
Robinson, MA, Vanrenterghem, J and Pataky, T

 Sample size estimation for biomechanical waveforms: Current practice, 
recommendations and a comparison to discrete power analysis

http://researchonline.ljmu.ac.uk/id/eprint/14792/

Article

LJMU has developed LJMU Research Online for users to access the research output of the 
University more effectively. Copyright © and Moral Rights for the papers on this site are retained by 
the individual authors and/or other copyright owners. Users may download and/or print one copy of 
any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research.
You may not engage in further distribution of the material or use it for any profit-making activities or 
any commercial gain.

The version presented here may differ from the published version or from the version of the record. 
Please see the repository URL above for details on accessing the published version and note that 
access may require a subscription. 

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Citation (please note it is advisable to refer to the publisher’s version if you 
intend to cite from this work) 

Robinson, MA, Vanrenterghem, J and Pataky, T (2021) Sample size 
estimation for biomechanical waveforms: Current practice, 
recommendations and a comparison to discrete power analysis. Journal of 
Biomechanics, 122. ISSN 0021-9290 

LJMU Research Online

http://researchonline.ljmu.ac.uk/
mailto:researchonline@ljmu.ac.uk


Sample size estimation for biomechanical waveforms: Current

practice, recommendations and a comparison to discrete power

analysis

Mark A. Robinson1*, Jos Vanrenterghem2, and Todd C. Pataky3

1School of Sport and Exercise Sciences, Liverpool John Moores University, UK

2Musculoskeletal Rehabilitation Research Group, Faculty of Movement and Rehabilitation Sciences, KU

Leuven, Belgium

3Department of Human Health Sciences, Kyoto University, Japan

April 13, 2021

*Corresponding Author: Mark Robinson, m.a.robinson@ljmu.ac.uk, +44 151 904 6267

Abstract

Testing a prediction is fundamental to scientific experiments. Where biomechanical experi-

ments involve analysis of 1-Dimensional (waveform) data, sample size estimation should consider

both 1D variance and hypothesised 1D effects. This study exemplifies 1D sample size estima-

tion using typical biomechanical signals and contrasts this with 0D (discrete) power analysis. For

context, biomechanics papers from 2018 and 2019 were reviewed to characterise current practice.

Sample size estimation occurred in approximately 4% of 653 papers and reporting practice was

mixed. To estimate sample sizes, common biomechanical signals were sourced from the literature

and 1D effects were generated artificially using the open-source power1d software. Smooth Gaus-

sian noise was added to the modelled 1D effect to numerically estimate the sample size required.

Sample sizes estimated using 1D power procedures varied according to the characteristics of the

dataset, requiring only small-to-moderate sample sizes of approximately 5-40 to achieve target

powers of 0.8 for reported 1D effects, but were always larger than 0D sample sizes (from N+1 to

>N+20). The importance of a-priori sample size estimation is highlighted and recommendations

are provided to improve the consistency of reporting. This study should enable researchers to

construct 1D biomechanical effects to address adequately powered, hypothesis-driven, predictive

research questions.

Keywords: Statistical power, waveform analysis, hypothesis testing, statistical parametric map-

ping, numerical simulation
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1 Introduction

Testing a prediction is the foundation of frequentist science. A prediction takes the form of a sci-

entifically meaningul effect or relationship that is determined in advance of the experiment by the

researchers. It is then the responsibility of the researchers to choose thresholds of type I (false posi-

tive) and type II error (false negative) they are willing to accept for their experiment and calculate the

sample size required to avoid reaching false conclusions regarding treatment effectiveness. This ensures

that the experiment has sufficient power to detect hypothesised effects, and is not over-powered and

thereby detects inconsequentially small effects, or effects unrelated to the hypothesis.

Undertaking a-priori sample size estimation is a challenge for biomechanics researchers. Meaningful

effect magnitudes are often unknown and measurement variability can be large which inflates the

sample size required. Logistical reasons and time also mean that recruited sample sizes are often small

(Knudson, 2017, Vagenas, Palaiothodorou, & Knudson, 2018). It is therefore perhaps understandable

that sample size estimation is seen somewhat infrequently in the biomechanics literature (Knudson,

2017), as in similar fields (Abt et al., 2020; Lohse et al., 2020). Encouraging good practice and

appropriate sample sizes however is needed irrespective of these challenges (Harrison et al., 2020,

Lakens, 2021). The accurate reporting of statistical power and the data used to conduct a sample size

estimation helps the reader to judge scientific quality and ensure reproducibility. The frequency with

which sample sizes are reported and the characteristics of these calculations in recent biomechanics

studies is not known.

Sample size estimation typically requires specialist software. Matlab, Minitab, G*Power and JASP

all facilitate sample size estimation but all are limited to 0-dimensional (0D, discrete) data. Within

biomechanics, hypotheses are often not specific to discrete data (Pataky, Robinson, & Vanrenterghem,

2013) and therefore 1-dimensional (1D) continua e.g. ground reaction forces, kinematics, kinetics,

EMG, muscle forces are analysed (e.g. Robinson, Donnelly, Tsao, & Vanrenterghem, 2014; De Ridder

et al., 2015; Pincheira, De La Maza, Silvestre, Guzmán-Venegas, & Becerra, 2019; Kipp, Comfort, &

Suchomel, 2019). Suitable 1D analysis methods such as statistical parametric mapping or functional

data analysis (Pataky, 2012, Ramsay & Silverman, 2007) are therefore required for 1D hypotheses

to avoid experimental biases or false positive results (Pataky et al., 2013; Pataky, Vanrenterghem, &

Robinson, 2016). Open source software, power1d, has been developed and applied to biomechanical

scenarios to perform 1D sample size estimations based on simulated idealistic experimental effects

(Pataky, 2017). Our knowledge of the biomechanics literature indicates power1d has been used in

statistical (Serrien, Goossens, & Baeyens, 2019, Naouma & Pataky, 2019) but not yet in experimental

contexts. We therefore believe that specifying 1D effects, sample size estimation for 1D effects, and

comparison to 0D sample sizes requires further consideration and demonstration, enabling biomecha-

nists to better justify sample sizes concomitant to their 1D data analyses.
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For 1D sample size estimation the precise 1D effect of interest has to be specified a priori. This

perhaps conflicts with the exploratory experiments often seen within biomechanics. Whilst exploratory

experiments are necessary for understanding a new research topic or question, the null hypothesis is

often “no effect”, implying that no specific prediction is tested, and thus that no scientific or clinical

meaning is imposed on the experiment in an a priori manner. Confirmatory research, involving specific,

non-null predictions would be scientifically valuable, and complimentary to exploratory results. Sample

size estimation from a 1D predicted effect is more complex than for 0D data (Pataky, Robinson, &

Vanrenterghem, 2018). To encourage researchers to specify a priori 1D effects and conduct 1D power

analysis this paper demonstrates how artificial 1D biomechanical effects of interest can be created,

then uses numerical simulation to conduct sample size estimation, and contrasts these results to a 0D

power calculation.

The aims of this paper are threefold: (1) to evaluate the use of sample size estimation in recent

biomechanics studies, (2) to demonstrate how to estimate sample sizes for representative 1D biome-

chanical effects from the literature, (3) to contrast 1D sample size estimation with traditional 0D power

analysis results. These aims should enable researchers to conduct 1D hypothesis tests for confirmatory

hypotheses.

2 Methods

2.1 Power reporting practice

To provide context for the main aims of this study, and to justify current practice, an audit of research

articles and short communications published in the Journal of Biomechanics in 2018 or 2019 was

undertaken. Specifically the audit sought to determine the frequency of statistical power analysis and

the quality of the reporting. The total number of publications matching the above criteria was 922

(figure 1). An initial search in Science Direct (https://sciencedirect.com) using the terms “hypothesis

OR ANOVA OR regression OR t test” sought to separate experimental studies from other types e.g.

methodological, and reduced the total articles to 653. The boolean “AND power” was added to the

previous search to find experimental studies conducting power analysis. All articles returned in this

search (n=226) were downloaded and stored locally as a full-text PDF. Articles were then full-text

indexed using Adobe Acrobat Pro DC (v.20.009.20067). A subsequent full-text search was conducted

using the boolean search power NOT (power generation OR power absorption OR positive power OR

negative power OR segmental power OR power law OR joint power) which returned 84 articles. The 84

articles were then full-text screened manually to determine if a-priori power analysis was undertaken

(figure 1). Articles that referred to statistical power only in the references section were excluded. Of

these, 29 articles contained a-priori power analysis and characteristics of these papers were extracted
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including the type II error rate, if a clear effect was specified and from existing literature, if the

description was replicable, and the software used.

2.2 Sample size estimation

All analyses were conducted using power1d (v. 0.1.1, https://github.com/0todd0000/power1d, Pataky,

2017) in Python 3.7.6 using the Anaconda distribution (Anaconda Inc, https://anaconda.com).

2.2.1 Process overview

To conduct 1D power analysis using power1d a 1D baseline effect and an alternative effect are required,

representing the null and alternative hypotheses, respectively. Power1d provides a variety of param-

eterised 1D geometries for flexible creation of the baseline and alternative 1D effects. Alternatively

experimentally measured data (e.g. mean curves for two groups) can be used to specify these effects.

The flexibility with which specific 1D features such as minima and maxima can be specified allows

precise alternative (predicted) effects to be generated (figure 2). These 1D effects are combined with

1D random noise for which the noise type (e.g. smooth Gaussian), mean, standard deviation and

smoothness are specified. A baseline (null) and alternative model can then be created to represent the

experiment of interest (figure 3 a-c). Next the power of the experiment can be determined by simu-

lating multiple experiments and generating the 1D test statistic of interest e.g. the t statistic, from

which the maximum t statistic is stored for each one-tailed simulated experiment. Across multiple

experiments these form a t distribution from which the 95th percentile of the null effect, the critical

threshold, can be determined. The proportion of the alternative t distribution exceeding the critical

threshold is then the omnibus power for the experiment. Finally, this process can be repeated for a

range of sample sizes to determine the minimum sample size required to detect the experimental effect

at a given power (figure 3 d-f). The specific requirements of power1d for this process are described

elsewhere (https://spm1d.org/power1d) and supplemented by the availability of code from this paper.

We also include a numerical sample size estimation for 0D data analogous to the above description as

supplementary material.

2.2.2 Modelling 1D effects from the literature

Exemplar 1D effects from the biomechanics literature across a range of signal types were collated and

reported (Bakke & Besier, 2020, Barrios & Willson, 2017, Bovi, Rabuffetti, Mazzoleni, & Ferrarin,

2011, Phan et al., 2017, Gomes, Ackermann, Ferreira, Orselli, & Sacco, 2017, Robinson et al., 2014).

These effects then formed the basis of subsequent 1D and 0D sample size estimations. These studies

were chosen because they reported a 1D effect that could represent a 1D biomechanical hypothesis, for

example clear 1D means for two experimental conditions. Where the data were not directly available,
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1D profiles were digitised using WebPlotDigitizer (v.4.3, https://automeris.io/WebPlotDigitizer), ex-

ported as text data then linearly interpolated to 101 data points. These curves therefore display an

intended likeness rather than direct reproduction of the original results (figure 4). The specific experi-

mental context of the 1D biomechanical effects was not considered further as the aim was to exemplify

1D effects rather than make specific biomechanical conclusions about these datasets. One 1D effect

per dataset was assigned as the null (or baseline) signal.

2.2.3 Simulations to estimate sample sizes

To undertake sample size estimation we created 1D alternative effects and 1D noise curves to repre-

sent the 1D effects and variance from the literature thus making a 1D prediction for these artificial

experiments. All 1D effects were created using the Gaussian pulse and constant waveform shapes

from power1d (Pataky, 2017) and were 101 data points in length. As specific pulse locations and

magnitudes were required for each alternative effect, the code to reproduce all 1D effects is provided

at https://github.com/m-a-robinson/sample-size. Eight smooth Gaussian noise curves also 101 data

points in length were generated for each dataset with the standard deviation parameter matched as

closely as possible to the original dataset based on their reported data. These eight noise curves were

then combined with the 1D effects to form the data for one artificial experiment. The same smoothness

(full width at half maximum, fwhm=20) was used for all datasets as this is a realistic approximation

of smoothness in biomechanical data (Pataky et al., 2016). 1D sample size estimation was conducted

by using Monte Carlo simulation for 5000 one-sample, one-tailed, t-test experiments at sample sizes

from 5-50 in increments of 5 for all datasets. 0D sample sizes were calculated by generating the 1D

standardised effect size, selecting the maximum effect, then calculating the sample size required to

observe the 0D effect with alpha at 0.05, and the desired power at 0.8.

3 Results

3.1 Power reporting practice

From 653 experimental journal articles published in the Journal of Biomechanics in 2018 or 2019,

29 articles or approximately 4% conducted a-priori power analysis. Of the 84 papers that contained

the term “power” 28 papers referred to (statistical) power in the discussion, often in the context of

being underpowered, and 10 papers performed post-hoc power analysis. Extracted characteristics of

the studies using a-priori power analysis are provided (table 1). Overall most studies reported clearly

the effect of interest and this was usually from either unpublished pilot data or previous work from

the literature. Around half of the sample size estimations undertaken were clearly replicable from

the information provided. G*power was the most frequently reported software. From 17 papers that
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reported 1D data, none conducted 1D statistical analysis or 1D power analysis. Elements of poor

practice included providing the required sample size but no indication of how this was determined,

providing effect sizes without sufficient context about their origin, powering the study based on only

one variable from many being reported, and calculating the required sample size but then overpowering

the study. A bibliography containing all papers reviewed is provided (see supplementary material).

Table 1: Reporting evaluation of a-priori power analysis articles (* = one study reported a power of

0.1)

power clear effect published effect replicable software 1D measures 1D power

0.8 (24) Yes (22) Yes (13) Yes (16) G*power (10) Yes (17) Yes (0)

0.95 (1) No (7) No (16) No (13) unknown (19) No (12) No (17)

unknown* (3)

3.2 Sample size estimates

Representative alternative 1D effects from a variety of biomechanical signals were created using

power1d. Numerical simulation of artificial experiments across a range of sample sizes found that

the sample sizes required to achieve a power of 0.8 varied substantially (figure 5). Datasets where

the effect size was large (>1) achieved >0.8 power with small sample sizes (≤ 10). Where effect sizes

were comparatively smaller (<1), 0.8 power was achieved at sample sizes of 25-50. 0D sample size

estimation resulted in a smaller required sample size to achieve 0.8 power compared to the 1D results

in all datasets with the greatest difference being >20 participants.

4 Discussion

The first aim of this paper was to evaluate the use of sample size estimation in recent biomechanics

studies. A-priori sample size estimations were performed infrequently in the biomechanics studies we

evaluated. In those that did perform sample size estimations many lacked the appropriate detail to

be fully transparent or replicable. Other aims of this paper were to estimate sample sizes for artificial

1D effects from the biomechanics literature and to contrast 1D and 0D power analysis results. By

generating alternative 1D effects and simulating artificial experiments across sample sizes we demon-

strated novel sample size estimation results for a variety of 1D biomechanical signals, and illustrated

the disparity between 1D and 0D sample size estimation.
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4.1 Power reporting practice

The observation of infrequent sample size estimations further validates previous calls for researchers

to justify their sample sizes (Knudson, 2017, Harrison et al., 2020, Vagenas et al., 2018, Lakens, 2021).

As a-priori sample size estimations are encouraged as part of a rigourous scientific process (Harrison

et al., 2020, Pataky et al., 2018, Abt et al., 2020), possible explanations for poor adherence to this are:

(1) biomechanics studies are often exploratory, rather than confirmatory and they test a null-effect

rather than an alternative prediction, making specific predictions difficult, (2) the complexity of the

biological system being observed and the number of variables that can be derived from biomechanical

data analysis typically means that a distinction between a primary outcome measure and other data

is not made, (3) fears that the required sample size would conflict with what is possible due to the

temporal, financial or logistical constraints of the experiment, (4) not having to justify sample sizes

has become normalised behaviour in the reporting biomechanics studies, (5) the methods or tools to

calculate required sample sizes for complex biomechanical data do not yet exist, (6) biomechanists

often come from applied scientific fields where training on statistical data analysis may be inadequate.

Regardless of the possible justifications, many of these explanations can be mitigated with appropriate

planning and careful consideration of biomechanics experiments. Researchers, reviewers, and editors

should also require biomechanics studies to meet higher academic standards in respect to sample

size justification. Many insightful resources exist to help researchers justify their sample sizes (e.g.

Batterham & Atkinson, 2005, Knudson, 2017, Lakens, 2021).

Elements of poor practice within studies conducting sample size estimations were found. As infer-

ential statistics and null-hypothesis significance testing are a primary analysis approach within biome-

chanics (Vagenas et al., 2018) the accurate reporting of sample size estimations ensures the maximum

reproducibility and transparency of an experiment. To improve reporting practice we recommend re-

porting the following when a-priori sample size estimation is performed: the statistical test/design for

which the sample size estimation was performed, whether one or two tailed, the variable of interest,

the effect size of interest, the rationale for the effect size of interest, the variability of the effect (if using

a non-standardised effect size), alpha and beta (error rates), the software used and any design specific

requirements. We do not believe this to be unnecessarily complex or prohibitive to researchers. More

specifically we would also encourage researchers to distinguish their primary outcome measure from

other secondary hypotheses and analysis. This allows researchers to power their study appropriately

and avoid any ambiguity with other variables and analyses. Specifying a primary outcome measure

may also then allow future studies to make more precise predictions, progressing towards more confir-

matory/ predictive studies. Once common outcome measures are agreed, core outcome measurement

sets can be developed as is commonplace in clinical trials (Boers et al., 2014).

For a-priori sample size estimation, researchers are required to determine an appropriate effect size.
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One common way to do this is to use published studies (as was done in 45% of reviewed papers) and/or

pilot data. There are however concerns raised about various biases with this approach which leads to

the new study being underpowered (Albers & Lakens, 2018). Alternative justifications of effect sizes

are possible (Lakens, 2021), and include the smallest effect size of interest (Albers & Lakens, 2018),

the minimal detectable effect, or conducting a sensitivity power analysis. At the moment power1d only

permits the latter. Whilst this paper only considers a-priori power analysis, researchers may consider

justifying their sample size based on alternative reasoning such as resource constraints (see Lakens,

2021 for others). Justification of both the sample size and the effect size will improve the transparency

of biomechanics studies.

4.2 Sample size estimation

Analytical sample size estimation is commensurately more complex for 1D data than for 0D data.

Indeed, analytical 1D power analysis is possible only for simple 1D effects and is impossible for ar-

bitrary 1D effects. This paper however has demonstrated that arbitrary 1D effects can be specified

relatively easily to form an alternative (predicted) 1D signal and numerical 1D power analyses, in-

cluding the numerical procedures in power1d, are relatively easy to conduct, and are substantially

more flexible than analytical procedures. Moreover, numerical power analysis converges to analytical

results when the simulated noise follows the analytical approaches presumed variance model (usually

Gaussian), provided a sufficient number of artificial experiments are iteratively conducted, usually

requiring 1,000 to 10,000 iterations for numerical convergence (Pataky, 2017). Considering the vari-

ety of biomechanical datasets and signals chosen, the flexibility with which power1d can specify the

effect shape, magnitude and timing led to convincing artificial representations of these signals. For

biomechanics experiments however, any predicted 1D effect should be considered as biomechanically

plausible not just synthetically possible. The estimated sample sizes (≤ 50) were not of a magnitude

prohibitive for biomechanics experiments. All sample sizes reflected the interactions between the 1D

effect magnitude and the 1D noise as expected. The specification of all 1D noise models was based

on standard deviations matched closely to the original studies. Often however standard deviations

were numerically reported for a 0D effect e.g. a peak, rather than as an average standard deviation

across a 1D curve or as a pooled standard deviation to consider multiple experimental conditions. So

whilst the standard deviations used are informed by the biomechanics experiments they do not ex-

actly match the actual standard deviations required to precisely replicate the experiments. This is not

thought to be a problem for demonstrative purposes as in this study, but illustrates that care should

be taken when choosing the input parameters for 1D sample size estimation and sensitivity analyses

should be undertaken where necessary. As different standard deviations would affect the sample size

estimates additional consideration of the effect of altered standard deviations only is provided (figure
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6). Smooth Gaussian noise was chosen to represent the noise present within biomechanical data as

in previous studies (Woltring, 1985, Wachowiak, Rash, Quesada, & Desoky, 2000, Pataky, Robinson,

Vanrenterghem, & Challis, 2019 however the noise present within biomechanical data is likely more

complex and signal dependent. This is therefore a reason to consider required sample sizes as sam-

ple size estimates rather than calculations, thereby implying some indication of uncertainty remains

present.

Comparing 0D estimated sample sizes to 1D estimated sample sizes showed that 0D sample sizes

were always smaller. This means that if 0D sample sizes are estimated to test a 1D hypothesis the

experiment would almost certainly be underpowered, except if the specified effect was very large. The

interaction between 0D and 1D effect sizes, and sample size is exemplified for one dataset (figure 7).

Researchers are therefore encouraged to specify a 1D effect for their experiment to avoid a type II

error. Ensuring an appropriate sample size should negate type II errors, but multiple testing within

biomechanics studies often will inflate the type I error (Pataky et al., 2016). Careful consideration of the

suggestions in this paper should mitigate the potential for incorrect conclusions within biomechanics

experiments. In this study the 0D sample sizes were only compared to the omnibus power from a 1D

experiment. The omnibus power fully considers the whole of the 1D continuum, that is, it considers

the probability of rejecting the null hypothesis at any continuum location. This therefore means that

the null hypothesis may not always be rejected at the location of the maximum alternative signal.

Power estimates for precise locations within a continuum are possible but were not considered within

this study (see “centre of interest power” and “point of interest power” in Pataky, 2017, Pataky et al.,

2018). Power for hypotheses that pertain to less than the full 1D continuum would further complicate

theoretical comparisons between 0D and 1D power analysis.

Whilst many software options are available for calculating 0D power analysis, options for 1D anal-

ysis are at the moment restricted to the Python package power1d. Although power1d is open-source it

does require some familiarity with basic Python programming. We are currently developing a graphi-

cal interface to power1d, which requires no Python knowledge, and with which full 1D power analysis

can be conducted. Whilst other nD power assessment software is available this is more suited to

neuroimaging applications and it does not provide a means to numerically simulate data to estimate

sample sizes (see Pataky, 2017 for a comprehensive software comparison). Numerical simulation as

used in this study allows researchers to consider both the signal and noise in their original units.

4.3 Limitations

Elements of complexity of 1D power not considered in this study include research design dependence

as all samples in this study were estimated using a one-sample t-test design. We nevertheless note

that power1d supports power analysis for arbitrary experimental designs, including two-sample t-tests,
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regression and ANOVA. This study also considered a single uniform smoothness value (fwhm=20). In

reality datasets have arbitrary smoothness (Pataky, Vanrenterghem, Robinson, & Liebl, 2019), and

greater smoothness will generally cause 1D power results to converge to 0D power results. However,

the smoothness parameter can also be regarded as an implicit component of the effect; just as in 0D

analysis it is typical to specify the effect and not explicitly the standard deviation, in 1D analysis

it may be similarly suitable to regard the modelled effect as implicitly embodying both standard

deviation and the fwhm. In other words, the a-priori modelled effect (and standard deviation) will

never exactly match an experimentally observed effect (or standard deviation). Power analysis for

1D data can in our view be regarded similarly, with an approximate effect used that is used to guide

experimental sample sizes. Regardless, further consideration of the relationship between the standard

deviation, data smoothness and resulting effects should be considered in future work. We regard these

limitations as essential future considerations, but also as largely irrelevant to this paper’s conclusions,

which pertain to a literature-wide need for more robust a-priori sample size estimation.

5 Conclusion

Recent biomechanics studies conducted sample size estimations infrequently and reported them in-

adequately. We used 1D biomechanical effects from the literature to demonstrate the utility of 1D

versus 0D sample size estimation. Using 0D sample size estimation for a 1D hypothesis will almost

certainly result in studies being underpowered. We have provided recommendations for reporting

sample size estimations unambiguously. To facilitate greater clarity in reporting and to encourage

predictive, hypothesis-driven research, researchers should also consider defining a primary outcome

measure. This study should enable researchers to justify sample sizes for 1D biomechanical effects to

address adequately powered hypothesis-driven research questions.
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Figure 1: Narrowing down articles in the Journal of Biomechanics 2018-2019 to those containing a-

priori power analysis.
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Figure 2: Alternative 1D effects created from a vertical ground reaction force curve. The baseline

(black) ground reaction force is combined with the 1D artificial effect (inset) to produce the new 1D

(alternative) “effect”.
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Figure 3: The workflow used to conduct sample size estimation for a 1D effect. 1D effects representing

the null and alternative hypothesis are combined with 1D random noise to represent the artificial ex-

periment of interest with sample means and multiple observations (a-c). Multiple artificial experiments

are simulated (n=10,000), and 20 example t-statistic curves shown for the null and alternative exper-

iments (d). The maximum t statistic is stored for all simulated experiments (e). The t distribution

these experiments create is formed, and the 95th percentile of the null effect is determined (dashed

vertical line). The proportion of the alternative t distribution exceeding the critical threshold is the

omnibus power for the experiment. Repeating this process across a range of sample sizes (n=5:10)

determines the minimum sample size required to achieve 0.8 power (f).
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(a) JCF
Barrios et al. (2017)

(b) GRF
Phan et al. (2017)

(c) EMG
Bovi et al. (2011)

(d) Angle
Bakke & Besier (2020)

(e) Moment
Robinson et al. (2014)

(f) Muscle force
Gomez et al. (2017)

Figure 4: Example 1D biomechanical effects from the biomechanics literature. Each panel shows two

example 1D effects from the same experiment. JCF: Joint Contact Force, GRF: Ground Reaction

Force, EMG: Electromyography
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Figure 5: Real effects from biomechanical datasets (column 1) reproduced artificially in power1d, with

noise (column 2). The 1D effect shows the maximum point (vertical dashed line) at which 0D sample

size was estimated (column 3). The omnibus power from multiple 1D sample size simulations shows

where the sample size exceeds a power of 0.8 (column 4). The 0D sample size required for 0.8 power

is annotated as a yellow dot.
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Figure 6: The biomechanical effect from Barrios et al. (see figure 4a, figure 5 row 1) with varying

noise. The standard deviation (SD) for the null and alternative model is increased from 0.2-0.6 (row 1).

Noise from both models has the same colour. The effect on omnibus power and sample size estimation

is shown underneath (row 2).
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Figure 7: A comparison of 0D vs 1D sample size estimation as a function of effect size (alpha =

0.05, target power 0.8). (a) Three 1D effect sizes for illustration and the null effect (black), (b) a 1D

experimental context with these effect sizes, (c) sample size estimates for 0D vs 1D effects plotted for

a range of 10 different effect sizes each, the sample sizes that correspond to the effect sizes in (a) are

shown as larger markers.
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