

LJMU Research Online

Alam, MA, Islam, P, Subhan, N, Rahman, MM, Khan, F, Burrows, GE, Nahar, L and Sarker, SD

Potential Health Benefits of Anthocyanins in Oxidative Stress Related Disorders

http://researchonline.ljmu.ac.uk/id/eprint/14820/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Alam, MA, Islam, P, Subhan, N, Rahman, MM, Khan, F, Burrows, GE, Nahar, L and Sarker, SD (2021) Potential Health Benefits of Anthocyanins in Oxidative Stress Related Disorders. Phytochemistry Reviews, 20. pp. 705-749. ISSN 1568-7767

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

Potential Health Benefits of Anthocyanins in Oxidative Stress Related Disorders

Md. Ashraful Alam¹, Priota Islam¹, Nusrat Subhan^{1*}, Md. Mizanur Rahman¹, Ferdous Khan¹, Geoffrey E. Burrows², Lutfun Nahar^{3,4} and Satyajit Dey Sarker³

¹Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh

²School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, Locked Bag 588, NSW 2678, Australia.

³Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, United Kingdom

^{3,4}Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic

Corresponding Author

*Dr Nusrat Subhan, Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh, emailrimmi04@yahoo.com

Abstract

Anthocyanins are naturally occurring water-soluble plant pigments belonging to the flavonoids chemical class. The red, blue and purple colours of leaves, flowers and fruits of plants confirm that they are rich sources of anthocyanins. Many *in vivo* and *in vitro* studies reveal that anthocyanins have different health beneficial effects such as antioxidant, antidiabetic, anti-inflammatory, anti-obesity, antihypertensive and anticancer properties. Major benefits of anthocyanin administration are owing to their potent anti-inflammatory and antioxidant activities. Recent investigations have revealed that anti-inflammatory activities of anthocyanins follow the inhibitory pathways of NF-κB-mediated decline of inflammatory cytokines production. Inhibition of the anti-inflammatory pathways also influences the modulation of arteriolar disorders and cardiovascular complications due to anthocyanin administration. Moreover, anthocyanins improve diabetes, obesity and cancer pathology by inhibiting NF-κB-mediated inflammatory pathways. However, considerable variations in activities do exist among structurally diverse anthocyanins. This review appraises the recent literature regarding the health benefits of anthocyanins and their molecular mechanisms in various oxidative stress related pathophysiological conditions.

Key words: Anthocyanins, cancer, diabetes, inflammation, obesity and oxidative stress.

Introduction

The healthy human body always maintains a good balance between free radical production and antioxidant systems. Free-radicals are species that exist independently, having one or more unpaired free electrons and may react with other molecules in cells by taking or supplying electrons. The imbalanced production of reactive oxygen species (ROS) or reactive nitrogen species (RNS) and their limited degradation through compromised enzymatic defence may turn into oxidative stress (García-Sánchez et al., 2020), playing an important in the initiation, development and progression of several non-communicable diseases such as obesity, diabetes (Pang et al., 2020; Yaribeygi et al., 2020), cardiovascular disease, neurodegenerative diseases (Bhatt et al., 2020), as well as the modulation of gut bacterial environment (Hu et al., 2020), and bone metabolism (Bernatoniene and Kopustinskiene, 2018). Researchers also suggest that oxidative stress and free-radical generated reactions are prime contributors to degenerative processes like aging (Speer et al., 2020; Lobo et al. 2010; Kattoor et al. 2017). Major ROS/RNS species include superoxide anion radical ($O_2^{\bullet-}$), hydroxyl radical (HO $^{\bullet}$), nitric oxide radical (NO $^{\bullet}$) and other molecular species such as hydrogen peroxide (H₂O₂), hypochlorous acid (HOCl), peroxynitrite (ONOO⁻) etc. are generated endogenously in cells and tissues (Valko et al., 2007). Several other oxygen species such as singlet oxygen ($^{1}O_{2}$), lipid radicals (R^{\bullet} , RO^{\bullet} , ROO^{\bullet}), and hydroperoxyl radical (HOO[•]) are also contributing to the oxidative stress in biological system which may produce on later part and are linked to ROS/RNS mediated reactions (Phaniendra et al., 2015). The species $O_2^{\bullet-}$, H_2O_2 , and HO^{\bullet} are generated from molecular oxygen by one-, two-, and three-electron reduction of molecular oxygen primarily from the mitochondrial electron transport chain (Phaniendra et al., 2015; Pospíšil et al., 2019). Other sources of ROS/RNS species are the nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase) in phagocytes, myeloperoxidase in neutrophil, xanthin oxidase system, nitric oxide synthase system and cytochrome p450 phase II metabolizing enzyme system etc. (Di Meo et al., 2016).

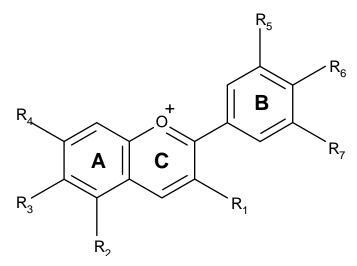
Endogenous enzymatic antioxidants such as superoxide dismutase (SOD) (removes O_2^{\bullet}), catalase (decomposes H_2O_2) and glutathione peroxidase (GPX) may serve as the primary defence against oxidative stress and related disorders (Ighodaro and Akinloye, 2018; Kurutas, 2016). Several other non-enzymatic antioxidants such as glutathione, lipoic acid, albumin, uric acid, and bilirubin, are also some contributing agents against the free radical mediated oxidative stress (Kuciel-Lewandowska et al., 2020). Exogenous antioxidants are also available from dietary sources such as ascorbic acid, retinol, α -tocoferol, carotenoids, polyphenolic compounds (flavonoids and phenolic acids), and trace elements such as zinc, manganese, selenium, and chromium (Bouayed and Bohn, 2010; Singh et al., 2010). Deficiency of these antioxidants in diet may also lead to degenerative diseases in human (Bouayed and Bohn, 2010).

Anthocyanins, natural dietary antioxidants that provide protective effects against harmful effect of oxidative stress (Ullah et al. 2019), have become one of the key topics for research linking to diabetes, obesity, inflammation, cancer and degenerative neurological disorders (Fallah et al., 2020; Pandey and Rizvi 2009). These polyphenolic compounds are capable of trapping free-radicals in the human body. Plants are rich sources of natural antioxidants such as phenolic acids, flavonoids and anthocyanins. Anthocyanins are an important group of pigments that are water-soluble and belong to the flavonoids family. They give the distinctive red, purple and blue pigments in most fruits and vegetables

(Fallah et al., 2020; Passeri et al. 2016). Anthocyanins display numerous potential health benefits and they have been investigated recently for their use as possible clinical treatments for many human disorders (Bakuradze et al. 2019). They have both anti-inflammatory and antioxidant properties, which have proven effectiveness in *in vivo* and *in vitro* models of various chronic disease conditions such as cardiovascular disease, ophthalmic disorders, obesity, type II diabetes and atherosclerosis (Toufektsian et al. 2008; Seymour et al. 2009; Basu et al. 2010; Kalt et al. 2010; Mauray et al. 2012; Blesso, 2019).

This review appraises recent studies on the health benefits of anthocyanins that include their roles in cardiovascular diseases, neurodegenerative diseases, visual acuity, cancer, diabetes and several other health-related issues.

Methodology:


In order to assess the current data on anthocyanin, a comprehensive search of the scientific literature was conducted using Google Scholar, PubMed, Web of Knowledge and Science Directory with the key words or phrases 'anthocyanin', 'anthocyanin in diabetes', 'anthocyanin in inflammation', 'anthocyanin in cardiovascular diseases', 'anthocyanin in cancer' and 'anthocyanin in neurological disorder'. Furthermore, the reference lists of the selected literatures have also carefully analysed to clarify information. Our exploration indicated that the most of the research done in the last decade was focused on the effect of dietary anthocyanins in minimizing health risks linked to various diseases. This information was then tabulated and discussed critically to evaluate the mechanism of anthocyanins in various cellular processes. A further prospective research goal related to anthocyanin molecules was also warranted.

Chemistry of Anthocyanins

Anthocyanin structurally belongs to the flavonoid class of natural products (Nahar and Sarker, 2019). Free anthocyanins are rare in fruits and vegetables and generally, they form glycosides, with several carbohydrates such as arabinose, galactose, glucose, rhamnose or xylose, which are attached to an aglycone anthocyanin nucleus (Harborne and Grayer 1988; Mazza and Francis 1995; Khoo *et al.* 2017; Salehi et al., 2020). Anthocyanins have a unique ability to form flavylium cations that distinguish them from other flavonoids (Ullah *et al.* 2019). Unlike other flavonoids, the positive charge makes anthocyanins more stable in acidic environments, such as in the stomach (Mazza and Francis 1995). The anthocyanidins are the aglycone or de-glycosylated forms of anthocyanins, including cyanidin, delphinidin, malvidin, pelargonidin, delphinidin and pelargonidin) (**Figure-1, Table 1**). The glycosides of the three non-methylated anthocyanidins (cyanidin, delphinidin and pelargonidin) (**Figure-1, Table 1**) are widespread in nature, being 80, 69 and 50% abundant in pigmented fruits and flowers, respectively. The most plentiful anthocyanins in edible parts of plants are cyanidin, followed by pelargonidin, peonidin, delphinidin, petunidin and malvidin (Kang *et al.* 2003; Su et al., 2019). The sugar parts of anthocyanins are usually attached to the anthocyanidin skeleton through the C_3 hydroxyl group. Numerous anthocyanins vary in the basic anthocyanidin skeleton, and the extent and position by which the glycosides attach to the skeleton (**Table 2**) (Harborne and Grayer 1988). Structural diversities among

anthocyanins render significant differences in their physicochemical characters implicating their various pathways of absorption (Prior and Wu 2006; Bonesi et al., 2020).

The intensity of colour of anthocyanins depend on pH and the presence of chelating metal ions, mainly occurring as blue, purple or red colour (Ibrahim *et al.* 2011). Flavylium cation is red at pH 1-3, at pH 5 the resultant carbinol *pseudo* base is colourless, while at pH 7-8 (**Figure 2**), the blue to purple quinoidal is formed (Harborne and Williams 2001). The cationic and polyphenolic nature of anthocyanins and their metabolites initiate various cellular responses among which the polyphenolic nature is mainly responsible for their strong free-radical scavenging and antioxidant activities, and thus produce their pharmacological effect.

Figure 1: Basic structure of anthocyanidin. It has two benzoyl rings (A and B) which are connected by a heterocyclic (C) ring. Glycosides are attached through the R_1 hydroxyl group.

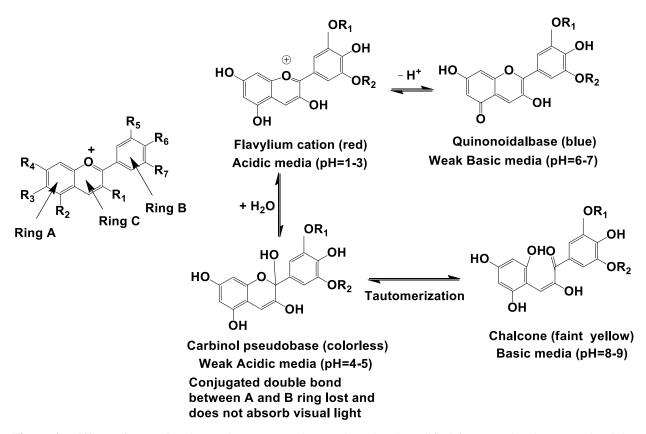
Table 1. Various groups present in anthocyanidin ring structure.

	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	Colour
Common Anthocyanidins*				1			1	
Cyanidin	-OH	-OH	-H	-OH	-OH	-OH	-H	Orange-red
Delphinidin	-OH	-OH	-H	-OH	-OH	-OH	-OH	Bluish-red
Pelargonidin	-OH	-OH	-H	-OH	-H	-OH	-H	Orange
Peonidin	-OH	-OH	-H	-OH	-OCH ₃	-OH	-H	Orange-red
Petunidin	-OH	-OH	-H	-OH	-OH	-OH	-OCH ₃	Bluish-red
Malvidin	-OH	-OH	-H	-OH	-OCH ₃	-OH	-OCH ₃	Bluish-red
6-Hydroxylated Anthocyanidins		1	1	1	1		1	1
6-Hydroxycyanidin	-OH	-OH	-OH	-OH	-OH	-OH	-H	Red
6-Hydroxydelphinidin	-OH	-OH	-OH	-OH	-OH	-OH	-OH	Bluish-red
6-Hydroxypelargonidin (aurantinidin)	-OH	-OH	-OH	-OH	-H	-OH	-H	Orange
Methylated Anthocyanidins		1		1	1		1	
5-Methylcyanidin	-OH	-OCH ₃	-H	-OH	-OH	-OH	-H	Orange-red
5-Methyldelphinidin (pulchellidin)	-OH	-OCH ₃	-H	-OH	-OH	-OH	-OH	Bluish-red
7-Methylmalvidin (hirsutidin)	-OH	-OH	-H	-OCH ₃	-OCH ₃	-OH	-OCH ₃	Bluish-red
5-Methylmalvidin (capensinidin)	-OH	-OCH ₃	-H	-OH	-OCH ₃	-OH	-OCH ₃	Bluish-red
7-Methylpeonidin (rosinidin)	-OH	-OH	-H	-OCH ₃	-OCH ₃	-OH	-H	Red
5-Methylpetunidin (europinidin)	-OH	-OCH ₃	-H	-OH	-OCH ₃	-OH	-OH	Bluish-red
Others	I	1	1	1	1		1	1
Apigeninidin	-H	-OH	-H	-OH	-H	-OH	-H	Orange
Luteolinidin	-H	-ОН	-H	-OH	-OH	-OH	-H	Orange
Tricetinidin	-H	-OH	-H	-OH	-OH	-OH	-OH	Red

*Common anthocyanidins present in naturally occurring important foods

Source	Anthocy	yanins and their derivatives		Origin	References	
	Aglycones	Glycoside types	Acyl			
Acai berry	Cyn, Mav, Plg, Pen	3-O-glucoside.		Fruit pulp	(Poulose <i>et al.</i> 2012)	
(Euterpe oleracea)	Cyn, Mav, Plg, Pen					
Bilberry	Cyn	3-O-arabinoside, 3-O-galactoside, 3-O-		Fruit	(Madhavi et al. 1998;	
(Vaccinium		glucoside			Cooke et al. 2006)	
myrtillus)						
Blackberry	Cyn	3-O-arabinoside, 3- O-rutinoside		Fruit	(Skrovankova et al.	
(Rubus fruticosus)	Cyn, Plg, Pen	3- <i>O</i> -glucoside.			2015)	
Black carrot	Cyn, Pen	3-O-xylosylgalactoside,		Root	(Montilla et al. 2011)	
(Daucus carota)	Cyn, Pen, Plg.	3-O-xylosyl (feruloylglucosyl)				
	Cyn, Pen.	galactoside				
		3-O-xylosyl (sinapoylglucosyl)				
		galactoside				
Black currant	Cyn, Del	3-O-rutinoside		Fruit	(Abo El-Ella and	
(Ribes nigrum)					Bishayee 2019)	
Black raspberry	Cyn	3-O-sambubioside, 3-O-glucoside, 3-O-		Fruit	(Overall <i>et al.</i> 2017)	
(Rubus occidentalis)		(xylosyl) rutinoside,				
	Cyn, Plg	3-O-rutinoside				
Blueberry	Cyn, Del, Mal.	3-O-arabinoside, 3-O-galactoside, 3-O-		Fruit	(Nile and Park 2014;	
(Vaccinium	Pen, Pet.	glucoside,	3-0-		Skrovankova et al.	
corymbosum)		3-O-arabinoside, 3-O-galactoside	acetylglucoside		2015)	
Cabbage (Brassica	Del, Plg, Pen, Pet			Flower	(Ahmadiani et al. 2019;	
oleracea)	Cyn	3-O-diglucoside-5-O-glucoside			Burton-Freeman et al.	
					2019)	

Table 2. Anthocyanins and their derivatives in natural food sources.


Source	Anthocya		Origin	References	
	Aglycones	Glycoside types	Acyl		
Cherry sweet	Cyn, Del, Plg, Pen, Pet.			Fruit	(Mulabagal et al. 2009;
(Prunus avium) and	Cyn, Plg, pen.	3-O-glucoside, 3-O-rutinoside,			Burton-Freeman et al.
sour (Prunus	Cyn	<i>O</i> - 3- <i>O</i> -glucosylrutinoside, 3- <i>O</i> -			2019)
cerasus)		sophoroside			
Chokeberry (Aronia	Cyn, Plg	3-O-arabinoside,		Fruit	(Kulling and Rawel
melanocarpa)	Cyn	3-O-glucoside, 3-O-galactoside, 3-O-			2008)
		xyloside			
Concord grape (Vitis	Cyn, Del, Pet, Pen	3-O-glucoside, 3-O-(coumaroyl)	3-O-acetyl and	Fruit	(Overall <i>et al</i> . 2017)
labrusca)	Cyn, Del	glucoside,	coumaroyl		
		3,5- <i>O</i> -(coumaroyl) diglucoside,			
Cranberry	Cyn, Pen, Plg, Mal,	3-O-arabinoside, 3-O-galactoside,		Fruit	(Skrovankova et al.
(Vaccinium	Del	3- <i>O</i> -glucoside			2015; Abo El-Ella and
macrocarpon)	Cyn, Pen,	3-O-galactoside			Bishayee 2019;)
	Pet				
Eggplant (Solanum	Del	3-O-glucoside, 3-O-rutinoside, 3-O-		Fruit	(Sadilova et al. 2006)
melongena)		rutinoside 5-O- glucoside			
Elderberry	Cyn	3-O-glucoside, 3-O-sambubioside, 3-O-		Fruit	(da Silva <i>et al.</i> 2019)
(Sambucus nigra)		sambubioside-5-O-glucoside			
Grapes (Vitis	Cyn, Del, Mal, Pen.	3- <i>O</i> -glucoside,		Fruit	(Mazza and Francis
vinifera)	Pet.	3,5-O-diglucoside			1995; Grimes et al.
					2018)
Jamun berry	Cyn, Del, Mal, Pen,	-		Fruit	(Aqil et al. 2012)
(Syzygium cumini)	Pet.				

Source	Anthoc	yanins and their derivatives		Origin	References	
	Aglycones	Glycoside types	Acyl			
Lingonberry	Cyn	3-O-arabinoside, 3-O-galactoside, 3-O-		Fruit	(Isaak <i>et al.</i> 2017)	
(Vaccinium vitis-		glucoside				
idaea)						
Pigmented rice	Cyn, Pen	3-O-glucoside		Seed	(Yawadio et al. 2007)	
(black and brown)						
(Oryza sativa)						
Pigmented wheat	Cyn, Del, Pen, Mal	3- <i>O</i> -glucoside		Seed	(Zhu 2018)	
(blue and purple)						
(Triticum aestivum,						
Triticum durum)						
Pomegranate	Cyn, Del, Pen	3-O-glucoside		Fruit	(Sharma <i>et al.</i> 2017)	
(Punica granatum)	Cyn, Del	3,5-O-diglucoside				
Purple cauliflower	Cyn	3-O-sophoroside-5-O-glucoside, 3-O-	3-O-(coumaryl-	Flower	(Chiu et al. 2010)	
(Brassica		sophoroside-5-(malonyl) glucoside,	caffeyl)			
<i>oleracea</i> var. botryti		glucoside-5-malonyl) glucoside,				
s)		3-O-(coumaryl)sophoroside-5-O-				
		glucoside				
Purple corn	Cyn, Plg, Pen	3-O-glucoside, 3-6-O-malonyl-		Seed	(Aoki et al. 2002)	
(Zea mays)		glucoside				
Purple-fleshed sweet	Cyn, Pen,	3-O-sophoroside-5-O-glucoside, 3-O-		Root	(Su et al. 2019)	
patato (Ipomoea		(6,6-dicaffeoyl sophoroside)-5-O-				
<i>batatas</i>)	Cyn	glucoside.				

Source	Antho		Origin	References	
	Aglycones	Glycoside types	Acyl		
		<i>p</i> -hydroxybenzoylated-3-sophoreside-5-			
		glucoside), Caffeoylated-3-O-			
		sophoroside-5-O-glucoside			
Radish (Raphanus	Cyn,			Root	(Zhang <i>et al.</i> 2019b)
sativus)	Cyn, Pet	3-O-glucoside, 3-O-rutinoside-5-			
		glucoside, 3,5-O-diglucoside			
Raspberry (Rubus	Cyn	3-O-arabinose, 3-O-rutinoside, 3-O-		Fruit	(Probst 2015;
idaeus)		sophoroside			Skrovankova et al.
					2015)
Red onion (Allium	Cyn,	3-O-glucoside, 3-O-laminaribioside, 3-		Root	(Fossen and Andersen
cepa)		O-(6-malonyl-glucoside), 3-O-(6-			2003; Frond et al. 2019)
		malonyl- laminaribioside)			
Sweet potato	Pen	3- <i>O</i> -glucoside.		Root	(Lim et al. 2013)
(Ipomoea batatas)	Cyn, Pen, Plg	3-O-sophoroside-5-O-glucoside.			
	Cyn, Pen	3-p-hydroxybenzoylsophoroside-5-O-			
		glucoside			
Strawberry	Plg	3-O-arabinoside, 3-O-		Fruit	(Giampieri et al. 2012;
(Fragaria \times		malonylglucoside, malylglucoside,			Skrovankova et al.
ananassa)		dissacharide (hexose + pentose)			2015)
	Cyn, Plg,	acylated with acetic acid.			
	Pen	3-O-glucoside, 3-O-galactoside, 3-O-			
		rutinoside			
		3-O-glucoside			

Source	Anthocya		Origin	References	
	Aglycones	Glycoside types	Acyl	-	
Violet pepper or	Del	3-O-glucoside, 5-O-glucoside, 3-O-	3-O-coumaroyl-	Fruit	(Sadilova et al. 2006)
capsicum (Capsicum		rhamnoside, 3-O-rutinoside, 3-O-	hexoside		
annuum)		caffeoyl rutinoside			

Cyn=Cyanidin, Plg= Pelargonidin, Mal= Malvidin, Pen=Peonidin, Pet=Petunidin, Del=Delphinidin, and `_'= No glycoside

Figure 2. Different forms of anthocyanins vs. pH values. Adopted and modified from previously reported articles (Borkowski *et al.* 2005; Marco *et al.* 2011).

Pharmacokinetics and Bioavailability

Recent studies on the bioavailability of anthocyanins suggest that they are rapidly absorbed from the small intestine and the stomach (Mcghie and Walton 2019). Anthocyanins are quickly metabolized resulting in low concentrations of the parent compounds being present in plasma within a few hours of ingestion (Woodward *et al.* 2009; Azzini *et al.* 2010). In general, anthocyanins are absorbed intact as glycosides with their absorption and elimination being relatively quick. The absorption and subsequent metabolism of black raspberry (*R. occidentalis*) anthocyanins were investigated in humans, where high doses of anthocyanins were taken (2.69 g/day) (Stoner *et al.* 2005). Four anthocyanins from the raspberries were observed in plasma within 2 h of oral berry administration and their elimination was found to follow first-order kinetics. They were excreted, both as intact anthocyanins and as methylated derivatives. Similar results were recorded in bilberry (*V. myrtillus*) studies conducted in rodents (He *et al.* 2006). Maximum concentrations of anthocyanins were found in plasma within 1 to 2 h, and maximum quantities in urine appeared in 4 h. Overall, less than 1% of these compounds were absorbed and excreted in urine.

The biological activities of anthocyanins are closely correlated to their absorption and metabolism (Tian *et al.* 2019). Acylation and glycosylation patterns decrease the anthocyanin bioavailability; however, glycosidases present in the gastrointestinal tract may hydrolyze anthocyanins into anthocyanidins, thereby enhances their biological potential but

reduces their stability. The presence of a glucose substituent compared to an arabinose or galactose on the cyanidin and peonidin anthocyanidins present in cranberry (*V. macrocarpon*) juice appeared to increase their bioavailability as a percentage of the administered dose (Milbury *et al.* 2010).

Anthocyanins exist in the blood circulation and in urine in various forms such as intact, methylated, glucuronide derivatives and/or sulphate conjugated forms (Mazza *et al.* 2002; Felgines *et al.* 2003; Kay *et al.* 2005; Kay *et al.* 2007), reaching peak plasma concentrations 1 to 3 h after consumption. This depends on the individual compound along with the food matrix. The metabolites may remain in urine for up to 24 h and can retain their basic anthocyanin structure (Kay *et al.* 2005; Kay *et al.* 2007). Pharmacokinetic evidence indicated that parent glycosides and glucuronide derivatives were conspicuous in the bloodstream for 0 to 5 h after ingestion but became increasingly methylated after 6 to 24 h, which suggested that the bioactivity of anthocyanins was likely altered from metabolic transformation (Kay and Mazza, 2008). Various *in vivo* studies have suggested that the food matrix had a significant effect on the absorption and metabolism of anthocyanins. The bioavailability of an individual anthocyanin may vary in xenobiotic metabolism in the liver, GIT and other tissues. Human polymorphisms have been reported in the genes for catechol-*O*-methyltransferase, glucuronosyl transferase and glutathione *S*-transferases (Lampe and Chang 2007). The variation of human gut microflora may also have an important role in anthocyanin bioavailability (Zhu *et al.* 2018; Tian *et al.* 2019). Anthocyanins may be metabolized by microbiota occurring in the GIT and produce smaller, and more bioavailable end-products (Zhu *et al.* 2018).

Gut microflora are able to metabolize anthocyanins Chen *et al.* 2018; Zhu *et al.* 2018; (Li *et al.* 2019; Tian *et al.* 2019). By the use of a bacterial preparation imitating the normal human microbiota population, Williamson *et al.* (2009) were able to demonstrate the conversion of larger polyphenols to phenolic acids, which had similar antiinflammatory effects as the parent compounds. In addition, smaller phenolic acids and other anthocyanin metabolites possessed greater chemical and microbial stability, suggesting that they may have an important role in the antioxidant activity and physiological effects observed in many studies (Keppler and Humpf 2005).

Health Benefits of Anthocyanins

The chemical nature of anthocyanins reveals that they have beneficial roles in the control of many diseases. Their beneficial roles have been found significant in various pathological conditions such as heart disease, neurodegenerative diseases, in improving visual acuity, cancer, diabetes and obesity etc. Some of the health benefits of anthocyanins are discussed below.

Antioxidant properties of anthocyanins

The beneficial effect of anthocyanins primarily relies on their antioxidants and free-radical scavenging properties. Antioxidant activity of anthocyanins were tested in various assay systems such as ferric reducing antioxidant potential (FRAP), trolox equivalent antioxidant capacity (TEAC), oxygen radical absorbance capacity (ORAC), peroxynitrite ('ONOO') scavenging activity, lipid peroxidation inhibition, ability to bind heavy metals such as copper, iron and zinc and the free-radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) (Kahkonen and Heinonen 2003; Yang and Zhai 2010; Ge and Ma 2013). However, antioxidant activities of anthocyanin derivatives are greatly dependent on anthocyanin chemical structure. Thus, various anthocyanin derivatives possess different capacities for scavenging diverse radioactive oxygen species (ROS) and radioactive nitrogen species (RNS). Moreover, induction of antioxidant enzymes such as glutathione-*S*-transferase (GST), glutathione reductase (GR), glutathione peroxidises (GPx) and superoxide dismutases were also observed due to anthocyanins (Turner 2009, Huang *et al.* 2016b).

Cyanidin 3-O-glycosides (arabinoside, galactoside, glucoside and rutinoside) and delphinidin 3-O-rutinoside were purified from various berries and *in vitro* investigation was performed to evaluate their effect on lipid peroxidation induced either by UV irradiation, Fe(II) ions or scavenging of 2,2'-azobis (2-amidinopropane) dihydrochloride peroxyl radicals at the concentrations of 15-20 µM (Gabrielska and Oszmiański 2005). Delphinidin-3-rutinoside produced a higher antioxidant activity against Fe(II)-induced liposome oxidation than cyanidin-3-rutinoside (Gabrielska and Oszmiański 2005). However, in terms of Fe(II)-induced liposome oxidation the antioxidant activity of the anthocyanins was higher than that of trolox (Gabrielska and Oszmiański 2005). Huang et al. (2016b) investigated malvidin and its two glycosides on cell lines to evaluate the effects on the ROS, heme oxygenase-1 (HO-1), superoxide dismutase (SOD) and xanthine oxidase-1 (XO-1). Malvidin glycosides displayed a greater inhibitory effect than malvidin in inhibiting xanthine oxidase activity; however, malvidin glycosides showed synergistic effects in HO-1 production in the cells (Huang et al. 2016b). Gabrielska and Oszmiański (2005) and Huang et al. (2016b) found the antioxidant activity in anthocyanin glycosides though they performed different antioxidant methods and at different concentrations. The peonidin-based anthocyanin components in purple sweet potato (Ipomoea batatas) were investigated in 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and superoxide anions scavenging assay system (Sun et al. 2018). Significant increase of DPPH radicals and superoxide anions scavenging activity were observed with an increase in anthocyanin concentration (Sun et al. 2018). Moreover, these anthocyanin components also showed good potential in reducing Fe^{2+} chelating ability and total power activity (Sun *et al.* 2018).

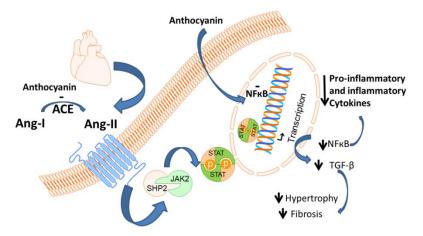
Anti-Inflammatory Properties of Anthocyanins

Anthocyanins also possess anti-inflammatory properties. Inflammation is an integral part of tissue regeneration and wound healing due to infection. However, several pathways are considered responsible for inflammation such as nuclear factor-kappa B (NF-κB)-mediated cytokines production, cyclooxygenase mediated pathway, mitogen activated protein kinase activity, inducible nitric oxide synthase (iNOS) expressed signalling, LPS-induced macrophage activation, endothelial adhesion molecules expression (Chen *et al.* 2017; Liu *et al.* 2017). Various reports suggest that anthocyanins have shown promising results in inhibiting most of the inflammatory signalling cascade and limiting inflammation mediated tissue damage (Pereira *et al.* 2017; Huang *et al.* 2018; Valenza *et al.* 2018). Anthocyanin, or anthocyanin-extract, inhibited NF-κB through down-regulation of mitogen activated protein kinase (MAPK) pathways and reduced the expression of some pro-inflammatory cytokines *in vitro* (Pergola *et al.* 2006; Vendrame and Klimis-Zacas 2015). Malvidin and its glycosides inhibited high glucose-induced expression of intercellular adhesion molecule-1 (ICAM-1) and NF-κB in human retinal capillary endothelial cells and significantly

increased cell viability (Huang *et al.* 2018). The anthocyanin-rich fraction of Portuguese blueberries (*V. corymbosum*) showed down regulation of cyclooxygenase-2 (COX-2) and iNOS in colon tissue homogenates (Pereira *et al.* 2017). The strong inhibition of COX-2 expression in colon tissue appears to be a key anti-inflammatory mechanism (Pereira *et al.* 2017).

Several anthocyanins such as delphinidin-3-*O*-glucoside, cyaniding-3-*O*-glucoside and petunidin-3-*O*-glucoside showed decreased NF- κ B activities via mitogen activated MAPK pathways (Afaq *et al.* 2005b; Jeong *et al.* 2013). Mulberry (*Morus australis*) anthocyanins such as cyanidin and pelargonidin showed decreased tumour necrosis factor alpha (TNF- α) and Interleukin 6 (IL-6) levels in animals fed a high fat diet (Wu *et al.* 2013). Joo *et al.* (2018) found that cyanidin collected from red Chinese cabbage (*Brassica rapa*) also inhibited TNF- α -induced NF- κ B. Black soybean (*Glycine max*) extract, rich in delphinine and petunidin, decreased the TNF- α and IL-6 level in high fat diet fed animals (Kim *et al.* 2015).

Anthocyanins in Cardiovascular Diseases


The development of cardiac and vascular dysfunction are attributed to the generation of free radicals from various sources such as mitochondrial electron transport chain, angiotensin II (ANG-II) mediated NADPH oxidase system, xanthin oxidase and inducible nitric oxide synthase (Münzel et al., 2017). Free radicals and reactive oxygen species may contribute to the cardiomyocyte loss in the heart and destroy the endothelial cells in the blood vessel as well as leading to cellular signalling for hypertrophic responses. Previous reports suggest that antioxidant treatment may ameliorate oxidative stress and cardiac remodelling in oxidative stress (Alam, 2019; Ulla et al., 2017). A strong relationship has been found between oxidative stress protection and the role of anthocyanins in cardiovascular diseases. Key findings of anthocyanin and its derivatives for cardiovascular benefits are summarized in Table 3. In one study, four anthocyanins were isolated from elderberries and incorporated into the cytosol and plasmalemma of endothelial cells to examine any protective roles, as endothelial dysfunction is part of the initiation and development of vascular disease (Youdim et al. 2000). The test result revealed that anthocyanin could be incorporated into endothelial cells and that significant protection was evident against oxidative stress. Endothelium-dependent vasorelaxation was provided by delphinidin in the rat aorta, giving a pharmacological benefit that can be compared with the polyphenolics of red wine from Cabernet-Sauvignon grape variety (Andriambeloson et al. 1998). Feeding of purified anthocyanins or anthocyanin rich extracts from black currant (R. nigrum) or elderberry (S. nigra) showed little influence on the fatty acid patterns or cholesterol levels in the liver of a rat model, but the pigments were able to spare vitamin E (Frank et al. 2002). Capillary permeability has been found to be reduced by administration of crude bilberry (V. myrtillus) anthocyanin extracts, both orally and via intravenous injection (Kong et al. 2003). Prevention of heart attacks through administration of red grape juice or wine have been found to be strongly linked to the roles of these anthocyanin rich preparation in enhancing the capillary strength and permeability, enhancing the nitric oxide (NO) release, reducing inflammation and inhibiting the platelet aggregate formation (Folts 1998). In addition, administration of black currant (R. nigrum) extract containing high concentration of anthocyanins, resulted in endothelial-dependent vasorelaxation in rings of rat aorta in vitro (Nakamura et al. 2002). Also, when rats were pretreated to be more susceptible to oxidative damage and fed with anthocyanin-rich extracts, a significant reduction in lipid peroxidation indices and decreased DNA damage were observed (Ramirez-Tortosa *et al.* 2001). Anthocyanins of blueberries (*V. corymbosum*) such as malvidin and its glycosides (malvidin-3-galactoside and malvidin 3-*O*-glucoside) increased the levels of HO-1 and SOD in endothelial cells followed by a decrease in ROS and XO-1 (Huang *et al.* 2016b). The effects of cyanidin 3-*O*-glucoside, delphinidin 3-*O*-glucoside, and pelargonidin 3-*O*-glucoside were investigated on mitochondrial respiratory chain complex I activity in rat hearts, subjected to ischemia for 45 min, which provides evidence that anthocyanins may regulate energy metabolism in ischemia-induced inhibition of ATP production after ischemia (Skemiene *et al.* 2015).

Postmenopausal women who participated in an Iowa Women's Health study showed significant reduction in mortality from the cardiovascular diseases (CVD) after being treated with strawberry (Fragaria x ananassa) extracts for a 16 year follow up period (Mink et al. 2007). Blueberries-enriched diet also produced a significant decrease in coronary heart diseases related mortality in a study model adjusted for age and energy (Ahmet et al. 2009). Red wine intake has been shown to reduce CVD mortality in several studies (Rimm et al. 1991; Klatsky 2001). A consistent doseresponsive cardio-preventive effect has been suggested in an analysis of wine consumption relative to CVD risk (Di Castelnuovo et al. 2002). Red wine has proven to have greater beneficial effects on lipid metabolism than white wine, probably due to its increased phytochemical content (van Velden et al. 2002). There have been significant reductions in blood pressure, inflammatory status, ischemia, and lipid levels in patients with clinically diagnosed vascular diseases when given relatively low-dose anthocyanin therapy (Aviram et al. 2004; Sumner et al. 2005; Gorinstein et al. 2006; Naruszewicz et al. 2007). Commercially available grape juice (10 mL/kg) can markedly inhibit platelet activity and experimental coronary thrombosis in vivo (Demrow et al. 1995). Corn-derived anthocyanins resulted in the myocardium being less vulnerable to ischemia reperfusion injury, in both *in vivo* and *ex vivo* studies, as compared with the anthocyanin-free control (Toufektsian et al. 2008). A previous report suggests that anthocyanins containing purple barley extracts (pigmented genotypes of Hordeum vulgare) inhibited angiotensin converting enzyme (ACE) significantly, which is a crucial enzyme for hypertension and oxidative stress development in the heart (Lee et al. 2013). Delphinidin and cyanin showed interruption of the renin-angiotensin system mediated signalling pathway by inhibiting the ACE activity and decreasing production of mRNA (Parichatikanond et al. 2012). Anthocyanins from Hibiscus sabdariffa (delphinidin- and cyanidin 3-O-sambubiosides) inhibited ACE enzyme activity by competing with the substrate for the active site (Ojeda et al. 2010).

Anthocyanins may be effective in improving endothelial function through the adjustment of NO levels. Bilberry (*V. myrtillus*) and chokeberry (*A. melanocarpa*) and other anthocyanin-rich extracts can prevent loss of endotheliumdependent and NO mediated relaxation in porcine arteries *in vitro* (Bell and Gochenaur 2006). Another report suggests that delphinidin enhances NO release and endothelial nitric oxide synthase (eNOS) phosphorylation (Martin *et al.* 2003). A recent investigation showed that cyanidin 3-*O*-glucoside prevented a rise of blood pressure in spontaneously hypertensive rats (Aloud *et al.* 2018). Cyanidin 3-*O*-glucoside affects the interaction between soluble guanylyl cyclase and eNOS, thus increasing production of cyclic guanosine monophosphate (cGMP) by regulating phosphorylation of eNOS and protein kinase B (Akt) (Xu *et al.* 2004). Moreover, anthocyanin rich extract of purple barley grain showed potent *in vitro* inhibitory activity of angiotensin converting enzymes (Lee *et al.* 2013). A cross-sectional study reported that a higher intake of anthocyanins is associated with lower arterial stiffness (Jennings *et al.* 2012). *A. melanocarpa* extract rich in anthocyanins showed significant decreases in blood pressure in patients suffering from metabolic syndrome (Broncel *et al.* 2010).

Grape products associated with other foods containing polyphenols protect the heart from oxidative stress and inflammation, and activating novel proteins, e.g. Sirtuin 1 that prevent cellular senescence (Dohadwala and Vita 2009). Malvidin 3-*O*-glucoside inhibits NF- κ B in bovine arterial endothelial cells which was also involved in suppression of pro-inflammatory mediators (Paixao *et al.* 2012). Malvidin also inhibited the ICAM-1, monocyte chemo-attractant protein-1(MCP-1) and vascular cell adhesion molecule-1 (VCAM-1) expression that was induced in endothelial cells by TNF- α (Huang *et al.* 2014). Human umbilical vein endothelial cells, when treated with anthocyanins, resulted in the regulation of cholesterol distribution by interfering with recruitment of TNF receptor-associated factors-2 in lipid rafts, thus inhibiting glycoprotein CD40-induced pro-inflammatory signalling (Atalay *et al.* 2003). Delphinidin can reduce the degree of necrotic and apoptotic cell death in cultured cardiomyocytes and also the infarct size after ischemia in rats. The process was mediated by inhibition of activators and signal transducers of transcription-1 (Cines *et al.* 1998). In this study, purple rice (*O. sativa*) extract prevented the rise of toll-like receptor-4, NF- κ B and transforming growth factor- β (TGF- β) expression in heart as well as reduced activation of phospho extracellular signal regulated kinases-1/2, basic fibroblast growth factor and urokinase plasminogen activator in the heart of a diabetic group (Chen *et al.* 2016).

Anthocyanins may also protect against the production of adhesion molecules induced by activated platelets. An investigation involving optimal platelet function revealed that anthocyanins and their colonic metabolites inhibited thrombin peptide–induced, receptor-activating platelet aggregation but had no influence on the reactivity of platelets when strong agonists such as ADP and collagen were present (Liang *et al.* 2006). The beneficial effect of polyphenols on the suppression of platelet-mediated thrombosis was reported previously. Fractions from purple grapes (*V. vinifera*) containing delphinidin inhibited whole-blood aggregation, indicating a possible mechanism for the improvement of CVD (Freedman *et al.* 2001).

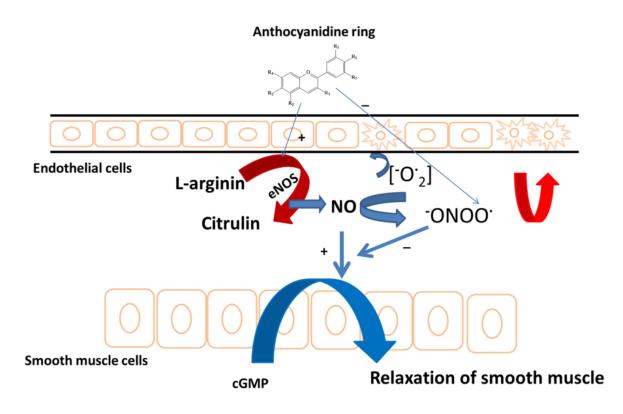
Figure 3: Schematic representation of anthocyanin mediated prevention of inflammation, hypertrophy and fibrosis signal in the heart. Angiotensin-II is the regulating factor for the development of hypertrophic signal in the heart through activation of Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathway which may stimulate the transforming growth factor beta (TGF- β) and fibrosis in the heart. Moreover, anthocyanins such as delphinidin, malvidin 3-*O*-glucoside, cyanidine may inhibit the angiotensin-II mediated pathway and nuclear factor kuppa B (NF-κB) to reduce the pro-inflammatory and inflammatory cytokines.

Increased levels of C-reactive protein (CRP) due to low-grade chronic inflammation can be considered an independent risk factor for CVD (Ellulu *et al.* 2017). Among adults in the United States, a significant inverse association between anthocyanin intakes and serum CRP was found upon analysis of the national health and nutrition examination survey data (Chun *et al.* 2008). Data from the United States department of agriculture flavonoid databases also indicated that anthocyanidin intakes were inversely linked with serum CRP concentration (Chun *et al.* 2008). By using sweet cherries (*Prunus auiun*) that were anthocyanin-rich, a recent clinical study showed a decrease in serum CRP level after four weeks of intervention (Carluccio Maria *et al.* 2003). Based on this discussion a possible mechanism for anthocyanin mediated prevention of inflammation, hypertrophy and fibrosis signal in the heart has been proposed in **Figure 3 and Figure 4.**

Table 3. Function of anthocyanin rich natural extracts and anthocyanins in the prevention of cardiovascular complications and diseases

Food extracts	Model	Dose	Experimental Outcomes	Reference
containing				
anthocyanins				
Anthocyanins	Human aortic culture	1 mg/mL used for cell	-Endothelium-dependent vasorelaxant	(Youdim et al.
	cardiomyocytes	cultured experiments	activity.	2000)
			-Reduces the degree of apoptotic and necrotic	
			cell death and also the infarct size after	
			ischemia mediated by the inhibition of signal	
			transducers and activators of transcriptional	
			factors.	
Anthocyanin rich extract	In vitro ACE	IC ₅₀ 8.77 mg/mL	-Have antioxidant activity and potent	(Lee et al. 2013)
of purple barley grain	inhibition		angiotensin I-converting enzyme inhibitory	
(pigmented genotypes of			capacity.	
Hordeum vulgare)				
Anthocyanins and	Endothelioma cell	50 to 250 µg/mL	-Inhibits CD40-induced pro-inflammatory	(Atalay <i>et al.</i> 2003)
colonic metabolites	line		signaling,	
			-Protect against production of adhesion	
			molecule induced by activated platelets.	
Extracts of elderberry	64 porcine coronary	0.005–5 mg total	-Prevent loss of endothelium-dependent and	(Bell and
(Sambucus nigra),	arteries were isolated	anthocyanins/L	NO mediated relaxation.	Gochenaur 2006)
bilberry (Vaccinium	and performed in			
<i>myrtillus</i>), and	vitro study			
chokeberry				
(Aronia melanocarpa)				

Food extracts	Model	Dose	Experimental Outcomes	Reference
containing				
anthocyanins				
Blackcurrant extract	Human endothelial	Orally intake 3% (with	-Up-regulated eNOS mRNA levels and NO	(Horie <i>et al.</i> 2019)
	cells	or without) blackcurrant	synthesis both in vitro human endothelial cells	
	and 10 female	extract for 3 months	and in vivo ovariectomized rats.	
	Sprague-Dawley			
	ovariectomized rats			
Blueberries	Pulmonary arterial	50, 100, and 200 mg/kg	-Increased the Early/Late ratio of blood flow	(Turck et al. 2020)
	hypertension in rats.	via oral gavage for 5	across the tricuspid valve and tricuspid	
	Forty-eight male	weeks	annular phase systolic excursion.	
	Wistar rats in 7		-Decreased total reactive species	
	groups		concentration and lipid oxidation, reduced	
			activity of nicotinamide adenine dinucleotide	
			phosphate oxidase and expression of xanthine	
			oxidase.	
			-Increased the activity of superoxide	
			dismutase and restored sulfhydryl content	
Blueberry	Transverse aortic	0.5 g/kg of blueberry	-Treatment markedly reduced asymmetric	(Hu et al. 2020)
anthocyanin-enriched	constriction	anthocyanin enriched	dimethylarginine (ADMA) concentration.	
extract	(TAC)-induced	extract was	-Significantly ameliorated heart weight, left	
	myocardial	administered daily by	ventricular weight, myocardial dysfunction,	
	dysfunction in 30	oral gavage for 6	left ventricular hypertrophy and fibrosis.	
	male mice	consecutive weeks		


Food extracts	Model	Dose	Experimental Outcomes	Reference
containing				
anthocyanins				
Blueberry (Rabbiteye	80 diet induced	Orally intake 6.4 g/kg	-Reduced diastolic and systolic blood pressure	(Shi et al. 2019)
blueberries Vaccinium	obese C57BL/6 mice	body weight/ day of	in diet-induced obese mice.	
ashei) supplement	were divided into	blueberries for 8 weeks	-Prevention of heart attacks by reducing	
	eight groups $(n = 10)$		inflammation, enhancing capillary	
			permeability and strength, inhibiting	
			formation of platelets and enhancing release	
			of NO.	
Black currant (Ribes	Male Sprague-	The thoracic aorta was	-Endothelial-dependent vasorelaxation.	(Nakamura et al.
nigrum) extract	Dawley rats	removed from the rats		2002)
		and induced 10-30		
		µg/mL of black currant		
		extract		
Black mulberry (Morus	50 male Sprague-	25 and 50 mg/kg/day	-Significantly reduced total cholesterol, low-	(Jiang et al. 2017)
nigra) fruit extract	Dawley rats divided	via intraperitoneal route	density lipoprotein-cholesterol and	
	into 5 groups (n=10)	for 6 weeks	triglyceride levels and reduced atherosclerotic	
			lesions.	
Cyanidin 3-O-glucoside	Spontaneously	10 mg/ kg/day gavage	-Reduced blood pressure and cardiac	(Aloud et al. 2018)
	hypertensive rats	for 15 weeks.	hypertrophy.	
	(SHRs)			
Chokeberry (A.	72 male Wistar rats	Orally approx. 0.8 mg	-Improved cardiovascular structure and	(Bhaswant et al.
melanocarpa) and purple	divided 6 groups	/kg/day for 16 weeks	function reduced systolic blood pressure,	2017)
maize (Z. mays)	each contained 12		decreased plasma triglycerides and total	
	rats		cholesterol compared to high-fat diet rats.	

Food extracts	Model	Dose	Experimental Outcomes	Reference
containing				
anthocyanins				
Commercial grape juice	47 Adult mongrel	Ranges from 2 to 10	-Inhibit platelet; activity and experimental	(Demrow et al.
	dogs of either sex	mL/kg intravenous	coronary thrombosis in vivo.	1995)
		infusion.		
Hibiscus	Two-kidney-one-clip	15, 30, or 60 mg/200 g	-Serum ACE activity and plasma angiotensin	(Nurfaradilla et al.
sabdariffa aqueous	(2K1C) model of	body weight; orally for	II level were significantly reduced.	2019)
extract	hypertension in	2 weeks	- Reduced blood pressure.	
	42 rats seven groups			
	(n=6/group)			
Maize (Z. mays)	62 male Wistar rats	Special diet containing	-Reduced vulnerability of myocardium to	(Toufektsian et al.
	divided into 2 groups	20% anthocyanins rich	ischemia reperfusion injury in both ex vivo	2008)
		or anthocyanins free	and <i>in vivo</i> studies.	
		diet taken orally for 8		
		weeks		
Pure delphinidin	64 male Sprague-	Ventricular myocytes	-Protection from heart treatment was linked	(Scarabelli et al.
	Dawley rat's left	isolated from the rats	with reduced NF-kB expression.	2008)
	coronary artery	and applied $10 \mu M$ pure		
	isolated	sample to cultured		
		myocytes 2 h prior to		
		the hypoxic injury and		
		during reoxygenation		
Red Chinese cabbage (B.	40 male ApoE ^{-/-}	150 or 300 mg/kg/day	-Reduced: (i) plaque formation, (ii) infiltration	(Joo <i>et al.</i> 2018)
rapa)	mice subdivided into	(27 or 54 mg cyanidin	of leukocytes, (iii) concentrations of blood	

Food extracts	Model	Dose	Experimental Outcomes	Reference
containing				
anthocyanins				
	5 groups each	/kg/day) were fed by	inflammatory cytokines which lowered the	
	consisted of 8 mice	gavage for 12 weeks	risk of vascular inflammatory diseases.	
Anthocyanidins	34489	1%, 4% and <1% of	-Reduction in CVD mortality.	(Mink et al. 2007)
(blueberries,	Postmenopausal	total consumption of		
strawberries, red wine)	women	food one time/week for		
		16 years follow up		
Anthocyanin-rich	A double-blind,	2 dietary achievable	-Improved endothelial function, systemic	(Curtis et al. 2019)
blueberry	parallel RCT, 138	blueberry oral intakes	arterial stiffness, and attenuated cyclic	
	eligible aged adults	equivalent to 1/2 and 1	guanosine monophosphate concentrations.	
		cup/day (75/150 g) for 6		
		months		
Blueberries anthocyanins	63 healthy male	300 mg anthocyanins,	-Dose-dependent improvement of endothelial	(Rodriguez-Mateos
	volunteers	equivalent to 200 g of	function in healthy humans measured by flow-	<i>et al.</i> 2019)
	randomized, double-	fresh blueberries for 1	mediated dilation.	
	blind, parallel	month		
	controlled trial			
Blue honeysuckle,	A double-blind,	Oral drink containing	-The 400 mg dose elicited significantly lower	(Bell and Williams
cyanidin-3-O-glucoside	counterbalanced,	100 mg, 200 mg, and	diastolic blood pressure and heart rate.	2019)
	crossover	400 mg anthocyanins		
	intervention	for 1 week		
	study carried in 20			
	older adults, aged			
	62-81 years			

Food extracts	Food extracts Model Dose		Experimental Outcomes	Reference
containing				
anthocyanins				
Commercial red wine	Human	25 g (approximately 2	-Reduction in CVD mortality.	(Klatsky 2001)
		standard drinks)/ day		
Concord grape juice	40 men with mild	Orally intake 5.5 ml/kg	-Decreased systolic blood pressure both in	(Dohadwala and
supplementation (Vitis	hypertension	body weight/day split	SHRs and in hypertensive humans and also	Vita 2009)
vinifera) juice or wine		over two servings per	improved aortic elasticity in stroke-prone	
		day, for 8 weeks	SHRs.	
Freeze-dried bilberry (V.	50 ST-segment	Orally 40 g/day,	-A significant improvement was found in	(Arevstrom et al.
myrtillus) as a dietary	elevation myocardial	equivalent to 480 g	walk test and blood lipid profiles were altered	2019)
supplement	infarction patients	fresh bilberries for 8	within the bilberry group that could	
		weeks	potentially translate the reduction of CVD.	
New Zealand	Ten adult healthy	Orally 1.87 mg total	-Acute ingestion of a single dose of	(Barnes et al. 2020)
blackcurrant extract	male	anthocyanins/kg	blackcurrant extract maintained forearm blood	
		bodyweight for 1 week	flow and forearm vascular resistance during	
			an extended period of sitting.	
New Zealand	14 older adults,	600 mg/day for 1 week	-Decrease in systolic and diastolic blood	(Cook et al. 2020)
blackcurrant extract	randomized, double-		pressure.	
	blind, placebo-			
	controlled, cross-			
	over design			
V. arctostaphylos, berry	Randomized	3-month intake of	-Systolic blood pressure and diastolic blood	(Kianbakht and
hydro-alcoholic extract	placebo-controlled	400 mg extract capsule	pressure decreased significantly.	Hashem-Dabaghian
	trial in	three times daily		2019)

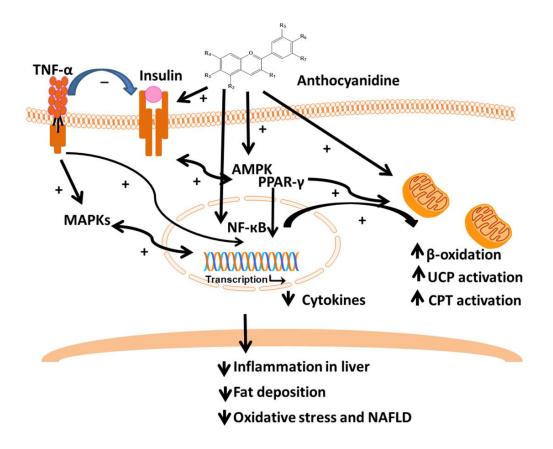
Food extracts	Model	Dose	Experimental Outcomes	Reference
containing				
anthocyanins				
	overweight/obese 50			
	hypertensive patients			

Figure 4: Schematic representation of anthocyanin mediated prevention of oxidative stress in endothelial cells and relaxation of smooth muscle in blood vessels. Endothelial nitric oxide (eNOS) regulates the production of nitric oxide (NO) in the endothelium which is a signalling molecule responsible for vasodilation and vascular tone. Superoxide can directly interact with the NO and produces peroxynitrite radicles ('ONOO'). These peroxynitrite radicles may trigger endothelial cell destruction and causes vascular dysfunction. Anthocyanins such as cyanidin 3-*O*-glucoside may directly interact with superoxide to scavenge them or may increase the cyclic guanosine mono phosphate (cGMP) level to relax the smooth muscle of blood vessels.

Anthocyanins in diabetes and obesity

Many recent studies suggest that eating fruits and vegetables, especially those rich in polyphenols, reduce the occurrence of type-2 diabetes, a condition associated with insulin resistance (Anderson and Polansky 2002; Landrault *et al.* 2003; Anderson *et al.* 2004; Lachin and Reza 2012; Putta et al., 2018). Our previous report also showed that antioxidant compounds prevented the oxidative stress and associated complications in insulin resistance and obesity (Alam et al., 2016). In this part, we discussed that anthocyanins and natural fruits and vegetables rich in anthocyanins may influence and modulate the diabetes condition by improving insulin resistance, improved glucose absorption in cellular level, prevented glucose absorption by inhibiting key enzymes such as alpha amylase and beta glucosidase, decreased cholesterol level by increasing lipid metabolism and lowered inflammatory states in the adipose tissues. **Table 5** summarizes the beneficial effects of anthocyanins in diabetes and obesity. Insulin resistance is a disorder, where there is inadequate stimulation of glucose transport in skeletal fat and muscle by insulin, and it also enhances

hepatic glucose production. Anthocyanins and anthocyanidins were found to protect pancreatic β -cells from glucoseinduced oxidative stress in several studies (AI-Awwadi *et al.* 2005; Jayaprakasam *et al.* 2005). The glycoside and dimethoxy ether of leucopelargonidin, isolated from the bark of the Indian banyan tree (*Ficus bengalensis*), have shown significant hypolipidemic, hypoglycaemic and serum insulin-raising effects in moderately diabetic rats, being comparable with the effects of glibenclamide (Cherian *et al.* 1992; Augusti *et al.* 1994; Daniel *et al.* 2003). In addition, *Cornus* fruits which are a rich source of anthocyanins have been reported to possess anti-diabetic activity (Yamahara *et al.* 1981; Seeram *et al.* 2002). White skin sweet potato resulted in improved diabetes, glucose tolerance, hyperinsulinemia and hyperlipidaemia, as well as lowered free fatty acids in Zucker fatty rats (Kusano *et al.* 2001). Recent investigation has shown that purple sweet potatoes (*I. batatas*) have also improved diabetes (Qin *et al.* 2019). Anthocyanins improved glucose stimulated glucose absorption and insulin secretion in INS-1E and human hepatoma cell (HepG2) cells (Luna-Vital and Gonzalez de Mejia 2018). It was also suggested that anthocyanins from purple corn significantly reduced gluconeogenesis by suppressing phosphoenolpyruvate carboxykinase expression and AMPK phosphorylation in HepG2 cells (Luna-Vital and Gonzalez de Mejia 2018). Mulberry (*Morus alba*) extract containing anthocyanins also improved glucose uptake, utilization, increased glycogen formation and diminished the insulin resistance in HepG2 cells (Yan *et al.* 2016).


Anthocyanins (Lachin and Reza 2012) especially pelargonidin-3-*O*-galactoside and its aglycone, pelargonidin was able to increase insulin secretion by selectively inhibiting COX-2 enzyme (Zhang *et al.* 2004). The study suggested that cherries (*Prunus* genus), grapes (*V. vinifera*) and other anthocyanin containing berries might have a role in the prevention of type-2 diabetes. Anthocyanin extracts showed potent α -glucosidase inhibitory activity, suppressing an increased postprandial glucose level in some *in vitro* and animal studies (Matsui *et al.* 2001; Matsui *et al.* 2004). Cyanidin and its glycosides showed inhibitory activities of intestinal α -glucosidase and pancreatic α -amylase *in vitro* and also showed synergistic effect with acarbose (Akkarachiyasit *et al.* 2010). α -Glucosidase and pancreatic lipase enzyme inhibition was associated with anthocyanins isolated from whole berries and skin of Muscadine grapes (*V. vinifera*) (You *et al.* 2011). Extracts from the pulp from several sweet cherry (*P. avium*) cultivars showed α -glucosidase enzyme inhibition (Goncalves *et al.* 2017). Black chokeberry (*A. melanocarpa*) extracts also showed α -amylase and lipase/enzyme inhibition (Worsztynowicz *et al.* 2014).

Diabetes results in various microcirculatory disorders. Many of them may occur before microangiopathic lesions begin to form thickening of capillaries in many areas such as the eye and are assumed critical in the pathogenesis of microcirculatory complications involved with diabetes. The number of leucocytes sticking to the venular endothelium and microvascular permeability are increased in the diabetic microangiopathic condition (Valensi *et al.* 1997; Valensi *et al.* 1998;). Delphinidin chloride showed a reduction of leucocytes adhering to the venular vessels and increased microvascular permeability in diabetic hamsters (Bertuglia *et al.* 1995). Several flavonoids, including anthocyanosides, have been effective against experimentally induced capillary filtration (Gabor 1972; Parmar and Ghosh 1977). In one animal study, it was shown that anthocyanosides can improve and even normalize capillary filtration of albumin (Cohen-Boulakia *et al.* 2000). Endothelium-dependent vasorelaxation by different vasodilator

agonists is reduced in various conditions including diabetes (Griffiths and Smith 1972). One of the mechanisms that resulted in dysfunction of the endothelium was a decrease in the release of nitric oxide (NO) (Barton *et al.* 1997). Extracts from red wines, other grape products and various plant polyphenols (mainly anthocyanins) were found to produce endothelium-dependent vasorelaxation, probably through NO release or due to enhanced biological activity of NO (Fitzpatrick *et al.* 1993; Fitzpatrick *et al.* 1995; Andriambeloson *et al.* 1998). A combination of anthocyanins of bilberry (*V. myrtillus*) was reported to have pharmacological and biological properties, including vasorelaxation and prevention of hypertension (Mykkänen *et al.* 2014).

Increased levels of triglyceride (hypertriglyceridemia) were strongly associated with the insulin resistance syndrome, with obesity being strongly associated with insulin resistance. Thus, a reduction in insulin resistance is important in preventing the development of type-2 diabetes. It was demonstrated that cyanidin 3-O-glucoside-rich purple corn may improve high fat diet-induced insulin resistance in mice (Tsuda et al. 2003). Consumption by diabetic patients of pomegranate ((P. granatum)) juice resulted in antioxidative effects in their serum and reduced the oxidative stress in their monocytes/macrophages levels. These changes were attributed specifically to anthocyanins (Gil et al. 2000; Rosenblat et al. 2006). Extracts of anthocyanin and procyanidins increased high-density lipoprotein (HDL) cholesterol levels while decreasing triglycerides in rats (Al-Awwadi et al. 2005). A recent investigation showed that delphinidin effectively modulated lipid metabolic gene expression in human HepG2 Cells and reduced triglyceride accumulation in vitro (Parra-Vargas et al. 2018). However, delphinidin failed to change body weight gain, energy intake, histological abnormalities, hyperglycemia or insulin resistance elicited by the high fat high carbohydrate diet (Parra-Vargas et al. 2018). Another report suggested that cyanidin and delphinidin consumption mitigated high fat diet-induced obesity, dyslipidaemia, insulin resistance and oxidative stress followed by the inhibition of NF-kB and Jun N-terminal kinases (JNK) activation as well as protein tyrosine phosphatase-1B overexpression (Daveri et al. 2018). Blackberries containing 57% malvidin and 33% petunidin or peonidin increased mitochondrial respiration thus reducing metabolic damage related to a high-fat diet (Skates et al. 2018). Blueberry (V. corymbosum and V. ashei) containing anthocyanins were responsible for the reduction of glucose levels, triglyceride, cholesterol and leptin in high fat diet fed C57BL/6 mice (DeFuria et al. 2009; Wu et al. 2016a). Red cabbage (Brassica oleracea) and red cabbage microgreen (were harvested without roots, shipped overnight with specialized clamshell containers) supplementation reduced lowdensity lipoprotein and cholesterol in high fat diet fed C57BL/6 mice (Huang et al. 2016a). Mulberry (M. australis) and sweet cherry (*P. avium*) extract rich in cyaniding prevented the inflammatory cytokines (e.g. $TNF-\alpha$, IL-6, iNOS and NF-KB) and improved insulin resistance in high fat diet fed mice (Wu et al. 2016b). Black soybean (G. max) extract also showed decreased triglyceride and cholesterol as well as reduced cytokine production in high fat diet fed rats (Kim et al. 2015). Black soybean (G. max) also showed reduced triglyceride and cholesterol level in overweight and obese Korean adults (Lee et al. 2016). A recent investigation suggested that raspberry (R. idaeus) anthocyanin consumption elevated GPx and serum SOD activities as well as fecal butyric acid levels which can ameliorates diet induced obesity by alleviating oxidative stress (Wu et al. 2018). Raspberry (R. idaeus) anthocyanin consumption also reduced hepatic lipid and serum profiles, while markedly down-regulating the expression of TNF α , IL-6 and NF- κ B

genes (Wu et al. 2018). Blue berry anthocyanins showed altered mitogen-activated protein kinase and NF-κBmediated stress signalling pathways and gene expression in high fat diet fed male C57Bl/6j mice (DeFuria et al. 2009). The primary site of energy storage is the adipocytes that are known to accumulate triacylglycerol during nutritional excess. Recently, it has been established that adipocyte dysfunction has an important role in the development of obesity and insulin resistance. Adipocytes synthesize and secrete biologically active molecules called adipocytokines among which adiponectin is important (Shimomura et al. 1996). In obese and insulin resistant state, plasma adiponectin concentration and mRNA expression level are decreased (Arita et al. 2012). Purple sweet potato (I. batatas) containing 3-O-caffeylferulysophoroside-5-O-glucoside and 3-O-caffeylferulysophoroside-5-O-glucoside decreased the leptin (adepogenic marker) as well as decreased the production of COX-2, MCP-1 and IL-6 in 3T3-L1 cells (Ju et al. 2011). Anthocyanins can regulate obesity and insulin sensitivity associated with adipocytokine secretion in adipocytes. This provides a biochemical basis for the use of anthocyanins which will have significant implications for the prevention of diabetes and obesity (Tsuda et al. 2003). Anthocyanin-rich mixed grape-bilberry juice supplementation in Fischer rats reduced serum leptin and resistin, but did not influence serum adiponectin and secretion of adipokines from mesenteric adipose tissue (Graf et al. 2013). Blueberry (V. corymbosum) powder supplementation reduced triglycerides, fasting insulin, insulin resistance, and plasma glucose level in Zucker fatty rats fed with a high fat diet (Seymour et al. 2011). Blueberry (V. corymbosum) intake increased adipose and skeletal muscle peroxisome proliferator-activated receptor (PPAR) activity, reduced abdominal fat mass and affected PPAR transcription involved in glucose uptake/oxidation and fat oxidation (Seymour et al. 2011). Thus, these studies demonstrated that anthocyanins can modulate the gene expression of adipocytokines in humans and may have a distinct therapeutic advantage for the regulation of adipocyte function (Tsuda et al. 2005; Tsuda et al. 2006).

Figure 5: Schematic representation of anthocyanin mediated prevention of inflammation and fat metabolism in liver. Inflammation and cytokines leads to insulin resistance in diabetes and obesity. TNF- α signalling stimulates the production of inflammatory cytokines in liver through NF- κ B pathway. Anthocyanins from various plant sources can interact with the regulatory kinase molecule AMPK responsible for the overall metabolism and ATP production in the cell. AMPK is also responsible for the down regulation of inflammatory cytokine production. Anthocyanins stimulates AMPK pathway resulting in increased utilization of cellular glucose and fatty acids and decreasing inflammation in liver.

Increased lipid metabolism and utilization in the liver and other organs are key pathways through which fats are removed from the body. High fat diet feeding may induce fat accumulation in the liver and started steatosis to non-alcoholic fatty liver diseases. Microarray analysis of hepatic gene expression profiles indicated that PPAR signalling pathway, steroid biosynthesis, fatty acid metabolism and biosynthesis were modulated by sweet cherry (*P. auiun*) anthocyanins in C57 BL/6 J mice fed with a high fat diet (Song *et al.* 2016a). Sweet cherry (*P. auiun*) anthocyanins are also capable of reducing the hepatic steatosis in high fat diet fed mice (Wu *et al.* 2014; Song *et al.* 2016a). Mulberry (*M. alba*) anthocyanin extract was tested on hepatocytes cultured with high fatty acid. This extract enhanced fatty acid oxidation and suppressed fatty acid synthesis, which contributed to ameliorating lipid accumulation induced by oleic acid (OA) in human HepG2 as the cell model (Chang *et al.* 2013). This investigation

also identified that mulberry (*M. alba*) anthocyanin extract stimulated AMPK and inhibited acetyl coenzyme A carboxylase activities (Chang *et al.* 2013). Mulberry (*M. alba*) anthocyanin extract also attenuated the expression of sterol regulatory element-binding protein-1 (SREBP-1) and fatty acid synthase (FAS) in human HepG2 (Chang *et al.* 2013). Black elderberry (*S. nigra*) anthocyanins significantly lowered liver weights, serum TAG, serum monocyte chemo-attractant protein-1, serum insulin and TNF α , followed by the reduction of hepatic fatty acid synthase mRNA in the liver of high fat diet fed mice (Farrell *et al.* 2015). Based on this discussion a possible mechanism for inflammation and fat metabolism in liver has been proposed in **Figure 5**.

Food extracts	Model	Dose	Experimental Outcomes	Reference
containing				
anthocyanins				
Purple maize	RAW 264.7	Pretreated with 1 mg/mL	-Down-regulating pro-inflammatory	(Zhang <i>et al.</i> 2019a)
extract	macrophages and	anthocyanin-rich water	mediator production in inflamed	
	3T3-L1 adipocytes	extracts	macrophages and adipocytes.	
			-improving insulin sensitivity in insulin-	
			resistant adipocytes	
Cyanidin-3-O-	Rat and human	100 µM extracts were	-Improve high fat diet-induced insulin	(Tsuda et al. 2005; Tsuda et al.
glucoside-rich	adipocytes	used in rat and human	resistance in rat and human.	2006)
purple corn		cells		
delphinidin	Eighty male (n=10, 8	100 mg delphinidin	-Inhibited the protein glycation in diabetes	(Gharib <i>et al. 2013</i>)
chloride	groups) BALB/c mice	chloride/kg/24 h was	mellitus and reduced the glycation rate of	
	were used in	intravenously injected for	hemoglobin A1c.	
	streptozotocin (STZ)-	eight weeks		
	induced diabetes			
Delphinidin	HT-29 enterocyte-like	Cell line was treated with	-Glucose absorption is inhibited in both	(Hidalgo et al. 2017)
	human cell line and	$50 \mu M$ delphinidin and	mouse jejunum and a human enterocytic	
	RF/J mice	mice were treated	cell line in a free fatty acid receptor-	
		with100 µM delphinidin.	dependent manner.	
Grape skin or	<i>In vitro</i> α-glucosidase	0.5 mg/mL for α-	-Enhance insulin secretion	(Matsui et al. 2001; Zhang et al.
whole grapes	Inhibitory, insulin	glucosidase inhibitory	Inhibits COX-2 enzymes selectively	2004; Griffiths and Smith 1972)
(V. vinifera),	secretion assay were	assay.	-Have potent alpha-glucosidase inhibitory	
berries (Rubus)			activity that suppress the increase in	
			postprandial glucose level	

Table 4. Function of anthocyanin rich natural extracts and anthocyanins in the prevention of diabetes and obesity.

Food extracts	Model	Dose	Experimental Outcomes	Reference
containing				
anthocyanins				
and cherry	performed on INS-1	In vivo oral study was	-Inhibitory activities for lens opacity	
(Prunus)	cells.	performed via	Improve vision and prevent diabetic	
	<i>in vivo</i> was performed through male albino Wistar rats	administration of 15 g/day not less than 2 weeks.	retinopathy.	
Pomegranate	In vitro ABTS, DPPH	Soluble solids of juice	-Anthocyanins had anti-oxidative effects,	(Al-Awwadi et al. 2005; Gil et al.
(P. granatum)	and FRAP assay.	value were ranged from	which resulted in anti-oxidative effects on	2000; Rosenblat et al. 2006)
juice		15.5 - 16.6%.	serum which might help reduce	
	20 male participants	50 mL of pomegranate	atherosclerosis development in these	
		juice per day (which	patients.	
		contain 1.5 mmol of total	-Decrease triglycerides and increase HDL-	
		polyphenols).	cholesterol levels in rats.	
	Tested in rat model	The dose of 21.42		
	(n=9)	mg/kg/day of total		
		polyphenols orally by		
		gavage for 6 weeks.		
Lingon berry	In vitro and in vivo	200 and 400 mg/ kg of	-Reduce the inflammatory cell infiltration	(Zhang <i>et al.</i> 2019c)
extract (V. vitis-	studies HCD -induced	body weight per day for	and attenuate steatosis and hepatocellular fat	
idaea)	hypercholesterolaemic		deposit in the liver.	

Food extracts	Model	Dose	Experimental Outcomes	Reference
containing				
anthocyanins				
	40 mice divided into	10 weeks as dietary		
	four groups (10 mice	supplement.		
	per group)			
Anthocyanins	In vitro rodent	Daily dosage of 40 mg/kg	-Protect pancreatic β -cells from glucose	(Cohen-Boulakia <i>et al.</i> 2000;
-		for 12 weeks.		· · ·
and	pancreatic beta-cells	for 12 weeks.	induced oxidative stress and improve and	Jayaprakasam et al. 2005)
anthocyanosides	and male Wistar rats		normalize capillary filtration of albumin.	
from Cornus	with streptozotocin			
species	(STZ)-induced			
	diabetes in 3 groups			
	of 15 rats			
Polymerized	40 male C57bl6/J	400 mg/kg/day were	-Effectively reduced TC and LDL-C.	(Fan <i>et al.</i> 2019)
anthocyanin	mice divided into 4	given orally once a day	-Inhibited the activation of inflammatory	
	groups induced	for 12 weeks	pathways, depressing oxidative stress	
	nonalcoholic fatty		through increased antioxidant levels, and	
	liver disease.		increasing β -oxidation to inhibit	
			mitochondrial dysfunction.	
Bark of the	Moderately diabetic	Different range of diet	-Significant hypoglycaemic, hypo-lipidemic	(Cherian et al. 1992; Augusti et al.
Indian banyan	mice, rats and alloxan	from 0.2-1.8 g/kg/day to	and serum insulin-raising effects.	1994; Daniel et al. 2003)
tree (F.	diabetic dogs	different groups of		
bengalensis)		animals for one month		

Food extracts	Model	Dose	Experimental Outcomes	Reference
containing				
anthocyanins				
Blackcurrant	OVX female Sprague-	Consumed 38 g/100 g	-Decreased expression of hepatitis-related	(Nanashima et al. 2020)
(Ribes nigrum)	Dawley and sham	blackcurrant extract (3%)	genes, such as tumour necrosis factor- α , <i>IL</i> -	
extract	surgery rats (3 groups,	orally for 3 months	6, and <i>IL-1β</i> .	
	n = 9–10 rats/group)		-levels of serum triglycerides, total	
			cholesterol, and LDL cholesterol decreased.	
Tart cherry	35 High fat diet fed	Consumed 60 mg/kg	-Failed to reverse the effects of the high fat	(Nemes <i>et al.</i> 2019)
extract	mice were divided	anthocyanin-rich tart	diet on body weight and glucose tolerance.	
	into 3 groups and	cherry extract in a daily	-Significantly reduced the leptin and IL-6	
		dosage for 6 weeks	levels.	
			-Significant enhancement in antioxidant	
			capacity and SOD activity.	
Sweet cherries	48 male C57BL/6	Consumed 2 mg/kg of	-Purified sweet cherries reduce the	(Wu et al. 2014)
(P. auiun)	high-fat diet mice	body weight for 12	expression levels of IL-6 and $TNF\alpha$ genes	
	were divided into four	weeks	and markedly increase the SOD and GPx	
	groups		activity.	

Food extracts	Model	Dose	Experimental Outcomes	Reference
containing				
anthocyanins				
Cornelian	32 high-fat-fed insulin	C57BL/6 mice were fed	-Body weight was decreased, normalized	(Yamahara et al. 1981;
Cherry (Cornus	resistance C57BL/6	with high-fat diet plus	glucose intolerance, elevated circulating	Jayaprakasam et al. 2006)
mas) and	mice were divided	1 g/kg of anthocyanins	insulin, and a dramatic decrease in liver	
Japanese	into 4 groups.	for 8 weeks	lipid.	
cornelian cherry (<i>C. officinalis</i>)	Streptozotocin induced diabetes rats model took 6 groups in each group contained average 10 rats and dose	Streptozotocin induced diabetic rats were treated with 50 mg/kg intravenous administration		
Blueberries V. ashei and yoghurt supplement	Diet induced obese C57BL/6 mice divided into eight groups (n = 10 for each group)	Consumed 6.4 g/kg of blueberries, 0.02 g/kg of cyanidin-3- O - β -glucoside and 3 g/kg of yoghurt body weight/ day during the 8 week treatment period	-Cyanidin-3- <i>O</i> -β-glucoside and the combination of peptides showed significant reduction of body fat and improved intraperitoneal glucose tolerance.	(Shi <i>et al.</i> 2019)
Chokeberry (<i>A.</i> <i>melanocarpa</i>) purple maize; (<i>Z. mays</i>)	72 male Wistar rats were divided into six separate groups (n = 12 each)	Supplemented orally with chokeberry juice 50 ml/kg/day or purple maize flour 50 g/kg/day for 16 weeks	-Reduced visceral adiposity index and total body fat mass; improved glucose tolerance and liver structure and function.	(Bhaswant <i>et al.</i> 2017)

Food extracts	Model	Dose	Experimental Outcomes	Reference
containing				
anthocyanins				
Anthocyanins	169 participants with	Two capsules (dose 40,	-320 mg/day anthocyanin supplementation	(Zhang <i>et al.</i> 2020a)
	dyslipidemia	80, and 320 mg/day)	reduced serum IL-6, TNF- α , MDA and	
	randomized, double-	twice daily preferably 30-	urine 8-iso-PGF _{2α} and 8-OHdG than	
	blind, placebo-	min after breakfast and	80 mg/day and 40 mg/day anthocyanins.	
	controlled human	supper for 12 weeks	-Improved the anti-oxidative and anti-	
	trial		inflammatory capacity in a dose-response	
			manner.	
Purified	Randomized, double-	Orally five doses of	-80 mg/day of anthocyanin showed the	(Guo <i>et al.</i> 2020)
anthocyanins	blind, placebo-	anthocyanins (20, 40, 80,	lowest baseline-adjusted fasting plasma	
	controlled human trial	160, or 320 mg/d)	glucose level.	
	(Participants n = 111)	were asked to take once	-8-iso-prostaglandin F2 α levels decreased	
		daily after meals for 14	with increasing anthocyanins dose.	
		days	-Plasma interleukin-10 levels were	
			negatively correlated with increasing	
			anthocyanin.	

Anthocyanins in Neurodegenerative Diseases

Anthocyanins have a strong antioxidant capacity, which can be very effective in several models of neurodegenerative diseases (Miller et al., 2018; Stintzing *et al.* 2002; Shih *et al.* 2011; Traustadottir *et al.* 2009). They have a high oxygen radical absorbance capacity (ORAC) value, which is a major part of their neuroprotective function (Zafra-Stone *et al.* 2007; Zhu *et al.* 2010). In addition, anthocyanins act as antioxidants as they are able to directly trap free radicals, thus preventing ROS formation in affected cells. For example, anthocyanins can decrease the generation of ROS in *in vitro* models of alpha-beta peptide-induced toxicity, as well as in hydrogen peroxide injury (Shih *et al.* 2011; Hwang *et al.* 2012). Moreover, by using electron spin resonance spectroscopy it has been found that anthocyanins have a strong affinity to scavenge DPPH, alkyl, and hydroxyl free radicals in a dose dependent fashion (Hwang *et al.* 2012). Benefits of anthocyanins in neurodegenerative diseases are presented in **Table 5**.

Initiation of inflammatory gene expression and subsequent production of interleukins and pro-inflammatory cytokines is often recorded in neurodegeneration. Targeting these inflammatory processes may prove beneficial in limiting neuronal apoptosis associated with the disease. Anthocyanins display significant anti-inflammatory properties, given that they can inhibit various inflammatory biomarkers (e.g. interleukin-8 (IL-8)) (Zafra-Stone et al. 2007). As well as decreased IL-8 production, pomegranate (P. granatum) anthocyanins inhibit activation of NF-κB (Rasheed et al. 2009) and inflammatory markers including activated p-NF- κ B (phosphorylated NF- κ B) (Rehman et al. 2017) which are responsible for the expression of several pro-inflammatory genes. The anthocyanins were shown to inhibit a number of other bio-molecules associated with the expression of several pro-inflammatory cytokines. Furthermore, cherry and blackberry (R. fruticosus) anthocyanins have been proven to be powerful COX-2 inhibitors, which is an important pro-inflammatory enzyme employed in the synthesis of prostacyclins (Saric et al. 2009; Zdarilova et al. 2010). At high concentrations (250 μ g/mL), anthocyanins have inhibited up to 95% of cyclooxygenase activity (Mulabagal et al. 2009). These findings indicate that anthocyanins may have a significant role in preventing inflammatory processes associated with neurodegenerative disease. A recent investigation also suggests that supplementation of blackcurrant (Ribes nigrum) anthocyanins resulted in increased cyclic glycine-proline (cGP) in the cerebrospinal fluid of patients suffering from Parkinson disease (Fan et al. 2018). Anthocyanins increased cGP, which is a neuropeptide that facilitates IGF-1 function in brains of the patients with Parkinson disease (Fan et al. 2018). Moreover, anthocyanin could also reduce cerebral oedema while reducing the matrix metallopeptidase-9 activity in reperfusion injury (Pan et al. 2018). In addition, NF-kB and the NOD-like receptor pyrin domain-containing protein-3 inflammasome pathways were inhibited and TNF- α , IL-6 and interleukin-1 β levels were decreased by anthocyanin treatment (Pan *et al.* 2018). Anthocyanin extracts from blackcurrants (R. nigrum), blueberries (V. corymbosum) and hibiscus (H. sabdariffa) prevented dopaminergic cell death, microglial activation and amelioration of mitochondrial dysfunction in rotenoneinduced cell culture model of Parkinson diseases (Strathearn et al. 2014). Another report showed that cyanidin 3-Oglucoside exerted a neuroprotective effect against ischemic stroke in mice (Min et al. 2011). Black soybean (G. max) anthocyanin extract showed significant U87 glioma cells survival when exposed to oxidative stress induced by oxygen-glucose deprivation (Kim et al. 2012).

An extract high in anthocyanins from blackcurrant (*R. nigrum*) and bilberry (*V. myrtillus*) showed beneficial effects and reduced behavioural abnormalities in a mouse model of Alzheimer's disease (Vepsalainen *et al.* 2013). In addition, Qin, L. *et. al* (2013) suggested that cyanidin 3-*O*-glucoside rescued the cognitive impairments in beta-amyloid peptideinduced cognitive deficits in the rat model of Alzheimer's disease (Qin *et al.* 2013). Cyanidin 3-*O*- β glucopyranoside was shown to improve cerebral glucose uptake, alleviate cognitive impairment and decrease fasting blood glucose levels in the APPswe/PS1 Δ E9 mouse model of Alzheimer's disease (Song *et al.* 2016b). Moreover, black soybean (*G. max*) anthocyanins have been investigated against beta-amyloid induced neurotoxicity *in vitro* on cell line and *in vivo* in rat model. The results showed increased amyloid beta production in the nervous system which ultimately protected beta-amyloid-induced neurodegeneration (Badshah *et al.* 2015). Shah *et al.* (2015) also worked on black soybean (*G. max*) anthocyanins but used the ethanol-induced oxidative stress (Shah *et al.* 2015) and glutamate-induced oxidative stress (Shah *et al.* 2016) rat models. They found neuroprotection via inhibition of glutamate related neurotransmission, neuronal apoptosis (Shah *et al.* 2015) and protection against glutamate-induced AMPK induction, ROS production, neuroinflammation and neurodegeneration (Shah *et al.* 2016).

Anthocyanins also have the capacity to modulate cognitive and motor function, to enhance memory, and to possibly reduce age-related declines in neural function. Administration of isolated, semi-purified anthocyanins from purple sweet potato (*I. batatas*) improved cognitive performance in mice, and also inhibited peroxidation of lipids in rat brain tissues (Cho *et al.* 2003). Administration of blueberry extracts with significant anthocyanin content (but not purified pigments), led to reversal of age-related deficits in various neural and behavioural parameters (motor and memory functions) (Joseph *et al.* 1999). Further investigations demonstrated that anthocyanins were extremely bioavailable in endothelial cells, which was correlated with their prevention of neurodegenerative disorders and atherosclerosis (Youdim *et al.* 2000; Youdim *et al.* 2002). Anthocyanins improved memory and learning of rats with an estrogen deficit triggered by ovariectomy (Varadinova *et al.* 2009). *Pandanus amaryllifolius* (Pandan leaves) and *Z. mays* (purple waxy corn) extracts possess anthocyanins and showed cognitive enhancing effects, improved memory function, prevented oxidative stress and modulated cholinergic function in ovariectomized rats (Kirisattayakul *et al.* 2017). Another report suggests that supplementation with pure cyanidin 3-*O*-galactoside and blueberry extracts improves spatial memory and regulates hippocampal extracellular signal-regulated kinases expression in senescence-accelerated mice (Tan *et al.* 2014).

Food extracts	Model	Dose	Experimental Outcomes	References
containing				
anthocyanins				
Anthocyanins	In vitro models of alpha-	50 μ M of extract for ROS assay	-Decrease the generation of ROS. Scavenge	(Hwang et al. 2012;
	beta peptide-induced	and $\alpha\beta$ peptide-induced toxicity,	DPPH, alkyl, and hydroxyl free radicals in a	Shih et al. 2011;
	toxicity and hydrogen	30 µL anthocyanin oligomers	dose dependent fashion.	Zafra-Stone et al.
	peroxide injury.	solution for DPPH, 2 mL of the	-Anthocyanins display significant anti-	2007)
		sample solution for lipid	inflammatory properties by inhibiting various	
		peroxidation inhibition assay.	inflammatory biomarkers, including IL-8.	
	Inhibitory effect of berry	0.5% of berry extract were used to		
	anthocyanins on human	examine the inhibitory effect of		
	gastric cancer cells MKN45	berry anthocyanins on		
		Helicobacter pylori-induced IL-8		
		production in gastric		
		MKN 45 cells		
Pomegranate	KU812 cell line, Enzyme-	Pomegranate fruit extract (20–100	-Inhibit the activation of nuclear transcription	(Rasheed et al. 2009)
(P. granatum)	linked immunosorbent	μg/mL)	$NF\kappa B$ responsible for the expression of several	
	assay, western blot analysis		pro-inflammatory genes.	
	and transient transfection		-Inhibit other bio-molecules responsible for the	
	and luciferase activity		expression of pro-inflammatory cytokines.	
	assay			
Pomegranate	U-87 cells and rats (n=4)	Receiving 600 mg/kg/day oral	- Decreasing the MORs and cAMP protein levels	(Ridzwan et al.
extract		administration	in U-87 cells.	2020)
			-A significant decrease in cAMP responsive	
			element binding protein (CREB) level and an	

Table 5. Function of anthocyanin rich natural extracts and anthocyanins in neurodegenerative diseases.

		increase in Brain-derived neurotropic family	
		(BDNF) as compared to rats treated with	
		morphine.	
er's disease	20 mg/kg/day bilberry	-Improves learning and memory abilities and	(Li <i>et al.</i> 2020)
/PSEN1 mice	anthocyanins was given via	reverses defects to cognitive functions.	
	gavage for three months	-Decreases serum and brain lipopolysaccharide	
		(LPS) levels and increases fecal short-chain fatty	
		acid content.	
		-Downregulates the expression of inflammatory	
		factors (TNF-α, NF-Kβ, IL-1β, IL-6, COX-2,	
		iNOS and CD33) and chemokine receptor	
		CX3CR1.	
		-Decreases hippocampal neuroinflammatory	
		responses, and induces phagocytosis of microglia	
		to beta-amyloid protein plaques	
subjected to	50–100 mg/kg orally and 10	-Improved learning and memory in mice after	(Zhang <i>et al</i> . 2020b)
	mg/kg intraperitoneal injection for	surgery.	
l each groups	4 weeks before surgery and then	-Significantly reduced neuroinflammation and	
mice.	once per day for 4 week after	microglia activation	
	surgery		
d neurotoxicity,	24 mg/kg/day for 2 weeks	-Prevented ROS production, inhibited	(Khan <i>et al.</i> 2019)
/group divided		neuroinflammation and neurodegeneration, and	
		improved memory functions in LPS-treated mice.	
	er's disease /PSEN1 mice subjected to d each groups mice. ed neurotoxicity, e/group divided	/PSEN1 mice anthocyanins was given via gavage for three months subjected to 50–100 mg/kg orally and 10 mg/kg intraperitoneal injection for d each groups 4 weeks before surgery and then once per day for 4 week after surgery ed neurotoxicity, 24 mg/kg/day for 2 weeks	Image: Barbon Schwarz(BDNF) as compared to rats treated with morphine.rer's disease20 mg/kg/day bilberry anthocyanins was given via gavage for three months-Improves learning and memory abilities and reverses defects to cognitive functions. -Decreases serum and brain lipopolysaccharide (LPS) levels and increases fecal short-chain fatty acid content. -Downregulates the expression of inflammatory factors (TNF-α, NF-Kβ, IL-1β, IL-6, COX-2, iNOS and CD33) and chemokine receptor CX3CR1. -Decreases hippocampal neuroinflammatory responses, and induces phagocytosis of microglia to beta-amyloid protein plaquessubjected to mg/kg intraperitoneal injection for mice.50–100 mg/kg orally and 10 mg/kg intraperitoneal injection for a weeks before surgery and then once per day for 4 week after

Food extracts	Model	Dose	Experimental Outcomes	References
containing				
anthocyanins				
	into three groups. Mice		-Prevented neuroinflammation by lowering the	
	injected with LPS		levels of inflammatory markers (p-NF-kB, TNF-	
			α , and IL-1 β).	
Cherry	Male CBA/Hr mice 3	5 g per day for 14 days of	-Inhibits COX-2 responsible for pro-	(Saric et al. 2009)
(Prunus	groups and 10 mice in each	commercial food pellets	inflammatory enzyme required in the synthesis	
cerasus)	group	containing 4 mL of 10 and 50%	of prostacyclin	
		dilution of original cherry juice		
Purple sweet	Male Sprague-Dawley (SD)	25 mg/kg body weight orally once	-Enhance cognitive performance.	(Cho et al. 2003)
potato (I.	rats for brain homogenate	a day for 7 days	-Inhibits lipid peroxidation	
batatas)	preparation and male ICR			
	mice (4 groups)			
Blueberry (V.	40 male Fischer 344 rats	1.86% blueberry (w/v) as a	-Effective reversal of age-related deficits in	(Joseph et al. 1999)
corymbosum)	were divided into 4 groups	supplement for 8 weeks	various neural and behavioural parameters	
Lycium	d-galactose (d-gal)-treated	50-200 mg/kg once daily for 7	-Anthocyanins reduced receptor for advanced	(Chen et al. 2019)
ruthenicum	rats were divided in 5	weeks	glycation end products (RAGE) and suppressed	
extract	groups		oxidative stress caused by d-gal.	
			- Anthocyanins suppressed microgliosis and	
			astrocytosis.	
			- Reduced the overexpression of nuclear factor	
			kappa B (NF- κ B), interleukin-1- β (IL-1 β),	
			cyclooxygenase-2 (COX-2), and tumour necrosis	
			factor-α (TNF-α).	

Food extracts	Model	Dose	Experimental Outcomes	References
containing				
anthocyanins				
			-Lowered C-jun N-terminal kinase (p-JNK),	
			caspase-3 levels, and the B-cell lymphoma 2-	
			associated X protein/B-cell lymphoma 2	
			(Bax/Bcl-2) ratio.	
Freeze-dried	13 men and 24 women,	24 g/day, equivalent to 1 cup of	On the California verbal learning test,	(Miller et al., 2018)
blueberry	(60–75 years) were	fresh blueberries for 90 days	participants in the blueberry group showed	
	participated in a		significantly fewer repetition errors which may	
	randomized, double-blind,		improve cognition among older adults.	
	placebo-controlled trial			
Whole frozen	94 participants were	Intake of 12.5 g/day orally for 12	Supplementation improved cognition.	(McNamara et al.,
blueberries	participated in a	to 24 weeks trial		2018)
	randomized, double blind,			
	parallel groups, and			
	placebo-controlled trial			

Anthocyanins in Cancer

Oxidative stress predominantly triggers the mutation in normal cellular DNA which may lead to the development of cellular proliferation and tumour formation (Aggarwal et al., 2019). Moreover free radical generation may also change the cellular signalling cascade and contribute to the cellular differentiation and inflammation in tumour environment (Aggarwal et al., 2019). The anthocyanins and related natural products may prevent the cancer and tumour development by several ways such as inhibiting oxidative stress mediated DNA mutation, modulates the cellular signalling processes, enhances the phase II reaction enzymes for detoxification, prevents angiogenesis, and inhibits cellular differentiation and proliferation (Lin et al., 2017; Wang and Stoner, 2008). In both *in vitro* and *in vivo* research trials, anthocyanins have shown significantly reduced proliferation of cancer cells (Medic et al., 2019) and inhibited tumour formation (Koide *et al.* 1997; Meiers *et al.* 2001; De-Xing 2003; Kang *et al.* 2003). Comparisons of the antiproliferative effects of anthocyanins on normal as well as cancer cells have surprisingly revealed that they selectively inhibit cancer cell growth while having insignificant effect on normal cell growth (Fakhri et al., 2020; Matsumoto *et al.* 2001; Zhang *et al.* 2005). Moreover, anthocyanidins have a greater potential to inhibit cell proliferation than anthocyanins (Zhang *et al.* 2005; Hudlikar et al., 2020). Key features of anthocyanin mediated anticancer effects are presented in **Table 6**.

The ability of anthocyanin to impede with carcinogenesis seems to be related to numerous potential mechanisms of action that include inhibition of cyclooxygenase enzymes and potent antioxidant potential (Reddy *et al.* 2005a). Previous literature reported that cyanidin 3-*O*-glucoside or peonidin 3-*O*-glucoside administration activated caspase-3, chromatin condensation and initiated cancer cell death (Chen *et al.* 2005). Anthocyanins also have been found to inhibit tumour formation by blocking activation of a mitogen-activated protein kinase pathway (Hou *et al.* 2004). This provides the first indication of a molecular basis for why anthocyanins display anti-carcinogenic properties. Fruit extracts from *Vaccinium* species (low bush blueberry, bilberry, cranberry, and lingonberry) having significant anthocyanin concentrations were effective against various stages of carcinogenesis (Bomser *et al.* 1996; Kandil *et al.* 2000; Kang *et al.* 2003; Smith *et al.* 2008). In addition, Seeram *et al.* (2006) found that extracts of *Vaccinium* species showed significant pro-apoptotic effects against human oral (KB, CAL-27), breast (MCF-7), colon (HT-29, HCT116) and prostate (LNCaP) tumour cell lines. Previous studies also suggested that malvidin inhibited AGS, HCT-116, NCI-H460, MCF-7 and SF-268 cell growth while pelargonidin inhibited AGS, HCT-116, NCI H460, MCF-7 and SF-268 cell growth while pelargonidin inhibited AGS, HCT-116, NCI H460, MCF-7 and SF-268 cell growth (Zhang *et al.* 2005).

The anticancer activity of anthocyanins is linked to their phenolic structures. These effects have been verified *in vitro* using several cell culture systems including breast (Singletary *et al.* 2007; Olsson *et al.* 2004), colon (Parry *et al.* 2006; Renis *et al.* 2008), endothelial (Bagchi *et al.* 2004), leukemic (Feng *et al.* 2007), and liver cells (Meyers *et al.* 2003; Shih *et al.* 2007), as well as keratinocytes (Afaq *et al.* 2007). Anthocyanins have shown multiple anti-toxicant and anti-carcinogenic effects in various cell culture systems such as: directly scavenging (ROS), increasing the oxygen-radical absorbing capacity of cells, stimulating the expression of Phase II detoxification enzymes and reducing the formation of oxidative adducts in DNA. Other detoxification processes include decreasing lipid peroxidation,

inhibiting mutagenesis by environmental toxins and carcinogens, and reducing cellular proliferation by modulating signal transduction pathways. Anthocyanins have also been found to function by chelating metals and by direct binding to proteins in their anti-carcinogenic functions (Kong *et al.* 2003). Anthocyanins have also been proven to induce phase II antioxidant and detoxifying enzymes in cultured cells that contribute to its anti-carcinogenic properties (Shih *et al.* 2005).

In addition, apoptosis or programmed cell death plays a major role in the development and regulation of normal cellular function. Anthocyanin-rich extracts from berries (*Vaccinium* species) and grapes (*V. vinifera*) as well as several pure anthocyanidins and anthocyanins, have been found to exhibit pro-apoptotic effects in multiple cell types in *in vitro* studies (Martin *et al.* 2003; Olsson *et al.* 2004; Chen *et al.* 2005; Seeram *et al.* 2006; Afaq *et al.* 2007; Reddivari *et al.* 2007). This is via both intrinsic (mitochondrial) and extrinsic FAS pathways (Reddivari *et al.* 2007; Chang *et al.* 2005). Inflammation, on the other hand, has been shown to have role in the promotion of some cancer types in animals and probably in humans (Kwon *et al.* 2011). Abnormal up-regulation of two inflammatory proteins, NF-κB and COX-2, is a common phenomenon in many cancers, and their inhibition can result in significant anticarcinogenic effects (Martin *et al.* 2003; Chang *et al.* 2005). Anthocyanins can inhibit mRNA and/or protein expression levels of COX-2, NF-κB and other various interleukins, and showed anti-inflammatory effects in multiple cell types *in vitro* (Huang *et al.* 2002; Afaq *et al.* 2005a; Reddy *et al.* 2005b; Rodrigo *et al.* 2006; Boivin *et al.* 2007).

Angiogenesis is the formation of new blood vessels from the existing vascular network and it is an important part of tumour growth and metastasis (Huang *et al.* 2006). Some of the strongest angiogenesis-activating molecules are the vascular endothelial growth factors (VEGF), whose expression is rapidly enhanced in developing tumours (Huang *et al.* 2006). The anti-angiogenic effects of anthocyanins have been demonstrated using cultured endothelial cells (Bagchi *et al.* 2004), oral cancer cells (Rodrigo *et al.* 2006) and mouse epidermal JB6 cells (Huang *et al.* 2006). Anthocyanins in all these cases have suppressed angiogenesis by several mechanisms. Firstly, anthocyanins cause inhibition of H_2O_2 and TNF- α -induced VEGF expression in epidermal keratinocytes (Bagchi *et al.* 2004). Secondly, anthocyanins showed an anti-angiogenesis effect by reducing VEGF and VEGF receptor expression in endothelial cells (Bagchi *et al.* 2004). In addition, mouse epidermal JB6 cells, when treated with an anthocyanin-rich black raspberry (*R. occidentalis*) extract, caused down-regulation of VEGF expression (Huang *et al.* 2006).

Proteolysis, an important and early invasion event, is the degradation of basement membrane collagen (Kelley *et al.* 2014). To degrade the extracellular matrix, barriers secrete proteolytic enzymes for successful invasion of tumour and stromal cells. Basement membrane degradation not only depends on the quantity of proteolytic enzymes present, but also on the balance between activated proteases and their naturally occurring inhibitors. Matrix metalloproteinases (MMP) and plasminogen activators are involved in the regulation of degrading the basement membranes (Brandstetter *et al.* 2001). Anthocyanin extracts from black rice (*O. sativa*), eggplant (*S. melongena*) and different berries have been investigated for their inhibition invasion of multiple cancer cell types. They were found to inhibit invasion of cancer cells by reducing the expression of urokinase-plasminogen activator (u-PA) and MMPs (Brandstetter *et al.* 2001).

Induction of cellular differentiation can be used to prevent and treat cancer through a cell-specific approach that will probably be less toxic than chemo/radiotherapy (Fimognari *et al.* 2004). *In vitro* treatment with anthocyanin (25–200 l g/mL) in leukemic cells showed the reduction of nitro blue tetrazolium, (a functional marker for granulocyte/monocyte differentiation) and increased adherence of cells to plastic which indicated differentiation of the cells into a monocyte/macrophage-like phenotype (Fimognari *et al.* 2004). Anthocyanins treatment also initiated the naphthol AS-D chloroacetate activity which is a marker for granulocytic differentiation in leukemic cells. Additionally, anthocyanin treatment increased the number of α -naphthyl acetate esterase positive cells which also indicates a differentiation toward a monocytic/macrophagic lineage (Fimognari *et al.* 2004). Moreover, anthocyanins have also been found to induce differentiation in melanoma cells characterized by a significant increase in dendritic outgrowth along with a remodelling of the microtubular network (Serafino *et al.* 2004).

Food extracts containing	Model	Dose	Experimental Outcomes	Reference
anthocyanin				
Anthocyanins (plant	Human colon cancer	50, 100, 200, or 400	Anthocyanins promoted apoptosis of colorectal cancer	(Zhao et al., 2019)
species particularly in	HT29 cells	mg/L of anthocyanins	cells (CRC) and inhibited growth of xenografted tumors.	
berries and cherries)		were used against	Mechanically, the PI3K/AKT/survivin pathway was	
		colorectal cancer cell	targeted which enhanced the Bcl-2/Bax and caspase-	
		lines.	dependent apoptotic pathways, ultimate result was	
			impairment growth of CRC.	
Pomegranate (P. granatum)	Human epidermal	Concentration ranges	Inhibiting UV-B-induced modulations of NF-KB and	(Afaq <i>et al</i> .
fruit extract and pure	keratinocytes, colon	from 10 to 40 μ g/mL	MAPK pathways and protecting cells against the adverse	2005a; Afaq <i>et al</i> .
anthocyanin	cancer cell.		effects of UV-B radiation.	2005b; Afaq <i>et al</i> .
	Female CD-1 mice	2 mg of extract repeated	Inhibiting Akt phosphorylation, COX-2 expression and	2007; Sharma et
	were divided into 4	twice weekly up to the	NFκB DNA binding activity	al. 2017)
	groups	termination of the		
		experiments at 30		
		weeks		
Juice from strawberry	Adenocarcinoma cell	Berry juice at 0,	Markedly inhibited TNF-induced expression of COX-2	(Boivin et al.
(Fragaria x ananassa),	lines from stomach,	10, 20, 30, 40 or 50	and activation of nuclear transcription factor $NF\kappa B$	2007)
raspberry (R. idaeus), black	mammary gland,	μg/mL.		
currant (R. nigrum), red	prostatic and			
currant (R. rubrum), white	colorectal gland			
currant (R. sativum),				
gooseberry (R. hirtellum),				
high-bush blueberry (V.				
corymbosum), low-bush				

Table 6. Function of anthocyanin rich extracts and anthocyanins in the prevention of cancer.

Food extracts containing	Model	Dose	Experimental Outcomes	Reference
anthocyanin				
blueberry (V. angustifolia),				
velvet leaf blueberry (V.				
myrtilloides), serviceberry				
(Amelanchier sanguinea),				
blackberry (R.				
allegheniensis) and sea				
buckthorn (Hippophae				
rhamnoides)				
Black raspberries (Rubus	Mouse epidermal cell	Concentrations range	Inhibits benzo(a)pyrene diol-epoxide-induced activator	(Huang <i>et al</i> .
occidentalis)	line, human oral	from 1 to 100 µg/mL	protein 1 activation, NF-KB factor and VEGF transcription	2002; Huang et al.
	squamous and 30	for epidermal cell line.	by targeting the phosphotidylinositol 3-Kinase/Akt	2006; Rodrigo et
	colorectal 5-weeks-	10 to 100 µg/mL	pathway.	al. 2006; Zhang et
	old male C57BL/6J	concentration for	Induced both terminal and apoptosis differentiation,	al. 2018)
	mice (n=10)	human oral squamous	suppressed nitric oxide synthase activity.	
		cell.		
		Orally 7.0 µmol/g/day		
		of anthocyanins for 9		
		weeks		
Cyanidin-3-O-rutinoside	human leukaemia and	50 to 120 µM or greater	Induced apoptosis by promoting p38 MAP kinase and	(Feng <i>et al.</i> 2007)
from black raspberry (R.	lymphoma cell lines		JNK-mediated Bim phosphorylation.	
occidentalis)				
Apple (Malus domestica),	Human keratinocytes,	Four different	Significant chelating capacities against Fe ²⁺	(Bagchi et al.
black raspberry (R.	colon cancer cells	concentrations were	Increased cell oxygen-radical absorbing capacity.	2004; Long et al.

Food extracts containing	Model	Dose	Experimental Outcomes	Reference
anthocyanin				
occidentalis), black currant	HT29, breast cancer	used (0.025, 0.05, 0.25,	Significantly inhibited breast cancer cells MCF-7 and	2018; Olsson <i>et</i>
(R. nigrum), black	cells MCF-7 and	and 0.5% of plant dry	colon cancer (HT-29) cell proliferation.	al. 2004; Parry et
chokeberries (A.	thyroid HTh-7	matter, final	Inhibited basal monocyte chemotactic protein-1 and	al. 2006)
melanocarpa), blueberries		concentration 0.01-350	inducible NF $\!\!\!\!\!\kappa B$ transcriptions through H_2O_2 and TNF $\!\!\!\!\alpha$ -	
(V. corymbosum),		$\mu g/mL$) for colon	induced VEGF expression.	
chardonnay grape (V.		cancer cells HT29 and	Suppressed the activated Akt, mammalian rapamycin, and	
vinifera), sea buckthorn (H.		breast cancer cells	ribosomal protein S6 via reduced apoptosis and	
rhamnoides), plum (Prunus		MCF-7.	autophagy-dependent cell death.	
domestica), lingonberries		10µg/mL for thyroid		
(V. vitis-idaea), cherries (P.		HTh-7 cells		
avium), and raspberries (R.				
idaeus)				
Pure cyanidin-3-O-	Human leukaemia	The concentrations of	-Effect on protein kinase C, phosphatidylinositol 3-kinase	(Fimognari et al.
glucopyranoside	cell line	pure compound used	and also induction of apoptosis and cytodifferentiation	2004)
		was from 3.1 to	and to prevent and treat cancer.	
		200.0 µg/mL		
Anthocyanins (cyanidin,	Human gastric	Tested concentrations	-Malvidin treatment significantly increased p38 kinase	(Shih et al. 2005;
delphinidin, malvidin,	adenocarcinoma,	ranges from 0–200 µM	expression and inhibited the extracellular signal-regulated	Shih et al. 2007;
pelargonidin, peonidin and	mouse neuroblastoma	or greater	kinases pathway, including mitogen-activation protein	Shih et al. 2011)
their derivatives)	Neuro-2A cell line		kinases, protein kinase c and phosphatidylinositol 3-	
	and e rat hepatocyte		kinase.	
	Clone 9 cell line		-Stimulated the expression of Phase II detoxification	
			enzymes regulated through phosphorylation by several	
			protein kinases.	

Food extracts containing	Model	Dose	Experimental Outcomes	Reference
anthocyanin				
			- Prevent amyloid- β -peptide-mediated	
			neurodysfunction.	
Beetroot (Beta vulgaris)	MCF-7 (breast),	Concentration ranges	-Anti-toxicant and anti-carcinogenic effects by decreasing	(Reddy et al.
	HCT-116 (colon),	from 10 to 200 μ g/mL	lipid peroxidation, inhibition of COX-1 and COX-2 and	2005b)
	AGS (stomach), CNS		decreasing of tumour cell growth.	
	(central nervous			
	system), and NCI-			
	H460 (lung) tumour			
	cell lines			
Cyanidin-3-O-	Human colon cancer	Concentration ranges	-Effect on cell growth, directly scavenging reactive	(Renis et al. 2008)
glucopyranoside and	cells	from 5 to 200µmol/L	oxygen species (ROS) formation and cell cycle/stress	
cyanidin chloride			proteins modification, including ataxia teleangectasia	
			mutated protein.	
			-Reducing the formation of oxidative adducts in DNA.	
			Counteracting H ₂ O ₂ -induced DNA damage.	
Cultivated strawberries	Liver cancer cells	Concentration ranges	-Anti-toxicant and anti-carcinogenic effects by increasing	(Meyers et al.
		from 5 to75 mg/mL	the oxygen-radical absorbing capacity of cells and	2003)
			inhibiting cell proliferation.	
Black raspberries (R.	Mouse epidermalJB6	concentrations ranging	-Down-regulation of VEGF expression resulting in anti-	(Huang et al.
occidentalis)	cell	from 1 to 100 µg/mL	angiogenic effect.	2006)
Black rice (O. sativa)	In vitro enzyme	concentrations ranging	-Inhibited invasion of cancer cells by reducing the	(Chen et al. 2006)
	inhibition assay	from 50 to 200µg/mL	expression of MMP and urokinase-plasminogen activator	
			(u-PA)	

Food extracts containing	Model	Dose	Experimental Outcomes	Reference
anthocyanin				
Delphinidin	18 Four-week-old	15 mg/kg body weight,	Reduced triglyceride accumulation in vitro through the	(Parry et al. 2018)
	male C57BL/6Nhsd	administered by oral	modulation of lipid metabolic gene expression but	
	mice	gavage for 16 weeks.	no effect on either metabolic alterations or histological	
			abnormalities associated with HFHC diets	

Anthocyanins in Visual Activity

Significantly improved visual activity can be achieved through administration of anthocyanins to humans and animals (**Table 7**), and their role has been well documented in improving night vision (Matsumoto *et al.* 2001; Nomi et. al. 2019). Improvements in night vision adaptation occurred in humans following oral intake of black currant anthocyanosides (Nakaishi *et al.* 2001), and similar outcomes were recorded after administration of anthocyanins from bilberries (Muth *et al.* 2000). Regeneration of rhodopsin (a G-protein-coupled receptor localized in the retina of the eye) was stimulated by three anthocyanins from black currant and formation of regeneration intermediate was accelerated by cyanidin 3-*O*-rutinoside (Matsumoto *et al.* 2003). Anthocyanin-rich bilberry (*V. myrtillus*) extract prevented inflammation of endotoxin-induced uveitis using a mouse model (Miyake *et al.* 2012). A bilberry (*V. myrtillus*) extract rich in anthocyanins prevented the impairment of photoreceptor cell function, ameliorated the intracellular elevation of ROS and inhibited NF- κ B (Miyake *et al.* 2012). Thus, enhancement of rhodopsin regeneration has been proven to be one of the mechanisms by which anthocyanisms improve visual activity.

A positive effect of anthocyanins on vision improvement was suggested by early clinical trials carried out in France and Italy (Rouher et al. 1972; Jayle et al. 1965). A controlled clinical trial of cyanoside chloride and heleniene on 31 patients suffering from functional disturbances of vision in the dark, reported that both compounds significantly improved photopic visual activity (Sole et al. 1984). In a German clinical trial, Difrarel®E (anthocyanosides and vitamin E) was given to 36 patients with progressive myopia for about 14 months. In around 50% of patients an increase in myopia was suppressed by approximately 50%, along with 29 patients showing stabilisation of fundusalterations, and an overall improved and stable visual acuity was obtained (Politzer 1977). Anthocyanins from blackcurrant (R. nigrum) in the form of a concentrated extract powder were examined for their effects on asthenopia, an ophthalmological condition with nonspecific symptoms such as fatigue, red eyes, eye strain, pain in or around the eyes, blurred vision, headache and occasional double vision, and is a result of continuous exposure of the eye to video displays (Nakaishi et al. 2001). Oral administration of blackcurrant (R. nigrum) anthocyanins to such individuals at various doses decreased the dark adaptation threshold in a dose dependent fashion (Nakaishi et al. 2001). The photooxidation of pyridinium disretinoid A2E, an auto-fluorescence pigment accumulating in retinal pigment epithelial cells with age and also associated with some retinal disorders, was also found to be suppressed by scavenging singlet oxygen, upon administration of nine anthocyanins from bilberry (V. myrtillus) extracts (Jang et al. 2005). Black soybean (G. max) seed anthocyanins protected retinal neurons from N-methyl-N-nitrosourea-induced functional and structural damage (Paik et al. 2012). Anthocyanin from black soybean (G. max) protected human lens epithelial (HLE-B3) cells in H₂O₂-induced oxidative stress and prevented apoptosis (Mok et al. 2014).

The ocular distribution of blackcurrant (*R. nigrum*) anthocyanins in rats and rabbits after oral, intravenous and intraperitoneal administration was investigated (Matsumoto *et al.* 2006). Blackcurrant (*R. nigrum*) anthocyanins (BCA) were absorbed and distributed in ocular tissues as intact forms and passed through the blood-aqueous and blood-retinal barriers in both species. This study revealed that oral intake of anthocyanins or anthocyanin-rich extracts can be used to treat ophthalmological diseases such as glaucoma and myopia. Investigation of the effect of purified

high-dose anthocyanin oligomers on nocturnal visual function and clinical symptoms were carried out on 60 patients with asthenopia and refractive errors in both eyes. About 73% of patients were reported with improved symptoms (Lee *et al.* 2007). A randomized, placebo-controlled, double-masked trial showed that blackcurrant (*R. nigrum*) anthocyanins increased ocular blood flows during the two year trial in comparison with placebo-treated patients (Ohguro *et al.* 2012). However, significant changes were not observed in ocular or systemic conditions, including intraocular pressure, during the experiment (Ohguro *et al.* 2012). Another study suggests that bilberry (*V. myrtillus*) anthocyanins improved visual function in patients with normal tension glaucoma (Shim *et al.* 2012).

Flavonoids have a probable role in the prevention of diabetic cataracts (Varma and Kinoshita 1976). Flavonoids have also been found to delay or prevent the occurrence of cataracts in rat lenses perfused with a high-glucose solution or in diabetic rabbits (Varma and Kinoshita 1976; Laurens *et al.* 1985). Many naturally extracted or synthetized anthocyanin combinations with novel anti-cataract or anti-glaucoma activity have been reported in patents (Dilip and Tetsuya 2007). Reduction in the control of lens opacity was related to high levels of reducing sugars in *in vitro* and *in vivo* studies, i.e. the formation of experimental diabetic cataracts, which is a complication of diabetes occurring in about 10% of diabetic patients. It has been proven that caloric and food intake greatly influences the progression of diabetes and its complications (Thiraphatthanavong *et al.* 2014a). Inhibitory activities for lens opacity were shown by five anthocyanin monomers isolated from grape skin extract (Thiraphatthanavong *et al.* 2014a). Medium to high doses of *Z. mays* (purple waxy corn) extract, an important source of anthocyanins, reduced lens opacity along with a decreased MDA level, followed by improved experimental diabetic cataract in enucleated rat lenses (Thiraphatthanavong *et al.* 2014b).

Food extracts	Model	Dose	Experimental Outcomes	Reference
containing				
anthocyanin				
Bilberry (V.	Human adult retinal pigment	100 μM bilberry extract	-The photooxidation of pyridinium	(Jang <i>et al.</i> 2005)
myrtillus)	epithelial cells		disretinoid A2E was suppressed by scavenging singlet oxygen.	
Black currants	Human subjects with	12.5, 20, and 50 mg/subject.	-Significantly improved night vision	(Nakaishi et al. 2001)
(R. nigrum)	asthenopia.	Rats intraperitoneally received 500		(Matsumoto et al.
	Thirty-five male Wistar rats	mg blackcurrant anthocyanins	-BCAs were absorbed and distributed in	2006; Lee et al. 2007)
	and 16 Japan White male	powder per kg body weight (108 mg	ocular tissues as intact forms and passed	
	rabbits 6 groups (five groups	anthocyanins per kg body weight).	through the blood-aqueous and blood-	
	consisted of 3 rabbits and the	rabbits received 92.6 mg/kg body	retinal barriers, indicating that can used	
	control group of one rabbit)	weight of blackcurrant anthocyanins	to treat myopia and glaucoma.	
		(anthocyanins 20 mg/ kg body		
		weight) solution intravenously via		
		an ear vein		
Cyanoside	Human subjects with	31 patients were treated with 200	-Significantly improved photopic visual	(Sole <i>et al.</i> 1984)
chloride and	functional disturbances of	mg of cyanoside chloride and	acuity.	
heleniene	vision in the dark.	heleniene thrice a day for at least 4	-Cyaninoside chloride only improved	
		weeks.	visual functions related to mesopic and	
	Human subjects with		scotopic vision.	
	progressive myopia.			

Table 7. Function of anthocyanin rich extracts and anthocyanins in the improvement and protection of visual activity.

Toxicological aspects of anthocyanins

This review work showed that regular intake of anthocyanins rich colourful fruits and vegetables play an important role to maintain a healthy lifestyle which may protect against chronic diseases such as CVS, diabetes and cancer. Though no deficiency disorder has been reported which are associated with the lack of the consumption of anthocyanins (Wallace and Giusti, 2015). However, toxicological effects of anthocyanins and related food products need to be assessed scientifically to support the claims about its potential non-toxic effect. The daily intake of anthocyanins, established by the FAO/WHO expert committee, is 2.5 mg/kg per day, extracted from grape-skin (Wallace and Giusti, 2015). However, no recommended intake level of general anthocyanins for optimal health benefit or to avoid adverse effects is published yet. Low or no acute toxicity symptoms were reported for anthocyanin consumption, both in vitro and in vivo (animals and humans) models at usual dietary intake levels (Burton-Freeman et al., 2016; Harlinda et al., 2016; Khoo et al., 2017; Pojer et al., 2013). Moreover, a study on guinea pigs receiving 3 g/day of anthocyanins extract for 15 days followed by a washout period of one month reported no adverse effect developed in the animals (European Food Safety Authority, 2013). Toxicity testing report on Lepisanthes alata (Blume) Leenh fruits which are enriched with anthocyanins suggested that the fruits of the plant tested are safe for consumption (Anggraini et al., 2019). Furthermore, no negative effects developed due to the administration of very high doses of anthocyanin derivatives have been reported (Eker et al., 2019). In addition, the consumption of anthocyanins also increased the gut microbiota such as Bifidobacterium spp., or Lactobacillus spp. which showed benefit in metabolic dysfunction (Eker et al., 2019).

Conclusion and future direction

The prevention of disease and wellbeing of health is an important aspect for a healthy life in modern society. Since the beginning of human history, nature has been considered as a provider of food and natural healing substances in the form of herbal plants. Even in modern medicine, drug development largely depends on the ancient knowledge of healing. Public health policy strongly encourages preventative health measures so as to reduce dependence on costly treatments. In this regard, anthocyanin serves as 'potential drug', with robust protective efficacy in several lifestyles related disorders. The majority of such attributes are due to its anti-inflammatory and antioxidant activities. There are many studies currently being conducted to further evaluate the health beneficial effects of this extraordinary pigment, as researchers, nowadays, are focusing on extracting health benefits from functional foods. Apart from direct antioxidant activity, a wide range of complex mechanisms have been proposed to explain most of the health promoting mechanisms of anthocyanins. Anthocyanin covers a large number of targets which include oxidants, xenobiotics, and excess of metals, radiations and pro-inflammatory factors. Furthermore, anthocyanin can interact directly with proteins and enzymes, which results into modulation in signalling pathways and related changes in cellular metabolism.

Overall, *in vitro* and *in vivo* results and clinical evidence indicates that anthocyanins could be a promising therapeutic agent against an extended range of diseases and disorders, which includes cardiovascular diseases, neurological impairments, diabetes, viral diseases, cancer, toxin-induced liver and kidney damage, inflammation and oxidative

radical-induced pathologies. While anthocyanins may have a low bioavailability, research indicates that the metabolites may be responsible for much of their health promoting properties. Available reports on cellular and animal models have provided sufficient clinical outcomes, which could influence researchers to study further and establish the anthocyanin based lead molecule for the benefits of mankind. The present study could assist in the very same process by providing a gross notion on the molecular mechanisms of anthocyanin action. However, lack of adequate knowledge about actual molecular mechanisms hinders the application of anthocyanin as a therapeutic drug for many lifestyle disorders. More studies are required to find the real activities of anthocyanins and their metabolites and the specific mechanisms that health promoting properties of anthocyanins are realised. We can hope to see anthocyanins contributing significantly in the manufacture of therapeutics in the near future and facilitate people to benefit from the gifts of nature rather than artificial products.

Acknowledgement

L. Nahar gratefully acknowledges the financial support of the European Regional Development Fund - Project ENOCH (No. CZ.02.1.01/0.0/0.0/16_019/0000868).

Conflict of Interest

Authors declared that there is no conflict of interest regarding this manuscript.

Author Contributions:

MAA, SDS and NS planned for the review. MAA, PI, MMR and NS made the literature collection and preliminary draft manuscript. FK, GEB and LN critically expanded the draft manuscript and checked the correctness of the references. MAA, NS and SDS made the tables and pictorial diagram. MAA, NS, GEB and SDS critically reviewed the whole manuscript. All author approved the final version of this manuscript.

References

- Abo El-Ella DM, Bishayee A (2019) Chapter 6 The epigenetic targets of berry anthocyanins in cancer prevention. In: Bishayee A, Bhatia D (eds) Epigenetics of Cancer Prevention, vol 8. Academic Press, pp 129-148.
- Afaq F, Malik A, Syed D, Maes D, Matsui MS, Mukhtar H (2005a) Pomegranate fruit extract modulates UV-Bmediated phosphorylation of mitogen-activated protein kinases and activation of nuclear factor kappa B in normal human epidermal keratinocytes paragraph sign. Photochem. Photobiol. 81:38-45.
- Afaq F, Saleem M, Krueger CG, Reed JD, Mukhtar H (2005b) Anthocyanin- and hydrolyzable tannin-rich pomegranate fruit extract modulates MAPK and NF-kappaB pathways and inhibits skin tumorigenesis in CD-1 mice. Int. J. Cancer. 113:423-433.

- Afaq F, Syed DN, Malik A, Hadi N, Sarfaraz S, Kweon MH, Khan N, Zaid MA, Mukhtar H (2007) Delphinidin, an anthocyanidin in pigmented fruits and vegetables, protects human hacat keratinocytes and mouse skin against UVB-mediated oxidative stress and apoptosis. J. Investig. Dermatol. 127:222-232.
- Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, Varol M, Jain A, Khan MA, Sethi G (2019) Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules 9.
- Ahmadiani N, Sigurdson GT, Robbins RJ, Collins TM, Giusti MM (2019) Solid phase fractionation techniques for segregation of red cabbage anthocyanins with different colorimetric and stability properties. Food Res. Int. 120:688-696.
- Ahmet I, Spangler E, Shukitt-Hale B, Joseph JA, Ingram DK, Talan M (2009) Survival and cardioprotective benefits of long-term blueberry enriched diet in dilated cardiomyopathy following myocardial infarction in rats. PLoS ONE. 4:e7975.
- Akkarachiyasit S, Charoenlertkul P, Yibchok-Anun S, Adisakwattana S (2010) Inhibitory activities of cyanidin and its glycosides and synergistic effect with acarbose against intestinal alpha-glucosidase and pancreatic alpha-amylase. Int. J. Mol. Sci. 11:3387-3396.
- Alam MA (2019) Anti-hypertensive effect of cereal antioxidant ferulic acid and its mechanism of action. Front Nutr. 6, 121.
- Alam MA, Subhan N, Hossain H, Hossain M, Reza HM, Rahman MM, Ullah MO (2016) Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutr. Metab. 13: 27.
- Al-Awwadi NA, Araiz C, Bornet A, Delbosc S, Cristol J-P, Linck N, Azay J, Teissedre P-L, Cros G (2005) Extracts enriched in different polyphenolic families normalize increased cardiac NADPH oxidase expression while having differential effects on insulin resistance, hypertension, and cardiac hypertrophy in high-fructose-fed rats. J. Agric. Food Chem. 53:151-157.
- Aloud BM, Raj P, McCallum J, Kirby C, Louis XL, Jahan F, Yu L, Hiebert B, Duhamel TA, Wigle JT *et al.* (2018) Cyanidin 3-O-glucoside prevents the development of maladaptive cardiac hypertrophy and diastolic heart dysfunction in 20-week-old spontaneously hypertensive rats. Food Funct 9:3466-3480.
- Anderson RA, Broadhurst CL, Polansky MM, Schmidt WF, Khan A, Flanagan VP, Schoene NW, et al. (2004) Isolation and characterization of polyphenol type-a polymers from cinnamon with insulin-like biological activity. J. Agric. Food Chem. 52:65-70.
- Anderson RA, Polansky MM (2002) Tea enhances insulin activity. J. Agric. Food Chem. 50:7182-7186.
- Andriambeloson E, Magnier C, Haan-Archipoff G, Lobstein A, Anton R, Beretz A, Stoclet JC, Andriantsitohaina R (1998) Natural dietary polyphenolic compounds cause endothelium-dependent vasorelaxation in rat thoracic aorta. J. Nutr. 128:2324-2333.
- Anggraini T, Wilma S, Syukri D, Azima F (2019) Total phenolic, anthocyanin, catechins, DPPH radical scavenging activity, and toxicity of *Lepisanthes alata* (Blume) *Leenh*. Int. J. Food Sci. 2019, 9703176.

- Aoki H, Kuze N, Kato Y (2002) Anthocyanins isolated from purple corn (*Zea mays* L.). Foods and Food Ingredients J. Jpn. 41-45.
- Aqil F, Gupta A, Munagala R, Jeyabalan J, Kausar H, Sharma RJ, Singh IP, Gupta RC (2012) Antioxidant and antiproliferative activities of anthocyanin/ellagitannin-enriched extracts from *Syzygium cumini* L. (Jamun, the Indian Blackberry). Nutr. Cancer. 64:428-438.
- Arevstrom L, Bergh C, Landberg R, Wu H, Rodriguez-Mateos A, Waldenborg M, Magnuson A, Blanc S, Frobert O (2019) Freeze-dried bilberry (*Vaccinium myrtillus*) dietary supplement improves walking distance and lipids after myocardial infarction: an open-label randomized clinical trial. Nutr. Res. 62:13-22.
- Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K et al. (2012) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 425:560-564.
- Atalay M, Gordillo G, Roy S, Rovin B, Bagchi D, Bagchi M, Sen CK (2003) Anti-angiogenic property of edible berry in a model of hemangioma. FEBS Lett. 544:252-257.
- Augusti KT, Daniel RS, Cherian S, Sheela CG, Nair CR (1994) Effect of leucopelargonin derivative from *Ficus* bengalensis Linn. on diabetic dogs. Indian J. Med. Res. 99:82-86.
- Aviram M, Rosenblat M, Gaitini D, Nitecki S, Hoffman A, Dornfeld L, Volkova N, Presser D, Attias J, Liker H *et al.* (2004) Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clin. Nutr. 23:423-433.
- Azzini E, Vitaglione P, Intorre F, Napolitano A, Durazzo A, Foddai MS, Fumagalli A, Catasta G, Rossi L, Venneria E *et al.* (2010) Bioavailability of strawberry antioxidants in human subjects. Br. J. Nutr. 104:1165-1173.
- Badshah H, Kim TH, Kim MO (2015) Protective effects of anthocyanins against amyloid beta-induced neurotoxicity *in vivo* and *in vitro*. Neurochem. Int. 80:51-59.
- Bagchi D, Sen CK, Bagchi M, Atalay M (2004) Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula. Biochemistry (Moscow) 69:75-80.
- Bakuradze T, Tausend A, Galan J, Maria-Groh IA, Berry D, Tur JA, Marko D, Richling E (2019) Antioxidative activity and health benefits of anthocyanin-rich fruit juice in healthy volunteers. Free Radic. Res. 53 sup 1 1045-1055.
- Barnes MJ, Perry BG, Hurst RD, Lomiwes D (2020) Anthocyanin-rich new zealand blackcurrant extract supports the maintenance of forearm blood-flow during prolonged sedentary sitting. Front.Nutr. 74.
- Barton M, Cosentino F, Brandes RP, Moreau P, Shaw S, Luscher TF (1997) Anatomic heterogeneity of vascular aging: role of nitric oxide and endothelin. Hypertension. 30:817-824.
- Basu A, Rhone M, Lyons TJ (2010) Berries: emerging impact on cardiovascular health. Nutr. Rev. 68:168-177.
- Bhatt S, Nagappa AN, Patil CR (2020) Role of oxidative stress in depression. Drug Discov. Today 25, 1270-1276.
- Bell DR, Gochenaur K (2006) Direct vasoactive and vasoprotective properties of anthocyanin-rich extracts. J. Appl. Physiol. 100:1164-1170.
- Bell L, Williams CM (2019) A pilot dose–response study of the acute effects of haskap berry extract (*Lonicera caerulea* L.) on cognition, mood, and blood pressure in older adults. Eur. J. Nutr. 58:3325-3334.

- Bernatoniene J, Kopustinskiene DM (2018) The role of catechins in cellular responses to oxidative stress. Molecules 23, 965.
- Bertuglia S, Malandrino S, Colantuoni A (1995) Effects of the natural flavonoid delphinidin on diabetic microangiopathy. Arzneimittel-Forsch 45:481-485.
- Bhaswant M, Shafie SR, Mathai ML, Mouatt P, Brown L (2017) Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats. Nutr. 41:24-31.
- Blesso CN (2019) Dietary anthocyanins and human health. Nutrients. 11.
- Boivin D, Blanchette M, Barrette S, Moghrabi A, Béliveau R (2007) Inhibition of cancer cell proliferation and suppression of TNF-induced activation of NF-κB by edible berry juice. Anticancer Res. 27:937-948.
- Bomser J, Madhavi D, Singletary K, Smith M (1996) *In vitro* anticancer activity of fruit extracts from *Vaccinium* species. Planta Medica. 62:212-216.
- Bonesi M, Leporini M, Tenuta MC, Tundis R (2020) The Role of anthocyanins in drug discovery: Recent developments. Curr. Drug Discov. Technol. 17: 286-298.
- Borkowski T, Szymusiak H, Gliszczyńska-Świgło A, Rietjens IMCM, Tyrakowska B (2005) Radical scavenging capacity of wine anthocyanins is strongly pH-dependent. J. Agric. Food Chem. 53:5526-5534.
- Bouayed J, Bohn T (2010) Exogenous antioxidants--double-edged swords in cellular redox state: health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell. Longev. 3, 228-237.
- Brandstetter H, Grams F, Glitz D, Lang A, Huber R, Bode W, Krell H-W, Engh RA (2001) The 1.8-Å Crystal structure of a matrix metalloproteinase 8-barbiturate inhibitor complex reveals a previously unobserved mechanism for collagenase substrate recognition. J. Biol. Chem. 276:17405-17412.
- Broncel M, Kozirog M, Duchnowicz P, Koter-Michalak M, Sikora J, Chojnowska-Jezierska J (2010) *Aronia melanocarpa* extract reduces blood pressure, serum endothelin, lipid, and oxidative stress marker levels in patients with metabolic syndrome. Med Sci Monit. 16:CR28-34.
- Burton-Freeman B, Brzezinski M, Park E, Sandhu A, Xiao D, Edirisinghe I (2019) A selective role of dietary anthocyanins and flavan-3-ols in reducing the risk of type 2 diabetes mellitus: A review of recent evidence. Nutr. 11:841.
- Burton-Freeman B, Sandhu A, Edirisinghe I (2016) Chapter 35 Anthocyanins, in: Gupta, R.C. (Ed.), Nutraceuticals. Academic Press, Boston, pp. 489-500.
- Carluccio Maria A, Siculella L, Ancora Maria A, Massaro M, Scoditti E, Storelli C, Visioli F, Distante A, De Caterina R (2003) Olive oil and red wine antioxidant polyphenols inhibit endothelial activation. Arterioscler. Thromb. Vasc. Biol. 23:622-629.
- Chang J-J, Hsu M-J, Huang H-P, Chung D-J, Chang Y-C, Wang C-J (2013) Mulberry anthocyanins inhibit oleic acid induced lipid accumulation by reduction of lipogenesis and promotion of hepatic lipid clearance. J. Agric. Food Chem. 61:6069-6076.
- Chang Y-C, Huang H-P, Hsu J-D, Yang S-F, Wang C-J (2005) *Hibiscus* anthocyanins rich extract-induced apoptotic cell death in human promyelocytic leukemia cells. Toxicol. Appl. Pharmacol. 205:201-212.

- Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2017) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9:7204-7218.
- Chen L, Jiang B, Zhong C, Guo J, Zhang L, Mu T, Zhang Q, Bi X (2018) Chemoprevention of colorectal cancer by black raspberry anthocyanins involved the modulation of gut microbiota and SFRP2 demethylation. Carcinogenesis 39:471-481.
- Chen PN, Chu SC, Chiou HL, Chiang CL, Yang SF, Hsieh YS (2005a) Cyanidin 3-*O*-glucoside and peonidin 3glucoside inhibit tumor cell growth and induce apoptosis in vitro and suppress tumor growth *in vivo*. Nutr. Cancer 53:232-243.
- Chen PN, Kuo WH, Chiang CL, Chiou HL, Hsieh YS, Chu SC (2006) Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression. Chem. Biol. Interact. 163(3): 218-229.
- Chen QM, Maltagliati AJ (2018) Nrf2 at the heart of oxidative stress and cardiac protection. Physiol. Genomics. 50, 77-97.
- Chen S, Zhou H, Zhang G, Meng J, Deng K, Zhou W, Wang H, Wang Z, Hu N, Suo Y (2019) Anthocyanins from *Lycium ruthenicum* Murr. ameliorated d-galactose-induced memory impairment, oxidative stress, and neuroinflammation in adult rats. J. Agric. Food Chem. 67:3140-3149.
- Chen Y-F, Shibu M, Fan M, Chen M-C, Viswanadha V, Lin Y-L, Lai C-H, Lin K-H, Ho T-J, Kuo W-W et al. (2016) Purple rice anthocyanin extract protects cardiac function in STZ-induced diabetes rat hearts by inhibiting cardiac hypertrophy and fibrosis. J. Nutr. Biochem. 31:98-105.
- Cherian S, Kumar RV, Augusti KT, Kidwai JR (1992) Antidiabetic effect of a glycoside of pelargonidin isolated from the bark of *Ficus bengalensis* Linn. Indian J. Biochem. Bio. 29:380-382.
- Chiu L-W, Zhou X, Burke S, Wu X, Prior RL, Li L (2010) The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol. 154:1470-1480.
- Cho J, Kang JS, Long PH, Jing J, Back Y, Chung KS (2003) Antioxidant and memory enhancing effects of purple sweet potato anthocyanin and cordyceps mushroom extract. Arch. Pharm. Res. 26:821-825
- Chun OK, Chung S-J, Claycombe KJ, Song WO (2008) Serum C-reactive protein concentrations are inversely associated with dietary flavonoid intake in U.S. adults. J. Nutr. 138:753-760.
- Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, Pober JS, Wick TM, Konkle BA, Schwartz BS *et al.* (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91:3527.
- Cohen-Boulakia F, Valensi PE, Boulahdour H, Lestrade R, Dufour-Lamartinie J-F, Hort-Legrand C, Behar A (2000) *In vivo* sequential study of skeletal muscle capillary permeability in diabetic rats: effect of anthocyanosides Metab. 49:880-885.
- Cook MD, Sandu BAK, Joyce PJP (2020) Effect of New Zealand blackcurrant on blood pressure, cognitive function and functional performance in older adults. J. Nutr. Gerontol. Geriatr. 39:99-113.
- Cooke D, Schwarz M, Boocock D, Winterhalter P, Steward WP, Gescher AJ, Marczylo TH (2006) Effect of cyanidin-3-O-glucoside and an anthocyanin mixture from bilberry on adenoma development in the ApcMin mouse model of intestinal carcinogenesis—Relationship with tissue anthocyanin levels. Int. J. Cancer 119:2213-2220.

- Curtis PJ, van der Velpen V, Berends L, Jennings A, Feelisch M, Umpleby AM, Evans M, Fernandez BO, Meiss MS, Minnion M *et al.* (2019) Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome—results from a 6-month, double-blind, randomized controlled trial. AM J. Clin. Nutr. 109:1535-1545.
- da Silva RFR, Barreira JCM, Heleno SA, Barros L, Calhelha RC, Ferreira ICFR (2019) Anthocyanin profile of elderberry juice: a natural-based bioactive colouring ingredient with potential food application. Molecules. 24:2359.
- Daniel RS, Devi KS, Augusti KT, Sudhakaran Nair CR (2003) Mechanism of action of antiatherogenic and related effects of *Ficus bengalensis* Linn. flavonoids in experimental animals. Indian J. of Exp. Biol. 41:296-303
- Daveri E, Cremonini E, Mastaloudis A, Hester SN, Wood SM, Waterhouse AL, Anderson M, Fraga CG, Oteiza PI (2018) Cyanidin and delphinidin modulate inflammation and altered redox signaling improving insulin resistance in high fat-fed mice. Redox Biol. 18:16-24.
- De-Xing H (2003) Potential mechanisms of cancer chemoprevention by anthocyanins. Curr. Mol. Med. 3:149-159.
- DeFuria J, Bennett G, Strissel KJ, Perfield JW, 2nd, Milbury PE, Greenberg AS, Obin MS (2009) Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J. Nutr. 139:1510-1516.
- Demrow HS, Slane PR, Folts JD (1995) Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arteries. Circulation. 91:1182-1188.
- Di Castelnuovo A, Rotondo S, Iacoviello L, Donati MB, De Gaetano G (2002) Meta-analysis of wine and beer consumption in relation to vascular risk. Circulation. 105:2836-2844.
- Di Meo S, Reed TT, Venditti P, Victor VM (2016) Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev. 2016, 1245049-1245049.
- Dilip G, Tetsuya K (2007) Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pac. J. Clin. Nutr. 16:200-208.
- Dohadwala MM, Vita JA (2009) Grapes and cardiovascular disease. J. Nutr. 139:1788-1793.
- Eker ME, Aaby K, Budic-Leto I, Brncic SR, El SN, Karakaya S, Simsek S, Manach C, Wiczkowski W, Pascual-Teresa S (2019) A Review of factors affecting anthocyanin bioavailability: Possible implications for the interindividual variability. Foods (Basel, Switzerland) 9.
- Ellulu MS, Patimah I, Khaza'ai H, Rahmat A, Abed Y (2017) Obesity and inflammation: the linking mechanism and the complications. Arch. Med. Sci. 13:851-863.
- European Food Safety Authority (2013) Scientific opinion on the re-evaluation of anthocyanins (E 163) as a food additive, EFSA panel on food additives and nutrient sources added to Food (ANS). EFSA J. 11, 3145.
- Fakhri S, Khodamorady M, Naseri M, Farzaei MH, Khan H (2020) The ameliorating effects of anthocyanins on the cross-linked signaling pathways of cancer dysregulated metabolism. Pharmacol. Res. 159: 104895.
- Fallah AA, Sarmast E, Jafari T (2020) Effect of dietary anthocyanins on biomarkers of oxidative stress and antioxidative capacity: A systematic review and meta-analysis of randomized controlled trials. J. Funct. Foods. 68, 103912.

- Fan D, Alamri Y, Liu K, MacAskill M, Harris P, Brimble M, Dalrymple-Alford J, Prickett T, Menzies O, Laurenson A *et al.* (2018) Supplementation of blackcurrant anthocyanins increased cyclic glycine-proline in the cerebrospinal fluid of parkinson patients: potential treatment to improve insulin-like growth factor-1 function. Nutr. 10(6):714.
- Fan M, Choi Y-J, Tang Y, Bae SM, Yang HP, Kim E-K (2019) Efficacy and mechanism of polymerized anthocyanin from grape-skin extract on high-fat-diet-induced nonalcoholic fatty liver disease. Nutr. 11:2586.
- Farrell NJ, Norris GH, Ryan J, Porter CM, Jiang C, Blesso CN (2015) Black elderberry extract attenuates inflammation and metabolic dysfunction in diet-induced obese mice. Br. J. Nutr. 114:1123-1131.
- Felgines C, Talavera S, Gonthier M-P, Texier O, Scalbert A, Lamaison J-L (2003) Strawberry anthocyanins are recovered in urine as glucuro-and sulfoconjugates in humans. J. Nutr. 133:1296–1301.
- Feng R, Ni HM, Wang SY, Tourkova IL, Shurin MR, Harada H, Yin XM (2007) Cyanidin-3-O-rutinoside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress. J. Biol. Chem. 282:13468-13476.
- Fimognari C, Berti F, Nüsse M, Cantelli-Forti G, Hrelia P (2004) Induction of apoptosis in two human leukemia cell lines as well as differentiation in human promyelocytic cells by cyanidin-3-*O*-β-glucopyranoside. Biochem. Pharmacol. 67:2047-2056.
- Fitzpatrick DF, Hirschfield SL, Coffey RG (1993) Endothelium-dependent vasorelaxing activity of wine and other grape products. AM J. Physiol-Heart C. 265:H774-778.
- Fitzpatrick DF, Hirschfield SL, Ricci T, Jantzen P, Coffey RG (1995) Endothelium-dependent vasorelaxation caused by various plant extracts. J. Cardiovasc. Pharmacol. 26:90-95
- Folts JD (1998) Antithrombotic potential of grape juice and red wine for preventing heart attacks. Pharm. Biol. 36:21-27
- Fossen T, Andersen ØM (2003) Anthocyanins from red onion, *Allium cepa*, with novel aglycone. Phytochem. 62:1217-1220.
- Frank J, Kamal-Eldin A, Lundh T, Määttä K, Törrönen R, Vessby B (2002) Effects of dietary anthocyanins on tocopherols and lipids in rats. J. Agric. Food Chem. 50:7226-7230.
- Freedman JE, Parker C, Li L, Perlman JA, Frei B, Ivanov V, Deak LR, Iafrati MD, Folts JD (2001) Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation. 103:2792-2798.
- Frond AD, Iuhas CI, Stirbu I, Leopold L, Socaci S, Andreea S, Ayvaz H, Andreea S, Mihai S, Diaconeasa Z, Carmen S (2019) Phytochemical characterization of five edible purple-reddish vegetables: anthocyanins, flavonoids, and phenolic acid derivatives. Molecules. 24:1536.
- Gabor M (1972) Pharmacologic effects of flavonoids on blood vessels. Angiologica 9:355-374.
- Gabrielska J, Oszmiański J (2005) Antioxidant activity of anthocyanin glycoside derivatives evaluated by the inhibition of liposome oxidation. Zeitschrift fur Naturforschung. 60: 399-407.

- Garcia-Sanchez A, Miranda-Diaz AG, Cardona-Munoz EG (2020) The role of oxidative stress in physiopathology and pharmacological treatment with pro- and antioxidant properties in chronic diseases. Oxid. Med. Cell. Longev. 2020, 2082145.
- Ge Q, Ma X (2013) Composition and antioxidant activity of anthocyanins isolated from Yunnan edible rose (An ning). Food Sci. and Human Wellness 2:68-74.
- Gharib A, Faezizadeh Z, Godarzee M (2013) Treatment of diabetes in the mouse model by delphinidin and cyanidin hydrochloride in free and liposomal forms. Planta Med, 79(17): 1599-1604.
- Giampieri F, Tulipani S, Alvarez-Suarez JM, Quiles JL, Mezzetti B, Battino M (2012) The strawberry: composition, nutritional quality, and impact on human health. Nutr. 28:9-19.
- Gil MI, Tomas-Barberan FA, Hess-Pierce B, Holcroft DM, Kader AA (2000) Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J. Agric. Food Chem. 48:4581-4589.
- Goncalves AC, Bento C, Silva BM, Silva LR (2017) Sweet cherries from Fundao possess antidiabetic potential and protect human erythrocytes against oxidative damage. Food Res. Int. 95:91-100.
- Gorinstein S, Caspi A, Libman I, Lerner HT, Huang D, Leontowicz H, Leontowicz M, Tashma Z, Katrich E, Feng S *et al.* (2006) Red grapefruit positively influences serum triglyceride level in patients suffering from coronary atherosclerosis: studies in vitro and in humans. J. Agric. Food Chem. 54:1887-1892.
- Graf D, Seifert S, Jaudszus A, Bub A, Watzl B (2013) Anthocyanin-rich juice lowers serum cholesterol, leptin, and resistin and improves plasma fatty acid composition in fischer rats. PLoS ONE. 8:e66690.
- Griffiths LA, Smith GE (1972) Metabolism of myricetin and related compounds in the rat. Metabolite formation *in vivo* and by the intestinal microflora *in vitro*. Biochem. J. 130:141-151.
- Grimes KL, Stuart CM, McCarthy JJ, Kaur B, Cantu EJ, Forester SC (2018) Enhancing the cancer cell growth inhibitory effects of table grape anthocyanins. J.Food Sci. 83:2369-2374.
- Guo Y, Zhang P, Liu Y, Zha L, Ling W, Guo H (2020) A dose-response evaluation of purified anthocyanins on inflammatory and oxidative biomarkers and metabolic risk factors in healthy young adults: A randomized controlled trial. Nutr. 74:110745.
- Harborne JB, Grayer RJ (1988) The anthocyanins. In: Harborne JB (ed) The Flavonoids. Springer, Boston. pp 1-20.
- Harborne JB, Williams CA (2001) Anthocyanins and other flavonoids. Nat. Prod. Rep. 18:310-333.
- Harlinda K, Anindya MR, Agmi SP, Rawan WK (2016) Antioxidant and toxicity properties of anthocyanin extracted from red flowerof four tropical shrubs. Nusantara Bioscience 8, 135-140.
- He J, Magnuson BA, Lala G, Tian Q, Schwartz SJ, Giusti MM (2006) Intact anthocyanins and metabolites in rat urine and plasma after 3 months of anthocyanin supplementation. Nutr. Cancer. 54:3-12.
- Hidalgo J, Teuber S, Morera FJ, Ojeda C, Flores CA, Hidalgo MA, Nunez L, Villalobos C, Burgos, RA (2017) Delphinidin reduces glucose uptake in mice jejunal tissue and human intestinal cells lines through FFA1/GPR40. Int. J. Mol. Sci. 18(4).
- Horie K, Nanashima N, Maeda H (2019) Phytoestrogenic effects of blackcurrant anthocyanins increased endothelial nitric oxide synthase (eNOS) expression in human endothelial cells and ovariectomized rats. Molecules 24:1259.

- Hou D-X, Kai K, Li J-J, Lin S, Terahara N, Wakamatsu M, Fujii M, Young MR, Colburn N (2004) Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure–activity relationship and molecular mechanisms. Carcinogenesis. 25:29-36.
- Hu W, Wang W, Ma Q, Liu T, Zhang J, Zhang J (2020) Blueberry anthocyanin-enriched extract ameliorates transverse aortic constriction-induced myocardial dysfunction via the DDAH1/ADMA/NO signaling pathway in mice. Mol. Med. Rep. 21:454-462.
- Hu T, Dong Y, He C, Zhao M, He Q (2020) The gut microbiota and oxidative stress in autism spectrum disorders (ASD). Oxid. Med. Cell. Longev. 2020, 8396708.
- Huang C, Huang Y, Li J, Hu W, Aziz R, Tang M-S, Sun N, Cassady J, Stoner GD (2002) Inhibition of benzo(a)pyrene diol-epoxide-induced transactivation of activated protein 1 and nuclear factor-κB by black raspberry extracts. Cancer Res. 62:6857-6863
- Huang C, Li J, Song L, Zhang D, Tong Q, Ding M, Bowman L, Aziz R, Stoner GD (2006) Black raspberry extracts inhibit benzo(a)pyrene diol-epoxide–induced activator protein 1 activation and VEGF transcription by targeting the phosphotidylinositol 3-kinase/Akt pathway. Cancer Res. 66:581-587.
- Huang H, Jiang X, Xiao Z, Yu L, Pham Q, Sun J, Chen P, Yokoyama W, Yu LL, Luo YS, Wang TT (2016a) Red cabbage microgreens lower circulating low-density lipoprotein (LDL), liver cholesterol, and inflammatory cytokines in mice fed a high-fat diet. J. Agric. Food Chem. 64:9161-9171.
- Huang W, Yan Z, Li D, Ma Y, Zhou J, Sui Z (2018) Antioxidant and anti-inflammatory effects of blueberry anthocyanins on high glucose-induced human retinal capillary endothelial cells. Oxid. Med. Cell. Longev. 2018:10.
- Huang W, Zhu Y, Li C, Sui Z, Min W (2016b) Effect of blueberry anthocyanins malvidin and glycosides on the antioxidant properties in endothelial cells. Oxid. Med. Cell. Longev. 2016:10.
- Huang WY, Wang J, Liu YM, Zheng QS, Li CY (2014) Inhibitory effect of malvidin on TNF-alpha-induced inflammatory response in endothelial cells. Eur. J. Pharmacol. 723:67-72.
- Hudlikar R, Wu R, Cheng D, Kuo DH-C, Wang L, Peter R, Yin R, Li S, Kong A-N (2020) Anthocyanins and cancer prevention, in: Pezzuto JM, Vang O (Eds.), Natural products for cancer chemoprevention: Single compounds and combinations. Springer International Publishing, Cham, pp. 351-373.
- Hwang J-W, Kim E-K, Lee S-J, Kim Y-S, Moon S-H, Jeon B-T, Sung S-H, Kim E-T, Park P-J (2012) Antioxidant activity and protective effect of anthocyanin oligomers on H₂O₂-triggered G2/M arrest in retinal cells. J. Agric. Food Chem. 60:4282-4288.
- Ibrahim UK, Muhammad II, Salleh RM (2011) The effect of pH on color behavior of *Brassica oleracea* anthocyanin. J. App. Sci. 11:2406-2410.
- Ighodaro OM, Akinloye OA (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J.Med. 54, 287-293.
- Isaak CK, Petkau JC, Blewett H, O K, Siow YL (2017) Lingonberry anthocyanins protect cardiac cells from oxidativestress-induced apoptosis. Can. J. Physiol. Pharm. 95:904-910.

- Jang YP, Zhou J, Nakanishi K, Sparrow JR (2005) Anthocyanins protect against A2E photooxidation and membrane permeabilization in retinal pigment epithelial cells. Photochem. Photobiol.81:529-536.
- Jayaprakasam B, Olson LK, Schutzki RE, Tai M-H, Nair MG (2006) Amelioration of obesity and glucose intolerance in high-fat-fed C57BL/6 mice by anthocyanins and ursolic acid in cornelian cherry (*Cornus mas*). J. Agric. Food Chem. 54:243-248.
- Jayaprakasam B, Vareed SK, Olson LK, Nair MG (2005) Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. J. Agric. Food Chem. 53:28-31.
- Jayle GE, Aubry M, Gavini H, Braccini G, De la Baume C (1965) Study concerning the action of anthocyanoside extracts of *Vaccinium myrtillus* on night vision. Annales d'oculistique. 198:556-562.
- Jennings A, Welch AA, Fairweather-Tait SJ, Kay C, Minihane AM, Chowienczyk P, Jiang B, Cecelja M, Spector T, Macgregor A, Cassidy A (2012) Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. AM J Clin Nutr. 96:781-788.
- Jeong JW, Lee WS, Shin SC, Kim GY, Choi BT, Choi YH (2013) Anthocyanins downregulate lipopolysaccharideinduced inflammatory responses in BV2 microglial cells by suppressing the NF-kappaB and Akt/MAPKs signaling pathways. Int. J. Mol. Sci. 14:1502-1515.
- Jiang Y, Dai M, Nie W-J, Yang X-R, Zeng X-C (2017) Effects of the ethanol extract of black mulberry (*Morus nigra* L.) fruit on experimental atherosclerosis in rats. J. Ethnopharmacol. 200:228-235.
- Joo HK, Choi S, Lee YR, Lee EO, Park MS, Park KB, Kim C-S, Lim YP, Park J-T, Jeon BH (2018) Anthocyaninrich extract from red chinese cabbage alleviates vascular inflammation in endothelial cells and Apo E-/mice. Int. J. Mol. Sci. 19:816.
- Joseph JA, Shukitt-Hale B, Denisova NA, Bielinski D, Martin A, McEwen JJ, Bickford PC (1999) Reversals of agerelated declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J. Neurosci. 19:8114-8121.
- Ju JH, Yoon HS, Park HJ, Kim MY, Shin HK, Park KY, Yang JO, Sohn MS, Do MS et al. (2011) Anti-obesity and antioxidative effects of purple sweet potato extract in 3T3-L1 adipocytes in vitro. J. Med. Food. 14:1097-1106.
- Kahkonen MP, Heinonen M (2003) Antioxidant activity of anthocyanins and their aglycons. J. Agric. Food Chem. 51:628-633.
- Kalt W, Hanneken A, Milbury P, Tremblay F (2010) Recent research on polyphenolics in vision and eye health. J. Agric. Food Chem. 58:4001-4007.
- Kandil FE, Song L, Pezzuto JM, Marley K, Seigler DS, Smith MAL (2000) Isolation of oligomeric proanthocyanidins from flavonoid-producing cell cultures. *In Vitro* Cell Dev-Pl. 36:492-500.
- Kang S-Y, Seeram NP, Nair MG, Bourquin LD (2003) Tart cherry anthocyanins inhibit tumor development in Apc (Min) mice and reduce proliferation of human colon cancer cells. Cancer Lett. 194:13-19.
- Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL (2017) Oxidative stress in atherosclerosis. Curr. Atheroscler. Rep. 19:42.

- Kay CD, Mazza G (2008) Bioactivity, absorption, and metabolism of anthocyanins. In: Daayf F, Lattanzio V (eds) Recent Advances in Polyphenol Research, vol 1. Wiley, pp 228-262
- Kay CD, Mazza G, Holub BJ (2005) Anthocyanins exist in the circulation primarily as metabolites in adult men. J. Nutr. 135:2582-2588.
- Kay CD, Mazza G, Holub BJ, Wang J (2007) Anthocyanin metabolites in human urine and serum. Br. J. Nutr. 91:933-942.
- Kelley LC, Lohmer LL, Hagedorn EJ, Sherwood DR (2014) Traversing the basement membrane *in vivo*: a diversity of strategies. J. Cell. Biol. 204:291-302.
- Keppler K, Humpf H-U (2005) Metabolism of anthocyanins and their phenolic degradation products by the intestinal microflora. Bioorg. Med. Chem. 13:5195-5205.
- Khan MS, Ali T, Kim MW, Jo MH, Chung JI, Kim MO (2019) Anthocyanins improve hippocampus-dependent memory function and prevent neurodegeneration via JNK/Akt/GSK3β signaling in LPS-treated adult mice. Mol. Neurobiol. 56:671-687.
- Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 61:1361779.
- Kianbakht S, Hashem-Dabaghian F (2019) Antihypertensive efficacy and safety of *Vaccinium arctostaphylos* berry extract in overweight/obese hypertensive patients: A randomized, double-blind and placebo-controlled clinical trial. Complement. Ther. Med. 44:296-300.
- Kim SY, Wi H-R, Choi S, Ha TJ, Lee BW, Lee M (2015) Inhibitory effect of anthocyanin-rich black soybean testa (*Glycine max* (L.) Merr.) on the inflammation-induced adipogenesis in a DIO mouse model. J. Funct. Foods. 14:623-633.
- Kim YK, Yoon HH, Lee YD, Youn DY, Ha TJ, Kim HS, Lee JH (2012) Anthocyanin extracts from black soybean (*Glycine max* L.) protect human glial cells against oxygen-glucose deprivation by promoting autophagy. Biomol. Ther. 20:68-74.
- Kirisattayakul W, Wattanathorn J, Iamsaard S, Jittiwat J, Suriharn B, Lertrat K (2017) Neuroprotective and memoryenhancing effect of the combined extract of purple waxy corn cob and pandan in ovariectomized rats. Oxid. Med. Cell. Longev. 2017:12.
- Klatsky AL (2001) Commentary: Could abstinence from alcohol be hazardous to your health? Int. J. Epidemiol. 30:739-742.
- Koide T, Hashimoto Y, Kamei H, Kojima T, Hasegawa M, Terabe K (1997) Antitumor effect of anthocyanin fractions extracted from red soybeans and red beans *in vitro* and *in vivo*. Cancer Biother Radio. 12:277-280.
- Kong J-M, Chia L-S, Goh N-K, Chia T-F, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochem. 64:923-933.
- Kuciel-Lewandowska J, Kasperczak M, Bogut B, Heider R, Laber WT, Laber W, Paprocka-Borowicz M (2020) The impact of health resort treatment on the nonenzymatic endogenous antioxidant system. Oxid. Med. Cell. Longev. 2020, 8423105.

- Kulling ES, Rawel MH (2008) Chokeberry (*Aronia melanocarpa*) a review on the characteristic components and potential health effects. Planta Medica. 74:1625-1634.
- Kurutas EB (2016) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr. J. 15, 71-71.
- Kusano S, Abe H, Tamura H (2001) Isolation of antidiabetic components from white-skinned sweet potato (*Ipomoea batatas* L.) Biosci., Biotechnol. Biochem. 65:109-114.
- Kwon Bc, Javed W, Elmqvist N, Yi JS (2011) Direct manipulation through surrogate objects. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada.
- Lachin T, Reza H (2012) Anti-diabetic effect of cherries in alloxan induced diabetic rats. Recent Pat. Endocr. Metab. Immune. Drug Discov. 6:67-72.
- Lampe JW, Chang J-L (2007) Interindividual differences in phytochemical metabolism and disposition. Seminars in Cancer Biol. 17:347-353.
- Landrault N, Poucheret P, Azay J, Krosniak M, Gasc F, Jenin C, Cros G, Teissedre P-L (2003) Effect of a polyphenolsenriched chardonnay white wine in diabetic rats. J. Agric. Food Chem. 51:311-318.
- Laurens A, Gionobarber P, Sylla O, Gionobarber H (1985) Aldose reductase Inhibitors-A new therapeutic method for certain complications of diabetes. Therapie. 38:659-663.
- Lee C, Han D, Kim B, Baek N, Baik B-K (2013) Antioxidant and anti-hypertensive activity of anthocyanin-rich extracts from hulless pigmented barley cultivars. Int. J. Food Sci. Technol. 48:984-991.
- Lee J, Lee HK, Kim CY, Hong YJ, Choe CM, You TW, Seong GJ (2007) Purified high-dose anthocyanoside oligomer administration improves nocturnal vision and clinical symptoms in myopia subjects. Br. J. Nutr. 93:895-899.
- Lee M, Sorn SR, Park Y, Park HK (2016) Anthocyanin rich-black soybean testa improved visceral fat and plasma lipid profiles in overweight/obese Korean adults: A randomized controlled trial. J. Med. Food. 19:995-1003.
- Li J, Zhao R, Jiang Y, Xu Y, Zhao H, Lyu X, Wu T (2020) Bilberry anthocyanins improve neuroinflammation and cognitive dysfunction in APP/PSEN1 mice via the CD33/TREM2/TYROBP signaling pathway in microglia. Food Funct. 11:1572-1584.
- Li S, Wu B, Fu W, Reddivari L (2019) The anti-inflammatory effects of dietary anthocyanins against ulcerative colitis. Int. J. Mol. Sci. 20:2588.
- Liang Y-J, Shyu K-G, Wang B-W, Lai L-P (2006) C-reactive protein activates the nuclear factor-κB pathway and induces vascular cell adhesion molecule-1 expression through CD32 in human umbilical vein endothelial cells and aortic endothelial cells. J.Mol. Cell. Cardiol. 40:412-420.
- Lietti A, Cristoni A, Picci M (1976) Studies on *Vaccinium myrtillus* anthocyanosides. I. Vasoprotective and antiinflammatory activity. Arzneimittel-forschung. 26:829-832.
- Lim S, Xu J, Kim J, Chen T.-Y, Su X, Standard J, Carey E, Griffin J, Herndon B, Katz B, Tomich J *et al.* (2013) Role of anthocyanin-enriched purple-fleshed sweet potato p40 in colorectal cancer prevention Mol. Nutr. Food Res. 57:1908-1917.
- Lin B-W, Gong C-C, Song H-F, Cui Y-Y (2017) Effects of anthocyanins on the prevention and treatment of cancer. Br. J. Pharmacol. 174, 1226-1243.

- Liu Y-Z, Wang Y-X, Jiang C-L (2017) Inflammation: the common pathway of stress-related diseases. Frontiers in Human Neurosci. 11: 316.
- Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 4:118-126.
- Long H-L, Zhang F-F, Wang H-L, Yang W-S, Hou H-T, Yu J-K, Liu B (2018) Mulberry anthocyanins improves thyroid cancer progression mainly by inducing apoptosis and autophagy cell death. Kaohsiung J. Med. Sci. 34:255-262.
- Luna-Vital DA, Gonzalez de Mejia E (2018) Anthocyanins from purple corn activate free fatty acid-receptor 1 and glucokinase enhancing *in vitro* insulin secretion and hepatic glucose uptake. PLoS ONE. 13:e0200449.
- Luo Y, Fang J-L, Yuan K, Jin S-H, Guo Y (2019) Ameliorative effect of purified anthocyanin from *Lycium ruthenicum* on atherosclerosis in rats through synergistic modulation of the gut microbiota and NF-κB/SREBP-2 pathways. J. Funct. Foods. 59:223-233.
- Ma Q (2013) Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 53, 401-426.
- Madhavi DL, Bomser J, Smith MAL, Singletary K (1998) Isolation of bioactive constituents from *Vaccinium myrtillus* (bilberry) fruits and cell cultures. Plant Sci. 131:95-103.
- Marco PH, Poppi RJ, Scarminio IS, Tauler R (2011) Investigation of the pH effect and UV radiation on kinetic degradation of anthocyanin mixtures extracted from *Hibiscus acetosella*. Food Chem. 125:1020-1027.
- Martin S, Giannone G, Andriantsitohaina R, Martinez MC (2003) Delphinidin, an active compound of red wine, inhibits endothelial cell apoptosis via nitric oxide pathway and regulation of calcium homeostasis. Br. J. Pharmacol. 139:1095-1102.
- Matsui T, Ebuchi S, Fukui K, Matsugano K, Terahara N, Matsumoto K (2004) Caffeoylsophorose, a new natural alpha-glucosidase inhibitor, from red vinegar by fermented purple-fleshed sweet potato. Biosci. Biotech. Bioch. 68:2239-2246.
- Matsui T, Ueda T, Oki T, Sugita K, Terahara N, Matsumoto K (2001) α-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J. Agric. Food Chem. 49:1948-1951.
- Matsumoto H, Inaba H, Kishi M, Tominaga S, Hirayama M, Tsuda T (2001) Orally administered delphinidin 3rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms. J. Agric. Food Chem. 49:1546-1551.
- Matsumoto H, Nakamura Y, Iida H, Ito K, Ohguro H (2006) Comparative assessment of distribution of blackcurrant anthocyanins in rabbit and rat ocular tissues. Exp. Eye Res. 83:348-356.
- Matsumoto H, Nakamura Y, Tachibanaki S, Kawamura S, Hirayama M (2003) Stimulatory effect of cyanidin 3glycosides on the regeneration of rhodopsin. J. Agric. Food Chem. 51:3560-3563.
- Mauray A, Felgines C, Morand C, Mazur A, Scalbert A, Milenkovic D (2012) Bilberry anthocyanin-rich extract alters expression of genes related to atherosclerosis development in aorta of apo E-deficient mice. Nutr. Metab. Cardiovas. 22:72-80.
- Mazza G, Francis F (1995) Anthocyanins in grapes and grape products. Critical Rev. in Food Sci. Nutr. 35:341-371.

- Mazza G, Kay CD, Cottrell T, Holub BJ (2002) Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J. Agric. Food Chem. 50:7731–7737.
- Mcghie T, Walton CM (2019) The bioavailability and absorption of anthocyanins: Towards a better understanding. Mol. Nutr. Food Res. 51:702-713.
- McNamara RK, Kalt W, Shidler MD, McDonald J, Summer SS, Stein AL, Stover AN, Krikorian R (2018) Cognitive response to fish oil, blueberry, and combined supplementation in older adults with subjective cognitive impairment. Neurobiol Aging 64: 147-156.
- Medic N, Tramer F, Passamonti S (2019) Anthocyanins in colorectal cancer prevention. A systematic review of the literature in search of molecular oncotargets. Front. Pharmacol. 10 (675).
- Meiers S, Kemény M, Weyand U, Gastpar R, von Angerer E, Marko D (2001) The anthocyanidins cyanidin and delphinidin are potent inhibitors of the epidermal growth-factor receptor. J. Agric. Food Chem. 49:958-962.
- Meyers KJ, Watkins CB, Pritts MP, Liu RH (2003) Antioxidant and antiproliferative activities of strawberries. J. Agric. Food Chem. 51:6887-6892.
- Milbury PE, Vita JA, Blumberg JB (2010) Anthocyanins are bioavailable in humans following an acute dose of cranberry juice. J. Nutr. 140:1099–1104.
- Miller MG, Hamilton DA, Joseph JA, Shukitt-Hale B (2018) Dietary blueberry improves cognition among older adults in a randomized, double-blind, placebo-controlled trial. Euro. J. Nutr. 57: 1169-1180.
- Min J, Yu S-W, Baek S-H, Nair KM, Bae O-N, Bhatt A, Kassab M, Nair MG, Majid A (2011) Neuroprotective effect of cyanidin-3-*O*-glucoside anthocyanin in mice with focal cerebral ischemia. Neurosci. Lett. 500:157-161.
- Mink PJ, Scrafford CG, Barraj LM, Harnack L, Hong C-P, Nettleton JA, Jacobs JDR (2007) Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. AM J Clin Nutr. 85:895-909.
- Miyake S, Takahashi N, Sasaki M, Kobayashi S, Tsubota K, Ozawa Y (2012) Vision preservation during retinal inflammation by anthocyanin-rich bilberry extract: cellular and molecular mechanism. Lab. Invest. 92:102-109.
- Mok JW, Chang DJ, Joo CK (2014) Antiapoptotic effects of anthocyanin from the seed coat of black soybean against oxidative damage of human lens epithelial cell induced by H₂O₂. Curr. Eye Res. 39:1090-1098.
- Montilla EC, Arzaba MR, Hillebrand S, Winterhalter P (2011) Anthocyanin composition of black carrot (*Daucus carota* ssp. *sativus* var. *atrorubens* Alef.) cultivars antonina, beta sweet, deep purple, and purple haze J. Agric. Food Chem. 59:3385-3390.
- Mulabagal V, Lang GA, DeWitt DL, Dalavoy SS, Nair MG (2009) Anthocyanin content, lipid peroxidation and cyclooxygenase enzyme inhibitory activities of sweet and sour cherries. J. Agric. Food Chem. 57:1239-1246.
- Munzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC (2017) Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-Part Series. J. Am. Coll. Cardiol. 70, 212-229.
- Muth ER, Laurent JM, Jasper P (2000) The effect of bilberry nutritional supplementation on night visual acuity and contrast sensitivity. Altern. Med. Rev. 5:164-173.

- Mykkänen OT, Huotari A, Herzig K-H, Dunlop TW, Mykkänen H, Kirjavainen PV (2014) Wild blueberries (*Vaccinium myrtillus*) alleviate inflammation and hypertension associated with developing obesity in mice fed with a high-fat diet. PLoS ONE. 9:e114790.
- Nahar, L and Sarker, S. D. (2019) Chemistry for Pharmacy Students: General, Organic and Natural Products Chemistry, 2nd Edition, Wiley & Sons, UK
- Nakaishi H, Matsumoto H, Tominaga S, Hirayama M (2001) Effects of black currant anthocyanoside intake on dark adaptation and VDT work-induced transient refractive alteration in healthy humans. Altern. Med. Rev. 6:553-562.
- Nakamura Y, Matsumoto H, Todoki K (2002) Endothelium-dependent vasorelaxation induced by black currant concentrate in rat thoracic aorta. Jpn J. Pharmacol. 89:29-35.
- Nanashima N, Horie K, Yamanouchi K, Tomisawa T, Kitajima M, Oey I, Maeda H (2020) Blackcurrant (*Ribes nigrum*) extract prevents dyslipidemia and hepatic steatosis in ovariectomized rats. Nutr. 12:1541.
- Naruszewicz M, Łaniewska I, Millo B, Dłużniewski M (2007) Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI). Atherosclerosis. 194:e179-e184.
- Nemes A, Homoki JR, Kiss R, Hegedus C, Kovacs D, Peitl B, Gal F, Stundl L, Szilvassy Z, Remenyik J (2019) Effect of anthocyanin-rich tart cherry extract on inflammatory mediators and adipokines involved in type 2 diabetes in a high fat diet induced obesity mouse model. Nutr. 11:1966.
- Nile SH, Park SW (2014) Edible berries: Bioactive components and their effect on human health. Nutr. 30:134-144.
- Nomi Y, Iwasaki-Kurashige K, Matsumoto H (2019) Therapeutic effects of anthocyanins for vision and eye Health. Molecules. 24: 3311.
- Nurfaradilla SA, Saputri FC, Harahap Y (2019) Effects of *Hibiscus sabdariffa* calyces aqueous extract on the antihypertensive potency of captopril in the two-kidney-one-clip rat hypertension model. Evid. Based Complementary Altern. Med. 2019:9694212.
- Ohguro H, Ohguro I, Katai M, Tanaka S (2012) Two-year randomized, placebo-controlled study of black currant anthocyanins on visual field in glaucoma. Ophthalmologica. 228:26-35.
- Ojeda D, Jimenez-Ferrer E, Zamilpa A, Herrera-Arellano A, Tortoriello J, Alvarez L (2010) Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-O-sambubiosides from *Hibiscus sabdariffa*. J. Ethnopharmacol. 127:7-10.
- Olsson ME, Gustavsson K-E, Andersson S, Nilsson Å, Duan R-D (2004) Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J. Agric. Food Chem. 52:7264-7271.
- Overall J, Bonney SA, Wilson M, Beermann A III, Grace MH, Esposito D, Lila MA, Komarnytsky S (2017) Metabolic effects of berries with structurally diverse anthocyanins. Int. J. Mol. Sci. 18:422.
- Paik SS, Jeong E, Jung SW, Ha TJ, Kang S, Sim S, Jeon JH, Chun MH, Kim IB, (2012) Anthocyanins from the seed coat of black soybean reduce retinal degeneration induced by N-methyl-N-nitrosourea. Exp. Eye Res. 97:55-62.

- Paixao J, Dinis TC, Almeida LM (2012) Malvidin-3-*O*-glucoside protects endothelial cells up-regulating endothelial NO synthase and inhibiting peroxynitrite-induced NF-kB activation. Chem. Biol. Interact. 199:192-200.
- Pan Z, Cui M, Dai G, Yuan T, Li Y, Ji T, Pan Y (2018) Protective effect of anthocyanin on neurovascular unit in cerebral ischemia/reperfusion injury in rats. Front. Neurosci. 12: 947.
- Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2:270-278.
- Pang L, Lian X, Liu H, Zhang Y, Li Q, Cai Y, Ma H, Yu X (2020) Understanding diabetic neuropathy: Focus on oxidative stress. Oxid. Med. Cell. Longev. 2020, 9524635.
- Parichatikanond W, Pinthong D, Mangmool S (2012) Blockade of the renin-angiotensin system with delphinidin, cyanin, and quercetin. Planta Med. 78:1626-1632.
- Parmar NS, Ghosh MN (1977) Protective effect of some bioflavonoids on the X-irradiation-induced increase in capillary permeability of rat intestine. Indian J. Exp. Biol.15:311-313.
- Parra-Vargas M, Sandoval-Rodriguez A, Rodriguez-Echevarria R, Dominguez-Rosales JA, Santos-Garcia A, Armendariz-Borunda J (2018) Delphinidin ameliorates hepatic triglyceride accumulation in human hepg2 cells, but not in diet-induced obese mice. Nutr. 10 (8):1060.
- Parry J, Su L, Moore J, Cheng Z, Luther M, Rao JN, Wang J-Y, Yu, Liangli L (2006) Chemical compositions, antioxidant capacities, and antiproliferative activities of selected fruit seed flours. J. Agric. Food Chem. 54:3773-3778.
- Passeri V, Koes R, Quattrocchio FM (2016) New challenges for the design of high value plant products: stabilization of anthocyanins in plant vacuoles. Front. Plant Sci. 7: 153.
- Pereira SR, Pereira R, Figueiredo I, Freitas V, Dinis TCP, Almeida LM (2017) Comparison of anti-inflammatory activities of an anthocyanin-rich fraction from Portuguese blueberries (*Vaccinium corymbosum* L.) and 5aminosalicylic acid in a TNBS-induced colitis rat model. PLoS ONE. 12:e0174116.
- Pergola C, Rossi A, Dugo P, Cuzzocrea S, Sautebin L (2006) Inhibition of nitric oxide biosynthesis by anthocyanin fraction of blackberry extract. Nitric Oxide. 15:30-39.
- Pojer E, Mattivi F, Johnson D, Stockley CS, (2013) The Case for Anthocyanin consumption to promote human health: A review. Compr. Rev. Food Sci. Food Saf. 12, 483-508.
- Politzer M (1977) Experiences in the medical treatment of progressive myopia (author's transl). Klin. Monbl. Augenheilkd. 171:616-619.
- Pospisil P, Prasad A, Rac M (2019) Mechanism of the formation of electronically excited species by oxidative metabolic processes: Role of reactive oxygen species. Biomolecules 9, 258.
- Poulose SM, Fisher DR, Larson J, Bielinski DF, Rimando AM, Carey AN, Schauss AG, Shukitt-Hale B (2012) Anthocyanin-rich Acai (*Euterpe oleracea* Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain bv-2 microglial cells. J. Agric. Food Chem. 60:1084-1093.
- Prior RL, Wu X (2006) Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radic. Res. 40:1014–1028.
- Probst Y (2015) A review of the nutrient composition of selected Rubus berries. Nutr. Food Sci. 45:242-254.

- Putta S, Yarla NS, Kumar KE, Lakkappa DB, Kamal MA, Scotti L, Scotti MT, Ashraf GM, Rao, BSB, Kumari DS et. al. (2018) Preventive and therapeutic potentials of anthocyanins in diabetes and associated complications. Curr. Med. Chem. 25: 5347-5371.
- Qin L, Zhang J, Qin M (2013) Protective effect of cyanidin 3-*O*-glucoside on beta-amyloid peptide-induced cognitive impairment in rats. Neurosci. Lett. 534:285-288.
- Qin S, Sun D, Mu J, Ma D, Tang R, Zheng Y (2019) Purple sweet potato color improves hippocampal insulin resistance via down-regulating SOCS3 and galectin-3 in high-fat diet mice. Behav. Brain Res. 359:370-377.
- Ramirez-Tortosa C *et al.* (2001) Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radic. Biol. Med. 31:1033-1037.
- Rasheed Z, Akhtar N, Anbazhagan AN, Ramamurthy S, Shukla M, Haqqi TM (2009) Polyphenol-rich pomegranate fruit extract (POMx) suppresses PMACI-induced expression of pro-inflammatory cytokines by inhibiting the activation of MAP Kinases and NF-kappaB in human KU812 cells. J. Inflamm. 6:1.
- Reddivari L, Vanamala J, Chintharlapalli S, Safe SH, Miller JJC (2007) Anthocyanin fraction from potato extracts is cytotoxic to prostate cancer cells through activation of caspase-dependent and caspase-independent pathways. Carcinogenesis. 28:2227-2235.
- Reddy MK, Alexander-Lindo RL, Nair MG (2005a) Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors. J. Agric. Food Chem. 53:9268-9273.
- Reddy MK, Alexander-Lindo RL, Nair MG (2005b) Relative inhibition of lipid peroxidation, cyclooxygenase enzymes, and human tumor cell proliferation by natural food colors. J. Agric. Food Chem. 53:9268-9273.
- Rehman SU, Shah SA, Ali T, Chung JI, Kim MO (2017) Anthocyanins reversed d-galactose-induced oxidative stress and neuroinflammation mediated cognitive impairment in adult rats. Mol. Neurobiol. 54:255-271.
- Renis M, Calandra L, Scifo C, Tomasello B, Cardile V, Vanella L, Bei R, Fauci LL, Galvano F (2008) Response of cell cycle/stress-related protein expression and DNA damage upon treatment of Caco₂ cells with anthocyanins. Br. J. Nutr. 100:27-35.
- Ridzwan N, Jumli MN, Baig AA, Rohin MAK (2020) Pomegranate-derived anthocyanin regulates MORscAMP/CREB-BDNF pathways in opioid-dependent models and improves cognitive impairments. J. Ayurveda. Integr. Med. (in press). doi:https://doi.org/10.1016/j.jaim.2019.12.001.
- Rimm EB, Giovannucci EL, Willett WC, Colditz GA, Ascherio A, Rosner B, Stampfer MJ (1991) Prospective study of alcohol consumption and risk of coronary disease in men. The Lancet 338:464-468.
- Rodrigo KA, Rawal Y, Renner RJ, Schwartz SJ, Tian Q, Larsen PE, Mallery SR (2006) Suppression of the tumorigenic phenotype in human oral squamous cell carcinoma cells by an ethanol extract derived from freeze-dried black raspberries. Nutr. Cancer. 54:58-68.
- Rodriguez-Mateos A, Istas G, Boschek L, Feliciano RP, Mills CE, Boby C, Gomez-Alonso S, Milenkovic D, Heiss C (2019) Circulating anthocyanin metabolites mediate vascular benefits of blueberries: insights from randomized controlled trials, metabolomics, and nutrigenomics. J. Gerontol A-Biol A. 74:967-976.
- Rosenblat M, Hayek T, Aviram M (2006) Anti-oxidative effects of pomegranate juice (PJ) consumption by diabetic patients on serum and on macrophages. Atherosclerosis. 187:363-371.

- Rouher F, Sole P, Offret G, Bernard JA (1972) Demonstration by adaptoelectroretinography of the action of a cyanidin on nocturnal vision. Archives D'ophtalmologie et Revue Generale D'ophtalmologie 32:531-540.
- Roy M, Sen S, Chakraborti AS (2008) Action of pelargonidin on hyperglycemia and oxidative damage in diabetic rats: Implication for glycation-induced hemoglobin modification. Life Sci. 82:1102-1110.
- Sadilova E, Stintzing Florian C, Carle R (2006) Anthocyanins, colour and antioxidant properties of eggplant (*Solanum melongena* L.) and violet pepper (*Capsicum annuum* L.) peel extracts. Z. für Naturforsch. 61:527-535.
- Salehi B, Sharifi-Rad J, Cappellini F, Reiner Z, Zorzan D, Imran M, Sener B, Kilic M, El-Shazly M, Fahmy NM, et. al. (2020) The therapeutic potential of anthocyanins: Current approaches based on their molecular mechanism of action. Front Pharmacol 11: 1300-1300.
- Saric A, Sobocanec S, Balog T, Kusic B, Sverko V, Dragovic-Uzelac V, Levaj B, Cosic Z, Macak Safranko Z, Marotti T (2009) Improved antioxidant and anti-inflammatory potential in mice consuming sour cherry juice (*Prunus cerasus* cv. Maraska). Plant Foods Hum. Nutr. 64:231.
- Scarabelli TM, Mariotto S, Abdel-Azeim S, Shoji K, Darra E, Stephanou A, Chen-Scarabelli C, Marechal JD, Knight R, Ciampa A *et al.* (2008) Targeting STAT1 by myricetin and delphinidin provides efficient protection of the heart from ischemia/reperfusion-induced injury. FEBS Lett. 583:531-541.
- Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, Heber D (2006) Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells *in vitro*. J. Agric. Food Chem. 54:9329-9339.
- Seeram NP, Schutzki R, Chandra A, Nair MG (2002) Characterization, quantification, and bioactivities of anthocyanins in *Cornus* species. J. Agric. Food Chem. 50:2519-2523.
- Serafino A, Sinibaldi-Vallebona P, Lazzarino G, Tavazzi B, Rasi G, Pierimarchi P, Andreola F, Moroni G, Galvano G, Galvano F *et al.* (2004) Differentiation of human melanoma cells induced by cyanidin-3-O-β-glucopyranoside. FASEB J. 18:1940-1942.
- Seymour E, Lewis SK, Urcuyo-Llanes DE, Tanone I, Kirakosyan A, Kaufman PB (2009) Regular tart cherry intake alters abdominal adiposity, adipose gene transcription, and inflammation in obesity-prone rats fed a high fat diet. J. Med. Food.12:935-942.
- Seymour EM, Tanone II, Urcuyo-Llanes DE, Lewis SK, Kirakosyan A, Kondoleon MG, Kaufman PB, Bolling SF *et al.* (2011) Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats. J. Med. Food. 14:1511-1518.
- Shah SA, Amin FU, Khan M, Abid MN, Rehman SU, Kim TH, Kim MW, Kim MO (2016) Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. J. Neuroinflammation. 13:286.
- Shah SA, Yoon GH, Kim MO (2015) Protection of the developing brain with anthocyanins against ethanol-induced oxidative stress and neurodegeneration. Mol. Neurobiol. 51:1278-1291.
- Sharma P, McClees SF, Afaq F (2017) Pomegranate for prevention and treatment of cancer: an update. Molecules. 22:177.

- Shi M, Mathai ML, Xu G, McAinch AJ, Su XQ (2019) The effects of supplementation with blueberry, cyanidin-3-Oβ-glucoside, yoghurt and its peptides on obesity and related comorbidities in a diet-induced obese mouse model. J. Funct. Foods. 56:92-101.
- Shih P-H, Wu C-H, Yeh C-T, Yen G-C (2011) Protective effects of anthocyanins against amyloid β-peptide-induced damage in neuro-2A cells. J. Agric. Food Chem. 59:1683-1689.
- Shih P-H, Yeh C-T, Yen G-C (2005) Effects of anthocyanidin on the inhibition of proliferation and induction of apoptosis in human gastric adenocarcinoma cells. Food Chem. Toxicol. 43:1557-1566.
- Shih P-H, Yeh C-T, Yen G-C (2007) Anthocyanins induce the activation of phase-ii enzymes through the antioxidant response element pathway against oxidative stress-induced apoptosis. J. Agric. Food Chem. 55:9427-9435.
- Shim SH, Kim JM, Choi CY, Kim CY, Park KH (2012) *Ginkgo biloba* extract and bilberry anthocyanins improve visual function in patients with normal tension glaucoma. J. Med. Food. 15:818-823.
- Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, Yamashita S, Miura M, Fukuda Y, Takemura K *et al.* (1996) Enhanced expression of PAI-1 in visceral fat: possible contributor to vascular disease in obesity. Nat. Med. 2:800-803.
- Singh PP, Chandra A, Mahdi F, Roy A, Sharma P (2010) Reconvene and reconnect the antioxidant hypothesis in human health and disease. Indian J. Clin. Biochem. 25, 225-243.
- Singletary KW, Jung KJ, Giusti M (2007) Anthocyanin-rich grape extract blocks breast cell DNA damage. J. Med. Food. 10:244-251.
- Skates E, Overall J, DeZego K, Wilson M, Esposito D, Lila MA, Komarnytsky S (2018) Berries containing anthocyanins with enhanced methylation profiles are more effective at ameliorating high fat diet-induced metabolic damage. Food Chem. Toxicol. 111:445-453.
- Skemiene K, Liobikas J, Borutaite V (2015) Anthocyanins as substrates for mitochondrial complex I protective effect against heart ischemic injury. FEBS J. 282:963-971.
- Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J (2015) Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 16:24673-24706.
- Smith MAL, Marley KA, Seigler D, Singletary KW, Meline B (2008) Bioactive properties of wild blueberry fruits. J. Food Sci. 65:352-356.
- Sole P, Rigal D, Peyresblanques J (1984) Effects of cyaninoside chloride and Heleniene on mesopic and scotopic vision in myopia and night blindness. J. FR Ophtalmol. 7:35-39.
- Song H, Wu T, Xu D, Chu Q, Lin D, Zheng X (2016a) Dietary sweet cherry anthocyanins attenuates diet-induced hepatic steatosis by improving hepatic lipid metabolism in mice. Nutr. 32:827-833.
- Song N, Zhang L, Chen W, Zhu H, Deng W, Han Y, Guo J, Qin C (2016b) Cyanidin 3-O-β-glucopyranoside activates peroxisome proliferator-activated receptor-γ and alleviates cognitive impairment in the APPswe/PS1ΔE9 mouse model. Biochim. Biophys. Acta Mol. Basis Dis. 1862:1786-1800.
- Speer H, D'Cunha NM, Alexopoulos NI, McKune AJ, Naumovski N (2020). Anthocyanins and human health-A focus on oxidative stress, inflammation and disease. Antioxidants (Basel) 9, 366.

- Stintzing FC, Stintzing AS, Carle R, Frei B, Wrolstad RE (2002) Color and antioxidant properties of cyanidin-based anthocyanin pigments. J. Agric. Food Chem. 50:6172-6181.
- Stoner GD, Sardo C, Apseloff G, Mullet D, Wargo W, Pound V (2005) Pharmacokinetics of anthocyanins and ellagic acid in healthy volunteers fed freeze-dried black raspberries daily for 7 days. J. Clin. Pharmacol. 45:1153– 1164.
- Strathearn KE, Yousef GG, Grace MH, Roy SL, Tambe MA, Ferruzzi MG, Wu QL, Simon JE, Lila MA, Rochet JC (2014) Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinsons disease. Brain Res. 1555:60-77.
- Su X, Griffin J, Xu J, Ouyang P, Zhao Z, Wang W (2019) Identification and quantification of anthocyanins in purplefleshed sweet potato leaves. Heliyon 5:e01964.
- Sumner MD, Elliott-Eller M, Weidner G, Daubenmier JJ, Chew MH, Marlin R, Raisin CJ, Ornish D (2005) Effects of pomegranate juice consumption on myocardial perfusion in patients with coronary heart disease. AM J.Cardiol. 96:810-814.
- Sun H, Zhang P, Zhu Y, Lou Q, He S (2018) Antioxidant and prebiotic activity of five peonidin-based anthocyanins extracted from purple sweet potato (*Ipomoea batatas* (L.) Lam.). Sci. Rep. 8:5018.
- Tan L, Yang HP, Pang W, Lu H, Hu YD, Li J, Lu SJ, Zhang WQ, Jiang YG (2014) Cyanidin-3-O-galactoside and blueberry extracts supplementation improves spatial memory and regulates hippocampal ERK expression in senescence-accelerated mice. Biomed. Environ. Sci. 27:186-196.
- Thiraphatthanavong P, Wattanathorn J, Muchimapura S, Thukham-mee W, Lertrat K, Suriharn B (2014a) The combined extract of purple waxy corn and ginger prevents cataractogenesis and retinopathy in streptozotocindiabetic rats. Oxid. Med. Cell. Longev. 2014:789406.
- Thiraphatthanavong P *et al.* (2014b) Preventive effect of *Zea mays* L. (purple waxy corn) on experimental diabetic cataract. BioMed. Res. Int. 2014:507435.
- Tian L, Tan Y, Chen G, Wang G, Sun J, Ou S, Chen W, Bai W (2019) Metabolism of anthocyanins and consequent effects on the gut microbiota. Crit. Rev. Food Sci. Nutr. 59:982-991.
- Toufektsian M-C, De Lorgeril M, Nagy N, Salen P, Donati MB, Giordano L (2008) Chronic dietary intake of plantderived anthocyanins protects the rat heart against ischemia-reperfusion injury. J. Nutr. 138:747-752.
- Traustadottir T, Davies SS, Stock AA, Su Y, Heward CB, Roberts LJ, 2nd, Harman SM (2009) Tart cherry juice decreases oxidative stress in healthy older men and women. J. Nutr. 139:1896-1900.
- Tsuda T, Horio F, Uchida K, Aoki H, Osawa T (2003) Dietary cyanidin 3-*O*-β-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice. J. Nutr. 133:2125-2130.
- Tsuda T, Ueno Y, Kojo H, Yoshikawa T, Osawa T (2005) Gene expression profile of isolated rat adipocytes treated with anthocyanins. Biochimica et Biophysica Acta (BBA) 1733:137-147.
- Tsuda T, Ueno Y, Yoshikawa T, Kojo H, Osawa T (2006) Microarray profiling of gene expression in human adipocytes in response to anthocyanins. Biochem. Pharmacol. 71:1184-1197.

- Turck P, Fraga S, Salvador I, Campos-Carraro C, Lacerda D, Bahr A, Ortiz V, Hickmann A, Koetz M, Bello-Klein A et al. (2020) Blueberry extract decreases oxidative stress and improves functional parameters in lungs from rats with pulmonary arterial hypertension. Nutr. 70:110579.
- Turner K, Fischer JG, Grider A, Hargrove J, Tokarev J (2009) Anthocyanins increase antioxidant enzyme activity in ht-29 adenocarcinoma cells by martha. MsC thesis. Athens, Georgia, USA.
- Ulla A, Mohamed MK, Sikder B, Rahman AT, Sumi FA, Hossain M, Reza HM, Rahman GMS, Alam MA (2017) Coenzyme Q10 prevents oxidative stress and fibrosis in isoprenaline induced cardiac remodeling in aged rats. BMC Pharmacol. Toxicol. 18, 29-29.
- Ullah R, Khan M, Shah SA, Saeed K, Kim MO (2019) Natural antioxidant anthocyanins—A hidden therapeutic candidate in metabolic disorders with major focus in neurodegeneration. Nutr. 11:1195.
- Valensi P, Behar A, Attalah M, Cohen-Boulakia F, Pariès J, Attali JR (1998) Increased capillary filtration of albumin in diabetic patients-relation with gender, hypertension, microangiopathy, and neuropathy. Metab. 47:503-507.
- Valensi P, Cohen-Boulakia F, Attali JR, Behar A (1997) Changes in capillary permeability in diabetic patients. Clin. Hemorheol. Micro. 17:389-394.
- Valenza A, Bonfanti C, Pasini ME, Bellosta P (2018) Anthocyanins function as anti-inflammatory agents in a *Drosophila* model for adipose tissue macrophage infiltration. BioMed. Res. Int. 2018:6413172.
- Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int. J Biochem. Cell Biol. 39, 44-84.
- van Velden DP, Mansvelt EPG, Troup GJ (2002) Red wines good, white wines bad? Redox Rep. 7:315-316.
- Varadinova MG, Docheva-Drenska DI, Boyadjieva NI (2009) Effects of anthocyanins on learning and memory of ovariectomized rats. Menopause 16:345-349.
- Varma SD, Kinoshita JH (1976) Inhibition of lens aldose reductase by flavonoids—Their possible role in the prevention of diabetic cataracts. Biochem. Pharmacol. 25:2505-2513.
- Vendrame S, Klimis-Zacas D (2015) Anti-inflammatory effect of anthocyanins via modulation of nuclear factorkappaB and mitogen-activated protein kinase signaling cascades. Nutr. Rev. 73:348-358.
- Vepsalainen S, Koivisto H, Pekkarinen E, Makinen P, Dobson G, McDougall GJ, Stewart D, Haapasalo A, Karjalainen RO, Tanila H *et al.* (2013) Anthocyanin-enriched bilberry and blackcurrant extracts modulate amyloid precursor protein processing and alleviate behavioral abnormalities in the APP/PS1 mouse model of Alzheimer's disease. J. Nutr. Biochem. 24:360-370.
- Wallace TC, Giusti MM (2015) Anthocyanins. Advances in nutrition (Bethesda, Md.) 6, 620-622.
- Wang L-S, Stoner GD (2008) Anthocyanins and their role in cancer prevention. Cancer letters 269, 281-290.
- Williamson G, Sies H, Heber D, Keen CL, Macdonald IA, Actis-Gorreta L, Momma TY, Ottaviani JI, Holt RR, Schroeter H *et al.* (2009) Functional foods for health promotion: state-of-the-science on dietary flavonoids, Extended abstracts from the 12th Annual Conference on Functional Foods for Health Promotion, April 2009 Nutr. Rev. 67:736-743.

- Woodward G, Kroon P, Cassidy A, Kay C (2009) Anthocyanin stability and recovery: Implications for the analysis of clinical and experimental samples. J. Agric. Food Chem. 57:5271-5278.
- Worsztynowicz P, Napierała M, Białas W, Grajek W, Olkowicz M (2014) Pancreatic α-amylase and lipase inhibitory activity of polyphenolic compounds present in the extract of black chokeberry (*Aronia melanocarpa* L.). Process Biochem. 49:1457-1463.
- Wu T, Jiang Z, Yin J, Long H, Zheng X (2016a) Anti-obesity effects of artificial planting blueberry (*Vaccinium ashei*) anthocyanin in high-fat diet-treated mice. Int. J. Food Sci. Nutr. 67:257-264.
- Wu T, Tang Q, Gao Z, Yu Z, Song H, Zheng X, Chen W (2013) Blueberry and mulberry juice prevent obesity development in C57BL/6 mice. PLoS ONE. 8:e77585.
- Wu T, Tang Q, Yu Z, Gao Z, Hu H, Chen W, Zheng X, Yu T (2014) Inhibitory effects of sweet cherry anthocyanins on the obesity development in C57BL/6 mice. Int. J. Food Sci. Nutr. 65:351-359.
- Wu T, Yang L, Guo X, Zhang M, Liu R, Sui W (2018) Raspberry anthocyanin consumption prevents diet-induced obesity by alleviating oxidative stress and modulating hepatic lipid metabolism. Food Funct. 9:2112-2120.
- Wu T, Yin J, Zhang G, Long H, Zheng X (2016b) Mulberry and cherry anthocyanin consumption prevents oxidative stress and inflammation in diet-induced obese mice. Mol. Nutr. Food Res. 60:687-694.
- Xu J-W, Ikeda K, Yamori Y (2004) Cyanidin-3-*O*-glucoside regulates phosphorylation of endothelial nitric oxide synthase. FEBS Lett. 574:176-180.
- Yamahara J, Mibu H, Sawada T, Fujimura H, Takino S, Yoshikawa M (1981) Biologically active principles of crude drugs. Antidiabetic principles of Corni Fructus in experimental diabetes induced by streptozotocin. J. Pharm. Soc. Jpn. 101:86-90.
- Yan F, Dai G, Zheng X (2016) Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. J. Nutr. Biochem. 36:68-80.
- Yang Z, Zhai W (2010) Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (*Zea mays* L.). Innov. Food Sci. Emerg. Technol. 11:169-176.
- Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A (2020) Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid. Med. Cell. Longev. 2020, 8609213.
- Yawadio R, Tanimori S, Morita N (2007) Identification of phenolic compounds isolated from pigmented rices and their aldose reductase inhibitory activities. Food Chem. 101:1616-1625.
- You Q, Chen F, Wang X, Luo PG, Jiang Y (2011) Inhibitory effects of muscadine anthocyanins on alpha-glucosidase and pancreatic lipase activities. J. Agric. Food Chem. 59:9506-9511.
- Youdim KA, Martin A, Joseph JA (2000) Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radic. Biol. Med. 29:51-60.
- Youdim KA, McDonald J, Kalt W, Joseph JA (2002) Potential role of dietary flavonoids in reducing microvascular endothelium vulnerability to oxidative and inflammatory insults. J. Nutr. Biochem. 13:282-288.
- Zafra-Stone S, Yasmin T, Bagchi M, Chatterjee A, Vinson JA, Bagchi D (2007) Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 51:675-683.

- Zdarilova A, Svobodova AR, Chytilova K, Simanek V, Ulrichova J (2010) Polyphenolic fraction of *Lonicera caerulea* L. fruits reduces oxidative stress and inflammatory markers induced by lipopolysaccharide in gingival fibroblasts. Food Chem. Toxicol. 48:1555-1561.
- Zhang H, Guo J, Mao L, Li Q, Guo M, Mu T, Zhang Q, Bi X (2018) Up-regulation of miR-24-1-5p is involved in the chemoprevention of colorectal cancer by black raspberry anthocyanins. Br. J. Nutr. 122: 518-526.
- Zhang H, Xu Z, Zhao H, Wang X, Pang J, Li Q, Yang Y, Ling W (2020a) Anthocyanin supplementation improves anti-oxidative and anti-inflammatory capacity in a dose–response manner in subjects with dyslipidemia. Redox Biol. 32:101474.
- Zhang Q, Gonzalez de Mejia E, Luna-Vital D, Tao T, Chandrasekaran S, Chatham L, Juvik J, Singh V, Kumar D (2019a) Relationship of phenolic composition of selected purple maize (*Zea mays* L.) genotypes with their anti-inflammatory, anti-adipogenic and anti-diabetic potential. Food Chem. 289:739-750.
- Zhang X, Wei J, Tian J, Li N, Jia L, Shen W, Cui J (2019b) Enhanced anthocyanin accumulation of immature radish microgreens by hydrogen-rich water under short wavelength light. Sci. Hortic. 247:75-85.
- Zhang Y, Jayaprakasam B, Seeram NP, Olson LK, DeWitt D, Nair MG (2004) Insulin secretion and cyclooxygenase enzyme inhibition by cabernet sauvignon grape skin compounds. J. Agric. Food Chem. 52:228-233.
- Zhang Y, Meng Q, Yin J, Zhang Z, Bao H, Wang X (2020b) Anthocyanins attenuate neuroinflammation through the suppression of MLK3 activation in a mouse model of perioperative neurocognitive disorders. Brain Res. 1726:146504.
- Zhang Y, Vareed SK, Nair MG (2005) Human tumor cell growth inhibition by nontoxic anthocyanidins, the pigments in fruits and vegetables. Life Sci. 76:1465-1472.
- Zhang Z-c, Zhou Q, Huangfu G-y, Wu Y, Zhang J-l (2019c) Anthocyanin extracts of lingonberry (*Vaccinium vitis-idaea* (L.) attenuate serum lipids and cholesterol metabolism in HCD-induced hypercholesterolaemic male mice. Int. J. Food Sci. Technol. 54:1576-1587.
- Zhao X, Feng P, He W, Du X, Chen C, Suo L, Liang M, Zhang N, Na A, Zhang Y (2019) The prevention and inhibition effect of anthocyanins on colorectal Cancer. Curr. Pharm. Des. 25, 4919-4927.
- Zhu F (2018) Anthocyanins in cereals: Composition and health effects. Food Res. Int. 109:232-249.
- Zhu F, Cai Y-Z, Yang X, Ke J, Corke H (2010) Anthocyanins, hydroxycinnamic acid derivatives, and antioxidant activity in roots of different chinese purple-fleshed sweetpotato genotypes. J. Agric. Food Chem. 58:7588-7596.
- Zhu Y, Sun H, He S, Lou Q, Yu M, Tang M, Tu L (2018) Metabolism and prebiotics activity of anthocyanins from black rice (*Oryza sativa* L.) *in vitro*. PLoS ONE. 13:e0195754.