
Ancele, Y, Ha, MH, Lersteau, C, Matellini, DB and Nguyen, TT

 Toward a more flexible VRP with pickup and delivery allowing consolidations

http://researchonline.ljmu.ac.uk/id/eprint/14549/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Ancele, Y, Ha, MH, Lersteau, C, Matellini, DB and Nguyen, TT (2021) Toward
a more flexible VRP with pickup and delivery allowing consolidations.
Transportation Research Part C: Emerging Technologies, 128. ISSN 0968-
090X

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Ancele, Y, Ha, MH, Lersteau, C, Matellini, B and Nguyen, T

 Toward a more flexible VRP with pickup and delivery allowing consolidations

http://researchonline.ljmu.ac.uk/id/eprint/14549/

Article

LJMU has developed LJMU Research Online for users to access the research output of the
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by
the individual authors and/or other copyright owners. Users may download and/or print one copy of
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or
any commercial gain.

The version presented here may differ from the published version or from the version of the record.
Please see the repository URL above for details on accessing the published version and note that
access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you
intend to cite from this work)

Ancele, Y, Ha, MH, Lersteau, C, Matellini, B and Nguyen, T Toward a more
flexible VRP with pickup and delivery allowing consolidations.
Transportation Research Part C: Emerging Technologies. ISSN 0968-090X
(Accepted)

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk

Toward a more flexible VRP with pickup and delivery allowing consolidations

Yannis Ancelea, Minh Hoàng Hàb, Charly Lersteaua, Dante Ben Matellinia, Trung Thanh Nguyena,∗

aLiverpool Logistics, Offshore and Marine (LOOM) Research Institute
Liverpool John Moores University, UK

bORLab, University of Engineering and Technology, Vietnam National University

Abstract

One important requirement of modern supply chain management is the frequent exchange of containers via multiple

cross-docks which requires spatial and time synchronisations between different types of vehicle. Moreover, as

collaborations in logistics between several companies become popular, more flexible and extended models must be

solved to consider the different needs of the companies. This is of high importance in a new logistics concept, the

Physical Internet, which is expected to considerably improve the way logistics are handled in the current supply

chain management.

To optimise the aforementioned requirements, a rich vehicle routing problem with pickup and delivery including

numerous attributes is modelled and solved. A mathematical formulation is proposed and implemented in CPLEX

to solve the problem. Given the complexity of the problem, solving large instances with exact methods is very

time-consuming. Therefore, a multi-threaded meta-heuristic based on Simulated Annealing is developed. A set of

new operators coupled with a restart strategy and memory are developed to help improve the performance.

Computational results on a generated data-set showed that the proposed meta-heuristic is superior to the CPLEX

solver in terms of solvability and computational time. The proposed meta-heuristic was also compared with the

best-known results by current state-of-the-art methods on a classical benchmark on pickup and delivery problems

with time windows (with up to 200 customers). The experimental results showed that the proposed method was

able to match the best-known results in many of these large scale instances.

Keywords: Vehicle Routing Problem, Pickup and Delivery, Cross-docks, Simulated Annealing, Mixed-Integer

Linear Programming, Physical Internet

1. Introduction

As companies seek efficiency and sustainability, optimising the Supply Chain Management (SCM) becomes

challenging. During the last decades, many researchers have been developing optimisation and approximation

algorithms for vehicle routing problems. The Vehicle Routing Problem (VRP) is a combinatorial optimisation

problem that was proposed in the late 1950s and it is still one of the most studied problems in the field of operations

research. The great interest in the VRP is due to its practical importance, as well as the difficulty of solving it.

The objective of the classical VRP is to deliver a set of customers with known demands on minimum-cost routes

originating and terminating at the same depot. The VRP was introduced by Dantzig and Ramser in 1959 [1]. The

∗Corresponding author
Email addresses: yannis.ancele@gmail.com (Yannis Ancele), T.T.Nguyen@ljmu.ac.uk (Trung Thanh Nguyen)

November 30, 2019

Angela
Cross-Out

Pickup and Delivery Problem (PDP) is a generalisation of the VRP which is about finding optimal routes to satisfy

transportation requests. Each request requires both pickup and delivery with precedence constraints. The VRP

with cross-dock is also a variant of the classical VRP which contains spatial and load synchronisation constraints.

These cross-dock facilities allow products to be transferred and processed. A cross-dock can be considered as a

consolidation facility which has short-term storage. The principle of such a system is to unload and sort incoming

containers, then to load the outgoing ones on vehicles. This approach differs from the direct-shipping of products

in which intermediate trans-shipment points are not solicited. As studies are carried out, emerging methodologies

such as cross-docking are being proven to be more suitable for a sustainable SCM.

The Physical Internet (PI-π) is another example of emerging methodologies. The idea behind this concept is

to mimic the Digital Internet (DI) into a physical one [2]. The Physical Internet interconnects logistics systems

and networks by using a set of world-standard modular containers, interfaces and protocols [3]. Basically, these

PI-containers are routed through PI facilities called PI-hubs (which are cross-docks adapted to the PI). Readers

can refer to this paper [4] to get more details about PI-hubs and their similarities with cross-docks. In this paper,

PI-hubs facilities have been modelled with cross-docks characteristics found in the VRP literature. The PI has

already been applied to a few real cases [4]. Also, technical papers which specify various PI-object aspects can be

found in the literature [5]. In the end, it is said that this concept could also be applied to human mobility [6]. Just

like the PI, City Logistics (CL) is another research area which focuses on the transportation improvement. CL and

PI have similarities which allow them to work alongside. One of the first works about their compatibility was done

in [6]. In this paper, it is explained that the CL provides the final building blocks for the PI to be complete with

regards to transportation in cities.

All those areas have been mostly studied independently, however, technologies like the Internet of Things

emphasis the need to interconnect systems in order to work together. Few papers like [7] attempt to unify and solve

numerous problems with a single general solution. This kind of unification eases the choice of a solution algorithm

from the literature given a particular problem. As problems with cross-docking or even like the PI are given more

interest, companies will need to face optimisation problems like the VRP. Therefore, this research aims to solve a

rich VRP with pickup and delivery including several attributes at once to fill the gap in the literature. To tackle this

problem, a linear programming model is first introduced and solved with CPLEX for comparison purposes on small

instances. Then a multi-Threaded Simulated Annealing with Memory (TSAM) algorithm is proposed to handle

real-world size instances. Commonly, the VRP assumes a homogeneous fleet of vehicles to serve a set of customers

requiring delivery and pickup services with time windows. Sometimes different attributes are considered alongside

another one or two. However, in many practical situations, companies need to consider numerous attributes of the

VRP at once. Therefore, this paper extends the classical VRP and makes two major contributions. (1) A new

model gathering several VRP attributes which are of most important as logistics evolve. The model handles multiple

cross-docks in a new and more flexible way while the other attributes have been gathered and combined from the

literature. (2) An algorithm with new operators which include generic features as well as problem specificities.

Simulated Annealing (SA) algorithms have been successfully used to solve combinatorial problems such as the

VRP. Moreover, SA tested on our selected reference benchmark in [8] yielded good performance for instances

containing 100 and 200 customers. Consequently, proposing a new SA to solve this problem and comparing it with

2

CPLEX and best-known results on large instances from [9] is the adopted methodology in this paper. Researchers,

however, can easily integrate any other global search algorithms of their choice with the features described in this

paper to handle the proposed model or a variation of it.

The remainder of this paper is organised as follows. Section 2 gives a literature review of different aspects of the

problem tackled while section 3 presents a mathematical formulation. Section 4 explains the proposed algorithm to

solve the VRP. Section 5 shows a comparative analysis of the meta-heuristic and CPLEX results. The efficiency of

the algorithm on a benchmark is also discussed. Finally, section 6 concludes the paper by explaining the contribution

and presenting future research directions.

2. Literature review

In terms of methodologies used in this paper, a fundamental building block to optimise transportation logistics,

such as PI, is the PDP. Therefore, the most important and relevant attributes of this problem are described below.

In operational research, it is a central problem for logistics as it gives a solution to the transportation process.

To help grasp the relevant models and methodologies, numerous reviews can be found such as the work of Silva and

Zuluaga [10]. They not only presented a classification of the different attributes of the problem but also provided

insights on modelling and solution techniques. When a combination of multiple constraints is being solved, the

problem can be categorised as a rich VRP. Caceres-Cruz et al. [11] gave a survey on the rich VRP by summarising

problem combinations, constraint definitions and different approaches. Lahyani et al. [12] also worked on the

rich VRP by providing a comprehensive and relevant taxonomy alongside its definition. As real-live applications

require an increasing number of attributes to be considered simultaneously, researchers tend to design general-

purpose solvers. Vidal et al. [7] developed a unified solution framework to tackle a multi-attribute VRP. They

demonstrated that such a general method can be efficient for this class of problem. Another attempt to solve a rich

VRP with a unified heuristic can be found in [13]. A pickup and delivery model was provided with a robust and

self-calibrating framework to solve it.

Different classes of problems arise for the PDP, two of them are simultaneous and mixed PDP. In the simultaneous

PDP, pickups and deliveries can be made at the same time. Originally, this variant considers a homogeneous fleet

of vehicles to satisfy the customer demands. However, nowadays, there are different types of vehicles available to

be used. Wang et al. [14] addressed the VRP in which customers require simultaneous pickup and delivery of

goods during specific time windows. They used a parallel Simulated Annealing algorithm to efficiently solve this

variant. This problem was also solved in [15] with an adaptive memory framework that generates high-quality

solutions by collecting and combining promising solution features. In the mixed PDP, pickups and deliveries can

occur in any order on a vehicle route. Wassan and Nagy [16] presented a taxonomy of different problem versions

including mixed pickup and delivery. They focused on the back-hauling aspect of the PDP while providing a review

of solution methodologies and highlighting issues in the literature. Rich solution frameworks like in [7] also consider

this attribute. However, this variant seems to suffer from a lack of published papers even though it has immense

practical applicability within logistics.

A commonly used attribute for the VRP is time windows, as shown in [17], it requires that the delivery is made

within a specific time window given by the customers. Two categories can be defined: soft time windows which can

3

be violated while inducing a penalty cost and hard time windows which cannot. Cordeau et al. [18] wrote a survey

in which they presented approximation methods and optimal approaches to tackle this variant.

Compatibility or site-dependency constraints can also be added on a VRP model. As shown in [19], this refers to

the situation in which a customer must be served from a specific depot, by a specific vehicle or a specific driver. For

instance, goods demanded by a customer might require vehicles with special equipment for loading and unloading.

Access restrictions regarding the vehicle type can apply in a given area or city. The work of Desrochers et al. [20]

also covered this attribute.

Companies that have several depots can solve the multi-depot VRP to satisfy all its customers. In this variant,

vehicles can be located at different depots while customers can be assigned to different depots. Montoya-Torres

[21] reviewed the state-of-the-art on this variant by considering relevant papers since 1988. They studied several

variants and provided a classification for solution approaches dealing with single or multiple objectives. Nagy and

Salhi [22] also studied this variant while avoiding the common assumption that pickups and deliveries must be

completed in two different stages.

It has been demonstrated that cross-docking strategy plays an important role in goods distribution. In their PDP

and VRP with cross-dock models, Nikolopoulou et al. [23] gave a comparison of direct-shipping and cross-docking

strategies. They developed a local-search optimisation framework and tested on existing and new benchmark

data-sets. It was concluded that depending on the environment and constraints, a cross-docking strategy can

outperform the direct-shipping. However, in some cases direct-shipping can still be relevant, this could mean

that hybrid methods are necessary. As cross-docking strategies become common, scheduling and door assignment

are being solved simultaneously with cross-dock constraints. Enderer et al. [24] proposed two formulations of

the problem and compared computational results. They showed that integrated solution approaches can lead to

significant savings in costs. Cross-docking might create situations in which vehicles have to wait for empty doors

or even products to arrive. Dondo and Cerdá [25] considered this constraint by introducing a mixed-integer linear

programming formulation. They also used an integrated solution approach in which the dock door assignment and

the truck scheduling at the cross-dock are simultaneously decided. Miao et al. [26] studied the multiple cross-

docks where penalty values are added when the time windows are not met. They proved the NP-hard difficulty

of the multiple cross-docks problems and therefore designed a hybrid method to solve the problem compared with

CPLEX. Although the interest for cross-docking is increasing, only very few papers considered multiple cross-

docks constraints. Maknoon and Laporte’s paper [27] is one of them, they proposed a mathematical formulation

of the problem in which requests have to pass through at least one cross-dock. The efficiency of their proposed

adaptive large neighbourhood search heuristic was demonstrated with a comparison with CPLEX. However, their

model using heterogeneous vehicles which must start and end their routes at the same assigned cross-dock is not

entirely compatible with PI constraints. Their transportation process is divided into two separate shifts (pickup

and delivery) which cannot model a mixed pickup and delivery.

In some situations, once the last customer on the route has been visited, the driver does not have to return to

the depot. The driver could terminate his route at another depot or even at home. This problem was introduced

by Schrage in 1981 and is called open VRP. A few papers have been devoted to this problem. Alinaghian et al.

[28] dealt not only with cross-docking but also with open VRP. On top of the capacity of vehicles that is not

4

completely used, some companies use rental vehicles due to the high cost of purchasing vehicles with high capacity.

Therefore, the authors proposed a cross-docking and open-close VRP problem solved by a simulated annealing

algorithm. Russell et al. [29] showed relevant applications of the open VRP like newspaper logistics. It was

explained that the independent outsourcing characteristic of these processes as independent contractors requires

this type of modelling. Yu et al. [30] studied and solved a capacitated homogeneous cross-docking and open VRP

with a simulated annealing algorithm. They showed that their proposed method can outperform CPLEX. Atefi et

al. [31] also solved this variant while considering a decoupling points strategy which generalises the open VRP as

multiple trucks delivery. The first truck performs part of the deliveries, then drops off the load while the second

one and others continue from that point onwards. Their decoupling points strategy is similar to our model handling

consolidations in a PI environment. On top of open routes, our model also allows vehicles to start and end their

routes to different depots.

Although the above VRP attributes have been studied with different combinations, to the best of our knowledge,

none has modelled this problem with all the above constraints. Only a few papers proposed to solve the VRP with a

single cross-dock and very few solved this problem with multiple cross-docking facilities. Papers like [27], [26], [32],

[33] and [34] dealt with multiple cross-docks but modelled the problem differently to this paper. When considering

multiple cross-docks, pickups and deliveries were often handled in a less flexible way. They were satisfied in separate

stages/vehicles or could not be consolidated within several successive cross-docks before delivery. However, there

are real-world problems with all the aforementioned constraints.

Our rich version of the model can arise in many practical applications and therefore contributes toward a more

efficient SCM. The PI is one of such examples which uses several types of vehicle and allows load exchanges at

multiple facilities to satisfy customers within time windows. Collaboration using external transportation means

is another feature of the PI which must be considered. As a vehicle can belong to an external company or even

a private owner, it is available for a given period and can have an open route or finish its route at a different

depot. One issue cross-docking is tackling is the capacity of vehicles not being entirely used during the deliveries.

Having mixed pickups and deliveries is another characteristic of our model that can improve the overall efficiency

by introducing some degree of flexibility. The vehicle fulfilment could also be improved by using consolidations

during deliveries. This research direction is another motivation for our model to be created and considered in a PI

environment. Thus, developing models and algorithms that can deal with all these constraints is of high practical

value. This paper fills this gap by solving this challenging PDP with several attributes for real-life size cases.

3. Problem description and formulation

3.1. Context

In this work, we aim at scheduling routes of a set of vehicles to satisfy all the customer requests. The following

list of realistic properties are handled: capacitated, heterogeneous, mixed pickup and delivery, multiple depots,

open route, different start/end depots, multiple cross-docks, customer time windows, site-dependent. Although this

work is not concerned about the scheduling at cross-dock doors, it differs from most of the work studying cross-

docking as it gathers numerous VRP attributes and models them with new constraints. As stated by Sarraj et al.

5

[35], a perceived possible drawback of the PI comes from the shift from direct-shipping to distributed transport

involving containers being consolidated in several cross-docks with a possible costs increase. However, they showed

that PI scenarios can result in significantly lower overall costs hence making it a profitable alternative. It is also

demonstrated that by using consolidations, PI can induce a significant gain regarding transportation fulfilment

rate. Many other researchers mentioned the benefit of using cross-docking. Yu et al. [30] studied cross-docking

while considering the cost of hiring vehicles. In [36], they discussed the importance of cross-docking for efficient

distribution networks as the costs of holding and handling can be lowered in warehouses. Similarly, Chen et al. [37]

stated that cross-docking can be an extremely efficient strategy when the inventory costs are high. While showing

that cross-docking can increase the cost of vehicle used, Ahmadizar et al. [38] also emphasised the efficiency of

consolidation to minimise the total overall costs. Other research proved the reduction of costs due to cross-docking

strategies in the SCM [39]. Real-world cases also support those findings [33]. In some scenarios, a direct-shipping

strategy can still incur lower costs [23]. However, when P&D pairs are remotely positioned and clustered, cross-

docking can reduce the cost compared to the direct-shipping. This is also the case when facing a densely connected

network with a many-to-many relation between suppliers and customers. Hence the need for a flexible model capable

of handling both strategies which could resemble a many-to-many problem because of standardised PI-containers

and consolidation. Several simulations already demonstrated the benefit of the PI when simultaneously considering

different cost related to vehicles, truck fulfilment, distance travelled, handling, storage etc. Moreover, as the PI is

about collaboration by sharing resources, even if the cost of a company’s fleet could increase, it has been shown that

the global cost for all the companies collaborating would certainly decrease as they would share the fleet [5, 40]. As

a consequence, our model designs a set of routes for vehicles while only considering the cost related to driving time.

In our VRP with cross-docks, a logistics organisation operates with multiple cross-dock facilities O to satisfy a

set of customers C calling for transportation requests R. The problem is defined on a graph including a set of nodes

N = C ∪ O in which for each pair of nodes i and j, there exists an arc (i, j) of driving time dij . Each customer

requests is characterised by a container, an origin and a destination given by two customers c1, c2 ∈ C where the

first denotes the pickup point, and the second one denotes the delivery point. A customer request is satisfied when

a vehicle picks up the container at the origin and delivers it at the destination. Cross-docks and customers require a

service time si to handle requests. All requests are associated with their demands/loads qr > 0 and must be satisfied

between a time window [Ai, Bi]. For a given request r, its pickup and delivery locations are represented by the

set {Hp
r , H

d
r }. Each request has the flexibility to pass through one or multiple cross-docks to be consolidated with

others but is not forced to visit any cross-dock if a direct shipping strategy is more efficient. Moreover, requests are

not necessarily expected to arrive at the cross-dock simultaneously if an exchange is happening. The organisation

uses a set of vehicles K in which each vehicle k ∈ K has a capacity Qk, a type wk and a set of assigned start and

end cross-docks Ok = {oks , oke}. A single route can contain pickup as well as delivery locations but cannot include

the same cross-dock more than once, except for the cross-dock depot. Each vehicle k is available within a time

window [Ek, F k] and can only visit nodes for which its type is allowed with zwk
i being equal to 1. Finally, to handle

open routes, a dummy node od representing a cross-dock depot is introduced in the graph. It is assumed that each

arc connecting the dummy cross-dock to another node of the graph has zero driving time. As a result, any vehicle

k with an open route can be addressed by the model with oks = oke = od.

6

Figure 1: VRP solution with load exchanges

Figure 1 shows an example of a VRP solution which includes 4 cross-docks (squares), 10 customer locations

(circles) and 4 vehicles represented with 4 small numbers in the cross-docks. Five requests call for transportation

of containers from nodes 5, 7, 9, 11 and 13 to nodes 6, 8, 10, 12 and 14 respectively. In this scenario, pickup

and delivery nodes are located in different cities and therefore must be done by different vehicles. Moreover, some

constraints force vehicles to return to the depot within time windows. As a result, vehicles are required to transit via

the cross-dock facilities to enable consolidation to share the transport work. Vehicle 1 first picks up the containers

from nodes 7 and 5 to drop them to cross-dock 2. Then vehicle 2 carries these containers to cross-dock 3 where

vehicle 3 picks them to deliver customers 8, 6. Customers 11 and 12 are also satisfied by vehicle 3 during its journey

in which the container from customer 9 is brought to the cross-dock 3. After a wait, vehicle 2 can come back to

cross-dock 2 with the container to be delivered by vehicle 1 which was waiting before visiting customers 13, 10

and 14. The model gives vehicles the flexibility to mix pickups and deliveries through several cross-docks as for

customers 5, 7, 6 and 8 or to directly deliver containers as for customers 13, 14, 11 and 12. Cross-docks can be left

unused if necessary as for cross-dock 4 and an alternative scenario could allow vehicle 1 to return to another depot

or none after visiting customer 14.

3.2. Mixed-integer linear programming formulation

The decision variable y for request transportation and the Big-M formulation/method are inspired by [27] as

this work also considers multiple cross-docks. With M as a large constant slightly greater than the highest value

of variables Bi, the model is defined as follows:

Minimise
∑
k∈K

∑
i∈N

∑
j∈N

xkij ∗ dij (1)

subject to:

ukj ≤ Bj ∀k ∈ K, ∀j ∈ C (2)

vki +M

1−
∑

j∈N\i

xkij

 ≥ Ai + si ∀k ∈ K, ∀i ∈ C, (3)

7

vko +M

1−
∑

j∈N\o

xkoj

 ≥ Ek ∀k ∈ K, | o = oks (4)

uko −M

1−
∑

j∈N\o

xkjo

 ≤ F k ∀k ∈ K, | o = oke (5)

∑
k∈K

∑
j∈N\i

xkij = 1 ∀i ∈ C (6)

∑
j∈N\i

xkij ≤ z
wk
i ∀k ∈ K, ∀i ∈ N (7)

∑
i∈N

xkij =
∑
i∈N

xkji ∀k ∈ K, ∀j ∈ N\Ok (8)

∑
i∈N

xkij ≤ 1 ∀k ∈ K, ∀j ∈ O (9)

vki + dij ≤ ukj +M
(
1− xkij

)
∀k ∈ K, ∀i, j ∈ N (10)

ukj + sj ∗
∑

i∈N\j

xkij ≤ vkj ∀k ∈ K, ∀j ∈ N\Ok (11)

∑
r∈R

qry
k
rij ≤ Qk ∀i, j ∈ N, ∀k ∈ K (12)

xkij ≥ ykrij ∀k ∈ K, ∀r ∈ R, ∀i, j ∈ N (13)

∑
k∈K

∑
i∈N

ykrio ≤ 1 ∀r ∈ R, ∀o ∈ O (14)



if oks = oke∑
i∈N xkai +

∑
i∈N xkib = 2 | a = oks , b = oke

otherwise∑
i∈N xkai = 1 | a = oks∑
i∈N xkia − xkaa = 0 | a = oks∑
i∈N xkbi = 0 | b = oke∑
i∈N xkib + xkaa = 1 |a = oks , b = oke

∀k ∈ K (15)

8

∑
k∈K

∑
j∈N

ykraj = 1 ∀r ∈ R | a = Hp
r (16)

∑
k∈K

∑
j∈N

ykrja = 0 ∀r ∈ R | a = Hp
r (17)

∑
k∈K

∑
j∈N

ykrja = 1 ∀r ∈ R | a = Hd
r (18)

∑
k∈K

∑
j∈N

ykraj = 0 ∀r ∈ R | a = Hd
r (19)

vka ≤ ukb ∀k ∈ K, ∀r ∈ R | a = Hp
r , b = Hd

r (20)

∑
i∈N

ykria −
∑
j∈N

ykraj = 0 ∀r ∈ R, ∀k ∈ K, ∀a ∈ C\Hr (21)

∑
k∈K

∑
i∈N

ykrio =
∑
k∈K

∑
i∈N

ykroi ∀r ∈ R, ∀o ∈ O\Hr (22)

uk
′

o −M

(
1−

∑
i∈N

yk
′

rio

)
≤ vko +M

(
1−

∑
i∈N

ykroi

)
∀r ∈ R, ∀o ∈ O, ∀k, k′ ∈ K (23)

xkij ∈ {0, 1} ∀i, j ∈ N, ∀k ∈ K (24)

ykrij ∈ {0, 1} ∀r ∈ R, ∀i, j ∈ N, ∀k ∈ K (25)

uki ∈ R ∀i ∈ N, ∀k ∈ K (26)

vki ∈ R ∀i ∈ N, ∀k ∈ K (27)

Eq. (1) is the objective considered in this paper, it is the minimisation of the total driving time of all the

vehicles (without waiting times). The objective is subject to constraints 2 - 27. Constraints (2) and (3) enforce

that each customer j is available for pickup or delivery between times Aj and Bj . Similarly, constraints (4) and (5)

enforce that each vehicle is only available between times Ek and F k. Constraint (6) imposes that each customer

location is served by exactly one vehicle. Constraint (7) ensures that pickups and deliveries are made by allowed

vehicles. Constraint (8) means that each vehicle k can only start and end its route at its assigned cross-docks oks

and oke , respectively. Constraint (9) forbids vehicles to visit the same cross-dock more than once. Constraints (10)

computes the arrival and leaving times at node j which in turn depends on the arrival and leaving times of node

9

i and the driving time between the two nodes. Given an arrival time, the service time at node j is considered by

constraint (11) to calculate the leaving time of a vehicle. Constraint (12) tracks the vehicle load that must respect

its capacity. For each request, constraint (13) links its transfer decision to a vehicle route. Constraint (14) prevents

requests from visiting a same cross-dock more than once. Constraint (15) forces each vehicle to depart and arrive

at its assigned cross-dock depots, but it must not visit the depots more than once (xkaa = 1 if vehicle k is not used).

Constraints (16) and (19) allow request pickup Hp
r or delivery Hd

r to be handled by a vehicle. The precedence

constraints of pickups and deliveries are checked by constraint (20) as they must be consistent. Constraint (21)

forbids a vehicle to drop any request load before reaching the delivery location. Constraint (22) controls the flow

of requests entering a cross-dock o which has to leave this cross-dock. Constraint (23) synchronises each vehicle k

leaving a cross-dock with another vehicle v carrying its loads to be consolidated. Constraints (24)-(27) define the

domain of the decision variables as follows. Variable xkij in (24) is the route decision, it is equal to 1 if and only if

vehicle k travels from node i to node j, otherwise, xkij equals 0. Variable ykrij in (25) is the transportation decision,

it is equal to 1 if customer request r is transported using vehicle k on its route from node i to node j, otherwise,

ykrij equals 0. The variables uki in (26) and vki in (27) represent respectively the arrival and leaving time of vehicle

k at node i.

4. Meta-heuristic

As shown in Section 5, the mathematical model in Section 3 cannot be solved exactly for large instances within

a reasonable time. Therefore a meta-heuristic approach is considered - a multi-Threaded Simulated Annealing with

Memory (TSAM).

4.1. Architecture

The proposed algorithm has been inspired by [8] and extended to tackle the new model. The differences

between [8] and TSAM are as follows. First, functions overall() 1, restart() 2, neighbour search() 5, and

simulated annealing() 7 were modified and new functions were introduced. Second, the algorithm was parallelised

to better cope with different instance characteristics simultaneously. The parallelisation allows the algorithm to

apply traditional operators on a solution while trying to add consolidations without slowing down the overall search.

The tabu list was removed and a memory mechanism was added for the threads to communicate and exchange their

last created solutions. Third, operator PD rearrange() was removed and new ones were added to handle the

model constraints. For example, operator swap() 10 is introduced to better handle the “different start/end depots”

attribute of the model while operator consolidation() 12 handles attribute “multiple cross-docks”.

Figure 2 shows the architecture of the algorithm. Three different threads are launched on Algorithm overall()

1. Basically, Algorithm overall() 1 handles the current solution which will be altered by the other functions.

Algorithm restart() 2 is used to explore several times a different neighbourhood of the current solution. Compared

to Algorithm random() 6, Algorithm neighbour search() only returns a solution that is better than the current

one. However, they both use a random operator from a list op list. By calling Algorithm random() 6, Algorithm

simulated annealing() 7 is used to allow the exploration of worse neighbourhoods in order to escape local minima.

10

Figure 2: TSAM function architecture

The algorithm uses hierarchical clustering to extract clusters from the instance at hand. The heights of the

clusters are used to identify the group of requests that must be consolidated together. If two requests share the

same pickup and delivery node clusters (two distinct clusters), then they belong to the same group. Otherwise,

they belong to separate groups. The group list req groups is then used in function PD consolidate() to ensure

that the operators modify the requests (from the same group) in the same way.

Each solution and its vehicle routes have a flexible size which depends on the number of visited customer

locations/nodes. In Figure 3, the vehicle tours/routes are delimited by the departure and arrival cross-docks/depots

which are the numbers without any subscript. The ones with subscripts can be the customer or cross-dock nodes.

These subscripts are the links between the nodes which represent the request travel paths. In Figure 3, such links

are shown with the subscript numbers. Each node has a list of request path IDs which links them to other nodes.

Such links are necessary to specify that a certain node must always be in the same vehicle route as another one.

Moreover, a link is used as a position constraint. Therefore, a link contains an ID, is associated with two nodes

and determines the positioning constraints of these two nodes. In Figure 3, node 1 and node 2 share a link of ID 1.

The presence of this link, plus the respective positions of these nodes in the solution representation mean that node

1 must be in the same vehicle route as node 2, which must be positioned somewhere after node 1. This is because

the vehicle must pick up the request at node 1 before delivering it to node 2.

Figure 3: Solution representation

The TSAM algorithm uses several parameters as follows: PSMS defines the size of the memory for the previous

solutions. RPLI defines the number of iterations for the function 12 to change the request path length. RPLR

defines the probability for the function 12 to choose between operators PD stretch() 3 and PD shrink() 4. MIT

defines the number of iterations before using previous solution in function 1. RIT defines the maximum number

of restarts for function 2. T0 defines the initial temperature for Algorithm 7. δ defines the size of the temperature

step for Algorithm 7.

11

Here we describe some sub-functions used by the algorithm. Function cost() computes the objective value of

a solution as defined in Section 3. Function random double() returns a random double value between 0 and 1.

Function random() picks a random item from the given list. Function shuffle() randomly permutes the given list.

Function is delivery() returns true if the given node is a delivery node. Function is hub() returns true if the

given node is a cross-dock. Function remove() removes the given request from the given node. If the node has no

request left, it will be removed from the given solution route. Function insert() inserts the given request path ID

in the given node if it is not present. Then insert the node in the specified solution route. However, if the node

already exists in the route, the function only adds the request path ID to the node. Function get best indices()

returns all the possible indices from the solution route at which the given node can be inserted. The indices are

sorted from best to worst giving the resulting route distance. Function get best solution() returns the best

solution found from all the threads. Function random previous solution() returns randomly a previously found

solution. Function is valid() checks if the given solution is valid according to all the attributes defined in Section

3. Function PD arrange() creates a solution where all the P&D pairs are positioned in vehicles of which the start

depots are located in the same clusters.

4.2. Algorithm functions

This section describes all the functions of the algorithm and gives some pseudo-codes. Readers can refer to the

appendix to get more details for the rest of the pseudo-codes.

Algorithm 1: Overall algorithm

1 //Input: problem instance;
2 //Output: the best solution Sb found;
3 Sb ← init solution();
4 no progress← 0;
5 while Termination criterion not reached do
6 S ← get best solution() //from shared memory;
7 if no progress % MIT = 0 then
8 S ← random previous solution() //from shared memory;

9 S ← restart(S);
10 if cost(S) < cost(Sb) then
11 Sb ← S;
12 no progress← 0;

13 else
14 no progress← no progress+ 1;

15 return Sb;

Algorithm 1 includes the main steps of the meta-heuristic. It is launched in parallel by three different threads

which contain a different operator list op list. Thread 1 has an operator list of PD interchange() and PD move().

Thread 2 has an operator list of PD consolidate(). Thread 3 has an operator list of PD swap() and PD exchange().

Each thread memorises all the solutions found so that they can be re-used if there is no improvement for a long

time. This memory is shared between all the threads so that a solution can be modified by all the operators. If the

memory size is greater than PSMS, a random solution is then removed.

12

In Algorithm 1, function restart() in step 9 is iteratively launched with the best solution or a random previous

solution until the termination criterion is reached. While step 6 is used to retrieve the best solution found among

all the threads, step 8 get a random solution found by all the threads. Algorithm init solution() in step 3 is

used to generate an initial solution based on the insertion heuristic of Solomon. The initialisation function does not

use the consolidation operators PD stretch() and PD shrink(). Only customer nodes are handled at this stage as

solutions involving load exchange with hubs cannot be found at this stage. As a consequence, the feasible region

of instances must include at least one solution without consolidation. To start, one first pair of P&D customers is

inserted, then the insertion of each unrouted node is evaluated and compared with the other possible insertions.

The one that minimises the additional distance (induced by the insertion) is selected to be included in the partially

created route. The function continues inserting P&D pairs in the current route until a constraint is violated, in

that case, the insertion is tried in the next route. As P&D nodes must be kept together, in case a delivery node

could not be inserted, the function first removes the pickup node and then tries another solution route with both

nodes.

Algorithm 2: Restart function

1 //Input: a current solution Sc;
2 //Output: the best solution Sb found;
3 S ← neighbor search(Sc);
4 Sb ← S;
5 while no progress < RIT do
6 S ← simulated annealing(S);
7 S ← reorder routes(S) //re-order routes modified by PD exchange() and PD move();
8 S ← neighbor search(S);
9 if cost(S) < cost(Sb) then

10 Sb ← S;
11 no progress← 0;

12 else
13 no progress← no progress+ 1;

14 return Sb;

Algorithm 2 is used to explore the neighbourhood of a solution several times. Algorithm simulated annealing()

7 in step 6, is used to escape local minima by potentially accepting worse solutions. At each iteration, the tempera-

ture is updated to give a probability to accept a solution created by Algorithm random solution() 6. This algorithm

allows the global search to make random moves by returning a random solution in the neighbourhood of a given

solution. At each iteration, a random operator in op list is applied to the given solution until any solution is found

or until the iteration count is greater than RIT . To better explore the neighbour solutions, the proposed approach

includes Algorithm neighbor search() 5 which returns a better solution in step 8. At each iteration, a random

operator in op list is applied to the current solution until no improvement is made. Function reorder routes()

in step 7 is used to re-order the routes modified by operators PD exchange() and PD move(). Each pair of nodes is

re-inserted into its route using Solomon’s insertion procedure.

13

Algorithm 3: PD Stretch operator

1 //Input: a current solution Sc, a request r, a set K of vehicles;
2 //Output: a solution S found;
3 valid← false;
4 while not valid do
5 S ← Sc;
6 k ← random(K) //get a random vehicle route where r is present;
7 v ← random(r,K/k) //v must be different from k and must not contain r;

8 pickup← get pickup(r, Sk) //get pickup node of request r from route k of solution S;

9 delivery ← get delivery(r, Sk);

10 hub1 ← get hub(Sk, Sv) //random cross-dock which is not a depot in the given routes;
11 hub2 ← clone(hub1);

12 remove(delivery, r, Sk);

13 insert(hub1, r, S
k);

14 insert(hub2, r, S
v);

15 insert(delivery, r, Sv);
16 valid← is valid(S);

17 return S;

4.3. Algorithm operators

This section describes all the operators implemented in the algorithm and provides pseudo-codes. As before,

readers can refer to the appendix to get more details for the rest of the pseudo-codes. Each operator iteratively

performs a move and returns a new solution if it is valid. Otherwise, if the iteration count is greater than the

number of customer |N |, the function stops and returns no solution. Algorithm 8 alters a node position in a vehicle

route by removing and inserting it somewhere else in the same vehicle route. Algorithm 9 moves a pair of P&D

nodes from a vehicle route to another one. It tries to select vehicles that are already used. Algorithm 10 replaces

an entire vehicle route by another one. All the nodes from two routes are exchanged while checking if the new

routes do not contain the depots as intermediate cross-docks. This can be useful when the vehicles have different

depots. Algorithm 11 selects four P&D nodes from two different vehicle routes and exchanges them. Algorithm 12

changes a request path length by adding or removing an intermediate cross-dock. At each iteration, a request group

is randomly selected. Function PD stretch() or PD shrink() is randomly selected (given the probability RPLR)

to be applied to the request path ID in the group. If the vehicle or the cross-dock count is equal to 1, there are not

enough resources to have load exchange, therefore the operator is not used.

Figure 4: Stretch operator

Figure 5: Shrink operator

Algorithm 3 inserts intermediate nodes in a request path. Instead of using the direct shipping strategy, a trans-

shipment strategy is applied. Therefore the requested container will be exchanged at a cross-dock. When selecting

14

Algorithm 4: PD Shrink operator

1 //Input: a solution Sc, a request r, a set K of vehicles;
2 //Output: a solution S found;
3 valid← false;
4 while not valid do
5 S ← Sc;
6 k ← random(K) //get a random vehicle route where r is present;

7 pickup← get pickup(r, Sk);

8 hub1 ← get delivery(r, Sk);
9 if is hub(hub1) = false then

10 continue;

11 v ← get route(r, k) //get the vehicle route linked to route k via request r;
12 hub2 ← get pickup(r, Sv);
13 delivery ← get delivery(r, Sv);

14 remove(hub1, r, S
k);

15 remove(hub2, r, S
v);

16 remove(delivery, r, Sv);

17 insert(delivery, r, Sk);
18 valid← is valid(S);

19 return S;

v and hub1, vehicles and cross-docks from the same cluster as the pickup and delivery nodes are favoured. The

function memorises and reuses the selected vehicle route and intermediate cross-dock so that each request path

from a group gets the same route and cross-dock. In Figure 4, the solution at the top has been altered and resulted

in the solution at the bottom. The request path 2 has been changed and now includes the cross-dock node 10 as

an intermediate. This means that vehicle 1 will pick up the container from node 3 to drop it at node 10 so that

vehicle 3 could pick it up from its departure node 10 and deliver it at node 4. Algorithm 4, represented in Figure

5, does exactly the opposite to Algorithm 3.

5. Computational results

5.1. Solver configuration

Generator parameters Values

cross-dock number 1-5
request number 10-50
vehicle number 1-5
vehicle capacity 50-100

request load 5
node time window 0-1000

vehicle time window 0-1000
node service time 1-10

2D coordinates (x,y) 0-100

Table 1: Generator parameters

As this VRP with P&D and multiple cross-docks is a new problem, there is no data-set available. Therefore,

data-sets must be generated randomly. Table 1 shows an example of parameters that can be used to generate

15

instances. Node locations and other instance characteristics are randomly generated with a normal distribution.

The time windows are generated as follows. They were first generated as loose constraints and then iteratively

tightened until the model became infeasible. In the end, values from the last feasible iteration were saved and

used. The ranges for the other parameters are selected in a similar way. There is no predefined unit for the time

and the coordinates. Details about the instances are given in Table 3. We also tested the algorithm on a classical

benchmark [8] to evaluate its performance on the general VRP.

Algorithm parameters Values References

PSMS 100 1
RPLI 2 12
RPLR 0.50 12
RIT 20 2
MIT 5 1
T0 50 7
δ 0.75 7

Table 2: Solver parameters

Table 2 presents the parameter values used for the experiments. These parameters values have been identified

after a sensitivity analysis to allow the algorithm to provide the best performances. Column “references” indicates

where the parameters are mentioned in the paper.

Just like several papers in the literature, a comparative analysis of the proposed algorithm and the proposed

mathematical model solved by CPLEX is presented. The model of the CPU used is ’Intel(R) Core(TM) i9-7900X

CPU @3.30GHz’. The model is implemented using the CPLEX OPL library and included in a Java framework. The

version 12.7 of CPLEX is used with its default configuration and therefore allows parallel computing. Therefore

each instance was solved only once by CPLEX. The meta-heuristic algorithm was also implemented and included

in a Java framework. The algorithm was launched 30 times for each instance, then the averages were reported.

16

5.2. CPLEX and meta-heuristic performances

CPLEX TSAM
instance Objective Lower bound Gap Time (s) Avg objective Avg time (s) Best objective Best time (s)

d5q50k2c1r10 441.98 441.98 Optimal 107 441.98 0 441.98 0
d5q50k2c1r15 378.46 >10800 558.14 63 557.56 77
d5q50k4c1r30 603.18 >10800 1078.34 101 1010.07 49
d5q50k5c1r50 1535.28 209 1444.22 232

d5q50k2c2r10 589.65 589.65 Optimal 65 589.65 37 589.65 18
d5q50k2c2r15 440.24 >10800 681.04 29 649.43 77
d5q50k4c2r30 801.32 >10800 1224.89 116 1185.26 56
d5q50k5c2r50 973.09 >10800 1739.4 172 1571.92 113

d5q50k5c5r10 447.12 336.28 24.79 10343 407.88 60 398.22 232
d5q50k5c5r15 486.52 >10800 731.77 64 622.19 20
d5q50k5c5r30 592.49 >10800 1022.47 118 900.65 254
d5q50k5c5r50 >10800 1510.3 199 1371.46 237

d5q100k2c1r10 459.73 433.78 5.64 4358 459.73 6 459.73 2
d5q100k2c1r15 441.81 >10800 550.62 22 550.54 50
d5q100k4c1r30 614.89 >10800 1131.31 122 1025.49 79
d5q100k5c1r50 >10800 1622.08 213 1465.62 253

d5q100k2c2r10 605.43 605.43 Optimal 0.5 605.43 0 605.43 0
d5q100k2c2r15 769.08 769.08 Optimal 7 805.68 24 769.09 32
d5q100k4c2r30 745.17 >10800 1066.58 81 1056.99 94
d5q100k5c2r50 1002.97 >10800 1598.83 210 1509.94 278

d5q100k5c5r10 447.12 336.28 24.79 10326 409.8 39 398.22 138
d5q100k5c5r15 485.88 >10800 735.4 67 622.19 111
d5q100k5c5r30 588.83 >10800 1008.49 116 870.56 100
d5q100k5c5r50 >10800 1445.76 220 1325.15 271

Table 3: CPLEX and TSAM comparison

Table 3 shows the results of CPLEX and the meta-heuristic algorithm for several instances of different request

quantities. The instance names give the request demand d, the capacity of the vehicle q, the vehicle number k,

the cross-dock number c and the request number r. On top of that, there are vehicles with different start and end

depots, requests with special vehicle type requirements and vehicle time windows. As CPLEX is an exact solver

and gives optimal solutions when feasible, it needs significantly more time to finish the search. Therefore, the

termination criteria for the meta-heuristic and CPLEX are set at 5 min and 3 hours, respectively. Columns Lower

bound and Gap give the last infeasible lower bound and Gap found by CPLEX when it ended. If CPLEX was able

to find the optimal solution before the end, columns Lower bound would give this optimal solution and column

Gap would contain the word optimal. Column Time (s) indicates when the solver found the last feasible solution.

If the value is > 10800, it indicates that the search needed more than 3 hours to converge. Columns Avg objective

and Avg time (s) give the average of the results over 30 runs while columns Best objective and Best time (s) give

the details of the best solution.

From Table 3 it can be seen that the proposed algorithm outperforms CPLEX. On the one hand, on instances

containing more than 30 customers, CPLEX couldn’t provide any feasible solutions but gave the lower bound.

However, for some instances containing 50 requests and therefore 100 customers, CPLEX could not provide any

lower bound therefore, those rows are left blank. It can be noticed that the difficulty can also vary between two

instances containing similar characteristics. This is due to the node locations. On the other hand, the proposed

17

algorithm is not only able to match the results of CPLEX for small instances but is also able to find solutions for

large instances. As expected, on average, when the number of requests, vehicles, cross-docks increases or the vehicle

capacity decreases, the instance difficulty increases.

5.3. Consolidation performances

With Without
Instances Distance Vehicle Consolidation Time (s) Distance Vehicle Consolidation Time (s)

d1q2-5k5c6r2 253.14 3 4 0 284.7 1 0 0
d1q5k5c6r5 267.76 3 10 1 291.71 1 0 0

d1q10k6c4r10 280.74 6 12 3 292.99 1 0 1

Table 4: Consolidation feature results

To study the difference brought by using consolidation centres, we tested TSAM on some special instances with

and without the consolidation feature. Table 4 shows the best results of the meta-heuristic algorithm on several

instances with different numbers of requests. The instances are clustered so that they represent cities where the

deliveries have to be made by special vehicles. Moreover, those cities are linked by highways that can only be used

by a specific type of vehicle. Vehicles of this type are not forced to return to the start depot. As a result, using

this vehicle would improve the solution cost but require consolidations with the other vehicles. Columns With and

Without give the results of the algorithm with and without the consolidation function, respectively. The distance,

the number of vehicles used and the number of consolidations are reported. From Table 4 it can be seen that

the consolidation feature is of great importance to find better solutions when cross-docking is involved. Without

the consolidation, only one vehicle is used to pick up and deliver all the requests, then it returns to the start

depot. However, with the consolidation, several vehicles are used and exchange their loads. This decreases the total

distance driven as a specific vehicle is used on the highway and does not need to return to the start depot.

Figure 6: Dendrogram of an instance with clustered nodes

Figure 6 represents the hierarchical clustering of the instance shown in Figure 1. In this dendrogram using an

average linkage strategy, the heights reflect the distance between the clusters. In this case, the dendrogram shows

that there are two main clusters grouping customers. This clustering method helps the algorithm to group requests

18

that can be consolidated together for better solutions cost. In this case, since pickup nodes 5 and 7 belong to a

different cluster from delivery nodes 6 and 8, the algorithm will try to consolidate their containers.

5.4. Benchmark performances

Best known TSAM
Instances Distance Vehicle Avg distance Avg time (s) Best distance Best vehicle Best time (s)

lc101s 828.94 10 828.94 0 828.94 10 0
lr101s 1650.8 19 1650.8 66 1650.8 19 17
lrc101s 1708.8 14 1713.15 114 1703.21 15 252

lc1 2 1s 2704.57 20 2704.57 25 2704.57 20 18
lr1 2 1s 4819.12 20 5106.47 845 4873.54 21 884
lrc1 2 1 3606.06 19 3765.98 859 3606.06 19 872

lc109q 1000.60 9 839.25 56 827.82 10 88
lr201 1253.23 4 1339.09 320 1286.83 5 512

lrc 1 2 5s 3715.81 16 4313.25 1043 4044.81 20 1309

Table 5: Li&Lim benchmark

Table 5 shows the results of the proposed algorithm on some instances of Li&Lim’s benchmark [9] to evaluate the

performance of TSAM on the general PDP. It should be noted that the results in [9] are continuously updated with

the best-known results from the state-of-the-art algorithms in the literature. To test all the different configurations,

instances from each group (clustered, random, and random-clustered nodes) for 100 customers and 200 customers

were selected. Columns Best known give the best-known solution details (taken from [9]) on the selected instances

while columns TSAM give the results of the proposed algorithm. Columns Avg distance and Avg time (s) give the

average of the results over 30 runs while columns Best distance, Best vehicle and Best time (s) give the details

of the best solution. Those results include the distance driven by all the vehicles, the number of vehicles used and

the time at which the solution was found. The termination criterion for the meta-heuristic is set at 25 min.

From Table 5 it can be seen that the proposed algorithm is able to find some of the best-known solutions

in a reasonable amount of time. On top of that, the interesting result of instance lc109 shows that TSAM can

provide solutions which improve the distance compared to the best-known ones, but with a caveat of having to

use more vehicles. However, there are instances for which TSAM could only find near-optimal solutions. This can

be explained by the objective being different. This type of instance is better solved by approaches which focus

on reducing the number of vehicles used. Our method, on the other hand, needs to try several vehicles to find

consolidation opportunities as shown in Table 4 while also trying different combinations of vehicles due to the

multi-depot constraint.

5.5. Sensitivity analysis

Figure 7 shows the convergence of the algorithm with different parameters on the instance d5q50k2c1r10. Com-

pared to the one used in Table 3, this instance is more challenging as the algorithm tends to get trapped in local

minima more easily with bad parameter values. Those results have been used to set the default values of the

parameters in Table 2. In order to analyse the parameter sensitivity, the following reference values have been

used: PSMS = 20, MIT = 5, T0 = 40, delta = 0.95, RIT = 5, RPLI = 10, RPLR = 0.50. For each figure, a

19

20 40 60 80 100 120

530

540

550

Time(s)

C
os

t

5
10
50
100
200

(a) MIT sensitivity analysis plot

20 40 60 80 100 120

520

530

540

550

Time(s)

C
os

t

1
5
10
50
100

(b) PSMS sensitivity analysis plot

20 40 60 80 100 120

520

530

540

550

Time(s)

C
o
st

1
2
5
10
20

(c) RIT sensitivity analysis plot

20 40 60 80 100 120

525

530

535

540

545

550

Time(s)
C

os
t

1
2
10
20
30

(d) RPLI sensitivity analysis plot

20 40 60 80 100 120

520

530

540

550

Time(s)

C
os

t

5
10
50
100
200

(e) T0 sensitivity analysis plot

20 40 60 80 100 120

520

530

540

550

Time(s)

C
os

t

0.25
0.5
0.75
0.9
0.95

(f) δ sensitivity analysis plot

Figure 7: Parameters sensitivity analysis

single parameter is changed to 5 different values and the convergence of the algorithm is reported. The termination

criterion is set to 2 minutes of running time.

Overall, parameter values which give the best convergences also give the best results at the end of the search,

therefore those values are selected as default. RPLR is set at 0.50 as this ratio provides a good trade-off to create

solutions with consolidation by adding or removing intermediate cross-docks. A bigger ratio would provide solutions

with detours while a smaller ratio would prevent consolidations. It should be noted that those convergences might

vary from instance to instance as their characteristics can be different. RPLI could be set to a bigger value to

allow a longer search in an infeasible region while using consolidations. PSMS and MIT can be useful to escape

local minima as they allow the algorithm to research in previous solution neighbourhoods. Besides, T0 and δ can

be adjusted to better explore those regions.

20

6. Conclusion

Cross-docking is known to be one of the most effective strategies in logistics systems to improve the flow of

products in supply chains. Therefore, in this paper, a Rich VRP with pickup and delivery and multiple cross-docks

is considered. This problem tackles several attributes of the problem to cope with realistic constraints - capacitated,

heterogeneous, mixed pickup and delivery, multiple depots, open route, different start/end depots, time windows

and site-dependent. A MILP model is designed and solved by CPLEX. Given the high complexity of the considered

problem, especially in large scale, a meta-heuristic is also developed. Experiments are conducted using a wide

range of generated data-sets that reflect different real-life constraints. Those constraints can force requests to be

consolidated in cross-docks during deliveries. It is shown that CPLEX cannot find good solutions in a reasonable

amount of time for the biggest instances. However, the proposed algorithm not only outperforms CPLEX in all the

benchmark instances but is also able to scale up. Moreover, the proposed algorithm can also match some of the

best-known results by state-of-the-art methods on the benchmark of Li&Lim on large instances.

The main contribution is twofold. Firstly, this paper presents a new rich VRP that has not been addressed before.

An MILP model is proposed to tackle this problem. Secondly, a multi-threaded simulated annealing algorithm with

memory including new operators is introduced to handle real-world size instances.

There are a few directions for further research. Since the problem is new, some standard benchmarks could be

created for future comparison purposes. Also, the proposed algorithm could be integrated into a unified solution

framework for multi-attribute. Finally, one could extend the problem at hand by considering other constraints such

as working hours, rest times for drivers or even multi-objective and dynamism.

Acknowledgment

This work was supported by an LJMU PhD Scholarship, a NRCP grant no. NRCP1617-6-125 delivered by the

Royal Academy of Engineering, and an RSSB project no COF-INP-05

References

[1] G. B. Dantzig, J. H. Ramser, The truck dispatching problem, Management Science 6 (1) (1959) 80–91. arXiv:

https://doi.org/10.1287/mnsc.6.1.80, doi:10.1287/mnsc.6.1.80.

URL https://doi.org/10.1287/mnsc.6.1.80

[2] R. Sarraj, E. Ballot, S. Pan, B. Montreuil, Analogies between internet network and logistics service networks:

challenges involved in the interconnection, Journal of Intelligent Manufacturing 25 (6) (2012) 1207–1219. doi:

10.1007/s10845-012-0697-7.

URL http://dx.doi.org/10.1007/s10845-012-0697-7

[3] B. Montreuil, Physical internet manifesto, in: Transforming the way physical objects are moved, stored, real-

ized, supplied and used, aiming towards greater efficiency and sustainability, 2012.

[4] R. D. Meller, B. Montreuil, C. Thivierge, Z. Montreuil, Functional design of physical internet facilities: A

road-based transit center, Tech. rep., Progress in Material Handling Research 2012 (2012).

21

https://doi.org/10.1287/mnsc.6.1.80
http://arxiv.org/abs/https://doi.org/10.1287/mnsc.6.1.80
http://arxiv.org/abs/https://doi.org/10.1287/mnsc.6.1.80
https://doi.org/10.1287/mnsc.6.1.80
https://doi.org/10.1287/mnsc.6.1.80
http://dx.doi.org/10.1007/s10845-012-0697-7
http://dx.doi.org/10.1007/s10845-012-0697-7
https://doi.org/10.1007/s10845-012-0697-7
https://doi.org/10.1007/s10845-012-0697-7
http://dx.doi.org/10.1007/s10845-012-0697-7

[5] B. Montreuil, Towards a physical internet: Meeting the global logistics sustainability grand challenge, in:

Logistics Res., vol. 3, nos. 2-3, pp. 71-87, 2011, 2011.

[6] T. G. Crainic, B. Montreuil, Physical internet enabled hyperconnected city logistics, Transportation Research

Procedia 12 (2016) 383–398. doi:10.1016/j.trpro.2016.02.074.

URL http://dx.doi.org/10.1016/j.trpro.2016.02.074

[7] T. Vidal, T. G. Crainic, M. Gendreau, C. Prins, A unified solution framework for multi-attribute vehicle routing

problems, European Journal of Operational Research 234 (3) (2014) 658–673. doi:10.1016/j.ejor.2013.

09.045.

URL http://dx.doi.org/10.1016/j.ejor.2013.09.045

[8] H. Li, A. Lim, A metaheuristic for the pickup and delivery problem with time windows, in: Proceedings

13th IEEE International Conference on Tools with Artificial Intelligence. ICTAI 2001, 2001, pp. 160–167.

doi:10.1109/ICTAI.2001.974461.

[9] SINTEF, Li&lim benchmark, https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/, ac-

cessed: 2018-09-10.

[10] P. Ballesteros Silva, A. Escobar Zuluaga, Review of state of the art vehicle routing problem with pickup and

delivery (vrppd) 34 (2016) 463–482.

[11] J. Caceres-Cruz, P. Arias, D. Guimarans, D. Riera, A. A. Juan, Rich vehicle routing problem: Survey, ACM

Comput. Surv. 47 (2) (2014) 32:1–32:28. doi:10.1145/2666003.

URL http://doi.acm.org/10.1145/2666003

[12] R. Lahyani, M. Khemakhem, F. Semet, Rich vehicle routing problems: From a taxonomy to a definition,

European Journal of Operational Research 241 (1) (2015) 1–14. doi:10.1016/j.ejor.2014.07.048.

[13] D. Pisinger, S. Ropke, A general heuristic for vehicle routing problems, Computers & Operations Research

34 (8) (2007) 2403 – 2435. doi:https://doi.org/10.1016/j.cor.2005.09.012.

URL http://www.sciencedirect.com/science/article/pii/S0305054805003023

[14] C. Wang, D. Mu, F. Zhao, J. W. Sutherland, A parallel simulated annealing method for the vehicle routing

problem with simultaneous pickup–delivery and time windows, Computers & Industrial Engineering 83 (2015)

111 – 122. doi:https://doi.org/10.1016/j.cie.2015.02.005.

URL http://www.sciencedirect.com/science/article/pii/S0360835215000625

[15] E. Zachariadis, C. D. Tarantilis, C. Kiranoudis, An adaptive memory methodology for the vehicle routing

problem with simultaneous pick-ups and deliveries, European Journal of Operational Research 202 (2010)

401–411.

[16] N. A. Wassan, G. Nagy, Vehicle routing problem with deliveries and pickups: modelling issues and meta-

heuristics solution approaches, International Journal of Transportation 2 (1) (2014) 95–110.

22

http://dx.doi.org/10.1016/j.trpro.2016.02.074
https://doi.org/10.1016/j.trpro.2016.02.074
http://dx.doi.org/10.1016/j.trpro.2016.02.074
http://dx.doi.org/10.1016/j.ejor.2013.09.045
http://dx.doi.org/10.1016/j.ejor.2013.09.045
https://doi.org/10.1016/j.ejor.2013.09.045
https://doi.org/10.1016/j.ejor.2013.09.045
http://dx.doi.org/10.1016/j.ejor.2013.09.045
https://doi.org/10.1109/ICTAI.2001.974461
https://www.sintef.no/projectweb/top/pdptw/li-lim-benchmark/
http://doi.acm.org/10.1145/2666003
https://doi.org/10.1145/2666003
http://doi.acm.org/10.1145/2666003
https://doi.org/10.1016/j.ejor.2014.07.048
http://www.sciencedirect.com/science/article/pii/S0305054805003023
https://doi.org/https://doi.org/10.1016/j.cor.2005.09.012
http://www.sciencedirect.com/science/article/pii/S0305054805003023
http://www.sciencedirect.com/science/article/pii/S0360835215000625
http://www.sciencedirect.com/science/article/pii/S0360835215000625
https://doi.org/https://doi.org/10.1016/j.cie.2015.02.005
http://www.sciencedirect.com/science/article/pii/S0360835215000625

[17] M. M. Solomon, Algorithms for the vehicle routing and scheduling problems with time window constraints, in:

Operations Research, no. 254-265, 1985.

URL http://www.jstor.org/stable/170697

[18] J.-F. Cordeau, Q. Groupe d’études et de recherche en analyse des décisions (Montréal, The VRP with time

windows, Groupe d’études et de recherche en analyse des décisions Montréal, 2000.

[19] P. Pellegrini, D. Favaretto, E. Moretti, Multiple Ant Colony Optimization for a Rich Vehicle Routing Problem:

A Case Study, Springer Berlin Heidelberg, 2007, pp. 627–634.

[20] M. Desrochers, J. K. Lenstra, M. W. P. Savelsbergh, A classification scheme for vehicle routing and scheduling

problems, European Journal of Operational Research 46 (3) (1990) 322–332.

URL http://EconPapers.repec.org/RePEc:eee:ejores:v:46:y:1990:i:3:p:322-332

[21] J. R. Montoya-Torres, J. L. Franco, S. N. Isaza, H. F. Jiménez, N. Herazo-Padilla, A literature review on

the vehicle routing problem with multiple depots, Computers & Industrial Engineering 79 (2015) 115–129.

doi:10.1016/j.cie.2014.10.029.

[22] G. Nagy, S. Salhi, Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and

deliveries, European Journal of Operational Research 162 (1) (2005) 126–141. doi:10.1016/j.ejor.2002.

11.003.

[23] A. I. Nikolopoulou, P. P. Repoussis, C. D. Tarantilis, E. E. Zachariadis, Moving products between location

pairs: Cross-docking versus direct-shipping, European Journal of Operational Research 256 (3) (2017) 803–819.

doi:10.1016/j.ejor.2016.06.053.

[24] F. Enderer, C. Contardo, I. Contreras, Integrating dock-door assignment and vehicle routing with cross-docking,

Computers & Operations Research 88 (Supplement C) (2017) 30 – 43. doi:https://doi.org/10.1016/j.

cor.2017.06.018.

URL http://www.sciencedirect.com/science/article/pii/S0305054817301569

[25] R. Dondo, J. Cerdá, A monolithic approach to vehicle routing and operations scheduling of a cross-dock

system with multiple dock doors, Computers & Chemical Engineering 63 (2014) 184–205. doi:10.1016/j.

compchemeng.2013.12.012.

[26] K. F. Zhaowei Miao, F. Yang, A hybrid genetic algorithm for the multiple crossdocks problem, Mathematical

Problems in Engineering (2012).

[27] Y. Maknoon, G. Laporte, Vehicle routing with cross-dock selection, Computers & Operations Research (77)

(2017) 254–266. doi:doi:10.1016/j.cor.2016.08.007.

[28] M. Alinaghian, M. R. Kalantari, A. Bozorgi-Amiri, N. G. Raad, A novel mathematical model for cross dock

open-close vehicle routing problem with splitting, International Journal of Mathematical Sciences and Com-

puting 2 (3) (2016) 21–31. doi:10.5815/ijmsc.2016.03.02.

23

http://www.jstor.org/stable/170697
http://www.jstor.org/stable/170697
http://EconPapers.repec.org/RePEc:eee:ejores:v:46:y:1990:i:3:p:322-332
http://EconPapers.repec.org/RePEc:eee:ejores:v:46:y:1990:i:3:p:322-332
http://EconPapers.repec.org/RePEc:eee:ejores:v:46:y:1990:i:3:p:322-332
https://doi.org/10.1016/j.cie.2014.10.029
https://doi.org/10.1016/j.ejor.2002.11.003
https://doi.org/10.1016/j.ejor.2002.11.003
https://doi.org/10.1016/j.ejor.2016.06.053
http://www.sciencedirect.com/science/article/pii/S0305054817301569
https://doi.org/https://doi.org/10.1016/j.cor.2017.06.018
https://doi.org/https://doi.org/10.1016/j.cor.2017.06.018
http://www.sciencedirect.com/science/article/pii/S0305054817301569
https://doi.org/10.1016/j.compchemeng.2013.12.012
https://doi.org/10.1016/j.compchemeng.2013.12.012
https://doi.org/doi:10.1016/j.cor.2016.08.007
https://doi.org/10.5815/ijmsc.2016.03.02

[29] R. Russell, W.-C. Chiang, D. Zepeda, Integrating multi-product production and distribution in newspaper

logistics, Computers & Operations Research 35 (5) (2008) 1576 – 1588, part Special Issue: Algorithms and

Computational Methods in Feasibility and Infeasibility. doi:http://dx.doi.org/10.1016/j.cor.2006.09.

002.

URL http://www.sciencedirect.com/science/article/pii/S0305054806002140

[30] V. F. Yu, P. Jewpanya, A. P. Redi, Open vehicle routing problem with cross-docking, Computers & Industrial

Engineering 94 (2016) 6–17. doi:10.1016/j.cie.2016.01.018.

[31] R. Atefi, M. Salari, L. C. Coelho, J. Renaud, The open vehicle routing problem with decoupling points,

European Journal of Operational Research 265 (1) (2018) 316 – 327. doi:https://doi.org/10.1016/j.

ejor.2017.07.033.

URL http://www.sciencedirect.com/science/article/pii/S0377221717306604

[32] M.-C. Chen, Y.-H. Hsiao, H. Reddy, M. K. Tiwari, A particle swarm optimization approach for route plan-

ning with cross-docking, in: 7th International Conference on Emerging Trends in Engineering & Technology

(ICETET), IEEE, 2015. doi:10.1109/icetet.2015.12.

[33] J. Wang, A. K. R. Jagannathan, X. Zuo, C. C. Murray, Two-layer simulated annealing and tabu search heuris-

tics for a vehicle routing problem with cross docks and split deliveries, Computers & Industrial Engineering

112 (2017) 84–98. doi:10.1016/j.cie.2017.07.031.

[34] A. Ahkamiraad, Y. Wang, Capacitated and multiple cross-docked vehicle routing problem with pickup, delivery,

and time windows, Computers & Industrial Engineering 119 (2018) 76 – 84. doi:https://doi.org/10.1016/

j.cie.2018.03.007.

URL http://www.sciencedirect.com/science/article/pii/S0360835218300925

[35] R. Sarraj, E. Ballot, S. Pan, D. Hakimi, B. Montreuil, Interconnected logistic networks and protocols:

simulation-based efficiency assessment, International Journal of Production Research 52 (11) (2013) 3185–

3208. doi:10.1080/00207543.2013.865853.

URL http://dx.doi.org/10.1080/00207543.2013.865853

[36] V. F. Yu, P. Jewpanya, V. Kachitvichyanukul, Particle swarm optimization for the multi-period cross-docking

distribution problem with time windows, International Journal of Production Research 54 (2) (2015) 509–525.

doi:10.1080/00207543.2015.1037933.

[37] M.-C. Chen, Y.-H. Hsiao, R. H. Reddy, M. K. Tiwari, The self-learning particle swarm optimization approach

for routing pickup and delivery of multiple products with material handling in multiple cross-docks, Trans-

portation Research Part E: Logistics and Transportation Review 91 (2016) 208–226. doi:10.1016/j.tre.

2016.04.003.

[38] F. Ahmadizar, M. Zeynivand, J. Arkat, Two-level vehicle routing with cross-docking in a three-echelon supply

chain: A genetic algorithm approach, Applied Mathematical Modelling 39 (22) (2015) 7065–7081. doi:10.

1016/j.apm.2015.03.005.

24

http://www.sciencedirect.com/science/article/pii/S0305054806002140
http://www.sciencedirect.com/science/article/pii/S0305054806002140
https://doi.org/http://dx.doi.org/10.1016/j.cor.2006.09.002
https://doi.org/http://dx.doi.org/10.1016/j.cor.2006.09.002
http://www.sciencedirect.com/science/article/pii/S0305054806002140
https://doi.org/10.1016/j.cie.2016.01.018
http://www.sciencedirect.com/science/article/pii/S0377221717306604
https://doi.org/https://doi.org/10.1016/j.ejor.2017.07.033
https://doi.org/https://doi.org/10.1016/j.ejor.2017.07.033
http://www.sciencedirect.com/science/article/pii/S0377221717306604
https://doi.org/10.1109/icetet.2015.12
https://doi.org/10.1016/j.cie.2017.07.031
http://www.sciencedirect.com/science/article/pii/S0360835218300925
http://www.sciencedirect.com/science/article/pii/S0360835218300925
https://doi.org/https://doi.org/10.1016/j.cie.2018.03.007
https://doi.org/https://doi.org/10.1016/j.cie.2018.03.007
http://www.sciencedirect.com/science/article/pii/S0360835218300925
http://dx.doi.org/10.1080/00207543.2013.865853
http://dx.doi.org/10.1080/00207543.2013.865853
https://doi.org/10.1080/00207543.2013.865853
http://dx.doi.org/10.1080/00207543.2013.865853
https://doi.org/10.1080/00207543.2015.1037933
https://doi.org/10.1016/j.tre.2016.04.003
https://doi.org/10.1016/j.tre.2016.04.003
https://doi.org/10.1016/j.apm.2015.03.005
https://doi.org/10.1016/j.apm.2015.03.005

[39] V. B. Kreng, F.-T. Chen, The benefits of a cross-docking delivery strategy: a supply chain collaboration

approach, Production Planning and Control 19 (3) (2008) 229–241.

[40] E. Ballot, O. Gobet, B. Montreuil, Physical internet enabled open hub network design for distributed networked

operations, in: Service orientation in holonic and multi-agent manufacturing control, Springer, 2012, pp. 279–

292.

Appendix A. Algorithm functions and operators

Algorithm 5: Neighbour Search function

1 //Input: a solution S;
2 //Output: the best solution Sb found;
3 Sb ← S;
4 while true do
5 S′ ← PD operate(Sb) //apply a random operator from op list;
6 if cost(S′) < cost(Sb) then
7 Sb ← S′;

8 else
9 break;

10 return Sb;

25

Algorithm 6: Random Solution function

1 //Input: a solution S;
2 //Output: a solution S′ found;
3 it← 0;
4 S′ ← ∅;
5 while S′ = ∅ and it < RIT do
6 S′ ← PD operate(S);
7 it← it+ 1;

8 if S′ = ∅ then
9 S′ ← random previous solution();

10 return S′;

Algorithm 7: Simulated Annealing function

1 //Input: a solution S;
2 //Output: a solution S′ found;
3 f ← false;
4 t← T0;
5 while f = false do
6 S′ ← random solution(S);
7 ∆← cost(S′)− cost(S);
8 if ∆ ≤ 0 then
9 p← 1;

10 else
11 p← e−∆/T ;

12 t← δ ∗ T ;
13 if random double() ≤ p then
14 f ← true;

15 else if t < 0.01 then
16 f ← true;
17 S′ ← S;

18 return S′;

Algorithm 8: PD Interchange operator

1 //Input: a current solution Sc, a set K of vehicles;
2 //Output: a solution S found;
3 valid← false;
4 while valid = false do
5 S ← Sc;
6 k ← random(K);

7 node← remove(Sk) //remove a random node;

8 if insert(node, Sk) then
9 valid← is valid(S);

10 return S;

26

Algorithm 9: PD Move operator

1 //Input: a current solution Sc, a set K of vehicles, a set R of requests;
2 //Output: a solution S found;
3 valid← false;
4 shuffle(K);
5 r ← random(R);
6 v ← ∅;
7 changed← 0;
8 while valid = false do
9 S ← Sc;

10 foreach k in K do
11 foreach node in Sk do
12 //cross-docks can contain several r;
13 if contain(node, r) then
14 if v = ∅ then
15 v ← random(K/k) //new vehicle route v must be different from k;

16 remove(node, r, Sk);
17 if not insert(node, r, Sv) then
18 break 2 loops;

19 changed← changed+ 1;

20 if changed = 2 then
21 valid← is valid(S);
22 break 2 loops;

23 return S;

Algorithm 10: PD Swap operator

1 //Input: a solution S, a set K of vehicles, a set R of requests;
2 //Output: a solution S′ found;
3 valid← false;
4 while valid = false do
5 S′ ← ∅;
6 v1 ← random(K);
7 v2 ← random(K/v1) //vehicle v2 must be different from v1;
8 for k in K do
9 if k = v1 then

10 S′k ← Sv2
//the depots are those from vehicle v1;

11 else if k = v2 then
12 S′k ← Sv1

//the depots are those from vehicle v2;

13 else
14 S′k ← Sk;

15 valid← is valid(S′);

16 return S′;

27

Algorithm 11: PD Exchange operator

1 //Input: a current solution Sc, a set K of vehicles, a set R of requests;
2 //Output: a solution S found;
3 valid← false;
4 shuffle(K);
5 while valid = false do
6 r1 ← random(R);
7 r2 ← random(R/r1);
8 node1a ← ∅;
9 node1b ← ∅;

10 node2a ← ∅;
11 node2b ← ∅;
12 S ← Sc;
13 for k in K do
14 for node in Sk do
15 if contain(node, r1) and (node1a = ∅ or node1b = ∅) then
16 k1 ← k;
17 if node1a = ∅ then
18 node1a ← node;

19 else
20 node1b ← node;

21 remove(node, r1, S
k);

22 if contain(node, r2) and (node2a = ∅ or node2b = ∅) then
23 k2 ← k;
24 if node2a = ∅ then
25 node2a ← node;

26 else
27 node2b ← node;

28 remove(node, r2, S
k);

29 if contain(Sk1 , r2) or contain(Sk2 , r1) then
30 continue;

31 insert(node1a, r1, S
k2);

32 insert(node1b, r1, S
k2);

33 insert(node2a, r2, S
k1);

34 insert(node2b, r2, S
k1);

35 valid← is valid(S);

36 return S;

28

Algorithm 12: Consolidation function

1 //Input: a current solution Sc;
2 //Output: the best solution Sb found;
3 Sb ← ∅;
4 S ← Sc;
5 if random double() < 0.5 then
6 S ← PD arrange(S);

7 group← random(req groups);
8 while no progress < RPLI do
9 if random double() < RPLR then

10 operator← PD stretch;

11 else
12 operator← PD shrink;

13 cnt← 0;
14 foreach r in group do
15 S ← operator(S, r) //apply PD stretch() or PD shrink();

16 if is valid(S) and cost(S) < cost(Sb) then
17 Sb ← S;
18 no progress← 0;
19 group← random(req groups);

20 else
21 no progress← no progress+ 1;

22 return Sb;

29

	Introduction
	Literature review
	Problem description and formulation
	Context
	Mixed-integer linear programming formulation

	Meta-heuristic
	Architecture
	Algorithm functions
	Algorithm operators

	Computational results
	Solver configuration
	CPLEX and meta-heuristic performances
	Consolidation performances
	Benchmark performances
	Sensitivity analysis

	Conclusion
	Algorithm functions and operators

