



failure. This abstraction of the hardware does not only allow multiple operating systems to
coexist on the same hardware, but for one VMM to run on multiple physically networked
systems concurrently. Utilisation of a VMM between the guest OS and the hardware, changes
the one-to-one mapping of OSs to hardware. An example of a fully-virtualised system that has
several physical systems running different operating systems on a single hardware using a

VMM is illustrated in Figure 1-4 below.
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Figure 1-4 full system virtualisation

A virtual machine is a logical equivalent of a physical system. VMs installed on the same
hardware are as logically separated as those machines in a physical environment and/or if
networked as logically separate as different systems on the same network. The isolation of
VMs however, has many implications for security. Virtualisation has become top priority for
information technologies especially with the increasing demand for cloud computing security.
The properties of virtualisation demand that a well implemented virtual machine monitor
(VMM) should run innocuous instructions directly onto the CPU without interfering unless
where necessary (Suresh and Kannan, 2014). The properties also state that VMMs should retain

full control of resources to ensure that guest VMs do not have access or the ability to manipulate



resources without the VMM’s explicit permission or authorization and lastly that VMMs
should not be told apart from a physical machine of the same context (Suresh and Kannan,
2014). The use of multi-tenant infrastructures in cloud computing allows hardware or software
resources to be logically proportioned between multiple tenants. Virtualisation ensures that
guest operating systems in a virtualised cloud environment are completely isolated from one
another. The VMM prevents the guest operating systems from seeing or directly accessing

each other’s computing resources that are hosted on the same platform.

The use of virtualisation technologies however, does not only bring security benefits to cloud
computing, but also comes with its own security issues brought about by its strong properties
as highlighted and discussed in the section that follows. These security risks can lead to
unauthorised disclosure and/or alteration of sensitive data, breaches of privileges and controls.
The need to trust a VMM, the transparent nature of an ideal VMM and the introspection
capabilities that resource control requirements allow, all pose as security threats to the virtual
system (Souppaya et al., 2011), since the VMM is always involved throughout the lifetime of
the VM, each interaction between the VM and the guest is then a potential attack vector that

can be exploited by the guest machine.

1.3 Security Risks of Virtualisation in Cloud Computing
The strong properties of virtualisation that offer cloud computing the security benefits

discussed in the opening statements of the chapter can also pose threats to cloud computing.

The security risks or threats posed by virtualisation in cloud computing infrastructures are

presented in Table 1-1 below.



Table 1-1 Virtualisation security threats and vulnerabilities

Security threats due to
strong properties

Security threats due to weak or poor
implementation of Virtualisation
properties

Security threats due to control, data and
software flows

VMM Insertion and
Hyper-jacking

VMM Detection Breach

Control Channel
e VM Cloning
e APIs
e  Untrusted VMs

Introspection and
intervention by VMM

Transparency Breaches

Data flows

e  Unauthorised communication between
the hardware devices (open up side

channels)
e  Hidden network channels

Transparent Virtualisation

VMM Compromise through Introspection
and Intervention

VM Cloning and Scaling

VMM Alteration

Nonlinear VM Operation
and Monotonicity issues

VMM Denial of Service
(Local, Network and Host)

Guest operating system Denial of service

Software Decoupling from

Resource control breaches and Privilege

Guest software compromise

physical and hardware | Escalation
environment e information leakage,
e VM escape
Malware

1.3.1 Security Implications due to the Strong Properties of Virtualisation

e Transparent Virtualisation

Transparent virtualisation is when all three of Popek’s properties (efficiency, resource
control and equivalence) are met, providing a VMM that is ideal and undetectable to
software running inside the VM. Reverse engineering in a transparent virtualisation
becomes easier due to introspection capabilities because any encryption keys, security
algorithms, low-level protection, intrusion detection and anti-debugging measures become
easy to compromise. The combination of the basic trust model with transparent
virtualisation means that a suspicious VMM can be undetectable, and is automatically
trusted. Since the equivalence property of virtualisation requires VMMs to be equivalent to
a physical system, it can be very difficult to know that software is running in a virtualised

environment. Since a VMM has full control over system resources, it can observe or alter



data running inside the VM, which can cause potential security problems. (Ge et al., 2018,
Zhao and Mannan, 2016). Near-transparency also makes VMM-based rootkits possible
(Garfinkel et al., 2007, Garfinkel and Rosenblum, 2005, Gebhardt et al., 2008, Gebhardt et

al., 2010, Gebhardt and Tomlinson, 2008).

o VMM Insertion and “Hyper jacking”

Virtualising the OS of a physical system to a virtual system with very little downtime, either
at boot or whilst the system is running is another strong property of virtualisation. The
ability to migrate a physical operating system to a virtualised system can cause serious
security risks, as the rootkits can be used to subvert an operating system completely. This

form of attack is normally extremely hardware and VMM version specific (Im et al., 2017).

e VMM Introspection and Intervention

Introspection and intervention of the VM from the VMM is the ability of a VMM to take
control of the resources. Although the VMM requires full control of resources to function,
allowing it to observe and manipulate the applications and operations of the VM can result
in more control than is necessary. This can cause security to enhance or weaken. Since the
VMM runs at a high privilege level, it may observe and modify system aspects that may
affect other software, as it remains hidden from the lower privileged software. The resource
control property of virtualisation enables process introspection to allow the VMM to
observe behaviour of processes within the VM. The VMM may also observe input or output
(I/O) channels to, from, and within the VM. When combined with transparency, the VMM
cannot only observe and alter any aspect of the VM but can automatically be trusted by the
VMs and therefore remains undetectable. If the VMM is untrusted or compromised, the

impacts of the security threats due to introspection and intervention are detrimental. The
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most obvious approach to mitigating introspection and intervention threats is to attest the

authenticity of the VMM and the underlying hardware.

e Nonlinear VM Operation and Monotonicity Issues

Since installed virtual machines can be cloned, and their states captured and restored, their
execution does not follow a linear path through time, it is reversed and is subject to
nonlinear operations of a similar kind. Lack of linearity is usually referred to as lack of
monotonicity (Van Cleeff et al., 2009). A lack of monotonicity in applications causes
security issues because snapshots, cloning, and restoration of VMs state can break linear
operation of available applications, data and programs. Keeping data separate from the
snapshotting process can cause security risks, that is, if the right data is not correctly stored
or restored. Threats may also arise due to the rolling back of updates, improper
configurations as well as from deactivated accounts, which leave the applications

vulnerable or non-functional.

e Software Decoupling from Physical and Hardware Environment

A virtualised system abstracted from the hardware can be difficult to classify or define. A
virtualised system can be cloned, and every single instance can be identified logically in
order for it to be properly maintained or secured. Although threats from cloning are
excluded in this type of security threat, problems still arise from the abstraction of the VM.
If the location of a system is not known, it becomes difficult to maintain and/or manage
making resource management and allocation a problem. The virtual network may also not
be a true representation of the actual logical location of the physical system network.
Although virtualisation allows software to be run independently from the hardware there is

still need for physical location control.
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1.3.2  Security Implications from Weak Implementation of Virtualisation

e VMM Detection Breaches

Detection of a VMM causes problems for some uses of VMMs such as the analysis of
malware if it suspects it is being run in a virtualised environment causing it to behave
differently, being unable to detect a VMM on the other hand can also cause problems in

other cases.

e Transparency Breaches

Virtualisation transparency is breached when any of the properties are breached.
Transparency breaches lead to unauthorised disclosure of important information that can
be used to deduce the presence of a VMM. Transparency breaches cause instability in the
virtual environment that can lead to software failure, broken device states and timing
problems which can lead to the system making false assumptions about the environment in
which it is being executed. It is misleading for example to extrapolate seek times of a
physical disk to those of a virtualised disk as not everything that optimises disk layout for
speed, like Database Management System (DBMS) for example, will be seen as a layout
that does not correspond with the physical layout in a virtualised system. The VMM being
the most central part of a virtualised system, if an aspect of it is compromised or breached,
then the entire system and everything running on it, is potentially at risk. (Carroll et al.,

2011, Ormandy, 2007).

e Resource Control Breaches and Privilege Escalation

Resource control breaches are considered among the most serious attacks that affect
confidentiality of data in information security. In virtualised systems, these threats include
information leakage and privilege escalation. VM information leakage comes in two main

types: leakage of information within the VMs and leakage of information out of the VMs.
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A virtual machine may leak information about its operations and/or its resource usage to
other VMs on the same network through side channels that can be software or hardware
based attacks. Leakage of operational data into VMs includes details of the host or the state
of the resources of other virtual machines on the virtual network. The type of leakage of
information from the hardware is known as cache-based attacks which may enable the VM
to detect things that it ought not, such as resource status of the physical machine like the
CPU and memory usage, network configurations and details about the operations of other
VMs (Hong et al., 2017, Ren et al., 2016, Simma et al., 2015, Subashini and Kavitha, 2011)
provide and in-depth discussion on information flow attacks, whereas others (Subashini
and Kavitha, 2011, Zhang et al., 2012) explain more on cache based issues in the shared
computer in the cloud. The other threats caused by the isolation property of virtualisation,
such as VM escape, cause escalation of the application code which breaches the isolation
between the host and virtualised environment causing the VM to run codes on the host
machine, without the explicit control of the VMM (Criscione, 2010, Gebhardt et al., 2008,

Ormandy, 2007).

1.3.3  Security Threats from Control, Data and Software Flows

e Security Threats from Control Channels

Control channels in VMMs are commonly used for administrative purposes and VMM
Application Programming Interfaces (APIs) facilitate administration of the VMM and VMs
that are running on them. This includes activities such as changing the operational state of
VMs including shutting them down, modifying existing VM settings, cloning and creating
new VMs, and executing commands on the guest OS. Control channels threats consist of
both unauthorised access and denial-of-service attacks. The threat presented by control
channels is exacerbated as some VMMs contain undocumented hidden control channels
that function through undocumented device and CPU instructions (Ormandy, 2007).
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e Security Threats from Data flows

Data flows for both software and hardware, are primarily vertical functions between
different layers with the exception of network channels, which are connected to different
components concurrently. Input/output flows and devices in modern systems can be very
complex and securing them is a trivial task especially when system performance is a
problem (Karger and Safford, 2008) and when software channels include those used by
physical devices, virtualised devices as well as the VMM APIs. Physical devices normally
present security threats, as they open up side channels that do not go through the VMM or
use the shared resources of the VMM. (Gebhardt et al., 2010, Khan et al., 2016) discuss the
potential of VMM resource control to be circumvented through the use of DMA
technologies to access memory locations and others (Dowty and Sugerman, 2009) discuss
establishing secure Graphics Processing Unit (GPU) isolation in the virtualised
environment whereas (Raj and Schwan, 2007) and (Safiudo et al., 2018) discuss how pure
isolation of hypervisors, where each guest uses a separate device and/or drivers, can differ
from sharing the hypervisors where guests use resources on the same device in security and
performance that they offer. Network channels present similar security issues as those
presented by control channels and shared devices although network channels present a
significantly higher risk as they can be accessed remotely and may be connected to every

virtualisation component.

e Security Threats from Non-VMM Software

Security threats in virtualised systems as observed in the previous sections do not only
come directly from the strong properties of virtualisation, but also from the way in which
they are used and implemented for example decoupling of software from the physical

system presents a larger software and hardware attack surface. A virtualised system
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inherently has more software running on its platform than a physical or non-virtualised
system. Attack vectors in the implemented virtual machine monitor includes the VMM
software, instances of the operating systems and other software inside various virtual
machines. This makes the overall attack surface of the software higher because the software

is most likely to have many internal data flows.

1.4 Security Risks and Threats aimed at different components of Virtualisation

The most obvious way to attack a virtualized system is to gain access to the hypervisor. Since
the hypervisor has the ability to control, monitor and interfere with all the activities of the
virtual machines running in the virtual environment, a compromise or improper configuration
of the hypervisor can lead to compromise of all hosted virtual machines as well as all physical
systems resources like the hard drives and the servers. The hypervisor offers a singular point
of access into the virtual environment and is therefore a singular point of failure (Suresh and

Kannan, 2014).

The security threats highlighted in Table 1-1 are aimed either at the hypervisor (VMM) or at

the virtual machines in the virtual environment.
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Figure 1-5 Threats to Hypervisor (VMM)

Network Side
Channels

Although the attacks depicted in Figure 1-5 above are aimed at the hypervisor, these attacks
still pose great threats to the virtual machines because once the VMM is compromised the VMs
will automatically become vulnerable to the same attacks. There are a number of attacks aimed
specifically at the VMs as illustrated in Figure 1-6 below. Attacks like DoS attacks can affect

both the VMM and VM.
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Figure 1-6 Threats to the Virtual Machines

Attacks on the hypervisor can be either through the host operating system or through a guest

operating system as illustrated in the section below.

Attacks on the Hypervisor through the Guest Operating System

Attacks on the hypervisor through a guest operating system can be used to gain unauthorized
access to other virtual machines or the hypervisor. These attacks are also known as VM escapes
or jailbreak attacks as the attacker "escapes" the confinement of the virtual machines into layers
that are unknown to the virtual machine. This is the most plausible attack on the hypervisor;
because the attacker can only compromise a virtual machine remotely as the underlying host
operating system is invisible (Chung et al., 2013, Luo et al., 2011, McDaniel and Nance, 2013,
Neal, 2013, Saroha, 2014). Since many virtual machines share the same physical resources, if
the attacker can find how virtual machines’ virtual resources map to the physical resources,
then attacks can be made directly onto the physical resources. Modifying the virtual memory

in a way that exploits how the physical resources are mapped to each virtual machine, the
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attacker can affect all the virtual machines, the hypervisor, and potentially other programs on
that machine (Chung et al., 2013, Luo et al., 2011, McDaniel and Nance, 2013, Neal, 2013).

This type of attack is illustrated in figure 1-7 below:

Attacker VM i
VMs Hypervisor
4
Exploited Ma
pF i P Map Map Function
unction Function
A l
Resources Resources. Hypervisor
Resources

Physical Resources

Figure 1-7 Attacks on the hypervisor through the guest operating system
Figure 1-7 shows that the attacker exploits the vulnerable VM, which provides access to the
system’s resources through the exploited map function and then moves through the resources

of the physical system to gain access to the other VMs as well as the hypervisor.

Attacks on the Hypervisor through the Host Operating System

The vulnerabilities and security holes in most operating systems can be used to gain control of
the host operating system. Since the hypervisor is simply a layer running on top of the host
operating system, once the attacker has gained control of the host operating system, the
hypervisor is essentially compromised. The administrative privileges of the hypervisor will
enable the attacker to perform malicious activities on any of the virtual machines hosted by the

hypervisor as illustrated in the figure 1-8 below:
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Figure 1-8 Attacks on the hypervisor through the host operating system

These security issues have led to the design and implementation of various security defence

mechanisms aimed specifically at combating attacks in various components of virtualisation

such as but not limited to those highlighted in Table1-2 below.

Table 1-2 Attacks on Virtualisation Components and Available Defence Mechanism

Attack
Vector/Component

Hypervisor-based
attacks

VM-based attacks

Attacks

VM Escape attacks
Hyper-Jacking

VM Sprawl
Rootkits

Inter-VM
communications
Inside-VM attacks
Malware

Denial of Service (DoS)
attacks

Cross-VM side-channel
attacks

Idle VM attacks
Software vulnerabilities
VM Footprint

Defence Mechanism

Designing Secure Hypervisors (Dildar et al., 2017,
Vasudevan et al., 2013)

Protecting Hypervisor integrity and Reducing
hypervisor attack surface (Szefer et al., 2011)
Intrusion Detection System (Azmandian et al., 2011,
Taj et al., 2020, Kumara and Jaidhar, 2015)

Proper Configuration of interactions between VM and
Host (Rueda et al., 2008)

VM Introspection (Lee and Yu, 2014a)

Virtual Machine-based Intrusion Detection
(Azmandian et al., 2011, Taj et al., 2020)
Co-Residency Detection in Cloud via Side Channel
Analysis (Zhang et al., 2011)

A Security-Aware Scheduler for Virtual machines on
IaaS Clouds (Khan et al., 2016)

Using anti-virus, anti-spyware programs in virtual
machines to detect suspicious activity
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Despite the many solutions for virtualisation security, challenges like monitoring, visibility

and infrastructure still pose security threats to virtualised systems or environments (Brooks et

al., 2012, Sahoo et al., 2010) :

Monitoring is the ability for data centres and cloud to log trustworthy data on activities
in virtual machines or the hosts (Brooks et al., 2012, Sahoo et al., 2010). Abstraction,
being one of the main benefits of virtualisation, prevents important information that
might help to determine potential threats, from being visible as it providesinsufficient
data to see if a threat has occurred.

Visibility is how much intrusion detection and prevention systems can see into a
virtualised network (Brohi et al., 2012, Lee and Yu, 2014b, Padhy et al., 2011, Pearce
etal., 2013) . This normally works hand in hand with monitoring, in that, if it is difficult
to monitor activities of the virtualised environment, there will be no detection of
malicious activities and prevention therefore, will not be necessary. This characteristic
however, also causes the visibility on the host’s operating systems and the virtual
networks to lower, making it harder to detect infected Virtual Machines and to prevent
malicious intrusions detection. Again, there currently lacks a balanced solution
between visibility and inherent security for virtualisation.

Infrastructure is the way virtualisation is set up in a data centre or cloud (Brohi et
al., 2012, Lee and Yu, 2014b, Padhy et al., 2011, Pearce et al., 2013). This is a
challenge in virtualisation because of the incompatibility and misconfigurations of
virtual machines and hosts between various cloud platforms or datacentres. These
significant security risks that result from monitoring, communication and
modifications of the guest operating system and unique to virtualisation in this context,
refer to the security risks that might compromise confidentiality, integrity and

availability of resources in cloud computing.
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A VMM, as the properties state in the first paragraph of the chapter, only intercepts sensitive
instructions, which could interfere with the operation of the VMM itself. All the other
instructions execute directly onto the hardware where possible without the interruption or
interference of the VMM. To understand the threats posed by virtualisation in cloud, designing
and implementing a threat model is key in virtualisation as it is in the design and
implementation of any security for information systems and applications. The threat model
such as that illustrated in Figure 1-6, aims at depicting the security or threat model designed
for virtualisation security, with an emphasis on sensitive information and the possible
definitions of the security attacks. A generalised threat model that attempts to address all types
of attacks, penetrations, and leakages concerning every possible configuration of virtual
platforms, utilizing any type of supporting hardware and/or software, and protecting every type
of asset is very likely to be too general to be of significant value. It is therefore important to
develop a model that is specific to the operational needs and scenarios of the security evaluation

process available.

Figure 1-9 shows an example of a generic threat model process:

Figure 1-9 Security Threat Modelling Process(Amini and Jamil, 2018)
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The threat model process in Figure 1-9 above helps to define the necessary threat model that is
tailored to a particular scenario which in this case is virtualisation. A successful threat model

follows a systematic approach that will:

Define the security requirements and risks of the system under development

e Communicate the security design aspects of both the VMM and VM system

e Analyse various system components for potential security threats using a proven

validation methodology

e Discover and mitigate issues that could put VM infrastructures at risk, as well as
prioritize and plan efforts to address significant threats that arise from systembackups,
failover, misallocation of resources and malfunctions caused by malicious software
used to Identify the threats

e Manage and mitigate available security threats

The strong properties of virtualisation discussed earlier in the chapter can either enhance or
compromise the security of virtualised environments. The benefits that virtualisation offers to
cloud computing can be very dangerous to the virtualised environment if the VMM used is not
trusted. This usually occurs because of the VMM trust model, the transparent nature of an ideal
VMM, and the introspection capabilities that the resource control requirement allows. The need
to trust a VMM in a virtualised environment is a big vulnerability since the VMM is a single
point of failure because a malicious, compromised, or even problematic VMM is most likely
to observe and/or intervene with the VM’s processes or operations. Secure virtualisation relies
upon the authenticity and integrity of the VMM, and in most cases on the security and the type
of the underlying hardware (Lombardi and Di Pietro, 2011, Yang and Fung, 2016). The use of
a trust model can offer attestation of the integrity and state of the system components that
ensures that applications and operating systems can only run in an environment that has an
attestation chain to a trusted root. Attestation in virtualisation offers a degree of verification,
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authenticity and integrity of the VMM. Attestation methods have been used as a means to
assess the security of virtualisation, in this case the VMM, the hardware, and the guest OS, and
all the applications. Attestation can be done locally via internal I/O channels, or remotely
through a network (Pearce et al., 2013). Attestation of the integrity, authenticity, and state of
guest software is important for applications and data security not only for guest OSs, but also
for the applications. This is due to the fact that security requirements can depend not only on
the integrity of core system components or the application itself, but also on the presence and
state of additional software inside the guest OS. This includes the status of security measures
such as logging, antivirus, or intrusion detection systems available. A VM is a container with
various software and data components such as VM settings, a virtual disk image, and captured
VM states (Wojtczuk and Rutkowska, 2009, Wojtczuk and Rutkowska, 2011). Attestation
alone does not remove the security threats surrounding virtualisation because even an attested

component is vulnerable to attacks or even used as an attack vector.

1.5 Thesis Statement

This thesis explores the possibility of implementing predictive analytics into information
systems by implementing it as a security management tool in virtualised information systems.
To do this, we explore various types of virtualisation, virtualisation architectures as well as the
security threats and attacks which virtualisation is vulnerable. The thesis also reviews existing
solutions in relation to the topic in question by exploring the various techniques used to help
address the various security issues that virtualisation faces. To help understand and answer the
question of the project, an in-depth exploration of what predictive analytics is, how it can be
adopted into empirical information systems and the possibility of using predictive analytics as
a security management tool for virtualised systems is carried out. Since the main aim of the
project is to use empirical predictive analytics in information systems such as virtualised

systems in this case as opposed to techniques that use explanatory or exploratory data analytics
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only, a further discussion on what predictive analytics is and how it differs from explanatory
analytics is covered. This gives an in-depth example of how explanatory analytics works in
comparison to predictive analytics as well as how it is used to feed into predictive analytics as
one of PA’s initial processes. The thesis presents experimental results of the attack simulation
process that is used to generate the data required for exploratory data analytics and thus
predictive analytics and modelling. The steps taken to build, validate, evaluate and test
predictive analytics using various algorithms is presented and the results that prove the use of
predictive analytics modelling in information systems and virtualisation in particular are shown
and explained. The thesis demonstrates that empirical predictive analytics can be adopted as a
security management tool in virtualised systems, illustrated through the partial application of

the built predictive models on new data of the attack simulation in real time.

1.6 Research Aim and Objectives

As security continues to be the focus in virtualised environments, the demand for adequate
solutions has also increased. A number of contributions towards the security issues of
virtualisation have been made but none so far has provided the so much needed solution of
dealing with attacks in real to near real time using predictive analytics. The use of predictive
analytics has become popular in other disciplines such as medicine, economics, and e-
commerce to mention but a few, and its impact has made significant difference to the success
of various components of these disciplines. The adoption of predictive analytics into empirical
information technologies such as cloud computing which uses multi-tenant infrastructures is

very important especially with the many benefits predictive analytics offers.

The main aim of this research is to design and implement a predictive analytics modelling
framework that will enable the modelling and use of predictive analytics as a security
management tool within a fully virtualised information system environment (Kapasa et al.,

2015). The achievement of the use of empirical predictive analytics as a security management
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tool in virtualised systems will illustrate and potentially show that predictive analytics can be
used in information systems such as cloud computing as successfully as other disciplines that

are using predictive analytics to make informed decisions.

To achieve and successfully implement empirical predictive analytics in a fully virtualised
system, a list of objectives established for the implementation of predictive analytics as a

security management solution for virtualised environment are to. :

1. Design a predictive analytics modelling framework that will be used to design,
implement and deploy the security management predictive model in question

2. Explore and evaluate the concept of predictive analytics, how it works and how it is
being used in other disciplines as well as how it can be adopted as a cybersecurity tool
for cloud multi-tenant infrastructures.

3. Analyse and assess the risks associated with virtualised systems together with a
thorough analysis and comparison of the existing controls that are currently in place to
mitigate these risks.

4. Identify and evaluate the various types of tools and techniques used in predictive
analytics as opposed to exploratory analytics and how these tools and techniques can
be combined to help build, implement and deploy the predictive analytics model as a
security tool in a virtualised environment.

5. Set up an experimental environment for the simulation of attacks for data collection,
explanatory data analysis and the designing of the predictive analytics model in
question and then use the results of the attack simulation to define the predictive goals
of the project.

6. Build the predictive analytics model and then test and validate the built predictive

model to measure the predictive accuracy of the built model using the sample
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assessment of the cross-validation method and then modify the predictive model
accordingly until the desired results are reached.
7. Implement and deploy the built predictive model into the setup cloud computing

system.

1.7 Contribution

The incorporation of virtualisation into cloud computing is very useful especially where
security and utilisation of computing resources are concerned. The evolving technology
together with the new characteristics of virtualisation has also brought about new security
threats and risks. It is very important for security professionals and researchers to continue
finding solutions to the never-ending security threats and risks affecting virtualisation. The
speed at which these security threats and risks need to be mitigated for both the cloud providers
and the clients, is very important. The literature reviewed on the current or existing solutions
still does not answer the questions of real time analysis and mitigation of the security threats
and risks. Although many researchers start with predictive analytics in mind, most of them end
up with explanatory solutions that use data mining techniques to analyse security threats and
risks after the fact. These solutions are usually based on activities that have already happened.
The speed of identifying potential threats and risks before they happen, as well as finding

solutions to mitigate these risks in real time, is very important.

In this research we have designed and implemented a predictive analytics modelling framework
(PAMF) as a novel contribution to the building and implementation of a novel predictive
analytics model for the management of security in virtualised information systems. These two
novel contributions add to the existing security frameworks and security used in implementing
security solutions for virtualisation security identified and implemented by many researchers
and security professionals. Successful achievement of the project also contributes to the theory

of using predictive analytics in empirical information systems suggested by (Shmueli and
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Koppius, 2011) through the successful design and implementation of the same predictive

analytics model into cloud computing.

Successful achievement and implementation of the stated objectives:

e Demonstrates that the designed PAMF was followed to successfully build, validate,
implement and deploy the predictive analytics model in question.

e Demonstrates that security threats such as DoS attacks are analysed and mitigated in
real to near real time using predictive analytics as opposed to those using explanatory
data analytics such based on data mining techniques.

e Highlights that the built model although tested on DoS attacks can used widely on
various attacks in real time to identify patterns in the data that might lead to possible
attacks unlike the Home Alone framework, which concentrates only on the risks of
isolation.

e Highlights the various risks of using virtualisation and then test the controls available
for mitigating these risks by using the laid down capabilities of the Home Alone
framework to incorporate better classifiers to improve on how the risk of isolation is
being mitigated. It then extends this to all the other aspects of virtualisation using
predictive analytics rather than mere statistical analytics which Home alone is currently
using.

e Contributes to Shmueli et al’s idea on how empirical predictive analytics is designed
and implemented in information systems such as cloud systems in this case and then
demonstrates how this can be adopted in virtualised systems as a risk management
strategy for virtualisation security. The aim of the implemented work is to illustrate the
accuracy level in predicting new data especially in virtualised systems.

e Contributes to the existing theories on the use of predictive analytics and possibly

improves on the existing theories that are currently based on explanatory predictive
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analytics and using exploratory statistical models to develop new measures by

comparing different operationalization of constructs.

[llustrates the possibilities of using predictive analytics as a risk management strategy in real
time as compared to those predictions based on explanatory predictions done on static data. A
number of predictions use data mining and statistical algorithms only to analyse risks or to see
if an attack has occurred so that a solution to remove the risk can be found. Mainly the designed
frameworks use detection methods to eradicate the problems. Although many attempts (Low
et al., 2012, Mishra and Sahoo, 2011, Zhang et al., 2010) have been made in trying tomitigate
risks by using predictive analytics, most of them normally end up as just explanatory. The
what-if analysis framework for example started with predictive analytics goals in sight but
ended up with a system in which, instead of using real time predictions, static data was collected
and then analysed. This research goes beyond explanatory predictions or data mining
techniques in that, predictions are run in real time and risks are identified and mitigated before

they actually happen

1.8 Summary

Virtualisation is described as the encapsulation of the VMM that surrounds the operating
system and provides the same processes as those of the physical system. The chapter besides
providing the definition of what virtualisation is, has also given an overview of the different
architectural types of virtualisation commonly known as Type I or bare metal which is installed
directly onto the hardware and Type II also referred to as hosted which is installed right on top
of the host operating system of the physical hardware. Section 2.2 of the chapter demonstrates
how virtualisation can be applied to various components of the computer system such as the
server, applications, desktop and the network. As virtualisation does not only bring security
benefits as highlighted in the introductory part of chapter it also brings about security issues

caused by the strong properties virtualisation offers to the cloud. The security issuesidentified
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in section 2.3 are caused by transparency, VMM insertion, and hyper-jacking, introspection
and intervention of nonlinear VM operations, monotonicity and decoupling of both the
hardware and the software. Since attacks on virtualised systems come through various vectors
or platforms, the chapter also highlights the many ways different components of virtualisation
such as the hypervisor, the guest operating system or the applications can be attacked and the
channels used for different types of attacks. The security threat model illustrated in figure 2.5
in section 2.3 defines the security requirements of the system, proposes the security design for
both the VMM and the VM, analyses potential security risks of various components, highlights
security issues relating to the VM infrastructure and provides solutions on how to mitigate the
identified threats. The chapter concludes by discussing the various threats that arise from
control, data and software together with the security vulnerabilities and threats of both the VM
and VMM.

As security remains the main concern for virtualised systems in cloud computing, it is
imperative for security professionals and researchers to come up with effective security

solutions. The following chapter reviews existing security solutions for virtualisation.
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2. Existing Security Solutions for Virtualisation in Cloud and Related
Work

2.1 Introduction

Solutions to address the security issues unique to virtualisation have been suggested, designed
and implemented by many researchers and security professionals. Analysis of malicious
packets and process logs has been a problem in information systems such as virtualised systems
as attackers are continuously changing their methods and tactics of launching attacks. The use
of big data analytics to detect and mitigate attacks in information systems has become key in
computer security. Taking advantage of the cloud-scale techniques and storage mechanisms,
big data can be used to collect and analyse large volumes of data processes and network flows.
The scale and granularity of using big data can result in accuracy in stopping attacks more than
in legacy data-limited defence mechanisms. Although big data analytics offers a sense of
security in cloud computing, the need to stay ahead of attacks especially in multi-tenant
infrastructures such as virtualisation security is key. Virtualisation as discussed in chapter 2
increases the efficiency and elasticity of modern computing infrastructures. The need to stay a
step ahead of the threats and attackers has led to the design and implementation of the predictive
model as a security management tool for virtualised systems using predictive analytics.
Researchers such as (Won et al., 2013, Almutairy et al., 2019, Armstrong et al., 2008) have
come up with solutions on how to manage risks in information systems using different types
of techniques. Other existing solutions for virtualisation security issues are illustrated in table

2-1.
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Table 2-1 Virtualisation Security risks proposed solutions and the impact to in Cloud

systems

Virtualisation
Security issue

Data Leakage and
Data Remanence

Breaches due to

Software Defects

Malicious Network
traffic

Hypervisor attack

VM escape

VM Sprawl, Idle

VMs Resource
Control,
Unauthorised
access and
Configuration
issues

Impact on Cloud

Exposure of Confidential
Data

Compromises guest VMs

Spoofing Attacks

Allows the attacker to
gain access and
authorisation over the
hypervisor allowing them
to modify or remove
systems files

Attacker can gain control
of

Compromises
confidentiality, integrity
and  availability  of

resources. Configuration
problems can proliferate
and consume resources
causing performance
problems

Counter
Measure/Possible
Solution
Hypervisor-based
virtualisation, VM Security
and Reliability monitoring
(Payne et al., 2008, Sabahi,
2012, Zou et al., 2013,
Mishra et al., 2017a)

Virtualisation
introspection system (Lee
and Yu, 2014b)

A robust and learningbased
security approach Network
Packet Detection (MNPD)
(Guizani and Ghafoor,
2020) (Mishra et al., 2017b)

Virtual  Machine  and
Hypervisor Intrusion

Detection System (Kumara
and Jaidhar, 2015)

Penetration testing

Effective controls
Data Encryption

Develop policies to handle
VM imaging and snapshots

Focus of the
Work

Virtualisation
technology
Reduce the work
load and
Distributed
Security System

to

To detect and
prevent malicious

attacks and to
protect both the
VMs and the Host

To detect network
intrusions in cloud

To determine
competent

approaches for
defending the

hypervisor attacks
in cloud computing

To test the security
of the wvirtualised
environment

Identification and

management of
security risks
specific to
virtualisation
technologies

A number of virtualisation security solutions using predictive analytics have been proposed as

explained in the following section, which compares and evaluates some of these existing

approaches and solutions to virtualisation security in cloud computing.
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2.2 Related Work

2.2.1 Home Alone: Co-Residence in the Cloud via Side-Channel Analysis

Zhang et al for example have designed and implemented a framework called Home Alone: Co-
Residence in the Cloud via Side-Channel Analysis. The purpose of the framework is to be able
to verify remotely that the tenants’ virtual machines are physically isolated and that a tenant
has exclusive use of the physical machine. The frameworks idea is to invert the usual
application of side channels and use it as a defensive detection tool that analyses cache usage
during periods where virtual machines coordinate, in order to avoid portions of the cache of a
tenant using Home Alone, that can detect the activities of a co-resident foe (Won et al.,2013).
The idea of the Home Alone is to allow the tenant with the Home Alone to coordinate its VMs
in order to silence their activities in a selected cache region for a period. The tenant will then
measure the cache usage during the silenced time to check for unexpected activities if any.
These activities if found will suggest the presence of a malicious VM. The Home Alone
approach however requires a more complicated solution than simple silencing of VMs and
listening for malicious activities of the cache because the cache in a virtualised environment is
never completely quiet and measuring of these activities can be done with a lot of errors due to
available noise. The other challenge of the Home Alone framework is that there is need for the
construction of effective classifiers that can distinguish normal cache activities from malicious

activities.

Even though Zhang et al have claimed to manage the full implementation of the Home Alone
framework, they have also indicated the need for better classifiers for cache timing behaviours

to help improve their framework (Won et al., 2013).
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2.2.2  Network Intrusion Detection and Countermeasures Election (NICE) framework.

Chung et al have designed and implemented a Network Intrusion Detection and
Countermeasures Election (NICE) framework. The framework is aimed at identifying
malicious VMs on the network or VMs that are vulnerable and prone to attack in virtual
network systems by establishing a defence-in-depth intrusion detection framework which
incorporates attack graph analytical procedures into detection processing (Zou et al., 2013).
NICE is intended to help detect and mitigate collaborative attacks in cloud virtual networking
environment (Chung et al., 2013). NICE however only investigates the network IDS approach
to counter idle virtual machines explorative attacks, and has indicated the need to improve

accuracy by encouraging host-based IDS solutions (Zou et al., 2013).

2.2.3 Distributed Graph Lab

Low et al on the other hand have implemented a different framework for machine learning and
data mining in the cloud model known as the Distributed Graph Lab. This is an extension of
the MapReduce applications (Elkan, 2013, Low et al., 2012). MapReduce is one of the most
important programming paradigms that facilitates and provides parallelisation, distribution and
fault tolerance within the framework as well as facilitating the cloud computing environment
to process big data (Elkan, 2013, Low et al., 2012). The distributed Graph Lab or machine
learning data mining (MLDM) framework as named by Low et al is a graph structured,
asynchronous and iterative computational framework aimed at modelling data dependences
and updating large sets of parameters (Elkan, 2013, Low et al., 2012). Low et al like the others
suggest that the Distributed Graph Labs abstraction and runtime need to be extended in order
to support the dynamically evolving graphs and external storage in graph databases, which will
enable Distributed Graph Lab to continuously store and process time evolving data (Elkan,

2013, Low et al., 2012).
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The explored existing solutions above have indicated both time and big data analytics, which
the security management tool for virtualised systems proposes, as restrictions or areas of
improvement to their systems. With the ever evolving, large volumes of data that need to be
processed, analysed and reported there is need for real time processing and analysis of big data
to help address the security issues of virtualisation. As indicated in the virtualisation security
solutions above, the existing solutions use data mining techniques or statistical algorithms to
monitor, analyse and mitigate risks. Data mining and statistical algorithms however, have been

surpassed in demand by predictive analytics (Low et al., 2012).

Researchers such as (Li et al., 2012) have identified the ideas of how risks in information
systems, specifically virtual systems, can be identified, analysed and mitigated with the use of
predictive analytics. Yu Si et al for example, investigate the threats that break isolation and
propose a virtual machine co-resident detection scheme via cache-based side channel attacks
to determine the location of the specified virtual machine (Luo et al., 2011). Side channel
attacks are malicious activities that malicious users can use to steal private information from
other users by analysing responses of third party sharing resources in the cloud (Brooks et al.,
2012). Singh et al has also suggested an analytical modelling tool that tries to address what-if
analysis in complex cloud computing applications. This is a workload-based what-if system
that takes hypothetical changes in the applications workload or environment to estimate its

impact on performance (Singh et al., 2013).

Both Yu Si et al and Singh et al are still using data mining techniques to address the security
issue of virtualisation. These solutions or approaches are still handling risks after the fact and
are not trying to address the issue of handling big data analytics in real time to predict the

security threats unique to virtualisation as illustrated in this project.
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Although big data analytics uses machine-learning tools and techniques such as data mining to
determine whether or not an attack has occurred there is still need to stay ahead of the threats
and attacks. An increase in the adoption and use of predictive analytics has also led to high
demand for big data analytics. Big data analytics is the collection and analysis of large and
complex datasets that the traditional data management tools are failing to process. Predictive
analytics together with big data analytics has improved the way data is collected, processed
and analysed and has led to finding solutions to the various questions that have stayed
unanswered. The amount of data available, the range of the data types and the speed at which

the data arrives has also increased.

The diagram below shows how predictive analytics and big data work together.
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Figure 2-1 Predictive Analytics and Big Data Analytics (Gandomi and Haider, 2015)

In order for big data predictive analytics to be effective, an iterative process should be followed
as indicated in Figure 2-1 above. Predictive analytics and data mining are sometimes viewed
as the same even though in reality they are separate interacting processes. Predictive analytics
uses confirmed relationships between explanatory and criterion variables from past
occurrences to predict future outcomes whereas data mining is an automated process that uses

sophisticated mathematical algorithms to search through enormous sets of data.
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2.3 Predictive Analytics

Predictive analytics is the practice or method of extracting information from existing data sets
in order to determine patterns and predict future outcomes and trends. This is to say that
predictive analytics will not tell you what is going to happen in future, but it forecasts on what
might happen in the future with an acceptable level of reliability, and includes the what-if

situations and risk assessment. Predictive analytics is used to forecast the future probabilities.

Predictive analytics is also described as the art and science of using data to help uncover hidden
patterns and relationships in the data that can help predict what will happen in the future as
well as providing valuable actionable insights for confident decision-making (Fuentes, 2018).
Predictive analytics has grown from building a predictive model that can influence a decision
to incorporating these models into day-to-day operations (Won et al., 2013, Gulati, 2015). In
the past years, theory was used to develop hypotheses that where then tested; nowadays data is
used to find relationships that can be used to develop a hypothesis which then leads to testing
the developed hypothesis, building a model and then validating the built model. Predictive
analytics is the broad term that describes a variety of statistical and analytical techniques that
are used to develop models that predict future events and behaviours (Eckerson, 2007, Gulati,
2015, Shmueli and Koppius, 2011, Fuentes, 2018). These techniques are usually divided into

three different categories: Predictive models, Descriptive models and Decision models.

Predictive models look for certain relationships and patterns between explanatory variables
and dependant variables that usually lead to certain behaviour. If the explanatory variables can
be determined then the outcome of the dependent variables can be predicted. Predictive
modelling is a process that uses data mining and probability algorithms to forecast outcomes.
Each model is made up of a number of predictors, which are variables that are likely to
influence future results. The model may employ a simple linear equation, or it may be a

complex neural network, mapped out by sophisticated software.
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Descriptive models aim at finding clusters of data elements with similar characteristics and

then create segments, which are often used for classification of variables and identifications of

relationships. Descriptive modelling is a mathematical process that describes real-world events

and the relationships between factors responsible for them. It is more of the knowledge of what

happened in the past that can be used in the here and now to predict what could happen in

future.

Decision models use optimisation techniques to find the most certain outcome for a specific

predictive decision.

Predictive analytics is mainly used for

L

New theory development - This is very important because the fast changing
environments, the large amounts of data sets made up of various types (like text and
digital) and the high speed at which this data is being received all bring about the need
for effective new theory development. Predictive analytics helps in identifying complex
relationships and patterns that are hard to draw hypotheses from, especially the ones
with theories that exclude newly measurable concepts by detecting new patterns and
behaviour that can help uncover new casual mechanisms and lead to new theory
development.

Construct operationalization — This is a more specific aspect of predictive analytics
where new theory development works hand in hand with the development of new
measures. It compares the different operational constraints of various models using
assessment methods to provide construct validation of the compared models.
Comparing existing theories — Predictive analytics uses explanatory models to compare
leading theories, which are normally difficult to compare statistically for predictive

accuracy.
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4. Improving existing explanatory models — Predictive analytics improves existing
explanatory theories by capturing complex patterns and relationships of the models and
turning them into predictive values.

5. Assessing predictability of existing models — Predictive analytics can be used to
quantify the predictability level of measurable phenomena by creating a benchmark for
predictive accuracy, which may lead to development of new measures, data collection,
new empirical approaches and evaluation of the difference in predictive power of

existing models.
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Figure 2-2 Predictive Analytics Process (Larose, 2015)

Figure 3-1 above presents an iterative predictive analytics process that starts with a hypothesis
or an assumption to test. This leads to the identification and extraction of data from the sources
and using a predictive analytics tool, data is processed, a conclusion is drawn, the results are

implemented and the model is monitored for performance accuracy.

Finding the best predictive modelling technique and algorithm to leverage data for insightful
decisions is key to finding the best predictive model for the management of security issues in

virtualised systems implemented in this project. Predictive modelling in machine learning is a
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process that uses data and statistics to predict an outcome using data models. Predictive
analytics refers to data science and involves making predictions about future events by using
different algorithms like linear regression, an algorithm that analyses past data to make
predictions about the future.
The main advantage of predictive modelling is that it gives accurate insights into any question
and allows users to create forecasts. It is important to have an insight into future events and
outcomes that challenge key assumptions, especially where security is concerned. There are a
number of predictive models available but only a few listed below are created in this project to
demonstrate predictive analytics modelling for attacks using the generated dataset and will be
represented in the same order as listed below.

e Linear Regression Models

e Naive Bayes

e Decision Trees Models

e Logistic Regression Models

Time Series predictive Models

Each model has a particular use in this project and answers specific questions or deals with a
certain type of dataset. For example, to build a linear predictive model, supervised learning is
used on the supplied training dataset to perform regression tasks that model a targetprediction
value based on the independent variables that try to find the relationship between variables and
then forecasting. Naive Bayes on the other hand is a probabilistic classifier that uses Bayes
theorem strong independent assumptions between the features. It is used in this case to validate
the linear regression model that has been built. Despite the different methodological and
mathematical ability, all of them try to predict the future outcomes based on data from the past
occurrences. For predictive modelling to be successful, data intended for building the different

types of models should be properly labelled and categorised appropriately for machine learning
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to be successful. Sufficient sample size data is very important for statistical methods to be
consistently successful. Without sufficient data, the models can be produced with the influence
of a lot of noise in the data that is used. There are three types of machine learning techniques
that are used for building intelligent machines that transform data into knowledge. These
machine-learning techniques are briefly explained in Table 3-1 below.

Table 2-2 Types of Machine Learning for Predictive Modelling

Labelled Data
Direct Feedback
Predict Outcome

Supervised Learning

Y V V

No labels or targets
No Feedback

Finds Hidden Structure in Data

Unsupervised Learning

Y V V

Decision Process
Reward System
Learn Series of outcomes

Reinforcement Learning

Y VV

Supervised learning is used on well-labelled data where the algorithm learns from the labelled
training data to predict the outcome of unforeseen data. Unsupervised learning is a technique
that allows the model to work on unlabelled data to discover hidden information.
Reinforcement learning is a goal-oriented technique that allows the agent to learn how to attain
complex objectives in an interactive environment using the trial and error method using
feedback from its own actions and experiences. To build predictive models the dataset needs
to be split into two distinctive datasets called training data and testing data for each model and
for each predictive algorithm used. A simple process for building machine-learning systems
for predictive models in question was followed. An example of a ML process is illustrated in
Figure 3-2.

Process for building Machine Learning Models.
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Figure 2-3 Process for Building Machine Learning Models (Liu et al., 2017)

2.3.1 Predictive Analytics Framework

A simple predictive analytics framework is illustrated in the Figure 3.3 below:
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Figure 2-4 Predictive Analytics Framework

2.3.2 Predictive Analytics Concepts

The implementation of predictive analytics as a security management tool in virtualised

systems has been the focus of this project. Virtualisation being the heart of cloud technologies
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raises many security issues that need to be analysed and mitigated in real time. The use of
predictive analytics in this context offers a solution to the many security challenges
virtualisation poses to cloud computing. Successful implementation of predictive analytics
requires the use and combination of various tools and techniques like big data analytics,
predictive modelling, machine learning and data mining techniques to analyse current and
historical facts to make relevant predictions about unknown events. The ability to predict
attacks in a virtualised environment will help to minimise the risks that come with security
breaches like denial of service attacks, side channel attacks, VM escape, malware-based attacks
and many more threats. A combination of predictive analytics tools and techniques are used in
order to achieve the predictive value in question. Techniques used in predictive analytics are
divided between regression techniques and machine learning techniques.

Although there are a number of listed predictive analytics techniques, the main concepts

relevant to this project are identified and described below.

2.3.3 Predictive Analytics Tools and Techniques

1. Regression techniques

Regression refers to a linear relationship between the input and output variables. A predictive
model with linear functions requires a predictor or feature in order to predict the output or
outcome. Regression analysis is therefore a form of predictive technique that is used in
investigating the relationship between a target variable also known as a dependent and
predictor, independent variable. Regression techniques are used for forecasting, time series

modelling and finding the casual effect relationship between the same variables.

Regression modelling is considered the core of predictive analytics because of its focus on
mathematical equations that are used to represent interactions between different variables.
Regression analysis is a tool for modelling and analysing data. It provides the ability to

investigate the relationship between a target variable and a predictor by showing the significant
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relationships between the two variables and the strength of the impact of multiple predictors
on the target variables. Regression analysis also allows the effects of variables measured on
different scales to be compared and in return provides the best set of variables for building a
predictive model. In order for regression techniques to be successful, three metrics are
considered; number of predictors, the types of target variables and the shape of the regression

line. An overview of the regression techniques is illustrated in Figure 3-4 below.
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Figure 2-5 Regression Techniques

Although there are a number of techniques that are covered in regression modelling, only a few

discussed below are selected and used in this project:

e Linear regression
Logistic regression is another statistical technique used in machine learning. It is used
for binary classification problems as opposed to regression problems of linear
regression modelling. The name logistic regression comes from the function of its core
method the logistic function, which is also referred to as a sigmoid function. Logistic

regression, like linear regression also uses an equation where the input values x are
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linearly combined using weights or coefficient values to predict an output value y. The
main difference from linear regression is that in logistic regression the output value is
a binary value of either 0 or 1 rather than a numeric value. An example of the equation

used in logistics regression is:

y=e"(b0+ bl *x)/(1+ e (b0 + b1l * x))

Where y is the predicted output, b0 is the bias and b1 is the coefficient for the single input
value x. Linear regression is in most cases the first step in regression analysis. In this type of
analysis, the target variables, also referred to as the dependent variables, are continuous, the
predictor variables also known as the independent variables are continuous and the regression
line is linear. Linear regression establishes a relationship between the target variable (Y) and
the predictor (X) by using a straight line called regression line. Linear regression is represented

by the equation

(Y=a + b*X +e)

Where “a” is the intercept, “b” is the slope of the line and “e” is the error term. The equation
is used to predict the value of the target variable based on the predictor(s). Linear regression is
usually represented as either simple linear regression where the predictor has just one variable
or as multiple linear regression where the predictor has multiple variables.

Simple linear regression predicts the score of the second variable called the predictor “X”. In
simple linear regression there is only one predictor variable “Y” which when plotted as a
function of “X” forms a straight line. Multiple linear regression or multi-variant linear

regression where multiple variables are predicted, rather than just one, can also be used.

o Logistic regression
Logistic regression is a technique borrowed by machine learning from the statistical way

of modelling a binomial outcome with one or more explanatory variables. This is achieved
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by measuring the relationship between the categorical dependent variable and one or more
independent variables which estimates the probabilities using a logistic function, which is
the cumulative logistic distribution. Logistic regression is a classification and not a logistic
algorithm, which is used to estimate discrete values like 0/1, Yes/No and True/false
depending on a given set of independent variables. Logistic regression predicts the

probability of an event occurring by fitting data to a logit function.

A logistic function curve is an “S” shape represented by the equation:

fo=__"

Tte—k(x—xo)
Where:
e = the natural logarithm base
xo = the x-value of the curve’s midpoint
[ = the curve’s maximum value

k = the steepness of the curve

The general logistic function with ( k = 1, xq= 0, [ = 1) parameters produces the following:

1

f(x)= _ ex _ 1 1

— == _+
14e—X 1+e* 2 ZtTh(—zzj

Due to the exponential function e~ the logistic function for x can be computed over a small
range of real numbers as represented in the curve above. Exponential function carries the

formf(x) = bx.

Exponential functions in mathematics carry the format of f(x) = bx+c where the input
variable (x) occurs as an exponent and c as a constant. The symmetry property of the logistic

function then will be:

1-fx0)=f(-x
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Showing x — f(x) — gas an odd function and f(x) = ; + ;tanh (? as an offset or scaled

hyperbolic tangent function, which follows from

X_pX X . 2x o X
tanh(x) == =" Do f(sx) - T = f2) - © M =21 (20) — 1

e
eXteX eX1+e—2% 1+e—2x 1+e-2x

This can be easily derived as:

fo=_" _ ¢ “fa=""""""C ra - f2)

1+e™™ 1+eXde (1+e%)2

The derivation of this function therefore has 4 f(x) = d_f_(—x) properties.
dx dx

o Time series

Time series regression is a statistical method that can be used to predict a future response
based on the response history and the transfer of the dynamics from relevant predictors. It
helps to understand and predict the behaviour of dynamic systems from experimental and
observational data. Time series is a series of data points that are either indexed, listed or
graphed in time order. It comprises of methods for analysing data in order to extract

meaningful data for statistical purposes.

e C(lassification and regression trees.

Classification trees are tree models where the target variable can take a discrete set of
values. In these tree structures, leaves represent class labels and branches represent
conjunctions of features that lead to those class labels. The decision trees where the target

variable can take continuous values and real numbers are called regression trees.

2. Machine learning techniques
Machine learning techniques are artificial intelligence self-adaptive algorithms that
increasingly get better analysis and patterns with experience or with new added data; the

computational algorithm built into a computer model will process all transactions happening
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on the digital platform, find patterns in the data set and point out any anomaly detected by the

pattern.

Machine learning techniques, being a part of artificial intelligence, consist of advanced
statistical methods for regression and classification that are used to develop techniques that
enable computers to learn. Machine learning techniques emulate human knowledge and
understanding to learn from training samples to predict future events. Although there are a

number of machine learning techniques available, the following are relevant to this project:

e Nuaive Bayes.

Is a simple technique for constructing classifiers: models that assign a class label to problem
instances, represented as vectors of feature values, where the class labels are drawn from
some finite set. All naive Bayes classifiers assume that the value of a particular feature is
independent of the value of any other feature, given the class variable. One of the
advantages of Naive Bayes is that it only requires a small number of training data to

estimate the parameters necessary for classification.

2.4 Motivation and Problem Statement

Predictive analytics, as explained by Shmueli et al, includes statistical models and other
empirical methods that are aimed at creating empirical predictions, as opposed to predictions
that follow theory only, as well as methods for assessing the quality of those predictions in
practice (Shmueli, 2010, Shmueli and Koppius, 2011). Shmueli et al observe that although
predictive analytics is a core scientific activity, empirical modelling in information systems has
been dominated by casual explanatory statistical modelling, where statistical inference is used
to test casual hypotheses and to evaluate explanatory power underlying casual models

(Shmueli, 2010, Shmueli and Koppius, 2011).
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The increasing nature of threats to security requires that anticipatory reasoning become an
everyday activity (Sanfilippo, 2010). Research shows that there is a difference between
empirical predictive modelling (Sanfilippo, 2010) and explanatory statistical modelling (Luo
et al., 2011, Pearce et al., 2013, Shmueli and Koppius, 2011). Empirical predictive modelling
includes statistical models, data mining algorithms and methods for evaluating predictive
accuracy whereas explanatory statistical modelling includes statistical models that are used to
test hypotheses and methods for testing these statistics (Luo et al., 2011, Pearce et al., 2013,

Sahoo et al., 2010, Shmueli and Koppius, 2011).

Table 2-2 below illustrates the differences between explanatory analytics and predictive

analytics:

Table 2-3 Explanatory Analytics vs Predictive Analytics

Plan Explanatory Analytics Predictive Analytics

Goal Used for testing casual Hypothesis Used for predicting new

observations and assessing

predictability levels
Set Variables Used only to study underlying conceptual Focuses on observations and
constructs and relationships between the set measurable variables.
variables
Modelling Focuses on minimizing model bias Focuses on minimizing the
Optimized combined bias and variance
Function
Modelling Empirical model must be interpretable and must Uses variables that are available
Constrains support the statistical testing of the hypothesis in at the time of deployment.
question and model must adhere to the
theoretical model.
Model Explanatory power of the model is measured by Predictive power is measured
Evaluation how well the model fits the measures and tests. by how accurate the model is

with out-of-sample predictions
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Predictive analytics is becoming increasingly mainstream with most organisations using it for
improving customer engagement, managing risks, reducing fraud or optimising the supply

chain (Elkan, 2013, Shmueli and Koppius, 2011).

The main motivation for the project is to design a predictive analytics modelling framework as
well as the ability to use empirical predictive analytics for risk analysis and security

management in virtualised systems.

The ability to adopt empirical predictive analytics into virtualisation as a security management

solution, as opposed to the solutions that follow theory only, is the driver of this research.

2.5 Summary

Security attacks on information systems are becoming more prevalent as cyber attackers aim
to exploit information systems like virtualised systems in cloud computing for personal and
financial gain. Theft of private and sensitive organisational data and/or the destruction of
infrastructure are just a few motives resulting from espionage among many others. Since cyber
attackers are aware of the existing security controls and have access to a wide range of tools
and techniques to bypass traditional security mechanisms, the time taken from the initial attack
to when the attack is actually detected can be measured in days or even weeks. Attacks like
zero day exploits, malware infection frameworks, rootkits and browser exploit packs are
readily available for purchase on unauthorised markets. This makes security breaches
inevitable, as the cyber attackers seem to be getting one step ahead. Early detection or even
prediction are the best defence to surviving an attack. Detection and prevention methodologies
that help reduce the risks of security breaches or attacks and those that help to mitigate or even
prevent them, need to be put in place. Predictive analytics provides important navigational tools
to organisations, companies and individuals to successfully reach or attain their destinations

through forecasting what is about to happen so that they can respond accordingly to stay on the
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most accurate, safe repeatable, profitable and efficient course. The use of predictive analytics
is already transforming the way we are interacting with our environment, especially in the
computer world, as the quantity of data increases and the quality improves, facilitated by the
availability of the cost-efficient processing power, predictive analytics is bound to be even
more pervasive than it is at present. Virtualisation, despite its many benefits to cloud computing
still raises a number of security issues that concern both the service providers and the end users.
These security issues prevent end users from fully embracing cloud computing and the adoption
of virtualisation as a whole. In the bid to secure its resources, cloud service providers in
conjunction with researchers and security professionals are on the race to find adequate security
solutions. As predictive analytics has worked so well by improving the various processes in
other disciplines like medicine and e-commerce, the adoption or use of this powerful tool in
information systems, more especially as a security management tool for virtualised
environments, can add another level to security and other IT processes that need improving.
Successful implementation of empirical predictive analytics model as a security management
tool in virtualised environments demonstrates a novel contribution to the so much needed
virtualisation security solutions among others. To implement the predictive analytics model for
the management of security in virtualised information systems an experimental environment
used for emulating attacks and to generate data for predictive modelling was setup as presented

in chapter 3.
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3. Framework for Predictive Analytics Modelling and Methodology
3.1 Introduction

Predictive analytics brings together advanced analytics capabilities ranging from statistical
analysis, predictive modelling, data mining, optimisation, real time scoring and machine
learning. In order for predictive analytics to be successful, a number of iterative processes

need to be followed as shown in the figure 3-1.

Setting and Capturing and
understanding understanding
the goal the data

Data
Preparation

Model
Deployment

Model
Evaluation

Figure 3-1 Predictive Analytics Process

For predictive analytics to be successfully implemented, each phase of the process in Figure
3-1 needs to be accomplished before moving on to the next stage. To achieve the stages of the
process, a predictive analytics modelling framework presented in figure 3-2 was designed and
used to successfully build, implement and deploy the predictive analytics model security risk

analysis and management of threats for virtualised systems in cloud computing.
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3.2 Predictive Analytics Modelling Framework
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Figure 3-2 Predictive Analytics Modelling Framework

The predictive analytics modelling framework is divided into distinctive stages with mini
processes at each stage. The designed framework follows an iterative process which ensures
that all the processes vital to the successful achievement of the set predictive values and goals

of each stage are successfully achieved before moving onto the next stage as each stage needs
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to be checked and validated against the set predictive goals. The process at each stage are

discussed in the section that follows.

Stage 1 Receive Real Time Data

The first stage of the framework is to collect data from the specified sources which in this case,
are the logs of the virtual system deployed on the host of the test environment. The collected
data is analysed and then measured for predictive quality to see if it matches the initial
predictive goals. Supervised learning and data driven algorithms are used to help understand
the relationships and patterns of the collected data that exist in both input and valid output data
to generate the predictive value used to measure against model design and development. The
methods of collecting data may vary according to the discipline. The emphasis on ensuring
accurate and honest collection remains the same in all situations. Many scholars agree with this
opinion (Sapsford and Jupp, 1996a, Sapsford and Jupp, 1996b); they put it that a formal data
collection process is important as it ensures that the gathered data is both defined and accurate
and that subsequent decisions on arguments embodied in the findings are valid. The figure
illustrates the process of ensuring that the correct data is collected before passing it on to stage

2 for processing.

Start

Received Data

No

Does data meet
set predictive Yes Stage 2

goals/values?

Figure 3-3 Data Collection Process
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Stage 2 Data Preparation

The data preparation process at this stage is used to transform the data collected in stage linto
meaningful data that can be used for predictive modelling. Data preparation process is the
gathering, cleaning, and integrating of the collected data into a single file or data table, with
the purpose of using it in both exploratory and predictive analysis. The results from the first
stage of the predictive analytics modelling process are used to prepare and transform the data
into the relevant format for analysis. This stage of the framework is used in handling
unstructured, inconsistent, and/or unstandardized data by combining data from multiple
sources by using data analysis algorithms such a classification and regression to check the data
for missing values and creating an intuitive workflow, validation, transformation and backflow
of cleaned data. Variables, and other elements relevant to meet the predictive goals are either
added or removed from the dataset. The data is finally checked to ensure it falls between the
set predictive values. This determines whether the missing values are added to the predicted
observations or are reserved for model training. The final data is partitioned into three parts;
the first for the training the model, the second dataset is used to evaluate performance of the

final predictive model and the last dataset is used in the validation stage for model testing.

Figure 3-3 shows the relationships between the data collection and data preparation processes.
The first two processes are carried out in an interactive way until the relevant data is extracted

and the predictive value determined.
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using Predictive Tools
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Generate Predictive Walues
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Calibrate Virtual Machines

Figure 3-4 Data collection and Data Preparation Processes

Stage 3 Model Design

At this stage, the prepared data set is analysed further, validated and tested to ensure it meets
the set predictive value. The data is calibrated with the virtualised system by comparing real
time values of the data is different from the set predictive values if so the predictive valuesare
updated according before building the model if not the data needs to be rechecked against the
time data of the virtualised system. Machine learning algorithms like classification and
regression algorithms are used to transform the results into knowledge. Input and output
predictive values for supervised learning are set. Supervised learning techniques are applied at
this stage where the set input values are fed into the training model and the results measured
against the set predictive output values. Graphs such as box plots and scatter plots are used to
illustrate the results. The model is then built using predictive analytics modelling techniques

such as linear regression which is used to build the predictive model and logistic and Naive
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Bayes used to test and validate the built model. Time series is used to determine the time value

of the built predictive model.

Figure 3-5 below illustrates the data analysis and modelling processes highlighted above.

BEGIN

v

Process real time data of the Virtual Machine Monitor

v

Compare the processed real time data showing the current status of the
VMM with the corresponding output Values of updated VMM

v

Calibrate the Virtual Machine with real time data from the VMM

l

Update the Virtual Machine Monitor according to the data

y

Generate a real time report of the Virtual Machines status in response to
the comparison

!

END

Figure 3-5 Data analysis and Model Design

Stage 4 Model Evaluation and Testing

Model Evaluation is an integral part of the model development process. Model evaluation at
this stage helps to find and choose the best model that represents the available data and how
the best-chosen model will work in future. At this stage two methods (Holdout and Cross-

Validation methods) of evaluating the model are followed.
In the Holdout method, the large dataset is indiscriminately divided into three subsets

1. Training set that is used to build the predictive model.
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2. Validation set, which is used to assess the performance of the model, built in the training
stage. This provides a test platform to fine-tune the built model and its parameters to
help select the best values for model.

3. The last set is the test set which is also known as the unseen example. This dataset is
used to assess the likely future performance of a model. Model Evaluation is divided
into two sections: Classification Evaluation and Regression Evaluation (Mavrogiorgou

etal., 2017).

The predictive accuracy is measured using the third set of data obtained in the data preparation
stage to validate the model and to test the predictive value of the model. The model is then
assessed for overfitting by comparing the training data with the output data obtained in the
early stages of the predictive modelling. The early stages of the framework is continuously
revisited and predictive tests carried out to ensure that the predictive value initially set, has

been met. The final model, depending on its predictive accuracy, is then implemented.

Figure 3-6 below illustrates the model evaluation and testing process of the predictive analytics

modelling process.
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Figure 3-6 Model Evaluation and Testing

Stage 5 Implementation

Stage 5 is the most important phase of the predictive modelling framework as it determines
whether the designed predictive analytics model meets the set predictive goals of the project
before it is finally deployed into a live virtualised system. There are so three main
implementation methods available but pilot implementation method is used. This allows the
predictive model to be implemented on the setup experimental environment and then tested for
predictive accuracy before it is actually goes live. This ensures that the predictive model is built
and implemented correctly and the results meet the set predictive goals which is accurate attack
prediction in his case. The process followed implemented in this stage is illustrated in figure

3-7 below.
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Figure 3-7 Implementation Process
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The tested against the set predictive values in Once predicve deployed into the live real time

virtualised system in cloud computing and then monitored for performance.
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Model Deployment

Model Deployment provides the possibility to position the analytical results in the everyday
decision-making process for insightful decision making, reports and outcomes by automating
the decisions based on the modelling. The developed model will be deployed on the virtual
system that will be created to test the hypothesis. This will include monitoring and testing the
model for predictive accuracy from the data collection in stage one where data is collected from
the virtual environment and then passed on for preparation in stage two. In stage two, simple
analytics are carried out to prepare the data for predictive analytics and tested to ensure the data
meets the required values for predictive modelling before passing on to the third stage where
the actual predictive modelling is carried out. The model is designed and calibrated with the
virtualised environment to ensure the correct data is used for the predictive value in question,
if not, the data is updated and the model is built accordingly. In stage four, the validation of the
built model is carried out. The model is tested against new data to ensure the correct values are
being predicted and new values are updated and validated accordingly. The final stage five is
where the model is deployed into real life operations of the virtual environment. Deployment
is the most difficult and time-consuming part of the process, as the model needs to be
reconfigured and reprogrammed if programming is used to build and deploy the model. This
can cause some functions of the model to stop working properly. The process continues in an

iterative manner until the results of the predictive model are satisfactory.

To help follow through and accomplish the stages of the framework effectively, a data flow

diagram was designed as shown in Figure 4-4.

3.2.1 Data Flow Diagram

The processes of the data flow diagram are explained in the subsection that follows. This

highlights the tools and techniques used at each stage of the process that will lead to the
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successful achievement of the proposed project’s goal. Data collected from the IDS, logs and
monitoring tool is then analysed and defined into relevant formats in order to generate the

predictive data. This data is then used to design a model, which is then evaluated, tested and

deployed.

Data Flow Diagram

g-‘

Figure 3-8 Data Flow Diagram
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3.3 Choice of platform for Predictive Analytics

Predictive analytics, being the focus of this project, requires a platform that is not only efficient
and effective but also indispensable for efficient deployment of the predictive model in
question. In order to achieve the goal of the project a number of tools and techniques are used
in this project. For predictive analytics a combination of data science technologies like Weka,
R and Python together with its tools were used for data collection, preparation processing and

analysis.

3.4 Choice of Virtualisation

Virtualisation comes in so many forms and platforms. For this project, Virtual Box
implemented on Ubuntu was used as the choice and platform for virtualisation. Virtual Box is

a free and open source hypervisor that can be installed on a number of host operating systems.

3.5 Experimental Environment for Predictive Analytics Modelling

To successfully design, build and implement the security predictive model in question, an
experimental environment for the simulation of attacks, was set up as illustrated in Figure4-1.
The diagram provides an overview of the architecture with the various tools and techniques
that were put together to assist with the achievement of the project in question. The attack
detection process, the detection infrastructure and finally the computational process of the

detection process where also established as highlighted and discussed later in the chapter.

3.5.1 Architecture Overview

By Architecture Overview, we mean the fundamental organisation of a system, concretised in
its components and their relationships to each other and the nature and rules that govern its

design and evolution (Platt, 2002).
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For the project, we implement and provide the architecture in Figure 3-6, which illustrates an
overview of the set-up environment for the simulation of experiments, data collection and

reporting.

Figure 3-9 Architecture Overview

3.5.2 Application Programming interface

The main purpose of the application-programming interface (API) is to provide a platform that
allows for robust tailoring of the defined process specifications. The API is made up of defined
methods and processes that provide a set of definitions, protocols and tools to help build the
predictive model. The API used in this case is Python because of the vast selection of libraries

and tools that the project needed for successful completion.

3.5.3 Reporting

The reporting tool is used for presenting and visualising the findings of the simulated
experiments. Reporting tools enable users to represent the results of any analysis using various
graphical representation such as plots, graphs or even charts. The reporting tools used in this
project are R, Weka and Zabbix, which is the external monitoring tool have been used to help
visualise the results for predictive modelling. Both R and Weka have been chosen as choices
for reporting because they both provide an environment for statistical computing like linear

and non-linear modelling, time series analysis, classification and clustering which is relevant
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to the project. Zabbix has been chosen for its real time monitoring and visualisation

capabilities.

3.5.4 Analytics Tool

An analytics tool provides the user the ability to exploit the collected data for visualisation and
reporting. An analytics tool is used to analyse data for actionable insights. Analytics tools can
be used for experiments and experimental design. They are techniques used to validate strategic
hypotheses, spot patterns, determine and measure relationships between two separate variables.
Analytics tools can also be used for regression analysis, scenario analysis and time series
analysis. Weka together with R, due to their ability to do all the above are the choices of

analytics tools used in this project.

3.5.5 Monitoring and Data collection tool

Monitoring of the system is an essential part of this project because it provides an overall visual
representation of what is happening in the set up virtualised environment. Monitoring logs the
activities of the virtualised systems, which are used to compare with the results from the
analytical tool to help verify the predictive goal. Data collection is the process of logging the
raw data of the system’s activities, which is used for analysis, reporting and visualisation. Data
collection involves the process of identifying and extracting log files from the virtual
environment. This is done using several tools like database, through the monitoring tool and
through the API where data is pre-processed into a format that can be used by machine learning

algorithms.

3.5.6 Database

The database is used for keeping the collected data logs and matrices of the simulated

experiments. Two databases are used in this case; one database is from the monitoring tool side
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and the other one is installed on the attack simulation tool. The use of two databases helps

compare the two logs of data through analysis for validation purposes.

3.5.7 Host and VM Monitored Matrices

Ubuntu is used as the host for the virtualised environment and virtual box as the
virtualisation. The matrices being monitored are the incoming network traffic that is the
number of packets in and out of the network as well as the performance of the system in

general most specifically the web application services.

3.6 Summary

To sum up, the chapter has presented the architectural overview of the set-up environment for
the intended experiments. The components of the architecture have been defined and the
purpose for each used component has been highlighted. The chapter also discusses the
methodology followed in this project that helped in the achievement, implementation and
adoption of predictive analytics as a security tool for managing security in virtualised
environments. The choice of platform used for predictive analytics together with the choice of

virtualisation used are also discussed this chapter.

To prepare for predictive analytics, data was collected from the set-up environment through
the simulation of attacks as presented in chapter 5, which discusses the attack simulation

process for data collection and the generation of the required dataset for predictive modelling.
4. Simulation of Attacks for Data Collection.
4.1 Introduction

Attack simulation as the name suggest is the assimilation of real-life cyber-attacks on
virtualised systems using a test environment. Effective design, implementation, testing and
analysis of the simulated attack environment require a combination of components and an

assortment of tools and techniques. The tools and techniques highlighted and reviewed in
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Chapter 4 are used to demonstrate the development and simulation of attack scenarios in this
project. Simulation of attacks is carried out on a test lab set-up on Ubuntu as a host and virtual
box as a platform for virtualisation. A number of virtual machines are installed onto the
platform and these are used to simulate attacks. Kali Linux, because of the vast collection of
tools and techniques it offers, is used to carry out various attacks on the installed virtual
machines as well as for intrusion detection and prevention techniques. A successful attack
simulation requires knowledge and understanding of the target system, together with the
knowledge of the network, the platform and the methods to handle imperfect knowledge of the
target systems and networks. Creating a simulation with a high probability of success for
example, demands knowledge of the target system’s IP address, network topology or/and
domain names if the attack is against the known network, or user names, architecture type

services running on a system and ports if the target is the host.

Attack simulation has two main processes; vulnerability assessment, which is a step by step
process of assessing system risks and vulnerabilities and penetration testing, which is the actual
process of performing attacks on the vulnerable system. Knowledge of these vulnerabilities
can be achieved through foot printing and/or scanning of passive and/or active virtual machines
which leads to intelligence gathering. Intelligence gathering allows the attacker to learn more
about the target system. Running attack simulations in a virtualised environment requires the
system to be able to reset and reconfigure the simulation environment rapidly. It also requires
a list of configurable options for various effects, a set timeline for activities together with their
execution, knowledge of vulnerabilities of the target network or system and the ability to test

the simulation.

e Resetting and Reconfiguring — this is the situation where the simulation environment

has the ability to be reset or reconfigured as quickly as possible after an attack has been
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simulated. This should allow components to be added, removed or modified with new
parameters and the results to be saved and captured for each participating simulation.

e List-of-Configurable — this provides a list of modules to be used in the simulation. New
tools can be developed to supplement old tools to provide for enhanced simulations.

e Timelines — being able to see the timeline of different activities of the simulation is
key. Attack simulation behaviours and activities can be added to the module.

e Knowledge of Vulnerabilities — attacks are usually focused on networks and systems
that are vulnerable. In order for the attacker to conduct a successful attack, knowledge

of the target system is required.

The experiment environment was set up on Ubuntu as illustrated in Figure 5-1 below. The
environment has three main components identified as the virtualised systems, which represents
all the virtual machines installed for the simulation of attacks; the data processing, analytics
and management, which involves all the attack simulation processes from data collection, data
preparation, classification, analysis and management; and lastly results visualisation,
presentation and reports. The host gateway is the virtual network of the host system and the
installed virtual machines. This network is important because it provides the necessary network
topology needed for the simulation of the distributed denial of service attacks that the project

focuses on.

Set up Attack simulation Testbed
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Figure 4-1 Experiment Environment

Attack Simulation Framework

There are a number of attack simulation approaches and frameworks available. These are
mainly based on the attacks being simulated and the environments where these attacks are
simulated. The proposed attack simulation framework (ASF) has been benchmarked with the
other standard frameworks. There are three main steps in this framework as illustrated in Figure

5-2.

Virtualised

Detection Response

Att;ck Simulation

Figure 4-2 Computational Process



The three steps (Attack Simulation, Detection and Response) of the framework in figure 4-2

arc:

1.

Attack simulation - which is where the initial steps of attack are coined. At this stage,
the target system is identified by foot printing and scanning the existing virtual network.
The methods and policies for data collection are set and the type of intended attacks for
the target system are identified by the attacker. The main purpose of this stage of the
project is to help generate relevant data logs needed for analysis and visualisation in
preparation for predictive analytics.

Detection — this is where an attack or exploit of the system is discovered on the target
system side. Identification or detection of an attack is done with the help of an intrusion
detection system (IDS) which uses analytical methods to scan through the collected
data to determine whether an attack occurred or has been successful. This stage of the
framework is important especially for this project because it helps to prove that the
intended attack or exploit has actually been successful.

Response — this is the final stage of the framework where a possible response to the
attack, depending on the set policies, is developed. The response to the attack comes in
various forms like stetting the security measures of the systems, for example the use of
IDS to help sniff out the attacks, the use of an antivirus depending on the kind of attack.
This stage is where predictive analytics would come in, in terms of this project. If
achieved, predictive analytics can be used to predict attacks using the vulnerabilities

and network activities of the target system.

The three main stages of the simulation framework are applied in the form of experiments and

results are highlighted in the next part of the section that follows. Figure 4-3 breaks down the

activities of the simulation framework.
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Figure 4-3 Simulation Framework Activities

4.2 Attack Simulation

Attack simulation, due to the nature of the project scope, is carried out on the experimental
testbed set up in the lab. The test environment is set up on Ubuntu machine as the host with
virtual box as the choice of virtualisation. A number of virtual machines used mainly with
different operating systems are also installed on virtual box. Although a number of VMs are

installed for experimental and data generation purposes, only Kali Linux and Metasploitable

are used to the simulation of attacks.

Kali Linux is used as an attacking system because of the various tools it offers. There are a

number of tools available, only a few explained below were used to achieve this project.

1. Information gathering — these are tools that gather various information about the
target system or virtual machine. There are a number of tools for information gathering.

e Hping3 Package Description is a command line TCP/IP packet assembler and
analyser. The interface is inspired by the ping(8) Unix command although

hping3 does not only send ICMP echo requests it also supports TCP, UDP,
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ICMP and RAW_IP protocols and has a traceroute mode with the ability to
send files between covered channels. Hping3 can be used for firewall testing,
advanced port scanning and remote operating system fingerprinting among
others.

Nmap known as network mapper is used for network discovery and security
auditing.

dnmap Package Description is a framework that distributes nmap scans
among several clients.

Amap Package Description which is the next generation scanning tool that
attempts to identify applications running on various ports other than the normal
port. It also identifies non-ascii applications by sending trigger packets and
listening for responses in the list of response strings; an example of this is

shown in the figure below:

2. Vulnerability Analysis

Nmap is not only used for network discovery and security auditing it can also
be used to determine hosts available on the network, what services the hosts
are running, the host’s operating system as well as the packet filters that the

hosts are in using.

3. Exploitation tools

Metasploit framework is a platform that provides the infrastructure, content and
tools to enable the user to exploit and validate vulnerabilities.

Armitage is a scriptable collaboration tool for metasploit that visualises targets,
recommends exploits and exposes the post-exploitation features in the

framework

4. Forensic tools
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5 Sniffing and Spoofing
e Wireshark is the network protocol analyser that provides an insight of what is
happening on the network at the lowest level. Wireshark performs inspections
of the protocols while adding on more. It performs live capture of the network
activities and allows for offline analysis. It also has rich VoIP analysis.

6. Reporting Tools

Metasploitable with all its vulnerabilities is the target system.

4.3 Information Gathering

Information gathering is the first stage of the project. Information gathering can be achieved
by using different tools like Nmap or Hping3 as explained in the earlier chapter. Nmap as
described is used to find available hosts on the network. Hping3 on the other hand is used as
an advanced ping tool that has the ability to bypass any firewall to use TCP, UDP, ICMP and
RAW-IP protocols. For this project both Nmap and Hping3 are used for information gathering.
Before any attack is planned or launched, it is essential to find out more information of the
existing systems on the set-up virtual network. Information gathering helps to identify possible
vulnerabilities of existing systems, which helps to identify the type of attack for each
vulnerability. To do this, scans of the network are carried out to determine the IP address of
the existing systems. Metasploit framework a pre-installed tool in Kali Linux is used for

information gathering.

Using Nmap to scan all available systems on the network, the following command is issued

Nmap —sn 192.168.56.100-105

The results are displayed below
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Listing 4-1 Scan Results for available Systems on the Network

These results in Listing 5-1 give an insight of the systems that are running on the virtual
network. Having identified the IP addresses, a vulnerability scan is carried out to help identify

vulnerable machines on the system.
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A full vulnerability scan for all systems is carried out using the command below:

Nmap 192.168.56.100-105

= VirtualbB rirtual MNIC)

irtualB rirtual NIC)

Listing 4-2 Results for full Network Vulnerability Scan

Listing 5-2 above shows the results of a vulnerability scan of three IP address 192.168.56.101,
192.168.56.102 and 192.168.56.104. The system with IP address 192.168.56.101 shows many
open ports as compared to IP addresses 192.168.56.102 and 192.168.56.104. This shows that
the system with IP address 192.168.56.101 is vulnerable and therefore is the target virtual

machine.

To find out more about the ports and the services running on the target system an aggressive
scan of the targets TCP ports using Nmap is carried out. The following Nmap command can

be issued.

Nmap —p- -A 192.168.56.101
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Where “p” is the parameter that indicates all the TCP ports that need to be scanned which is all
ports in this case. A is for the aggressive scan of the target to find out all the open ports for the

running services.

PIPELINING, SIZE 10

ain/o

nner time.

Ubuntu) D

Listing 4-3 Aggressive scan Results of the Target System 1

Listings 5-3 above and 5-4 below show results of a more aggressive scan of the target system.
The two results show more details of the target system with the open ports and services running
on each port for example port 513 shows the authentication port is open and vulnerable for
escalation of privilege attacks and port 2121 and 3306 on the other diagram shows an openftp

and an open port for MySQL database.
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Listing 4-4 Aggressive scan Results of the Target System 2

Equipped with the information of the target system, different attacks targeting different
vulnerabilities can now be launched. There are four main attack categories under consideration
in this project. These types of attacks encapsulate a general overview of the attacks identified
for the target system. A brief description in the following section helps understand the various

types of attack.

431 Types of attack

There are a number of attack categories available in the computing world. These attacks can
be classified in different ways based upon the methods, capabilities and attack vectors that can
be used. These types of attacks can be grouped into four main categories named Foot printing,
Access, Denial-of-Service and Data Manipulation. These attacks are directed at all the
components of the system and in turn affect the benefits that virtualisation promises whichare

confidentiality, integrity and availability.
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Foot printing — these attacks focus on information gathering. Information gathering
in these kinds of attack does not directly compromise the targeted system but creates a
situation or a platform for other attacks. The aim of this kind of attack is to gather
intelligent information that leverages available information such as network
information for the target system. Another way of gathering inelegant information in
this type of attack is by using network and port scanning techniques such as Nmap.
Data gathered with this kind of techniques includes connectivity of host systems, server
status together with their security settings and computer architecture employed. For
example, running an Nmap command together with the IP address of the target system
in Kali Linux will provide enough information of that system for the attacker to assess
if the system is vulnerable or not.

Access - This type of attack aims at gaining access to an unauthorised system or
elevating privileges to computer resources. Access attacks use password-based
methods such as brute force techniques among others to try to determine user
passwords. Phishing techniques are common methods used to gain privileged access
to a target system.

Denial of Service - The common method of Denial of service (DoS) attacks is to flood
the targeted system with unnecessary requests so that it cannot be reached by legitimate
users. These kinds of attacks compromise the availability of computer systems to the
intended users. It makes it difficult for the end users. Multiple computers can also be
used in a more aggressive form of denial of service. This form of aggression is called
distributed denial of service. There is another type of denial of service called buffer
overflow. This exploits software flaws that allow input of a field or a parameter into

an application to make it accept large volumes of data causing it to overwrite legitimate
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system data called the execution stack with invalid inputs and malicious code. The idea
is to deny the proper end users the services that they need.

4. Data Manipulation - These types of attacks exploit network communication protocols
by compromising the integrity of the system’s data. This attack manipulates the needed
data. Techniques used in this type of attack are IP spoofing, man-in-the-middle and
session hyper-jacking attacks among many others. In IP spoofing, the attacker
impersonates the host system to deceive the defensive packet filtering schemas. With
Man-in-the-middle attacks, the attacker places themselves in between the source and
the destination of the network communication. This makes it difficult or impossible for

the end users to access the services that they need.

All the four attack categories explained herein are used to help generate the needed dataset for
predictive analytics. Considering the results obtained in information gathering all the described
attacks can be launched onto the target machine, but for the sake of demonstration purposes
only a few described below are illustrated and presented in this document. The results together

with the data generated from these experiments are also shown at the end of the section.

80



List of Executed attacks and Duration

Attack Tools Used Duration  Attacker Target
of
Attack

DoS attack | Hping and | 24 hours | Kali Metasploitable
SYN Flood Linux

Web Slowloris 48 hours | Kali Debian Web Server

Application Linux

attack

BruteForce | FTP- 24 hours | Kali Metasploitable

attack Patator Linux

Infiltration | Nmap and | 24 hours | Kali Metasploitable
Hping Linux

Table 4-1 List of Executed Attacks

Denial of Service (DOS) attacks: For DoS attack scenario, SYN Flood auxiliary using
metasploit and Hping3, both tools in Kali Linux are used. SYN floods are a type of attack that
sends huge amounts of Sync to consume all the available resources of the target system. SYN
is known as half-open scan because it does not complete the TCP three-way handshake. In this
kind of attack, an attacker sends a SYN packet to the target system and waits for a response; if
a SYN/ACK frame is received it is assumed that the connection to the target is complete and

the port is listening as illustrated in the Figure 5-4.

SYN and Target Port number

Attacker 2 A e > Target
SYN/ACK
- mmmmmmmmmmmmmmmsmsmsommsooooosooooosoooooSoooooooooooo
RST
___________________________________________________________ >
Port is Open

Figure 4-4 Complete SYN/ACK Connection to Target

81



If it receives an RST then the target port is assumed closed or not active as illustrated in Figure

5-5
Attacke Target
L SYN and-Target-Port momber """ >
SYN/ACK
4 _______________________________________________________
RST
< _______________________________________________________
Port Closed

Figure 4-5 Incomplete SNY/ACK Connection from Target

Hping3 on the other hand is a packet generator and analyser for the TCP/IP protocol.

Brute Force attacks is another form of attack that is used to obtain private user information
such as usernames, passwords and personal identifications. There are a number of tools
available for brute force attacks like metasploit, Nmap scripts, Hydra to name but a few. For
this attack, Kali Linux is used as the attacker is aiming its attacks at the FTP and SHH of the

target system Metasploitable.

Infiltration attacks in this attack scenario a vulnerable application is exploited. The target
system is sent a malicious document through email and using the metasploit framework a
backdoor is opened and executed on the target system. The open backdoor allows the targetto

be attacked using IP sweep, full port scan and service enumerations using Nmap.

4.3.2 Preparing for the Simulation of attacks

Attack simulation as explained in earlier chapters is done on a localised virtual environment
set up in the lab. Ubuntu platform is used as the host and virtual box for virtualisation. Due to
the nature of the project, the attacks simulated are those that are unique to virtualisation as the
main aim of the project is to design and implement a predictive model for these attacks. To

carry out an attack therefore, a quick scan of the vulnerable or target system is done using an

82



Nmap command to help determine the open ports that are needed to carry out the various
attacks. Take DoS attack for example, the TCP port 80, which is an HTTP port, is what is

required for the attack.

Nmap 192.168.56.101

WVirtualBox wirtual MNIC)

Listing 4-5 Targeted Port Scan

4.3.3 Attack Simulation

There are a number of attacks unique to virtualisation that are highlighted here, but the most
relevant and the ones demonstrated in this project are DoS attacks. Due to the nature of the
project, it is important to note that only a few attacks like DoS, Infiltration, botnet, application
and web attacks are discussed but only DoS attacks are simulated. The rest are beyond the
scope of the project. Simulation of these attacks is carried out in a systematic form to help
generate the data required for explanatory data analysis (EDA) that leads to predictive

analytics and then to the design and implementation of the predictive model in question.
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There are a number of tools (hping3, auxiliary synflood and slowloris to name but a few)
available on Kali Linux to assist with DoS attacks. DoS attack simulation using auxiliary

synflood is demonstrated in the section that follows.

1. DoS Using Auxiliary Synflood

To launch a DoS attack using auxiliary synflood: A synflood attack is a DoS attack used to
send huge amounts of sync to consume all resources of the target system. To do this, the target
system using the IP address is set as the host and the target port, which is port 80, in this case

is set in metasploit as shown in the figure below.

EHOST 192.168.56.101\r

01

Listing 4-6 Preparing the Target Host and Port for Attack

To ensure that the target system and the port are set, a quick show option is done in auxiliary

mode as shown in the Listing 5-7 below.

msf auxiliary( ) > show optionshr

= unlimited)

e rand

msf auxiliary|

Listing 4-7 SynFlood attack Environment

Listing 5-7 shows that the target host represented by RHOST with the IP address
192.168.56.101 is active and the target port represented by RPORT with port 80, both

confirmed with a “YES” is active and ready for attack. Once the confirmation was positive
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DoS attacks were then launched using the methods highlighted above to generate data for the

dataset. DoS attacks are achieved using SYN flood tools available in Kali Linux.

In order to generate enough and meaningful data for evaluation, an Intrusion detection system
(IDS) together with an Intrusion prevention system (IPS) both available tools in Kali Linux
were also used. The data generated mimics real life attacks, which target various IP addresses
and ports. Due to lack of diversity in traffic-data and lack of volume representing attacks,
several attacks (DoS, Brute Force, Web Application, Infiltration and Botnet) explained in the
beginning of the chapter were simulated and results collected and stored. The final dataset was

put together by combining several results of the experiments collected from the IDS and IPS.

4.4 Data Collection

Data collection is a systematic approach of gathering and measuring information collected from
various sources like IDS and IPS and activity logs. Data collection enables relevant questions
to be answered (Miiller et al., 2016) for example the data collected in the simulation will allow
for exploratory data analysis and big data analysis to be carried out which in turn will lead to
building the prediction analytics in question to be answered. Data collection for this process
involves analysing, testing and evaluating packets captured by Wireshark as well as logs of the
intrusion detection and prevention systems with a focus on network anomaly detection. The
objective of this process is to develop a systematic approach in generating a diverse dataset for
attack simulation based on the available profiles that contain abstract representation of the
simulations and behaviours of the network during simulation. Various simulation results, each
with unique features, are combined to form a dataset. The dataset focuses on DDoS attack
scenarios with one attacking system and two active target systems one of which has many
vulnerabilities and the main target for the simulation of DDoS attacks. The generated dataset
contains details of attacks for applications, protocols and lower level network entities. The

features are distributions of packets sizes, the flow of packets, patterns of payloads and the
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request time of packet distribution. Simulated protocols are HTTP, FTP and SHH with the

majority of traffic being HTTP.

Table 6-1 below shows the simulated attacks, the target and attacker IP addresses.

192.168.56.105

Attacker IP Target IP Activity
192.168.56.103 192.168.56.101 Port Scan
DDoS
192.168.56.103 192.168.56.102 Port Scan

Table 4-2 Simulated Attacks with Attacker and Target IP address

The attack simulation process, due to the limitation of resources, was carried out within a 24-
hour period and this involved launching DDoS attacks at intervals and a continuous scan of
various or available ports. Several datasets where generated although for demonstration
purposes only results for a day’s simulation are shown and used in the building of predictive
models including time series modelling. A sample of the generated dataset exported into an
Excel spreadsheet is shown in appendix i. The raw data collected is converted into a CSV file

format that can be imported into an analytical tool. A sample of the csv data file is shown in

Figure 6.3 below. The full dataset is shown in appendix ii.
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Sample Data imported into an analytical tool

Relation: DDoSdataset
No. 1: Label 2: Source IP 3: Source Port 4: Destination IP 5: Destination Port 6: Protocol 7: Timestamp 8: Flow Duration 9: Total Fwd Packets 10: Total Backward Packets 11: Total Length of Fwd Packets 12: Total Length of Bwd Packets 13 Fwd Packet Length Max 14: Fwd Packet Length Min 15: Bwd Packet Length Max 16:

Nominal  Neminal Numeric Nominal Numeric. Numeric  Nominal Numeric. Numeric Numeric Numeric: Numeric. Numeric Numeric Numefic.
. Benign 192168 38579.0 192.168.56.1 530 17.0° 2011012019, 185.0 20 20 88.0 188.0 440 440 940
. Benign 192168 415050 192.168.56.1 530 17.0° 2011012019, 2170 20 20 1020 2240 510 510 1120
. Benign 192168 5542100 192.168.56.1 530 17.0° 2011012019, 186.0 20 20 88.0 188.0 440 440 940
. Benign 192168 160920 192.168.56.1 530 17.0° 2011012019, 195.0 20 20 88.0 188.0 440 440 940
. Benign 192168 55056.0 192.168.56.1 280 17.0° 2011012019, 10020 20 20 29440 5780 14720 14720 289.0
. Benign 192168 582500 192.168.56.1 280 6.0 291102019 1070 10 40 00 120 00 00 6.0
. Benign 192168 14390 192.168.56.1 530 17.0° 2011012019, 3610 20 20 80.0 1800 400 400 900
. Benign 192168 173100 192.168.56.1 530 17.0° 2011012019, 1820 20 20 640 158.0 320 20 790
. Benign 192168 105130 192.168.56.1 530 17.0° 2011012019, 199.0 20 20 1020 2240 510 510 1120
. Benign 192168 4402210 192.168.56.1 530 17.0° 2011012019, 180.0 20 20 640 9.0 320 20 480
. Benign 192168 335200 192.168.56.1 530 17.0° 2011012019, 2010 20 20 640 9.0 320 20 480
. Benign 192168 648710 192.168.56.1 530 17.0° 2011012019, 2190 20 20 1020 2240 510 510 1120
. Benign 192168 61169.0 192.168.56.1 530 17.0° 2011012019, 2130 20 20 88.0 188.0 440 440 940
. Benign 192168 304710 192.168.56.1 530 17.0° 2011012019, 256.0 20 20 640 158.0 320 20 790
. Benign 192168 491570 192.168.56.1 530 17.0° 2011012019, 186.0 20 20 88.0 188.0 440 440 940
. Benign 192168 602330 192.168.56.1 530 17.0° 2011012019, 27100 20 20 640 158.0 320 20 790
. Benign 192168 42590 192.168.56.1 530 17.0° 2011012019, 2390 20 20 640 158.0 320 20 790
. Benign 192188 36368.0 192.168.56.1 880 17.0° 201012019, 4750 20 20 3560 3580 1780 1780 1790
. Benign 192188 3442200 192.188.56.1 530 17.0° 201012019, 2830 20 20 760 1760 380 380 880
. Benign 192188 434830 192.188.56.1 530 17.0° 201012019, 2200 20 20 1380 2380 69.0 69.0 1190
. Benign 192188 504530 192.168.56.1 880 17.0° 201012019, 7830 20 20 5040 28840 2520 2520 14420
. Benign 192188 64905.0 192.168.56.1 530 17.0° 201012019, 1840 20 20 880 1880 440 440 940
. DDos 192188 49790.0 192.188.56.1 200 6.0 29102019 9850764.0 40 00 240 00 60 6.0 00
. DDos 192188 497910 192.188.56.1 200 6.0 29102019 824620 30 60 260 11607.0 200 00 5840.0
. DDos 192188 497910 192.188.56.1 200 6.0 29102019 9548776.0 40 00 240 00 60 6.0 00
. DDos 192188 497920 192.188.56.1 200 6.0 29102019 123640 30 50 260 116010 200 00 73000
. DDos 192188 497920 192.188.56.1 200 6.0 29102019 96337400 50 00 300 00 60 6.0 00
. DDos 192188 497930 192.168.56.1 200 6.0 29102019 131900 30 50 260 116010 200 00 5840.0
. DDos 192188 497930 192.168.56.1 200 6.0 29102019 9528804.0 40 00 240 00 60 6.0 00
. DDos 192188 497940 192.188.56.1 200 6.0 29102019 128140 30 60 260 116010 200 00 43800
. DDos 192188 497940 192.188.56.1 200 6.0 29102019 9529835.0 40 00 240 00 60 6.0 00
. DDos 192188 497950 192.168.56.1 200 6.0 29102019 127420 30 50 260 116010 200 00 5840.0
. DDos 192188 497950 192.168.56.1 200 6.0 29102019 9629928.0 40 00 240 00 60 6.0 00
. DDos 192188 497960 192.168.56.1 200 6.0 29102019 131540 30 40 260 116010 200 00 8760.0
. DDos 192188 497960 192.168.56.1 200 6.0 29102019 9627768.0 40 00 240 00 60 6.0 00
. DDos 192188 497970 192.188.56.1 200 6.0 29102019 131110 30 40 260 116010 200 00 86750
. DDos 192188 497970 192.188.56.1 200 6.0 29102019 9526785.0 50 00 300 00 60 6.0 00
. DDos 192188 497980 192.188.56.1 200 6.0 29102019 87727800 50 00 300 00 60 6.0 00
. DDos 192188 49799.0 192.188.56.1 200 6.0 29102019 8544320 30 50 260 116010 200 00 5840.0
. DDos 192188 49799.0 192.188.56.1 200 6.0 29102019 87707940 40 00 240 00 60 6.0 00
. DDos 192188 49800.0 192.188.56.1 200 6.0 29102019 8544350 30 50 260 116010 200 00 73000
. DDos 192188 49800.0 192.188.56.1 200 6.0 29102019 8773787.0 50 00 300 00 60 6.0 00
. DDos 192188 498010 192.188.56.1 200 6.0 29102019 8544840 30 50 260 116010 200 00 5840.0
. DDos 192188 498010 192.188.56.1 200 6.0 29102019 8771788.0 50 00 300 00 60 6.0 00
. DDos 192188 498020 192.188.56.1 200 6.0 29102019 8401180 30 60 260 11607.0 200 00 73000
. DDos 192188 498020 192.188.56.1 200 6.0 29102019 8770487.0 40 00 240 00 60 6.0 00

Figure 4-6 Sample of the Dataset imported into Weka

The csv file in Figure 6-3 is imported into an analytical tool in this case WEKA and a sample
of the snapshot of the imported data is shown in Figure 6-4 below. The imported dataset
illustrated in figure 6-4 has 31 attributes with 159,958 instances. There are two nominal values
or labels identified as DDoS and benign values. The DDoS values represent the attacks being
simulated whereas the benign values represent all the other traffic going through the network.

The two labels or attribute values are represented as red for DDoS and blue for benign values.

Figure 6-4 shows all the attributes together with all the instances of these attributes based on

the activities of the class attributes.
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Dataset imported in WEKA represented as a CSV file.

Current relation

Selected attribute

Relation: DDoSdataset

Aftributes: 31

Name: Label

Type: Nominal

Instances: 159703 Sum of weights: 159703 Missing: 0 (0%) Distinct: 2 Unique: 0 (0%)
Attributes No | Label | Count | Weight
1 Benign 51483 51483.0
2 DDoS 108220 108220.0
l All J { Mone J l Invert J l Pattern J
Mo | | Name
Source IP
Source Port

Destination IP
Destination Port
Protocol

Timestamp

Flow Duration

Total Fwd Packets

Total Backward Packets
Total Length of Fwd Packets
Total Length of Bwd Packets
Fwd Packet Length Max
Fwd Packet Length Min
Bwd Packet Length Max
Bwd Packet Length Min
Fwd Header Length
Bwd Header Length
Fwd Packets/is

Bwd Packetsis

Min Packet Length

Max Packet Length
Packet Length Mean
Packet Length Std
Packet Length Variance
FIM Flag Count

SYN Flag Count

ACK Flag Count
Down/Up Ratio

Average Packet Size
act_data_pkt_fwd

e 1= - R e e I B R o T o B =R B A= I & [ S P XY
ansasasasaasansaaanaaaaananannn

[ O B O N R N g gy

[Class. Label (Nom)

'Jl Wisualize All

51453

108320

Figure 4-7 Overview of the Data loaded for Analysis

The first step once the data is read into the analytical tool is to understand how the data is

represented in the dataset as well as to prepare the data for predictive analytics. It is important

to know the type of features that are in the dataset. To do this, the data preparation process is

carried out as described in the following section.

4.5 Data Preparation

The data preparation process is the most important stage of the EDA stage as it provides an

insight of the data and lays a foundation for advanced analytics such as predictive analytics.

The results in Figure 6-4 show that the attributes in the dataset have a combination of values

and the class label has two values known as DDoS and benign. A review of the attributes shows

that some of the attributes are numeric and others are nominal values with differing scales. The
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class attribute is nominal and has two output values meaning that this is a two-class
classification problem and not one as they would normally be. To prepare and understand the
relationship and interaction of the attributes in the dataset features need to be selected and

visualised.

45.1 Feature Selection

Feature selection (FS) in predictive analytics, refers to the process of identifying the most
important variables that help in predicting the outcome of an activity. FS is a process of
selecting a subset of the produced attributes in order to reduce the feature space according to
the criterion. The goal of FS is to reduce the number of features to the relevant features required
for predictive analytics. To select the features, we evaluate the worth of a subset of attributes
by considering the individual predictive ability of each feature along with the degree of
redundancy between them using the best first method. This searches the space of attributes’
subsets by greedy high climbing augmented with a backtracking facility. The forward direction
search method and supervised learning was used with a subset evaluator, 192 subsets were

selected including the locally predictive values as illustrated in Listing 6-1.

Evaluation mode: evaluate on all training data

=== Lttribute Selecticn on all input data ===

Search Method:
Best first.
Start set: no attributes
Search direction: forward
Stale search after 5 node expansions
Total number of subsets evaluated: 191
Merit of best subset found: 0.838

Attribute Subset Evaluator (supervised, Class (nominal)j: 1 Labkel)
CFS Subset Evaluator
Including locally predictive attributes

Selected attributes: 5,11,12 : 3
Destination Port

Total Length of Fwd Packets
Total Length of Bwd Packets

Listing 4-8 Feature Selection Criteria
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The results showing attributes representing the selected features are illustrated in Listing 6-2

below.

=== Run informaticon ===

Evaluator: weka.attributeSelection.CEfsSubsetEval —-F 1 -E 1
Search: weka.attributeSelection.BestFirst -D 1 -N 5
Relation: DDoSdataset
Instances: 159703
Artributes: 31

Lakel

Source IP

Source Fort

Destination IF

Destination Port

Protocol

Timestamp

Flow Duration

Total Fwd Packets

Total Backward Fackets

Total Length of Fwd Packets

Total Length of Bwd Packets

Fwd Packet Length Max

Fwd Packet Length Min

Bwd Packet Length Max

Bwd Packet Length Min

Fwd Header Length

Bwd Header Length

Fwd Packets/s

Bwd Packetsss

Min Packet Length

Max Packet Length

Packet Length Mean

Packet Length Std

Packet Length Variance

FIN Flag Count

SYN Flag Count

ACHE Flag Count

Down,/Up Ratic

Average Packet Size

act_data_pkt__fwd
Evaluation mode: evaluate on all training data

Listing 4-9 Feature Selection

The selected attributes are collectively related to the attack that is simulated, for example, the
source IP and source port represent the IP address where the attack is originating from, and the
destination IP and the destination port represent the target IP address and port for the attack.
The protocol is the TCP protocol under attack. The timestamp and flow duration is the time of
the attack and the duration of the attack before the system shuts down also known as denial of
service. Total forward and backwards packets shows the total number of packets from the
attacking system to the target and the response back from the target to the attacker respectively.
The total length of both the forward and backwards packets is the total number of the packets;
and the maximum and minimum length of the packets represent the maximum number of
packets forwarded to the target and back to the attacker respectively. The maximum and

minimum packet length on the other hand represents the largest and the smallest packet size.
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The packet length is the mean of packets, the packet length standard is the standard length of
the packet and the packet length variance is the variance of the packet. Final flag count is the
total number of packets forwarded as a whole. The SYN and ACK flag are the numbers of SYN
floods forwarded to the target and the total number of acknowledgements of the attacks
received back from the target to attacker. Down and up ration is the time the system stayed up
during the attack against the time the target was denied services.

To understand this a brief description of what each attribute represents, is presented in table

6-2 below.

The selected features in Figure 6-2 are described in the Table 6-2 below.

Feature Name Description

Label Attacks simulated

Source IP Attackers [P Address

Source Port Attackers Port

Destination IP Targets [P Address

Destination Port Targets Vulnerable Port

Protocol HTTP, FTP

Timestamp Time of Attack

Flow Duration Duration flow of Packets

Total Fwd Packets Total number of packets forwarded to the target

Total Backward Packets

Total number of packets received back from target to
attacker

Total Length of Fwd Packets

Length of Packets sent to target

Total Length of Bwd | Length of Packets received back

Packets

Fwd Packet Length Max Maximum number of Packets sent to target
Fwd Packet Length Min Minimum number of Packets sent

Bwd Packet Length Max Maximum number of Packets received

Bwd Packet Length Min Minimum number of Packets received

Fwd Packets/s Number of Packets sent per Second

Bwd Packets/s Number of Packets received back per second
Min Packet Length Size of the smallest packets sent

Max Packet Length Size of the smallest packets received back
Packet Length Mean Mean of packets

Packet Length Std Standard length of Packets

Packet Length Variance Variance of the packets

FIN Flag Count Final flag count of the attacks

SYN Flag Count Total amount of SYNFlood attacks forwarded
ACK Flag Total amount of acknowledged SYN attacks
Down/Up Ration Total time the target was down against the Up time

Average Packet Size

Average size of a forward/backward Packet

Act data pkt fwd

Total acknowledged packets

Table 4-3 Selected Features Explained
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Given the attributes selected in Listings 6-1 and 6-2, it is difficult to understand how the
attributes are associated with the each other or even with the class labels without understanding
how the data is represented in the dataset. To have a clear view of how the data is associated
and how it relates with the class objects, further processing and visualisation of the data is

necessary

4.5.2 Attack Detection Component

The main aim of the detection component is to find attacks and most possibly repel them.
Detecting attacks normally depends on the number of appropriate actions as shown in the
Figure 5-6 below. Prevention of attacks requires a well-selected combination of toolsaimed at
investigating both baiting and trapping threats. Both the host system and the trapping system

are monitored and data generated through the monitoring system is carefully examined.
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Attack Detection Process

Simulation

Analysis ﬂ

Notification

Figure 4-8 Detection Component

4.5.3 Attack detection infrastructure
The core of the detection is the analysis model that is responsible for detecting attacks. The
model contains decision-making mechanisms for the attack. The model receives raw data from

the sensors.

Detection System

Audit Trails and Monitoring Actions

Figure 4-9 Attack Detection Component

Due to the nature of the work involved and the amount of data needed, attack simulations were
carried out over a period in short simulation bursts. The dataset contains information about the

kind of attack, source of the attack and target/destination IPs, attack and target ports and
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information about the network traffic based on HTTP, FTP and SSH protocols. In order to

generate a meaningful and usable dataset the following criteria were considered:

1. Network configuration by looking at the type of virtual network being used including
the switches and the guest operating systems such as windows or Ubuntu.

2. Traffic — by profiling the target systems and the attackers in the network and using the
monitoring system to monitor activities.

3. Interaction — by ensuring that there is complete interaction between the virtual
machines or systems in the network

4. Capture — by ensuring that all necessary traffic was captured from the target system

during attack simulation and dataset was correctly labelled

454  System Monitoring

Monitoring in this project involves the regular observation and recording of activities of the
virtual environment both in its normal state and/or during attack simulation. A monitoring
system is a piece of software that collects data from several sources, analyses the data and gives
visualised results of the data (Zachar, Mehrotra et al., 2011). The main purpose of monitoring
the activities of the virtual environment is to gain an insight of the system’s behaviour before
and after attack simulation and to gather information for analysis and feedback. There are a
number of tools and techniques used to monitor events of information systems, detect attacks
and provide identification to any problems or unauthorised use of the system. For this project,
the Zabbix monitoring tool is used for monitoring the activities of the set-up virtual system,
reporting and partial data collection through a MySQL database attached to the monitoring
tool. Zabbix is an effective open source-monitoring tool for both networks and applications

with three main components:
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e The database server which provides data storage for all collected data and
configurations

e The Zabbix server, which performs the actual monitoring, then collects data, and stores
it onto the database.

e The webserver, which is a graphical user interface accessible through the HTTP.

Data collection from the tool can be done through the Zabbix agent installed on all systems
being monitored. The Zabbix agent is a piece of software that runs on the monitored host

that collects data and then sends it to the server through the Zabbix protocol.

In addition to the monitoring tool, IDS together with the IPS both tools of Kali Linux, are
used for passive monitoring of traffic at packet level and prevention where problematic
patterns that might lead to direct action are addressed respectively. Monitoring of the
virtual environment is a continuous process that is integrated with the predictive analytics
life cycle to determine whether the built and deployed predictive model continues to meet
the set predictive goals of the model. A selected sample of the monitoring results for both
the server and the implemented virtual environment before and after the attack simulation
are illustrated in Figures 5-8 and 5-9 for activities of the server before the attack and Figures
5-10 all the way to Figure 5-17 for activities after attack simulation for both the serverand

the virtual machines of the simulation environment.
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Monitoring results before attacks
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Figure 4-10 Network Traffic Results before attacks

Figure 5-8 shows uninterrupted network traffic flow between the server and the monitored

network system and Figure 5-9 illustrates the internal processes of the server before attacks.
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Figure 4-11 Attacker internal processes results before attacks
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Monitoring Results after attacks

The results for both the server and the monitored virtual environment after attack simulation

are illustrated in the graphs below.
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Figure 4-12 Server CPU load results

Figure 5-10 illustrates the results of the server processor load after the attacks were simulated.
The results show the flow of processes at different time intervals to show how the CPU load
changes during the attack of the system. Figure 5-11 on the other hand illustrates the data
gathering process of the server during the attack simulation. The results show that data is being
collected from various internal activities of the system until the system reaches an unreachable

state causing DoS.
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Figure 4-13 Server data gathering after attacks

Figure 5-12 illustrates the flow of both the incoming and outgoing traffic of the monitored
virtual system after the attack is launched. The results show that the network is terminated
causing an interruption in the network service represented by the gap in the graph. The

network traffic continues after the attack is eradicated as illustrated in the same graph.
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Zabbix server: Network traffic on vboxnet0 (1h)
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Figure 4-14 Server Network Traffic after attacks

Data gathering from the attacked virtual machine is illustrated in Figure 5-13 which showsthe
discoverer process reaching maximum during the attack. The results shows both the http and
the poller processes at almost maximum which triggers the attack just before the DoS attack is

fully achieved.
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Figure 4-15 Target 1 data gathering process
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Figure 5-14 illustrates the results of the attacked virtual systems self-monitoring processes
during the attack and triggers the attack when the packets received reaches 75%. Figure 5-15

of the other hand shows the results of the http poller processes as busy during the attack
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Figure 4-16 Target 1 self~-monitoring process
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Figure 4-17 Target 1 Http Poller Process
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Figure 5-16 illustrates results of the packets sent by the attacking system. The results show a
pick in the packets when maximum packets are processed or sent to the target system causing
DoS on the target system. Figure 5-17 on the other hand illustrates the internal processes of the
attacking system. The results show the time set for the attack, the escalation of the attacks, the
intrusion detection of the attacks, the data collection of the activities of the system together

with the history of the attacks in form of logs.
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Figure 4-18 Server Performance after attacks
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kalilinux01: Zabbix Intermal process busy % (1h)
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Figure 4-19 Attacker internal processes after attack

455 Summary

The chapter provides an introduction of the attack simulation process and provides a simulation
attack framework with a decomposed explanation of the framework. This chapter has
demonstrated the process for simulating attacks through the experimental results as well as the
process for generating the required dataset. The dataset generated highlights the attributes that
are relevant to the data analysis and classification processes for building and validating the
predictive analytics model in question. The chapter identifies and describes the simulation tools
used for data collection required for the predictive analytics Modelling (PAM). The types of
attacks being simulated together with the results obtained from the simulation are also
presented in this chapter through the various screen shots of the attacks in motion. The data of
the simulation activities that has been produced from the intrusion detection system (IDS) and
intrusion preventive system (IPS) both tools in Kali Linux, is imported into a spreadsheet. Since

monitoring has been an integral part of the process, the results from the monitoring tool are
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presented in this chapter, in the form of graphs for both before and after the attack simulation..
The data collected during the attack simulation process is manipulated by exploring, analysing
and visualising it in the opening part of the predictive analytics application process in the
explanatory data analysis of chapter 6, which is the initial stage for predictive analytics and
modelling. The end of the chapter also briefly describes the monitoring process and presents

the results through graphs of monitoring tools.

The satisfactory completion of the data collection process leads to the application of predictive
analytics as presented in chapter 6 that follows. In chapter 6 an explanation of prediction
analytics and the processes involved are discussed and presented. The chapter also provides an
exploratory process that is used to prepare and pre-process the collected dataset into useful

information for predictive modelling.
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5. Predictive Analytics Modelling

51

Introduction

Predictive analytics as explained in chapter 3 is an analytical process that encompasses

statistical techniques from data mining, machine learning and artificial intelligence to predict

what will happen in the future. Prediction in machine language refers to the output of an

algorithm after it has been trained on a historical dataset and applied to new data when trying

to forecast the likelihood of a particular outcome (Kelleher et al., 2015) such as future attacks

in this case. The algorithm generates probable values for unknown variables for each item in

the new data, which can be identified as the most likely values (Kelleher et al., 2015). There

are five common predictive analytics models

L.

Classification models — These are the simplest of several predictive analytics models.
These types of models separate data into categories based on what they learn from
historical data. Their breadth of possibilities and the ease of use by which they can be
trained with new data means that they can be applied to many cases in various fields
including information technology.

Clustering Models — These types of models focus on identifying groups of similar
records and labels the records according to the group to which they belong using
unsupervised learning algorithms. There are different types of clustering algorithms (K-
Means, Mean-Shifting, Expectant-Maximization using Gaussian-Mixture-Models
(GMM) and Agglomerative hierarchical clustering to name but a few) that are available.
Forecast Models — The most used predictive analytics models that deal with metric
value prediction by estimating numeric values for new data based on historical data.
Outlier Models — These types of models deal with anomalous data entries within the

dataset.
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5. Time Series Models — These comprise of a sequence of data points captured using time
as an input parameter. It uses the last date of the historical data to predict the outcome
of the next using the same metric.

The models described above can all be used in the building of the predictive model in question
and can be deployed using different predictive modelling mark-up language (PMML) as
illustrated in the stages of chapter 6. Due to the work involved, only classification, clustering,
forecast and time series models are built and illustrated. As the main aim of the project is to
use predictive analytics as a security management tool in virtualised systems, a number of steps
leading up to this stage have been taken as highlighted in chapter 5 and 6. The application of

predictive analytics in this project follows through the systematic process of

e Project Definition discussed in the research aims and projects in chapter 3. This section
defines the project outcomes, deliverables, scope and the expected overall outcome of
the project.

e Data Collection demonstrated in chapter 5, which provides the basis for data mining
for EDA and predictive analytics is also covered. Data collection is achieved by
continuous simulation of attacks to generate enough data for EDA, predictive analytics
and modelling.

e Data Analysis, which is the preliminary process of inspecting, cleaning and data
modelling, covered in EDA in the beginning of chapter 6. The objective of EDA is to
help in discovering useful information about the generated dataset that leads to the
successful conclusion of this project, which is predictive analytics. The collected data
is pre-processed, visualised and prepared for predictive modelling.

e  Statistical analysis carries on from EDA as it enables the validation of assumptions,

hypothesis and then allows to test them using statistical models such as clustering.
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e Modelling process that provides the ability to build accurate predictive models such as
regression and time series models that are validated and deployed to help in predicting
attacks in virtualised systems.

e Predictive Model Deployment provides the option to deploy the created model into the

virtual environment for attack prediction.

To achieve PA, a simple process illustrated in Figure 6-1 below is followed in the EDA stage

of PA.
Cleansed
BT Algorithms Modelling
ed
Dataset
Predictions

Figure 5-1 Implemented Predictive Analytics Process

The first and most important stage of PM is to understand the data structure of the dataset
intended for building the model and then prepare it for predictive analysis. To do this, data
needs to be cleaned in order to correctly deal with the missing values and to remove redundant
data. This cleansing process helps with making correct predictions. Once redundant data is
removed, data needs to be transformed, inspected and modelled into useful information by
evaluating all the variables available by understanding the construction, the population and the
relationships of the variables to form a hypothesis of the data. A model is then built by mapping
the data into various machine-learning algorithms that can help in solving a series of problems
such as regression, clustering and classification problems. The first thing to do is to split the

data into three views or datasets, which is random data for modelling, training data used for
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training the model and then a testing dataset for testing the built model. The predictivemodels
are built using the training dataset, then validated and tested using the testing data. This process
involves filtering of the response variables to help improve the performance of the model and
predictive efficiency.

To efficiently and correctly design and deploy a PAM, a simple predictive analytics logic
illustrated in Figure 6-2 is followed. The aim of the PAM in this case is to determine whether
an attack will occur, using the collected matrices of the data provided.

Predictive Analytics Logic

Import Build Test
Data Model Model

Data Train Improve
Cleaning Model Efficiency

Figure 5-2 Predictive Analytics Logic

Predictive analytics can be achieved using various languages or tools and techniques; for this
part of the project, a combination of WEKA and an R-console (an R version embedded in
WEKA) are the choice of analytical tools that are used. R was chosen due to its simplicityand
availability of in-built functions for data manipulation, statistical analysis, visualisation and the
number of packages readily available for use, together with the ability to use R in conjunction
with WEKA especially during modelling. These have been the main motivating options for the

project.

For predictive modelling, the predictive analytics logic in Figure 6-2 is used to achieve the
predictive value of the predictive model built. The first step is to import data into WEKA to
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prepare it for analysis, this process leads to the model being built, trained, tested and

improvements applied where necessary until it reaches its predictive value.

The imported dataset is explored analysed and prepared for predictive modelling using the

explanatory data analytics process explained in the section that follows.

5.2 Explanatory Data Analysis

To ensure or understand the data, Explanatory Data Analytics (EDA) is carried out. EDA is an
approach used for analysing datasets to summarise their characteristics using visualisation
methods (Cox, 2017). EDA is an important process in data mining that provides an insight of
the data collected in preparation for predictive analytics (Cox, 2017, Watts, 2016). To create
an effective and efficient predictive analytics model for the management of virtualisation
security, the right data needs to be collected. EDA in this case, helps to visualise the collected
attributes as well as how they associate with one other in the dataset. There are several methods
of visualising simple summaries of datasets, for example, a five number summary consisting
of the smallest and largest data value, the median and the first and third quantiles can be
visualised as a drawing where each number corresponds to a constituent like the altitude of a
box (Kennedy and Allen, 2017). These simple methods are very useful for summarising low
dimensional datasets. If the dimensionality increases, the ability to visualise interdimensional

relations decreases. The main objective of the EDA phase in this project is to help

e Suggest the hypothesis about the causes of the observed phenomena
e Assess the given assumption on which statistical inference will be based
e Support the selection of appropriate predictive analytics tools and techniques

e  Provide a basis for more data collection if needed through more simulation of attacks.
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The emphasis in the EDA process will be on methods that illustrate structures in the given pre-
specified dataset. Most EDA techniques are represented by box plots, scatter plots and

histograms.

5.2.1 Data Pre-processing and Visualisation

The simplest method to visualise a dataset is to plot an outcome of each attribute in a two
dimensional graph, in which the dimensions are enumerated on the x-axis with the
corresponding value on the y-axis. Another method used to visualise data is to use a scatter
plot where two dimensions of the data are selected as the location of an icon and the rest as the

properties of the icon.

To discover the distribution of attributes and the association with each other, visual

presentations of the dataset are illustrated in Figures 6-5 and 6-7 respectively.
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Some attributes in Figure 6-5 such as source port, time stamp and flow duration have a
Gaussian-like distribution, which could yield good results for Logistic Regression and Naive

Bayes. An example of which, is shown in Figure 6-6 below

Figure 5-4 Gaussian representation of the Time Stamp attribute

Figure 6-7 below illustrates the average number of packets from the attacker to the target
system. The graph shows the packets highlighted on the x-axis and the attacking IP on the y-
axis.

Selected attribute

Mame: Average Packet Size Type: Mumeric
Missing: O (0%} Diistinct: 1542 Unigque: 504 (0%)
Statistic | walue |
Minimum 0
Maximum 23242
Mean B658.7TT2
StdDev 645 557

.. .-IIL.IJJ ]

1
o 1162 .1 el Yord

Figure 5-5 Average Packet Size per attack
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Figure 6-8 shows the box plot of the total number of forwarded packets

Selected attribute

Mame: Total Fwd Packets Type: Mumeric
Missing: 0 (0%) Distinct: 49 Unigue: 12 (0%)
Statistic | Walue
Minimum 1
Maximum 177
Mean 3.951
StdDev 2. 449

1 20 177

Figure 5-6 Total number of Packets to Source IP

There is also a lot of overlapping between the classes across the attribute values that shows a
class imbalance. To deal with this problem multiple views of the data are prepared to help with
the evaluation of the algorithms. The data views are created from the original dataset and are
saved as individual files for use at a later stage. The association of the attribute results in Figure
6-5 are presented in the scatter plot in the Figure 6-19 below. The scatter plot shows howeach
attribute is associated with the other attributes in the dataset and because of the size of the graph

only a snapshot of the results is presented.

Scatter Plot of the attributes’ association.
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Figure 5-7 Scatter Plot for Attribute Association

A visual analysis review of the results in Figure 6-9 above yields good results as it shows that
some of the attributes in the dataset are linearly related, which provides us with good
knowledge of what attributes to use with what algorithms when building the predictive model

in question. An example of these linear relationships is presented in the results of Figures 6-
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10, which shows the maximum forward packet length on the x-axis and the backward packet
lengths on the y-axis. Figure 6-11 shows the relation between maximum packets length and

Packet Length Standard and figure 6-13 shows the relationship between packet length mean

and average packet size.

11595

5797, 57 s

¥

0 e *
0

T
5797.5 11535

Figure 5-8 Maximum forward packets and backwards Packets

4731, 52239

i

2365.TE12 ;
:
i

T
o 5787.5 115895

Figure 5-9 Maximum Packets Length and Packet Length Standard
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Figure 5-10 Packet length Mean and Average Packet Size

To help understand the association results visualised and represented in Figure 6-9 above, the
attributes are analysed and processed using various classification methods and algorithms. At

this stage, only simple classification algorithms are used.

5.2.2 Classification

In order to use the produced dataset and the selected features effectively and efficiently, data
needs to be organised into different categories using the classification process. To classify the
data, we use the ZeroR and the J48 algorithms based on the full training data classifier. This
was done to select the best fitting model for the project. The ZeroR algorithm is a classifier
that predicts the mean when applied to numeric classes and the mode if the class attributes are
nominal as in our case. This provides an option of classifying any type of attribute without
converting it to the suitable type for that particular attribute. The first classification scenario
is based on full training dataset. The algorithm predicts the class value as being DoS with 68%
accurately classified instances and 32% incorrectly classified instances. The results of the

classification are shown in Listing 6-3 below.

Classification model on full training Dataset using ZeroR algorithm
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=== (Classifier model (full training set) ===

ZeroR predicts class value: DDoS

Time taken to build model: 0.02 seconds

=== 5Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 108220 67.7633 %

Incorrectly Classified Instances 51483 32.2367 %

Kappa statistic a

Mean absclute error 0.4369

Root mean squared error 0.4674

Relative absolute error 100 %

Root relative squared error 100 %

Total Number of Instances 1558703

=== Detailed Accuracy By Class ==
TP Rate FP Rate Precision Recall F-Measure MCC ROC BArea PRC Area Class
0.000 0.000 ? 0.000 ? ? 0.500 0.322 Benign
1.000 1.000 0.678 1.000 0.808 2 0.500 0.878 DDoS

Weighted Awg. 0.678 0.678 ] 0.678 ? ? 0.500 0.563

=== Confusion Matrix ===

@ b <-- classified as
0 51483 | a = Benign
0 log2z20 | b = DDoS

Listing 5-1 Classification using ZeroR algorithm

The results in Listing 6-3 are illustrated using a threshold Curve in Figure 6-13, based on the
DoS attacks with the x-axis showing the false positive rate and the y-axis representing the

true positive rate.

Plot area under ROC = 0.5

Figure 5-11 Classification using Cross validation under ROC for DDoS
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To counter check the results in Listing 6-3 a cross validation technique is in the second

scenario using a OneR algorithm that uses the minimum error attribute for prediction

and also decentralises numeric attributes. The classification on this occasion uses cross

validation methods with 10 folds, which splits the data into 10 parts based on the full

training dataset. The first 9 folds are used to train the algorithm and the 10" fold is used

to assess the algorithm. Using the 10 fold cross validation gives the algorithm an

opportunity to make a prediction for each instance of the classified attributes of the

dataset with different training folds. The following results present the summary of the

predictions.

Classification model on full training Dataset using OneR algorithm

Classifiser model (full training set)

Total Length of Bwd Packets:

< 2.0 —> DDoS

< 1335.5 —> Benign
< 1407.35 —> DDoS

< 11513.5 —>» Benign
< 11947.5 —> DDoS
= 11947.5 —> Benign

{158939/159703 instances correct)

Time taken to build model: 0.833 seconds

Evaluation on training set

Timse taken to test model on training datas:

=== Summary ===
Correctly Classified Imnstances 152939
Incorrectly Classified Instances Ta4
FKappa statistic .
Mean absolute Srror a.
Root mean squared error 0.
Relative absolute error 1.
Boot relative sguared srror 14
Total Humber of Instances 159703
=== Detalled Accuracy By Class =—=
TF Rate FF Rate Precisi
0.887 0.001 0.5953
0.999 0.013 0.994
Weighted hwg. 0.995 o.oo0g 0.995
=== Confusion Matrix ===
a b <—— classified as
S0s03 675 | a = Benign
29 108131 | b = DDoS

Listing 5-2 Classificatio

0.23 seconds

95.5216 %
0.4734 %
a9
oo4s
[a] 3=}
095 %
. 7935 %
on Recall F-Measure MCOC ROC Area
0.987 0.5583 0.5955 0.953
0.9g9g 0.998 o.4959 0.9a3
Q.995 0.99%5 o.9z9 o.993

n using OneR algorithm
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The results of the OneR algorithm shown in Listing 6-4 above shows the classification accuracy
of 99%. The results also show the confusion matrix with actual classes compared to the

predicted classes. These results are illustrated in Figure 6-14.

Threshold Curve of the results in listing 6-4

Figure 5-12 Threshold Curve of OneR algorithm using Cross Validation

To classify using a decision tree on the training data, the J48 algorithm is used and the results
are shown in Listings 6-5 for the pruned tree and 6-6 for the classification tree. The results in
Listing 6-5 shows a tree size of 31 with 16 leaves. The model shows that there are 159695
correctly classified instances of the 159703 instances with 8 incorrectly classified instances
showing a 99% classification accuracy with 0.05 classification error. This shows that using
both classification algorithms to build the predictive analytics classification model yields
similar accuracy results. The classification tree for the pruned tree are illustrated in Listing

6-6.
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Classification using decision tree.

=== Classifier model (full training sSet) =—=

J43 pruned tree

Fwd Packet Length Max <= 20
act_data_ pkt fwd <= 0O
Bwd Packet Length Min <= 422
Average Packet Size <= 8: Benign (11903.0/3.0
Average Packet Size > 8
I Fwd Packets,/s <= T350.073Z201l: Benign (107.
I Fwd Packets/s > T3E0.073S01
1 1 Destination Port <= 22: Benign (13.0)
I | Destination Port > 22
|
|

|
|
|
|
|
|
| I | Destination Port <= S0: DDoS (15.
|

)

ay

ay

I

I

I

I

I

I

I

I

I

1 1 1 Destination Port > S0: Benign (13.0)

1 Bwd Packeset Length Min > 422

I | Total Fwd Packets <= 2: DDoS (12.0)

I | Total Fwd Fackets > 2: Benign (7.0}

I act_data_pkt_Lfwd > 0O

I I Source Port <= 121&€6

I I | Total Length of Fwd Packets <= 24: Benign ({(26.0)

I I | Total Length of Fwd Packets > 24: DDoIS S.0)

I 1 Source Port > 12166

1 1 | Packet Length Mean <= 4.8

I I | | Total Backward Packets <= 1l: DDoS (25.0)

I I | | Total Backward Packets > 1l: Benign (7.0)

1 1 | Packet Length Mean > 4.8

1 1 | 1 Fwd Header Length <= 44

I I | I I Fwd Packets/s <= 0.08755%: Benign ({(5.0,/71.0)

I | | | I Fwd FPackets/3 > 0.08755%8

1 1 | 1 1 1 Flow Duration <= 4: Benign (&6.0/1.0)

I I | I | | Flow Duration > 4: DDoS (79.0/51.0)

I I | 1 Fwd Header Length > 44: DDo3 (1lO0S0&£2.0/2.0)

Fwd Packet Length Max > 20: Benign (39394.0)

Humlbrer of Leawves E 1&

Size of the Tree I 31

=== Jummary ===

Correctly Classified Instances 159695 99.995 %

Incorrectly Classified Instances 3 0.005 %

Kappa statistic 0.5999

Mean absclute error 0.0001

Root mean sgquared error 0.008%

Belative absolute error 0.0221 §

Root relative squared error 1.4865 %

Total Number of Instances 154703

=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

Weighted Avg. 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

=== Confusion Matrix ===

a b <-- classifisd as
51480 31 a = Benign
5 108215 | b = DDoS

Listing 5-3 Pruned Tree using J48 algorithm

Classification Tree
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Listing 5-4 Classification Tree

5.2.3 Clustering

To determine the patterns from the data, groups of the data are made. Clustering is an

unsupervised machine-learning algorithm that can be used to improve the accuracy of

supervised machine learning algorithms as well as clustering the data points into similar

groups. Clustering in data mining, is a step further from classification as every attribute in the

dataset is used to analyse the data, where as in classification, only a subset of the attributes is

used in building the model. In this case, every attribute is normalised and each value is divided

by the difference between the higher and lower values in the dataset of the same attribute. To

120



find the best model for predictive analytics two clustering algorithms (K-mean and Expectation

Maximisation) are used.

K-means is an iterative clustering algorithm that aims to find local maxima in each iteration.
The algorithm iterates until there is no more movement on the data-points or centroids. The

K-means algorithm works in five steps that

e Specifies the desired number of clusters

e Randomly assigns each data point to a cluster

e Computes cluster centroids

e Re-assigns each point to the closest cluster centroid

e Re-computes cluster centroids

Clustering was applied to the training data set. The results shown in listing 6-7 show two
clusters of either a 0 or a 1 which are benign and DDoS respectively. The total clustered
instances based on the DDoS attacks are 19,654 with 62% of the clustering being DDoS and
38% are the post scans. There were eight iterations made within the sum of 28,069 squared
errors. The missing values have been replaced by either the mode or the mean. The final cluster

centroids are presented in listing 6-7 below.
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Mumber of iterations: 5
Within cluster sum of squared errors: 370321.44523596833

Initial starting points (random):

Cluster 0: DDoS, 192.168.56.103, 42522, 192, 168.56. 101, 80, 6, "29/10/2019 04:15",16966,3,5,26, 11607, 20,0, 10135, 0,72, 112, 176. 524237, 294 707061, 0, 10135, 1292, 555556, 3350, 634907, 11200000, 0,0,0,1,1454. 125, 2
Cluster 1: Benign,192.168.56.103, 44926,192.169.56,101, 53,17, '28/10/2019 04:05',179, 2,2, 66, 164, 33, 33,32, 82, 80, 80, L1173, 18436, 11173, 18436, 33, 82, 52. €, 26. 838405, 720.3,0,0,0, 1, 65.75,1

Missing values globally replaced with mean/mode

Final cluster centroids:

Clusters

Attribute Full Data 0 1

(154703.0) (69717.0) (8993¢6.0)
Lakel DDoS DDo$ Benign
Source IP 192.168.56.103  192.168.56.103  192.168.56.103
Source Port 39265.4616 46246.4587 33856.9071
Destination IP 192.168,56.101  192.168.56.101 192.1€8.56.101
Destination Port 3415,5484 1189. 6813 14013.8183
Protocol 7.6217 6 8.8781
Timestamp 29/10/2019 04:13 29/10/201% 03:57 29/10/201% 04:13
Flow Duration 160344003200 22715672.7161  1083205%.8043
Total Fwd Packets 3.951 14,4535 3.5616
Total Backward Packets 3.47le 5.0535 2.2461
Total Length of Fwd Packets 977.1582 268.5038 1526,1927
Total Length of Bwd Packets 5011.7221 11369, 866 85.725¢6
Fwd Packet Length Max 603.3728 226.5824 95,2926
Fid Packet Length Min 30,1333 0.0002 53.47¢
Bwd Packet Length Max 3131.2047 T121.44 35.7546
Bid Packet Length Min 16,8198 0.1778 29,7132
Fid Header Length 87,8335 101,334 77,3731
Bid Header Length 77.4365 112.8072 50.0329
Pwd Packets/s 1514.8578 21,078 2672,1685
Bid Packets/s 792.5451 30,2061 1383.1702
Min Packet Length §.0909 0.0002 14,3592
Max Packet Length 3715.3347 7328.0228 916,996
Packet lLength Mean 589.2252 1162.6202 144.9852
Packet Length Std 1258,5515 2512.4603 57,0808
Packet Length Variance 3325101.4685 68663672282 581492.1851
FIN Flag Count 0.0002 0 0.0004
SIN Flag Count 0.0227 0 0.0402
ACK Flag Count 0.512 0.2305 0.6913
Down/Up Ratio 1.0828 0.9607 1.1775
Lverage Packet Jize 698.7719 1298.2344 163.3438

Time taken to build model (full training data) : 0.83 seconds
=== Model and evaluation on training set ===

Clustered Instances

[ 44%)

7
& ( 56%)

Listing 5-5 Clustering model using K means

The results in listing 6-7 show the K-means clustering of data with two groups of packets;

benign and DDoS highlighted based on all selected attributes, where 0 represents the benign
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packets and 1 represents the DDoS packets. The clustering results in listing 6-7 are illustrated

in the graph in Figure 6-15 below.

Plot: DDo Sdataset_clustered

wo o

oforEoW

79551 158702

Class colour

clusterd clusterl

Figure 5-13 Visualisation of the of the K means Clustering
Expectation maximisation (EM) algorithm on the other hand is an iterative method of finding
maximum likelihood maximum a-posteriori (MAP) estimates of parameters in statistical
modelling. The model in EM depends on unobserved variables. The EM algorithm iterates
alternately between performing an expectation (E) which creates a function for the expectation
of the log likelihood that is evaluated using current estimates for the given parameters, and a
maximisation (M) which computes parameters that maximise the log likelihood found in E. A
sample of the results of the EM clustering are shown in listing 6-8 with a visualrepresentation
shown in Figure 6-16. The results presented are based on one iteration performance using cross
validation methods with 5 folds. There are five clusters produced and each attribute in the

dataset is represented in the 5 clusters. The clustered Instances are broken down as follows
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Clustered Instances

0 69717
1 59956

EM

Number of clusters selected by cross validation:

{ 44%)
{ 56%)

Number of iterations performed: 2

g

Cluster
Attribute 0 1 2 3 5 [ 7
{0.15) {0.25) (0.08) {0y (0.08) {0.25) {0.12) (0.09)

Label

Benign 24470.0123 1 12378.3833 622.3493 1 18.048 1 14000.7081

DDoS &3 39472.7878 1 146.951 9495.2122 39689.049 19355 4

[total] 24533.0123 39473.7878 12379.8833 T€9.3003 9497.2122 39705.085 1935¢ 14004.7091
Scurce IP

15%2.168.56.103 19388.5899 39472.7878 5 739.0125 S4%6.2122 39704.085 19355 58.3026

15%2.163.56.102 5144.4224 1 12374.8833 30.2878 1 1 1 13932.4085

74.125.259.157 1 1 1 1 1 1 1 3

104.24.21.85 1 1 1 1 1 1 1 g

172.217.6.234 1 1 1 1 1 1 1 3

172.217.9.238 1 1 1 1 1 1 1 3

[total] 24537.0123 39477.7878 12383.3833 773.3003 9501.2122 39708.095 19360 14008.7081
Source Port

mean 50350.1828 43163.7074 83.105% 42074.5302 43115.38¢64 44656.9434 57445.0277 314.6149

std. dev. 16409.7887 15067.7133 172.7927 12253.3034 14333.7488 15102.4366 864.2668 3448.5489
Destination IF

192.168.56.101 24500.8956 39472.7878 5 767.3003 9496.2122 39702.095 19355 87.7091

1%2.168.56.102 2 1 1 1 1 3 1 2

192.168.56.103 31.11&7 1 12374.8833 1 1 1 1 13816

146.20.129.103 1 1 1 2 1 1 1 1

[total] 24535.0123 39475.7878 12381.8833 771.3003 54959.2122 39707.085 19358 14008.7091
Destination Port

mean 56.4532 a0 56637.7423 102.6544 g0 85.1053 g0 44550.5936

std. dewv. 2414.4847 1) 6436.3231 664.59293 [u] 505.709 19447.6580%8 14743.0935
Erotocol

mean 16.5575 [ 3 [ [ [ [ [

std. dev. 2.1661 3.9002 3.8002 3.58002 3.8002 3.9002 3.9002 3.9002
Timestamp

28/10/2019 03:32 33 1 1 1 1 1 1 2

28/10/2019 03:33 25 1 1 1 1 1 1 1

28/10/2019 03:34 25 1 1 1 1 1 1 1

Listing 5-6 Clustering results using EM algorithm

Clustered instances are

Time taken to build model

{full training datal

—=——= Model and evaluation on training set ——

Clustered Instances

Sl kWO

24506
42536
12373
=23
E431
39&6c4a
19354
13991

{

e e

Log likelihood:

15%)
2T}
ELS]
1%}
as)
25%)
1z2%)
EEH

—104.5344
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The results in listing 6-8 are visualised in the scatterplot shown in Figure 6-16 below.

Plot: DDoSdataset_clustered

wmo e

oRQrBmD

Class colour

clusterld clusterl clusterl clusters

Figure 5-14 Clustering using the EM algorithm
Clustering of instances marks the final stage of the EDA process. Once the results of the EDA
process have been achieved, the next stage is to build the predictive analytics model. Predictive
analytics modelling will use the results obtained in the EDA process. Section 6.3 describes the
process of building, validating and testing the predictive model using various algorithms. As
most available analytical problems proposed by many security professionals as explained in
chapter 3 end with EDA, this project moves a step further from exploration or exploratory

analytics to predictive analytics as described in the section that follows.

5.3 Building Predictive Model

To build a machine-learning model, all the steps of the EDA are taken into consideration from
features selected in section 6.2.2 of the data preparation process all the way to the classification
and clustering of the attributes. The results from the training data used in the initial
classification during data preparation are used to build the security management predictive

model and to train the model, and the testing data will be used to test the built predictive model.
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Since the dataset used has 31 attributes with 159,703 instances as shown in Listing 6-2. The
dataset is split into two using a 90% to 10% split ratio with 90% used as training data and 10%
is the testing data for each model created. The security management model is built using a
linear regression algorithm using supervised learning techniques as described in section
6.1which provides a brief description of what linear regression is and how it is applied to
predictive analytics modelling and the various equations used in predictive modelling.

5.3.1 Predictive Analytics Modelling using Linear Regression

Linear regression is used to predict the value of an outcome variable Y based on one or more
input predictor variables X. A linear regression model assumes a linear relationship between
the input variables and the outcome variables. There is a difference between a regression
problem and classification problem in that, regression problems try to predict numeric values
whereas classification problems predict nominal values as demonstrated in the EDA process in
section 6.2. For predictive linear modelling, the class attribute represented as label in the dataset
is used. There is a problem however, with the class attribute, as nominal values cannot be used
for linear regression modelling. An example of how the labels are currently presented in the

dataset as nominal values is shown Figure 6-17 below.

Selected attribute
Mame: Label Type: Nominal
Missing: 0{0%) Distinct: 2 Unique: 0 (0%)
M. | Label | Count | Weight
1 Benign 51483 51483.0
2 DDos 108220 108220.0

Figure 5-15 Sample of attributes used for Linear Regression

The nominal values therefore need to be converted into binary or numeric attribute values; a
form linear regression algorithm can easily read or work with. To convert nominal values to
binary values, unsupervised learning is used, the results of which, are illustrated in Figure 6-

18 below. The results now show the class label as 0 for benign and 1 for DDoS with no missing
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values. Figure 6-18 shows the minimum value of representation as a 0 and the maximum
represented value of 1 with the mean of 0.6 and the standard deviation of 0.4 whereas Figure

6-18 shows the total counts of the instances together with their weight values.

Type: Mumeric
Distinct: = Unique: O (096}

| walue

o.svs
0. 467

| Mo class || wisualize A |

ooooooooooooooooooooooooooooooo

Benign Packets DDoS attacks

Figure 5-16 Results of Nominal to Binary values

Linear regression modelling can either be done using the training data to train the model or
cross validation methods to build the model. Once the nominal values have been converted to
numeric, the training dataset is used in this instance for predictive linear regression modelling.
In the second instance, cross validation methods with 10 folds are used for comparison

purposes. The unsupervised learning technique was used in both instances to build the models.

Since the dataset used has both nominal and numeric attributes with two-class values, it is only

logical to draw a basic straight-line using the equation

woagl) +w 1a(11) +w alb+... wkaf)

, which calculates the weight of each dimension from the training data. Once the weights of

the attributes are calculated a prediction of the values from the first training instance @1 is

made using the first value of the test instance that has just been calculated. The w represents
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the training values that are being calculated @ represents the attribute values of the test data

and the number (1) in brackets represents the first attribute of the test instance.

The whole equation can be represented by the sigma equation after theegual égn as illustrated

Calculates the first

attribute values of the predictive values of the

below. test instances training instances
T, k
€Y
wa® +we+waPs...waP , = Zwa;
I 1 .
L e e e e e 1 j=0

) k . . . )
By this, >3 w a® we are trying to define the zeroth attribute value to be a 1, which gives
o T
j=0

out a predicted value x of the first training instance and then choose the weights to minimise
the squared error on the training data which is achieved by the equation below.

The actual value of the
training instance

n k
2 (xt=3>wa®)2
jj
i=1 j=0

The Predictive value for
the training instance

We take the difference between the actual value and the predictive value, then square them up
then add them together, and that is what we are trying to minimise. The weights are obtained
by minimizing the sum of square errors and given the large sum of instances, this is the best
option to minimise errors. Standard matrix problems work well if there are more instances than
attributes as in this case. To perform linear regression the considered nominal attributes are

converted to numeric class labels of Os and 1s.

128



A sample of the linear regression modelling results using the training dataset is shown in listing

6-9 below.

Linear Regression Model

Linear Regression Model

Label=DDas =
0,760¢ * Source IP=104,24,21.85,172.,217,9,238,172,217.€.,234,192, 168,56.,102,192.168.56,103 4
0,0115 * Source IP=192,168,56,103 +
-0 * Souzce Port +
-0,5381 * Destination IP=146.20,129,103,192,168.56,103,192,168.56,101 +
0,861 * Destination IP=192,168.56,101 +
-0 * Destination Port +

-0,0682 * Protocal +

-0,0082 * Timescamp=29/10/2019 04:13,29/10/2019 03:56,29/10/2019 04:11,29/10/2019 04:00,29/10/2019 04:07,29/10/2019 04:15,29/10/2019 04:08,29/10/2019 04:06,29/10/2019 04:05,29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,:
-0,003¢ * Timescamp=29/10/2019 03:56,29/10/2019 04:11,29/10/2019 04:00,29/10/2019 04:07,29/10/2019 04:15,29/10/2019 04:08,29/10/2019 04:06,29/10/2019 04:05,29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,29/10/2019 04:08,:
0,0082 * Timegtamp=29/10/2019 04:11,29/10/2019 04:00,29/10/2019 04:07,29/10/2019 04:15,29/10/2019 04:09,29/10/2019 04:06,29/10/2019 04:05,29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,29/10/2019 04:08,29/10/2019 04:12,:
-0,0072 * Timescamp=29/10/2019 04:00,29/10/2019 04:07,29/10/2019 04:15,29/10/2019 04:09,29/10/2019 04:06,29/10/2019 04:05,29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,29/10/2019 04:08,29/10/2019 04:12,29/10/2019 04:04,:
0,004 * Timestamp=29/10/2019 04:07,29/10/2019 04:15,29/10/2019 04:09,29/10/2019 04:06,29/10/2019 04:05,29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,29/10/2019 04:08,29/10/2019 04:12,29/10/2019 04:04,29/10/2019 03:59,:
0,0062 * Timegtamp=29/10/2019 04:15,29/10/2019 04:09,29/10/2019 04:06,29/10/2019 04:05,29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,29/10/2019 04:08,29/10/2019 04:12,29/10/2019 04:04,29/10/2019 03:59,29/10/2019 04:03,:
-0,0047 * Timescamp=29/10/2019 04:09,29/10/2019 04:06,29/10/2019 04:05,29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,29/10/2019 04:08,29/10/2019 04:12,29/10/2019 04:04,29/10/2019 03:59,29/10/2019 04:03,29/10/2019 03:57,
0,0093 * Timegtamp=29/10/2019 04:06,29/10/2019 04:05,29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,29/10/2019 04:08,29/10/2019 04:12,29/10/2019 04:04,29/10/2019 03:59,29/10/2019 04:03,29/10/2019 03:57,29/10/2019 04:01 -
-0,0047 * Timescamp=29/10/2019 04:05,29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,29/10/2019 04:08,29/10/2019 04:12,29/10/2019 04:04,29/10/2019 03:59,29/10/2019 04:03,29/10/2019 03:57,29/10/2019 04:01 +

0,005 * Timegtamp=29/10/2019 03:58,29/10/2019 04:1¢,29/10/2019 04:10,29/10/2019 04:08,29/10/2019 04:12,29/10/2019 04:04,29/10/2019 03:59,29/10/2019 04:03,29/10/2019 03:57,29/10/2019 04:01 +

0,003¢ * Tinestanp=29/10/2019 04:14,29/10/2018 04:10,29/10/2019 (4:08,29/10/2019 04:12,29/10/2019 04:04,29/10/2019 03:59,29/10/2019 04:03,29/10/2019 03:57,29/10/2019 04:01 +

-0,0043 * Timestanp=29/10/2019 04:08,29/10/2019 04:12,29/10/2019 04:04,29/10/2018 03:39,29/10/2019 04:03,29/10/2019 03:57,29/10/2019 04:01 +

0,0044 * Timegtamp=29/10/2019 04:12,29/10/2019 04:04,29/10/2019 03:59,29/10/2019 04:03,29/10/2019 03:57,29/10/2019 04:0L +

-0,0008 * Timestanp=29/10/2019 04:04,29/10/2019 03:39,29/10/2019 04:03,29/10/2019 03:57,29/10/2019 04:01 +

-0,0082 * Timescamp=29/10/2019 03:59,29/10/2019 04:03,29/10/2019 03:57,29/10/2019 04:0L +

-0,0072 * Timestanp=29/10/2019 04:03,29/10/2019 03:37,29/10/2018 04:0L +

0,0032 * Timegtamp=29/10/2019 03:57,29/10/2019 04:01 +

0,008 * Timestamp=29/10/2019 04:0L +

-0 * Flow Duration +

-0,0763 * Total Fwd Packets +

-0,0241 * Total Backward Packets +

-0 * Total Length of Fwd Packets +
0 * Total Length of Bwd Packets +
0 * Fwd Packet Length Max +

-0 * Fwd Packet Length Min +

-0 * Bud Packet Length Max +

-0,0002 * Bwd Packet Length Min +
0,0001 * Fwd Header Length +
0,0003 * Bwd Header Length +

-0 * Fid Packeta/s +

-0 * Bl Packets/s +
0,0011 * Min Packet Length +

-0 * Packet Length Std +

-0 * Packet Length Variance +

-0,0264 * FIN Flag Count +

-0,0238 * SYN Flag Count +
0,1693 * ACK Flag Count +

0,0112 * Down/Up Ratio +
0,0002 * Average Packet Size +
00896 * act_data_pkt_fwd +
0,0817

Time taken to build model: 42.38 seconds

Listing 5-7 Linear Regression Model

The formula calculates the weights represented by the values on the left side of the results,
which are multiplied, by the attribute values, which keep adding and multiplying cumulatively
from the first attribute value or instance all the way to the last. Due to the number of results
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displayed and the wide screen margin, the results in both Listing 6-9 and 6-10 are screen shots
used for illustration purposes only. The error margins are calculated by the equations listed
besides each error as shown in listing 6-10. The results illustrate a DDoS linear regression
model with a summary of 0.98 correlation coefficient, a mean absolute error of 0.03, a root
squared error of 0.08 and a relative squared error of 17.2. The results in listing 6-9 show the

linear regression formula for computing the class model as depicted in listing 6-10.
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Regression Model Computational Equatio

Linear Regression Model
Label=DDa5 =

0,760¢ * Source IP=104,24,21.85,172.217,9,238,172,217,£.234, 192, 168, 56.102,192. 168.56,103 +

0,0115 * Source IP=192,168,56,103 +

-0 Source Port +

-0.5381 * Destination IP=146.20.129.103,192.168.56.103,192.168.56.101 +

0,861 * Destination IP=192,168.56,101 +

-0 Destination Port +

-0.0682 * Protocol +

-0,0082 * Timescamp=29/10/2019 04:13,29/10/2019 03:56,29/10/2019 04:11,29/10/2019 04:00,29/10/2019 04:07,25/10/2019 04:15,29/10/2019 04:09,29/10/2019 04:06,29/10/2019 04:05,25/10/2019 03:58,29/10/2019 04:14,28/10/2019 04:10,:
-0,003¢ * Tinestamp=29/10/2019 03:56,29/10/2019 04:11,29/10/2019 04:00,29/10/2019 04:07,29/10/2019 04:15,29/10/2019 04:08,29/10/2019 04:06,29/10/2019 04:05,29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,28/10/2019 04:08,:
0.0052 * Timestanp=29/10/2019 04:11,29/10/2019 04:00,29/10/2019 04:07,29/10/2019 04:15,29/10/2019 04:09,29/10/2019 04:06,29/10/2019 04:05,29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,29/10/2019 04:08,25/10/2019 04:12,;
-0.0072 * Timestamp=29/10/2019 04:00,29/10/2019 04:07,29/10/2019 04:15,29/10/2019 04:09,29/10/2019 04:06,29/10/2019 04:05,29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,25/10/2019 04:08,29/10/2019 04:12,28/10/2019 04:04,:
0,004 * Timegtamp=29/10/2019 04:07,29/10/2019 04:15,29/10/2019 04:09,29/10/2019 04:06,29/10/2019 04:05,29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,29/10/2019 04:08,29/10/2019 04:12,29/10/2019 04:04,29/10/2019 03:59,:
0.0062 * Timestanp=29/10/2019 04:15,29/10/2019 04:09,29/10/2019 04:06,29/10/2019 04:05,29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,26/10/2019 04:08,29/10/2015 04:12,29/10/2019 04:04,26/10/2019 03:59,25/10/2018 04:03,:
-0,0047 * Timestamp=29/10/2019 04:09,29/10/2019 04:06,29/10/2019 04:05,29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,29/10/2019 04:08,29/10/2019 04:12,29/10/2019 04:04,29/10/2019 03:59,29/10/2019 04:03,29/10/20189 03:57,;
0,0093 * Timegtamp=29/10/2019 04:06,29/10/2019 04:05,29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,29/10/2019 04:08,29/10/2019 04:12,29/10/2019 04:04,29/10/2019 03:59,29/10/2019 04:03,29/10/2019 03:57,29/10/2018 04:01 -
-0,0047 * Tinestanp=29/10/2019 04:05,29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,29/10/2019 04:08,29/10/2019 04:12,29/10/2019 04:04,29/10/2019 03:59,29/10/2019 04:03,29/10/2019 03:57,29/10/2019 04:01 +

0,015 * Timestamp=29/10/2019 03:58,29/10/2019 04:14,29/10/2019 04:10,29/10/2019 04:08,29/10/2019 04:12,29/10/2019 04:04,29/10/2019 03:59,29/10/2019 04:03,29/10/2019 03:57,29/10/2019 04:01 +

0,003¢ * Timegcamp=29/10/2019 04:14,29/10/2019 04:10,29/10/2019 04:08,29/10/2019 04:12,29/10/2019 04:04,29/10/2019 03:59,29/10/2019 04:03,29/10/2019 03:57,29/10/2019 04:01 +

-0,0043 * Tinestamp=29/10/2019 04:08,29/10/2019 04:12,29/10/2019 04:04,29/10/2019 03:59,29/10/2019 04:03,29/10/2019 03:57,29/10/2019 04:01 +

0.0044 * Timestanp=29/10/2019 04:12,29/10/2019 04:04,29/10/2019 03:59,29/10/2019 04:03,29/10/2019 03:57,29/10/2019 04:01 +

-0.0008 * Timestamp=29/10/2019 04:04,29/10/2019 03:59,29/10/2019 04:03,29/10/2019 03:57,29/10/2019 04:01 +

-0,0082 * Timescamp=29/10/2019 03:59,29/10/2019 04:03,29/10/2019 03:57,29/10/2019 04:01 +

-0,0072 * Timestamp=29/10/2019 04:03,29/10/2019 03:57,29/10/2019 04:0L +
0.0132 * Timestamp=29/10/2019 03:57,29/10/2019 04:01 +

0,008 * Timestamp=29/10/2019 04:01 +

-0 Flow Duration +

-0.0763 * Total Fwd Packets +

-0.0241 * Total Backward Packets +

-0 ¥ Total Length of Fwd Packets +

] ® Total Length of Bwd Packets +

0 ¥ Fwd Packet Length Max +

-0 ¥ Fwd Packet Length Min +

- * Bd Packet Length Max +

-0.0002 * Bwd Packet Length Min +

0.0001 * Fad Header Length +

0.0003 * Bad Header Length +

-0 * Tyl Packets/s +

-0 * Bwd Packets/s +

0.0011 * Min Packet Length +

- * Packet Length Std +

-0 ¥ Packet Length Variance +

-0,0264 * FIN Flag Count 4

-0,0238 * SN Flag Count +

0,1693 * ACK Flag Count +

0,0112 * Down/Up Ratio +

0.0002 * Average Packet Size +

0.08% * act data pt fwd +

0.0817

Regression Classification Equation

Tine taken to build model: 42,38 seconds

=== Evaluation on training set ===

Time taken to test model on training data: 0.73 seconds

=== Summary =——

Correlation coefficient 0.9845

Mean absolute error 0.0303

Root mean sguared error 0.0808 \

Relative absolute error 6.9367 % .
Root relative sguared error 17.2855 % ErrOf’ Marglns
Total Humber of Instances 158703

Listing 5-8 Formula for computing the Class and the error Margins
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To check how the attributes behave in the model a tree model is used. The results of the

predictive linear regression model are validated by a model tree shown in listing 6-11 below.

Pruned Linear Regression Model Tree

== (lassltier model (tull traiming set] ==

M5 pruned model tree:
(using smoothed linear models)

Fid Packet Length Max <= 21 :
Total Length of Fwd Packets <= 25 :
Total Length of Fwd Packets <= 19 :
Destination Port <= 27655.5 :
Bwd Header Length <= 26 :
Total Length of Fwd Packets <= 3 : IMI (406/0%)
Total Length of Fwd Packets » 3:
Source Port <= 59830.5 :
Total Fd Packets <= 2.5 :
Destination Port <= 51 : LM2 (49/0%)
Destination Port » 51 :
| Bwd Packets/s <= 3207.644 :
| | Tad Packets/s ¢= 2.643 : IM3 (30/0%)
|| Td Packets/s > 2.643 @ 1ML (B0/0Y)
| Bwd Packets/s > 3207.644 @ IMS (52/0%
Total Fwd Packets > 2.5:
| Source Port <= 53036 : IME (56/0%)
| Source Port > 53036 :
|| Timestamp=29/10/2019 04:00,29/10/2019 04:07,29/10/2019 04:15,29/10/2019 04:08,29/10/2019 04:06,29/10/2019 04:05,29/10/201% 03:58,29/10/2019 04:14,29/10/2019 04:10,29/10/2019 04:08,29/10/2019
|| Timestamp=29/10/201% 04:00,29/10/2019 04:07,29/10/2019 04:13,28/10/2019 04:09,29/10/2019 04:0¢,29/10/200% 04:03,29/10/2019 03:38,28/10/201% 04:14,29/10/2019 04:10,28/10/2019 04:08,29/10/2004
Source Port > 59830.5 : IM9 (82/0%)
Bwd Header Length > 26 @ IMIO0 (1874/4.941%)
Destination Port » 27655.5 & LML (9663/3.078%)
Total length of Twd Packets > 19 : IMI2 (20575/2.983%)
Total Length of Fwd Packets » 25 : IMI3 (87427/1.023%)
Pid Packet Length Max » 21 & LM14 (39394/0%)

=== Evaluation on training set =—=
Time taken to test model on training data: 0.25 seconds

——— Summary =——

Correlation coefficient 0.9993
Mean absoclute error 0.0004
Root mean sguared error Q.009s
Relatiwve absclute error 0.0863 %
Root relative sguared error 2.0527 %
Total Number of Instances 159703

Listing 5-9 Regression Model Tree

The model tree produced represents each leaf of the model as a linear regressions model. These
are like linear patches, which approximate each linear function. The results of the regression
tree model is illustrated by the regression model tree listed in Listing 6-12 below. The results

of the tree show that it has 9 leaves each with a linear model for DoS class.
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Regression Model Tree

Fid Packet Length Ma
o~
<2
i .
M 14 (393041

Totsl Lengt o Fu Pt LY 14 (2638400%)

Tt Lengt o Fug p; LM 13 (274271 023%)

/\
19
p
|

3
A
Destnation P LM 12 (205772523%)

A
<=07655.5:27605 5
r Y

B Heager Lengt LM 11 (GEE33 072%)

/ "

LT (406%)  goyee Port

A~
<=50830 5>598305
y N,

TotalFd Pankets LM B (82/0%4)

<2 525
7 "

Destingtion Port Source Port

A, ~
i O B35 »530%
- hY s 5

Timestarmp=2902019 04:00 2801 0r2019 04:07 2571072019 04:13, 2901072019 04109 291072019 04:06, 2802019 04:05, 2501012019 03:36,25/10/201 0414290107201 0410, 2902019 04:08 29102019 04:12 281102019 04:04, 2801002015 0359, 2901002013 04 03,291 002019 0353
s Fas

<=I07T.0443207 54 <05 08
/ AN / Y

Eupags MBI L7 (BA4BEY) LB (1104

I

<2643 #2640
s

\
U300 L4 R0

Listing 5-10 Regression Model Tree Visualisation

The results in listing 6-13 below show the predicted values for linear predictive model built

in listing 6-9 above. The results show that predictions are made for each instance of the
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model with the actual values, which are either Os or 1s correctly predicted. The error margins

of each prediction are also presented in listing 6-13 below.

Predicted Values of the Regression Tree Model
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Listing 5-11 Predictive model Values

These predictions are illustrated in the boxplot shown in the graph in Figure 6-19 below.

1
067 HE 467

Figure 5-17 Predictive Model Visualisation
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To create a predictive model two class values are considered since we are dealing with a two-
class problem where we are trying to determine whether a packet is an attack or just a genuine
scan. We call the two class values 0 and 1, where 0 represents a benign packet and 1 represents
DDoS attack. Prediction is set to a threshold for 0 or 1 and a prediction is done for each class
value where the output is set to 1 for training instances that belong to the class 1 and 0 for those

that are not. This is illustrated in the results in Figure 6-20

Mame: Label=DoS5 Type: Mominal
Missing: 0 (0%) Distinct: 2 Unique: 0 {0%)
Mo, | Label | Count | Weight

1 0 4450 4450.0
2 1 15204 15204.0

Figure 5-18 Total number of Predicted Values for both Class Attributes

The linear regression predictive model that has been built needs to be checked for accuracy
through the validation process. During model validation, the trained model is evaluated using
the test dataset that was set at 10% during the dataset split. Model validation is presented in

the section that follows.
5.4 Validating the Predictive Model

The trained model is validated by calculating the accuracy of the model prediction on new data.
To test the accuracy of the predictive model that has been created, the model was run against
the testing dataset using supervised learning techniques. Since the prediction is being made on
whether or not the packet forwarded is an attack, only the label class is used for classification
testing, the rest of the attributes were deleted and a new attribute consisting of the regression
classification computational algorithm illustrated in listing 6-10 for the predictive model was
added. A linear regression algorithm was again applied to the two attributes without the

dependant attributes of the dataset to see if the model can predict the class values correctly.
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This will help determine if the predictive model created can accurately predict the DoS attacks

and the port scans by just using the class labels.

To avoid overfitting of the model onto the new data because of the vast number of instances of
the value attributes, a sampling range of 1,000 was used. The results obtained show the
accuracy level of prediction of 19,654 instances as originally depicted in section 6.2 where
17,711 instances are correctly predicted giving a 90% accuracy and 1,943 incorrectly predicted
instances at 10%. These results show improved predictive value which means that the
predictive model built is a good model and can be deployed as a predictive analytics model for
the management of security in a virtualised environment. Deployment of the model is discussed

1n section 6.5.

The results of the validation are illustrated in listing 6-1below

Attributes: 2
Label=DoS
classification

Test mode: 18-fold cross-validation

=== Classifier model (full training set) ===

classification:
=< 1.199809239523554 -= 0
= 7.193560271178628 -= 1
== 7,183360271178628 =0

(17629/19654 instances correct)

Time taken to build model: 0.0l seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 17711 90,114 %
Incorrectly Classified Instances 1943 9.886 %
Kappa statistic 0.6773

Mean absolute error 0.0989

Root mean squared error 0.3144

Relative absolute error 28.2199 %

Root relative squared error 75.1282 %

Total Number of Instances 196854

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.604 0.012 0.937 0.604 0.735 0.702 0.796 0.656 <]

0.988 0.396 0.895 0.988 0.939 0. 702 0.796 0.894 1
Weighted Avg. 0.901 0.309 0.904 0.901 0.893 Q. 702 0.796 0.840

=== Confusion Matrix ===

a b =-- classified as
2689 17681 | a==0
182 15022 | b =1

Listing 5-12 Fitting the Predictive Model to New Data
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The accuracy of the predictive model is further tested using a probability model using Naive

Bayes and logistic algorithms, explained in the sections that follow.

5.4.1 Naive Bayes

To test the accuracy of the predictive regression model we use the Naive Bayes algorithm to
check the probability of a packet being an attack or not. Naive Bayes is a probabilistic classifier
that calculates a set of probabilities by counting the frequency and combination of the given
dataset (Patil and Sherekar, 2013). Naive Bayes algorithm uses Bayes theorem, which assumes
that all attributes are independent of the class variable. This assumption is rarely true hence,
the classification as Naive and yet the algorithm tends to perform well and learns rapidly in a
supervised learning classification.

To test the accuracy of the predictive model Naive Bayes algorithm is applied to the trained
model and the class only rather than to the entire dataset. This is illustrated in the results
Listings 6-15 and 6-16 respectively. The results show the probability of the first instance with
the actual value of 2:1 correctly predicted as a 2:1 probability of a DoS attack happening. There
are some errors for example instance 2 shows a 1.0 actual value but with a probability of 2:1.
Instance 16 on the other hand, has also predicted the probability of the packet being a port scan
as expected. There are a few errors in the results represented by the + in the error column of

the second instance.
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Listing 5-13 Testing the predictive value using Naive Bayes Resultl

To evaluate the accuracy of the classification algorithm the performance of the classification
is assesed. This is usualy determined by calculating the percentage of the tuples placed in the
correct class as shwon in Listing 6-16 below, which shows the probabilty of the model correctly
predicting packets at 78% with 1525 instances correctly classified and only 440 incorrectly
classified based on the test split data used in the intial validation of predcitve model in section
6.4. The confusion matrix shown at the end of the resluts in listing 6-16 illustrates the accuracy
of the solution to a classfication problem. Te confusion matrix provides information about the
actual and predicted classifications normally evaluated by the the data matrix. The entries in
the confusion matrix translates as a being the number of correct predictions of instance being

negative and b is the number of incorrect predictions of instances being positive.
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=== Evaluation on test split ===

Time taken to test model on test split: 1.11 seconds

=== Summary ===

Correctly Classified Instances 77.6081 %

Incorrectly Classified Instances 22,3519 %

Kappa statistic

Mean absolute error

Root mean sguared error

Relative absclute error

Root relative sguared error

Total Number of Instances

=== Detailed Accuracy By Class ==
TP Rate FP Rate Precision Recall F-Measure MCC RCC Rrea PRC Area Class
0.157 0.048 0.47% 0.157 0.236 0.174 0.770 0.497 0
0.952 0.843 0.79% 0.952 0.869 0.174 0.770 0.908 1

Weighted Avg. 0.776 0.668 0.728 0.776 0.7248 0.174 0.770 0.818

=== Confusion Matrix ==

a b <-- classified as
€63 366 | a=10
74 1457 | b=1

Listing 5-14 Testing the predictive value using Naive Bayes Result]

To perform another type of validation on the built model, logistic regression was used. Like
most if not all regression analysis algorithms, logistic regression is also a predictive analytics
algorithm, which is used in this project to test and validate the accuracy of the built predictive
regression model. Logistic regression performs well with linearly separable classes and that is
the main reason we are using it to validate the linear regression predictive model that hasbeen
built. Logistic regression will help iron out any errors of the model as it uses maximum
likelihood estimation of an outcome. The application of logistic regression to validate the linear

regression model. This is explained in a little more detail in the section that follows.

5.4.2 Logistic Regression

To build a logistic regression model, we consider a logistic model with the given parameters
and then see how the coefficients can be estimated from the data. We take the linear regression
predictive model built earlier, which has two predictors, a DDoS expressed as x1 and a benign
expressed as x2 and one response variable Y which is our expected outcome, and denote it as
p=P(Y=1). Logistic regression modelling is used here to predict the probability of an attack
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happening using the built predictive model. This is to establish the probability of the packet
being a DDoS attack or is it just a normal random packet from the total number of forward

packets sent, which is depicted by the formula below.

P(Packet = DoS|totalFwdPackets)

In other ways, we are modelling the probability that X belongs to the class (Y=1) which is

expressed as

P(X)=P(P =1]X)

We assume there is a linear relationship between the predictor variables and the log-odds of

the event that Y=1. The linear relationship is expressed as

I =logy 15 Bo + Bix1 + Bax;

The odds are recovered by raising the log-odds to the power of the odds using the following

equation

L = pBot+Bix1+B2x2
1-p

The probability that Y=1 is represented by the equation

pBO+B1x1+p2x2 1

p pBO+BIx1+B2x241 1+ bPO+B1x1+f2x2

The probability prediction will be transformed into binary values 0 and 1. Although logistics
regression is a linear method, the predictions are made using the logistic function, which means
that the predictions can no longer be considered as a linear combination of the inputs as in

linear regression but can be expressed by the following equation

p(X) = e’ (b0 + b1 x X)/(1 + " (b0 + b1 * X))
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To build a regression model a simple logit expression using the equation below was followed

to transform the logit.

Logit
E Pr[l|ay ay ... ai] |=11/(1 + exp(—wo — wiai—. .. —wyay)) “
Output of ~
the Logit
Formula

To build a linear model that estimates the class probability we use cross validation with a
minimized log-likelihood as opposed to the squared error used in linear regression modelling.
We also used ridge estimator to run the model. To achieve logistic regression an equation listed

herein is used to calculate the probability.

n
(1 —x®)log(1l — Pr{l1]al a?, ..., a’;{} + x®log(Pri{l|al a?, ..., ak%)
1, 2 1, 2

j=1

The results obtained are listed in listing 6-17 below.
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Logistic Regression with ridge parameter of 1.0E-8

Coefficients...

Class
Variable ]
classification -0.5861
Intercept @.1497
Odds Ratios. ..

Class
Variable Q
classification ©.5565

Time taken to build model: ©.09 seconds

=== Predictions on test data ===

inst# actual predicted error prediction
1 2:1 2:1 0. 965
2 2:1 2:1 0.711
3 2:1 2:1 0.848
4 2:1 201 Q.738
S 2:1 2:1 Q.973
[+ 2:1 2:1 Q.758
7 2:1 2:1 @.851
=] 2:1 2:1 @.879
a 2:1 2:1 Q.747
10 2:1 2:1 0.957
11 2:1 2:1 0,746
1z 2:1 2:1 0.8z28
1z 2:1 2:1 @.881
14 2:1 2:1 0.721
15 2:1 2:1 Q.714
1245 1:0 1:09 9.511
1946 1:0 2:1 + 0.928
1947 1:0 2:1 + a.956
1948 1:0 2:1 + .82
1949 1:@ 2:1 + @.829
1950 1:@ 2:1 + @.918
1951 1:0 2:1 + a.708
1952 1:0 1:9 o.568
1953 1:0 1:9 8.531
1954 1:0 2:1 + @.595
1955 1:0 2:1 + Q.946
1956 1:0 2:1 + @.835
1957 1:0 2:1 + @.919
1958 1:0 2:1 + Q.976
1959 1:0 2 + Q.627
19650 1:0 2:1 + Q.946
1961 1:0 2:1 + Q.85
1962 1:0 2:1 + 1
19632 1:0 2:1 + Q.851
1954 1:0 1:0Q @.591
1955 1:0 2:1 + Q.6
=== Stratified cross-wvalidation ===
=== Summary ===
Correctly Classified Instances 16432 83.6064 %
Incaorrectly Classified Instances 3222 165.3936 %
Kappa statistic Q.3711
Mean absolute error 0.2943
Root mean squared error 0.3698
Relative absolute error 84.0186 %
Root relative squared error 88.3583 %
Total Mumber of Instances 19654
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
Q. 276 o. 000 0. 999 9.276 9.433 Q. 477 Q. 764 o.738 a
1.000 o.724 0.825 1.000 . 904 Q. 477 Q. 764 0. 867 1
Weighted Avg. 0. 836 0. 560 0. 865 9.836 Q.797 Q. 477 0. 764 0.838

=== Confusion Matrix ———

a b =-- classified as
1zz9 3221 | a =
1 15203 | b =1

Listing 5-15 Logistic Modelling using Ridge

The results of the logistic model produced in listing 6-17 above show an 83% predictive

accuracy of the built predictive model with 16% incorrectly classified instances.

The results show the probability of the class labels being either a 1 or a 0 as correctly predicted

by the model.
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With so many tools and techniques available for machine learning and deep learning
predictive analytics is achieved by classification, statistical and probability problems that
bridge the gap between big data analytics and data mining. It is important however to
understand the critical steps involved in establishing a model capable of delivering real (ish)
time predictive analytics models required in this project. To answer the question of being able
to use predictive analytics as a security management tool in virtualised systems, that is
predicting attacks in near to real time, the right data and the right algorithm needs to be used
for predictive modelling. Previous sections of chapter 6 have answered the question by using
machine-learning algorithms to illustrate how a predictive modelling, using various algorithms
can be built and tested for predictive value. The use of time series data often arises when
monitoring processes or tracking matrices as in our case. The difference between time series
analytics and those discussed earlier in the chapter is that, time series analytics accounts for the
fact that data points that are collected over time have internal structure variations that should

be accounted for.

The following section discusses and illustrates the use of time series algorithms in building a

model for real time predictive analytics.

5.4.3 Predictive Analytics Modelling using Time Series

Time series modelling uses statistical techniques to model and explain a time dependant series
of data points. Time series is a sequence of series of numerical data points listed in time order
taken at successive equally spaced points in time. For this part of model development we use
time series forecasting, which is a process for using a model to generate predictions for future
attacks based on the known past events. The reason for this is that time series data has a natural
time ordering system that differs from other machine learning applications where each data

point is an independent value of the expected outcome. The main objective of predictive
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modelling is to estimate the value of an unknown variable. Time series predictive modelling

1s twofold:

» Obtain an understanding of the structure of the produced data

» Fit a model that forecasts, monitors and provides feedback and feedforward control

Time series in this project takes the form of machine learning and data mining approaches to
model a time series predictive model by dependence through the additional inputs variables
also referred to as lagged variables. To prepare the data for time series, all unnecessary
attributes are removed and only the timestamp, total forward and backwards packets are used.
Once the data is transformed, we apply multiple linear and non-linear regression algorithms
such as support vector algorithms for regression and model trees. For model building using
time series, we use WEKA to analyse and build the time series predictive model. The time
series framework in WEKA takes machine learning and data mining approaches to model time
series by transforming data into a form that a standard learning proposition algorithm can

process to model trends and seasonality.

Since the dataset was generated at intervals over a period, the data used for the time series
modelling was collected within a 24-hour period and it is represented in minutes and not in
days or months. We apply regression algorithms to make continuous predictions. To carry out
the time series modelling process we only use two variables; timestamp and total number of
packets so the rest of the attributes are removed once the dataset is loaded into the modelling

tool.

To prepare for time series predictive modelling we set the forecast parameter to ten times
beyond the end of the training data. The confidence interval level at which the prediction is set
1s 95% but the period is automatically detected by the tool. We set the target values, which are

the values from the data we wish to forecast to multiple targets in order to capture dependences
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between the values. Two algorithms are used for time series forecasting. To use the parameters
for linear regression and SMoreg algorithms, we set the time unites to 12-steps ahead. A time
unit is the number of steps into the future we set the predictions to. We use the time stamp as
the field in the data that holds the time we are forecasting and the periodicity is left at default
because there is not enough date separation in the data being used. The results of the learned

model based on the training data are shown in listing 6-18

Total Fwd Packets:
SMOreq

weights (not support vectors)
+ 0.0018 * (normalized) ArtificialTimeIndex

0.0001 (normalized) ArtificialTimelIndex*Lag Total Fwd Packets-12

+ 1.0428 * (normalized) Lag_ Total Fwd Packets-1

+ 0.001 * (normalized) Lag_Total Fwd Packets-2

+ 0.001 * (normalized) Lag Total Fwd Packets-3

+ 0.00068 * (normalized) Lag_ Total Fwd Packets-4

- 0.0005 * (normalized) Lag Total Fwd Packets-5

+ 0.0003 * {(normalized) Lag Total Fwd Packets-€

+ 0.0005 * (normalized) Lag_ Total Fwd Packets-7

+ 0.0018 * (normalized) Lag Total Fwd Packets-8

+ 0.0002 * {normalized) Lag Total Fwd Packets-9

+ 0.0005 * (normalized) Lag_ Total Fwd Packets-10

+ a * (normalized) Lag_ Total Fwd Packets-1l

+ 0.0001 * {normalized) Lag_ Total Fwd Packets-12

- 0.003% * (normalized) ArtificialTimeIndex*2

+ 0.002% * (normalized) ArtificialTimeIndex*3

+ 0.0079 * {(normalized) ArtificialTimeIndex*Lag_ Total Fwd Packets-1
- 0.0013 * (normalized) ArtificialTimeIndex*Lag Total Fwd Packets-2
- 0.0009 * (normalized) ArtificialTimeIndex*Lag Total Fwd Packsts-3
- 0.0005 * {(normalized) ArtificialTimeIndex*Lag_Total Fwd Packets-4
+ 0.0008 * (normalized) ArtificialTimeIndex*Lag Total Fwd Packets-5
+ 0.0003 * (normalized) ArtificialTimeIndex*Lag Total Fwd Packests-&
+ 0.0001 * {(normalized) ArtificialTimeIndex*Lag_Total Fwd Packets-7
- 0.000% * (normalized) ArtificialTimeIndex*Lag Total Fwd Packets-8
+ [u] ¥ (normalized) ArtificialTimeIndex*Lag Total Fwd Packets-9
- 0.0003 * (normalized) ArtificialTimeIndex*Lag_  Total Fwd Packets-10
+ 0.0002 * (normalized) ArtificialTimeIndex*Lag Total Fwd Packets-1ll
- *

+

Listing 5-16 Time Series Forecasting

To illustrate the results in listing 6-18 we use the root-squared error, the root squared mean

error and the results are shown in figure 6-24 below.

145



10 step-ahead predictions for: Total Fwd Packets [95% conf. intervals]
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| = Total Fwd Packets-actual - Total Fwd Packets-predicted|

Figure 5-19 Time Series Forecasting using 10 step-ahead predictions

The output results of the actual predicted values for the target values at a single step of the 1-

step-ahead prediction is listed in listing 6-19

=== Predictions for training data: Total Fwd Packets (l-step ahead) ===
inst# actual predicted conf errror
13 1 1.01&65 —0.44:54.103 0.0165
14 1 l.01l&é& —0.44:54.103 o.0les
15 1 l.01l&é& —0.44:54.103 o.0les
16 1 1.01&68 —0.439:854.103 O.01&6&
iT 1 1.01&68 —0.439:854.103 O.01&6&
1= 1 1.01&66 —0.439:54.103 0.01&66
15 1 1.01&66 —0.439:54.103 0.01&66
20 1 1.01&7 —0.439:54.103 o.01&e7
21 1 1.01&7 —0.439:54.103 o.01&e7
22 1 1.01&7 —0.439:54.103 0.01&87
23 2 1.01&7 —0.439:54.104 —0.9833
z24 2 2.0598 0.604:85.148 0.05%9&8
25 2 2.068068 0.605:85.147 0.0606
26 2 2.0616 D.606:85.148 0.0&61&
27 2 2.0822 O.808:85.149 o.0822
28 2 2.0817 O.808:85.149 o.0817
25 2 2.08621 0.606285.14% o.08621
30 2 2.06286 0.8607:285.14% aO.0626
31 2 2.08644 D.605:85.151 0.0&644
32 2 2.0646 D0.605:85.151 0.0646
33 2 2.0852 O.808:85.152 o.0852
4 2 2.0852 O.808:85.152 o.0852
35 2 2.0854 0.809:85.152 0o.0&854
36 2 2.0654 0.8609:285.152 0.0654
37 2 2.0654 0.8609:85.152 0.0654
s 2 2.0655 0.605:85.152 0.0655
9 3 2.0655 0.605:85.152 —0.5345
40 3 F.1023 1.6852:86.195 a.1023
41 k= F.l1094 1l.6853:86.196 —l.890&
4z a 5.19&6 3.T74:885.283 —0.504
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Listing 5-17 Time Series using 1-step-ahead Prediction

The output results of future predictions that are beyond the end of series of the training data,
outputs both the training data and the predicted values of up to the maximum number of time

units that are available. The results in listing 6-19 are illustrated in figure 6-25

1 step-ahead predictions for |otal Fwd Packets [95% cont. intervals]
2,200

2100
2,000
1,800
1,800
1,700
1,600
1,500
1400
1,300
1,200
1,100
1,000

a00

800

0 10000 20,000 30,000 40000 50000 GO0OCO 70000 BOOOO 90,000 100,000 110,000 120000 130000 140000 150000 180000 170,000 130,000 180,000

|-I— Total Fwd Packets -# Total Fwd Packets_1-step-ahead|

Figure 5-20 Time Series Forecasting using I-step-ahead predictions

Using the 12 step ahead predictions produces lagged data values as illustrated in listing 6-20
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Transformed training data:

Tot Fwd Fkts=1

AreificialTimeIndex

Lag Tot Fwd Fkts=1-1

Lag Tot Fwd Fkts=1-2

Lag Tot Fwd Fkts=1-3

Lag Tot Fwd Fkts=1-4

Lag Tot Fwd Fkts=1-5

Lag Tot Fwd Fkts=1-&

Lag Tot Fwd Fkts=1-7

Lag Tot Fwd Fkts=1-8

Lag Tot Fwd Fkts=1-9

Lag Tot Fwd Fkts=1-10

Lag Tot Fwd Fkts=1-11

Lag Tot Fwd Fkts=1-12
AZreificialTimeIndex~2
AreificialTimeIndex™3
ArtificialTimeIndex*Lag Tot Fwd Fkts=1-1
ArtificialTimeIndex*Lag Tot Fwd Fkts=1-2
ArtificialTimeIndex*Lag Tot Fwd Fkts=1-3
ArtificialTimeIndex*Lag Tot Fwd Fkts=1-4
ArtificialTimeIndex*Lag Tot Fwd Fkts=1-5
ArtificialTimeIndex*Lag Tot Fwd FPkts=1-&
ArtificialTimeIndex*Lag Tot Fwd Fkts=1-7
ArtificialTimeIndex*Lag Tot Fwd Fkts=1-8
ArtificialTimeIndex*Lag Tot Fwd Fkts=1-39
ArtificialTimeIndex*Lag Tot Fwd FPkts=1-10
ArtificialTimeIndex*Lag Tot Fwd Pkts=1-11
ArtificialTimeIndex*Lag Tot Fwd Pkts=1-12

Listing 5-18 Transformed Lagged data

A linear regression model of the time series prediction is illustrated in listing 6-21

Linear Regression Model
Tot Fwd Pkts=l =
0 * ArtificialTimeIndex +

1.025 * Lag Tot Fwd Fkta=l-1 +
-0.0217 * Lag Tot Fwd Pkta=1-12 +

-0 * ArtificialTimelIndex*2 +

a ¥ ArtificialTimeIndex*3 +

-0 * BrtificialTimeIndex*Lag Tot Fwd Pkta=1-1 +
0 * Artificiallimelndex*Lag Tot Fwd Fkts=1-12 +
-0.0001

Listing 5-19 Time Series linear Predictive model

The time series linear predictive model is represented in figure 6.26
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1 step-ahead predictions for Tot Fwd Pkts=1

1.0024
1.0023 1
1.0022
1.0021 4
1.0020 4
1.0018 1
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1.0015 1
1.0014 4
1.00131
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1.00114
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1.0008 1
1.0008 1
10007 1
1.0008 1
1.0005 1
1.0004 1
1.0003 1
1.0002
1.0001 4
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09090 -
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|+ Tot Fwd Pkts=1 - Tot Fwd Pkts:1_1-step—anead|

Figure 5-21 Time Series Linear predictive model using 1-step-ahead prediction

To put the built models to the test they need to be paired with real time systems in operation
using a deployment process. Deployment is a method by which machine learning models are
integrated into real time environment systems in order to make practical decisions based on
the data. Model deployment is the last stage of the project where we take the built models and
integrate them into the virtual environment to see if they can predict attacks. The following
final section of this chapter discusses the many ways of deploying a model into a working

environment.
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5.5 Deployment of the Built Predictive Analytics Mode

Predictive model deployment provides the option to deploy the analytical results and the built
model into everyday decision-making processes by automating the decision-making process.
Model deployment in data science refers to application of a model for prediction into day to

day decision making using new data (Mannan et al., 2019).

5.5.1 Deployment Methods
There are many different methods of deploying an artificial intelligence (AI) model into

operation such as the use of

e data science tools or the cloud
e programming languages such as Java, C or visual basic
e databases and SQL scripts and

e Predictive Model Mark-up Language (PMML)

5.5.2 Implemented Deployment Method

We use PMML for the deployment of the built models. The reason for the choice of this
deployment method is that PMML eliminates the need for custom model deployments and
allows for clear separation of model development and model deployment tasks. PMML
supports data science modelling methods such as regression, decision trees, clustering and time
series used in this project. It allows for the explicit specification of valid, invalid and missing
values which allows for the appropriate handling of missing and invalid values (Mannan et al.,
2019). PMML has embedded functions for arithmetic expression, handling of data, time and
strings used for implementing logic and Boolean problems. It allows for predictive modelling

to be fully expressed and model outputs to be scaled.

PMML consists of
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The header, which contains general information about the PMML documents,

Data dictionary that contains definitions for all possible attributes used in the model,
Data transformation that allows data to be transformed into usable data for model
building,

Model information that contains the definition of the model and lastly

The list of attributes used in building the predictive model.
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5.5.3 Monitoring of the Deployed Predictive Model
Deployment and Model deployment and monitoring work hand in hand, and follow a step by

process as illustrated in Figure 6-24.
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Figure 5-22 Predictive Model and Monitoring

Model deployment for the project has five phases:

Deployment planning — which involves the initial deployment processes using Rs

PMML package and python.

e Monitoring and Maintenance planning - involves setting the correct matrices to be
monitored for predictive value as well as configuring the right response to the
monitored matrices.

e Deployment — which involves the final evaluation and testing of the model by ensuring

that all the model values meet the set predictive values

Monitoring and Reporting — where the model is evaluated and tested with new data

Validation of predictive models is done to ensure that the predictors used do not have issues
and for the validation of distribution, analytical algorithms and pre deployment scoring. Once
the model is validated, it is then scored by applying it to new data that does not have dependent

variables
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5.6 Summary

In this chapter, we have illustrated the use of explanatory analytics to gain an in-depth
understanding of the dataset generated in chapter 5. The chapter provides the use of various
classification algorithms in the EDA such as feature selection, clustering of attributes of the
dataset and the use of simple classification analytics processing using various algorithms to
prepare the data for predictive analytics. The dataset is manipulated using various algorithms
to ensure that the right attributes are identified, explained and presented using both scatter plots
and box plots. The results obtained in this chapter demonstrate that the right attacks simulated
in chapter 5 are the right classes depicted in EDA process. Three models (classification model,
Clustering Model and forecasting models) are created and will be used in the next section;
building the predictive modelling of the same chapter. Section 6.3 implements the findings in
the EDA process by further cleaning and analysing the data models used to build the
classification models. The data mining process in this part of the section was used to build and
validate the model. Section 6.3 also demonstrates the use of various classification algorithms
such as regression, decision trees and time series algorithms to achieve desired results; which
is the use of predictive analytics as a security management tool in virtualised systems. The
chapter has demonstrated the process of building predictive models using linear regression
algorithms, which is then validated and tested using logistic and Naive Bayes algorithms. The
results of the built models together with the validation models are also presented. Predictive
analytics modelling using time series is also illustrated in section 6.4.1 of the same chapter and
the results in forms of graphs are presented. The model deployment process is also explained

in section 6.5.
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6. Conclusion
The need to contribute to the knowledge of existing solutions for effective virtualisation

security in cloud computing, and the need to implement predictive analytics in empirical
information technology as a security management tool for the virtualised environment, has
been the main motivation for this project. With so many tools and techniques available for
machine learning and deep learning it is often not easy to understand what defines predictive
analytics, although most classification, statistical and probability problems bridge the gap. It is
important however to understand the critical steps involved in establishing a model capable of
delivering real (ish) time predictive analytics models required to achieve the predictive value
for the project. To answer the question of using predictive analytics as a security management
tool in virtualised systems that predict attacks in near to real time, the right data and the right
algorithm need to be used for predictive modelling. The thesis has highlighted the right
attributes required for predictive modelling and has demonstrated the use of machine learning
using various algorithms to achieve predictive analytics modelling for the prediction of DoS

attacks in virtualised systems.

Predictive analytics has been around for many years and research through the evaluation of
many solutions, has proved that although empirical predictive analytics is an information
technology process, its application to empirical information technology such as cloud
computing technology, is very limited. Suggestions of how predictive analytics can be adopted
into information systems such as cloud have been made and attempts provided by many
researchers, but there is still no extensive use of predictive analytics in empirical information
systems. As cloud computing is in need of robust, effective security solutions, virtualisation
with its security benefits is being used to help eliminate some security concerns faced by cloud
computing. Virtualisation however, does not only bring about security benefits but comes with

its own security issues brought about by its strong properties. With the ever-evolving cyber
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security attacks, it is imperative to find solutions for cloud computing that not only find attacks
(such as IDS or VMI) after they have happened but also combat (PAM) them before they
actually happen. This project illustrates how these virtualisation security issues can be managed
by implementing predictive analytics as a security management tool as a novel contribution
and in turn demonstrates the use of predictive analytics in by designing and implementing a
predictive security model using different algorithms. The work covered in this project
demonstrates how empirical predictive analytics can be adopted as a security management tool
in virtualised environments by building and deploying various predictive models that predict

attacks using real time big data analytics and a combination of algorithms.

6.1 Thesis Summary

Chapter 2 presents an overview of virtualisation and the types of architectures available. The
chapter defines virtualisation as the simulation of software or hardware upon which other
software runs. The chapter defines the simulated environment as a virtual machine or guest
operating system, which is managed by the virtual machine monitor. Two architectural types:
type I known as bare metal, which is directly installed onto the hardware and type II also
referred to as hosted virtualisation that is installed right on top of the host operating system are
identified and discussed. The types of virtualisation (full, storage, application and desktop
virtualisation) and the security risks (transparent, insertion, introspection, intervention
nonlinear VM operation and software decoupling) virtualisation poses to cloud computing
together with the security implications from (control channels, data and software flows as well
as non-VMM software) are also discussed in this chapter. The end of the chapter discusses the

security vulnerabilities, threats and attacks to both the hypervisor and the virtual machine.

Chapter 3 provides a detailed survey of existing security solutions such as
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- The Home Alone: CO-Residence in cloud via side channel analysis, which aims at
verifying remotely that the tenants’ virtual machines are physically isolated and
have exclusive use of the physical machine.

- The Network Intrusion Detection Countermeasure Election (NICE) framework that
is aimed at identifying malicious VMs on the network and lastly

- The Distributed Graph Lab cloud model an extension to MapReduce that uses

machine learning and data mining that aims at modelling big data dependences

The literature reviewed suggests that although the above solutions claim the use of predictive
analytics to combat security in their frameworks, there is still need for empirical predictive
analytics as a security management tool as the reviewed solutions still use data mining
techniques and handle security threats after the fact. The chapter also defines predictive
analytics as the process for refining data using knowledge to extract hidden value from newly
discovered patterns in comparison to data mining, which is the process for pattern recognition
in large datasets to identify relationships. Examples of the differences between predictive
analytics and data mining together with the tools and techniques for predictive modelling are

presented.

Chapter 4 discusses the design structure and methodology followed in the project. The chapter
presents an overview of the architecture or experimental environment, which has been set up
with five components namely the AP, reporting, analytical, monitoring, and data collection
tools as well as the database. The predictive analytics process has six stages. The first stage is
to understand the predictive goal intended for the project, then capture and understand the data,
which is followed by the data preparation process, model design, model deployment and then

lastly the model deployment process.
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Chapter 5 covers the attack simulation process used for the collection and generation of the
dataset used in predictive analytics. The chapter highlights the experimental environment,
which is a decomposition of the architectural overview presented in chapter 4. The attack
simulation process presented in the chapter has three parts: the attack part where the attack
process is carried out, the detection component, which helps the attacks to be identified, and
the response component where the attacks are being managed. Kali Linux is used to launch
attacks and for intrusion detection using the built-in functions, Metasploitable with other virtual
machines are used as attack victims or targets. The attacks being simulated are DoS and port
scan attacks. The chapter demonstrates the data generating and collection process through the
various attack simulating processes using different attack scenarios and attack vectors and
presents results of each simulation. Sample dataset generated and imported into a spreadsheet

is also shown in this chapter

Chapter 6 is the final experimental chapter of the thesis. It presents the predictive modelling
process, which starts with the exploration of the collected data using various classification
algorithms such as feature selection, clustering, and simple linear and non-linear algorithms.
The predictive modelling process uses the data in the explanatory data process illustrated at the
beginning of the chapter and builds various models using different algorithms such as linear
regression models, which are validated and tested using naive Bayes and logistic algorithms.
Predictive analytics modelling using time series is also illustrated. To answer the question of
the project, predictive models are built, validated and deployed as a security management tool

in virtualised environments.
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6.2 Contributions

The use of predictive analytics to combat various security issues of virtualisation has been

attempted by many researchers as highlighted chapter 3. Although these researchers start with

predictive analytics in mind they outcome still uses data mining techniques such as

introspection and intrusion detection to find attacks after the fact. To move a step further from

datamining, this research demonstrates how predictive analytics as a novel contribution, is

used as a security management tool for virtualised information systems by building, validating

and testing predictive models that accurately predict DoS attacks using new data and in

real(ish) time using time series forecasting and prediction. The thesis has demonstrated novel

contributions to the body of knowledge by:

Designing and successfully implementing a novel predictive analytics modelling
framework that was followed to successfully design, build, implement and build the
predictive model in place.

Successfully building implementing and deploying a predictive analytics model used
for risk analysis and management of security threats in virtualised information systems
using different algorithms such as linear regression algorithms used for building the
PAM, logistic regression and Naive Bayes algorithms for validating and testing the
predictive accuracy of the built model and then using the built predictive analytics
model to predict DoS attacks and then demonstrated the accuracy level of the built PAM
in predicting new data in virtualised systems.

Providing visible use of predictive analytics in multi-tenant systems by implementing
a predictive analytics model as a security measure in virtualised environments and has
therefore extended on Shmuel et al’s idea of how empirical predictive analytics can be
designed and implemented into information systems such as cloud computing in this

case therefore contributing to existing theories on using predictive analytics to combat
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security in virtualised systems by extending on the existing theories that suggest a
different use of algorithms other than those used in datamining techniques by using
predictive analytics algorithms.

e Demonstrating that attacks can be analysed and mitigated in real time by using time
series forecasting and time series predictive analytics as opposed to data mining
techniques that use Intrusion detection systems to find attacks after they have already

happened.

6.3 Challenges and Limitations

Building and implementing a predictive analytics model as a security management tool for

virtualisation systems came with a lot of challenges and limitations as explained below:

L Due to the nature of the project which required a physical cloud environment to be built
and implemented with multi-tenant system installed for the simulation of attacks, there was
limited resources available, and this lead to designing and implementing a simulation
environment using virtual box. Using a simulation environment inside a box came with
challenges such as configuration problems, network limitations as there was a likelithood of
attacks moving out of the simulation environment. There was a limitation of what could be
simulated for this reason, hence DoS attacks.

IL The simulation of the attacks required for data collection, could not run for alonger
period of time due to the limited system resources hence the limited time period in the dataset.
The system was not robust enough to capture continuous data without being terminated.

IIL. Achieving the required results was also a challenge as time for running simulations was
constrained due to unforeseen circumstances brought about by an ongoing illness.

V. The built models could not be deployed into the cloud due to limited resources used as
it required a real time cloud environment to deploy. The built model could not be deployed into

the virtual environment as time was constrained as this required time to program the
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deployment using the PMML, attach the model to the cloud, test and continuous monitoring of

the performance of the model in real life.

6.4 Further Work

To successfully achieve predictive analytics as a security management tool for virtualised

system, model deployment, testing and monitoring in real time needs to be accomplished.

Future work includes:

L

IL.

1.

Iv.

VL

Further testing of the predictive value of the built models using different algorithms is
necessary. This will help validate the built models for easy deployment of the same into
a real time cloud system.

Deployment of the built models by incorporating the model into a working virtual
environment of the cloud using PMML. This involves an iterative deployment process
of fine tuning, testing and validation of the model for predictive accuracy using real
time data.

Using different predictive analytical tools for predictive modelling, testing, validation,
visualisation and mode deployment. Since an analytical tool was used in this project for
analytics and visualisation using an API such as Python and R to build a predictive
model and visualise the results could make deployment of the model easier to manage
as programming and fine-tuning of the model could be made within the APIs used.
Using different methods for data collection methods to improve the quality of the
dataset being used.

Using different monitoring techniques that will not require an agent being installed on
the monitored virtual machines.

Extending the use of predictive analytics as a security management for all security
threats of virtualisation in cloud computing rather than DoS attacks as implemented in

this thesis. This could be achieved by simulating a number of attacks aimed at
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virtualisation from different attack vectors like the hypervisor or virtual machines or

even the host and collecting the data for predictive modelling.
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