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Abstract 

Fundamental to performing actions is the acquisition of motor behaviours. We examined if 

motor learning, through observational practice, occurs by viewing an agent displaying 

naturalistic or constant velocity, and whether motion trajectory, as opposed to end-state, 

information is required. We also investigated if observational practice is sensitive to belief 

regarding the origin of an agent. Participants had to learn a novel movement sequence 

timing task, which required upper-limb movements to a series of targets within a pre-

specified absolute and relative time goal. Experiment 1 showed learning after viewing 

naturalistic and constant velocity, but not end-state information. For Experiment 2, in addition 

to learning the movement sequence, participants observed a series of movement stimuli that 

were either the trained or new sequences and asked to rate their confidence on whether the 

observed sequence was the same or different to observational practice. The results 

indicated agency belief modulates how naturalistic and constant velocity is coded. This 

indicated the processes associated with belief are part of an interpretative predictive coding 

system where the association between belief and observed motion is determined. When 

motion is constant velocity, or believed to be computer-generated, coding occurs through 

top-down processes. When motion is naturalistic velocity, and believed to be human-

generated, it is most likely coded by gaining access to bottom-up sensorimotor processes in 

the action-observation network. 

 

 

 

 

Keywords: observational practice; naturalistic velocity; constant velocity; end-state goals; 

belief; top-down modulation. 
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1. Introduction 

Fundamental to performing goal-directed actions is precise spatio-temporal 

parameterisation, movement sequencing and sequence knowledge. The representation and 

acquisition of these processes occurs during observational practice (Bird & Heyes, 2005; 

Vogt, 1995). This visuomotor learning takes place during a training period of pure stimulus 

observation. As such, no overt physical practice is performed during training, resulting in a 

learner not receiving response-produced feedback (reafference). This process is said to 

occur within the action-observation network [AON] (Cross, Kraemer, Hamilton, Kelley, & 

Grafton, 2009), where neurons respond in a similar manner during observation and 

execution (Fadiga, Fogassi, Pavesi, & Rizzolatti, 1995). Linked to this network is the superior 

temporal sulcus which provides input to the fronto-parietal cortices (Grossman et al., 2000) 

where the spatial-temporal characteristics (i.e., kinematics) and action-goal (Hamilton, 2008; 

Iacoboni, 2005) of the observed stimulus are processed. 

The processing of kinematics is partly based on the perception of biological motion, 

as indicated by a motor interference effect during interpersonal execution-observation 

(Kilner, Paulignan, & Blakemore, 2003). Here, then, participants exhibited increased 

variability in an intended movement whilst observing an incongruent movement performed 

by a human (naturalistic velocity; biological motion), not a robot (constant velocity; 

nonbiological motion), model. In this context, it is important to note that naturalistic velocity is 

different to constant velocity because it contains task specific changes in acceleration based 

on human anatomy and the external constraints (gravity; direction; target size) associated 

with a particular task. These factors combined underpin a velocity profile that is bell-shaped 

(Flash & Hogan, 1985), which is reflective of typical goal-directed aiming movements. Thus, 

motor interference is suggested to occur from the automatic activation of motor codes that 

directly respond to the naturalistic velocity characteristics of the observed biological motion 

(Blakemore & Frith, 2005). This automatic activation is commonly referred to as bottom-up 

processing, which involves the preferential treatment of information directly available via the 

stimulation of sensory receptors (Teufel, Fletcher, & Davis, 2010), and is linked to the fronto-
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parietal mirror region where stimuli consistent with these biological laws of motion are 

processed (Casile et al., 2010; Dayan et al., 2007). Indeed, it is the coding of this biological 

motion that is also suggested to drive automatic imitation (Brass, Bekkering, & Prinz, 2001), 

voluntary imitation (Wild, Poliakoff, Jerrison, & Gowen, 2010) and observational practice 

(Hayes, Roberts, Elliott, & Bennett, 2014; Hayes, Timmis, & Bennett, 2009). 

Although there has been reported differences in contagion when viewing biological 

and nonbiological motion, the AON also is activated by (Cross et al., 2011; Gazzola, 

Rizzolatti, Wicker, & Keysers, 2007; Ramsey & Hamilton, 2010) and adapts to (Press, 

Gillmeister, & Heyes, 2007) nonbiological motion. In the case of motor contagion, 

interference occurs when a non-human agent (a ball) displays both naturalistic and constant 

velocity motion (Kilner, Hamilton, & Blakemore, 2007). Unlike naturalistic velocity, which is 

suggested to directly generate contagion via the automatic activation of motor codes, 

constant velocity displayed via a non-human agent is suggested to be processed by 

individuals forming an interpretation, or predicting, the agency, and action goal, based on 

prior knowledge (Kilner, et al., 2007; Stanley, Gowen, & Miall, 2007, 2010). This effect can 

be explained by modulation through top-down processes. ‘Top-down’ processing depends 

on an observer’s knowledge and expectation of a situation (Teufel et al., 2010), and may be 

underpinned by contextual factors such as motion trajectory (Tremoulet & Feldman, 2000), 

belief (Stanley, et al., 2007) and social context (Hogeveen & Obhi, 2013). Another top-down 

process that influences motion coding is goal interpretation and assignment (Bekkering, 

Gattis, Wohlschläger, 2000) whereby an end-state goal organises the motor response during 

imitation. For example, an end-state goal (grasping the right ear) might be achieved using a 

motor response (right-arm) that differs from the observed movement (left-arm). Furthermore, 

there is some suggestion that the aforementioned motor interference effects are influenced 

by the perceived end-state goal (Stanley, et al., 2007), as well as information contained 

within the movement trajectory (Kilner et al. 2007). 

The consensus therefore is that the AON involves regions that perform specialised 

processing, with the contribution being dependent on the nature of the observed stimulus 
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and interpretation of agency (Liepelt & Brass, 2010; Press, Gillmeister, & Heyes, 2006; 

Stanley, et al., 2007; Stenzel et al., 2012). To date these factors have been studied during 

interpersonal execution-observation, voluntary imitation and automatic imitation tasks where 

visual information is processed in combination with efferent and afferent sensory information 

from the peripheral motor system. This sensorimotor experience underpins enhanced action 

perception in experts (Calvo-Merino, Glaser, Grezes, Passingham, & Haggard, 2005), and 

facilitates response times during action-observation (Catmur, Walsh, & Heyes, 2007). It is 

therefore important to understand if the coding of biological and nonbiological stimulus 

motion information occurs during observational practice in the absence of reafference. 

 

2. Experiment 1 

To examine biological (naturalistic velocity) and nonbiological (constant velocity) 

motion trajectory information during observational practice we had participants acquire a 5 

segment movement sequence timing task. The goal was to learn how to perform the 

absolute, and relative, timing parameters associated with the sequence. Absolute time is the 

total time required to successfully perform the 5 segments. Relative timing is the proportion 

of time required to successfully perform each segment within the sequence. Because the 

goal was to learn the timing parameters, we displayed the spatial position of the 5 segment 

end-points on the computer monitor. By keeping the spatial locations constant, participants 

in the experimental conditions observed a non-human agent (a white cursor) perform the 5 

segment movement sequence with a motion trajectory that displayed naturalistic or constant 

velocity. 

Given the AON is activated by naturalistic and constant velocity it is not possible to 

make specific predictions regarding the learning effects after observing these two motion 

trajectories. However, any additional benefit of observing naturalistic velocity motion over 

constant velocity would depend on the relative contribution of bottom-up and top-down 

coding processes during observational practice. We do predict however those participants 

exposed to motion trajectory information will learn the sequence timing more accurately than 



Motion trajectory information and agency during observational practice 
 

6 

 

the control participants who did not perform observational practice. Finally, to further 

examine the effects of motion trajectory information, we used a third control model (end-

state model) that displayed the relative, and absolute, timing parameters, but here motion 

trajectory information was removed so that the model appeared as a sequence of 5 flashes 

presented at the spatial segment end-points. If motion trajectory information is processed 

during observational practice the groups that observed naturalistic and constant velocity will 

learn timing parameters more accurately than those who observed the end-state control 

model. 

 

2.1 Method 

2.1.1  Participants 

Data were recorded from forty-eight volunteers (aged 18 to 21 years; three 

participants were removed from the analyses due to missing data from technical errors). All 

participants had normal or corrected-to-normal vision, and gave informed consent. The 

experiment was approved by the local ethics committee. 

 

2.1.2 Experimental procedures  

The apparatus was the same as that used in our lab for a previous experiment 

(Hayes, Elliott, & Bennett, 2013). The current experiment had a pre-test, observational 

practice phase and post-test (Figure 1A). Before the pre-test, all volunteers received 

information regarding the spatial layout of the movement sequence pattern and the two 

timing goals (Figure 1B). Here, participants were informed that they were required to 

successfully navigate a mouse so that a cursor moved between each of the pre-defined 

target end-points. In the event of a spatial error involving the cursor not reaching a target, an 

error message was displayed on the monitor and the participant was required to repeat the 

trial. Also, by keeping the spatial segment end-points controlled the volunteers were 

instructed the primary goal was to learn the absolute time goal and the relative time goal. 

The absolute time goal required participants to control the mouse so that the cursor left the 
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start position, passed through five segments and terminated (pressing the right mouse 

button) within the final target (Figure 1B) in a time of 4625 ms. The relative timing goal 

required participants to perform the absolute time goal by ensuring the segment proportions 

met the criterion structure: 13% (segment 1; 601 ms), 32% (segment 2; 1480 ms), 14% 

(segment 3; 648 ms,), 17% (segment 4; 786 ms) and 24% (segment 5; 1110 ms). 

 

Insert Figure 1 about here 

 

We created three models: biological motion, nonbiological motion, and end-state. A 

biological motion model was created by an experimenter who practised the sequence until 

the criterion time goals were performed accurately. The time-series data from a 

representative trial were used to generate the model. These data were then presented on 

the monitor, and as such displayed both vertical (y-axis) (black trace; Figure 2A) and 

horizontal (x-axis) (black trace; Figure 2B) motion. This was important in order to ensure 

high fidelity replication of biological motion, which does not typically comprise movement in a 

single axis. 

 

Insert Figure 2 about here 

 

A nonbiological motion model displaying constant velocity within each segment was 

generated using the amplitude and time constraints. The displacement time-series data for 

the model had the same time goals but included motion only in the primary direction (e.g., y-

axis of segment 1) (grey trace; Figure 2A), and thus without any deviations in the 

perpendicular axis (e.g., x-axis of segment 1) (grey trace; Figure 2B). Therefore, the 

nonbiological model comprised both biologically implausible velocity and spatial trajectory. 

An end-state model was created that had the same time parameters, but only displayed the 

single-point light as it entered and left each target (a series of flashes). The flashes were 
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displayed for 35 ms to provide visual information about the cursor position, and thus 

absolute and relative timing, but not velocity (Snowden & Braddick, 1991). 

Prior to observational practice, participants were randomly allocated to a biological 

motion group (n = 10), nonbiological motion group (n = 12), end-state group (n = 11) and a 

control group (n = 12). Experimental participants were instructed the goal was to learn the 

two time goals by performing observational practice. No instructions were provided as to the 

agency of the models. The control group received no instructions and sat in front of a 

monitor that was switched off. 

Following observational practice, participants performed a post-test identical to the 

pre-test. The experimental groups performed the movement sequence according to the time 

goals, but with the instruction to imitate what they had observed from the model. The control 

group was instructed to perform the task according to the time goals. 

 

2.1.3 Analysis 

Total movement time and segment movement times were extracted from the five 

trials performed during pre-test and post-test. To quantify learning of the absolute time goal, 

Total Error was calculated: √CE2 + VE2, where CE (constant error) is a measure of response 

bias and VE (variable error) is a measure of response variability (the data for Total Error in 

Experiment 1 and 2 are not presented because the analyses did not reveal any significant 

effects (this is not that unusual in movement sequence learning tasks; see Blandin & 

Proteau, 2000). Learning of the relative time goal was quantified by comparing actual and 

required relative timing of each segment to derive a composite Relative Timing Error score 

(%) (Wulf & Schmidt, 1989): |Rseg1 - .13seg1| + |Rseg2 - .32seg2| + |Rseg3 - .14seg3| + |Rseg4 - .17 seg4| 

+ |Rseg5 - .24 seg5|: where Rseg = (the absolute segment movement time (ms) for a specific 

segment (e.g., seg1) within a trial / total movement time (ms) of that trial). This proportion is 

subtracted from the criterion proportion for that segment. For example, if a participant 

performed a trial that had an overall movement of 5000 ms, and the time taken to perform 

segment 1 was 800 ms, the calculation for this segment within the overall algorithm is: 
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|(800/5000) seg1 - .13seg1| = .03. This is then carried out for each segment and a total 

composite error score is calculated. A score of 0 would indicate a participant had performed 

the relative time goal perfectly. 

Post-test data for Relative Timing Error were analysed using analysis of covariance 

(ANCOVA) with pre-test as a covariate. This approach statistically minimises the impact of 

initial between-group differences in performance and, with respect to pre-test to post-test 

motor learning, it allows the post-test performance of the experimental groups to be 

compared to the control group that might realise some change in performance due to 

repeated testing. When significant effects were present, we determined which movement 

segments were most affected by the manipulation by adopting the same statistical approach 

for each individual segment. All significant effects were decomposed using Newman-Keuls 

post hoc procedures (p < .05). Effect sizes ( ) are reported for all significant effects, as well 

as important non-significant effects. 

 

2.2 Results and Discussion 

For Relative Timing Error, there was a significant effect of group, F(3, 40) = 7.82, p < 

.001,  = .37. Post hoc analysis revealed the biological motion (M = 30, SEM = 4) and 

nonbiological motion (M = 32, SEM = 3) groups were significantly more accurate at 

performing the relative timing pattern than the end-state (M = 44, SEM = 3) and control (M = 

49, SEM = 3) groups (ps < .05). There was no significant difference between the biological 

motion and nonbiological groups, nor between the end-state and control groups (ps > .05) 

(Figure 3A). 

 

Figure 3 about here 

 

To determine where in the movement sequence Relative Timing Error effects were 

most pronounced, we conducted follow-up ANCOVA on relative timing of each movement 
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segment. There was a significant effect of group for segment 1, F(3, 40) = 7.99, p < .001,  

= .38, segment 2, F(3, 40) = 6.47, p < .01,  = .33 and segment 5, F(3, 40) = 5.17, p < .01, 

 = .28 (Figure 3B). Post hoc analyses revealed a similar pattern of results for Relative 

Timing Error with the biological motion and nonbiological motion groups being significantly 

more accurate than the end-state and control groups (ps < .05). There were no further 

significant differences between groups (ps > .05). . 

The results showed that observing biological or nonbiological motion trajectory 

information facilitates motor learning in the absence of reafference. Indeed, both groups 

exhibited relative timing closer to the model than the end-state control group where trajectory 

information was experimentally removed. The learning effect occurred in the initial (1, 2) and 

late (5) segments, which indicates the coding of segment-specific motion information. This 

effect is consistent with the imitation of unfamiliar sequences (Agam, Bullock, & Sekuler, 

2005) which report primacy (e.g., initial) and recency (e.g., late) effects (Agam, Galperin, 

Gold, & Sekuler, 2007). This effect also is common during perception of motion (Blake, 

Cepeda, & Hiris, 1997), and is underpinned by a neural system that controls the acquisition 

of a sequence, by coding the components (segments) within the sequence based on a 

memory storage mechanism and practice. Although we have suggested (Hayes, Elliott, 

Andrew, Roberts, & Bennett, 2012; Hayes, et al., 2014; Hayes, et al., 2009) motor sequence 

timing is learned by processing information contained in trajectory of the model, the removal 

of continuous motion in the end-state control model experimentally confirmed that relative 

timing was learned by processing stimulus motion. This is consistent with work from 

perceptual-psychophysics where the optimal detection of velocity (Snowden & Braddick, 

1991) or time duration (Brown, 1995) is associated with integrating motion information over 

space and time. Moreover, processing motion trajectory information also provides contextual 

information regarding the movement goal (Gergely, Nádasdy, Csibra, & Biro, 1995; Scholl & 

Tremoulet, 2000; Tremoulet & Feldman, 2000).  
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Although the coding of biological motion involves bottom-up processing of visual 

information (via superior temporal sulcus linked to AON; Grossman et al. 2000) leading to 

automatic sensorimotor activity (Brass et al., 2001), in certain contexts this is influenced by 

the intentionality attributed to an agent. Previously, it was suggested that observers predict 

an action displayed by a non-human agent by modifying their ‘intentional stance’ (Dennett, 

1989) so that it is believed to possess intention and desires (Stanley, et al., 2007). That is, 

the bottom-up sensorimotor processes associated with stimulus motion become modulated 

by the top-down interpretation of stimulus agency (Stanley, et al., 2010). It is this process 

that is thought to regulate motor behaviour during automatic imitation (Liepelt & Brass, 

2010), action co-representation (Stenzel, et al., 2012) and interpersonal execution-

observation (Stanley, et al., 2007). In relation to our findings, the implication is that although 

bottom-up sensorimotor processes most likely code naturalistic velocity (Bird, Osman, 

Saggerson, & Heyes, 2005; Brass, et al., 2001; Kilner, et al., 2007), top-down processes 

may have mediated the coding of constant velocity by contextualising the non-human agent 

model as being a human movement (Kilner, et al., 2007). In Experiment 2 we manipulated 

belief regarding the agency of observed stimulus motion to examine the mediating role of 

top-down processes on bottom-up processes. 

 

 

3. Experiment 2 

To engender intentionality via belief, participants were instructed prior to observation 

that the non-human agent model was either human or computer-generated (Stanley, et al., 

2007). This resulted in a 2 x 2 factorial combination of model (biological or nonbiological) 

and agency instruction (human or computer). In addition to measuring relative timing error, 

we examined the processes undertaken during observational practice by using a recognition 

test that quantifies awareness of sequence knowledge (Shanks & Johnstone, 1999; Shanks, 

Wilkinson, & Channon, 2003). This was inspired by use of a similar recognition test to 

examine sequence awareness following observational practice (Bird & Heyes, 2005; Bird, et 
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al., 2005). High sequence awareness, and thus good recognition, is suggested to indicate 

explicit sequence knowledge developed through top-down processes, whereas low 

awareness indicates implicit sequence knowledge developed through bottom-up 

sensorimotor processes. Importantly, in addition to significant differences in sequence 

knowledge, and compared to the control group, the observation and execution groups (see 

Bird et al., 2005) demonstrated similar levels of sequence acquisition, which is essential 

when examining the underpinning processes. 

As per Experiment 1, we expected the experimental groups to show similar levels of 

relative timing acquisition, which would result in them being significantly more accurate than 

a control group. We also expected implicit sequence knowledge to develop, indicating a 

greater contribution of bottom-up processes, when an agent displaying naturalistic velocity is 

believed to be human-generated (Bird & Heyes, 2005; Liepelt & Brass, 2010). On the other 

hand, explicit sequence knowledge, indicating additional top-down processes (Bird & Heyes, 

2005), was expected to develop when an agent displaying constant velocity is believed to be 

computer-generated (Stanley, et al., 2007). Of greater importance to understanding top-

down effects during observational practice are the conditions where a mismatch occurs 

between agency instruction (e.g., human) and motion type (e.g., constant velocity). Here, it 

was predicted that if top-down processes primarily modulate bottom-up processes, implicit 

sequence knowledge would develop when an agent displaying constant velocity is believed 

to be human-generated, and explicit sequence knowledge would develop when the agent 

displaying naturalistic velocity is believed to computer-generated. 

 

3.2  Method 

3.2.1 Participants 

A different cohort of sixty volunteers (aged 18 to 21 years) participated. All 

participants had normal or corrected-to-normal vision and gave written informed consent. 
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3.2.2 Experimental Procedures 

The apparatus, task and model stimuli were identical to Experiment 1. Prior to 

instructions the participants were randomly assigned to one of four groups (N = 12 per 

group) that differed in respect of stimulus (biological motion, nonbiological motion) and 

agency instruction (human; computer). A further 12 participants formed a control group. To 

ensure the agency instructions were not confounded by prior knowledge of the movement 

sequence we eliminated the pre-test phase (Figure 4). Only instructions regarding the 

agency (Stanley, et al., 2007) of the model stimulus differed between the experimental 

groups. All participants confirmed they understood the instructions. 

 

Insert Figure 4 about here 

 

Immediately following the motor post-test, the experimental groups performed a 

recognition test adapted from Bird and colleagues (Bird & Heyes, 2005; Bird, et al., 2005) 

that was originally used to examine implicit and explicit sequence knowledge during a 

stimulus-response reaction-time task. Our test was used to examine the representation of 

motion information during stimulus-observation. Participants observed a series of 5 segment 

sequence models that displayed the same or different motion to that observed during 

observational practice. After each observation, participants gave a forced-choice Likert-scale 

rating regarding whether the model was the “same or different” than the model previously 

observed in observational practice. Ratings were given on a scale from 1 to 6: 1 = certain I 

have not seen the sequence before; 2 = fairly certain I have not seen the sequence before; 3 

= guess I have not seen the sequence before; 4 = guess I have seen the sequence before; 5 

= fairly certain I have seen the sequence before; 6 = certain I have seen the sequence 

before. Participants received 12 recognition trials that were presented in a random order: 4 

trained, 4 new and 4 filler. The trained trials corresponded with the model stimuli viewed 

during observational practice (e.g., biological motion), whereas the new trials featured the 
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alternative motion characteristics (e.g., nonbiological motion), and thus identical time goals. 

These sequences were chosen because our primary aim in this experiment was associated 

with stimulus-motion processing, as opposed to the relative timing goal. Thus, any 

differences between the groups in the recognition test were expected to be specific to the 

representation of stimulus-motion trajectories. This procedure ensured the recognition test 

measured the processes involved in coding motion trajectory information rather than the 

timing goals. If recognised, the biological motion groups should rate the biological motion 

model as the trained sequence and the nonbiological motion model as the new sequence, 

and the reverse would be true for the nonbiological motion groups. The filler trials were 

added to limit participants from making simple judgments between trained and new trials, 

and as such, control for response biases based on comparisons of sequences between 

recognition trials. With the addition of filler trials participants are more likely to make 

comparisons between the stimulus presented in the recognition test and the previously 

learned stimulus. Compared to the trained sequence, the filler trials featured the same origin 

of motion (biological or nonbiological) and similar relative times, although these were 

ordered differently [17% (segment 1), 25% (segment 2), 14% (segment 3), 33% (segment 4), 

11% (segment 5)]. Therefore, though the origin of motion information corresponded with the 

trained sequence, both the underlying movement kinematics and relative timing structure 

were different. 

After the recognition test, participants were issued a Likert-scale (adapted from 

Longo, Kosobud, and Bertenthal (2008)) to assess agency belief. They were asked two 

questions associated with whether they believed “the stimuli you previously observed were 

generated by a human?” and “the stimuli you previously observed were generated by a 

computer?” (NB. order of questions was counterbalanced within each group). They rated 

their agreement using a 7-point Likert scale (upper anchor 3 = strongly agreed, lower anchor 

–3 = strongly disagreed, 0 = neither agreed nor disagreed). 
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3.2.3 Analysis 

Relative Timing Error was analysed using a one-way between-group analysis of 

variance (ANOVA). Similar to Experiment 1, when Relative Timing Error effects were 

present, we conducted ANOVAs on individual segments to further assess the acquisition of 

relative timing. 

Because the recognition test was not applicable to the control group, recognition 

performance was evaluated via a factorial design. To this end, we calculated the median of 

each individual’s scores within a condition as a measure of central tendency. To compare 

recognition performance when relative timing of the stimuli was equal, the median data were 

submitted to a 2 Motion (biological motion, nonbiological motion) x 2 Agency Instruction 

(human, computer) x 2 Sequence (trained, new) mixed-design ANOVA. Significant effects 

featuring more than two means were decomposed via Tukey HSD post hoc procedures. 

The Shapiro-Wilk test of normality for the agency belief Likert-scale data indicated a 

non-normal distribution for all the groups (ps < .05). Furthermore, the biological motion + 

human agency group exhibited significant skewness (z = -2.35). Thus, a series of non-

parametric Wilcoxon signed-rank tests were conducted to compare the level of 

agreement/disagreement for each individual group (a Bonferroni correction was applied to 

alpha to control for multiple testing – the adjusted p was .013). These comparisons 

determined if the responses to each of the two questions were complementary such that 

agreement with one statement would be contrasted by disagreement in another. In the event 

participants did not follow agency instructions, we would anticipate little or no difference 

between the two ratings. 

 

3.3 Results and Discussion 

For Relative Timing Error, there was a significant effect of group, F(4, 55) = 22.13, p 

< .001,  = .62 (Figure 5A). Post hoc analysis indicated the experimental groups [biological 

motion + human agency (M = 28.1, SEM = 2.23), biological motion + computer agency (M = 
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28.4, SEM = 2.54), nonbiological motion + human agency (M = 29.3, SEM = 2.16), 

nonbiological motion + computer agency (M = 25.5, SEM = 2.88)] were significantly more 

accurate than the control group (M = 51.3, SEM = 0.96). As per Experiment 1, the individual 

segment analysis indicated (Figure 5B) the experimental groups outperformed the control 

group in Segment 1, F(4, 55) = 49.99, p < .001,  = .78; Segment 2, F(4, 55) = 7.38, p < 

.001,  = .35, and Segment 5, F(4, 55) = 16.48, p < .001,  = .71). 

 

Insert Figure 5 about here 

 

For recognition performance when the stimuli had equal relative timing, there was a 

significant main effect of sequence, F(1, 44) = 583.15, p < .001,  = .93, indicating 

increased certainty of having seen the trained compared to the new sequences. There was a 

significant interaction between sequence and motion, F(1, 44) = 6.50, p < .05,  = .13, and 

a significant interaction between sequence and agency, F(1, 44) = 14.15, p < .001,  = .24. 

These effects were superseded by a three-way interaction between motion, agency and 

sequence F(1, 44) = 4.26, p < .05,  = .09 (Figure 6). Post hoc analysis showed that 

significantly lower median ratings of trained sequences were given by the biological motion + 

human agency group compared to the biological motion + computer agency group and 

nonbiological motion + computer agency group (p < .05). Also, significantly higher median 

ratings of new sequences were given by the biological motion + human agency group 

compared to all other groups (p < .05). Combined, the median ratings given for the trained 

and new sequences by the biological motion + human agency group indicate greater 

uncertainty.1 

 

Insert Figure 6 about here 
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Likert-scale data on belief rating indicated participants in the biological motion + 

human agency group more strongly agreed (Mdn = 3.0, IQR = 1.0) than disagreed (Mdn = -

2.5, IQR = 1.3) that the stimuli were human-generated, T = 0, z = -2.99, p < .001 (Figure 7). 

A similar but opposite finding was evident for the nonbiological motion + computer agency 

group, who more strongly agreed (Mdn = 3.0, IQR = 1.0) than disagreed (Mdn = -2.5, IQR = 

1.3) that the stimuli were computer-generated, T = 0, z = -3.09, p < .005. The biological 

motion + computer agency group provided a mid-level score that showed a trend towards 

more agreement (Mdn = 3.0, IQR = 4.0), than disagreement (Mdn = -3.0, IQR = 4.3), in 

terms of the stimuli being computer-generated, T = 15, z = -1.95, p = .051. Finally, for the 

nonbiological motion + human agency group, there was no significant difference between 

ratings of agreement (Mdn = -1.5, IQR = 6.0) and disagreement (Mdn = 2.5, IQR = 6.0), T = 

32, z = -.58, p > .05, suggesting neither agreed, nor disagreed, the stimuli were human-

generated. 

 

Insert Figure 7 about here 

 

As predicted, and compared to the control group, the experimental groups learned 

relative timing by acquiring early (1, 2) and late (5) segments, which confirmed segment-

specific motion trajectory information was coded (Agam, et al., 2007). This finding is 

important because although we expected no difference between the experimental groups, 

the results show the agency instructions did not interfere with the acquisition of timing 

(Shanks & Johnstone, 1999). As predicted (Bird et al. 2005), the recognition data indicated 

different levels of implicit and explicit sequence knowledge. Participants who had observed 

biological motion stimuli with a human agency instruction were less certain in the recognition 

of trained and new sequences compared to those who had observed biological or 

nonbiological motion stimuli with a computer-generated agency instruction. Lower certainty, 

and thus awareness, of trained and new sequences, is suggestive of the development of 

implicit sequence knowledge by the biological motion + human agency group (Bird & Heyes, 
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2005; Bird, et al., 2005), which is thought to result from a greater contribution of bottom-up 

sensorimotor processes (Stanley, et al., 2007). Conversely, higher certainty, and thus better 

awareness, exhibited by the nonbiological motion + computer agency group is consistent 

with the development of explicit sequence knowledge and a greater contribution of top-down 

processes (Bird, et al., 2005). The potential for agency instruction to impact upon sequence 

knowledge was confirmed by the belief rating data, which showed the agency instructions 

were believed by these two groups. Moreover, the biological motion + computer agency 

group developed explicit sequence knowledge which is consistent with the processing of 

biological motion being subject to top-down influences such as belief. Though there was only 

a close to significant level of agreement for the stimulus being computer-generated, there 

was no such agreement that the stimulus were human-generated. Interestingly, and contrary 

to our expectation, the recognition data for the nonbiological motion + human agency group 

indicated greater explicit than implicit sequence knowledge. In addition, the belief rating data 

for this group indicated neither agreement nor disagreement regarding agency. Thus, it 

would seem that a greater contribution of bottom-up stimulus processes does not occur 

when there is a specific mismatch between agency and motion. 

 

4. General Discussion 

Experiment 1 confirmed that motor learning occurs following observation of a non-

human agent displaying either naturalistic or constant velocity motion. Although learning was 

not found in the end-state condition, it is important to stress that information on absolute and 

relative timing was available in this model (Snowden & Braddick, 1991). Therefore, by 

manipulating the way temporal information was displayed, we confirmed motion trajectory 

information, and the processes that code it, underpin observational practice. These results 

extend upon previous findings by qualifying the conditions where humans learn motor skills 

by observing movement trajectories. For instance, relative timing has been shown to be 

learned by observing human (Badets, Blandin, & Shea, 2006) and non-human (Hayes, et al., 

2012) agents displaying naturalistic velocity. Here, we showed that relative timing can be 



Motion trajectory information and agency during observational practice 
 

19 

 

learned by observing constant velocity. This finding also extends and complements work 

showing nonbiological motion is coded during interpersonal execution-observation (Kilner et 

al., 2007; Press et al., 2012; Stanley et al., 2007), and automatic imitation tasks (Press et al., 

2007), where participants have the opportunity to adapt motor behaviour by processing 

reafferent sensorimotor information generated by overtly imitating the stimulus across 

successive trials. 

During interpersonal execution-observation tasks it has been shown that interacting 

with a non-human agent (a ball) displaying naturalistic or constant velocity causes motor 

contagion (Kilner, et al., 2007). It has therefore been suggested the brain processes motion 

properties of both stimuli in a manner subject to top-down influences. This processing is 

reported to occur in an AON, including the anterior intraparietal cortex, which codes goal-

directed movements of the human hand (Hamilton & Grafton, 2006) and non-human agents 

(a triangle) with constant velocity trajectories (Ramsey & Hamilton, 2010). These cerebral 

localizations were identified using repetition suppression of event-related fMRI. Specifically, 

a previously displayed action goal (e.g., identity of task object) resulted in lower cerebral 

blood flow in the parietal cortex following a repeated presentation of the same action goal. 

Alternatively, the repeated presentation of movement kinematics (e.g., precision or whole-

hand grasp) resulted in suppression of the inferior frontal gyrus (Hamilton & Grafton, 2007). 

Based on these data, the hierarchical model of visual-motor control and action-

understanding (Hamilton, 2008; Hamilton & Grafton, 2007) was developed, suggesting the 

action goal is coded via the parietal pathway and the movement kinematics are coded via 

the frontal pathway. With respect to the similar learning effects of naturalistic and constant 

velocity stimulus motion in Experiment 1, it is reasonable to suggest that these stimuli were 

coded via processes operating in the frontal pathway. 

To further understand the top-down influences acting during observational practice, 

we conducted a second experiment that included a novel factorial combination of observed 

stimulus motion (biological motion, nonbiological motion) and agency instruction (human, 

computer). In addition to replicating the effects for learning relative timing, recognition test 
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data indicate that observing naturalistic or constant velocity led to different types of 

sequence knowledge depending on agency instruction, and thereby belief. The participants 

that received a human agency instruction and observed biological motion responded with 

more uncertainty to recognising trained and new sequences. This finding indicates that these 

participants developed a more implicit representation of sequence knowledge than those 

who received a computer agency instruction and/or observed nonbiological motion. 

Interestingly, while this interpretation is consistent with most other work, we found 

somewhat larger differences between recognition of trained and new sequences (Bird et al., 

2005; Shanks & Johnstone, 1999). This is most likely explained by differences in the 

recognition protocol adopted here and elsewhere. Typically, the recognition of trained and 

new sequences is coincident with physically performing the sequence, whereas the current 

study examined recognition independent of any concurrent sensorimotor reafference. 

Furthermore, the sequences adopted previously feature a higher number of movement 

segments (e.g., 12 items; Bird et al., 2005), which may have increased task complexity. By 

limiting sensorimotor processing during physical performance, and using a less complex 

task, participants here could have allocated more attention to the recognition task, thus 

resulting in better overall recognition performance. 

The modulatory impact of agency on representing stimulus motion is consistent with 

a modulation in the contribution of bottom-up sensorimotor processes by a top-down 

mechanism (e.g., Bird & Heyes, 2005). With the stimuli observed in the current study, we 

suggest plausibility of matching observed stimulus motion with the agency instructions was 

most likely determined through a predictive coding mechanism (Kilner, 2011). Here, it is 

suggested that a prediction is made regarding the expected visual afference, which could 

conceivably be determined by agency beliefs, and then compared with the actual visual 

afference (the model). Subsequent prediction error is returned to higher levels within the 

AON until a suitable inference of the motion stimulus is distinguished. In the current study, 

we propose that participants activated a representation of the anticipated sensory 

consequences (afference) associated with the pre-instructed agency belief (computer or 
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human). Thus, and consistent with our rating data, we suggest that during observational 

practice the biological motion + human agency group activated the anticipated sensory 

consequences associated with human motor control (i.e., minimum jerk; naturalistic velocity), 

which was congruent with actual sensory consequences, resulting in the stimulus being 

believed as human (Stanley et al., 2010). The development of implicit sequence knowledge 

would then be consistent with the ‘gating hypothesis’ (Liepelt & Brass, 2010), which 

suggests belief, via top-down processes, affords biological motion privileged access to 

bottom-up sensorimotor processes in the mirror-mechanism. 

The finding of explicit sequence knowledge developed by the other experimental 

groups can also be associated with a top-down ‘gating’ mechanism. The rating data for the 

biological motion + computer agency group showed the non-human agent was believed to 

be computer-generated. Here, the development of explicit sequence knowledge suggested 

that naturalistic velocity was not provided privileged access to bottom-up sensorimotor 

processes (Bird & Heyes, 2005). Also, our finding that different sequence knowledge was 

acquired when observing naturalistic velocity following the human and computer agency 

instructions is consistent with belief being a top-down modulatory mechanism associated 

with agency attribution (Liepelt & Brass, 2010; Stanley, et al., 2007), rather than merely 

processes associated with selective attention. For instance, providing participants with 

explicit instructions to direct attention to a specific location on an observed movement 

regulates bottom-up sensorimotor processes in the mirror-mechanism (Bach, Peatfield, & 

Tipper, 2007). Indeed, the coding of biological motion kinematics during observational 

practice is facilitated by explicitly instructing participants to learn motion trajectory 

information (Hayes, Roberts, Elliott, & Bennett, 2014). Therefore, an increase in bottom-up 

sensorimotor processes through the modulation of selective attention would lead to implicit 

sequence knowledge (i.e., mid-scale recognition certainty);  as opposed to explicit sequence 

knowledge (i.e., extreme recognition certainty) (see Figure 6). However, it is unlikely that 

selective attention underpinned the belief effect because naturalistic velocity observed 
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following a computer-generated instruction developed explicit sequence knowledge, thus 

indicating top-down processing. 

The recognition and belief rating data provided evidence that processing constant 

velocity stimuli was modulated by top-down processes (Stanley, et al., 2007). For the 

nonbiological motion + computer agency group there would have been a similarity between 

the anticipated (computer-generated) and actual sensory consequences (constant velocity), 

leading to top-down processes (e.g., goal-directed coding; Ramsey & Hamilton, 2010) 

potentially associated with analysing sequences and spatial components (Stanley, et al., 

2010). A similar mechanism could have been engaged by the nonbiological motion + human 

agency group, but in this case as a result of the mismatch between anticipated (human-

generated) and actual sensory consequences (constant velocity). Indeed, at least some 

individuals in this group were not convinced by the agency instruction, thus showing that 

belief is a top-down interpretive process (Liepelt & Brass, 2010; Stanley, et al., 2007), where 

predictive coding (Kilner, 2011) regulates the contribution of bottom-up sensorimotor or other 

top-down processes. 
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Figure Legends 

Figure 1. A representation of the protocol in Experiment 1 (panel A). Each trial in the pre- 

and post-test commenced with information regarding the time goals being displayed on a 

monitor for 2000 ms. To start a trial, the participants located the cursor within the home 

target and pressed the left mouse button. The participants then moved the mouse to 

complete the movement sequence and the trial ended on reaching the final target. During 

observation, participants observed a biological motion model, nonbiological motion model, 

end-state model or a blank screen. Panel B depicts the 5-segment movement sequence, the 

white circle represents the mouse cursor (non-human agent), the arrows depict the 

movement direction, and the segment numbers (e.g., S1) indicate the order of segments 

within the sequence. 

 

Figure 2. Displays the velocity profile in the Y axis (panel A) and X axis (panel B) for the 

biological motion and nonbiological motion models. The vertical dotted lines represent the 

end point of each segment in the movement sequence. Numbers above the x-axis in panel B 

indicate the segment order (segments 1 to 5). 

 

Figure 3. Adjusted group means for relative timing error (panel A) and segment relative 

timing error (panel B). Error bars represent standard error of the mean. 

 

Figure 4. A representation of the protocol for Experiment 2. Prior to observation, the 

participants were provided with an ‘agency instruction’ that indicated the stimulus motion 

was human-generated or computer-generated. Observational practice (observation) was 

then performed with participants observing biological or nonbiological motion. Following 

observation, a motor post-test was performed where participants imitated the observed 

motion sequence using the mouse. Thereafter, participants completed a recognition test 

which required them to rate how confident they were that the learned stimulus was 

congruent (trained) or incongruent (new) to the stimulus observed in the observation phase. 
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Finally, participants completed an agency rating task that required them to state whether 

they agreed or disagreed that the learned stimulus was human-generated or computer-

generated. 

 

Figure 5. Group means for relative timing error (panel A) and segment relative timing error 

(panel B). Error bars represent standard error of the mean. 

 

Figure 6. Group mean recognition performance for trained and new sequence observations. 

Error bars represent standard error of the mean. 

 

Figure 7. Box-and-whisker plots for belief rating as a function of agency instruction and 

motion. In each of the four panels, the upper and lower plots reflect the belief ratings given in 

response to the computer-generated questions and human-generated questions, 

respectively. The light grey bars represent the lower portion of the IQR (25th percentile to the 

median) and dark grey bars represent the upper portion of the IQR (median to the 75th 

percentile). Note that in some instances, the median and upper/lower quartiles were the 

same, thus appearing only as a single quartile. 
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Footnote 

1. To examine recognition performance when both relative timing and movement 

kinematics differed from trained trials, a subsidiary analysis of trained and filler trials 

was conducted using a 2 Motion (biological motion, nonbiological motion) x 2 Agency 

Instruction (human, computer) x 2 Sequence (trained, filler) mixed-design ANOVA. 

The following analysis therefore addressed whether participants were able to identify 

a filler sequence that had a different relative timing structure and movement 

kinematics compared to the criterion learned sequence. The results revealed a 

significant main effect of motion, F(1, 44) = 4.78, p < .05,  = .57, indicating a 

generally higher rating for nonbiological (M = 3.74) than biological motion (M = 3.27). 

There was also a main effect of sequence, F(1, 44) = 399.95, p < .05,  = .90, 

indicating a significant higher rating for trained (M = 5.47) compared to filler trials (M 

= 1.54). Of greater interest was the finding of a significant interaction between 

agency and sequence, F(1, 44) = 4.28, p < .05,  = .09. Post hoc analysis 

confirmed significantly lower ratings of trained sequences by the human (M = 5.06) 

than the computer agency group (M = 5.88), whilst there were no differences for filler 

trials (human agency M = 1.54, computer agency M = 1.54). 
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