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Abstract 
 

Wearable IoT devices like fitness trackers and smartwatches continue to create opportunities and 

challenges for forensic investigators in the acquisition and analysis of evidential artefacts in scenarios 

where such devices are a witness to a crime. However, current commercial and traditional forensic 

tools available to forensic investigators fall short of conducting device extraction and analysis of 

forensic artefacts from many IoT devices due to their heterogeneous nature. In this paper, we conduct 

a comprehensive forensic analysis and show artefacts of forensic value from the physical TomTom 

Spark 3 GPS fitness smartwatch, its companion app installed on an Android smartphone, and 

Bluetooth event logs located in the app’s metadata. Our forensic methodology and analysis involved 

the combination and use of a non-forensic tool, a commercial forensic tool, and a non-forensic 

manufacturer-independent analysis platform tool specifically designed for endurance athletes to 

identify, extract, analyse, and reconstruct user activity data in an investigative scenario.  

We show forensic metadata associated with the device information, past user activities, and audio 

files from the physical smartwatch. We recovered data associated with past user activities stored in 

proprietary activity files and databases maintained by the app on an Android smartphone. From the 

event logs, we show when user activity was synced with the app and uploaded to the device cloud 

storage. The results from our work provide vital references for forensic investigators to aid criminal 

investigations, highlight limitations of current forensic tools, and for developers of forensic tools an 

incentive into developing forensic software applications and tools that can decode all relevant data 

generated by wearable IoT devices. 

Keywords: IoT forensics; mobile forensics; Android forensics, TomTom; TomTom Spark 3; fitness 

tracker 
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1. Introduction 

Wearable Internet of Things (IoT) devices which are mostly fitness trackers and activity tracking 

smartwatches are gadgets that can be worn by individuals throughout the day to keep track of various 

body parameters. These devices continuously sense the movements of the body on a 3-axis 

accelerometer. The data is recorded all the time it is worn and powered up, which enables the tracker 

to trace if the individual is walking, running, climbing, or standing still [1]. They can also include 

sensors that track biometric data (heart rate, sleep time, fitness progression, etc.), elevation, 

temperature, and location using Global Positioning System (GPS) depending on the features and 

brand. Forecasts suggest that an estimated 368.2 million wearable devices will be shipped globally by 

the end of 2020. This figure is projected to grow to more than 500 million by 2024 [2]. Most 

smartwatches and fitness bands have similar functionalities, complement smartphones, and interact 

with several of the applications on them by providing notifications and alerts. In the smartwatch 

market, Apple held the largest share of the global shipment (55.5%) in the first quarter of 2020, 

followed by Samsung (13.9%), Garmin (13.9%), and other brands (22.6%) respectively [3].  

This astronomical growth in demand and the potential of these devices to generate data that are stored 

on the devices and smartphones they are synced with has created significant interest amongst many 

digital forensic researchers and an increased shift towards wearable IoT device forensics [4–9]. Law 

enforcement agents, legal experts, and forensic investigators have also taken a significant interest in 

IoT devices as sources of forensic artefacts, especially in scenarios where an IoT device has been a 

witness to a crime [10]. Wearable devices have been used for evidence in court cases, either to convict 

a criminal or to provide an alibi to someone being accused of a crime. In 2017, forensic evidence from 

a Fitbit was crucial in the conviction of a man suspected of killing his wife in Connecticut, USA [11]. 

In the U.K, data retrieved from a Garmin smartwatch was used to convict a British runner for the 

murder of two gangsters [12].  

However, with a variety of wearable devices introduced into the market and growing advancements in 

software and hardware components, forensic acquisition and analysis of these devices has become a 

huge challenge for forensic investigators. This is due to the quantity of data they generate, the vendor-

specific protocols and file types used, and the security improvements on smartphones they are synced 

with. Even in cases where evidence has been identified, investigators still face challenges of evidence 

analysis and correlation [9,13,14]. Moreover, current forensic tools geared towards conventional 

computer file systems and mobile devices may not be suitable for wearable IoT forensics, cumulative 

dataset may exist in multiple locations and data acquired may not be accessible with existing forensic 

tools [9,15,16]. Recovery of deleted data is also a major challenge in scenarios where a suspect 

deletes data from the device, making it difficult for crucial evidential data to be recovered, for 

example, GPS locations and time stamps. Similarly, there are still challenges associated with 

recovering forensic artefacts from wearable devices that hold a duplicate source of evidence if the 
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paired smartphone is inaccessible or unavailable. The heterogeneous nature of IoT devices and lack of 

IoT forensics standards make adopting traditional digital forensic investigation models difficult to 

achieve in the IoT context [9,17]. 

Currently, commercial and traditional forensic tools can perform the acquisition and forensic analysis 

of a very small number of smartwatches, focusing on those high-end devices with a large market share 

(“Samsung”, “LG”, “Apple Watch” etc.) [16].  However, there are numerous low-cost smartwatch 

brands available on the market which store user information differently and require an alternative 

forensic analysis methodology. Therefore, there is the need to adopt a different approach which 

includes the use of non-forensic tools, when dealing with these smartwatches to overcome the 

limitations of traditional and commercial forensic tools. In this paper, we focus on the extraction and 

analysis of forensic artefacts of interest from the physical TomTom Spark 3 GPS fitness smartwatch 

and the TomTom Sports app installed and running on an Android smartphone synced with the 

smartwatch. The main contributions in this paper are summarised as follows. 

• We interact with the internal memory of the physical TomTom Spark 3 GPS fitness 

smartwatch to identify and extract forensic artefacts of interest and metadata. 

• We identify, reconstruct, and interpret forensic artefacts of interest from the main databases 

maintained by the TomTom Sports app installed on an Android device and synced with the 

smartwatch. 

• We show how to deal with deleted data by analysing the databases, interpret event logs, and 

decode proprietary activity files stored on the Android file system to reconstruct chronology 

and sequence of past activities carried out by the user of the smartwatch. 

The goal of this paper is to present the data acquisition and forensic analysis carried out on the 

TomTom Spark 3 GPS smartwatch to demonstrate the limitations of commercial and traditional 

forensic tools and also show the results obtained from the study of the forensic artefacts acquired and 

analysed using non-forensic tools. This paper is organised as follows. In Section 2, we discuss related 

works. In Section 3, we discuss our experiments, analysis methodology, investigative scenario, and 

tools used in this study. In Section 4, we discuss forensic analysis of the TomTom Spark 3 GPS 

smartwatch. Forensic analysis and findings of the TomTom Sports app including artefacts recovered 

are presented in Section 5. In Section 6, we present our findings from the Bluetooth event logs. 

Finally,  in section 7 we conclude the paper. 

2. Related works 

Many recent works of literature have acknowledged the importance of wearable forensics and focused 

on the forensic analysis of wearable IoT devices. MacDermott et al. [18] studied Fitbit, Garmin, and 

HETP devices using FTK Imager and Autopsy to analyse the accuracy of potential evidential data 
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generated and stored on the internal memory of each fitness tracker. Baggili et al. analysed the 

Samsung Gear 2 and LG G watches synced to an Android smartphone and showed database and XML 

files maintained by apps running on the smartphone[19]. They also analysed the devices by rooting 

the operating system and recovered very few data remnants of forensic value. Data acquisition and 

forensic analysis were done on different non-android smartwatches equipped with a low-cost MTK 

chip running Nucleus RTOS by Gregorio et al. [16]. They used a non-forensic tool named FlashTool 

to acquire the data and search for forensic files of interests on the internal memory chip of each 

smartwatch. Kang et al. analysed apps synced with the Xiaomi Mi Band 2 and Fitbit Alta HR fitness 

trackers on Android devices and recovered  SQLite databases that contain evidential data [20]. In the 

study, they highlighted evidence of deleted and modified data in the databases and discussed their 

application in a possible scenario. Odom et al. [21] conducted a preliminary forensic analysis of the 

Samsung Gear 3 smartwatch, Apple Watch Series 3 smartwatch, and their companion smartphones to 

identify locations where sensitive user data and forensic artefacts are stored. They identified 

significant forensic files of interest from the Samsung smartwatch compared with the Samsung 

Galaxy S8 smartphone and likewise extracted more files of interest from the iPhone 6 compared with 

the Apple smartwatch. However, there was no detailed correlation of how these forensic artifacts 

could be used in a forensic investigation or related scenarios. 

Previous forensic analyses of TomTom devices have focused solely on their satellite navigation 

devices as demonstrated in studies by [22–24]. None of these papers, however, covers the forensic 

analysis of TomTom smartwatches and identified up to date forensic artefacts on all sources of 

evidential data ( IoT device, mobile app, and event logs) to aid forensic investigations. The selection 

of the TomTom Spark 3 GPS fitness smartwatch is also based on the popularity of the TomTom brand 

as one of the largest portable GPS navigation solutions providers involved in the development of 

wearable IoT devices. Hence, forensic investigators are more than likely to come across TomTom 

smartwatches during digital forensic investigations.  

3. Experiments, methodology, and tools 

  In this study, we adopted the IoT forensic model described by Li et al. [6] (see Fig. 1) in a scenario 

where the wearable IoT device is a witness to a crime (e.g., data stored in the IoT device can directly 

implicate an individual accused of a crime). In our investigative scenario described in this paper, we 

performed a set of controlled experiments that involves several activities, each one referring to a 

specific usage scenario ( running, walking, gym activities, etc.) during which a typical record of user 

activities have taken place.  These activities enabled us to generate data to forensically examine the 

IoT device (examine TomTom Spark 3 GPS fitness smartwatch in a scenario where the smartphone 

paired to the smartwatch is not accessible or available), examine the companion app (examine 

smartphone paired to the smartwatch is available and the TomTom Sports app is installed) and finally, 
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companion network examination (examine event logs where the smartphone paired to the smartwatch 

is available and the TomTom Sports app is installed). Details of the investigative scenario are 

described as follows. 

 

Fig 1.  IoT forensic model [6] 

3.1.  Investigative scenario 

A suspect of theft has been accused of stealing from a local shop in Hale. Eyewitness statements 

claim the suspect was in the area on the 19th of January 2020 at around 2:00 p.m. UTC. The suspect 

provides an alibi stating he was at home sleeping and was not in the vicinity on the day. The suspect’s 

Android smartphone and TomTom Spark 3 GPS fitness smartwatch has been seized and investigators 

are keen to answer the following set of questions based on our forensic analysis: 

1. Does the TomTom smartwatch store data on its internal memory chips? If so, can it be recovered 

and analysed? 

2. Can user activity data be recovered from the TomTom Sports app installed on the Android 

smartphone? If so, can the data be reconstructed to show past user activities? 

3. Can deleted user activity data be recovered from the TomTom Sports app installed on the Android 

smartphone? 

 

3.2. Forensic analysis methodology and tools 

In this study, we performed two phases of experiments before and after synchronizing the TomTom 

Spark 3 GPS fitness smartwatch with the Google Pixel 2 XL smartphone running Android 10. The 

TomTom Spark 3 smartwatch uses separate embedded memory chips which include an Atmel smart 
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RISC MCU with eFlash memory (128KB capacity non-accessible to the user) to store the device 

firmware [25], a Micron Serial Flash Memory (EEPROM 4MB capacity non-accessible to the user) to 

store user activity data and device information, and an internal media NAND storage (3GB capacity 

accessible to the user) to store music files. In the first phase of our experiment, we restored the 

TomTom smartwatch to factory default settings and generated new user data without pairing or 

synchronizing the device with the Android smartphone. There are no specific forensic tools to conduct 

the acquisition of the information stored inside of TomTom smartwatches. Therefore, we used a non-

forensic open-source Linux command-line tool named ttwatch developed by Ryan Binns [26] to 

communicate with the TomTom Spark 3 GPS fitness smartwatch’s internal Micron Serial Flash 

Memory (EEPROM 4MB storage capacity) and extracted device information and proprietary activity 

files (.ttbin) which store information associated with past user activities. 

In the second phase after pairing and synchronization, we used Cellebrite UFED 4PC v. 7.28 [27] 

commercial forensic software to extract the internal storage memory chips of the TomTom Spark 3 

GPS fitness smartwatch and Google Pixel 2 XL smartphone running Android 10 in a forensically 

sound manner. We selected and used the TomTom generic profile (developed for TomTom Satnavs) 

to extract a physical bit-for-bit image (.bin) file of the device memory including unallocated space. 

Cellebrite UFED 4PC v. 7.28 was only able to access and dump the internal storage media ( 3GB 

capacity for storing music files) normally accessible to the user.  

To verify the acquisition of the smartwatch’s internal memory for both phases of our experiments, we 

repeated the acquisition using Access Data FTK Imager [28] v. 4.2.0.13. Access Data FTK Imager, 

like Cellebrite, was only able to access the internal storage media ( 3GB capacity for storing music 

files) normally accessible to the user.  

The data generated by the TomTom Spark 3 GPS fitness smartwatch and synced with its companion 

app are stored in databases and file locations on the Android smartphone which are inaccessible to the 

user. Therefore, a file system extraction of the smartphone was performed which allowed a logical 

extraction of the internal memory of the smartphone, in addition to hidden system files, databases, and 

other files that are not normally visible within a logical extraction. Once both extractions were 

completed, we used Cellebrite Physical Analyzer v. 7.25 [27] to analyse the images. DB Browser for 

SQLite v. 3.11.2 (an open-source tool) [29]  was used to analyse the database files and Runanlyze web 

application [30] was used to decode and analyse the proprietary TomTom activity (.ttbin) files 

recovered from the external SD card storage location of the Android smartphone. A summary of the 

tools and their usage is shown in Table 1. 

 

 



7 
 

Table 1: Summary of tools and usage 

Tools Usage 

Cellebrite UFED 

4PC v. 7.28 

▪ A commercial forensic tool used to create a physical image of the internal media 

NAND storage (3GB capacity accessible to the user) 

▪ Used to create a logical image of the Android smartphone. 

ttwatch  (Linux 

TomTom GPS 

Watch Utilities) 

▪ Open-source, non-forensic Linux command-line tool used to interact with the 

physical TomTom GPS smartwatch and extract forensic artefacts stored on the 

Micron Serial Flash Memory (EEPROM 4MB storage capacity inaccessible to 

the user). 

Cellebrite Physical 

Analyzer v. 7.25 

▪ A commercial forensic tool used to analyse images created with Cellebrite 

UFED 4 PC.  

DB Browser for 

SQLite  v. 3.11.2 

▪ Open-source tool used to analyse database files maintained by the TomTom 

Sports app. 

Runanlyze web 

application 

▪ A non-forensic tool used to analyse proprietary TTBIN files recovered from the 

TomTom smartwatch and TomTom Sports app. 

Access Data FTK 

Imager v. 4.2.0.13   

▪ A traditional forensic tool used to extract forensic artefacts from the physical 

TomTom Spark 3 GPS fitness smartwatch’s internal Micron Serial Flash 

Memory (EEPROM 4MB storage capacity inaccessible to the user)  

 

4. Forensic analysis of TomTom Spark 3 smartwatch 

The TomTom Spark 3 GPS fitness smartwatch is an activity monitoring (steps, sleep, calories, active 

time, distance, heart rate, etc.) and GPS tracking device. Features include internal storage up to 3GB 

to store music files, supports incoming calls and text notifications, wireless synchronization to the 

TomTom Sports app installed and running on a smartphone via Bluetooth to monitor activity data. 

Manual navigation of the smartwatch shows a record of the last 10 user activities for each type of 

activity (swimming, running, freestyle, gym, etc.) on the device. The oldest activity in the list is 

deleted when the user completes a new activity. However, a user cannot delete an activity in the 

history list manually. In this section, we present the forensic analysis of the internal memory chips of 

the TomTom Spark 3 GPS fitness smartwatch to recover relevant data remnants, files, and forensic 

artefacts stored on the physical device. 

4.1. Acquisition of artefacts from the physical TomTom Spark 3 smartwatch 

During its use, the TomTom Spark 3 GPS smartwatch processes and store data remnants and files on 

the physical smartwatch. As mentioned previously, the TomTom smartwatch uses separate embedded 

memory chips which include an Atmel smart RISC MCU with eFlash memory (128KB capacity non-

accessible to the user) to store the device firmware[25], a Micron Serial Flash Memory (EEPROM 

4MB capacity non-accessible to the user) to store user activity data and device information, and an 
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internal media NAND storage (3GB capacity accessible to the user) to store music files. In this study, 

we used the ttwatch Linux command-line tool [26], to communicate with the device by plugging the 

device USB cable into our Linux forensic workstation and running the tool. We issued commands 

(ttwatch -v =  ‘shows watch version’ and ttwatch --list= ‘lists user activity history’) to extract device 

information and list past user activities including dates and type of activity (freestyle) as shown in Fig. 

2. 

 

Fig. 2. Device information and user activity history via command line 

Using the “ttwatch --get-activities” command, we extracted proprietary activity files (.ttbin) which 

store past user activities that are yet to be synchronized with the smartphone ( see Fig. 3). In this 

figure, we see two files named “Unknown_22-29-25_5491.ttbin” and “Unknown_21-55-

1_5004.ttbin”. Once the data is synced with the smartphone, the smartwatch deletes the activity files 

but keeps a record of the last 10 activities as discussed previously. In Section 5.4, we show how these 

proprietary ‘.ttbin’ activity files can be decoded and analysed to reconstruct past user activities using a 

non-forensic web application tool. 

 

Fig. 3. Proprietary .ttbin files 

4.2. Storage locations and format of data remnants on TomTom Spark 3 smartwatch 

The TomTom GPS fitness smartwatch allows users to store music files in mp3 format on its internal 

memory chip (3GB capacity accessible to the user), by plugging the device into a desktop computer. 

From the analysis of the forensic image, the two most important locations on the internal memory file 

system are “TOMTOM/MySportsConnect/” and “TOMTOM/System Volume Information/” directories 

that store music audio files and information related to data entries respectively (see Fig. 4 ). The 
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TOMTOM/MySportsConnect/ directory has a subdirectory named “Music” where all mp3 audio files 

stored by the user on the device are located and can be recovered from. Each mp3 file found also 

includes embedded images (album covers)  associated with each file.  

 

 

Fig. 4. File system structure of the TomTom Spark 3 smartwatch 

The TOMTOM/System Volume Information/ directory contains 2 files named IndexerVolumeGuid and 

WPSettings.dat. This directory and files are automatically created by the Windows operating system 

once the smartwatch is connected via a USB cable. IndexerVolumeGuid is a file used by the Windows 

Search service and contains the GUID (Globally Unique Identifier) for the smart device once plugged 

in. The WPSettings.dat is used by the Windows operating system to allow drives connected to the 

device to search for data entries faster. The .csid, .ttcs.nfo, autorun.info, and tomtom.ico files are used 

by the smartwatch for initial setup, syncing media files, and to restore the smartwatch to factory 

default settings using the TomTom Sports Connect desktop application. Running 1.txt  is a text file 

that contains the list of all mp3 media files and the date each file was added to the smartwatch. 

5. Forensic analysis of TomTom Sports app  

The TomTom Sports app is a mobile application that converts all tracked activity and GPS data from 

the TomTom Spark 3 smartwatch and presents the analysed data to the user on a GUI on the 

smartphone. In our scenario, we downloaded, installed, and configured the TomTom Sports app v. 

10.0.16 ( current version at the time of writing) on the Google Pixel 2 XL smartphone running 

Android 10. The app was then populated with user information and used to pair the smartwatch to the 

smartphone using a Bluetooth connection. Once the smartwatch had been paired, the activity and GPS 

data from the smartwatch are synced and stored on the app. The user can hold and drag down the 

app’s GUI, which will refresh and synchronize recent activity data from the smartwatch to the 

smartphone. 
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5.1. Location and format of TomTom Sports app artefacts  

During synchronization of activity data from the smartwatch to the smartphone, the TomTom Sports 

app stores several artefacts of forensic interest into various files and databases located in the 

“/data/data/com.tomtom.Sports”  and “/storage/emulated/0/TomTom_MySports” directories of the 

Android file system, that contains several subfolders as described in Table 2. 

Table 2. File paths of critical evidence sources of the TomTom Sports app 

Directory Path Details 

/data/data/com.tomtom.Sports  • Contains information associated with the user account and 

activity data stored in the main databases. 

• Contains information associated with Bluetooth 

synchronization and event logs. 

/storage/emulated/0/TomTom_MySports • Contains several user activity data stored in .ttbin file format. 

• Contains information associated with Bluetooth 

synchronization and event logs. 

 

5.2. Reconstructing user information and activities 

To answer the question of whether activity data can be recovered from the TomTom Sports app from 

our investigative scenario, we identified two SQLite databases named RKStorage and sport.db located 

in the /data/data/com.tomtom.Sports/db subdirectory. The RKStorage database store information 

associated with the user account configured during installation and setup of the app. The database has 

two tables but only one of the tables named catalystLocalStorage contains information of forensic 

interest. The user profile ID (email address) is stored in the “com.tomtom.sportsapp.user.profile.id” 

field, user profile information ( age, country code, and date of birth) is stored in the 

“com.tomtom.sportsapp.user.profileinfo” field, the smartwatch’s unique MAC address is stored in the 

“com.tomtom.sportsapp.device.colors” field and the last time and date ( Unix timestamp) when user 

account information was last updated is stored in the “com.tomtom.sportsapp.db.lastCompress” field. 

The sport.db is the main database that stores and maintains information associated with all user 

activity and GPS tracking data and has 7 tables. From our findings, only 3 out of these 7 tables 

contain information of forensic interest namely tables activities, activityDetails, and 

weight_measurements. We discuss the contents of these tables in relation to our investigative scenario 

questions.  

The activities table contains a record of all activity data (activity type, GPS coordinates, time and date 

of activity, step count, average heart rate, and activity duration) stored in JSON format in the “blob” 

field. Each activity is assigned a unique identifier stored in the key field. The start time and date, 

activity type, and web API endpoint ( where the data is stored in the TomTom Sports cloud) are stored 
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in the “start_datetine_user”, “activity_type_id_tt” and “link.self”  fields respectively (see Fig. 5). 

Details of parameters used to store data in the blob field and the interpretation is presented in Table 3. 

 

 

Fig. 5. activities table 

Table 3. parameters in the blob field of the activity table ( some parameters have been omitted because of their 

lack of forensic value) 

Parameter Meaning 

id unique identifier of the specific activity.  

start_datetime; start_datetime_user date and time (UTC) of activity 

activity_type_id specifies type of activity ( gym =12, run=16, walk=21) 

Active Daily time (7 days) 

Format(day1,day2,day3,day4,day5,day6,day7) 

active time of the activities selected throughout the week (recorded 

in seconds. 6069 seconds = 101.15 minutes) 

Daily Step count (7 days) 

Format(day1,day2,day3,day4,day5,day6,day7) 

step count daily throughout the week. Day 1 is Monday; Day 2 is 

Tuesday and so on. (the starting day is determined when the app is 

first used, the app’s starting day is Monday. 

heartrate_avg (HR) Daily/ HR Zones Daily 

Minimum HR Daily/Maximum HR Daily 

Resting HR Weekly/Daily 

Format(day1,day2,day3,day4,day5,day6,day7) 

heart rate values for an activity and each day of the week and the 

average heart rates throughout the week measures in BPM.  

activity_score_daily 

Format(day1,day2,day3,day4,day5,day6,day7) 

achievement score for daily activity milestones 

elapsed_time_total; moving_time_total duration of an activity measured in seconds 

bounding_box GPS coordinates of activity start/end locations 

active_time_total total time measured in seconds for when the user is active 

metabolic_energy_total calories burnt per activity 

sleep_asleep_daily daily sleep tracking  data  measured in seconds 

formats supported file formats user activity can be stored as. 

hrz_dist the horizontal distance covered by user daily 

climb_total number of steps on elevated ground 

speed_avg the average speed of user during an activity 
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From Fig. 5, we identified the 9th record from this table which relates to our investigative scenario and 

exported the JSON data from the blob field as shown in Table 4. 

Table 4.  User activity data ( 9th record) stored in blob field of the activities table 

 

From Table 4, we see the unique identifier for this activity ("id":408505926), activity type shows the 

user is walking (“activity_type_id” : 21), the date and time for this activity was recorded as 19th of 

January 2020 at 2:14 pm UTC (“start_datetime”: 2020-01-19T14:14:01+00:00), total  elapsed time 

of the activity was 2525 seconds (“elapsed_time_total":2525), distance covered by the user is 2309.3 

metres (“distance_total”: 2309.3) and GPS location is latitude 53.334754, longitude -2.79236 and 

latitude 53.322295, longitude -2.798301 (bounding_box":{"north_east":{"lat":53.334754,"lng":-

2.79236},"south_west":{"lat":53.322295,"lng":-2.798301}). Other information shown are the users 

average speed while walking in km/hr (“speed_avg”:0.91) and average heart rate in BPM 

("heartrate_avg":98.39). 

 The GPS coordinates were displayed on the map to visually confirm the user’s route which placed the 

suspect at the location described in the scenario as shown in Fig. 6. The weight_measurements table 

stores information associated with the user’s weight and time this record was last updated. This record 

is stored in the blob field of this table and assigned a unique identifier ( date and time last updated) in 

the key field. 

{"id":408505926,"activity_type_id":21,"start_datetime":"2020-01-19T14:14:01+00:00","start_datetime_user":"2020-01-

19T14:14:01+00:00","activity_type_id_tt":8,"display_offset_seconds":0,"links":{"image":"/service/webapi/v2/activity/40

8505926/thumbnail.png?dv=3.3","webview":"/app/activity/408505926?dv=1.3","raceme":"/service/webapi/v2/training/ra

ce/408505926","convert_to_trail":"/service/webapi/v2/training/trail/from/408505926?dv=1.3","self":"/service/webapi/v2/

activity/408505926?dv=1.3","share":"/service/webapi/v2/activity/408505926/permalink/{PARTNER}?dv=1.3"},"format

s":["fit","pwx","csv","tcx","kml","gpx"],"zones":[97,116,135,155,174,194],"bounding_box":{"north_east":{"lat":53.3347

54,"lng":-2.79236},"south_west":{"lat":53.322295,"lng":-

2.798301}},"aggregates":{"active_time_total":2524,"distance_total":2309.3,"elapsed_time_total":2525,"metabolic_energ

y_total":1009018.8,"speed_avg":0.91,"climb_total":20,"descent_total":21.1,"heartrate_avg":98.39,"hrz_dist":[1649,41,0,

0,0],"hrz_none":834,"moving_time_total":2525,"moving_speed_avg":0.91,"activity_score":23}} 
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Fig. 6.  GPS coordinates shown on Google Earth 

 

5.3. Dealing with deleted user activity data 

To answer the question of whether deleted activity data can be recovered from our investigative 

scenario, activity data associated with the 19th of January 2020 (“id”: 408505926) was deleted from 

the TomTom Sports app on the 26th of February 2020. We then acquired an extraction of the Android 

smartphone and analysed the sport.db database. Consequently, the record was not present in the 

activities table of the sport.db database. It is well known that remnants of deleted data from SQLite 

databases are kept in unallocated cells in the file corresponding to the database, from which they can 

be recovered [31,32]. However, our attempts to recover deleted data from the database using Undark 

v 0.6 [33] and Cellebrite Physical Analyzer SQLite recovery tools were unsuccessful as the cells 

containing deleted data had been overwritten with null bytes upon deletion. We identified records of 

all past user activities including deleted ones stored in the activityDetails table (see Fig. 7). From the 

figure, we see the 14th and 15th records (“id”: 408505926) which contains activity data in the blob 

field and can be exported in JSON format. Each record in the table is assigned a unique identifier 

stored in the key table and shows the web API endpoint 

(/service/webapi/v2/activity/408505926?dv=1.7) used to upload the activity data to the TomTom 

Sports cloud. The timestamp indicating when the data was last updated is stored in the accessCounter 

field which is the 25th of February 2020 at 8:00:54 pm UTC (Unix timestamp = ‘1582660854925’). 

The exported data stored in JSON format contains information associated with the user’s GPS 

locations and speed per step count, tracking each step taken by the suspect on the 19th of January. 
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These coordinates can be plotted on a map to provide investigators with details of the route taken by 

the suspect. 

 

Fig. 7. activityDetails table 

 

5.4. Reconstructing user activity from proprietary .ttbin activity files  

A chronology of events can also be reconstructed from the .ttbin files stored on the physical TomTom 

Spark 3 GPS fitness smartwatch as shown earlier in section 4.1 ( before synchronization with the 

smartphone) and on its companion, mobile app installed on the Android smartphone (after 

synchronization with the smartphone). These proprietary activity workout (.ttbin) files are stored on 

the external memory (SD Card) of the Android device in the 

/storage/emulated/0/TomTom_MySports/<Watch Serial Number>/workouts/uploaded/  and the 

/storage/emulated/0/TomTom_MySports/<Watch Serial Number>/step_buckets/uploaded/ 

subdirectories. The files are named according to the date and time an activity was synced from the 

smartwatch to the app on the smartphone. From our investigative scenario, we identified the file 

“00910000_20200119_161610.ttbin” ( 19th January 2020 at 4:16:10 pm UTC), which was the only 

activity data consistent with the date from the scenario. We were able to analyse and reconstruct the 

suspect’s activities on this day by uploading the file to the Runalyze web application, a manufacturer-

independent analysis platform tool designed for endurance athletes [30].  

In Fig. 8, detailed graphical analysis and statistics of the suspect’s activity are shown. From the figure, 

we see details consistent with the sport.db database analysis which includes the total elapsed time 

(“42 mins 05 secs = 2525 seconds” ), distance (“2.31 km = 2309.3 meters”), and heart rate ( 99 bpm 

~ 98.39 bpm). Runalyze can plot the GPS coordinates from the .ttbin file on a map as shown in Fig. 9 

which can also be downloaded as a KML (Keyhole Markup Language) file for expressing geographic 

annotation and visualization in maps such as Google Earth. Miscellaneous results from Runalyze also 

showed the date and time ( 19th January 2020 at 2:14 pm), weather conditions, wind speed, and 

temperature. It is worth noting that .ttbin files are not deleted from the smartphone when the user 

deletes past activity data from the app.  
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Fig. 8. User activity data in Runalyze  web application ( source: runalyze.com) 

 

 

Fig. 9. User GPS tracking location in Runanlyze web application ( source: runalyze.com) 
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6. Examining Bluetooth event logs 

During each synchronization of recent activities between the smartwatch and the TomTom Sports app 

on the smartphone using Bluetooth, event logs are generated and stored as text files in the 

/data/data/com.tomtom.Sports/f/ (internal memory) and /storage/emulated/0/TomTom_MySports 

/FullLogFile.txt (SD card) directories of the Android file system. We identified two such files named 

“Logfile_0.txt”  and  “FullLogFile.txt” that both contain identical records and chronology of all past 

synchronization events that occurred in the application. The log files show the timestamp of the initial 

pairing of the smartwatch with the smartphone, a timestamp indicating when each activity file (.ttbin) 

was created and written to disk, timestamp, and web API endpoint used to upload each .ttbin file to 

the TomTom Sports cloud. For instance, the logs show the smartwatch was first paired with the 

smartphone on the 10th of January 2020 at 12:30:18 p.m UTC using Bluetooth. Event logs associated 

with our investigative scenario is shown in Fig. 10. From the figure, we see the .ttbin file 

(00910000_20200119_161610.ttbin) and activity id (408505926)associated with the suspect’s activity 

successfully uploaded to the TomTom cloud on the 19th of January at 4:18 p.m UTC. This information 

could be utilized by an investigator to obtain data stored on TomTom’s cloud systems. 

 

 

Fig. 10. Bluetooth event logs 

7. Conclusion 

In this paper, we conducted IoT device forensics, mobile device forensics, and event log analysis for 

the TomTom Spark 3 GPS fitness watch. We explored storage locations, identified and extracted 

forensic artefacts of interest stored on the physical smartwatch using ttwatch, a non-forensic Linux 

command-line tool. We also identified and reconstructed evidential data associated with user 

information, past activities, and GPS locations generated by the smartwatch and stored on databases 

maintained by the TomTom Sports mobile app installed on an Android smartphone using Cellebrite 

commercial forensic tools. We identified proprietary activity (.ttbin) files that contain evidential data 

associated with user activities stored on the Android file system and physical smartwatch. Using the 

Runalyze web platform non-forensic tool designed for analysing athletes’ performance, we were able 
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to decode the activity files and reconstruct past user activities including GPS locations from our 

investigative scenario. Several other athlete performance web applications (Strava, Endomondo, 

MapMyFitness, RunKeeper, and TrainingPeaks) support and can analyse activity files with .gpx, .tcx, 

and .fit extensions used by other brands of fitness trackers. However, in our study, only Runalyze 

supports the analysis of TomTom’s .ttbin files. 

We studied the event logs of the TomTom Sports app extensively and drew significant results of 

activity data uploaded to the TomTom cloud which could help facilitate cloud forensic investigations. 

The methodology we followed in this study is demonstrated by using TomTom Spark 3 as a case 

study where the device is a witness to a crime. It is important to note that this methodology is not 

specific for the TomTom Spark 3 GPS fitness smartwatch only but can be extended to other fitness 

trackers and smartwatches provided a variety of tools are sourced to analyse forensic files of interest. 

Also, this study highlights the current limitations of a commercial forensic tool (Cellebrite) and 

traditional tool (FTK Imager) in its inability to access all storage locations, recover and decode 

forensic artefacts from the  TomTom Spark 3 GPS fitness smartwatch, and had to be compensated 

with the use of non-forensic tools. The acquisition and forensic analysis of this type of device can be 

critical, when, for example, the smartphone is missing or damaged and the information can be only 

extracted from its linked smartwatch. This study helps forensic investigators interpret artefacts from 

smartwatches and fitness trackers and provides a vital reference for developers of forensic tools in 

developing software applications that can decode all relevant data generated by wearable IoT devices.  
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