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ABSTRACT 

Monitoring the internal response to training load in team sports has the potential to 

improve performance and reduce the risk of injury. A solution to monitor the internal 

load of individuals is to collect a subjective rating of perceived exertion (RPE). 

However, RPE may be theoretically limited by its approach in combing a variety of 

inputs into one gestalt score. To overcome this limitation, recent advances in 

monitoring have led to the development of a differential rating of perceived exertion 

(dRPE) which has the potential to provide a more sensitive evaluation of internal load. 

The aim of the current study was to investigate the ability of dRPE to detect changes 

in the physiological demands associated with different deceleration profiles in high-

intensity running protocols. 

Thirteen male team sport players completed four exercise protocols (Dec5m, Dec15m, 

Dec5/15m and Dec15/5m) which involved 20 repetitions of a 30 metre high-intensity 

run but with different deceleration profiles. Ratings of muscular exertion (RPE_L) and 

feelings of breathlessness (RPE_B) were recorded after every repetition. In addition 

to dRPE the external load of the protocols was measured using 10 Hz GPS devices 

(Optimeye S5, Firmware 7.38, Catapult Sports, Melbourne, Australia) and measures 

of muscle soreness and neuromuscular fatigue were assessed.  

Total distance (p = 0.615) and average maximum velocity (p = 0.360) was consistent 

between the protocols. Peak deceleration was greater in the Dec5m protocol 

compared to the Dec15m protocol (p = 0.005). Changes in RPE_L and RPE_B 

increased substantially from the first to the last repetition during all the protocols. 

However, the rate of change in RPE_L and RPE_B from the first to the last repetition 

between the protocols ranged from likely trivial to most likely trivial. Comparisons of 

neuromuscular function measures were unclear for most of the time points. There was 

a very likely increase in muscle soreness in the Dec5m protocol compared to the 

Dec15m protocol 48 hours post protocol. 

In conclusion, dRPE might not be a sensitive enough measure to detect small 

differences in the muscular and respiratory demands of the protocols and cohort used 

in this study. However, the lack of sensitivity may be exercise/sport and/or population 

dependant.    
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1.1 INTRODUCTION 

The physical demands of team sports are well documented (Mohr et al., 2003; Hoff, 

2005; Stølen et al., 2005; Bangsbo et al., 2006; Macutkiewicz and Sunderland, 2011; 

Cummins et al., 2013; Varley et al., 2014) and have been described as including bouts 

of high-intensity linear and multidirectional activity combined with lower intensity rest 

periods (Bangsbo et al., 2006). However, there are noticeable differences in activity 

profiles between sports due to reasons such as pitch or court size, duration played 

and the number of substitutions permitted. As well as this, positional differences within 

the same sport exist with some positions requiring a greater number of maximal 

intensity periods than others (Di Salvo et al., 2007; Cummins et al., 2013). More 

recently, the activity profile which typifies soccer and rugby union has been observed 

to change as a function of time (Barnes et al., 2014; Bush et al., 2015; Curran and 

Carling, 2018). For example, in soccer, high intensity running has increased by 30-

35% during the 2006-2013 seasons and meterage per minute has increased in rugby 

union (Barnes et al., 2014; Curran and Carling, 2018). There has also been an 

increase in the competitive calendar meaning that team sport players are required to 

play a greater number of matches across the week (Soligard et al., 2016).  

These aforementioned factors all contribute to the complexity of team sports. 

Therefore, the high demands of competitive match-play make preparation strategies 

for individual players an important consideration for top level performance. One 

important consideration that supports optimal preparation strategies is to monitor the 

training load completed by the players as such processes can increase the chance of 

achieving the desired performance outcomes (Borresen and Lambert, 2009). As well 

as this it can also reduce the risk of training load induced injuries and non-functional 

over-reaching (Halson, 2014). Monitoring training load in team sports frequently 

involves the analysis of both external and internal loads placed on individual players. 

External loads are the activities which are completed by an athlete in training sessions 

and matches (e.g. the total distance covered and/or high-speed distance and the 

number of acceleration and decelerations) (Wallace et al., 2008). Solutions to monitor 

external loads performed during training or competition tend to be through the use of 

microtechnology, such as microelectrical mechanical systems (MEMS), global 

positioning systems (GPS) or through the use of video tracking technologies. 

However, limitations do exist with these technologies. Firstly, there are the costs 
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involved with these systems, limitations within the technology itself and the expertise 

required to analyse the data. All of which make them inaccessible for some teams 

(Impellizzeri et al., 2005). Most importantly though, external load measures only 

provide information on what activities a player has completed which could be the same 

between players if all players were prescribed the same training load. However, how 

individuals react to this external load can vary between individuals (internal load) and 

it is this response which is important when attempting to achieve the desired 

physiological adaptations. Therefore, as the external loads do not provide any 

indication on how the players are responding to the prescribed training load it is 

extremely important to monitor the internal load alongside the external load 

(Impellizzeri et al., 2019). 

A players internal load represents the psychophysiological (biochemical) and 

mechanical stress (stress on tendon, muscle, cartilage and bone) response to an 

exercise stimulus (Impellizzeri et al., 2005; Vanrenterghem et al., 2017). The 

importance of analysing the internal response of each individual player is due to the 

fact that these responses are dependent on the inherent characteristics of the 

individual such as genetic background, age and starting fitness level (Bouchard and 

Rankinen, 2001; Impellizzeri et al., 2005; Gil-Rey et al., 2015a). Also, individuals can 

have different responses to the same stimulus due to other reasons such as fatigue, 

illness or psychological wellbeing (Bourdon et al., 2017; Impellizzeri et al., 2019).  

Therefore, monitoring internal load is extremely important as this is what determines 

whether there is an increase or decrease in performance.  

There are many solutions to monitor the internal load of team sports players. These 

include objective measures such as heart rate parameters, blood lactate and salivary 

measures and subjective measures such as ratings of perceived exertion (RPE). 

Ratings of perceived exertion is a quick, valid and non-invasive measure of an 

individual’s internal load. To date, the definition of perceived exertion, which is deemed 

to be the most accurate is ‘the conscious sensation of how hard, heavy, and strenuous 

a physical task is’ (Marcora, 2010). Ratings of perceived exertion can be collected post 

session with ease, as athletes can complete this rating with minimal instruction using 

either the CR10® or CR100® point scale (Foster et al., 2001). To enable longitudinal 

monitoring of a player’s perception of effort Foster et al., (2001) proposed a method 

for assessing internal load known as a session rating of perceived exertion (sRPE). 
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Session ratings of perceived exertion are calculated as overall RPE multiplied by 

session duration. Session RPE integrates a variety of information (Los Arcos et al., 

2014a) into one standalone gestalt score (Weston, 2013). This single number 

measured in arbitrary units (AU) is representative of the volume and intensity of the 

whole training session (Foster et al., 2001; Impellizzeri et al., 2004). Studies have 

shown that sRPE is a valid method in quantifying training load in Australian Soccer 

(Scott et al., 2013), soccer (Impellizzeri et al., 2004; Alexiou and Coutts, 2008) and 

basketball (Foster et al., 2001). However, using sRPE does have its limitations. In 

addition to the practical issues of ensuring that the data collected is accurate, sRPE 

may also be theoretically limited by its approach in combing a variety of inputs into 

one gestalt score. This will mean that a breakdown of what specific demands 

experienced by the athlete and how they contribute to this one score is impossible to 

determine. The lack of specific information prevents such data fully assisting with the 

prescription of training loads and recovery for individual players. Recent advances in 

monitoring have led to the development of a differential rating of perceived exertion 

(dRPE) score which may overcome this limitation.  

Similar to RPE, dRPE is a quick and non-invasive measure of internal load. This 

perception of effort rating has the potential to provide a more sensitive evaluation of 

internal load by having separate ratings for sub-components of RPE associated with 

specific physiological events (Robertson and Noble, 1997). These specific aspects of 

the response to exercise are rated separately, thereby providing an opportunity to 

understand the individual’s subjective interpretation of the exercise stress. For 

example, athletes can be asked to provide separate scores for ratings of perceived 

leg muscle exertion (RPE_L) and ratings of perceived breathlessness (RPE_B). The 

rationale to investigate the use of dRPE as a means of monitoring internal load in team 

sports was due to the earlier observations that RPE’s remained stable during 

competitive matches (Weston, 2013) but with a large disparity in external load. This 

suggests that the measure of internal load (RPE) may not be providing a true 

representation of the physiological stress imposed on the athletes under differing 

external loads. Therefore, a global RPE is potentially masking the weighting of what 

else contributes to this internal load (Robertson and Noble, 1997). Such contributors 

include psychological factors, peripheral and central signals, performance milieu and 

exertional symptoms (Robertson and Noble, 1997). Therefore, it can be assumed that 
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the weighting of the psychophysiological signals (signal dominance) alters between 

matches but this is unclear when only collecting one global measure of perceived 

exertion. 

The concept of differential ratings of perceived exertion was initially investigated within 

a laboratory where perceptual signal dominance has been shown to be dependent on 

training experience and exercise mode such as running on a treadmill or cycling on a 

cycle ergometer. However despite this proof of concept model there are notable 

differences between the external loads elicited from these protocols and the external 

loads of team sport training and matches, which is where further research is needed 

to understand the usefulness of dRPE within team sports. Since then, studies have 

investigated the application of dRPE within team sports during competitive matches 

(Yanci et al., 2014; Weston et al., 2015; Los Arcos et al., 2016; Zurutuza et al., 2017), 

different training modalities (Los Arcos et al., 2013; Gil-Rey et al., 2015b; Mclaren et 

al., 2017; McLaren et al., 2018) and the influence of playing duration (Los Arcos et al., 

2014b) and position (Barrett et al., 2018; Birdsey et al., 2019) on players dRPE.  

Although these studies demonstrate that dRPE has the ability to provide a more 

sensitive evaluation of an individual’s internal load, further proof of concept research 

is required. For a monitoring tool to be deemed valid and reliable it requires different 

types of research to be designed and completed before confidence in this measure 

can be confirmed (Halperin et al., 2015). Initial studies on dRPE were conducted within 

a controlled laboratory environment but for the reasons stated above these studies 

had their limitations as to the application to team sports. Other studies outlined above 

have taken the concept of dRPE straight from a controlled setting, where the exercise 

mode was either a treadmill or a cycle ergometer and used it within a very uncontrolled 

applied setting. It could be argued that a proof of concept study which investigates the 

use of dRPE during team specific movements, an approach that has both ecological 

and suitable control, would be useful in adding to the research that evaluates the 

potential use of dRPE. Therefore, this study looks to bridge the gap between the 

laboratory studies and the applied studies to provide further insight into the usefulness 

of dRPE as a monitoring tool in team sports. This study will look to assess the 

sensitivity of dRPE to detect changes in exercise protocols with varying deceleration 

profiles due to the recent research which has suggested that high intensity 

decelerations can act as mediators in inducing both neuromuscular fatigue and tissue 
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damage (Harper and Kiely, 2018) which has the potential to increase the risk of training 

load induced injuries (Halson, 2014; Vanrenterghem et al., 2017). Therefore, if dRPE, 

specifically RPE_L is sensitive enough then the mechanical load of exercise protocols 

can be assessed.  

1.2 AIMS AND OBJECTIVES  

The aim of the current study was to investigate the ability of dRPE to detect changes 

in the physiological demands associated with different deceleration profiles in high-

intensity running protocols. The objectives of the study were to: 

1. Analyse changes in RPE_L and RPE_B scores between four protocols with 

varying deceleration profiles. 

2. Compare objective and subjective measures of exertion between the four 

protocols to assess the appropriateness of the protocol manipulation. 

This study had the following hypothesis based on the above aim: 

1. Completing the protocol with the shortest deceleration zone would increase 

RPE_L and RPE_B scores in team sport players. As well as this, this protocol 

would also show the greatest decrease in neuromuscular function and an 

increase in muscular soreness post protocol.  
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2.1 THE PHYSICAL DEMANDS OF TEAM SPORTS 

The physical demands experienced in team sports are varied and complex, including 

both tactical and technical requirements combined. Team sports are categorized 

broadly by bouts of high-intensity linear and multidirectional activity combined with 

longer low intensity recovery periods (Bangsbo et al., 2006). Whilst team sports can 

be generally classified in this way, a number of factors impact this generic activity 

profile to create more individualized challenges to a player’s physiology. For example, 

positional differences within the same sport do exist and, as such, the activity profile 

will be different with some positions requiring increased periods of maximal activities 

than others (Di Salvo et al., 2007; Cummins et al., 2013). Further, the activity profile 

of team sports also varies as a function of the sport due to reasons such as pitch or 

court size, duration played, and the number of substitutions allowed. To expand upon 

these points, during competitive soccer, rugby league and Australian Football 

matches, elite players will cover a total distance of between 8 to 13 kilometers (Hoff, 

2005; Stølen et al., 2005; Bangsbo et al., 2006), 6 to 8 kilometers (Varley et al., 2014) 

and 11 to 13.5 kilometers (Cummins et al., 2013) respectively. In contrast, international 

female field hockey players cover the least total distance with values of between 5 and 

7 kilometers (Macutkiewicz and Sunderland, 2011). These differences are potentially 

a result of factors such as pitch size, number of players and rule changes allowing for 

unlimited substitutions, which results in a greater number of players utilized and 

reduced playing time compared to soccer (Macutkiewicz and Sunderland, 2011). The 

ranges in total distance reported within the literature above highlights firstly that each 

sport is unique and has its own physical requirements and secondly, that within the 

different sports there are positional differences. The aforementioned team sport 

requirements all contribute to the complexity and physical demands associated with 

individual competitions, therefore, creating a need to individualize player preparation.  

When considering the disparities in the total volume of training load completed 

between sports, differences in how the total volume is constructed in terms of the 

percentage of time spent at different velocity thresholds are also evident. Sprinting has 

been found to constitute between 1 and 11% of the total distance covered in a soccer 

match (Mohr et al., 2003), 1.5% in field hockey (Macutkiewicz and Sunderland, 2011), 

2.5% in Australian football and approximately 5% in rugby league (Varley et al., 2014). 

The intermittent exercise pattern observed in team sports also leads to multiple short 
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bursts of maximal activities such as accelerating, decelerating, changing of direction 

and cutting (Bishop and Girard, 2013). A systematic review has shown that non-

contact team-sport athletes (soccer, field hockey, basketball and volleyball) can 

change activity 500-3000 times during a match. These activity changes seem to be 

most frequent in basketball (every 1-2 seconds) (Taylor et al., 2017) with changes 

occurring every 3-4 seconds in soccer and hockey (Taylor et al., 2017). This research 

demonstrates that team sports involve a large quantity of non-linear movement which 

can produce a substantial mechanical stress of the soft tissues resulting in a greater 

energetic cost (Vanrenterghem et al., 2017).  

Recent research has suggested that the activity profile which typifies team sports is 

not constant but rather changes as a function of time (Barnes et al., 2014; Bush et al., 

2015; Curran and Carling, 2018). For example, Barnes et al., (2014) found that over a 

7-season period in the English Premier League (2006-2013) high intensity running and 

sprinting distance had substantially increased by 30-35%. In rugby union the volume, 

measured by total distance, and the intensity, measured by meterage per minute, was 

also found to have increased, probably as the result of trial law changes in matches 

(Curran and Carling, 2018). In addition to these in-game increases in demands, 

commercial obligations have also seen the competitive calendar increase meaning 

that players are having to compete more regularly across the week (Soligard et al., 

2016). Players who also compete internationally face additional loads associated with 

the increase in the number and demands of international games across both the 

domestic season and the off season (Thorpe et al., 2017). Due to the complexity of 

team sports, backroom staff are employed in an attempt to prepare players for these 

demands. Specific roles, such as that of the sports scientist, helps ensure that team 

sport players are appropriately prepared for both their specific positional demands as 

well as being prepared to compete regularly in games at optimal levels (Thorpe et al., 

2017). One of the roles of a sports scientist is to be able design effective preparation 

strategies to assist with the prescription of training and recovery loads to maximize 

performance.  

 

 

 



10 

 

2.2 MONITORING IN TEAM SPORTS 

2.2.1 OVERVIEW 

There are numerous different types of monitoring tools which exist within team sports. 

However, the focus of this chapter is on monitoring tools which can be used to analyze 

training load. Training load has been defined as ‘the sport and non-sport burden 

(single or multiple physiological, psychological or mechanical stressors) as a stimulus 

that is applied to human biological systems (including subcellular elements, a single 

cell, tissues, one or multiple organ systems, or the individual’ (Soligard et al., 2016). 

The importance of training load monitoring is that it allows practitioners to evaluate the 

exercise completed (external load) and how individuals have consequently reacted to 

the exercise (internal load) (Halson, 2014). This information can then be utilized to 

inform future training and recovery loads with the aim of improving performance. The 

process by which performance is enhanced is through the systematic repetition of 

appropriate prescribed training loads (Impellizzeri et al., 2019). If players are exposed 

to suitable external loads there is then the potential to increase chronic physiological 

adaptations (Vanrenterghem et al., 2017; Impellizzeri et al., 2019) and the chance of 

achieving the desired performance outcomes (Borresen and Lambert, 2009). 

However, excessive prescribed training loads can increase fatigue and increase the 

risk of training load induced injuries and non-functional overreaching (Halson, 2014; 

Vanrenterghem et al., 2017). The timing and magnitude of a stimulus can also be 

suboptimal, which can lead to a loss in the desired adaptations (Impellizzeri et al., 

2019). This highlights the importance of an appropriate monitoring tool to help ensure 

the desired response is achieved in training to prevent the problems of too much 

and/or too little load occurring (Vanrenterghem et al., 2017).  

Monitoring training load in team sports requires the analysis of both external and 

internal loads to evaluate the training outcome. Based on the theoretical framework of 

the training process it is suggested that there are two factors which will impact the 

internal response to an exercise bout and, as such, determine the training outcome 

(Figure 2.1) (Impellizzeri et al., 2005). These two factors include the individual 

characteristics of the players and the organisation, quantity and quality of the external 

load performed (Impellizzeri et al., 2005). This integrated approach of assessing both 

the external load completed and the internal response to the training is important to 
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provide an insight into how the athletes are coping with the training stress (Bourdon et 

al., 2017).  

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Theoretical framework of the training process. The training outcome is a 

result of the internal training load. The internal load is a result of the individual 

characteristics of the players and the quality, quantity and organisation of the 

performed external load. Taken from (Impellizzeri et al., 2005).  

2.2.2 EXTERNAL LOAD MEASURES IN TEAM SPORTS 

External loads are the activities that are completed by an athlete (e.g. the total distance 

covered, distance covered at high-speed and the number of accelerations as 

examples). During training these loads can be controlled to some extent as they are 

often prescribed by a multidisciplinary team beforehand to ensure that the tactical, 

technical and physical goals of a specific training session are met to elicit a positive 

response (Impellizzeri et al., 2019). However, competition creates a challenge as the 

external load is the output of the match and due to the nature of competition these 

loads are difficult to pre-determine as there are many factors which can affect this 

output (score line, formation, possession). Practitioners may try to control these loads 

by substituting a player on or off the pitch to reduce playing time and consequently the 

external load. This is most common when a player is returning from injury and they 

are being exposed to competitive match loads early on in their rehabilitation. Aside 
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from on-pitch load, external load can also be the training completed in the gym during 

resistance-based programmes. The external load during this type of training would be 

monitored through the sets, reps and weight lifted (Impellizzeri et al., 2019). Therefore, 

it is important to have a monitoring tool or tools to measure the external load during 

training, matches and in the gym so you can get a true representation of the overall 

exercise load completed by each player, which otherwise may be unknown 

(Impellizzeri et al., 2019). Although there is not a gold standard solution to monitor the 

external load completed on the pitch (Impellizzeri et al., 2019) solutions tend to be 

through the use of microtechnology, such as microelectrical mechanical systems 

(MEMS), global positioning systems (GPS) or through the use of video tracking 

technologies. Advances in technology now allow practitioners to access real time data 

during training and matches so any necessary changes to a players training load can 

be adjusted proactively. During gym-based sessions technologies which can assess 

power output and detect the number of repetitions performed are becoming 

increasingly popular.  

Even though external load measures have been deemed as an important tool, 

limitations of external load measures do exist. Limitations include the financial cost 

associated with these systems, limitations of wearable technology itself and the 

expertise required to analyse the data which makes them inaccessible for some teams 

(Impellizzeri et al., 2005). Aside from this, external load measures are limited as they 

only provide information on what training a player has completed. The external load 

completed could theoretically be the same between players during training sessions if 

every player completed the same drills with no consideration for the individual needs 

and the different positional demands of the sport (Impellizzeri et al., 2005). However, 

the response (internal load) to this exercise can vary markedly between individuals 

and this response is what will determine whether there is the desired physiological 

adaptation or not (Bouchard and Rankinen, 2001; Impellizzeri et al., 2005; Gil-Rey et 

al., 2015a). Therefore, as the external loads do not provide any indication on how the 

players are responding to the prescribed training load it is extremely important to 

monitor the internal load alongside the external load (Impellizzeri et al., 2019).  
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2.2.3 INTERNAL LOAD MEASURES IN TEAM SPORTS 

Internal load is a representation of the psychophysiological (biochemical) and 

mechanical stress (stress on tendon, muscle, cartilage and bone) placed on an 

individual in response to an exercise stimulus (Impellizzeri et al., 2005; Vanrenterghem 

et al., 2017). The internal response to external loads are dependent on the inherent 

characteristics of the individual’s under consideration such as age, genetic 

background and the individuals starting fitness level (Bouchard and Rankinen, 2001; 

Impellizzeri et al., 2005; Gil-Rey et al., 2015a). It is these inherent characteristics which 

will stimulate a physiological response that can be vastly different between individuals 

(Gil-Rey et al., 2015a). Not only do the inherent characteristics differ between 

participants but the internal load response to the same exercise stimulus can vary 

markedly between the same individual on different days due to the individuals state of 

fatigue, illness or psychological wellbeing (Bourdon et al., 2017; Impellizzeri et al., 

2019). Impellizzeri et al., (2019) suggested that the internal load should always be 

incorporated within a monitoring system as this is what determines the training 

outcome (either improving or limiting performance) and, therefore, practitioners should 

be monitoring this for each individual (Figure 2.1). 

Internal load is most commonly measured through the use of heart rate parameters 

collected from transmitter belts and/or the collection of a subjective rating of the 

perception of effort (Halson, 2014). Heart rate transmitter belts are worn during training 

and competition which allows a range of internal load metrics to be collected and 

subsequently analysed. Examples of some of these parameters are maximal heart 

rate, average heart rate and time spent in different heart rate zones (Halson, 2014). 

Post training analysis often includes calculations known as training impulse (TRIMP) 

where training duration is multiplied by a delta heart rate exercise ratio and a gender 

specific multiplying factor (Banister, 1991) to provide a global indication of the volume 

and intensity of the session (Alexiou and Coutts, 2008; Borresen and Lambert, 2009). 

Limitations do exist when utilizing heart rate measures as a method to monitor the 

internal load response to the exercise completed in team sports. Heart rate measures 

were initially validated based on the linear relationship between heart rate and V̇O2 

during steady state exercise (Impellizzeri et al., 2005). However, team sports are 

intermittent in nature and due to the heart rate response to changes in activity there is 

the potential that the heart rate response may be underestimated (Alexiou and Coutts, 
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2008; Impellizzeri et al., 2005). As well as this, there is also the possibility that due to 

the nature of team sports such as rugby that there may be heart rate trace dropouts 

when a heart rate belt has been displaced due to contact with another player and, as 

such, affect the data collected. Missing data can have huge consequences when 

monitoring the internal response to the training load as you cannot be certain as to the 

response to exercise (Foster et al., 2001). Therefore, heart rate measures may not be 

the most valid and may be practically limited when attempting to understand how 

players are adapting to the prescribed training load (Alexiou and Coutts, 2008).  

Other measures of internal load are available such as blood lactate and salivary 

measures. However, these measures are not as easily implemented within team sport 

training (Halson, 2014). Similarly to heart rate measures, blood lactate and salivary 

measures require specialist equipment in order to be able to collect this data, which 

comes at a financial cost meaning it is not accessible for all teams to utilise 

(Impellizzeri et al., 2005). Secondly, alongside the financial cost, these measures of 

internal load require a skilled practitioner in order to be able to take these measures 

off a player. Collecting blood lactate and salivary measures also takes time and is, 

therefore, not feasible to be done after each training session has finished especially 

when the number of practitioners are limited (Halson, 2014; Impellizzeri et al., 2005). 

Therefore, these measures are more suited within laboratory practices or within sports 

where there are fewer number of players.  

Aside from the theoretical and practical limitations of using heart rate, blood lactate 

and salivary measures, internal load has been described as the biochemical and the 

mechanical stress of exercise. Collecting heart rate, blood lactate and salivary 

measures alone do not provide an insight into the mechanical stresses of the soft 

tissues (Vanrenterghem et al., 2017) and, therefore, is potentially not a true 

representation of the internal load. The activity profile of team sports causes 

mechanical stresses on muscles, tendons and cartilages as a result of having to 

absorb and produce large forces during activities such as cutting (Vanrenterghem et 

al., 2017). The resulting factor of this mechanical stress is that there will either be a 

positive or negative adaptation of the musculoskeletal system (Vanrenterghem et al., 

2017). Due to the importance of trying to elicit a positive adaptation within players to 

reduce the risk of injury and to enhance performance, it is important to have a 

monitoring tool which can monitor both the biochemical and mechanical stresses of 
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exercise. An alternate measure of internal load is the concept termed ratings of 

perceived exertion (RPE). This measure has the potential to encompass the 

biomechanical and mechanical stress of exercise and is a quick, valid and a non-

invasive measure of an individual’s internal load (Halson, 2014; Vanrenterghem et al., 

2017).  

2.3 RATINGS OF PERCEIVED EXERTION  

2.3.1 OVERVIEW AND DEFINITIONS OF RATINGS OF PERCEIVED EXERTION 

Ratings of perceived exertion (RPE) are an alternative method to heart rate, blood and 

salivary measures to quantify the internal response to team sport training and 

competition (Foster et al., 2001; Impellizzeri et al., 2005). Borg (1962) first initiated the 

use of RPE in exercise in 1962 and since then it has become the most popular scale 

used in sport and exercise science to provide an indication of the ‘demands of 

exercise’ (Faulkner and Eston, 2008). Unlike heart rate, blood and salivary measures, 

which are objective measures of internal load, RPE is a subjective rating of how hard 

the players found a training session or competition based on the score provided using 

a reference scale (Foster et al., 2001). The original RPE scale was a 15-grade 

category scale (6-20) which was designed initially for steady-state aerobic exercise on 

a cycle ergometer as ratings were found to increase linearly with heart rate and oxygen 

consumption (Borg, 1962; Pageaux, 2016). This scale has been validated against 

objective measures of internal load (Pageaux, 2016). The values ranging from 6 to 20 

were designed to symbolize heart rates ranging from 60 to 200 beats per minute. For 

example, a value of 9 on the scale would equate to 90 beats per minute. However, 

due to the limitations of category scales, in this case the placing of the verbal anchors 

does not create an interval scale (Borg, 1982). For example, you cannot compare 

responses as a rating of 12 does not suggest it was double the intensity of a value of 

6. This led to the development of the more recent CR10® scale which is a category 

scale but with ratio properties (Borg, 1982). This meaning that a rating of 5 on the 

scale represents half of the intensity of a rating of 10. This scale along with the most 

recent CR100® scale are discussed in greater detail below.   

The original definition of perceived exertion was defined as ‘the feeling of how heavy, 

strenuous and laborious exercise is’ (Borg, 1962). Borg (1962) proposed that overall 

perceived exertion is a gestalt which consists of ‘sensations from the organs of 
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circulation and respiration, from the muscles, the skin, the joints and force’ alongside 

perceptions of ‘pedal resistance, effort, fatigue, strain exertion, heat, pressure, pain or 

anxiety’. Upon reflection, Robertson and Noble (1997) disagreed with the original 

definition of perceived exertion as they did not think it was reflective of all these other 

sensations outlined by Borg (1962). As a result of this critique, perceived exertion was 

then defined by Robertson and Noble (1997) as ‘the subjective intensity of effort, 

strain, discomfort, and/or fatigue that is experienced during physical exercise’.  

However, more recently, this definition of perceived exertion has been challenged due 

to the different constructs included (Marcora, 2010; Pageaux, 2016). The constructs 

of effort, strain, discomfort and fatigue all have unique definitions associated with them 

which can potentially affect the rating provided by the participant if they are all 

included. For example, discomfort is described as a ‘slight pain or something that 

causes one to feel uncomfortable’ (The Oxford Dictionary). Research has shown that 

humans can differentiate between sensations of effort and discomfort during exercise, 

which suggests that they are two separate constructs with discomfort requiring its own 

psychophysical scale (Pageaux, 2016). Within a practical setting, if this definition were 

to be utilized within team sports it would require players to combine multiple sensations 

aside from effort into one gestalt score. As a result of this, it will be impossible for the 

practitioner to determine how feelings of effort, strain and discomfort etc. contributed 

to this score. This would hinder the analysis of how players are coping with training 

and competition stress (Pageaux, 2016) which is important for training interventions 

and periodization. For this reason, the definition of perceived exertion, which is now 

deemed to be the most accurate, which only includes sensations related to effort is 

‘the conscious sensation of how hard, heavy, and strenuous a physical task is’ 

(Marcora, 2010). Given the above, future studies which aim to investigate internal 

training loads within sports and practitioners working within the field should use this 

definition (Pageaux, 2016).  

2.3.2 THEORETICAL MODELS OF RATINGS OF PERCEIVED EXERTION 

Despite its popularity and usefulness, how RPE’s are created in the brain are not 

completely understood. Although it is widely acknowledged that RPE’s are a result of 

the neuronal process of the sensory signals and that there are many factors involved 

in this process, the exact process of the sensory signals involved remains debated 
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(Pageaux, 2016; Haddad et al., 2017). To date, there are four theoretical models which 

attempt to explain how RPE’s are derived. The four models which will be outlined in 

this section are the afferent feedback model, corollary discharge model, the combined 

model and the global explanatory model.  

The afferent feedback model suggests that perceived exertion is a result of a complex 

integration of different inputs into the central nervous system (CNS) (Figure 2.2) 

(Marcora, 2009; Haddad et al., 2017). These inputs include afferent information from 

cardiopulmonary (heart rate, oxygen update and respiratory/ventilatory rate) and 

peripheral/metabolic (blood lactate, muscle damage, core and skin temperature) 

regions (Hampson et al., 2001). It is thought that this afferent information from the 

cardiopulmonary, peripheral/metabolic regions is responsible for the development of 

fatigue and, therefore, plays a role in changes in pacing strategies by limiting 

peripheral fatigue (Gabbett et al., 2015; Hutchinson, 2019). The mechanism in which 

this happens is suggested to be down to group III and IV afferent fibres within the 

skeletal muscle which are responsible for projecting this peripheral afferent information 

via the spinal cord to the sensory cortex in the brain (Amann et al., 2010). Although 

the exact mechanism is still unclear, this model suggests that the integration of these 

different inputs influences perceived exertion indirectly and unconsciously due to heart 

rate and blood lactate increasing with an increase in exercise intensity (Hampson et 

al., 2001). Whilst there are studies in support of this model, they are not without 

limitations (Amann et al., 2010; Gagnon et al., 2012) due to the definition of perception 

of effort having either not been outlined in the methodology or including sensations 

other than effort (E.g. discomfort, strain and fatigue). Therefore, the conclusions which 

can be drawn from these studies may be limited due to the reasons associated with 

combining different sensations within one definition as outlined above (Pageaux, 

2016). For example, when multiple sensations are combined into one global score you 

cannot be certain of the weightings of each of these sensations on how they 

contributed to this score. If a player had pain during a training session, they may 

provide a higher RPE which would indicate a high internal load. However, the 

physiological response to the external load completed may have been relatively low 

(Pageaux, 2016). In this scenario it would make any analysis post training session 

impossible to determine.  
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Figure 2.2. The afferent feedback model which aims to demonstrate the generation of 

perception of effort because of afferent feedback (grey line). Reproduced from 

Pageaux (2016).  

In contrast to the afferent feedback model, the corollary discharge model proposes 

that perceived exertion is independent from any afferent feedback from the 

cardiopulmonary and peripheral/metabolic regions (Figure 2.3) (Hampson et al., 2001; 

Marcora, 2009; Haddad et al., 2017). This implies that afferent feedback is not 

responsible for generating the feeling of perceived exertion (Pageaux, 2016) but 

instead, it is centrally generated as a result of forwarding neuronal processes of the 

corollary discharge (a copy of a motor command that is sent to the muscles to produce 

movement) to the somatosensory areas of the cerebral cortex (Marcora, 2009). Unlike 

the afferent feedback model, the corollary discharge model is well accepted within 

research as there are numerous studies in support of this model (Pageaux, 2016). 

Whilst this model suggests that afferent feedback is not responsible for generating 

feelings of effort, it has been suggested that afferent feedback might actually be 

responsible for other sensations such as feelings of pain and or discomfort (Pageaux, 

2016). Therefore, these two models may be responsible for generating different 

feelings. The afferent feedback model may be responsible for generating feelings of 

discomfort and the corollary discharge model feelings of perceived effort. This clarifies 

the importance of utilizing the correct definition within research and practice so that 

the different sensations are not combined as they are different constructs which 

potentially utilize different theoretical models.  

Incorporating both the afferent feedback and the corollary discharge model produces 

a model called the combined model (Figure 2.4). As the name implies, this model 

suggests that perceived exertion is a result of a combination of both afferent feedback 

and corollary discharge (Abbiss et al., 2015; Pageaux, 2016). Currently, this model 

has only been suggested theoretically with no studies currently having tested it 
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(Pageaux, 2016). Based on the assumptions that afferent feedback is potentially 

responsible for feelings of discomfort and not of that of effort, it does not seem 

plausible that this model is valid. This is due to the fact that when utilizing the definition 

of perceived exertion as ‘the conscious sensation of how hard, heavy, and strenuous 

a physical task is’ (Marcora, 2010), you do not want to include sensations of discomfort 

and, therefore, you potentially do not require any afferent feedback. However, further 

research is required to test this theory (Pageaux, 2016).  

 

Figure 2.3. The corollary discharge model which attempts to explain that perceived 

exertion is due to the forwarding of neuronal processes of the corollary discharge 

(dotted line). Reproduced from Pageaux (2016).  

 

Figure 2.4. The combined model which aims to explain that the generation of 

perception of effort is a result of both afferent feedback and corollary discharge. 

Reproduced from Pageaux (2016).  

The global explanatory model (Figure 2.5) is similar to the corollary discharge model 

as it is thought that increases in central and peripheral muscle tension (tension-

producing properties of the muscle) results in a greater corollary discharge (Robertson 

and Noble, 1997). This physiological signal mediator is responsible for initially 

sculpting the intensity of the perceptual response (Robertson and Noble, 1997). Once 

the efferent copy of the central command is sent to the sensory cortex the signal from 

here enters a perceptual reference filter where it gets matched with previous events 
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based on intensity, experiences and knowledge allowing a perceptual response to be 

created (Robertson and Noble, 1997; Abbiss et al., 2015). For example, a player may 

use their previous experiences of perceived exertion from competitive matches to 

compare their current feelings. The difference between this model and that of the 

corollary discharge model is that the global explanatory model also figuratively 

demonstrates how psychological, performance and exertional signals are sent to the 

sensory cortex and subsequently used in the perceptual reference filter to moderate 

RPE (Robertson and Noble, 1997; Eston, 2012). Examples of psychological factors 

include the current mood state, motivation and fatigue levels of the athlete. Whereas, 

the performance milieu is defined as the competition strategy, which in team sports 

may be the current score line and duration of the match left. The feeling of 

breathlessness, muscle soreness and sweating are what this model considers 

examples of exertional signals.  

 

 

Figure 2.5. The global explanatory model of perceived exertion visualising how during 

exercise physiological, psychological, performance and exertional signals enter the 

sensory cortex and subsequently the perceptual reference filter which generates a 

perceptual response. Reproduced from Robertson and Noble (1997). 

The theoretical models outlined above demonstrate the complexity involved in 

generating an RPE. However, this area is still not completely understood and agreed 

upon and, therefore, requires further research to establish the exact mechanism in the 

process of perception of effort generation (Pageaux, 2016). Although it is currently not 

conclusive, it is still important that practitioners are aware of the potential theoretical 

models which explain how players generate their effort score as it seems to be a 
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complex process. Some individuals may find generating a RPE a challenging process 

due to the lack of previous experiences to compare their current feelings to, which may 

cause an under or over representation of perceived exertion. Not only is it important 

as a practitioner to understand the theoretical models, it is also key to have knowledge 

of how measurement and methodological considerations are key to ensure the data 

collected is both reliable and valid.  

2.4 MEASUREMENT AND METHODOLOGICAL CONSIDERATIONS OF RATINGS 

OF PERCEIVED EXERTION 

To ensure the validity and reliability of the measurement there are standardized 

instructions and methodological approaches which need to be adhered to (Impellizzeri 

et al., 2004; Pageaux, 2016). Such methodological considerations include the 

familiarization of the participants to the use of the scale, the timing of RPE collection 

and the type of scale used (Halperin and Emanuel, 2019; Pageaux, 2016). The 

following two sections will proceed to outline the instructions for use, explain the 

importance of having valid and reliable methods within sports science monitoring and 

the correct methodology for the use of RPE within team sports.  

2.4.1 INSTRUCTIONS FOR THE COLLECTION OF RATINGS OF PERCEIVED 

EXERTION 

Besides the theoretical reasons, ratings of perceived exertion are a popular method to 

monitor internal training load within team sports since it is quick, cheap and non-

invasive (Impellizzeri et al., 2004). Although the concept of collecting a subjective 

rating of perceived exertion from players can appear to be relatively simple as it only 

requires players to provide a score post training (Foster et al., 2001), it does require a 

strict set of instructions for use to ensure the validity and reliability of the data collected 

(Pageaux, 2016). The standardized instructions for the use of RPE for both the 

practitioner and the player can be found within the literature and are outlined below 

(Borg, 1998; Pageaux, 2016). The literature suggests that these instructions for the 

player should include a definition of RPE alongside a description on how to provide a 

rating of effort when the scale is presented to them post training or competition (Borg, 

1998; Pageaux, 2016). This description should clearly outline that the rating they are 

about to provide does not include any feelings of discomfort and/or pain and only that 

of effort (for the reasons described above, see the section ‘definition of ratings of 
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perceived exertion‘) (Borg, 1998; Pageaux, 2016) as shown in the example of the 

instructions which were provided to the participants in this study (Figure 2.6). Once 

the player has read the definition they are asked to first read the verbal expression on 

the scale in front of them and then to report the corresponding number according to 

their perception of effort (Pageaux, 2016). To avoid a ceiling effect, players can rate a 

value greater than maximal on the scale if they need to as what they deem as maximal 

for them can change over time due to fitness and/or fatigue levels. Practitioners should 

ensure that when collecting RPE’s from players that each player does this individually 

and away from everyone else so that the score is not influenced by other players 

perceptions and, therefore, is only representative of themselves. 

Despite the literature outlining clearly how to collect RPE’s and with researchers 

emphasizing the importance of clear and accurate instructions when using RPE within 

an applied setting (Borg, 1998), these instructions are often overlooked. Diverting from 

these instructions will impact the validity of the data collected within team sports 

(Halperin and Emanuel, 2019). If these data collection protocols are not observed, the 

data collected will have potentially little relevance and usefulness within a practical 

setting. To overcome this, aside from following the standardized instructions within the 

literature, players should be educated on the reasons for the use of this type of 

monitoring tool to ensure they provide a rating which is representative of how hard 

they found the session and not what they think the session should have been. The 

players should be aware that this subjective score is collected from them to help 

enhance their performance and reduce the risk of injury. If players are appropriately 

educated, this may well allow for a true representation of how a player is coping with 

training and competition loads, which will aid with the prescription of future training 

stimuluses to enhance performance. 

 



23 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Example interface of the bespoke RPE app used in this study which 

displays the instructions provided to the participants before an RPE was collected.  

2.4.2 METHODOLOGICAL CONSIDERATIONS OF RATINGS OF PERCEIVED 

EXERTION 

When considering which monitoring tool to utilize within team sports it is essential to 

ensure that they are both valid and reliable (Currell and Jeukendrup, 2008). These two 

factors are not independent of each other, but, in fact, interact with each other (Currell 

and Jeukendrup, 2008). Validity is broadly termed ‘the degree to which the test 

measures what it purports to measure’ (Lohr, 2002) and is an umbrella term which 

underneath it has a number of different types of validity. There are a magnitude of 

different monitoring tools across team sports and such tests must be validated before 

using them within practice. It often requires several different studies which are in 

support of each other before a monitoring tool can be deemed valid and, as such, 

improve the quality of the literature and professional practice (Impellizzeri and 

Marcora, 2009). Validity research often requires different types of research design or 

different projects before people can be confident in the measure. When conducting 

research to validate a monitoring tool it is most often investigated first in a controlled 

setting to minimise the effect of confounding variables (Halperin et al., 2015). This is 

known as internal validity. When a measure is deemed to be valid within a controlled 
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setting you can then take this monitoring tool into an applied setting, such as for use 

within team sports (Halperin et al., 2015). This is known as external validity. Whilst the 

validity of a test ensures that the outcome of a test is what it is intended to measure, 

reliability is defined as ‘the consistency of measurements, or of an individual’s 

performance, on a test’ (Atkinson and Nevill, 1998). Whilst it is realistic that regardless 

of the test there will always be a small amount of random error, practitioners must 

decide what amount of systematic error is deemed acceptable when using a test 

(Atkinson and Nevill, 1998). A monitoring tool or test must be deemed reliable before 

it is deemed valid as it cannot be valid unless it has consistent measurements 

(Atkinson and Nevill, 1998; Lamb et al., 1999).  

With more than 200 RPE studies having been published between 2000 and 2008 

alone, the validity and reliability of RPE has been confirmed (Faulkner and Eston, 

2008). However, regardless of whether RPE has been deemed valid and reliable 

within the literature, if the correct methods and/or instructions for use are not followed  

when using it within team sports then the data collected may not be valid or reliable 

(Halperin and Emanuel, 2019). Therefore, it is extremely important to follow the 

methodologies outlined within research when looking to implement this performance 

monitoring tool within team sports. The first methodological consideration to ensure 

valid and reliable RPE data is the concept of familiarisation (Eston et al., 2015). Within 

research, familiarisation trials tend to be performed with the aim of reducing learning 

effects (Hopkins, 2000). The importance of familiarising participants with the RPE 

scale prior to use in this case is to avoid any over or underestimated RPE’s (Pageaux, 

2016). The literature has outlined the correct methodological approach for familiarising 

participants with the RPE scale (Impellizzeri et al., 2004; Pageaux, 2016). When 

working with team sport players, the literature suggests that players should be 

exposed to a range of different training intensities along a spectrum associated with 

their physical capacities (Impellizzeri et al., 2004; Pageaux, 2016). An example 

protocol to do this would be to get the players to perform an incremental test as this 

would allow the association between RPE scores at different exercise intensities 

(Impellizzeri et al., 2004). The concept behind this is that by familiarising participants 

with the RPE scale, they will be able to have a point of reference to provide their 

current RPE against (Impellizzeri et al., 2004; Pageaux, 2016). This is based on the 

concept of memory-anchoring (i.e. maximal exertion related to the highest effort 
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experienced) and exercise-anchoring (i.e. exertion experienced at exhaustion during 

an incremental test) (Pageaux, 2016). This approach can be related back to the global 

explanatory model (Figure 2.5) as the development of an expansive perceptual 

reference filter will develop a large ‘database’ for the individual to compare the current 

exercise stimulus to, hence, enabling a more confident evaluation of the internal 

training load (Robertson and Noble, 1997). If the players perceptual reference filter is 

small due to limited exposure to conflicting exercise intensities, then the subjective 

rating may be under or overrepresented of the true demand of the external load as 

they do not have any past feelings to relate to. Although the literature has outlined the 

importance, differences in familiarisation protocols are evident within the literature with 

some authors expressing their concern over the lack of familiarisation which has taken 

place (Lamb et al., 1999). As the literature outlines, clear instructions should be given 

and the correct methodological approaches should be followed, including suitable 

familiarisation, when utilising RPE. However, Lamb et al., (1999) has suggested that 

participants within studies are often deemed to having understood the RPE scale once 

they have been introduced to it via the set instructions but without any familiarisation. 

An example of the lack of familiarisation can be found during a study which looked at 

the timing of RPE collection post a resistance training protocol (Singh et al., 2007). 

During this study, the participants only did one familiarisation session (Singh et al., 

2007), whereas, during a different study, participants taking part in a boxing study were 

familiarised with the RPE scale over 20 different sessions which all varied in intensity 

(Uchida et al., 2014). Therefore, the participants in the boxing study would have a 

larger perceptual reference filter in which the importance of this was outlined above 

and the RPE’s from the resistance protocol may be under or overestimated which will 

not be useful when attempting to periodize training.  

The second methodological issue which can affect the validity of RPE is the timing of 

the RPE collection post exercise. Whilst there is a clear consensus that ratings of 

perceived exertion are collected post exercise, there is still some disagreement 

regarding the gold standard time at which this subjective rating should be collected. It 

was first suggested that RPE should be collected 30 min post exercise as this time 

period allows the score to be reflective of the whole session rather than the intensity 

of the last activity which was performed (Foster et al., 2001; Impellizzeri et al., 2004). 

Such approaches may not, however, be practically convenient (Singh et al., 2007). To 
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provide some insight into the importance of this issue Uchida et al., (2014) investigated 

whether there were any differences in collecting RPE at different time points (10 

minutes versus 30 minutes) post an Olympic boxing training routine. No statistical 

difference between RPE scores collected 10 minutes and 30 minutes post sessions 

were observed suggesting that RPE can be collected as early as 10 minutes post 

session without the last activity influencing the rating (Uchida et al., 2014). In direct 

contrast to this finding Mclaren et al., (2016) found a moderate to large latency effect 

for differential ratings of perceived (dRPE) exertion subcomponents when comparing 

the scores immediately after the end of maximal incremental exercise and those 30 

minutes post exercise. In agreement with Mclaren et al., (2016), Singh et al., (2007) 

also found a significant difference between RPE collected within the first 10 minutes 

of completing a resistance programme and 30 minutes after. Methodological 

differences, such as the use of different collection time points, exercise modes and 

different familiarisation protocols between these studies, may explain the differences 

observed in the outcome. Overall, as a result of these initial studies, further research 

is required which investigates a larger range of time points post exercise using 

different exercise modes before the optimum timing of RPE collecting can be 

established. However, it seems plausible that if you want to gain an understanding of 

the internal load to specific drills then RPE’s can be collected immediately after the 

specific drill has finished. This would then be reflective of that drill. Until further 

research has been conducted, to gain an understanding of the internal response to 

the whole training session these measures should be collected 30 minutes post 

termination of exercise (McLaren et al., 2016). 

The third methodological issue to be mindful of when utilising the use of RPE as a 

method to monitor internal load is the type of scale used. There are numerous scales 

reported within the literature but typically, when studies are investigating perceived 

exertion, the Borg scale is most commonly used. Although studies have reported that 

they have used the Borg scale, it is fairly common to see modifications to it (Halperin 

and Emanuel, 2019). Examples of such modifications observed have been alterations 

to the scale, verbal anchors and user instructions (Halperin and Emanuel, 2019). 

However, these modifications can have serious consequences on the accuracy of the 

data collected as RPE was validated using a specific scale and any alterations to this 

scale can affect the validity and reliability of the data collected as the modified scales 
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have not been validated within the literature. One such modification is the exclusion of 

a dot (•) on the CR10® scale. This dot represents that although the number 10 on the 

scale refers to ‘extremely strong’ participants can rate higher than this if they perceive 

the exercise bout to be higher and, in fact, ‘absolute maximum’ (Halperin and 

Emanuel, 2019). Without the inclusion of the dot (•) and the correct instructions, 

participants may deem ‘extremely strong’ to be the highest value they can provide and 

as a result of this you would get a ceiling effect. The inclusion of the dot (•) provides 

players the opportunity to rate higher if they deem it to be and this ensures that the 

internal response is never underestimated allowing for a true representation of the 

load.  

Within team sports the sRPE method has most commonly been measured using the 

CR10® scale (Figure 2.7). The CR10® scale is a category ratio scale meaning that 

participants provide a perceived exertion score based off the verbal anchors on the 

numeric ratio scale (Borg, 2007). The popularity of this scale is most likely due to the 

vast amount of research investigating its validity and reliability and its simplicity (Borg, 

2007). However, more recently a new centiMax scale has been proposed (Borg and 

Borg, 2002). This centiMax scale is known as the CR100® scale and its design was to 

allow for a more finely graded scale which athletes could use to rate their perceived 

exertion (Figure 2.7) (Borg and Kaijser, 2006; Scott et al., 2013). The CR100® scale is 

still a category ratio scale which has verbal anchors placed at whole numbers on the 

scale (Borg and Borg, 2002). However, as this scale has numerical values from 0 to 

100 arbitrary units (AU) it has an advantage of less clustering around verbal anchors 

(Figure 2.7) compared to the CR10® scale. In support of this, when investigating the 

percentage of RPE values reported which were positioned at the same location as the 

verbal anchors, Borg and Kaijser, (2006) and Fanchini et al., (2016) found a higher 

percentage when using the CR10®  scale (37% and 49% respectively) compared to 

25% and 26% when using the CR100®  scale. This suggests that the CR100® scale 

could provide a more sensitive measure of internal load during team sport training 

(Fanchini et al., 2016). Recently, this scale has been validated for use as a monitoring 

tool in Australian rules football (Scott et al., 2013) and top-level soccer players 

(Fanchini et al., 2016). 
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Figure 2.7. Borg’s CR10® and CR100® scale shown retrospectively.  

2.5 THE APPLICATION OF RATINGS OF PERCEIVED EXERTION IN TEAM 

SPORTS 

Ratings of perceived exertion can be applied in team sports to determine training load 

using a method first developed by Foster et al., (2001). This method is known as 

session ratings of perceived exertion (sRPE) and is representative of the volume and 

intensity of the whole training session or competition (Foster et al., 2001; Impellizzeri 

et al., 2004; Haddad et al., 2017). Session ratings of perceived exertion are collected 

in the same way as RPE’s by ensuring that the standardized instructions and 

methodological considerations are adhered to but the score provided by the players is 

now multiplied by the session duration to produce a single arbitrary number (AU) 

(Foster et al., 2001). This method is an effective and popular tool in quantifying and 

managing individual training load in team sports with 95% of sports scientists working 

in the English Rugby Union Premier league agreeing with this (West et al., 2019). The 

sRPE method is useful as it allows practitioners to monitor the internal response to 

single training sessions or competitions or it can be used for longitudinal analysis. Both 

of which will aid with training load periodization resulting in an increased performance 

and a decrease in injury risk (Lockie et al., 2012; Haddad et al., 2017). Studies have 

supported its use by demonstrating that sRPE is a valid method in quantifying training 
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load in team sports such as Australian rules football (Scott et al., 2013), soccer 

(Impellizzeri et al., 2004; Alexiou and Coutts, 2008) and basketball (Foster et al., 

2001). 

Session ratings of perceived exertion represents a global indicator of how hard players 

found the training session or competition (Casamichana et al., 2013). However, 

training load within team sports is predominately pre-planned by external load metrics 

and, as such, you only know the internal response to the external load after the session 

has been completed. Therefore, when utilizing RPE as a monitoring tool within team 

sports it is important to understand the factors, such as external load, which may have 

influenced the RPE generated (Gallo et al., 2015; Gaudino et al., 2015). This 

knowledge has the potential then to help with the prescription of these pre-planned 

loads. Research has investigated the factors impacting sRPE in semi-professional 

soccer (Casamichana et al., 2013), elite soccer (Gaudino et al., 2015), Australian 

football (Gallo et al., 2015) and rugby league (Lovell et al., 2013). In semi-professional 

soccer sRPE was largely correlated with total distance (r = 0.74) and player load (r = 

0.76) (Casamichana et al., 2013). Alternatively, high-speed running (r = 0.114) and 

the number of impacts (r = 0.45) and accelerations (r = 0.37) best predicted sRPE 

during elite soccer training (Gaudino et al., 2015). In elite rugby it was total distance 

and high-speed running which had a very large (r = 0.82) and large (r = 0.62) 

correlations respectively with sRPE (Lovell et al., 2013). Similarly, in Australian football 

there was a very large (r = 0.88) correlation in total distance with sRPE but also a very 

large correlation with player load (Gallo et al., 2015). The differences observed may 

be due to the sport, differences in training modalities or the use of different RPE scales 

and methodologies (Lovell et al., 2013). However, there seems to be a consensus that 

a combination of different external load metrics such as total distance, high-speed 

running and player load bests predicts sRPE rather than one individual measure alone 

(Lovell et al., 2013; Gaudino et al., 2015).  

Whilst this knowledge is useful, there is a considerable amount of evidence which 

suggests that the internal response to training is multifactorial (Borg, 2007) and not 

just a result of the external load performed. One such factor which influences a player’s 

global RPE which needs to be taken into consideration is the individuals inherent 

characteristics (Bouchard and Rankinen, 2001; Impellizzeri et al., 2005; Gil-Rey et al., 

2015b). The above studies investigated the average response across the teams to the 
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external load performed but this failed to take into consideration how each player 

responded. When working within team sports, each player needs to be treated as an 

individual to ensure that their performance is maximised. As such, prescribing training 

loads based purely off the external loads may cause a training imbalance for some 

players as different players will respond differently to the exercise perfromed (Gallo et 

al., 2015). However, one of the challenges of team sport training is that the majority of 

the time the players will be training together in order to work on the tactical and 

technical aspects of the game. This makes prescribing team training based on each 

of the inviduals internal physiological measures extremelly challenging (Gallo et al., 

2015). Therefore, combining the external load with a knowledge of the individual 

characteristics (e.g. age, fitness levels, position, genetic background) when planning 

training sessions will assist with achieving the desired goals (Gallo et al., 2015). In 

conclusion, sRPE might be somewhat limited due to the generation of RPE’s involving 

the complex integration of so many different factors.  

2.6 THEORETICAL LIMITATIONS OF THE USE OF RATINGS OF PERCEIVED 

EXERTION IN TEAM SPORTS 

Theoretical limitations do exist with sRPE. Firstly, there are the practical issues of 

ensuring that the data collection is accurate and valid as outlined above. Secondly, 

sRPE may be theoretically limited by its approach in combining a variety of inputs into 

one gestalt score. The gestalt framework in which a combination of a multitude of 

physiological and psychological sensations are combined to produce one score is 

potentially not sufficient enough to represent the range of perceptual signals athletes 

experience during training and matches (Hutchinson and Tenenbaum, 2006). For 

example, Weston, (2013) identified that RPE’s remained fairly stable and, as such, 

lacked sensitivity during competitive soccer matches when the external loads varied 

considerably. To support this statement a study in youth soccer players found that 

during matches RPE’s remained stable in U14 (8.4 ± 0.2), U16 (8.5 ± 0.4) and U18 

(8.4 ± 0.6) age groups (Wrigley et al., 2012). With RPE’s being fairly consistent across 

different matches Gregson et al., (2010) investigated between match variability of 

high-speed activity in soccer. It was found that there was a high coefficient of variation 

(16-30%) in high speed activities between matches. With such a large difference in 

these activities between matches this suggests that players do not consistently 

produce the same activity profile each match. There can be a number of reasons for 
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this large discrepancy such as playing formation, possession of the ball and score line. 

The fact that RPE’s have been found to remain stable during competitive matches 

suggests that even though there is a large difference in high speed running activities 

(external load) there may be other factors apart from the physiological signals which 

are affecting the production of an RPE at the end of the match (Figure 2.5) (Robertson 

and Noble, 1997). As a consequence of this the breakdown of what specific demands 

experienced by the athlete and how they contribute to this one score is impossible to 

determine.  

The lack of specific information on the demands of training and competitions when 

providing a global RPE prevents such data fully assisting with the prescription of 

training loads and recovery for individual players (Weston, 2013). To overcome this 

limitation recent advances in monitoring have led to the development of a differential 

rating of perceived exertion (dRPE). Differential ratings of perceived exertion represent 

the psychophysiological signals independently which has the potential to provide a 

more sensitive evaluation of the biochemical and mechanical stress (Weston, 2013; 

Vanrenterghem et al., 2017). This construct is best represented in Figure 2.5 where 

the differentiated perceptual response to the right-hand side of the model is split into 

central, peripheral and cognitive signals (Robertson and Noble, 1997).  

2.7 DIFFERENTIAL RATINGS OF PERCEIVED EXERTION 

2.7.1 OVERVIEW 

The concept of differential ratings of perceived exertion (dRPE) is not novel (Pandolf 

and Noble, 1973; Pandolf et al., 1975; Seip et al., 1991; Robertson and Noble, 1997; 

Faulkner and Eston, 2007). However, it has been only relatively recently that research 

in dRPE has been investigated in an applied team sport setting. In this next chapter, 

the literature review will explore the earlier laboratory studies investigating dRPE and 

provide a rationale as to why utilizing dRPE as a monitoring tool may be important in 

team sports and, as such, warrants further investigation. This section will conclude 

with a summary and the aims of the current study.  

The theoretical model of dRPE suggests that separate perceptual signals (central, 

peripheral and technical) are associated to specific physiological events (Robertson 

and Noble, 1997). Therefore, dRPE has the potential to provide a more sensitive 

evaluation of the internal load by having separate ratings for the subcomponents of 
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RPE related to the specific underlying physiological responses (Bolgar et al., 2010). 

Differential ratings of perceived exertion are collected with the same methodological 

considerations as RPE’s although now, players are instructed to provide separate 

ratings for feelings of legs or upper body muscle exertion, feeling of breathlessness 

and a cognitive or technical demand. These differing events may cause a player to 

experience different feelings based on each perceptual signal. For example, during 

exercise the peripheral perceptual signals are a result of the movement of muscles 

and joints, which can be localized for either the legs (RPE_L) or upper body (RPE_U) 

dependent on the exercise mode (Bolgar et al., 2010). The peripheral signal is thought 

to be driven by changes in physiological conditions, such as metabolic acidosis, 

availability of energy substrate and blood flow (Robertson and Noble, 1997). Central 

exertional signals driven by an increase in ventilation and oxygen uptake (Robertson 

and Noble, 1997) are rated on how hard the exercise mode feels on the individual’s 

perception of heart rate and feeling of breathlessness (RPE_B) during the exercise 

bout. Recent research in team sports has also investigated a technical or cognitive 

(RPE_T) demand during training and competitive matches (Weston, Siegler, Bahnert, 

Mcbrien, et al., 2015; Mclaren, Smith, et al., 2017). This cognitive exertional signal has 

the potential to provide information as feedback to the coaches on the understanding 

of the players during skill-based training and its application on match day in team 

sports (Weston, Siegler, Bahnert, Mcbrien, et al., 2015). Overall, the greater depth of 

information gained from having individual ratings for each of the subcomponents 

outlined above has the potential to help practitioners two-fold. Firstly, it will assist 

practitioners in a greater understanding of an individual’s internal load response to the 

prescribed training loads. Secondly, this information will help assess whether the aims 

of the session were met, which will assist with future periodization of training and 

recovery loads.  

2.7.2 DRPE PROOF OF CONCEPT STUDIES  

Differential ratings of perceived exertion provide an opportunity to understand an 

individual’s subjective interpretation of the exercise stress by indicating which signal 

was more intense than another during a given task (Robertson and Noble, 1997; 

Bolgar et al., 2010). When one signal, whether this is peripheral, central or technical, 

is rated higher than another it is termed as perceptual signal dominance (Robertson 

and Noble, 1997; Bolgar et al., 2010). However, it may also be possible that during 
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certain training typologies that the peripheral, central and technical demands of the 

session were equal and, as such, no dominant signal was present. The concept of 

differential ratings of perceived exertion was initially investigated within a laboratory 

where perceptual signal dominance can vary dependent on training experience and 

exercise mode. Research has shown peripheral signal dominance (RPE_L) during 

cycle ergometer protocols in male university soccer players (Mclaren et al., 2016), 

male recreationally active college students (Robertson et al., 1979), in sedentary 

males (Pandolf et al., 1975), in trained females at high cycling intensities (Bolgar et 

al., 2010) and in both males and females with high and low fitness levels (Faulkner 

and Eston, 2007). However, perceptual signal dominance is not as apparent in 

treadmill-based exercise as it is in cycling. A study investigating the sensitivity of dRPE 

as a measure of internal load during a maximal incremental treadmill protocol found 

that male university soccer players rated the central perceptual signal higher than the 

peripheral signal post protocol suggesting a central signal dominance (Mclaren et al., 

2016). Conversely, in trained and recreationally active women there was not a 

significant difference between any of the dRPE components after completing a 

modified Bruce protocol (Bolgar et al., 2010) and, as such, no signal dominance was 

highlighted. The findings of Bolgar et al., (2010) are in agreement with Seip et al., 

(1991) and Rutkowski et al., (2004) who did not report any perceptual signal 

dominance during a treadmill walk/run test in both habitual and sedentary male 

runners and 10-year old children suggesting that it was equally demanding for all 

components of RPE. The differences observed between cycling and treadmill running 

might be due to the fact that as running is a weight baring exercise, whereas cycling 

is a non-weight baring exercise, running utilizes more muscle mass than cycling (Millet 

et al., 2009). Therefore, participants may find treadmill running harder on the whole 

body sensory integration process (Bolgar et al., 2010) making it equally demanding on 

both the peripheral and central signals compared to cycling which seems to be 

dominated by lower body muscular demands.  

The above laboratory-based studies provide a proof of concept to support the use of 

dRPE as it demonstrates that dRPE is sensitive enough to detect changes in 

perceptual demands between different exercise modes and intensities. As the internal 

response to external loads is very individualised based on the participants inherent 

characteristics (age, fitness levels, genetic background (Bouchard and Rankinen, 
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2001; Impellizzeri et al., 2005; Gil-Rey et al., 2015a), the use of dRPE can be 

extremely valuable in providing information on how individuals are responding. For 

example, during a 4x4 small-sided game in soccer the percentage of maximum heart 

rate for the players was 87.9 ± 4.6 which demonstrates the variability in individuals 

heart rate during a training drill (Impellizzeri et al., 2005). If a global RPE was collected, 

then practitioners would not understand how the psychophysiological signals were 

constructed for different exercise modes and intensities. Despite this proof of concept 

model there are notable differences between the external loads elicited from these 

protocols and the external loads of team sport training and matches, which is where 

further research is needed to understand the usefulness of dRPE within team sports. 

It has been suggested that the physical demands of team sports are hard to reproduce 

within a laboratory (Lakomy and Haydon, 2004). The team sports of interest in this 

study are running based activities with multiple elements of performance such as 

accelerating, slowing down and cutting (Lakomy and Haydon, 2004). The increase in 

eccentric muscular demands during change of direction and decelerating activities 

may have the potential to increase the peripheral perceptual signal as opposed to 

linear running on a treadmill. 

2.8 THE APPLICATION OF DRPE IN TEAM SPORTS 

2.8.1 THE RATIONALE FOR THE USE OF DRPE IN TEAM SPORTS 

One of the original rationales to investigate the use of dRPE as a means of monitoring 

internal load in team sports was due to the earlier observations that RPE’s remained 

stable during competitive matches (Weston, 2013) but with a large disparity in external 

load. Coefficients of variation (CV) of 5-10% in sRPE have been reported between 

matches (Weston et al., 2015; McLaren et al., 2016) and in youth soccer players RPE’s 

have been reported at U14 (8.4 ± 0.2), U16 (8.5 ± 0.4) and U18 (8.4 ± 0.6) age groups 

to be substantially similar (Wrigley et al., 2012). However, despite RPE remaining 

relatively consistent across competitive matches a large CV of 16-32% in high speed 

running and a CV of 19-58% in sprinting during matches have been reported (Gregson 

et al., 2010; McLaren et al., 2016). One suggestion for the fact that the measure of 

internal load (RPE) may not be providing a true representation of the physiological 

stress imposed on the athletes under differing external loads is that a global score of 

RPE is potentially masking the weighting of what else contributes to this internal load 
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(Robertson and Noble, 1997). Such contributors include psychological factors, 

peripheral and central signals, performance milieu and exertional symptoms 

(Robertson and Noble, 1997). Therefore, it can be assumed that the weighting of the 

psychophysiological signals (signal dominance) alters between matches but this is 

unclear when only collecting one global measure of perceived exertion. For example, 

psychological and performance factors, such as losing to a team which is at the top of 

the league, may present a higher cognitive load than when a team is winning 

comfortably (Barrett et al., 2018). Or a soccer player within a team who has spent the 

majority of time out of possession may have a greater awareness of heavy breathing 

due to having to spend a large proportion of the match tracking back and defending. 

As such, Weston, (2013) identified that it would potentially be of a greater value to 

monitor the central, peripheral and tactical demands of match play separately in team 

sports instead of collecting one gestalt score. Therefore, based on the theories of the 

original rationale there is currently a need to investigate the use of dRPE within team 

sports as relatively little has been researched so far in this area of monitoring.  

2.8.2 THE APPLICATION OF DRPE TO COMPETITIVE TEAM SPORT MATCHES 

To date, studies have investigated the application of dRPE within team sports during 

competitive matches (Yanci et al., 2014; Weston et al., 2015; Los Arcos et al., 2016; 

Zurutuza et al., 2017), different training modalities (Los Arcos et al., 2013; Gil-Rey et 

al., 2015b; Mclaren et al., 2017; McLaren et al., 2018) and the influence of playing 

duration (Los Arcos et al., 2014b) and position (Barrett et al., 2018; Birdsey et al., 

2019) on players dRPE. One of the first studies to be conducted was by Weston et al., 

(2015) who investigated the dRPE response to Australian Football League matches. 

Differences between RPE_L (91.5 AU ± 9.8 AU) and RPE_B (89.0 AU ± 11.0 AU) 

were found to be substantial (likely small - 3.5% ± 1.5%). Muscular (RPE_L), 

breathlessness (RPE_B) and technical/cognitive (RPE_T) ratings of perceived 

exertion combined explained 76% of the total variance in an overall global RPE score 

for the whole match. In agreement with this study, Yanci et al (2014) also observed 

significantly higher (p = 0.000) RPE_L (6.9 AU ± 1.3 AU) scores compared to RPE_B 

(6.6 AU ± 1.1 AU) when players completed a full competitive soccer match. These two 

studies suggest that the peripheral and central demands of team sport competition are 

perceived differently (Mclaren et al., 2017), which provides a unique insight into the 

perceptual demands which would otherwise be combined into one global score. 
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Research also suggests that duration played may have an effect on the different 

perceptual demands of competition. Los Arcos et al., (2014) found that professional 

soccer players who played greater than 70 minutes rated RPE_L (~7.4 AU) 

significantly higher (p ≤ 0.05) than RPE_B (~6.4 AU), which is in agreement with the 

two studies above. However, for the soccer players who played between 20 and 45 

minutes RPE_L (~4.3 AU) and RPE_B (~4.7 AU) were very similar and for players 

who played less than 20 minutes RPE_L (~3.3 AU) was significantly lower (p < 0.01) 

than RPE_B (~4.4 AU). This unique insight into the effect of duration on dRPE can 

assist with the prescription of ‘top up’ sessions for substitutions. For example, if a 

player has played for less than 20 minutes the Sports Scientist may look to increase 

the muscular demand of a training session post-match to try and provide a similar 

stimulus to that of a full match. Interestingly, research has also investigated the 

differences in dRPE when playing against teams in varying league table positions 

(Barrett et al., 2018). Substantial changes in RPE_L and RPE_T compared to RPE_B 

have been reported during matches played against teams placed at the top of the 

league compared to the middle and bottom. However, the result of the match and 

whether the match was played at home or away did not provide any substantial 

differences in dRPE (Barrett et al., 2018). These studies provide a novel insight into 

the peripheral, central and technical demands of team sports which may else be 

disguised by a global RPE score.  

Aside from research suggesting that the perceptual demands of team sports are 

unique, which can also be affected by playing duration and the quality of the 

opposition, there are some studies which suggests that the perceptual demands of 

team sports are equal. A study on forty young professional soccer players playing in 

a first-division Spanish league between 2011 to 2013 found trivial differences (ES = –

0.17 ± 0.63, unclear 17/39/46) between sRPE_L and sRPE_B for players playing an 

entire match (> 90 minutes) (Los Arcos et al., 2016). Agreeing with this study, Zurutuza 

et al., (2017) found no difference between RPE_L (6.8 AU ± 1.3 AU) and RPE_B (6.5 

AU ± 1.2 AU) during soccer matches in semi-professional soccer players. Although it 

could be argued that in this case dRPE adds no additional information to the fact that 

the peripheral and cognitive demands were equal, in itself is useful information as this 

can assist with periodizing the week in the lead up to competition which would 

otherwise remain unknown if a global RPE was collected. On the other hand, in the 
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Los Arcos et al., (2016) study there were large between-match variabilities of 18.2% 

± 6.2% and 19.4% ± 9.3% for RPE_B and RPE_L scores respectively for players who 

played 90 minutes. This demonstrates the high variability of dRPE during matches as 

a result of the variable external loads (Gregson et al., 2010; McLaren et al., 2016), 

which suggests that during some matches and on an individual level there may have 

been instances where there was a signal dominance.  

2.8.3 THE INFLUENCE OF PLAYING POSITION DURING COMPETITIVE 

MATCHES  

It is well documented that positional differences in external loads exist in team sports 

and, as such, you may expect the internal load to differ positionally as a result of the 

work completed. To date, only two studies have been published investigating the 

differences in dRPE between playing positions. One study in competitive netball 

matches (Birdsey et al., 2019) and one in competitive soccer matches (Barrett et al., 

2018). International netball players who played in mid-court positions rated sRPE, 

RPE_L, RPE_B, RPE_U (upper body muscular exertion) and RPE_T higher than 

those players playing in goal-based positions (Birdsey et al., 2019). This is in support 

of the external demands of these positions as it has been reported that mid-court 

positions have a greater player load per minute (instantaneous acceleration in three 

planes of movement) than goal-based positions (Young et al., 2016) and these 

positions spend the most time being active during matches compared to goal keepers 

and goal shooters (Chandler et al., 2014). In netball the differences between the 

external loads and, as such, the internal load is most likely due to the positional 

restraints which exist in this sport. For example, goal shooters and goal keepers are 

only allowed in their own attacking/defensive thirds respectively but mid-court 

positions (excluding the centre) are allowed in the centre third and the 

attacking/defensive thirds and, therefore, have the opportunity to cover greater 

distance and are involved in both attacking and defending aspects of the game. During 

professional soccer matches full backs rated RPE_L, RPE_B and RPE_T substantially 

higher than all other positions and central midfielders rated RPE_L higher than 

attackers (Barrett et al., 2018). This is potentially down to the fact that full backs have 

been reported to cover the greatest percentage of high intensity running in relation to 

total distance covered with the shortest recovery duration between these actions 

(Carling et al., 2012). This information provides further support in the usefulness of 
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dRPE as it is sensitive enough to identify differences in perceptual demands. 

Identifying the different internal loads associated with different positions can further 

assist with the prescription of training and recovery loads to ensure that each individual 

is prepared for their positional demands.  

2.8.4 THE APPLICATION OF DRPE TO TEAM SPORT TRAINING 

Team sport training consists of different training typologies to produce the desired 

tactical, technical, and physiological response in preparation for competition. These 

training typologies will have specific physiological demands associated with them 

dependent on the desired outcome of the training session and, as such, it might be 

expected that the different types of training sessions may elicit different dRPE 

responses. Weekly training loads during rugby union pre-season training were found 

to be likely moderate (10.1%; ±8.4%) between sRPE_B (18413 ± 2632 AU) and 

sRPE_L (20560 ± 1778 AU) (McLaren et al., 2018). There were also differences in 

sRPE_L and sRPE_B during training in young soccer players with sRPE_L being rated 

higher (Gil-Rey et al., 2015b). During professional youth soccer training at a Spanish 

club, strength training which involved vertical and horizontal orientated exercises 

combined with technical and tactical training were rated harder (p < 0.01) for RPE_L 

and RPE_B than other types of training (endurance/technical/tactical and 

technical/tactical) (Los Arcos et al., 2013). In support of this a difference in dRPE 

between training typologies was also found during professional rugby union training  

(Mclaren et al., 2017). These studies demonstrate that different training sessions elicit 

different perceptual demands as reported by the players (McLaren et al., 2017) and, 

as such, providing detailed information around the demands of each training session 

or individual drills.   

Not all research has found a signal dominance in dRPE during team sport training. No 

substantial difference between RPE_L and RPE_B were found during soccer training 

in session derived training loads (sRPE_L and sRPE_B) (Los Arcos et al., 2013, 

2014a, 2017), weekly soccer training loads as a percentage of a match (Zurutuza et 

al., 2017) or weekly training loads during the off-season in rugby union (McLaren et 

al., 2018). Whilst some training sessions might elicit equal peripheral and central 

demands, differences between these two signals may not have been observed in the 

studies investigating session derived training loads (sRPE_L and sRPE_B) as these 
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loads were accumulated and analyzed over weekly blocks. This type of analysis has 

the potential to mask specific individual training sessions in which a difference in 

peripheral and central responses may have been observed due to the physiological 

demands of the different training typologies you would expect to have been completed 

in the week leading to competition (McLaren et al., 2018). 

Although these studies demonstrate that dRPE has the ability to provide a more 

sensitive evaluation of an individual’s internal load, further proof of concept research 

is required. As mentioned previously, for a monitoring tool to be deemed valid and 

reliable it requires different types of research design before confidence in this measure 

can be confirmed (Halperin et al., 2015). Initial studies were conducted within a 

controlled laboratory environment but for the reasons stated above these studies had 

their limitations as to the application to team sports. However, the studies outlined 

above have taken the concept of dRPE straight from a controlled setting where the 

exercise mode was either a treadmill or a cycle ergometer and used it within an applied 

setting. It could be argued that a proof of concept study which investigates the use of 

dRPE during team specific movements has not been conducted. Therefore, this study 

looks to bridge the gap between the laboratory studies and the applied studies to 

provide further insight into the usefulness of dRPE as a monitoring tool in team sports.  

2.9 PROTOCOL DESIGN 

The activity profile which typifies team sports has shown that the number of 

decelerations performed within match activity are greater than that of accelerations in 

soccer, rugby sevens and rugby union (Harper and Kiely, 2018; Harper et al., 2019). 

Within soccer decelerations have been shown to occur 2.9 times more frequently than 

accelerations (de Hoyo et al., 2016). Very high intensity decelerations (> -3.5 m/s2) 

have been reported in American football, rugby sevens, rugby union and soccer 

(Harper et al., 2019) as a result of rapidly slowing down over a short distance (Harper 

and Kiely, 2018). The frequency and magnitude of these decelerations requires 

powerful eccentric contractions which leads to mechanical stress on the 

musculoskeletal system (Vanrenterghem et al., 2017). It has been suggested that high 

intensity decelerations can act as mediators in inducing both neuromuscular fatigue 

and tissue damage (Harper and Kiely, 2018) which has the potential to increase the 

risk of training load induced injuries (Halson, 2014; Vanrenterghem et al., 2017). 
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Therefore, it seems appropriate that the load induced from decelerations should be 

monitored. 

As previously outlined, dRPE has the potential to monitor the subjective internal 

response to different subcomponents of RPE. One of these being a lower body 

muscular load (RPE_L). Due to the seemingly importance of monitoring mechanical 

load as described above this study attempted to assess the sensitivity of dRPE to 

detect changes in exercise protocols which manipulated deceleration distances by 

focusing on RPE_L and RPE_B. The protocol was designed to replicate the demands 

of team sports within a controlled environment. The protocol consisted of 20 repetitions 

of a 30 metre acceleration with either a five metre or 15 metre deceleration.  A five 

metre deceleration was included to elicit the greatest eccentric contractions as this 

produced similar peak deceleration values reported as very high intensity 

decelerations within the literature (> -3.5 m/s2) (Harper et al., 2019). This distance also 

best reflects the deceleration distance covdered in team sports (Lakomy and Haydon, 

2004; Howatson and Milak, 2009). Decelerating over 5 metres during twenty 

repetitions equates to 100 metres of high intensity decelerating distance. This is in line 

with deceleration distances reported within soccer matches where a range of 103 to 

225 metres have been reported (Akenhead et al., 2013). In an attempt to have a 

protocol which required less intense eccentric contractions a 15 metre deceleration 

was also included. An acceleration distance of 30 metres was chosen as this is similar 

to sprinting distance observed in team sports (Lakomy and Haydon, 2004; Howatson 

and Milak, 2009). 

To objectively describe the requirements of each of the protocols, global positioning 

systems (GPS) were used as they have been shown to be a valid and reliable method 

to quantify high intensity accelerations and decelerations (Harper et al., 2019; 

Vanrenterghem et al., 2017). The ability to objectively describe the protocols ensures 

that the manipulation of the deceleration distances (independent variable) could be 

assessed. Performance tests such as jump tests have been used in previous research 

to assess neuromuscular function after team sport match play (Castillo et al., 2017). 

Whilst vertical jump tests have been used most commonly as a measure of 

neuromuscular function, other jump tests do exist such as the horizontal jump which 

is also known as the broad jump. Due to the nature of the protocol used in this study, 

to assess neuromuscular function a horizontal jump was used. The rationale for using 
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this type of performance test was due to that fact that acceleration and deceleration-

based protocols require strength in the horizontal axis (Yanci et al., 2014) so it seems 

logical to assess neuromuscular function during a horizontal jump which utilizes the 

same muscle group as when performing the exercise (Castillo et al., 2017). This is 

because these muscles are more likely to fatigue than those used in vertical 

movements.  
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3.1 RESEARCH APPROACH 

In an attempt to evaluate the sensitivity of dRPE as a tool to monitor internal load in 

team sports the ability of dRPE to detect changes in the physiological demands 

associated with different deceleration profiles in high-intensity running protocols was 

assessed. The research question was operationalised by the design of exercise 

protocols which attempted to increase the ‘muscular load’ (RPE_L) associated with 

the exercise task by changing the extent of the deceleration distances in each protocol.  

3.2 PARTICIPANTS  

Sixteen male team sport players (age: 19 ± 2 y; stature: 1.81 ± 0.07 m; body mass: 77 

± 9 kg) were recruited for this study. Three participants were removed from analysis 

as they did not complete all the protocols meaning that 13 participants completed 

everything . All participants were healthy and free from injury at the time of the study 

and were currently training three times a week and competing one to two times a week 

in competitive regional football and field hockey matches. Prior to any data collection 

the participants were provided with an information sheet that provided the details of 

the study design. The participants had the opportunity to ask any questions before 

giving written consent and were instructed that they were free to withdraw at any point. 

The study had been granted ethical approval via local University Ethics Committee in 

accordance with the Declaration of Helsinki. The participants were asked to refrain 

from any physical activity 24 hours before completing the protocols and 48 hours post 

protocol. Outside of this time the participants were asked to keep a training diary which 

was submitted after each training session. Participants filled out the training diary to 

include data on the type and duration of the activity completed and to provide a 

numerical value on the CR100® scale for each of the dRPE components (RPE_L and 

RPE_B) associated with this exercise. This information was logged in an Excel 

spreadsheet (Microsoft Excel 2016, Microsoft Corp, Redmond, USA) for further 

analysis. 

3.3 EXPERIMENTAL DESIGN  

Sixteen team sport players were randomised into one of four groups; the order of the 

protocols to be completed were counterbalanced using the Latin square design. The 

experimental design of the study involved the participants completing a familiarisation 

trial followed by the four different protocols. All of the protocols apart from the 
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familiarisation trial consisted of twenty reps of a 30 metre sprint with either 20 

repetitions of a five metre deceleration zone (Dec5m), a 15 metre deceleration zone 

(Dec15m) or a protocol which involved alternating the deceleration zones between the 

five metre and 15 metre zones (ten repetitions of each deceleration in total). One of 

the alternating protocols started with a five metre deceleration which was followed by 

a 15 metre deceleration on the next repetition (Dec5/15m) and the other alternating 

protocol started with a 15 metre deceleration and was then followed by a five metre 

deceleration (Dec15/5m). The familiarisation trial consisted of 10 repetitions of a 20 

metre acceleration followed by a 10 metre deceleration. Figure 3.1 illustrates these 

protocols figuratively. Each participant completed the five trials over five visits with 

each trial separated by one week. Testing took place at the same time of the day  and 

the same day of the week each week and was conducted on the same sand dressed 

artificial grass pitch. Differential ratings of perceived exertion for leg muscle exertion 

(RPE_L) and breathlessness (RPE_B) were recorded after every rep during all the 

protocols to investigate the subjective internal load associated with the exercise bout. 

In addition to dRPE the external load of the protocols was measured using 10 Hz GPS 

devices (Optimeye S5, Firmware 7.38, Catapult Sports, Melbourne, Australia). This 

data was collected in an attempt to objectively describe the requirements of each 

protocol. This enabled an evaluation of the independent variables (i.e. deceleration 

demands) as well providing confirmation of the control of other important exercise 

descriptors (e.g. volume and intensity). Neuromuscular function was also monitored 

pre, at the mid-point and at the end of the protocol using a horizontal jump in an 

attempt to examine the impact of each exercise protocol on performance. Muscle 

soreness was assessed using a subjective wellness questionnaire where the 

participants rated their muscle soreness pre, post, 24 hours and 48 hours post protocol 

using a 5-point Likert Scale. Both neuromuscular function and muscle soreness 

provided data on the overall physiological consequences of completing the protocols 

thereby providing additional information for the evaluation of the usefulness of dRPE. 

The timings of these measures can be seen in Figure 3.2. 
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Figure 3.1. Schematic of the five different protocols.      represents the start of the 

acceleration. The grey d represents the deceleration zone. T represents where the 

participants had to come to a complete stop. The familiarisation trial involved the 

participants completing 10 repetitions of a 20 metre acceleration with a 10 metre 

deceleration. The Dec5m and Dec15m protocols involved 20 repetitions of a 30 metre 

acceleration with either 20 repetitions of a five metre or 15 metre deceleration 

respectively. The Dec5/15m and the Dec15/5m protocols consisted of 20 repetitions 

of a 30 metre acceleration but the deceleration distance was alternated between the 

five metre and 15 metre for the Dec5/15m protocol and between 15 metre and five 

metre for the Dec15/5m protocol.  
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Figure 3.2. Schematic representation of the measures used in each protocol and 

when these measures took place. 

3.4 EXPERIMENTAL PROCEDURES  

3.4.1. FAMILIARISATION TRIAL 

The aim of the familiarisation trial was to expose the participants to all of the 

methodologies included in the study. This involved collecting the participants 

maximum velocity, trialling a modified protocol and familiarising them with methods to 

collect dRPE, horizontal jump and muscle soreness. To obtain the participants 

maximum velocity the participants were required to complete three 30 metre sprints. 

This was to ensure that during the main protocols the participants were completing 

each rep within 95% of their maximum velocity. After the participants completed the 

sprints they were also familiarised with the horizontal jump test. This familiarisation 

trial had two main purposes. Firstly, it was to accustom the participants with the 

procedure and secondly it was to alleviate any learning effects that may impact the 

data collected in the experimental trials (Scott and Docherty, 2004). The familiarisation 

protocol for the horizontal jump was similar to that as previously described by Scott 

and Docherty (2004). The participants repeated the horizontal jump until they were 

consistently jumping within a band of scores which represented 95% of each rep. If 

the score was outside of this range the participant repeated another jump until this 

consistency was established. Once this standard had been reached it was assumed 

that the learning effects had been removed and on subsequent protocols the 

participants only had to perform one rep pre, at the mid-point and post protocol. On 

average it took the participants 4 ± 1 jumps to be familiarised. Following on from this 

the participants completed the familiarisation trial which consisted of 10 reps of a 20 
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metre acceleration with a 10 metre deceleration zone. This was designed to allow the 

participants to experience and understand how and when the measurements of dRPE 

collection, muscle soreness and horizontal jump would be take place. To control the 

eccentric muscular demand required to decelerate during each rep the participants 

were instructed to stop with both hips facing forward and both feet on the line with their 

knees flexed in an ‘athletic position’. A rest period of three minutes between reps was 

utilised to allow the participants to finish the rep, walk back to where the bespoke 

dRPE application was kept and to perform a horizontal jump when required (on the 

10th repetition). The participants rated their perception of effort after each rep to get 

used to the bespoke computer application. The participants also scored their muscle 

soreness pre and post protocol using a 5-point Likert scale.  

3.4.2 EXERCISE PROTOCOLS 

A standardised warm up was completed before all of the protocols began. As the 

protocols had different deceleration distances the total distance (45 metre) for each 

rep regardless of protocol was controlled. Controlling the distance of each rep and, 

therefore, the volume, required the participants to walk from the five metre stopping 

point to the end of the 15 metre deceleration zone when the reps involved a five metre 

deceleration. This allowed for external load analysis via the use of GPS microsensors 

to investigate how the different deceleration distances effected the external load. The 

intensity of the protocols was controlled by informing the participants that each rep 

needed to be performed at 95% of their maximum velocity obtained during the 

familiarisation session. The rest period between the reps were standardised at three 

minutes to allow the participants to complete the dRPE computer application and to 

perform a horizontal jump after the 10th rep. The split times during the deceleration 

period were recorded using timing gates to analyse the consistency between the reps.  

3.5 PROCEDURES 

3.5.1 NEUROMUSCULAR FUNCTION 

A horizontal jump was used to investigate how the different protocols had an impact 

on neuromuscular function. Measurements were taken after a standardised warm up 

before the protocol began, after 10 reps and at the end of the protocol (Figure 3.2). 

Participants were instructed to place their toes behind a permanent pitch marking and 

using a countermovement action, using their arms and legs, jump as far as they could 
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horizontally. The participants had to stay upright when they landed, and 

measurements were taken from the start line to the back of the furthest heel using a 

tape measure along the floor and a meter ruler at 90 degrees to the tape measure. 

The researchers were confident that the participants had learnt the protocol during the 

familiarisation protocol and, therefore, any learning effects had been alleviated so only 

one jump was needed to be performed at each of the above measurement points.  

3.5.2 COLLECTION OF DIFFERENTIAL RATINGS OF PERCEIVED EXERTION 

(dRPE)  

As previously described by Mclaren et al., (2017) dRPE was collected using a bespoke 

computer application on a 7-inch android device (Amazon Fire, Quanta Computer, 

Taipei, Taiwan) one minute after each rep (Figure 3.2). The one-minute period post 

rep was to allow the participants to walk back to the start where the device was kept. 

The participants were presented with the android device after each rep and they 

logged in with their unique participant number. The computer application started with 

a description of what the participants should think about before answering each 

question and the participants were encouraged to read this each time they provided a 

rating. The participants were asked to rate their perception of breathlessness (RPE_B) 

and perception of leg muscle exertion (RPE_L) for each sprint on the touchscreen 

interface (Figure 3.3). The scale used was a numerically blinded CR100® scale (Borg 

and Borg, 2002) with English verbal anchors. The CR100® scale was used rather than 

the CR10® scale as it provides a more accurate and precise measure of internal load 

(Fanchini et al., 2016). Each participant could not see the other participants scores. 

Each score was stored in a cloud-based spread sheet (Microsoft Excel 2016, Microsoft 

Corp, Redmond, USA) for further analysis. 
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Figure 3.3. An example of the touchscreen interface on the bespoke dRPE computer 

application.  

3.5.3 EXTERNAL AND INTERNAL LOAD MEASURES 

The approach to measure external load was to use 10Hz GPS devices (Optimeye S5, 

Firmware 7.38, Catapult Sports, Melbourne, Australia). An indication of internal load 

was provided using heart rate monitors (Polar T31 Coded, Polar Electro OY, Kempele, 

Finland). The GPS devices were placed in a customised tight-fitting vest between the 

scapulae to reduce any unwanted movement which would affect the accelerometer 

data as outlined by the manufacturer (Harley et al., 2010). During all the trials the 

participants wore the same GPS device which were only allocated to one participant 

to avoid inter-unit error (Jennings et al., 2010). To ensure the GPS devices had 

satellite ‘lock’ (Malone et al., 2017) prior to any data collection the devices were turned 

on and left in the middle of the artificial pitch. Data collection only commenced when 

this was achieved as indicated by a slow green flashing light on the interface of the 

device. The number of satellites the devices were connected to during the data 

collection was 11.3 ± 1.3 and the positional quality was 84.6 ± 4.5%. It has been 

suggested that the quality of data is reduced when the GPS devices are connected to 

less than 6 satellites and that a horizontal dilution of precision (HDOP) value of less 

than 1 is ideal (Malone et al., 2017). Horizontal dilution of precision is an indication of 
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the spacing of the satellites which can affect the accuracy and quality of the signal 

(Jennings et al., 2010; Malone et al., 2017). The HDOP value during data collection 

was 0.8 ± 0.1. Data was discarded if there were less than six satellites connected and 

a HDOP of >1.5 during the data collection. No data met this criterion so, therefore, no 

data had to be discarded. The bias was 1.3%. All raw data was exported from the 

Openfield Cloud based system into Excel (Microsoft Excel 2016, Microsoft Corp, 

Redmond, USA) for further analysis. 

3.5.4 ACCELERATION AND DECELERATION MEASURES  

To control for the intensity of each rep the participants were instructed to aim to 

perform each rep at 95% of their maximum velocity. On average the participants 

completed each rep within 94.9 ± 2.3% of their maximum velocity. To record the 30 

metre sprint times for each rep during each exercise protocol timing gates (Brower 

Timing Systems, Draper, Utah, USA) were used. The position of the timing gates can 

be seen in Figure 3.4. Timing gates were placed one metre behind the two stopping 

distances to get the split times during the deceleration period in order to control the 

rate of deceleration. The timing gates were placed one metre behind the stopping line 

at five metre and 15 metre so that the participants would not set the timing gate off 

when they were stopped in a deceleration position. The participants were requested 

to stop in a traditional deceleration position with both feet inline. 

 

 

Figure 3.4. Diagram to show the placement of the timing gates and the setup of the 

protocol.     indicates the start of the protocol. The timing gates are represented as       

the       and the         is the five metre and 15 metre deceleration period with the two 

different stopping lines.  
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3.5.5 MUSCLE SORENESS 

Changes in muscle soreness pre and post protocol were measured to investigate if 

the protocols which had a shorter deceleration distance resulted in increased muscle 

damage. Using a 5-point Likert scale (0.5-point increments) (Table 3.1) the 

participants were asked to rate their muscle soreness pre, immediately post and 24 

and 48 hours post protocols. A muscle soreness rating were also taken immediately 

before each protocol to get a baseline value of the participants subjective feeling of 

muscle soreness prior to completion of a protocol. This scale (Table 3.1) was adapted 

from Mclean et al., (2010) well-being questionnaire based on the previous 

recommendations of Hooper and Mackinnon (1995).  

  

Table 3.1. Example of the 5-point Likert scale used in this study.   

Muscle Soreness 

1 Very sore 
2 Increase in soreness/tightness 
3 Normal 
4 Feeling good 
5 Feeling great 

 

3.6 STATISTICAL ANALYSIS 

3.6.1 DIFFERENTIAL RATINGS OF PERCEIVED EXERTION 

Differential ratings of perceived exertion (sRPE, RPE_L and RPE_B) were log 

transformed and then the standardised mean differences with 95% confidence 

intervals (CI) between protocols were calculated (SPSS v24, IBM Corp, Armonk, NY, 

USA). Differences between the protocols for each of the dRPE components were 

examined using paired samples t-tests. The magnitude of the chance that the true 

value of the effect statistic was substantially positive, negative or trivial was interpreted 

using an anchor-based approach of 20 AU which represented the substantial change 

required to increase to the next verbal anchor on the CR100® scale across each 

protocol. Within protocol changes in sRPE, RPE_L and RPE_B were individually 

linearly regressed to examine the rate of change in sRPE, RPE_L and RPE_B from 

start to finish. Magnitude based inferences were then applied using the same anchor-

based approach of 20 AU. Magnitude based inferences were interpreted using the 

following scale (Batterham and Hopkins, 2006): 25-75% - possibly, 75-95% - likely, 
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95-99.5% - very likely and 99.5-100% - most likely. A difference was deemed unclear 

if the confidence limit overlapped a substantial increase and a substantial decrease 

threshold by ≥ 2.5%.  

3.6.2 NEUROMUSCULAR FUNCTION  

Analysis of pre-post neuromuscular measures between the protocols were performed 

and standardised mean differences with 95% confidence intervals were calculated 

using Hopkins (2006) pre-post crossover analysis spreadsheet. Magnitude based 

inferences were then subsequently applied to the between protocol analyses using the 

smallest worthwhile change (SWC) in horizontal jump performance as the threshold 

value (Hopkins, 2002).  

3.6.3 MUSCLE SORENESS 

Between protocol muscle soreness measures were log transformed and the 

standardised mean differences with 95% confidence intervals between protocols were 

calculated using the same pre-post crossover analysis spreadsheet (Hopkins, 2006) 

as previously described.  The magnitude of effects were interpreted using a threshold 

percentage of 3% as this has previously been shown to be the minimum practically 

important difference (MPID) for a change in muscle soreness (Thorpe, 2015).  

3.6.4 SPRINT PERFORMANCE  

The between and within protocol changes in 30m sprint performance across the 20 

repetitions were calculated using the same methods as outlined above with dRPE. 

The magnitude of the chance that the true value of the effect statistic was substantially 

positive, negative or trivial was interpreted using the smallest worthwhile change 

(SWC) in 30m sprint performance as the threshold (Hopkins, 2002). 

3.6.5 EXTERNAL LOAD 

A one-way ANOVA was used to determine any significant differences between the 

protocols for the external load variables. Where a statistically significant difference in 

group means occurred a post hoc test (Tukey) was then used to determine which 

protocols differed from each other.  
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4.1 EXTERNAL LOAD 

4.1.1 PEAK DECELERATION 

The protocols were designed to have varying deceleration distances with the aim of 

impacting the eccentric load of the lower body with the Dec5m protocol having the 

shortest deceleration zone. The peak deceleration for the Dec5m protocol was 

significantly greater than the peak deceleration for the Dec15m protocol (p = 0.005) 

as a result of this shorter deceleration (Figure 4.1). Similarly, during the alternating 

protocols (Dec5/15m and Dec15/5m) the five metre repetitions also had a greater 

deceleration than the 15 metre repetitions (p <0.0005). The five metre repetitions had 

a peak deceleration of -4.14 ± 0.10 m/s2 and -4.09 ± 0.12 m/s2 for the Dec5/15m and 

Dec15/5m protocols respectively whereas the 15 metre repetitions had a peak 

deceleration of -3.41 ± 0.11 m/s2 and -3.12 ± 0.14 m/s2 respectively.  

 

 

Figure 4.1. Peak deceleration (mean ± SD) across each of the protocols (* indicates 

a statistically significant difference in comparison to the Dec15m protocol (p = 0.005)). 
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4.1.2 TOTAL DISTANCE 

The distance the participants covered during each repetition of the protocols was 

controlled by making each run the same distance in length. This was to ensure that 

the volume was the same across the protocols. The total distance measured through 

MEMS was consistent between the protocols demonstrating that this was controlled 

(p = 0.615) (Figure 4.2).  

 

Figure 4.2. Total distance (mean ± SD) completed across each of the protocols.  

 

4.1.3 HIGH SPEED DISTANCE AND SPRINT DISTANCE 

Table 4.1 shows the total average high-speed running and sprint distance for each 

protocol. There was no significant difference between protocols in high speed running 

distance (p = 0.402). However, there was a significant difference in sprint distance with 

the Dec15m protocol having a greater distance spent above seven metres per second 

compared to the Dec5m protocol (p = 0.005).  
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Table 4.1. High-speed running and sprinting distance (mean ± SD) during each 

protocol.  

  Dec5m Dec15m Dec5/15m Dec15/5m 

 
Total High-Speed Running 

Distance (m)  
(5.5-7.0 m/s) 

  

230 ± 56 266 ± 87 223 ± 64 236 ± 49 

Total Sprinting Distance 
(m) 

(>7.0 m/s) 
  

300 ± 72 425 ± 113 * 399 ± 88 376 ± 66 

* Statistically significant difference in comparison to the Dec5m protocol (p = 0.005). 

 

4.1.4 THIRTY METRE SPRINT PERFORMANCE 

The average maximum velocity measured with MEMS was consistent across all the 

protocols demonstrating that the intensity was controlled (p = 0.360) (Figure 4.3). 

However, the within protocol changes in 30 metre sprint performance times (measured 

using timing gates) from the first to the last repetitions (Figure 4.4; Table 4.2) were 

likely increased for the Dec5m (p = 0.025), Dec15m (p = 0.008) and Dec15/5m (p = 

0.015) protocols. The Dec5/15m (p = 0.143) protocol was possibly increased in the 30 

metre sprint performance times over the 20 repetitions. Nevertheless, the between 

protocol differences in 30 metre sprint performances times over the 20 repetitions were 

unclear for all the protocols demonstrating consistency of effort across the protocols 

(Table 4.3).  

 



57 

 

 

Figure 4.3. Maximum velocity (mean ± SD) across each of the protocols.  

 

Figure 4.4. Mean sprint performance times for each repetition across each protocol. 
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Table 4.2. Within protocol mean difference, correlations (95% Confidence Intervals) 

and effect statistics for changes in 30 metre sprint performance across the 20 

repetitions.  

 

 

Table 4.3. Between-protocol difference, correlations (95% Confidence Intervals) and 

effect statistics for changes in 30 metre sprint performance across the 20 repetitions.   

 

Protocols 
Mean 

Difference 
(s)  

95% 
Confidence 

Interval 
p-value 

 Probability Thresholds 
(Substantial 

Increase/Trivial/ 
Substantial Decrease) 

(%) 

Inference 

Dec5m 0.053 0.01 to 0.09 0.025 

 

85/15/0.1 
Likely 

Increase 

Dec15m 0.065 0.02 to 0.11 0.008 

 

94/6/0 
Likely 

Increase 

Dec5/5m 0.043 -0.02 to 0.1 0.143 

 

68/31/1 
Possibly 
Increase 

Dec15/5m 0.075 0.02 to 0.13 0.015 

 

94/6/0.1 
Likely 

Increase 

Protocols 
Mean 

Difference 
(s)  

95% 
Confidence 

Interval 
p-value 

 Probability Thresholds 
(Substantial 

Increase/Trivial/ 
Substantial Decrease) 

(%) 

Inference 

Dec5m – Dec15m -0.012 -0.1 to 0.081 0.782 

 

17/49/34 Unclear 

Dec5m – Dec5/15m 0.008 -0.08 to 0.09 0.850 

 

29/54/18 Unclear 

Dec5m – Dec15/5m -0.026 -0.10 to 0.04 0.433 

 

5/50/45 Unclear 

Dec15m – Dec5/15m 0.020 -0.06 to 0.1 0.603 

 

39/51/10 Unclear 

Dec15m – Dec15/5m -0.014 -0.13 to 0.17 0.784 

 

44/31/25 Unclear 

Dec5/15m – Dec15/5m -0.034 
-0.12 to 
0.057 

0.437 

 

8/39/53 Unclear 



59 

 

4.2 DIFFERENTIAL RATINGS OF PERCEIVED EXERTION 

The overall mean ± SD for dRPE (RPE_L and RPE_B) after the first and last repetition 

across each protocol are displayed in Table 4.4. The mean ± SD for RPE_L and 

RPE_B after every repetition during each protocol are displayed in Figures 4.5 and 4.6 

respectively.  

Table 4.4. The mean ± SD for RPE_L and RPE_B for repetition one and twenty across 

each protocol.  

 

Figure 4.5. RPE_L (mean ± SD) values for each repetition across each protocol.  

Protocol Rep Number RPE_L (AU) RPE_B (AU) 

Dec5m 
1 23 ± 13 21 ± 14 

20 60 ± 29 50 ± 30 
    

Dec15m 
1 23 ± 21 23 ± 21 

20 58 ± 28 53 ± 27 
    

Dec5/15m 
1 26 ± 18 27 ± 18 

20 48 ± 23 47 ± 26 
    

Dec15/5m 
1 24 ± 24 29 ± 26 

20 48 ± 28 48 ± 28 
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Figure 4.6. RPE_B (mean ± SD) values for each repetition across each protocol.  

Using an anchor-based approach the changes in RPE_L within the Dec5m (Effect 

statistic 35 ± 95% confidence limits 2.1, p <0.0005), Dec15m (35 ± 2.3, p <0.0005) 

and Dec15/5m (25 ± 2.3, p <0.0005) protocols were most likely increased from the first 

to the last repetition (Figure 4.7). Changes in RPE_L within the Dec5/15m protocol 

were very likely increased from the first to the last repetition (23 ± 2.3, p <0.0005) 

(Figure 4.7). The rate of change in RPE_L between the protocols are displayed in 

Table 4.5. The rate of change in RPE_L from the first to the last repetition between the 

Dec5m and Dec15m (p = 0.995) and the Dec5/15m and Dec15/5m (p = 0.539) 

protocols was most likely trivial. There was a Likely trivial rate of change in RPE_L 

between the Dec5m and Dec5/15m (p = 0.033), the Dec15m and Dec5/15m (p = 

0.141) and the Dec15m and Dec15/5m (p = 0.210) protocols. The rate of change in 

RPE_L between the Dec5m and Dec5/15m (p = 0.070) protocols was very likely trivial.  
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Figure 4.7. Within protocol correlations (95% Confidence Intervals) and effect 

statistics for RPE_L using an anchored based approach. Numbers shown are 

quantitative chances (%) that the true value is a substantial decrease, trivial or a 

substantial increase. * denotes a significant effect on condition (P<0.0005). 

Table 4.5. Between-protocol mean difference, correlations (95% Confidence Intervals) 

and effect statistics for RPE_L using an anchor-based approach (20 AU). 

 

Protocols 
Mean 

Difference 
(AU)  

95% 
Confidence 

Interval 

p-
value 

 Probability Thresholds 
(Substantial 

Increase/Trivial/ 
Substantial Decrease) 

(%) 

Inference 

Dec5m – Dec15m 0.03 -11 to 11 0.995 

 

0/100/0 
Most Likely 

Trivial 

Dec5m – Dec5/15m 11.7 1.1 to 22 0.033 

 

6/94/0 
Likely 
Trivial 

Dec5m – Dec15/5m 9.7 -0.91 to 20 0.070 

 

3/97/0 
Very Likely 

Trivial 

Dec15m – Dec5/15m 11.7 -4.5 to 28 0.141 

 

14/86/0 
Likely 
Trivial 

Dec15m – Dec15/5m 9.7 -6.3 to 26 0.210 

 

9/91/0 
Likely 
Trivial 

Dec5/15m – Dec15/5m -2.0 -8.8 to 4.8 0.539 

 

0/100/0 
Most Likely 

Trivial 
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The within protocol changes in RPE_B from the first to the last repetition were most 

likely increased for the Dec5m (31 ± 2.2, p <0.0005) and Dec15m (30 ± 3.2, p <0.0005) 

protocols and were possibly increased for the Dec5/15m (20 ± 2.1, p <0.0005) and 

Dec15/5m (20 ± 2.6, p <0.0005) protocols (Figure 4.8). Table 4.6 displays the between 

protocol differences in RPE_B. Changes in RPE_B from the first to the last repetition 

between the Dec5m and Dec15m (p = 0.510) and the Dec5/15m and Dec15/5m (p = 

976) protocols were most likely trivial. The Dec5m and Dec5/15m (p = 0.011), the 

Dec15m and Dec5/15m (p = 0.080) and the Dec15m and Dec15/5m (p = 0.136) 

protocols were all very likely trivial. The changes in RPE_B between the Dec5m and 

Dec15/5m (p = 0.067) was likely trivial.  

 

Figure 4.8. Within protocol correlations (95% Confidence Intervals) and effect 

statistics for RPE_B using an anchored based approach. Numbers shown are 

quantitative chances (%) that the true value is a substantial decrease, trivial or a 

substantial increase. * denotes a significant effect on condition (P<0.0005). 
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Table 4.6. Between-protocol mean difference, correlations (95% Confidence Intervals) 

and effect statistics for RPE_B using an anchor-based approach (20 AU). 

 

 

Protocols 
Mean 

Difference 
(AU) 

95% 
Confidence 

Interval 
p-value 

Probability Thresholds 
(Substantial 

Increase/Trivial/ 
Substantial Decrease) 

(%) 

Inference 

Dec5m – Dec15m 2.4  -5.2 to 9.9 0.510 0/100/0 
Most Likely 

Trivial 

Dec5m – Dec5/15m 11.1  3.1 to 19 0.011 2/98/0 
Very Likely 

Trivial 

Dec5m – Dec15/5m 11.2  -0.92 to 23 0.067 7/93/0 
Likely  
Trivial 

Dec15m – Dec5/15m 8.8 -1.2 to 19 0.080 2/99/0 
Very Likely 

Trivial 

Dec15m – Dec15/5m 8.9 -3.2 to 21 0.136 3/97/0 
Very Likely 

Trivial 

Dec5/15m – Dec15/5m 0.1 -6.9 to 7.1 0.976 0/100/0 
Most Likely 

Trivial 
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4.3 NEUROMUSCULAR FUNCTION 

Neuromuscular function was assessed immediately pre-protocol (pre), after the 

participants had completed 10 repetitions (mid) and immediately post-protocol (post) 

using a horizontal jump (Figure 4.9). The difference in neuromuscular function from 

the mid-point to pre-protocol were unclear for the Dec5m to Dec15m (p = 0.700), 

Dec5m to Dec5/15m (p = 0.902), Dec5m to Dec15/5m (p = 0.771), Dec15m to 

Dec5/15m (p = 0.726), Dec15m to Dec15/5m (p = 0.890) and Dec5/15m to Dec15/5m 

(p = 0.747) protocol comparisons (Table 4.7). The differences in post neuromuscular 

measures compared to those collected at the mid-point (Table 4.8) were unclear for 

the Dec5m to Dec15m (p = 0.733), Dec5m to Dec15/5m (p = 0.898), Dec15 to 

Dec5/15m (p = 0.410) and Dec15m to Dec15/5m (p = 0.689) comparisons. Measures 

collected at these time points between the Dec5m and Dec5/15m were possibly 

increase (p = 0.242) and a possible decrease in neuromuscular function was observed 

for the Dec5/15m to Dec15/5m (p = 0.193) protocols. The neuromuscular measures 

collected post-protocol compared to pre-protocol measures were unclear for the 

Dec5m to Dec15m (p = 0.534), Dec5m to Dec5/15m (p = 0.498), Dec5m to Dec15/5m 

(p = 0.867), Dec15m to Dec5/15m (p = 0.761), Dec15m to Dec15/5m (p = 0.606) and 

Dec5/15m to Dec15/5m (p = 0.521) comparisons (Table 4.9).   

Figure 4.9. Horizontal jump measures (mean ± SD) for each protocol collected pre, at 

the mid-point and post protocol.   
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Table 4.7. Mid to pre between protocol changes in neuromuscular function, mean 

difference, correlations (95% Confidence Intervals) and effect statistics. 

Protocols 
Mean 

Difference 
(cm)  

95% 
Confidence 

Interval 
p-value 

Probability Thresholds 
(Substantial 

Increase/Trivial/ 
Substantial Decrease) 

(%) 

Inference 

Dec5m – Dec15m 1.8 -8.3 to 12.0 0.700 32/56/12 Unclear 

Dec5m – Dec5/15m -0.5 -9.5 to 8.4 0.902 15/65/20 Unclear 

Dec5m – Dec15/5m 1.4 -9.2 to 12.1  0.771 30/55/14 Unclear 

Dec15m – Dec5/15m -1.3 -9.4 to 6.8 0.726 9/67/24 Unclear 

Dec15m – Dec15/5m -0.4 -7.1 to 56.2 0.890 9/78/13 Unclear 

Dec5/15m – Dec15/5m 1.5 -8.7 to 11.7 0.747 30/57/13 Unclear 
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Table 4.8. Post to mid between protocol changes in neuromuscular function, mean 

difference, correlations (95% Confidence Intervals) and effect statistics. 

 

 

  

Protocols 
Mean 

Difference 
(cm)  

95% 
Confidence 

Interval 
p-value 

Probability Thresholds 
(Substantial 

Increase/Trivial/ 
Substantial Decrease) 

(%) 

Inference 

Dec5m – Dec15m 1.0 -5.4 to 7.4 0.733 16/78/6 Unclear 

Dec5m – Dec5/15m 3.7 -2.9 to 10.3  0.242 46/52/1 
Possibly 
Increase 

Dec5m – Dec15/5m -0.5 -9.1 to 8.0 0.898 13/67/19 Unclear 

Dec15m – Dec5/15m 2.6 -4.0 to 9.2 0.410 32/65/3 Unclear 

Dec15m – Dec15/5m -1.3 -8.3 to 5.7 0.689 6/73/21 Unclear 

Dec5/15m – Dec15/5m -4.2 -10.8 to 2.4 0.193 1/47/52 
Possible 
Decrease 
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Table 4.9. Post to pre between protocol changes in neuromuscular function, mean 

difference, correlations (95% Confidence Intervals) and effect statistics. 

 

 

 

 

 

 

 

 

  

  

Protocols 
Mean 

Difference 
(cm) 

95% 
Confidence 

Interval 
p-value 

Probability Thresholds 
(Substantial 

Increase/Trivial/ 
Substantial Decrease) 

(%) 

Inference 

Dec5m – Dec15m 2.8 -6.9 to 12.5 0.534 40/53/7 Unclear 

Dec5m – Dec5/15m 3.2 -6.9 to 13.3 0.498 43/50/7 Unclear 

Dec5m – Dec15/5m 0.9 -11.0 to 12.9 0.867 29/52/19 Unclear 

Dec15m – Dec5/15m 1.2 -7.3 to 10.1  0.761 25/64/11 Unclear 

Dec15m – Dec15/5m -1.7 -8.9 to 5.4 0.606 5/70/25 Unclear 

Dec5/15m – Dec15/5m -2.6 -11.4 to 6.1 0.521 6/57/37 Unclear 
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4.4 MUSCLE SORENESS 

Muscle soreness was assessed prior to the protocol starting (pre), upon completion of 

the protocol (post) and 24 and 48 hours post-protocol (Figure 4.10). The between-

protocol differences in post to pre muscle soreness measures (Table 4.10) were 

unclear for the Dec5m to Dec15m (p = 0.130), Dec15m to Dec15/5m (p = 0.506) and 

Dec5/15 to Dec15/5m (p = 0.478) protocols. However, the Dec5m to Dec5/15m was a 

most likely increase (p = 0.0003), Dec5m to Dec15/5m (p = 0.019) was a very likely 

increase and Dec15m to Dec15/5m (p = 0.062) was a likely increase. 

Twenty-four hours post to pre-protocol changes in muscle soreness (Table 4.11) 

between the Dec5m to Dec15m (p = 0.080), Dec5m to Dec 5/15m (p = 0.163), Dec15m 

to Dec5/15m (p = 0.875), Dec15m to Dec15/5m (p = 0.470) and Dec5/15m to 

Dec15/5m (p = 0.329) protocols were unclear. On the other hand, there was a very 

likely increase in muscle soreness between the Dec5m and Dec15/5m protocols.  

The between protocol differences in muscle soreness 48 hours post to pre-protocol 

(Table 4.12) were unclear for the following comparisons; Dec5m to Dec5/15m (p = 

0.755), Dec5m to Dec15/5m (p = 0.198), Dec15m to Dec5/15m (p = 0.157), Dec15m 

to Dec15/5m (p = 0.569) and Dec5/15m to Dec15/5m (p = 0.372). However, between 

the Dec5m and Dec15m (p = 0.050) protocols there was a very likely increase in 

muscle soreness.  

The between protocol differences in muscle soreness 24 hours post to immediately 

post-protocol (Table 4.13) were unclear for the Dec5m to Dec15m (p = 0.131), Dec5m 

to Dec15/5m (p = 0.459), Dec15m to Dec5/15m (p = 0.386), Dec15m to Dec15/5m (p 

= 0.484) and Dec5/15m to Dec15/5m (p = 0.128). Conversely, there was a likely 

increase in muscle soreness between the Dec5m and Dec5/15m (p = 0.071) protocols.  

Forty-eight hours post to immediately post between-protocol changes in muscle 

soreness (Table 4.14) were unclear for the Dec5m to Dec5/15m (p = 0.321), Dec5m 

to Dec15/5m (p = 0.258), Dec15m to Dec15/5m (p = 0.484) and Dec5/15m to 

Dec15/5m (p = 0.159) protocols. However, there was a likely increase in muscle 

soreness between the Dec5m and Dec15m (p = 0.070) protocols and a very likely 

decrease between the Dec15m and Dec5/15m (p = 0.041) protocols.  
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The between-protocol changes in muscle soreness 48 hours post to 24 hours post 

(Table 4.15) were unclear for all of the protocol comparisons; Dec5m to Dec15m (p = 

0.905), Dec5m to Dec5/15m (p = 0.312), Dec5m to Dec15/5m (p = 0.659), Dec15m to 

Dec5/15m (p = 0.434), Dec15m to Dec15/5m (p = 0.248) and Dec5/15m to Dec15/5m 

(p = 0.502). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Muscular soreness (mean ± SD) for each protocol collected pre, post, 

24-hours and 48-hours post protocol.  
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Table 4.10. Post to pre between protocol changes in muscle soreness, mean different, 

correlations (95% Confidence Intervals) and effect statistics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protocols 
Mean 

Difference 
(%) 

95% 
Confidence 

Interval 
(%) 

p-value 

Probability Thresholds 
(Substantial 

Increase/Trivial/ 
Substantial Decrease) 

(%) 

Inference 

Dec5m – Dec15m 14.8 -4.7 to 38.3 0.130 89/8/4 Unclear 

Dec5m – Dec5/15m 43 23.3 to 65.8 0.0003 100/0/0 
Most Likely 

Increase 

Dec5m – Dec15/5m 26.5 4.8 to 52.7 0.019 98/1/1 
Very Likely 
Increase 

Dec15m – Dec5/15m 21.6 -1.2 to 49.6 0.062 95/4/2 
Likely 

Increase 

Dec15m – Dec15/5m 8.6 -16.5 to 41.2 0.506 67/15/18 Unclear 

Dec5/15m – Dec15/5m -8.5 -30.0 to 19.5 0.478 17/14/68 Unclear 
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Table 4.11. Twenty-four hours post to pre between protocol changes in muscle 

soreness, mean different, correlations (95% Confidence Intervals) and effect statistics. 

 

Protocols 
Mean 

Difference 
(%) 

95% 
Confidence 

Interval 
(%) 

p-value 

Probability Thresholds 
(Substantial 

Increase/Trivial/ 
Substantial Decrease) 

(%) 

Inference 

Dec5m – Dec15m 33.3 -4.0 to 85.1 0.080 94/3/3 Unclear 

Dec5m – Dec5/15m 25.0 -10.0 to 73.7 0.163 89/5/6 Unclear 

Dec5m – Dec15/5m 42.4 9.7 to 84.8 0.012 99/1/0 
Very Likely 
Increase 

Dec15m – Dec5/15m -3.0 -36.3 to 47.7 0.875 38/12/50 Unclear 

Dec15m – Dec15/5m 10.8 -18.0 to 49.7 0.470 70/13/18 Unclear 

Dec5/15m – Dec15/5m 17.6 -17.0 to 66.9 0.329 79/9/13 Unclear 
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Table 4.12. Forty-eight hours post to pre between protocol changes in muscle 

soreness, mean different, correlations (95% Confidence Intervals) and effect statistics. 

 

  

Protocols 
Mean 

Difference 
(%) 

95% 
Confidence 

Interval 
(%) 

p-value 

Probability Thresholds 
(Substantial 

Increase/Trivial/ 
Substantial Decrease) 

(%) 

Inference 

Dec5m – Dec15m 28.6 -0.0 to 65.3 0.050 96/2/2 
Very Likely 
Increase 

Dec5m – Dec5/15m 3.7 -19.1 to 32.8 0.755 52/19/28 Unclear 

Dec5m – Dec15/5m 13.7 -1.5 to 39.9 0.198 84/10/6 Unclear 

Dec15m – Dec5/15m -15.5 -33.8 to 7.9 0.157 5/7/88 Unclear 

Dec15m – Dec15/5m -7.5 -30.9 to 23.9 0.569 22/15/64 Unclear 

Dec5/15m – Dec15/5m 11.3 -13.5 to 43.2 0.372 74/13/13 Unclear 
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Table 4.13. Twenty-four hours post to immediately post between protocol changes in 

muscle soreness, mean difference, correlations (95% Confidence Intervals) and effect 

statistics.  

 

  

Protocols 
Mean 

Difference 
(%) 

95% 
Confidence 

Interval 
(%) 

p-value 

Probability Thresholds 
(Substantial 

Increase/Trivial/ 
Substantial Decrease) 

(%) 

Inference 

Dec5m – Dec15m 24.6 -7.4 to 67.7 0.131 91/5/5 Unclear 

Dec5m – Dec5/15m 33.4 -2.9 to 83.3 0.071 95/3/2 
Likely 

Increase 

Dec5m – Dec15/5m -24.6 -66.5 to 69.5 0.459 21/5/75 Unclear 

Dec15m – Dec5/15m -14.8 -42.4 to 25.9 0.386 15/9/76 Unclear 

Dec15m – Dec15/5m 7.2 -13.2 to 32.5 0.484 66/18/16 Unclear 

Dec5/15m – Dec15/5m 25.3 -7.3 to 69.4 0.128 91/5/4 Unclear 
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Table 4.14. Forty-eight hours post to immediately post between protocol changes in 

muscle soreness, mean difference, correlations (95% Confidence Intervals) and effect 

statistics.  

 

  

Protocols 
Mean 

Difference 
(%) 

95% 
Confidence 

Interval 
(%) 

p-value 

Probability Thresholds 
(Substantial 

Increase/Trivial/ 
Substantial Decrease) 

(%) 

Inference 

Dec5m – Dec15m 26.5 -2.3 to 63.7 0.070 95/3/2 
Likely 

Increase 

Dec5m – Dec5/15m 13.2 -13.0 to 47.4 0.321 78/11/11 Unclear 

Dec5m – Dec15/5m -32.9 -67.8 to 40.1 0.258 11/3/85 Unclear 

Dec15m – Dec5/15m -21.2 -37.2 to -1.1 0.041 1/2/97 
Very Likely 
Decrease 

Dec15m – Dec15/5m -8.3 -29.6 to 19.4 0.484 18/15/68 Unclear 

Dec5/15m – Dec15/5m 15.9 -6.5 to 43.6 0.159 87/8/5 Unclear 
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Table 4.15. Forty-eight hours post to 24 hours post changes in between protocol 

changes in muscle soreness, mean difference, correlations (95% Confidence 

Intervals) and effect statistics.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protocols 
Mean 

Difference 
(%) 

95% 
Confidence 

Interval 
(%) 

p-value 

Probability Thresholds 
(Substantial 

Increase/Trivial/ 
Substantial Decrease) 

(%) 

Inference 

Dec5m – Dec15m 1.5 -22.4 to 32.7 0.905 45/19/36 Unclear 

Dec5m – Dec5/15m -15.1 -39.6 to 19.3 0.312 12/8/80 Unclear 

Dec5m – Dec15/5m -10.9 -49.2 to 56.2 0.659 29/8/63 Unclear 

Dec15m – Dec5/15m -7.5 -25.0 to 14.2 0.434 14/17/68 Unclear 

Dec15m – Dec15/5m -14.5 -35.5 to 13.4 0.248 9/9/83 Unclear 

Dec5/15m – Dec15/5m -7.5 -27.8 to 18.5 0.502 18/16/66 Unclear 
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5.1 DISCUSSION 

The aim of the current study was to investigate the ability of dRPE to detect changes 

in the physiological demands associated with different deceleration profiles in high-

intensity running protocols. The main findings of this study were that during each of 

the protocols RPE_L (very likely to most likely) and RPE_B (possibly to most likely) 

substantially increased from the first to the last repetition. However, using an 

anchored-based approach, the rate of change in RPE_L and RPE_B between the 

protocols were trivial (likely trivial to most likely trivial) which suggests that the internal 

response to the protocols were similar. On the other hand, muscle soreness was 

elevated 48 hours post the Dec5m protocol compared to that of the Dec15m protocol 

which implies there was a greater level of muscle damage induced from this protocol. 

Comparisons in neuromuscular function demonstrate that overall, there were very few 

substantial differences in measures between the protocols which might suggest that 

this was not successfully manipulated in the protocol design. This data suggests that 

during these exercise conditions, dRPE was not sensitive enough to detect small 

differences in muscular and respiratory demands. Therefore, during certain conditions, 

dRPE may not provide any further information compared to that of RPE.  

To date, no research has been conducted that has investigated the concept validity of 

dRPE within a controlled environment where protocols replicate the demands of team 

sports. Therefore, this study attempted to bridge the gap between the current literature 

which has investigated the concept validity of dRPE within a controlled laboratory 

environment which lacks specificity to the activity profile of team sports (Howatson and 

Milak, 2009) and those studies which have looked at utilizing dRPE as a means of 

monitoring internal load within an applied team sport setting. The latter having not 

investigated the concept validity first before applying dRPE to team sport training. The 

exercise protocols used in this study were designed to mimic high intensity runs with 

a short deceleration (Howatson and Milak, 2009). The aim of the exercise protocols in 

this study were to manipulate the muscular component of dRPE (RPE_L) 

independently by changing the deceleration distance.  A 30 metre running distance 

with a five metre deceleration (Dec5m) was chosen in an attempt to elicit the greatest 

eccentric demand as this best reflects the sprinting and deceleration distance in team 

sports (Lakomy and Haydon, 2004; Howatson and Milak, 2009). To contrast this 

demand, a 15 metre deceleration distance was also chosen with the view that this 
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would not require the same level of eccentric load due to having a greater distance to 

slow down over. The volume and intensity of the protocols were controlled for in the 

experimental design. The volume was controlled for by ensuring each repetition was 

the same distance in length and the intensity was controlled by instructing the 

participants to complete each repetition at 95% of the participants maximum velocity. 

In order to monitor the appropriateness of the protocol manipulation measures of 

muscle soreness, neuromuscular function, sprint performance times and dRPE were 

collected. Differential ratings of perceived exertion were collected immediately after 

each repetition so that the scores would be reflective of the most recent repetition 

performed rather than that of the whole protocol (Foster et al., 2001; Impellizzeri et al., 

2004).  

Overall, the external load measured using MEMS devices demonstrated that the 

Dec5m protocol elicited the greatest peak deceleration compared to the Dec15m 

protocol (p = 0.005). This data suggests that this external load variable was 

successfully manipulated between the protocols which may have increased the 

eccentric demand during the Dec5m protocol. The peak deceleration values reported 

in this study are comparable to the very high intensity (>3.5 m/s2) decelerations which 

have been reported in soccer (Wehbe et al., 2014), rugby union (Cunningham et al., 

2016), American football (Wellman et al., 2015) and rugby sevens (Suarez-Arrones et 

al., 2016).  The number of very high decelerations performed within soccer have been 

reported to be between 16 (attackers) and 32 (midfielders) dependent on playing 

position (Wehbe et al., 2014) which supports the reasoning for completing 20 very high 

intensity decelerations in this study. Whilst the deceleration distances were different 

between protocols in an attempt to increase the muscular load, the volume (distance 

covered during each repetition) of each protocol was controlled for so that it was the 

same between protocols. The total distance calculated by MEMS devices across the 

twenty repetitions was similar between protocols (p = 0.615) which supports the design 

of the exercise protocol. Although the total distance was similar between the protocols, 

the distance covered >7 m/s was substantially different between the protocols. The 

Dec15m protocol had the greatest distance covered above seven metres per second. 

An explanation for this might be that the there was a premature slowing down in the 

Dec5m protocol in an attempt to prepare for the rapid deceleration required at the end 

of the sprint. This would have had the potential to reduce the peak deceleration during 
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these repetitions meaning that the eccentric load associated with stopping over 5 

metres would be less. Comparisons with previous studies (Lakomy and Haydon, 2004; 

Howatson and Milak, 2009) are unavailable as using MEMS to measure the external 

load of the protocols was beyond scope of these studies. The results from this study 

suggest that overall, the broad aim of the experimental design was appropriate as key 

aspects of the external load, such as the volume (e.g. total distance) was controlled 

and other important aspects (e.g. the peak deceleration) was manipulated. Some 

differences in the indications of the intensity of the protocols, i.e, the difference in 

distance covered sprinting between the protocols, may indicate that other aspects of 

the exercise, that are important for the overall demand may not have been as well 

controlled as required. This may have implications for the data collected in this 

investigation.  

Alongside controlling the volume of each protocol in the experimental design, the 

intensity was controlled for by instructing the participants to complete each repetition 

of the protocol at 95% of their max velocity. The importance of maintaining near 

maximal efforts on each repetition was highlighted by Howatson and Milak (2009) as 

when participants run at faster speeds a much larger breaking force is required to be 

able to stop in the deceleration zone. As a result of this, the eccentric muscular 

demand is greater which is important when trying to manipulate the muscular demands 

associated with a task. During the familiarization protocol, on average, the participants 

completed each rep within 94.9 ± 2.3% which suggests that the intensity of each 

repetition was controlled for. However, the familiarization protocol only involved ten 

repetitions of a 20 metre acceleration with a ten metre deceleration. During the main 

exercise protocols the results indicate that changes in 30 metre sprint performance 

from the first to the last repetition were likely increased for the Dec5m (p = 0.025), 

Dec15m (p = 0.008) and Dec15/5m (p = 0.015) protocols and possibly increased for 

the Dec5/15m (p = 0.143) protocol. The increase in performance times across the 

protocols may suggest that the breaking force required to stop was reduced and 

subsequently so was the eccentric muscular demands. This has the potential to have 

adjusted the peripheral (RPE_L) signals as there was a reduction in the force at which 

the contracting muscle is lengthened (Proske and Morgan, 2001). However, the 

average maximum velocity was consistent across all the protocols and there were no 

substantial differences between protocols from the first to the last repetition. This data 
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also supports the fact that the additional distance covered at sprinting speeds during 

the Dec15m protocol compared to the Dec5m protocol occurred after the 30 metre 

acceleration. Therefore, it can be concluded that the intensity of these accelerations 

were controlled for as there were no differences between protocols in maximum 

velocities.  

In the current study the Dec5m protocol showed elevated muscle soreness in 

comparison to the Dec15m protocol when comparing the subjective scores forty-eight 

hours post to pre protocol (very likely increase) and 48 hours post to immediately post 

protocol (likely increase). However, there was no difference between these two 

protocols when comparing 24 hour measures. This suggests that whilst muscle 

soreness was starting to reduce in the Dec15m protocol the Dec5m protocol soreness 

stayed elevated after 48 hours. These finding are in agreement with Thompson et al., 

(1999) and Howatson and Milak (2009) whom both reported elevated muscle soreness 

48 hours post protocol after the Loughborough Intermittent Shuttle Test (LIST) and a 

repeated sprint protocol with a short deceleration respectively. These results suggest 

that the design of the protocols successfully manipulated the eccentric demands as 

seen by the increase in muscle soreness in the Dec5m protocol.  

Changes in neuromuscular function measured using a horizontal jump pre, at the mid-

point and post protocol were unclear between all protocols apart from there was a 

possible increase in neuromuscular function between the Dec5m and Dec5/15m 

protocol and a possible decrease between the Dec5/15m and Dec15/5m protocols. 

These results suggest that overall, there was no substantial difference in 

neuromuscular fatigue between the protocols. Previously, the use of a horizontal jump 

to assess fatigue after soccer match play has been questioned based on its sensitivity 

to detect markers of fatigue compared to other jump tests such as a countermovement 

jump (Thomas et al., 2017). It is unknown as to whether similar results would have 

been shown if a countermovement jump was utilized instead based off the 

recommendations of Thomas et al., (2017). However, the rationale to use a horizontal 

jump was due to the fact that accelerating and decelerating require strength in the 

horizontal axis and, as such, you would expect that these muscles may show signs of 

fatigue after performing these actions in this axis (Castillo et al., 2017). The aim of this 

study was to investigate between protocol changes in horizontal jump to assess 

whether the Dec5m protocol was more peripherally demanding than the others and in 
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this case there were no differences suggesting that there was no difference in 

neuromuscular fatigue between protocols. This would suggest that the design of the 

exercise protocols in this study were not suitable to have manipulated neuromuscular 

function between the protocols. However, it might be possible that the choice of 

neuromuscular fatigue measure was not appropriate for this study.  

Although the above results suggest that the exercise protocols overall were 

successfully manipulated in order to increase the muscular load associated with the 

task this was not reflected in the RPE_L scores between protocols. Overall, there was 

no difference in peripheral (RPE_L) or central (RPE_B) ratings of perceived exertion 

between the protocols using an anchored based approach. However, during all the 

protocols RPE_L and RPE_B increased as the protocols progressed suggesting that 

dRPE is sensitive enough to detect increases in these demands across exercise 

periods albeit there was no difference between protocols. These preliminary results 

suggest that dRPE might not be a sensitive enough measure to detect small 

differences in the muscular and respiratory demands of exercise and so may have 

limited utility to monitor the subjective response to exercise under some conditions.  

Ratings of perceived exertion are a subjective representation of the internal load 

response to training and competition and due to this it is highly individual. In this study 

there was a large variance observed with the dRPE scores and whilst overall there 

was no difference between protocols individual differences were observed. This 

suggests that it may be possible on an individual level dRPE is sensitive enough to 

detect changes. For example, during the Dec5m protocol the RPE_L mean score on 

the 20th repetition was 60 AU. However, the variation in RPE_L scores between the 

participants was a standard deviation of 29 AU. Hopkins (2000) suggests that when 

such individual variations are observed the researcher should look to identify the 

participants characteristics in an attempt to understand what has caused these 

differences between participants. However, as previously discussed in the literature 

review identifying these characteristics which have an effect on the internal load of 

participants is difficult as it can be a magnitude of different factors such as age, genetic 

background and the individuals starting fitness level (Bouchard and Rankinen, 2001; 

Impellizzeri et al., 2005; Gil-Rey et al., 2015a). Also, not only can these characteristics 

differ between individuals but the internal load response to the same exercise stimulus 

can vary markedly between the same individual on different days due to the individuals 
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state of fatigue, illness or psychological wellbeing (Bourdon et al., 2017; Impellizzeri 

et al., 2019). The results from this study highlights the importance of treating each 

player as an individual as the internal demand’s players experience whilst completing 

the same external load can be quite different between each other. Therefore, this is a 

limitation of this current study as analysis was not conducted on an individual level.  

Another limitation of this current study which may have caused confounding results is 

the level of familiarization the participants completed to get accustomed to the dRPE 

scale. It was presumed that the participants were familiarized with the dRPE scale as 

they had previously completed an incremental test and the participants trained and 

competed regularly. Therefore, it was assumed that the participants had been exposed 

to a range of training intensities so that they would have a large perceptual reference 

filter for RPE_L and RPE_B as suggested by Impellizzeri et al., (2004) and Pageaux 

(2016). However, whilst the participants were accustomed to providing an RPE after 

training and matches the participants had only previously provided separate peripheral 

and central ratings during the familiarization protocol which was not a maximal test. 

Thus it cannot be certain that the participants had ever completed an activity where 

they found the muscular demand ‘maximal’ which may have meant their RPE_L scores 

were under or over estimated as the participants had no point of reference to provide 

their current RPE_L scores against (Impellizzeri et al., 2004; Pageaux, 2016). 

Similarly, no dRPE study to date has detailed the process by which the participants 

were familiarised with providing RPE_L and RPE_B ratings. Therefore, this limitation 

needs to be addressed before any further dRPE studies are conducted.  

Further research should include the design of an exercise protocol which exposes 

participants to ‘maximal’ feelings of leg muscle exertion and feelings of breathlessness 

so that participants are suitably familiarised before the concept validity of dRPE can 

be confirmed. Once this has been conducted, further studies should implement this 

familiarisation protocol and then investigate the sensitivity of dRPE during different 

exercise protocols which replicate the demands of team sports on an individual level. 

If the participants have been suitably familiarised more robust conclusions of the 

concept validity of dRPE can be confirmed.  
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5.2 CONCLUSIONS 

In conclusion, the current study successfully designed exercise protocols which 

manipulated the muscular load associated with the task as indicated by the objective 

measures. However, this was not reflected in the subjective internal response of the 

participants when providing RPE_L and RPE_B ratings. Therefore, the data from this 

study suggests that dRPE is not sensitive enough to detect changes between the 

protocols used in this study with this particular cohort of participants. Thus, not 

providing any additional information compared to that of a global RPE when comparing 

group means. However, the variance observed in individual’s internal response to 

these exercise protocols suggest that in some conditions dRPE may provide some 

additional information which may otherwise be masked when collecting a global RPE. 

Nonetheless, this study only investigated the sensitivity of dRPE during a specific 

deceleration-based protocol with a specific cohort of recreational team sport players. 

Therefore, no conclusions can be drawn to the overall sensitivity of dRPE when utilized 

within a wider population under different exercise or sport scenarios. The major 

limitation of this study around the familiarization process means that more robust 

conclusions cannot currently be drawn. Therefore, given the suggested advantages of 

using dRPE as a means of monitoring internal load further studies investigating the 

concept validity of dRPE are warranted but only if the participants have gone through 

a thorough familiarization process beforehand which would address the limitation of 

this current study.  
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