

A Deep Learning-based Approach to
Identifying and Mitigating Network

Attacks Within SDN Environments Using
Non-standard Data Sources

Matthew David Banton

A thesis submitted in partial fulfilment of the
requirements of Liverpool John Moores

University for the degree of PhD.

November 2020

i

Acknowledgements

This thesis was completed following extensive research into Deep Learning, and I would like to express

my gratitude to several people who have supported me throughout.

First thanks must go to my principal supervisor, Dr Nathan Shone, whose expert knowledge and insight

aided and guided the direction of the research project, and without whom this thesis may never have

been finished. Thanks must also go to Dr William Hurst and Prof. Qi Shi, whose insight and support has

been invaluable.

Secondly, thanks must be provided to my Sister, Carys, for living in the same house as me for the last

few years, and not going mad. Thanks also to my parents, Bob and Val, whose love and support has

been instrumental in my upbringing and encouraged me to take up the offer of the scholarship.

I also really appreciate the support from Liverpool John Moores University, and the department of

computer science, in particular the research administrators, for being able to answer any questions

quickly and efficiently.

ii

Contents
ACKNOWLEDGEMENTS I

CONTENTS II

LIST OF TABLES IV

LIST OF FIGURES V

LIST OF CONFUSION MATRIXES VI

LIST OF EQUATIONS VII

LIST OF PSEUDOCODE VIII

ABBREVIATIONS IX

PUBLICATIONS X

ABSTRACT XI

1 INTRODUCTION 1

1.1 Motivation 2

1.2 Aims and Objectives 3

1.3 Novelties 4

2 BACKGROUND 6

2.1 Recent Data Rates and Malicious Activity 6

2.2 SDN 8

2.2.1 Traditional Networking 8

2.2.2 How SDN is Different 9

2.2.3 The Effects of SDN on Intrusion Detection 10

2.3 Deep Learning 11

2.3.1 Data Preparation Techniques for Machine Learning 15

2.4 Existing Intrusion Detection Systems 16

2.4.1 Signatures 16

2.4.2 Statistical Analysis 17

2.4.3 Types of IDS 18

2.4.4 Deep Learning IDSs 20

2.5 Deep Learning IDSs within SDN environments 23

2.6 Datasets 23

3 RELATED WORK 27

3.1 Deep learning within Intrusion Detection 27

3.1.1 Datasets 27

3.1.2 The Models Used 28

3.1.3 Data Preparation 31

3.2 SDN as a security solution 33

3.3 SDN and Deep Learning within Intrusion Detection 35

3.4 Taxonomies 36

3.5 Summary and Discussion 38

4 OVERVIEW OF ASSUMPTIONS 41

4.1 Overview of Hardware Assumptions 41

4.1.1 Data Plane 42

4.1.2 Control Plane 43

4.1.3 Mitigation Plane 44

4.2 Overview of Process Assumptions 44

5 METHODOLOGY 49

iii

5.1 The process being followed 49

5.2 Initialisation and Creation 50

5.2.1 Flows 50

5.2.2 Server Logs 51

5.3 Extraction 53

5.3.1 Flow Features are Extracted 53

5.3.2 Log Features are Extracted 55

5.4 Analysis 59

5.4.1 Aggregation 59

5.4.2 Initial Analysis 60

5.4.3 Initial Classification 63

5.5 Mitigation 70

5.6 Models 78

6 IMPLEMENTATION 83

6.1 Initialisation and Creation 83

6.1.1 The SSH Compromise Detection using Netflow/IPFIX dataset 83

6.1.2 The UNSW-NB15 Dataset 91

6.1.3 Comparison of Both Datasets 92

6.2 Extraction 94

6.3 Analysis 95

6.3.1 Initial Analysis 95

6.3.2 Initial Classification 98

6.3.3 Binary Classification 101

6.4 Mitigation 105

6.4.1 Network Layer Targeted 106

6.4.2 Attack Target 107

6.4.3 Attack Vector 108

6.4.4 Impact Sought from Attack 108

7 EVALUATION AND RESULTS 110

7.1 Develop a method to mitigate the effects of the limited data 110

7.2 Identify Other Potential Data Sources 111

7.3 Determine how to run the system at near line speed 112

7.4 Determine a method to mitigate even 0-day threats 113

7.4.1 Vector 113

7.4.2 Impact 114

7.4.3 Comparisons to previous works 115

8 DISCUSSION 117

9 CONCLUSIONS AND FUTURE WORKS 119

9.1 An initial risk assessment mechanism 119

9.2 An alternative to network packet data 119

9.3 Mitigation system capable of bespoke responses to different threats 120

9.4 Limitations 121

9.5 Future Work 122

REFERENCES 125

iv

List of Tables

TABLE 2.4-1 – EXAMPLE BINARISING OF PROTOCOL TYPES 21

TABLE 2.6-1 – THE NSL-KDD FEATURES 24

TABLE 2.6-2 – THE UNSW-NB15 FEATURES 25

TABLE 3.1-1 – RESULTS FOUND IN [50] WHEN COMPARING DIFFERENT SAMPLING METHODS 32

TABLE 5.3-1 – TABLE TO SHOW FEATURES GAINED FROM AN EXAMPLE ARP FLOW, INCLUDING LOCATION THEY

WERE TAKEN FROM 54

TABLE 5.3-2 – TABLE FOR AN EXAMPLE TCP FLOW 54

TABLE 5.3-3 - STRUCTURE OF AN NHF 58

TABLE 5.4-1 - TABLE TO SHOW DEEP MODEL LAYERS 69

TABLE 5.5-1 – MITIGATION ACCORDING TO PROBABILITY 77

TABLE 5.6-1 – SHOWING COMMANDS THAT MAY BE ISSUED IN RESPONSE TO THREATS 82

TABLE 6.1-1 – LIST OF FEATURES AVAILABLE IN THE UNSW-NB15 DATASET 91

TABLE 6.1-2 – TABLE COMPARING FEATURES OF THE DATASETS USED 93

TABLE 6.3-1 – TABLE TO SHOW THE EFFECT OF PCA N_COMPONENTS VALUE ON ACCURACY, PRECISION,

RECALL, F1 AND NUMBER OF FEATURES ON THE UNSW-NB15 DATASET USING ADASYN 99

TABLE 6.3-2 – TABLE TO SHOW THE EFFECT OF PCA N_COMPONENTS VALUE ON ACCURACY, PRECISION,

RECALL, F1 AND NUMBER OF FEATURES ON THE UNSW-NB15 DATASET USING SMOTE 100

TABLE 6.3-3 – MODEL ACCURACY, PRECISION, RECALL AND F-SCORE, AS WELL AS GRID SEARCH METRICS FOR

THE UNSW-NB15 DATASET 105

TABLE 6.3-4 – MODEL ACCURACY, PRECISION, RECALL AND F-SCORE, AS WELL AS GRID SEARCH METRICS FOR

THE NETFLOW/IPFIX DATASET 105

TABLE 6.4-1 – TABLE OF MODEL STRUCTURES FOR THE LAYER MITIGATION MODEL 106

TABLE 7.2-1 – RESULTS WITH THE HIGHEST ACCURACY AND F-SCORE FOR THE UNSW-NB15 DATASET WITH

LOGS 111

TABLE 7.2-2 – RESULTS WITH THE HIGHEST ACCURACY AND F-SCORE FOR THE UNSW-NB15 DATASET WITHOUT

LOGS 111

TABLE 7.2-3 – RESULTS WITH THE HIGHEST ACCURACY AND F-SCORE FOR THE NETFLOW/IPFIX DATASET WITH

LOGS 111

TABLE 7.2-4 – RESULTS WITH THE HIGHEST ACCURACY AND F-SCORE FOR THE NETFLOW/IPFIX DATASET

WITHOUT LOGS 111

TABLE 7.3-1 – PROPORTION OF MALICIOUS FLOWS IN THE SUPER CLUSTERS 112

TABLE 7.4-1 – COMPARISONS OF MULTI-CLASS CLASSIFICATION 115

v

List of Figures

FIGURE 2.2-1 – HOW THE LAYERS OF A SDN INTERACT 10

FIGURE 2.3-1 – AN EXAMPLE OF A DNN STRUCTURE 12

FIGURE 2.3-2 – A FIGURE TO SOME EXAMPLE TECHNIQUES USED IN THE PRIMARY CATEGORIES OF MACHINE

LEARNING – ASTERISK IS USED TO DENOTE AN ALGORITHM THAT IS FREQUENTLY USED IN A DEEP

MANNER 15

FIGURE 2.4-1 – AN INLINE NIDS 19

FIGURE 2.4-2 – AN OFFLINE NIDS 20

FIGURE 2.6-1 – AN EXTRACT OF THE RAW FLOWS FROM THE NETFLOW/IPFIX DATASET 26

FIGURE 2.6-2 – AN EXTRACT OF THE LOGS FROM THE NETFLOW/IPFIX DATASET 26

FIGURE 3.1-1 – AN EXAMPLE OF A SMALL AUTOENCODER STRUCTURE 30

FIGURE 4.1-1 – ARCHITECTURAL VIEW OF AN EXAMPLE NETWORK IT IS BELIEVED THE SOLUTION COULD BE

PLACED INTO 41

FIGURE 4.2-1 – EXTERNAL CLIENT TO SERVER FLOW 45

FIGURE 4.2-2 – INTERNAL CLIENT TO SERVER COMMUNICATION FLOW 46

FIGURE 4.2-3 – CLIENT TO CLIENT COMMUNICATION FLOW 47

FIGURE 4.2-4 – SERVER TO SERVER COMMUNICATION 47

FIGURE 4.2-5 – EXTERNAL CLIENT TO INTERNAL CLIENT 48

FIGURE 5.1-1 – FLOW DIAGRAM TO SHOW THE FLOW OF DATA WITHIN THE SYSTEM 49

FIGURE 5.2-1 – EXTRACT FROM THE LOGS OF THE NETFLOW/IPFIX DATASET 52

FIGURE 5.3-1 – AN EXAMPLE OF AN OPENFLOW FLOW 53

FIGURE 5.3-2 – AN EXAMPLE OF A TCP OPENFLOW FLOW 54

FIGURE 5.3-3 – ACCEPTED PASSWORD LOG 56

FIGURE 5.3-4 – FAILED PASSWORD EXAMPLE 56

FIGURE 5.3-5 – ALTERNATIVE FAILED PASSWORD LOG 56

FIGURE 5.3-6 – CAPITALISATION OF A LOG BEING USED FOR EMPHASIS 57

FIGURE 5.5-1 – THE TAXONOMY USED 71

FIGURE 6.1-1 – AN EXAMPLE OF THE FLOWS FROM THE NETFLOW/IPFIX DATASET 83

FIGURE 6.1-2 – AN EXAMPLE OF THE LOG FILE FROM THE NETFLOW/IPFIX DATASET 85

FIGURE 6.1-3 – BRO IDS LOGS FROM THE UNSW-NB15 DATASET FOR SSH CONNECTIONS 93

FIGURE 6.3-1 – RISK SCORE AGAINST SIZE OF CLUSTERS FOR MIN_CLUSTER SIZE OF 2000 AND MIN_SAMPLE

SIZE OF 400 FOR THE UNSW-NB15 DATASET 97

FIGURE 6.3-2 – RISK SCORE AGAINST SIZE OF CLUSTERS FOR MIN_CLUSTER SIZE OF 2000 AND MIN_SAMPLE

SIZE OF 400 FOR THE NETFLOW/IPFIX DATASET 98

FIGURE 6.3-3 – ACCURACY AGAINST EPOCH FOR PCA N_COMPONENT = 0.96 100

FIGURE 6.3-4 – ACCURACY AGAINST EPOCH FOR PCA N_COMPONENT = 0.98 101

FIGURE 7.1-1 – A COMPARISON OF THIS WORK TO OTHER STATE OF THE ART RESULTS 110

https://d.docs.live.net/603233c408e9f2b5/Documents/Uni/PhD/Dropbox/PhD%20Shared%20Folder/Thesis/Final%20Draft-DESKTOP-M9NSPT0.docx#_Toc57382969

vi

List of Confusion Matrixes

CONFUSION MATRIX 6.4-1 – RESULTS FOR THE NETWORK LAYER MODEL WITHIN THE MITIGATION TAXONOMY

WITH THE FIRST MODEL STRUCTURE 106

CONFUSION MATRIX 6.4-2 – RESULTS FOR THE NETWORK LAYER MODEL WITHIN THE MITIGATION TAXONOMY

WITH THE SECOND MODEL STRUCTURE 107

CONFUSION MATRIX 6.4-3 – CONFUSION MATRIX FOR THE TARGET IN THE MITIGATION SYSTEM WITH

RANDOM OVERSAMPLING 107

CONFUSION MATRIX 6.4-4 – CONFUSION MATRIX FOR THE TARGET IN THE MITIGATION SYSTEM WITHOUT

RANDOM OVERSAMPLING 107

CONFUSION MATRIX 6.4-5 – CONFUSION MATRIX FOR THE VECTOR IN THE MITIGATION SYSTEM WITH

OVERSAMPLING 108

CONFUSION MATRIX 6.4-6 – CONFUSION MATRIX FOR THE VECTOR IN THE MITIGATION SYSTEM WITHOUT

OVERSAMPLING 108

CONFUSION MATRIX 6.4-7 – CONFUSION MATRIX FOR THE IMPACT IN THE MITIGATION SYSTEM WITHOUT

OVERSAMPLING 109

CONFUSION MATRIX 6.4-8 – CONFUSION MATRIX FOR THE IMPACT IN THE MITIGATION SYSTEM WITH

OVERSAMPLING 109

CONFUSION MATRIX 7.4-1 – VECTOR CONFUSION MATRIX WITH TAKING EXTRA DATA FROM EARLIER MODELS

 113

CONFUSION MATRIX 7.4-2 – VECTOR CONFUSION MATRIX WITHOUT TAKING EXTRA DATA FROM EARLIER

MODELS 114

CONFUSION MATRIX 7.4-3 – CONFUSION MATRIX FOR IMPACT WITH EXTRA DATA FROM EARLIER MODELS 115

CONFUSION MATRIX 7.4-4 – CONFUSION MATRIX FOR IMPACT WITHOUT TAKING EXTRA DATA FROM EARLIER

MODELS 115

vii

List of Equations

EQUATION 3.1-1 30

EQUATION 3.1-3 30

EQUATION 5.4-1 60

EQUATION 5.4-2 62

EQUATION 5.5-1 77

viii

List of Pseudocode

PSEUDOCODE 5.3-1 – PSEUDOCODE FOR READING A FLOW 53

PSEUDOCODE 5.3-2 – PSEUDOCODE FOR CREATING A NEW FLOW ENTRY TO UPDATING AN EXISTING ENTRY 55

PSEUDOCODE 5.3-3 – CODE TO MATCH LOG ENTRIES TO FLOW ENTRIES 55

PSEUDOCODE 5.3-4 – ENTRY TO SHOW WHETHER A LOGIN ATTEMPT HAS BEEN MADE 56

PSEUDOCODE 5.3-5 – EXAMPLE CODE FOR THE TEXTBLOB 58

PSEUDOCODE 5.3-6 – CODE TO DETERMINE IP ADDRESS FROM A LOG 58

PSEUDOCODE 5.4-1 – CREATION OF THE NHF 60

PSEUDOCODE 5.4-2 – CODE TO SHOW HOW RISK IS CREATED AND UPDATED 63

PSEUDOCODE 5.4-3 – CODE FOR THE MODEL, H REPRESENTS HYPER-PARAMETERS TO BE TUNED 67

PSEUDOCODE 5.6-1 – SHOWING HOW THE FIRST MODEL IS SET UP AND HOW THE MODELS ARE CALLED 80

PSEUDOCODE 5.6-2 – PSEUDOCODE TO SHOW THE BASIC CODE STRUCTURE FOR THE MODELS 80

PSEUDOCODE 5.6-3 – SHOWING HOW THE MITIGATION IS CHOSEN 81

ix

Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

AWS Amazon Web Services

BGP Border Gateway Protocol

CIA Confidentiality, Integrity and Availability

CNN Convolutional Neural Network

DoS Denial of Service

DDoS Distributed Denial of Service

DNN Deep Neural Network

DPI Deep Packet Inspection

FNT Flexible Neural Tree

FTP File Transfer Protocol

GPGPU General Purpose Graphics Processing Unit

HIDS Host Intrusion Detection System

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IG Information Gain

IMS Intrusion Mitigation System

IPS Intrusion Prevention System

LSTM Long Short-Term Memory

MLP Multi-Layer Perceptron

NAT Network Address Translation

NHF Network Health Flow

NIDS Network Intrusion Detection System

NIMS Network Intrusion Mitigation System

NIPS Network Intrusion Prevention System

PCA Principal Component Analysis

PSO Particle Swarm Optimisation

RBF Radial Bias Function

RDP Remote Desktop Protocol

SDN Software Defined Network

SMOTE Synthetic Minority Oversampling Technique

SSH Secure Shell

SVM Support Vector Machine

x

Publications

M. Banton, N. Shone, W. Hurst and Q. Shi, "Intrusion Detection Using Extremely Limited Data Based

on SDN," 2020 IEEE 10th International Conference on Intelligent Systems (IS), Varna, Bulgaria, 2020,

pp. 304-309, doi: 10.1109/IS48319.2020.9199950.

M. Banton, N. Shone, W. Hurst and Q. Shi, "A Fresh Look at Combining Logs and Network Data to

Detect Anomalous Activity," 2019 International Conference on Information and Communication

Technologies for Disaster Management (ICT-DM), Paris, France, 2019, pp. 1-6, doi: 10.1109/ICT-

DM47966.2019.9032959.

M. Banton, N. Shone, W. Hurst, and Q. Shi, “Visualising Network Anomalies in an Unsupervised Manner

Using Deep Network Autoencoders,” The Fourth International Conference on Applications and Systems

of Visual Paradigms VISUAL 2019, Rome, Italy, 2019 pp.25-31

M. Banton, N. Shone, W. Hurst and Q. Shi, “Deep Learning Based Methods and Applications: A

Survey,” ACM Transactions on Privacy and Security, In Preparation.

xi

Abstract

Modern society is increasingly dependent on computer networks, which are essential to delivering an

increasing number of key services. With this increasing dependence, comes a corresponding increase

in global traffic and users. One of the tools administrators are using to deal with this growth is Software

Defined Networking (SDN). SDN changes the traditional distributed networking design to a more

programmable centralised solution, based around the SDN controller. This allows administrators to

respond more quickly to changing network conditions. However, this change in paradigm, along with

the growing use of encryption can cause other issues.

For many years, security administrators have used techniques such as deep packet inspection and

signature analysis to detect malicious activity. These methods are becoming less common as artificial

intelligence (AI) and deep learning technologies mature. AI and deep learning have advantages in being

able to cope with 0-day attacks and being able to detect malicious activity despite the use of encryption

and obfuscation techniques. However, SDN reduces the volume of data that is available for analysis

with these machine learning techniques. Rather than packet information, SDN relies on flows, which

are abstract representations of network activity.

Security researchers have been slow to move to this new method of networking, in part because of this

reduction in data, however doing so could have advantages in responding quickly to malicious activity.

This research project seeks to provide a way to reconcile the contradiction apparent, by building a deep

learning model that can achieve comparable results to other state-of-the-art models, while using 70%

fewer features. This is achieved through the creation of new data from logs, as well as creation of a

new risk-based sampling method to prioritise suspect flows for analysis, which can successfully

prioritise over 90% of malicious flows from leading datasets. Additionally, provided is a mitigation

method that can work with a SDN solution to automatically mitigate attacks after they are found,

showcasing the advantages of closer integration with SDN.

1

1 Introduction

Modern society is heavily reliant on computer networks, which are key to delivering an ever-expanding

array of critical services. Therefore, it is unsurprising that the volume of annual global IP traffic is

forecast to grow to 4.8ZB by 2022, which is a 220% increase from 1.5ZB in 2017 [1]. Much of this growth

will come from regions that currently have poor internet access, however, even in Western Europe, the

number of users and devices is set to increase, along with internet speeds (353 million users in 2022,

up from 331 million in 2017, and 4 billion networked devices in 2022, up from 2.3 billion in 2017) [1], [2].

As the volume of data continues to increase, so too does the need for new networking solutions to

handle it. Software Defined Networks (SDNs) are rapidly becoming one of the main tools used to aid

this growth. Traditional network infrastructure relies upon hardware routers, each maintaining a routing

table for the potential paths for packets between devices, and the most efficient paths that can be taken.

On a small scale, this is relatively easy to manage as changes can be made by reprogramming the

routers as needed, and even small outages can be planned for and automatically corrected. However,

at scale, the reprogramming of numerous individual devices becomes a complex and time-consuming

task. This problem is negated in SDN environments as instead of each router maintaining its own route

table, a central controller manages the route table. If a router has not previously encountered a route

that a new packet requires, then it will ask the SDN controller for instructions on how to handle the

packet and any future similar packets. In effect, instead of being distributed between all routers on the

network, the routing table is now centralised on one device, which is separate from the devices that

route the packets. This separation is what defines SDN, and it is described as “The physical separation

of the network control plane from the forwarding plane, and where a control plane controls several

devices” [3], [4].

However, security systems have been slow to respond to this new way of networking. Most existing

IDSs still analyse data from packet headers directly, requiring additional hardware in all relevant

locations, which runs counter to the SDN paradigm of having a centralised solution providing a holistic

view of the network. Successfully integrating an IDS into the northbound interface of a SDN controller

would bring all the same benefits to network security that SDN has brought to networking more

generally. Upon finding a malicious flow, a SDN controller would be able to automatically send

instructions to attempt to mitigate it. SDNs would provide an IDS with a more holistic view of a network

and negate the need for individual devices in selected parts of the network. However, moving to such

a model for IDSs does come with additional problems.

One problem is a problem that current IDSs suffer from, data rates. Moving to a centralised solution

would mean that the IDS must not only monitor all traffic in its local network segment, but all traffic from

across the network. While SDN does aid with this somewhat, by providing an abstracted view of network

activity in the form of network flows, a network will still produce many network flows creating a great

deal of work. Additionally, these flows suffer from another problem. Most current IDS technologies are

designed to work with traditional network packets (e.g. Flags), which provide a great deal of data useful

for determining malicious intent. SDNs do not typically keep track of this kind of data since it is not

2

useful for determining overall network activity levels. In addition, some IDSs monitor data from inside

packet bodies (known as deep packet inspection (DPI)), again a rich source of information that is lost

when moving to an SDN-based solution. This means that when attempting to create an IDS that detects

malicious activity based on SDN flows, there is both too much data (in terms of sheer volume of flows)

and not enough (in terms of the features collected.)

Another potential issue that could exacerbate this is the rise in popularity of machine learning. Recently,

machine learning and in particular deep learning, has been seen as a potential boon to security-minded

administrators. It has been shown that machine learning can detect attacks using various forms of data,

the goal being to train an algorithm on various examples of data, which will then be able to detect new

variants through generalisation [5]. This generalisation can aid in detecting novel and 0-day threats [6],

threats for which a signature has not been produced or even seen before. However, machine learning

models and in particular deep learning models, require large volumes of training data, with many

different data points or features. As has been explained, SDNs goal is to abstract the features machine

learning models need in order to get high accuracy rates. Additionally, deep learning models are

particularly computationally expensive, which increases issues given the volumes of data that must be

analysed.

This work proposes a solution to these dilemmas. Proposed is a deep learning solution that uses only

data that is readily available, without the use of techniques such as DPI, and can be integrated into the

northbound interface of a SDN controller, to make use of the holistic view a SDN provides.

1.1 Motivation

One of the advents to aid with the increasing amounts of data has been SDN [4], which allows networks

to respond more dynamically to changing network conditions. However, IDSs have been slow to

embrace this new way of networking. As such, the motivational factors for this research are:

1 To provide a solution to the issue of data rates overloading IDSs

One of the issues facing traditional network infrastructure is that data rates are increasingly forcing

Network Intrusion Detection System (NIDS) to either act in parallel to the network data (off-line),

and potentially only detect attacks after the attack has succeeded, or use sampling which could

increase the risk of attacks being missed due to packets not being sampled. SDN provides a high-

level representation of the network activity, meaning less data must be analysed and malicious

activity should still be detectable.

2 To provide a solution to the amount of time it takes to mitigate an attack

It has been found that the time from first action in an event chain to initial compromise of an asset

is most often measured in seconds or minutes [7]. While reducing the load on IDSs can aid with

this (ensuring breaches are found in a timely manner) other solutions may be required to limit the

damage of a successful breach. SDN provides one way to do this, through automated changing of

the network conditions to hinder an attacker’s progress.

3 To provide a solution to the contradiction between AI and SDN in an IDS setting

3

Machine learning provides a method to detect 0-day threats, being able to generalise well enough

to determine if a flow is malicious even if it is “novel”, simply because many “novel” attacks are just

slightly altered versions of existing attacks. However, machine learning requires large volumes of

data, which SDN attempts to abstract

4. To provide a solution to the issue of training time for AI based IDSs.

While machine learning, and deep learning has potential to aid with intrusion detection, the

amount of time it takes to train these systems is prohibitive, especially the large and deep models

proposed in research. Machine learning models must be updated regularly to keep abreast of

changing network conditions. This is a time-consuming process that must be repeated regularly,

and reducing this time is a major issue.

1.2 Aims and Objectives

To address the research challenges outlined, the aim of this research is to develop an IDS solution that

can be tightly integrated within a SDN-based network, capable of accurately identifying 0-day attacks

and mitigating those threats that are detected. This broad aim can be separated into two primary goals:

1 Investigation of the role of data sources and machine learning in mitigating 0-day attacks

One of the issues identified is that SDN flows only provide a high-level representation of network

data. This high-level representation typically comes in the form of a network “flow” that contains

very few data points. This means there is less to analyse when attempting to make changes to a

network and allows faster changes. However, machine learning typically requires large volumes of

data points to be accurate. The effect of this will need to be investigated, and alternative data

sources will need to be identified if (as is believed) accuracy will be affected.

2 Development of a system that can utilise the advantages that SDN has to offer

As has been stated, SDN has advantages when it comes to identifying and mitigating malicious

activity. The smaller flows, while offering less raw data than packet data would, do allow for faster

processing, meaning processing could potentially happen at line rate. Additionally, SDN allows for

incredibly granular control of flows. This allows for the potential of mitigation that has been

customised for the attack that is detected. For example, flows identified as botnet activity could

lead to the infected machines being quarantined, while DoS attack flows could simply be dropped.

In order to meet these aims, the following objectives have been established:

1. Discover the effect of limited SDN flows on machine learning IDSs (Aim 1)

Current literature will need to be examined on to what effect the limited data within SDN flows has

on IDS detection rates, as well as what methods have been proposed to overcome the issues

posed.

2. Develop a method to mitigate the effects of the limited data. (Aim 1)

A machine learning model will need to be built that can operate at similar levels to that in other state

of the art research, but with significantly less data. This will additionally need investigation of

overfitting causes and mitigations.

3. Identify other potential data sources (Aim 1)

4

One potential method of mitigating the effects of the limited data on detection accuracy is to

incorporate other accessible data sources into the detection system. These alternative sources will

need to be identified, and methods of aggregating them into the SDN flows will need to be examined

and tested.

4. Determine how to run the model at near line speed (Aim 2)

The aggregation of any alternative data as well as the analysis as to the maliciousness of any flows

will need to happen at line speed. This is a consideration that will need to be incorporated into the

earlier objectives, i.e. the speed of aggregating the data and how computationally expensive the

detection system is, but a new sampling method for occasions where network load exceeds

capacity to process flows will also need to be developed, especially since machine learning tends

to be computationally expensive.

5. Determine a method to mitigate even 0-day threats (Aim 2)

One of the primary advantages of SDN is its ability to react to changing network conditions. A

method should therefore be developed to make use of this ability to mitigate malicious activity once

it has been detected in real time. Additionally, a primary advantage of machine learning in intrusion

detection is the ability to handle 0-day attacks. These should also be mitigated, and so a method to

identify a mitigation for previously unknown malicious activity needs to be devised.

1.3 Novelties

As a multi-disciplinary project, this project provides the following novel contributions:

1 Use an alternative to network packet data

SDN flows have less data available than reading packet data directly. This can result in reductions

in accuracy for anomaly detection. As such, the flow data will be supplemented with network log

data. Although Hybrid IDSs are not a novel idea, existing methods classify logs and network packet

data in two separate processes. The outputs of both are used to determine if an attack has taken

place. The contribution offered by this work is a novel technique that aggregates log and network

flow data into a single data stream. Using logs like this should additionally allow for parallelisation

of the flow creation process (network flows and log flows), which will aid in distributing

computational load.

2 Initial automated risk assessment mechanism

A HDBScan-based mechanism has been devised that enables autonomous and near-wire speed

grouping of similar network flows based on behavioural similarity and the assignation of a priority

rating based on the percentage of flows that have been found to be malicious. HDBScan works

significantly faster than other machine learning methods, enabling rapid grouping of each flow to

be grouped at or near wire speed. This means that any flows that are potentially malicious (or high-

risk) will be analysed by the IDS, rather than potentially being missed by sampling methods. It is

believed that this is the first-time unsupervised clustering will have been used to assign a risk score

in this way. Being able to run in real time is a significant issue, as even traditional IDS methods

struggle to deal with the volume of data, and the use of machine learning adds more complexity.

5

3 Custom classification model for combination log and network flows

The initial classification of benign or malicious flows will be performed using a specifically

developed classification model. The model is based upon a single convolutional neural network

with customised layers and uses various techniques to reduce overfitting such as dropout and

batch normalisation. In addition, techniques such as PCA, SMOTE or ADASYN will be employed,

to attempt to ensure the training data is as useful as possible. As has been stated, ML, and

convolutional, models in particular require many features to learn from, and this work shall use only

27% of the features (11 out of 41) other works require. This is a significant issue, as has been

stated the more data that is available the better the classification accuracy can be. Deep models

are seen as requiring large volumes of data that is not available here.

4 Adaptive mitigation framework

The proposed mitigation framework is capable of identifying a diverse range of threats and

implementing differing mitigations depending on the scenario. For example, if a botnet is detected,

then quarantining infected systems may be an appropriate response, whereas if a probe is detected

than an appropriate response may be to drop the flow. The framework leverages four sequential

machine learning models in order to compare the flow to widely accepted attack taxonomies. It is

believed this will be the first-time machine learning has been used to determine which leaf of a

taxonomy an attack belongs to, and then use this information to devise an appropriate response to

an attack.

1.4 Research Scope

This work is targeted at enterprise network infrastructure i.e. networks that are large enough to enjoy

the benefits of SDN but not as large or complex as data centre networks or backbone internet structure.

However, it is believed that this work could be expanded to other areas where SDN is proving useful,

such as IoT and Fog. Specifying enterprise networks is still a broad scope. We specifically target

networks that make use of their own (for example) webservers, email servers or file servers. Some (or

even all) of these services may have been moved to the cloud in order to allow easier remote access,

however it is still the case that many enterprises use local servers that are synced to the cloud to ensure

on-site access, legal compliance, or security concerns.

It is envisaged that the kind of company that could make use of this would likely have multiple sites

(either nationally or locally), with custom connections linking those sites. Such a business would likely

have custom Internet connections, and multiple connections for redundancy. Each site could potentially

have hundreds of employees. For businesses of this scale, SDN is a very appealing technology as it

simplifies what could otherwise be very complex network management. Similarly, companies of this

size may want to use custom IDS services. It is worth noting that potentially office space providers may

also find this technology useful, since they are typically responsible for Internet access for their

customers (making SDN solutions attractive), however they rarely need to manage servers, or offsite

connections.

6

2 Background

In this chapter, will seek to provide additional context for some of the key areas of this work and discuss

in more detail some of issues this work seeks to resolve through discussing previous works on the

subjects. Data rates and malicious activity, SDN and how it operates, Deep Learning and intrusion

detection methods shall be discussed. Finally, the state of current deep learning IDSs within SDN

environments shall be explained, and briefly discuss current relevant datasets.

2.1 Recent Data Rates and Malicious Activity

From Chapter 1 is can be seen that data rates are increasing, and this is of concern for network

administrators. However, the statistics need additional context to understand the extent of the issues

that are arising. While fixed line internet speeds are expected to almost double between 2017 and 2022

(increasing from an average of 37.9Mbps to 76Mbps for Western Europe) [1] most of that extra

bandwidth is not being used on fixed devices. In 2017, roughly 48% of all IP traffic came from fixed

devices, whereas in 2022 that is predicted to drop to 29% of all IP traffic. It will instead be replaced by

wireless devices, mostly smartphones. In 2017, smartphones accounted for 18% of global IP traffic.

This is a significant amount but dwarfed by the 41% of traffic accounted for by PCs alone. In 2022, PC

traffic is expected to only account for 19% of all IP traffic, while smartphone traffic is expected to

increase to 44%.

This change in usage is important, as it shows some of the shifting demands that administrators are

going to have to deal with. Generally, Wi-Fi access points are going to be in more demand as people

grow more accustomed to working from their mobile devices. This is important as mobile traffic is more

potentially more prone to temporal behavioural variations (e.g. an unexpected number connections, or

traffic volume more generally), with high peaks and low troughs. In addition, those peaks may change

location depending upon time, even within the same LAN. With fixed terminals, it was understood where

most traffic within a business originated from, and when (where the largest number of terminals are

located, and when they are scheduled to be in use). This predictability makes it comparatively easy to

plan for. The administrator can determine a minimal acceptable service level, and plan to have enough

bandwidth to accommodate it. With the move to wireless, this is no longer the case. While the number

of people within LAN can still be estimated with some reliability, where those people wish to access

local resources is constantly changing. For instance, an impromptu company meeting could see

excessive surge in one room, which previously may have only housed a couple of fixed terminals.

Offices with many terminals may see less use as workers move more freely to other locations to discuss

matters with other staff not located in the same room. This kind of activity puts more pressure on

wireless access points, some of which may only see those kind of data rates very infrequently.

Along with this change in how networks are being used, there has been a change in what malicious

activity is undertaken. Ransomware attacks have generally decreased since reaching a peak in 2017

[8], however the number of ransomware attacks that specifically target businesses increased 12%

between 2017 and 2018 [8][7]. Ransomware relies on being able to spread through a local network, in

order to encrypt both active files and any backups (or the victim could just wipe the affected computer

7

and restore it). In addition, there have been instances of attacks that initially look like ransomware;

however, the files are encrypted with a random key that cannot be recovered, meaning that the files are

permanently lost. While using the same malicious software and tools, this means that the attacks are

purely being used for disruption and destruction, with little intention of making large amounts of money

directly. The reasons for these kinds of attacks vary, but again they are primarily targeted at businesses,

not individuals.

There has also been an increase in “Living off the land” attacks, which target commonly used

applications and attempt to hide malicious activity as benign. Applications used like this include Remote

Desktop Connection (RDP). Similarly, worms have seen a decrease in spreading via remote exploit

vulnerabilities [7], [9]. Instead malware has moved to using simple techniques such as brute forcing

passwords to laterally move across a network. Tied in with this has been an increase in “supply chain”

attacks. These involve exploiting third party software or services in order to compromise a final target.

A prominent example is the Petya/NotPetya [8][10] ransomware attack that was propagated through

the misuse of a software update of MEDoc, a Ukrainian tax preparation program. Administrators

generally have little control over the content of software updates and are frequently advised to install

them without being able to gauge the security risks of the update. This kind of attack will allow an

attacker to gain a foothold in many companies that use the software exploited, and can provide a

foothold to launch further attacks using different methods if the attacker chooses (for example, NotPetya

uses a version of Mimikatz to gain administrator passwords to spread across local networks).

Finally, there has also been an increase in IoT-specific attacks [8] (an average of 5,200 per month

against Symantec’s IoT honeypot), as these devices are often relatively poorly protected, but provide

an excellent foothold for an attacker to launch more attacks. Many routers for instance provide all the

tools needed to initiate a password attack against a server (using SSH for instance, or telnet), and are

often themselves left with default or unsecure passwords.

Moving away from attacks that specifically target businesses, there has been an increase in malware

that targets mobile and other IoT devices within the last three years. This may be unexpected,

considering the increasing prevalence these devices have in general society. This does pose an issue

for business administrators however, as they need to be aware of the risks of the mobile malware and

how to best prevent its spread. It is estimated that 1 in 36 mobile devices used within organisations

could be classed as high risk [7]. This includes devices that had been routed or jailbroken, along with

devices that had a high degree of certainty that malware had been installed on the device. Taken in

conjunction with the fact that most data is going to come from mobile devices, this means that a large

number of devices that are not under the administrator’s control, with a high risk of being compromised,

are being taken into the heart of an organisations infrastructure and placed onto the same LAN as

potentially sensitive documents or other servers. These devices seem to offer ideal opportunities as

jumping off points, either to infect computers they are connected to or as ways to infect wireless routers

they connect to.

8

In summary, just as the use of computer networks has changed, so has the malicious use of computer

networks. IoT devices were once seen as secure and are now a potential major weakness. Updates

from suppliers once only needed to be vetted enough to ensure they did not break existing processes,

but now can be another point of weakness. Mobile device malware infections have grown steadily, and

these devices are invited into the heart of company networks. Malicious activity can be started from any

IP connected device and can target any IP connected device. To meet this threat, IDS’s need to be able

to detect threats from all over a network, not just isolate particularly sensitive areas.

2.2 SDN

The volume of network traffic is increasing, however the volume itself is less of a concern than the

complexities that come with managing it are. As data rates grow, the infrastructure required to deal with

the growth becomes more complex, often requiring hundreds (if not thousands) of switches and paths.

2.2.1 Traditional Networking

Traditional networking works through devices having two planes, a control plane, and a data plane,

which are vertically integrated into a single device (the network switch) [11]. The data plane is

responsible for the movement of packets from one port to another, based upon a routing table. When a

packet enters a port, packet header information is recorded and a match in the table is searched for in

order to route the packet correctly. If no information for the packet exists within the routing table, the

data plane forwards the packet meta-data to the control plane. The control plane is responsible for

building a map of the network (or the network topology), and creating the routing tables for the data

plane, dependant on that map. So, when it receives packet information from the data plane that doesn’t

match any existing rules, it refers to the topology it has built (through the use of protocols such as the

Border Gateway Protocol (BGP) [12] or the Spanning Tree Protocol (STP) [13]) to determine how to

forward that packet, and updates the routing table accordingly.

This is an effective system, which limits the impact of failures through not being centralised. If an

individual switch fails, then neighbouring switches can learn of this failure and attempt to reroute traffic

around the failed node. This was an important consideration of early IP networks that were supposed

to work even in the event of catastrophic damage to infrastructure (given the military background).

However, the same system leads to issues of scalability. Each individual switch needs to build its own

topology map, and no switch will have a complete map of a sufficiently sized network. This will be due

to limits in:

 Memory: Even if you add more memory to a switch (which can be costly), that memory needs

to be fast enough to allow the data plane to search the entire routing table to forward the packet

at line speed.

 Processing power: Building the network topologies is not a simple task computationally and

each node added to a network increases that complexity. Larger networks require increasingly

powerful processors to build and maintain the network map.

 Available bandwidth: Network switches attempting to gather information about the network

will need to use some network capacity.

9

None of these issues are insurmountable but the solutions are costly on an individual switch basis, and

when you multiply the costs hundreds of times for multiple switches in a large network, they can easily

spiral out of control.

2.2.2 How SDN is Different

SDN changes the traditional view of networks by separating the control and data planes. Switches

continue to contain the data plane and are responsible for the forwarding of packets depending upon a

routing table. However, that is all they do. The control plane is moved to a centralised device, the

controller, which many switches can contact and ask for instructions. This does implement a single point

of failure in networks (if the controller is compromised then the network could be), however it also

centralises the costs into a single device.

The model also provides other advantages. Traditionally, managed switches needed to be programmed

individually before being placed into a network, as well as needing to be individually reprogrammed if

the network structure changed. While tools to aid this process did exist, they were typically locked to a

single provider through the use of proprietary protocols (causing issues if the vendor were to stop

supporting that protocol) and were propagated through the network on a switch to switch basis (causing

issues with a potential lack of clarity on when/if switches had received updated instructions). In contrast,

SDN switches need minimal configuration before being placed in a network, and when a network

structure changes, switches can receive the new instructions from the controller directly, simplifying and

quickening the process. In effect, it allows what would normally be managed switches to become

unmanaged. This advantage combined with the centralisation of cost allows for another advantage –

dynamically programmable networks.

Since the controller is a singular device, it gives the opportunity to add another plane above the control

plane, the application plane. This application plane can receive information about the network state

from the control plane (named the northbound interface), and issue instructions depending upon several

factors and different programs (see Figure 2.2-1). For example, you could program an application to

redirect traffic through certain paths at certain times of day for maintenance reasons or redirect traffic

in response to malicious traffic being detected. These rules would be difficult to implement in the

traditional networks, for two main reasons:

1. The decentralised nature of networks means that getting multiple switches to act in a coordinated

manner, even switches that are not directly connected or aware of each other, is a difficult task.

2. The custom programs would require additional computational resources, multiplied by every switch

in the network that needs to be able to run these programs.

What this effectively means, is that while under the old, decentralised paradigm, traffic was routed

depending upon IP or MAC address only, under SDN, traffic can be routed depending upon many other

conditions, all of which are configurable. In summary, a SDN architecture is:

10

Figure 2.2-1 – How the layers of a SDN interact.

1. Directly Programmable: As the network control is decoupled from the forwarding functions,

network devices can be programmed directly.

2. Agile: Abstracting the control plane from the data plane allows administrators to dynamically adjust

network-wide traffic flow to meet the changing needs of dynamic network conditions.

3. Centrally managed: The network intelligence is centralised in the controller, which maintains a

near real-time global view of the network, which appears to applications as a single logical switch.

2.2.3 The Effects of SDN on Intrusion Detection

As established in Subsection 2.2.2, SDN is a technology that has been created in response to growing

data rates and the resulting increase in network complexity. However, the benefits or drawbacks to

network security as a result are less clear cut. Other academic works (discussed in Chapter 3) have

indicated that SDN can have some security benefits, making some attacks more difficult, but also that

the controller being a single point of failure, makes other attacks easier. For example, it may be possible

to cause a DoS by flooding the controller with many new flows. While attacks like this may have been

possible previously, they would target single switches, and the distributed nature of networks would

significantly reduce the potential impact. Broadly, SDNs should be more resilient against DoS attacks.

The purpose of SDNs is to increase the utilisation of network hardware, and to decrease the reaction

11

time in response to changing network conditions. A SDN should lessen the impact of DoS attacks since

they should be able to automatically detect the increasing volumes of traffic or failure of network

devices, and redirect traffic accordingly. Additionally, once the DoS attack has been detected, the SDN

should make it easier to react to the attack, blocking or redirecting malicious flows.

Generally, it is agreed that while SDNs do have associated risks that need to be accounted for when

designing an SDN, they also bring benefits that should not be ignored. Another example is that SDNs

allow for the redirection of traffic to middle boxes anywhere on the network for traffic to be analysed.

Currently, middle boxes (IDSs, firewalls, load balancers etc.) need to be in specific parts of the network

and only affect traffic within those parts. SDNs allow these devices to be separated, with traffic

redirected to the devices if the SDN controller decides it is necessary. This offers some advantages,

including separation of the security middle boxes from the main network, more selective analysis of

traffic (only analysing traffic that SDN controller deems important) and centralisation of the middle boxes

themselves (only a single device is able to analyse multiple areas of the network). Of course, these

adaptions also have implications that need to be considered. If a NIDS is going to analyse all traffic

across a network (rather than just a small section) then that NIDS needs to be computationally powerful

enough to cope with the extra traffic.

2.3 Deep Learning

Representational learning is a technique that enables a system to automatically determine the

representations for a given classification based upon the raw data. Machine learning is an example of

representational learning, in that a machine learning algorithm determines the features that differentiate

the classes automatically. Deep learning is a subset of machine learning that uses multiple levels of

representation, with each level transforming the representation to a slightly more abstract model [5].

For example, rather than an input layer containing the pixels of an image and a shallow classifier

determining the picture contains a face (something most shallow classifiers would not be able to do with

sufficiently complex pictures), a deeper model may have the same pixel input, and then the first hidden

layer detect edges. The second layer might detect the edges from an eye or mouth. The final layer may

detect the image contains eyes, a mouth, a nose, and ears while the final classification determines the

picture contains a face.

In the same way, a deep model attempting to classify malicious traffic may have a first layer that detects

“edges” of packets (e.g. a small packet size, a short Time To Live (TTL) or the use of a particular

protocol). The second layer may add some context to these features, while abstracting the actually

features (e.g. the packet is small or the protocol is unusual) and the final layer may be used as a final

classifier (e.g. a DDoS is being attempted). This usage of multiple layers allows greater generalisation

and can lead to better classification accuracy than shallow machine learning models are capable of, as

each layer is building on the representations of previous layers [5].

Deep learning algorithms generally come with greater computational expense, which is something that

initially held back their adoption since their conception in 1965 [14]. However, the advances in

12

processing capabilities, such as the introduction of General-Purpose Graphics Processing Units

(GPGPUs), has reduced these barriers.

Figure 2.3-1 – An example of a DNN structure

Figure 2.3-1 shows an example of a Deep Neural Network (DNN) structure. The input layer contains 6

features, which is expanded into the first hidden layer with 8 nodes, which maps to another hidden layer

with 8 nodes, before resulting in classification layer with 4 nodes. In this case, the network would be

detecting 4 discrete things. If applied to detecting network attacks there could be classifications for

benign traffic, DoS traffic, Probe traffic and other malicious traffic.

The first layer, termed the Input layer, is the raw data of the thing being classified. For example, in a

grayscale image this would consist of individual pixels, typically ranging in values from 0-255 depicting

the colour depth. For intrusion detection, this consists of packet data, including things like protocol type,

TTL, size and source/destination addresses. The middle two layers are termed “hidden” layers as they

are not directly observable from the system input and outputs. Each hidden layer transforms its own

input data (i.e. the data from the layer before it) into a slightly more abstract version. With enough of

these transformations, complex features can be learned [5]. This process is termed representational

learning and higher levels of representation (i.e. further along the model) aspects of the input that are

important for the classification task are amplified, and less important aspects are supressed. The key

aspect is that these representational layers are not coded by an engineer but are learned from data.

Finally, is the output layer (also known as the classification layer), which is commonly a more traditional

shallow learning classifier, which receives its input from the final hidden layer. As opposed to being

another layer of the same Multi-Layer Perceptron’s (MLP) node that make up the hidden layers. These

are typically linear layers that compute a weighted sum for each of the potential classes. If this weighted

sum is above a threshold then it determines that the input belongs to a particular category. The issue

with these shallow classifiers has been that they are sensitive to irrelevant changes in the input, which

13

leads to misclassification when used alone. However, when paired with a suitable feature extractor (the

hidden or deep model for example), they can perform well, being able to detect small changes in input.

Previously, the feature extractors were designed by hand, specific to the kind of input that was being

classified. This took great amounts of engineering skill and domain expertise, however the automatic

feature extraction enabled by deep learning simplifies the process significantly.

While all the nodes are connected to every other node on the next layer within Figure 2.3-1 (known as

a fully connected network), this is not required, or even necessarily recommended. It has been found

that limiting connections can aid in reducing overfitting. Overfitting is a phenomenon that can occur

when a model is trained too much. A goal of machine learning is to identify not only samples it has been

shown, but examples that are similar to what it has been shown but it has never seen before. The ability

to adapt to new data is referred to as generalisation. When overfitting occurs, generalisation loses

accuracy (typically on testing or evaluation datasets) as the models start to only associate the training

data with the classifications. Overfitting can be avoided in three main ways:

1. Using more data: Both increasing the number of samples you have, as well as increasing the

number of features within the dataset can aid in overfitting. Increasing the amount of data forces

the model to attempt to learn all new data and prevents it from fitting too closely to the original

training data.

2. Using less data: While this may seem to contradict the first point, often a lot of data within datasets

can be “noisy” – i.e. data that does not help with the end classification. This can be features that

heavily resemble other features within the dataset, or samples that are similar (or even identical) to

other samples within the dataset. Both examples force the model to learn the same thing multiple

times, increasing bias towards these values.

3. Using regularisation: Regularisation techniques (e.g. dropout) ensure that all nodes are not

always connected to every node in the next layer by randomly “dropping” a specified amount of

these connections. This prevents the network from relying too heavily on a few strong features and

forces it to use other features to learn as well. Other types of regularisation exist (to be discussed

in later Chapters) but the principle is the same for them all.

Broadly, machine learning can be separated into three different classes: Supervised, Unsupervised and

Semi-supervised.

Supervised learning is used when all the data used in the training process is labelled. It explicitly

matches inputs to a list of outputs depending upon training examples that have been provided

previously. This is achieved through generation of a function to match the training inputs to the labelled

output and uses this function to infer the output for new samples [15]. Examples of this in practice

include Artificial Neural Networks (ANNs), decision trees, linear and logistic regression and Support

Vector Machines (SVM) [16]. Generally, these methods have advantages in terms of accuracy and false

positives over other forms of machine learning, but also tend to be slower to train. Additionally, as these

require fully labelled data, they also have more issues with the difficulties of getting high quality pre-

labelled training data.

14

Semi-supervised [17] models use a mixture of labelled and unlabelled data. The goal is typically to

lessen the burden of obtaining large, labelled datasets. The assumption is that if the dataset contains a

few labelled examples of every class, then the unlabelled data can aid in forming decision boundaries.

Similar to supervised learning, semi-supervised requires examples of every class within the training

data, however, the use of unlabelled data allows larger training datasets, that can be constructed

comparatively inexpensively (in terms of expertise and time required for labelling). Generally, semi-

supervised models achieve higher accuracy rates than unsupervised methods, and it can achieve

higher accuracy rates than supervised learning on the same datasets if the extra unlabelled data does

help form the decision boundary. However, in cases where all the training data is labelled, or the

unlabelled training data is low quality or does not help form a decision boundary then semi-supervised

learning will not hold any advantage over fully supervised methods.

Unsupervised models use completely unlabelled data. They seek to detect shared attributes across the

data and group records together, based upon the presence or absence of these shared attributes [18].

Clustering is one example of this, where records are plotted on an n-dimensional graph (where n is the

number of features) and clustered depending upon their location. Autoencoders are another example,

where an attempt is made to reduce the number of features of a record to a set amount while retaining

as much information as possible (i.e. to learn a lower dimensional representation of the original data)

[15], [19]. Unsupervised methods have advantages in being able to use unlabelled data and are

frequently less computationally expensive than supervised methods but can have more issues relating

to accuracy. Unsupervised methods are commonly used to reduce the dimensionality of a problem

before a supervised algorithm is used to classify it. Most unsupervised algorithms will attempt to reduce

the dimensionality of a problem in some way [15], making them effective feature selectors to decrease

the computational complexity of the supervised classifier.

15

Figure 2.3-2 – A Figure to some example techniques used in the primary categories of Machine Learning –
Asterisk is used to denote an algorithm that is frequently used in a deep manner

Figure 2.3-2 shows some example techniques used in machine learning and whether they are primarily

supervised or unsupervised. The * denotes an algorithm that is frequently used in a deep manner (i.e.

multiple levels with hidden layers between the input and output). As can be seen, there are examples

in both supervised and unsupervised models, meaning that deep models can be supervised or

unsupervised depending upon the exact type of model chosen e.g. you can have a deep unsupervised

autoencoder network, or a deep supervised neural network.

Also of note in recent years is reinforcement learning, which differs from supervised and unsupervised

learning in that it is active (i.e. it changes the input space it exists in), whereas supervised and

unsupervised are passive (they classify the input space, and do not make changes to it). This makes it

useful for applications where changing the input space is desirable, for example, game theory (e.g.

AlphaGo [20]) or control theory (e.g. load balancing [21]). However, it is not a classifier in the same way

as supervised or unsupervised learning can be.

2.3.1 Data Preparation Techniques for Machine Learning

The volume and quality of training data for machine learning models is particularly important and

overfitting is a common problem for deep models. This subsection will discuss a few common methods

for improving the quality of training data.

Increasing the variety of data to ensure that all scenarios are represented is important. However, this

can be challenging if your dataset is imbalanced or you only have access to limited volumes. One

workaround for this problem is to use techniques to generate synthetic data points. Synthetic Minority

Oversampling Technique (SMOTE) [22] is one such technique. Rather than undersample or

oversample, SMOTE creates new data for the minority classes. This is performed using k-nearest

16

neighbours. A real point is taken, and a vector drawn from that point to one of its k neighbours. The

vector is then multiplied by a random value between 0 and 1. Adding this to the original data point

creates an entirely new data point. There is an assumption that k-Nearest Neighbour can accurately

classify data which is not necessarily the case, however, the technique has worked well for intrusion

detection [23].

ADASYN [24] works on a similar premise to SMOTE, in that it creates new minority samples using

existing values. However, unlike SMOTE, it attempts to discover which minority samples are more

difficult to learn through analysis of the data distribution. The goal is not only to reduce the bias caused

by uneven data distribution but also to shift the decision boundary by creating more examples of the

difficult to learn samples.

2.4 Existing Intrusion Detection Systems

It is commonplace for attacks that attempt to spread through an internal network after gaining a foothold

in a poorly secured device. With the growth of supply chain attacks (which an administrator may have

little initial control over) [8][10], the ability to monitor the internal network becomes more important than

ever. Malicious activity needs to be detected and mitigated as soon as possible. Previously, detection

of malicious activity was accomplished using a combination of signatures and statistical analysis.

2.4.1 Signatures

Signatures for network IDSs work on the same principal as common anti-virus or anti-malware software.

As new forms of attacks are identified, a signature of the type of data the traffic creates is made, typically

by companies specialising in IDS technologies. For example, the cmd.exe attack that was used by

Nimda and Code Red uses a specific sequence of bytes that it can be identified with (bytes that correlate

with copying the cmd.exe file to an accessible location). It is extremely unlikely there would be a

legitimate reason for a remote user to perform that action, and so by monitoring all traffic for that

sequence of bytes the attack can be identified. However, some potential issues do arise from this

method of detection:

 It is slow by nature

For attacks to be classified in this manner, successful attacks must first have taken place and been

identified through other methods. After being identified, then the process of creating a useful

signature is undertaken (i.e. a signature that will reliably detect the attack, without being too broad

to detect benign activity).

 Encryption can interfere with the detection

Going back to the example of the cmd.exe attack, if performed over an encrypted connection

(HTTPS in this example, as it targets IIS servers), then applying the signature on a NIDS will not

be of any use, as the sequence of bytes will have been encrypted. This means the signature instead

needs to be run on the end point, as this will be the first instance where the unencrypted data will

be analysable.

 Small changes to the malicious activity can bypass the signature

17

Since signatures rely on finding common byte sequences in malicious activity, that signature can

be bypassed by simply not including the specific byte sequences. It becomes obvious that malicious

users are exploiting this when examining the volume of variants of some pre-existing malware. For

example, Zeus has had hundreds of variants, some of which are even still in use today [25].

2.4.2 Statistical Analysis

This method of malicious activity detection acts as a complement to signatures. While signatures can

find malware and worms (exploit type attacks) propagating across a network, statistical analysis is

usually employed to identify DoS type attacks. For example, if general traffic towards a system exceeds

a set amount, then the traffic may be classified as DDoS attack. This is often more useful in cases

where traffic from a single source appears unusual. For example, a common statistical rule might run

along the lines of ‘Classify as malicious any connection where the percentage of TCP SYN packets

exceeds 50% of all packets, and there has been more than 50 packets sent.’ This kind of rule would

attempt to classify TCP SYN flood attacks, by providing a firm barrier to the volume of TCP SYN packets

the system would accept as benign. This detection method doesn’t suffer from the same kind of issues

as signatures. However, attackers are aware that systems using such rules are in place and as a result,

attempt to ensure attacks look as much like background traffic as possible. This is evident in the rise in

the number of ransomware attacks that are used specifically as destruction and disruption attacks.

Rather than pay for a DDoS attack to bring down systems for a short period before malicious traffic is

identified and controlled, malicious users have started to employ ransomware attacks as pseudo DoS

attacks [8]. Data on infected machines is encrypted and the encryption key is deleted, meaning there is

little hope of recovering any data even if a ransom is paid [8]. These attacks have been targeted, and

there appears to have been little effort in monetary reward, instead the goal appears to have been to

be as disruptive as possible for as long as possible. This goal is what DoS attacks are typically used

for.

2.4.3 Reputation Based Analysis

Reputation based IDSs have some similarities to statistical analysis in that the goal is to detect activity

that is unusual, however, it goes further in that the potential malicious activity is marked and the

reputation of the system is considered while deciding if the activity is malicious [26]. If the system

producing the anomalous activity is highly trusted, then the anomalous activity can then be trusted as

well. This can aid further detection attempts by also being a point of reference later. If a less trusted

system starts to display the same anomalous activity, than the system can compare it to the early

activity, see that it was listed benign and allow it to continue. The issue with reputation-based systems

becomes one main question. How do you decide on the reputation of systems? Some solutions have

involved using reputation scores that change based upon the proportion of anomalous activity that has

been detected in the past or how accurate a node has been at detecting other malicious activity [26].

The issue with this method is that it takes time to determine how trustworthy a node should be, after all,

how can you decide based on past actions if there have been no past actions? Other more traditional

methods revolve around setting a score based upon how secure the node should be, with unknown

sources being low trusted, and known, well secured nodes being highly trusted.

18

2.4.4 Types of IDS

There are generally considered to be two main types of IDS: Host-based (HIDS) and Network-based

(NIDS). HIDS reside on individual network devices and protect only those devices, whereas NIDS reside

in strategic locations on the network and protect all devices within the corresponding network segment.

Despite only monitoring singular devices, HIDSs do have some advantages over NIDSs, in that they

have access to more detailed data. A NIDS might only have access to packet header data as well as

data derived from that data (e.g. packets per second). A HIDS that can monitor the network interface

can compare what is being broadcast, to what is shown as running, and check if those programs have

the authority to broadcast packets in that way. They also potentially can check packet body data, even

if that data is encrypted on the network level. If a program is broadcasting data, then a HIDS might be

given permissions to read any data before encryption on the network level to ensure it is not malicious.

Alternatively, it could be given permission to read any received data after decryption. NIDSs do not

have this luxury typically. The fact that they must analyse data coming from and to several sources,

means that packets must be analysed even more quickly to keep at wire speed.

NIDSs have advantages in terms of scope and protection as a single NIDS can protect several network

devices and protect them earlier than a HIDS. For example, a NIDS could detect a DoS attack (many

of which do not require complex processing to detect) and block that malicious activity from ever

reaching the source. A HIDS may well be able to block the same activity, however by the time a HIDS

is analysing the attack, the goal may have already been achieved (e.g. saturating the target’s

bandwidth). NIDS are also able to detect distributed malicious activity. If a malicious user targets several

different devices, it is possible that individual HIDSs could miss the attacks. It is only when combining

the disparate flows that the pattern becomes noticeable. An example includes botnets that attempt to

spread through password attacks. The goal of the malware is to remain undetected while spreading,

however targeting a single device with many password attempts is noticeable. So rather than perform

ten password attempts on a single device inside a minute, they perform the same amount of password

attempts on different devices. From the attacker’s point of view, this may have the disadvantage of

different devices having different passwords, and ultimately take longer to infect those different devices.

However, in practice, passwords are frequently shared between devices to ease operational

maintenance. Once the password for one device is found, it can be attempted on all the other devices.

A NIDS may not be able to detect that all of these flows are password attempts (due to encryption or

obfuscation techniques), however, it would likely recognise that the system has initiated an unusual

number of flows (TCP SYN packets) to different devices in a short amount of time.

In practice, HIDS and NIDS are used symbiotically, with NIDS designed to detect as many network

attacks as possible as early as possible, and HIDS being used to detect attacks that either did not

spread through the network or were missed. For instance, a NIDS is not going to be able to detect a

malicious actor typing in different passwords to a physical console, and may not be able to detect

multiple password attempts using something like SSH due to the encryption inherent in such protocols

(without including other obfuscation techniques a malicious actor may employ). A HIDS however, should

always be able to detect this activity through monitoring of system logs.

19

Both HIDS and NIDS often use a mixture of statistical and signature-based techniques. For instance,

SNORT can be configured with rules to detect port scans dependent upon connection count per IP,

ports connected per IP and connections per port (a statistical method), or can use signatures to detect

malware through identifying the presence of specific byte code sequences in an executable (a

signature).

In order to detect a password attack like the one described above, a NIDS would generally need to

analyse the packet body. The connections set up for these kinds of attacks can be completely legitimate,

with nothing to indicate they are malicious within the packet header. This kind of analysis (termed Deep

Packet Inspection) is more computationally expensive than examining packet header data. The extra

expense limits the locations where it can be performed, and how many different signatures can be used

before network traffic is slowed.

While Figure 2.4-1 shows how an inline NIDS would be positioned, Figure 2.4-2 shows how an offline

NIDS might be positioned. This kind of NIDS requires the switch copy and forward data to it (e.g. using

a span or mirror port), while allowing the flow to continue. This kind of system is not designed to monitor

data in real time, instead sacrificing speed of response for completeness. If a system is not waiting for

benign data to be analysed, more time can be taken in that analysis to ensure any attacks are detected.

Due to the delay, this is an area where DPI can be used, as the computational complexity does not

matter as much.

Figure 2.4-1 – An Inline NIDS

20

Figure 2.4-2 – An offline NIDS

However, the continued use of DPI is coming into question for other reasons beyond its computational

complexity. Increasing use of encryption is still rendering DPI less useful. While issues with network

level encryption can be bypassed by placing the NIDS after the data has been decrypted (in the case

of a Secure Socket Tunnelling Protocol (SSTP) for instance) it will not bypass application layer

encryption. Often, packet body data is encrypted before it is separated into packets and transmitted,

and the receiving application holds the decryption key (which is decided on a per-connection basis)

[27].

Given the difficulties in increasing use of encryption as well as privacy concerns, ideally only packet

header information should be used for intrusion detection at the network level. Packet headers contain

a great wealth of information and many features are considered important by academics and industry.

For example, if attempting to detect an ACK port scan, it could be considered good practice to set a

rule that detects any packets that have a sequence number of 0 and have the ACK flag set. Both

features sit within the packet header and would not be encrypted at an application level. However,

detecting higher level threats does become more difficult without access to packet body data, meaning

that if a NIDS is required to detect higher level threats than other measures start to become necessary.

For example, if a user is connecting to several different servers (SYN or SYN/ACK messages) with

those servers sending reset packets shortly after (RST messages) then this could be an indication that

password attacks are taking place. The issue with this (statistical) analysis is a greater degree of

uncertainty. While the activity could be potentially malicious, there are other benign reasons it could be

happening. In conclusion, it is not feasible to continue to rely on statistical and signature-based

approaches if all that is accessible, is the packet header.

2.4.5 Deep Learning IDSs

While it has more in common with statistical analysis (both ultimately being anomaly detection methods)

deep learning as a tool for anomaly detection has several advantages. As it is an anomaly detection

method, deep learning is more resilient to obfuscation techniques than signatures. This is because

instead of matching a sequence of binary data or using set rules, anomaly detection methods simply

21

look for data that is unusual. It is also more resilient to 0-day threats as all that is needed for an attack

to be detected is for the activity to be unusual.

At first glance, this restriction for malicious activity to look different may seem to be the same as the

kind of restriction on statistical methods. However, statistical models typically rely on broad rules that

cannot capture nuanced activity, and which can be bypassed with little effort. For example, statistical

methods may be used for detecting password attacks (e.g. if there are more than 5 password attempts

in 1 minute, flag it as malicious). Frequently, malware and malicious users attempting password attacks

will simply limit the number of attempts per minute that they make. Deep learning IDSs can bypass

issues like this as the automated feature extraction allows it to detect patterns that broad rules cannot

encompass. For example, a deep learning IDS could determine that all sent packets being fairly short,

all responses being the same or a similar size (with a standard password not accepted response), and

the number of interactions before a RST ACK are important features when detecting password attacks,

and that flows that have more of these features are more likely to be password attacks.

Most deep learning based IDSs use packet header data, and information derived from that data (number

of packets per second, or number of SYN packets, etc.). Most research datasets also follow the example

of using packet header data and data derived from it [28]–[30]. This makes sense considering that

mostly this is the data that has been available to network administrators. Additionally, this aids with one

of deep learning’s disadvantages. Deep Learning models typically require large amounts of both

features and training data. Even without packet body data, packet headers can create the large volume

of features required. For example, the UNSW-NB15 [31] dataset contains 47 features, of which 43 could

be obtained from the packet header alone. When compared to other situations where hundreds or even

thousands of features are used, this may not sound like a lot, however several of the features are

categorical. This means that they could feasibly be split into features themselves through a process

such as binarisation. Binarisation is the process of taking categorical data and turning it into binary data.

So, if you have a categorical entries such as the protocol type e.g. TCP, UDP and ICMP, binarising this

list would result in three columns where 1 is used for the presence of that protocol, and 0 used for its

absence, as shown in Table 2.4-1

Categorical Label Converted Binarised Labels

Label TCP UDP ICMP

TCP 1 0 0

UDP 0 1 0

ICMP 0 0 1

TCP 1 0 0

TCP 1 0 0

Table 2.4-1 – Example Binarising of Protocol Types

The volume of network data being generated could be considered a boon to these models. Deep

learning models require large volumes of data to learn from, as such, one would imagine training data

is plentiful for NIDS. Unfortunately, this is not necessarily true, as the labelling of network data is

22

particularly difficult due to a combination of legal and technical issues. In terms of academic studies,

the sharing of network datasets becomes difficult when considering the potential privacy issues

involved. Data will need to be anonymised (potentially damaging useful features) at the very least, and

permission may need to be sought from anyone using the network at the time of the recording in order

to share the data as a dataset with other academics. Additionally, deciding which groups of network

data are malicious is a difficult and time-consuming task. With potentially millions of rows of network

data, it would be normal to use another program to detect any malicious activity that has been recorded.

However, if that is done then any model that is generated as a result of the dataset is likely only going

to be as good as the tool used to label it. This is not to say these issues cannot be overcome, but that

getting high quality network datasets is difficult, and deep learning models are potentially more reliant

on their training datasets than tools using signatures or statistical based approaches would be.

Deep learning also has issues when it comes to accuracy and false positives. Simply because it is an

anomaly-based approach, deep learning can label benign flows as malicious as they appear like other

malicious activities. A common example from statistical analysis would be the account lockout function.

Usually, if an account is locked due to too many password attempts, it is because the user has forgotten

their password rather than a malicious actor attempting to gain access to the account. However, the

statistical analysis rule (lock the account if there are x passwords attempts within y seconds) cannot tell

the difference between a benign user forgetting their password and a malicious access attempt. It only

detects that the access attempt is an anomaly and reacts accordingly. Deep learning has the same

problem, except while an administrator could tweak the statistical analysis rule to attempt to

accommodate forgetful users while still blocking malicious activity, the deep learning model is

dependent on their being data that can distinguish the two types of activity.

However, machine learning models are susceptible to a form of attack both signatures and statistical

methods do not suffer from. Termed adversarial attacks, these are samples that are perceptually

indistinguishable from one class, but are classified incorrectly [32]. Assuming C is a correctly classified

sample by a machine learning system M, then M(C) = ytrue, however it is possible to create a sample

such that M(C’) ≠ ytrue. Adversarial samples are classified according to the knowledge of the system

that is being targeted by the malicious actor. These classes are white-box, grey-box and black-box.

White-box adversarial attacks are when the attacker has detailed knowledge of the model they are

attacking, including parameters and structure. In grey-box adversarial attacks, the knowledge of the

attacker is limited to the structure of the model being attacked, and in black-box attacks the attacker

has only the knowledge gained from query access [33]. However, it has been found in many cases that

attacks created for one model will transfer over to another model successfully [34], which means it is

possible to create adversarial examples and perform a misclassification attack on a machine learning

system with no knowledge of the model. It has been shown that adversarial attacks can still take place

within machine learning IDSs [35], [36], even with the more constrained environment networks operate

in where there is less scope to change values within packets without causing errors (for instance,

changing the packet type from TCP to UDP would cause errors, since the packet structure is different).

23

Finally, deep learning has issues in terms of computational complexity. Signatures and statistical rules

are very computationally inexpensive to operate. They typically amount to simple “if statements”,

whereas deep learning requires much greater computational power to run. This is particularly important

in NIDSs, since the goal is typically to analyse network data at line speed, so that malicious activity can

be stopped before it has had chance to cause any damage, or even to reach the intended target.

2.5 Deep Learning IDSs within SDN environments

As noted in Section 2.2, the goal of a SDN is to separate the control plane from the data plane, which

allows the control plane to become programmable. This is done through switches (on the data plane)

sending information about the packet header to the controller, which then decides how to handle the

packet. All packets are not forwarded to the controller however, just enough information to create an

entry in a flow table. The flow table is what is used in order to decide how flows (collections of related

packets) should be treated. This information is also what is provided to the application layer in order to

do any other more complex calculations. For example, if a SDN controller was going to be used to load

balance between two parts of a network, it would get the information on number of packets, the size of

the flows and number of separate flow traversing each network segment. Using this information, it can

determine which segment is least active and can assign new flows it. For load balancing, this is all the

information that is needed. However, in Section 2.4 it was seen that IDSs typically use far more

information than that, going as far as to read individual packet body data. In practice, flows can be

thought of as abstract representations of data traversing the network. For instance, OpenFlow only

requires enough information to identify what flow a packet belongs to, exclusively from the packet

header (IP or MAC source and destination addresses, protocol type (TCP, UDP etc.) and port or service

numbers). In addition, the controller will keep track of statistics about the flows, including priority,

number of packets and number of bytes transmitted.

When comparing the 10 features listed to the number of features available when training machine a

learning based NIDS, the issue quickly becomes apparent. For instance, the NSL-KDD dataset (a

research dataset commonly used in the networking community for testing machine learning based

NIDS) contains 41 features. This is significantly more than the 9 required fields [37] provided by an

OpenFlow SDN controller. Much of Section 2.2.3 showed that IDSs are more reliable when they have

more data available. Encryption is reducing the amount of information (preventing reading of packet

bodies) and the volume of data itself is reducing the amount of data that can be read (if you have more

data to analyse, you have less time to analyse it). In Section 2.3 it was established that deep learning

models require large volumes of high-quality data in order to train effectively. If the data quality is low,

or if there is not enough of it, then overfitting can occur. In other words, the amount of data available for

NIDSs is decreasing, and machine learning based NIDSs, and deep learning based NIDs, need even

more data than even traditional signature or statistical analysis NIDSs.

2.6 Datasets

This brings us to datasets more generally. Datasets for intrusion detection have traditionally been

focused on providing data for what can be obtained from network packet data, and not what SDN flows

24

provide. This started with the KDD’99 [38], which was produced before SDN was created. Prior to the

KDD’99 the IDS research community lacked a highly detailed realistic dataset on which to conduct

research. This led to researchers creating their own datasets which causes issues on reproducibility.

Additionally, the dataset still contained several issues, such as redundant and repeated records, too

many records and records that were too easy to classify. The NSL-KDD [28], [39] dataset sought to

correct some of these issues, particularly the number of redundant records and the ease of

classification. More recently the dataset has come under criticism for not being realistic, which is a by-

product of being more than a decade old, in an environment which changes quickly. Still, the NSL-KDD

is one of the de facto datasets for intrusion detection of this kind. As has been stated, the NSL-KDD

consists of 41 features, found in Table 2.6-1:

Number Name Number Name

1 Duration 22 Is_guest_login

2 Protocol_type 23 Count

3 Service 24 Srv_count

4 Flag 25 Serror_rate

5 Src_bytes 26 Srv_rerror_rate

6 Dst_bytes 27 Rerror_rate

7 Land 28 Srv_rerror_rate

8 Wrong_fragment 29 Same_srv_rate

9 Urgent 30 Diff_srv_rate

10 Hot 31 Srv_diff_host_rate

11 Num_failed_logins 32 Dst_host_count

12 Logged_in 33 Dst_host_srv_count

13 Num_compromised 34 Dst_home_same_srv_rate

14 Root_shell 35 Dst_host_diff_srv_rate

15 Su_attempted 36 dst_host_same_src_port_rate

16 Num_root 37 dst_host_srv_diff_host_rate

17 Num_file_creations 38 dst_host_serror_rate

18 Num_shells 39 dst_host_srv_serror_rate

19 Num_access_files 40 dst_host_rerror_rate

20 Num_outbound_cmds 41 dst_host_srv_rerror_rate

21 Is_host_login

Table 2.6-1 – The NSL-KDD features

More recently, the UNSW-NB15 dataset has started to become popular. The dataset is designed to be

a more modern replacement for the NSL-KDD, featuring more modern attacks with low footprints. This

was built using the IXIA PerfectStorm and consists of 49 features that have been extracted from a

combination of network packets, Argus and Bro-IDS tools. The features are found in Table 2.6-2

25

Feature

Number

Feature Name Feature

Number

Feature Name Feature

Number

Feature Name

1 id 16 dloss 31 response_body_len

2 dur 17 sinpkt 32 ct_srv_src

3 proto 18 dinpkt 33 ct_state_ttl

4 service 19 sjit 34 ct_dst_ltm

5 state 20 djit 35 ct_src_dport_ltm

6 spkts 21 swin 36 ct_dst_sport_ltm

7 dpkts 22 stcpb 37 ct_dst_src_ltm

8 sbytes 23 dtcpb 38 is_ftp_login

9 dbytes 24 dwin 39 ct_ftp_cmd

10 rate 25 tcprtt 40 ct_flw_http_mthd

11 sttl 26 synack 41 ct_src_ltm

12 dttl 27 ackdat 42 ct_srv_dst

13 sload 28 smean 43 is_sm_ips_ports

14 dload 29 dmean

15 sloss 30 trans_depth

Table 2.6-2 – The UNSW-NB15 features

Many of these features are similar to those found in the NSL-KDD, including successful logins, and

commands used, which are features that are only available from logs if the network packets are

encrypted end-to-end.

Specific to this work is the NetFlow/IPFIX SSH compromise detection dataset from the University of

Twenté [40]. This dataset was originally designed to test a method of SSH compromise detection using

the NetFlow/IPFIX SDN flows. Of interest to us is that it consists of both flows and logs from the servers,

and that it consists of real-world data. The flows were collected from edge routers and contains all SSH

traffic entering and leaving the campus network, while logs were collected from workstations and

servers that have a publicly accessible daemon. The data comprise a period of one month, collected in

January and February of 2014. The fact that the dataset specifically has log files that have been created

as a direct result of flows is important for this work, since this allows us to monitor the impact of

additional log data being added to the network flows in a real world environment. The data is not pre-

processed, which would make comparisons to other works more difficult since the data will inevitably

be split into different training and test sets. Example of the dataset are shown in Figure 2.6-1 and Figure

2.6-2:

26

Figure 2.6-1 – An extract of the raw flows from the NetFlow/IPFIX dataset

Figure 2.6-2 – An extract of the logs from the NetFlow/IPFIX dataset

27

3 Related Work

In this chapter shall provide an overview of the cutting-edge and relevant existing pertinent to this

project.

3.1 Deep learning within Intrusion Detection

This subsection will provide an overview of cutting-edge research related to deep learning within

intrusion detection. This will come in three sub-sections, Datasets, the models being used, and data

preparation.

3.1.1 Datasets

As outlined in Section 2.3, deep learning has many advantages when it comes to addressing the

challenges within modern network security. Numerous works and datasets have been proposed over

the years, starting with the KDD’99 dataset released in 1999. This dataset came into criticism for several

issues, including [39]:

 Redundant records, which can lead algorithms to bias more common data

 An unrealistic attack variance and background noise, which does not match or emulate real

network conditions

 Too many records, which has led to researchers using different subsets of the data, meaning

that works using the same data set cannot necessarily be directly compared

 An attacker focused taxonomy of attacks, which is not how an IDS sitting on the edge of an

attacked network would see data

In response to these criticisms, an alternative dataset was created, the NSL-KDD+ dataset which was

significantly more challenging. However, the realism of the dataset is still an issue, especially as

networks have changed significantly since it was devised [28], [31].

The UNSW-NB15 dataset [30], [31] was developed to be a more modern alternative, with attacks that

mimic more closely the low footprint attacks found today. This dataset contains 47 features, which have

been extracted using a combination of Argus, Bro-IDS and twelve algorithms which cover

characteristics of network packets. The dataset comes in two forms, a collection of four CSV files which

contain all 2,540,044 records, and a partition of that dataset, separated into training and testing. The

dataset contains 9 attack families, with Normal being a 10th classification. These are as follows:

 • Fuzzers – Attempting to cause a program or network suspend by feeding randomly generated data

 • Analysis – Different attack of port scan, spam and html file penetrations

 • Backdoors – System security mechanisms are bypassed to stealthily access a computer or its data

 • DoS – An attempt to make a server or resource unavailable to users by temporarily interrupting or

suspending the services of a host

 • Exploits – Targeting a known security problem within an operating system or piece of software

28

 • Generic – A technique that works against block-ciphers without consideration about the structure

of the block-cipher

 • Reconnaissance – Contains strikes that can simulate attacks that can be used to gather

information

 • Shellcode – A small piece of code used as a payload in exploiting a vulnerability

 • Worms – A self-replicating program that uses a network to spread, relying on security failures to

do so.

The training/test split can be more difficult for several reasons. To start there is simply less data. As

stated in Section 2.3, machine learning models gain better results when exposed to more data. This is

for a few reasons. More data can aid in reducing overfitting and it allows the model to learn more

examples of anomalous data. Importantly there are examples of attacks in the smaller testing data that

do not appear in the training data. This can result in a difference of accuracies for different methods.

For example, works such as [41], [42], [43], [44] achieve an average accuracy of 89.56%, precision of

87.13, recall of 90.42 and F-Score of 88.58 while using the pre-prepared dataset. Compare this to works

such as [45] (which used the full CSV files, and split the dataset into train/test sets separately), where

accuracy is over 90% and it becomes clear that these factors do play a part.

3.1.2 The Models Used

Recently convolutional models have started to become popular within the research space for supervised

deep learning. Originally designed as a method to extract complex features from an image [46], this

has since been expanded to several different areas including speech recognition, sentiment analysis

and medical diagnostics. Krizhevsky et al. [46] note that the main advantages of CNNs over standard

feed forward networks (with similar sized models) are that they have fewer connections and parameters.

This makes CNNs easier and quicker to train, while theoretically best classification performance will

likely only be slightly worse. They create a model that achieves a winning top-5 test error rate of 15.3%

in the ILSVRC-2012 competition, compared to 26.2% achieved by the second-best entry.

Azizjon et al. show how the transformation to network datasets can work in [41]. Using a 1-dimensional

CNN, they achieve accuracy of 91.2%, precision of 87.53%, recall of 95.15% and an F1 of 91.59% on

the pre-prepared UNSW-NB15 test set after balancing the data using a random oversampling method.

Their model consists of three convolutional layers in total, all with the same filters (32), stride (1) and

kernel size (5). The data is passed through the first two convolutional layers before moving to a max

pooling layer, and then the final convolutional layer. Batch normalization is performed, as is drop out

and a final two fully connected layers. Min/max normalization is used on some features such as

duration, sbytes and dbytes, where the values can proceed outside the range 0-1. They also test models

with only a single convolutional layer, and two convolutional layers, as well as unbalanced data. They

found that balancing the data increases accuracy and precision by more than 5% in all cases, whereas

recall actually falls slightly (less than 3%). This results in an F-score topping 90% for all instances for

the balanced data, while falling short of that with the unbalanced data. This shows the importance of

balancing the dataset; however, the method of the balancing is also important. Through oversampling

29

the data, they effectively add more data to train on, which as discussed in Section 2.3 aids in reducing

overfitting. As such, just from this work alone it cannot be ascertained whether it is the dataset balancing

or additional data that helps increase accuracy and precision, or a combination of both. Increasing the

number of layers has a similar effect, improving accuracy and precision (both for balanced and

unbalanced data) whilst slightly decreasing recall. This results in a slight net increase in F1-score. This

is not surprising, as other models have found similar advantages when increasing the number of layers

or decreasing the kernel size [47]. As such, it is becoming increasing common to have models with

kernel sizes of only 5, 3 or even 2.

When comparing Azizjon’s work to Al-Zewairi et al. [45], then the issues explained in Section 3.1.1

surrounding accuracy rates for different versions of the same datasets become more apparent. Using

a DNN with five fully connected layers, each with ten neurons they achieve an accuracy of 98.99%, and

a FAR of only 0.56%. However, they create their own training, test, and evaluate sets from the original

four CSV files from the UNSW-NB15 dataset. As there is extra data to learn from, the model employed

by Al-Zewairi can afford to be deeper than that of Azizjon, as overfitting is not as likely. Additionally, as

the training, test and evaluation sets were randomly generated, it is likely that there were some

representations of every attack within both the training and test sets. This is not true of the prepared

datasets, which contain examples of attacks in the testing set that do not appear in the training set. The

lack of some examples within the training set of the pre-prepared datasets is an attempt to replicate 0-

day threats, the expectation being that the models should be able to detect the attacks even though

they have not previously been trained on them. This, along with the difference in dataset size, means

care should be taken when comparing the pre-prepared dataset with the raw CSV files.

Further questioning whether the dataset needs to be balanced (or whether simply adding more data is

sufficient) is Kim et al [48]. Using the KDD’99 dataset, they show that increasing the proportion of attack

packet data in the training set does not have a significant effect on accuracy, ranging from 98.95%

accuracy with 30% attack packet data, to 99.08% accuracy at 50%, 70% and 80% attack packet data.

However, the false alarm rate does change, peaking at 0.47% with 90% attack packet training data

(from 0.01% at 10% attack packet data). The detection rate also mimicked this pattern of the FAR. The

minimum recall achieved was 99.19% (with 30% attack data, not the 10% as might be assumed), and

the maximum was 99.81% (with both 80% and 90% of attack data). This shows that balancing the

dataset may not help accuracy, but it will affect precision and recall.

An Autoencoder network’s desired output is the same as its input. So, for input i, and output o, the

desired output would be i=o. However, intermediate layers of the network are smaller than the input

and output, meaning that the network is forced to encode a representation of the original input with

reduced dimensionality that compliments the layer size [19]. The goal is to reduce noise or unneeded

features in an automatic manner. Traditionally, this is performed by creating a symmetrical model with

output containing the same number of nodes as the input, and hidden layers decreasing and increasing

in a symmetrical manner. So, for a model with 3 hidden layers with the size being decreased by 2 in

30

total, and an input size of x, the layer sizes would be x, x-1, x-2, x-1 and output of x. An example of this

model is given in Figure 3.1-1.

Figure 3.1-1 – An example of a small autoencoder structure

This means that an Autoencoder network is effectively two separate networks, an encoder and a

decoder network. The encoder network maps the inputs into a smaller representation. This can be

represented with:

 𝑁 = 𝑆1(𝑊𝑥 + 𝑏1) Equation 3.1-1

Here, W is the weight, b is the bias vector, S is the activation function and N is the latent representation.

The decoder network can likewise be represented as:

 𝑂 = 𝑆𝑂−1(𝑊𝑥 + 𝑏𝑂−1) Equation 3.1-2

Here, O is the output.

Typically, a network like this is combined with a shallow classifier to get the final classification. For

example, Al-Qatf et al. [49] utilise a sparse Autoencoder model with a SVM classifier in order to classify

both the NSL-KDD and KDD’99 datasets. They use a sigmoid activation for the Autoencoder network.

They achieve 80.48% accuracy on the NSL-KDD test set, as well as 93.96% on the full KDD ‘99 dataset.

This again shows the effect of having more data available. As mentioned, the NSL-KDD dataset is a

version that corrects some of the issues in the original KDD’99 dataset, and the difference in accuracy

between the two datasets on the same model highlights how much of an effect this had.

Alternatively, Andresini et al. [50] utilise a combination of 2 Autoencoder networks (one trained on

normal data and one trained on attack data only), and then perform a final classification based upon a

CNN and fully connected ANN. The Autoencoders have 3 layers of sizes 40, 10, 40 and use mean

squared error as the loss function. ReLu is used as the activation function for the hidden layer and linear

activation used for the output. The convolutional layer uses a 1x1 kernel size with 64 filters. CNNs with

a 1x1 kernel size were first used like this by Szegedy et al. [34] in submission for the ImageNet Large-

Scale Visual Recognition Challenge 2014. From here, the data is flattened (to size 1280) and moves

31

through 3 fully connected layers of sizes 320, 160 and 2 for the final classification. ReLu is again used

for all layer activation except for the final classification layer which is softmax. They obtain accuracy of

92.49% on the KDD’99 dataset, and 93.40% on the UNSW-NB15 Test dataset. While the performance

on the KDD’99 dataset could be improved, the accuracy on the UNSW-NB15 compares favourably to

the other works listed, the next highest managing only 91.2% accuracy.

3.1.3 Data Preparation

Data preparation is clearly important as a model can only be as good as the data used to train it on. If

poor quality training data is used that does not represent the end use of the model, then the model will

not accurately predict the outputs. However, even beyond gaining the initial high-quality training data,

there are additional tools and techniques that can be used to prepare the data so that accuracy can be

increased.

Balancing the data is often seen as being important. In Section 3.1.2, Kim et al. [48] was referred to,

who used various proportions of attack and benign data and showed that recall and precision can be

affected. The same kind of thinking was behind Andresini et al.’s paper when they used two

Autoencoder networks, one trained solely on attack data. Kim et al. use oversampling to achieve the

desired attack data proportions, however other methods of data balancing are available. For example,

Phetlasy et al. [51] show SMOTE can increase accuracy, precision and recall when using a number of

classifiers, including J48, Multilayer Perceptron (MLP) and K-Nearest Neighbour. When using J48

alone, recall increased from 68.16% to 84.6%, precision dropped slightly from 97.27% to 97.02%, while

accuracy overall increased from 80.69% to 89.95% on the NSL-KDD testing set. Using a combination

of both the MLP and J48 saw results improve further, with recall moving from 77.13% to 91.48% and

precision from 92.13% to 96.57%. Finally, the combination of all 3 classifiers saw recall increase from

81.36% to 92.01% and precision increase from 91.95% to 95.61%. Of note, is that in all instances apart

from J48 being used by itself, both precision and recall increased. This is in contrast to Kim et al. who

showed that just the proportion of attack data will negatively affect recall while positively affect precision,

or vice versa.

Alternatively, as part of their work Labonne et al. [52] compare a number of different balancing

techniques, including SMOTE, ADASYN, SMOTEENN, SMOTE Tomek links, random undersampler

and random oversampler. Results when comparing the Area Under Curve – Receiver Operating

Characteristics curve (AUC-ROC) are in Table 3.1-1.

Sampling Technique AUC-ROC

No Sampling 94.53%

SMOTE 95.33%

SVM SMOTE 96.93%

ADASYN 94.93%

SMOTEENN 95.61%

Tomek Links 96.02%

Random Undersampler 96.24%

32

Random Oversampler 95.95%

Table 3.1-1 – Results found in [52] when comparing different sampling methods

As can be seen in Table 3.1-1 all methods of balancing increase the AUC-ROC score, with SMOTE

based methods performing the best. It should be noted that the AUC-ROC score may not be the best

metric to use for this kind of study. While it provides a method to determine how well a model can predict

a class, it does not help us to see how the false positives or false negatives are being affected.

An alternative to Kim et al. comes from Dong et al. [53]. Their work compares deep learning methods

of classifying network data, to traditional methods. They do this by showing the precision results (rather

than accuracy) for SVM-RBM, SVM, Naïve Bayes and C4.5. The deep SVM-RBM model outperforms

all the other models on the KDD’99 data set and the paper highlights the difficulty of detecting U2R and

R2L attacks within the dataset due to the small volume of attacks within the dataset. Precision for all

results peaks at around 0.85, whereas for U2R attacks precision peaks at around 0.4, with the SVM-

RBM still achieving the highest precision results. The authors also used SMOTE to solve some of the

issues with imbalance in the data set. Showing results for precision both with and without using SMOTE

on U2R attacks, accuracy peaked at 0.56 with SMOTE and 0.45 without.

Feature selection itself is also important, as explained by Akashdeep, et al. [54]. They observe that

removing features that do not contribute (or have a very low contribution) to detecting attacks can aid

in increasing accuracy and decreasing computation time. The authors use the KDD`99 data set and

rank the features into two tables, one table based upon information gain (IG) and the other correlation

(CR). After this ranking, the tables are merged (a Union Join) and the top 25 features are selected.

There is a direct (and deliberate) contradiction between IG and CR, as the higher the IG, the lower the

CR. The method does show an improvement in accuracy and FPR over other methods of feature

selection mentioned in the paper.

Praneeth et al. [55] specifically look at Principal Component Analysis (PCA) as a method of feature

reduction for the KDD’99 dataset. They compare accuracy against the number of components using a

SVM classifier (including RBF, Linear and Polynomial kernels). They find that accuracy is matched with

and without PCA at 25 components (or features) for the linear kernel, 20 for the RBF kernel, and that

accuracy is consistently higher using PCA for the polynomial kernel. The main advantage of PCA comes

with the amount of time to process, which is smaller for all kernels with PCA, and follows the pattern

you would expect (more components taking longer to process). At worst they find use of PCA allows

for accuracy matching that without using it, but allows for quicker processing, something that becomes

important in a networked environment.

Bahrololum et al. [56] compare decision tree, particle swarm optimisation (PSO) and Flexible Neural

Tree (FNT) as methods to select features. Through analysis of the KDD’99 dataset, they determine that

there are several features that do not participate in the final decision, and therefore can be removed

with no loss of accuracy. However, different classifiers do prioritise different features. For example,

decision tree finds that src_bytes are important for all classification tasks, whereas it doesn’t feature as

33

important for any class with FNT. It can be concluded that there is no one “best” feature reduction

technique, and which method is used will need to be evaluated on a case by case basis. However,

feature reduction should be considered in any work where processing time is important.

More recently, Liu and Chung [57] compare a number of feature reduction techniques, including stacked

Autoencoders, decision trees, neural networks and SVM. The process is to train on the dataset and

obtain a baseline accuracy. Then to remove features and check the extent of the accuracy change. This

process is automated using grid search and 10-fold validation. They come to a number of conclusions,

including highly correlated features may lead to overfitting, the feature extraction step is important since

it re-represents the original feature set in a way that is more sensitive to later classification steps and

that weaker separate features can become stronger when combined with other weaker features

3.2 SDN as a security solution

Shin et al. [58] identify four characteristics that could aid SDN in improving network security. These

areas include:

 Dynamic flow control

 Network-Wide Visibility with Centralised Control

 Network Programmability

 Simplified Data Plane

They give firewalls as an example of the advantage of dynamic flow control. Upon receiving a new

packet, an SDN-enabled switch forwards the information about the packet to the controller. The

controller can forward the data to a firewall application, which can determine if the packet passes the

security policies. Upon receiving the pass or fail response, the controller can forward instructions on

how to manage the packet to the switch, which will add the instructions to its flow table. The advantages

of this beyond a regular firewall are that any SDN-enabled switch can become a firewall, reducing the

need for specialist hardware, and increasing the resilience of the network. An example given for

network-wide visibility advantages, is the detection of particular DDoS attacks initiated by bots, where

the ability to monitor traffic from multiple unrelated devices, allows for the detection of malicious activity

that may otherwise have remained undetected. For example, DDoS and flood attacks frequently

transmit small volumes of data towards the target, none of which individually would be dangerous, and

so not detected. The benefit of the network programmability revolves around middle boxes. It is

commonly not easy to change or modify a middle box’s security functions, but it is also difficult to predict

exactly which security functions are required. The programmable nature of SDNs allows an

administrator to create their own security functions as a supplement to the middle boxes, using scripting

languages such as FRESCO [59]. They offer the now comparative simplicity of the data plane as an

advantage to security since more security functions can now be implemented in an easier manner.

Yoon et al. [60] show the feasibility of implementing some of these security functions to the control layer

of a SDN. They implement a firewall, NIDS, NIPS, an anomaly detector, stateful firewalls and a reflector

network. Among the advantages of the NIDS and NIPS they implement, they state the lack of need for

middle boxes and the lack of need to carefully place the devices. These advantages pass over to other

34

security functions that were implemented as well. The example given being a distributed firewall,

capable of managing traffic network wide. They also state the primary disadvantage as being

performance. In-line security functions such as NIDS and NIPS need to analyse traffic in real time, so

as to not slow all other network traffic, and this becomes more difficult as you add more data. Specifically

for anomaly detection, the authors state the advantages being the comparative ease of collecting

information, however the disadvantage being one that has been mentioned in Section 2.5, the loss of

other information that is frequently used (e.g. TCP session information).

Despite these advantages, SDN does come with additional security issues. Scott-Hayward et al. [61]

discuss some of these issues, which they split into six areas:

 Unauthorised access to either the controller or unauthenticated applications.

 Data leakage in terms of flow rule discovery or forwarding policy discovery

 Data modification through flow rule modification to modify packets

 Malicious applications creating fraudulent rules or controller hijacking

 DoS – through switch-controller flooding or switch flow table flooding

 Configuration issues such as lack of authentication techniques or policy enforcement.

However, they also find potential advantages, such as a “moving target defence” where the actual IP

of machines is hidden and replaced with a virtual IP. While conceptually similar to a NAT, the idea is a

SDN controller would hold a list of randomly changing virtual IP addresses that are mapped to a specific

physical IP address. Named hosts are available via the virtual IP, but the real IP is only accessible by

authorised entities [62]. It is found this solution can help invalidate the results of information scanners.

More recently, Scott-Hayward et al. have expanded on the initial paper, with research examples given

to address some of the security issues that have been presented. However, they note that although

SDN has matured since the initial paper, there is still much work to be done. Strong themes they identify

include projection of potential security issues and automated response for quick reaction to network

threats.

One example of the potential security issues is given by Sin and Gu [63] who propose a SDN scanner

and DoS method. They successfully fingerprint a SDN using specially crafted IP packets and measure

the response times. The theory is that the first packet to traverse a SDN will take longer than the second.

This is because the first packet will need to be referred to the controller, and rule generated and

transmitted back to the switch. Alternatively, the second packet will still have the new rule in place.

Upon identifying an SDN, the attacker could then proceed to disrupt the network through sending

multiple new crafted packets through the target network, using up network resources. This would

essentially be a DoS that targets a SDN controller and is unique to SDN environments.

An example of how a SDN can improve network security comes from Shin et al. [64][58], who through

the use of actuating triggers determine a method of responding more quickly to standard DoS attacks

within SDN environments. They also propose an extension of the OpenFlow data plane called

connection migration, which reduces the amount of data needing to be passed to the controller, thus

35

reducing the risk of the Southbound interface becoming saturated. They claim these two measures

would likely be enough to mitigate or prevent the malicious activity proposed by [63].

3.3 SDN and Deep Learning within Intrusion Detection

Other authors can be found highlighting the contradiction between SDN and deep learning made in

Section 2.5

For example, Tang et al. [65] propose a fully-connected DNN using an six-dimensional input layer

comprised of common features found within both the NSL-KDD dataset and OpenFlow. The authors

attempt binary classification and achieve an accuracy of 75.75%, precision of 83%, recall of 76% and

an overall F-score of 75% on the NSL-KDD test set. This should be contrasted with the works noted in

Section 3.1.2, for example, Al-Qatf et al. [49] utilise a sparse Autoencoder model (unsupervised) to

achieve 80.48% accuracy on the NSL-KDD test set, or Azizjon et al. [2] using a 1-dimensional CNN

achieve an accuracy of 91.2%, precision of 87.53%, recall of 95.15% and an F1 of 91.59%. Considering

only six features are used, and that these are not even the most useful features (according to

Akashdeep, et al, Praneeth et al or Bahrololum et al, in Section 3.1.3), and that the DNN does achieve

higher accuracy then other tested shallow methods (Naïve Bayes at 45%, SVM at 70.9% and decision

tree at 74%), the result could be considered good. However, the authors acknowledge that it would still

not be good enough to be adopted into a commercial solution, or to be used as an alternative to

signature based IDSs. It should be noted that the default OpenFlow specification does call for a larger

flow table than the six common features included in this work. This means while the work is useful in

highlighting the issue, further work with more realistic datasets is needed.

More evidence of the contradiction between SDN and deep learning is provided by Janarthanan and

Zargari [30]. Using several attribute selectors, including the CfsSubsetEval, InfoGainAttibuteEval and

Ranker methods in Weka, they use several machine learning algorithms to evaluate binary classification

performance. The goal is to determine which features within the UNSW-NB15 dataset are irrelevant or

redundant, so that these can be omitted, and the curse of dimensionality reduced, resulting in less

training and testing time. They find that the most important features included service (e.g. http, ftp etc),

sbytes (number of bytes sent from source), sttl (source to destination time to live), smean (mean of

packet size transmitted by the source) and ct_dst_sport_ltm (No. of rows of the same destination IP

and source port in 100 rows). Of these, none is a required feature within the OpenFlow specification

[37]. Service could be inferred from a combination of protocol type (TCP, UDP etc.) and port number,

though port number itself is not a required feature. Sbytes is an optional field within the specification,

which would likely be used by many administrators, and smean could likely be inferred as it can be

determined through a combination of the optional fields received bytes and packet count (both of which

again, an administrator is likely to use). However, sttl would not be configurable at all since time to live

only really has a purpose on the data layer. ct_dst_sport_ltm exists within the derived category of

features within the UNSW-NB15, which means it is a feature that has been added after the dataset has

been generated. This kind of feature could exist, but would require more processing in general, since it

will change multiple records with the addition of a single new flow. In practice, it may be better to use a

36

feature that compares the number of connections to the same destination address and port within the

last n minutes. This would be simpler to compute, as it would only be updated once (when the flow is

generated), however, this is not a feature that exists within the UNSW-NB15 dataset.

Niyaz et al. [66] take a different approach, instead of limiting themselves to a few common features like

Tang et al. [65], they create their own dataset. This is achieved through creating their own network and

performing various DDoS attacks from ten different attackers towards 5 different hosts. To collect

benign data, they use a home wireless network with up to 12 devices connected, though not

concurrently. After collecting data from both networks, they create their SDN and replay the data

collected over it using TCPReplay. Using a deep sparse autoencoder model, they achieve 95.65%

accuracy for binary classification. It should be noted that whilst the authors do use a SDN

implementation based on OpenFlow, it is still a custom design, with data being recorded that would not

typically be recorded by an SDN. For instance, the authors use the flags that are set in TCP flows as

features, which is not an optional or required table entry within the OpenFlow framework [37]. This could

lead to scalability issues on larger networks (more data being collected and analysed), though the

authors suggest this could be overcome using a hybrid approach with tools such as sFlow or individual

packet capture. The details of such a system are not provided. It should also be noted that the focus

was on DDoS attacks, and not the broad range of attacks that can be found within a dataset such as

the NSL-KDD or UNSW-NB15.

This is an issue Yoon et al. [60] also mentioned in their work integrating IDS and IPS into SDN. As

mentioned in Chapter 3.2, they do find advantages for IDS and IPS within SDN, namely that being that

the middle boxes no longer need to be placed in-line. Upon receiving a flow table miss, the controller

can order the packet to be redirected to IDS component for analysis, and then future benign packets

can be forwarded onto their final location. This has the advantage of reducing the processing overhead

of the network. Packets will only be analysed when it is unknown if they are benign or malicious, and

the IDS will not be a bottleneck for the network. However, one of the disadvantages they mention is the

limited access to packet data that comes from a network controller. Ideally, the IDS/IPS would just be

using controller data to perform this analysis, as redirecting packets to the IDS introduces additional

overheads. However, the comparative lack of data within the controller, means that the authors’ (non-

machine learning-based) solution would be hampered.

3.4 Taxonomies

After identifying a flow is malicious, a suitable mitigation measure needs to be determined. It has been

stated that SDN is suited to carrying out automated mitigations of attacks, however what kind of

mitigation needs to be discussed. Typically, a system will identify an attack by name, and list possible

counter measures, allowing the administrator to choose something suitable, or it will just block the flow.

This is not appropriate for the proposed system since part of the goal is to mitigate even 0-day attacks

which do not have prepared counter measures. This subsection therefore examines taxonomies which

are designed to identify a mitigation (unlike most which are designed to identify an attack).

37

Souissi [67] shows that the system being proposed could theoretically work with “A novel response-

oriented attack classification”. Souissi proposes a taxonomy consisting of the classes source, attack

vector, target, and impact. Additionally, a matching defence mechanism is proposed that varies

depending upon the parameters found in the taxonomy. While the system seems logical, it is tested on

only two test cases, and so more study should be performed to ensure the system operates well in

practice.

A similar paper from Fu et al. [68], this time using the dimensions of Attack plane, Vector, Target and

Effect. Effect is functionally equivalent to Impact from Souissi’s [67] paper, however only uses system

damaging or resource occupying (verses the use of DoS, Access privilege, Harm implementation,

information disclosure or no result from Souissi). Fu et al. do not include an access privilege option, as

it is believed this can fall within the remit of system damage. It should be noted that the focus is on

routing hardware, not a full network. We do not share this belief, as routers and basic switches can still

be susceptible to access privilege attacks that do not perform harm to the switch or router themselves.

For instance, the Mirai botnet was formed using primarily access privilege attacks, and most users of

an infected router did not realise there was an issue until the botnet was leveraged. The attack plane,

vector and target also have differences; however, these are explained by differences in the goals of the

taxonomy. For instance, while Souissi has local or distant for attack source, Fu et al. have data plane,

control plane or management plane, mimicking the three layers of a SDN network.

Wu et al. [69] feel that only three dimensions are needed, source, technique and response. Like Souissi,

Wu et al. propose a taxonomy based on responding to a network event, however, they do not address

vector at all. For a response-orientated taxonomy, vector should be crucial, as without it, the

countermeasures that involve restricting access to the attacker become more difficult. Apart from this,

the solution is flexible and able to identify attacks and formulate responses.

Simmons et al. [70] show a different approach in AVOIDIT: A Cyber Attack Taxonomy. In it, they state

that to be a complete and useful taxonomy then several aspects must be met. These include that it

must be built on previous works, that an attack must only be classified into one class, it must be clear

and concise, it must be exhaustive, it must be unambiguous, it must be repeatable (i.e. the same attacks

should be classified the same way each time), the terms should be well defined and that it should be

useful. Some of these are related, for example, unambiguous and repeatable. If a term is ambiguous

then there is a higher probability of some attacks not being classified the same way multiple times (as

the class is open to interpretation). Applying these requirements, they devised AVOIDIT, which contains

5 classes consisting of Attack Vector, Operational Impact, Defence, Informational Impact and Target.

Most of the classes are again broadly like others, but the inclusion of defence is an interesting choice.

This consists of both Mitigation and Remediation and is designed to give a defender an appropriate

starting point to defend against the attack. However, the authors state that this area could potentially

be the weakest part of the taxonomy, with it needing more research to provide an exhaustive list of

defence strategies.

38

3.5 Summary and Discussion

It has been determined that there are a number of challenges facing this project, including:

 A lack of suitable datasets

 Uncertainty about the need or best way to balance data

 Potential security issues around SDN itself

 A significant reduction in accuracy when models are being trained only on the features available

within SDN flows

While the UNSW-NB15 is a more modern dataset and includes more modern attacks, it still includes a

lot of data that is not readily available to SDN networks. Another dataset must be found in order to

confirm any results. Additionally, the prepared dataset should be used, as using the raw dataset could

lead to issues like those found in the earlier versions of the KDD’99 dataset. Those being that manually

separating training, testing and evaluation sets can change the distribution of attacks making it easier

or harder. The prepared dataset avoids these issues and allows us to compare any results directly

(though with the knowledge other authors were using all features available). Some experimentation will

also need to be done into balancing the data. It becomes obvious there is no “one size fits all” solution

to data balancing, and that perhaps data does not need to be completely balanced at all. Instead, there

may only need to be enough examples of all attacks for generalisations about other attacks to be made.

The major issue surrounding the project is the lack of data available to teach deep models. Section 3.3

outlined multiple papers which did not achieve results comparable to those of state-of-the-art papers

using the whole dataset, or only did so by adding excess data back in and causing potential issues with

scalability.

Section 2.5 highlighted the contradiction that is apparent between SDN and deep learning for the

purposes of intrusion detection. SDNs operate using extremely limited datasets, deep learning models,

by contrast require large volumes of data with many features. Past works have achieved high accuracy

rates using creating a custom SDN solution and generating more data points (Section 3.3, notably [66]).

This solution could however lead to issues of scalability and is not a solution that would be compatible

with pre-existing SDN installations. However, they do show that there is a benefit to more data being

added to standard SDN flows.

Additional data could come from several sources. Past papers have shown the benefit of using features

that are effectively just basic features applied over time, or some other measure, such as the count in

the NSL-KDD dataset (Number of connections to the same host as the current connection in the past

two seconds). Indeed, some of these features are the most useful [54], and often also have the

advantage of being easy to calculate using SDN flow characteristics. For the count, no packet body

data is required, or even any header data beyond the destination of the flow. Every two seconds the

flow table can be examined, and the number of connections can be counted. Additionally, there are

sources of data outside of network data alone. Log data is a valuable source of information, and often

a resource companies already manage using automated log servers. Again, some of the most valuable

features are ones that are available through this resource [29], [71]. Going back to the NSL-KDD

39

dataset, the root_shell (whether root was obtained), su_attempted (count of number of attempts),

num_shells (number of shells opened) and num_access_files (number of files accessed) are all found

to be valuable, and are all features that would be readily available within logs. This is not surprising, the

combination of root_shell and su_attempted gives a clear indication of whether a service may be under

a password attack. If root is being requested many times, with few (or no) successes, it is a clear sign

that the service may be under attack, as a forgetful administrator would likely move to regain access to

the service through a more legitimate route then guessing many times.

There have been attempts to merge logs with network data for the purposes of intrusion detection.

Typically referred to as Hybrid NIDS [72][73], these systems generally attempted to use different

methods to detect anomalous activity in logs or the network data separately, and registered it as an

intrusion attempt depending upon a ruleset (e.g. If either system detects anomalous activity, register an

intrusion, or If the network system registers an intrusion but the logging system doesn’t, register it as

benign, which may help with false positives). Few researchers have attempted to incorporate logs into

a NIDS to improve network anomaly detection specifically. This is likely because traditionally this kind

of merging has been difficult to achieve. For more traditional systems, it would require rewriting all of

the signatures that have been generated over the years (for both network-based as well as host-based

intrusions), whereas statistical measures would gain little from such a merger and the added information

it provides. For self-learning systems there was also the difficulty of how you incorporate both log and

network data. Often, network data is only kept for a short amount of time (the time needed to manage

it), and so you would need to either copy all the network data to another location in order to have it

analysed (a system for which there wasn’t a simple or standard solution) or attempt to do the analysis

on the routers handling the data (which would lead to issues with computational resources). SDN can

solve this problem for us.

A common feature of all SDN designs is the use of a northbound interface, which can be used to receive

information from the controller and issue instructions back. Without a northbound interface, a system

cannot be considered an SDN, as there is no way to issue the commands that define the idea. Typically,

the northbound interface can also be accessed through software, allowing automation of network

resources dependent upon network load. As such, it is possible that an intrusion system could sit on

this northbound interface, getting information from the SDN controller about the currently active network

flows. In addition, if this were to sit on separate hardware from the main controller, it is entirely possible

it could also receive data from log servers in a similar manner. A large database of flows, both past and

present, could be built, which includes log data as well as flow data and is regularly analysed for signs

of anomalous activity.

This configuration process comes with an additional advantage. Since the IDS is sitting on the

northbound interface, it would be possible to alter flows based upon network conditions or anomalous

activity. This is the purpose of the northbound interface after all. Once the IDS has found malicious

activity, then a system could be put in place to mitigate the risk posed through manipulation of network

traffic. This could be similar to a Network Intrusion Prevention System (NIPS), however there would be

some important differences.

40

Network Intrusion Prevention Systems (NIPSs) are typically hardware-based devices that seek to

prevent attacks by blocking traffic (possibly through the use of reconfiguring firewalls), resetting

connections or simply dropping packets. They typically work inline and are placed just before important

infrastructure that needs to be protected. The process of manipulating SDN flows to attempt to stop

malicious activity does not fit directly into this paradigm, particularly as the device will not be sitting

inline (Section 3.3, notably [60]). As such, proposed is that an intrusion detection and mitigation system

that sits on the northbound interface of a SDN be called a Network Intrusion Mitigation System (NIMS).

A NIPS will prevent attacks through blocking or dropping traffic, the NIMS does not have this restriction.

Through manipulating flows, a NIMS could redirect an attack to a honeypot, for example, with the

attacker still believing they are targeting the original target. This could allow for gaining potentially

important intelligence on the attacker (what the motivation or end goal is for example). If the attack is

of a low threat, then it could be highlighted to the administrator, but no further action be taken, or if

mitigating the attack could potentially produce undesirable results, then the same action could be taken.

While dropping or blocking certain flows is still something that a NIMS could perform, the goal would be

focussed more on mitigating the effects rather than preventing the attack entirely.

The advantages for this approach become clearer when you examine some of the most common threats

facing businesses (Section 1 [8][7]). Living off the land attacks, malware propagation using exploits,

password attacks, and supply chain attacks all have one thing in common. They use software and tools

that are already commonplace within business networked environments to propagate and are therefore

more difficult to detect and stop. Deep learning can provide the means to spot the attacks, but the

means to stop them requires both more finesse, and a more holistic view of the network, than is possible

with traditional NIPS. At best, a NIPS would only ever be able to protect the service it has been placed

immediately in front of. Even then, without SDN to aid in the identification of exactly which flows are

malicious, the options would be to either perform a DoS attack against any compromised machines

(through blocking all traffic from them) or allow the attack to continue. With SDN, flows can be blocked

or redirected, instead of the agents creating the flows. Additionally, the NIMS would be able to monitor

the entire network and block or redirect malicious flows, not just those directed at the equipment being

protected by a NIPS. This is noteworthy as while access to these protected machines is desirable by

attackers, this is not the goal. With automated botnets and worms, the goal is simply to spread as far

as possible and turn those infected machines into resources to spread further. Later, instructions can

be sent to utilise this network (as was seen with Mirai and Petya/NotPetya [74]).

A NIDS may help to detect the malware and alert an administrator to its existence, and a NIPS may

help stop the spread to essential network components, however, without some sort of automated

response system the attack may have compromised the entirety of the rest of the network. Removing

such an infection could feasibly take months, as frequently the best course of action is to replace the

infected system with one that is patched to not be infected in the same way.

41

4 Overview of Assumptions

Previous chapters, have discussed the apparent conflict between the SDN paradigm (a centralised and

programmable network, based upon a high level representation of the state of the network) and deep

learning based IDSs or IPSs (requiring direct packet analysis and in the case of IPSs changing the

network state without utilising the SDN). Also discussed (at a high level) have been solutions to this

issue, and how other researchers have approached it. This chapter, shall provide an overview of the

assumptions that have been made whilst developing the solution, and provide the environmental

context the solution is designed to work in.

4.1 Overview of Hardware Assumptions

Figure 4.1-1 illustrates an example of how a network may look with the proposed solution deployed.

This can be separated into three sections, mimicking a SDN layout. In this section will discuss what

these areas are and what components fit into them.

Figure 4.1-1 – Architectural view of an example network it is believed the solution could be placed into

42

The three core areas are highlighted with the use of the different coloured lines indicating network

connections. These consist of the Data Plane (blue lines), the Control Plane (green lines) and the

Mitigation Plane (red lines).

It should be noted that with this setup, both the IMS and the SDN controllers are single point of failures.

This holds true for SDN controllers in general (one of the disadvantages of the SDN paradigm is that

the controller becomes a point of weakness and could be a target of attack). However, the same benefits

that have led to SDN becoming more widespread can aid security. There is reduced operational cost

(one device protecting the network vs several protecting different locations), and easier management

as a result. Additionally, it offers advantages in terms of reaction to threats. If an internal attack has

been detected in one area of the network, then the whole network can be configured to block or redirect

that threat, should the same symptoms be detected elsewhere. More to the point, this can be done

automatically, leveraging the power of SDN.

Within the diagram, the logging controller and IMS have been shown as two separate devices, however

it may be beneficial to have them run on the same device, or at least have access to the same storage

(in the case of Storage Area Networks or Fibre Channel Storage). The IMS will want to check logs

frequently to see if there are any updates for matching flows and having them connected would

decrease the overhead. However, it should also be considered that running the IMS is likely to be

computationally expensive (in terms of CPU and memory specifically) and having it reside on the same

device as the log server could lead to bottlenecks. This is slightly outside the scope of this work and is

something that would need to be explored further for a future system. In the same vein, the mitigation

component and detection component are shown as being on the same device (the IMS). In practice,

they could be on separate devices, and the benefits of separating them would need to be weighed

against the costs.

4.1.1 Data Plane

In this plane, the data that will eventually be analysed is created. As such, this consists of the SDN-

enabled switches, additional servers, and general PCs.

 Servers

Shown in Figure 4.1-1 are additional servers that represent the kind of servers that may be

seen in a business (such as a web server, FTP server, SSH server and a mail server). Logs

from these servers are transferred to the logging server, a common component of business

networks which aggregates and sort logs for easier processing later. In the proposed system,

this is called the log controller, as this title better fits the intended role. Log levels for these

services are set to notice (or the equivalent, i.e. usually the level before warning) and be

transferred with existing log management software (such as syslog). It should be noted that the

analysis of logs is done later on the log controller.

 SDN Enabled Switches

These provide the network flows, which are the base of the detection system. Upon registering

a flow, they were not previously aware of, a message is sent to the SDN controller with details

43

of the new flow, including source and destination addresses, protocols involved (UDP, TCP

etc.) and start time. It is also updated regularly with number of packets, and size of flow.

 General PCs

While general use PCs rarely have extensive logging turned on by default (as the scope for

damage is typically less), DNS lookups can be logged, along with other general activity

information. This is often used to diagnose malware. Activity at unusual times (for example

when the office is closed) can be a sign of malicious use, as can requests for unusual

addresses. Tracking of activity usually requires an agent/server relationship, in which an agent

is set to start-up automatically on the user PC and sends an aggregated view of activity for a

defined time period, to the server. The server can then provide an overall view of general

activity, which can then be focused on specific computers if needed. Unlike the specific servers

above, the user PCs typically do the initial data aggregation, rather than a log server, which

naturally means the data is less granular.

4.1.2 Control Plane

The control plane consists of two main devices, the SDN controller (as with SDNs) and the log controller.

The purpose of the control plane is to aggregate and format the data so that it can be used later by the

mitigation plane.

 SDN Controller

The SDN controller is configured as it would normally be, keeping a list of current and past

network flows. While the switches provide the controller with source, destination, size of

instances of flows and number of packets, the flow controller aggregates this data to create a

larger view. For example, a switch may provide the controller with an update saying “A flow that

has been matched to one in my database with this source and destination, lasted x seconds,

with y number of packets and a size of z bytes.” The controller would take this information and

add the number of packets, bytes and duration to the flow data already compiled. In addition,

controllers typically keep note of the length of time the flow has been idle (which will be reset).

 Log Controller

The log controller receives logs as it would if it were a normal log server, from servers and

devices on the data plane. These are then integrated into a database from which additional

features are obtained. Required features would include things like date and time of creation (to

match against flows that may have created it), as well as source of the log (which server or host

the log was generated on) and the log text itself. Ideally, the remote IP address would also be

accessible. Derivable features include examples such as login attempted (was the log created

because a user attempted a login), login successful (was the log generated because a user

successfully logged in), a sentiment score of the log text (how positive or negative the log text

sounds), and log number (how many logs have been generated matching certain criteria (such

as from the same IP within n minutes)).

44

4.1.3 Mitigation Plane

The mitigation plane consists of two main components, the detection component and the mitigation

component, both of which could run on the same device (The IMS in Figure 4.1-1) due to the close

integration these two components would need. As stated in 4.1 they could be separated onto two

devices, however much of the work they will do is very similar, and they will need access to the same

data sources, so it is assumed that they would be on the same device.

 Detection Component

This component is responsible for combining the separate log and network flow data, detecting

useful features, and making an initial classification. Logs are combined with flows through

matching the source and destination addresses, as well as ensuring the log has been created

within n minutes of the flow. A delay is allowed as flows will be created before the logs they

generate, and so cannot be matched perfectly. In addition, the time period allows us to spot

instances where a user has started a short flow, stopped it, and then restarted it again a few

minutes later. Depending upon load and configuration this activity may appear to be new flows

to the SDN controller, especially if a FIN message is sent in the case of a TCP flow. For

instance, this can happen in the case of a password attack. The attacker will attempt two or

three passwords, and then pause. This can aid in bypassing a lockout limit (for number of

attempts within a set time period).

 Mitigation Component

The component is responsible for determining what kind of attack the network is under and

determining a mitigation method for it. This is done not through the traditional method of

comparing a flow to previous examples of attacks, but by comparing the flow to several different

attack characteristics within an attack taxonomy (examples of which have been discussed in

Section 3.4). Through comparing the flow to different leaves of the taxonomy it is possible to

determine a mitigation that is custom to the attack that is being experienced. This is done as

some attacks that may be considered quite different may have similar mitigations. For example,

a SQL injection attack designed to leak data, and a brute force password attack designed to

gain access to a system, where the mitigation for both could consist of blocking the offending

IP. The reverse is also true, where similar attacks may have different mitigations. For example,

a SYN flood mitigation may be to block the flow, whereas a DDoS attack mitigation might be to

redirect traffic. However, in both cases the attack being made is a DoS attack.

4.2 Overview of Process Assumptions

This section shall provide an overview of the assumptions that are made about how both server logs

and network flows are created and interact. These are based on the hardware assumptions made in

Section 4.1, and seek to clarify exactly where and how the data being used in the rest of this thesis

would come from in a real-world application. To do this, process diagrams that outline the individual

steps taken will be shown. All these steps are taken within the Data Plane explained in Section 4.1.1,

and these processes are termed initialisation processes later in the thesis. An initialisation is considered

an event that results in the creation of a network flow. These events are outside the ability of a network

45

administrator to control, however there are several ways this could be achieved, and administrators

need to be mindful of these. These are discussed below, as is their impact on this work.

It should be noted that these processes could happen in sequence, or in parallel, or in any other

combination. The goal is to show the types of communication, and what outputs might be available to

analyse, as well as where in the system this analysis might take place. To aid with this, sections of the

flows have been highlighted red, green, or blue, and this will correspond to the colour segments of the

network diagram Figure 4.1-1.Figure 4.1-1 – Architectural view of an example network it is believed the

solution could be placed into

External Client to Server Communication

This is the bulk of what would be considered typical communication and is what most datasets attempt

to represent. Communication is initiated by an external actor, typically using the internet. The first notice

of this communication received is from the firewall, and flow is created at the first switch it meets after

passing through the firewall. The outline of the flows’ path is shown in Figure 4.2-1. This shows the

process of the flow lifecycle and is generally like that found in most SDNs. Three components can be

identified clearly, the SDN-enabled switch (green), the SDN controller (blue) and the server, which could

be a SSH server, or an FTP server etc. (red). Note that a flow is always created or updated within this

process, while a log is not. It is possible that flows could be created that do not require the creation of

a log. For example, it is unlikely a web server would log every page request it receives, as this would

quickly lead to unmanageable log sizes.

It should also be noted that the firewall will be dropping packets before they meet the SDN-enabled

switch, meaning that no flows are ever created, and the data is not analysed by the system. While SDN-

based firewalls have been researched, it is likely that exposing a controller to the level of traffic

experienced by an external firewall would lead the controller to be become overloaded, and for little

benefit.

Figure 4.2-1 – External Client to Server Flow

Internal Client to Server Communication

46

Figure 4.1-1 shows a secondary firewall that monitors all data directed to the servers regardless of the

location. This leads to a process flow similar to the external client to server, with the exception that all

communication produced by the internal computers will produce a flow to analyse. Additionally, the

second firewall leads to a situation in which flows may be created, but logs are not. For instance, if

somebody mistakenly attempted to start an FTP connection to the webserver (through typing the wrong

URL), it is likely the firewall would drop that connection. This is shown in Figure 4.2-2.

Figure 4.2-2 – Internal Client to Server Communication flow

The primary difference in the flows between Figure 4.2-1 and Figure 4.2-2 is the location of the firewall.

With external communication, the firewall is going to be the first thing the flow comes against, and not

passing the firewall means that the flow never enters the network. With internal communication the

firewall is only accessed after the flow has entered the network, and so will be analysed regardless of

whether it can pass the firewall or not.

Internal Client to Client Communication

While comparatively rare, this kind of communication is becoming more common as applications have

moved away from client-server relationships to peer-to-peer relationships. For example, the file sharing

tool Dropbox enables peer-to-peer file sharing for shared folders on the same network, in order to speed

up synchronisation speed versus that of syncing over the internet. It is also this kind of communication

that would result from a botnet infection, as the bot attempts to infect other computers on the same

network. This is important as ransomware infections spread by botnets are increasing within business

environments [8], and this is seen as an inexpensive way of disrupting a network. The flow for this kind

of activity is shown in Figure 4.2-3.

47

Figure 4.2-3 – Client to client communication flow

There is no firewall involved in this system, as typically client computers are not specifically protected

before they access a switch. This makes for a simpler flow diagram but is still communication that needs

to be analysed. It should also be noted this kind of communication typically will not produce server logs,

as the flow is not directed at a server.

Internal Server to Server Communication

While similar to the internal client to server model, this kind of communication would rarely feature any

significant defences. The reasoning is simple, this kind of communication typically comes as a result of

servers requiring data from each other in pursuit of a request from another client or process. Time to

reply is often critical in this kind of situation, and many networks cannot afford the computational

complexity of having another comparatively slow firewall protecting servers from each other, especially

when this should be the most secure area of the network, with no malicious activity.

Figure 4.2-4 – Server to server communication

Figure 4.2-4 shows this, with no firewall included in the diagram, but still containing the log creation.

48

External Client to Internal Client Communication

While traditionally rare, this communication type is becoming more common as remote working

becomes common place, and applications such as TeamViewer make the experience easier. Although

cloud computing and remote software can aid in remote working, often users want to use the same

computer they would be working on inside the office, or need specialist tools or hardware that are only

available through logging into their office computer remotely. This type of communication has the same

issue as remote client to server communication, in that if the connection is stopped at the firewall, no

flows or logs of the event will enter the system. However, it is unlikely that a traditional firewall would

stop this, as typically these services (while peer to peer) utilise outbound connections to bypass stateful

firewall checks. Figure 4.2-5 shows the process for this, again showing that if the incoming flow does

not meet the requirements to pass the firewall, then the process will never begin. Again, as the flow

never interacts with a server, logs are not recorded.

Figure 4.2-5 – External Client to Internal Client

49

5 Methodology

This chapter shall discuss the methodology and reasoning behind the system being created, linking

decisions to the previous assumptions that have been made, and showing the reasoning behind them.

To achieve this, process diagrams detailing the individual steps being taken will be presented, including

code extracts where applicable. A process flow diagram will be followed (to be shown in the next

subsection), while mentioning where on the hardware diagram the process is taking place.

5.1 The process being followed

In Figure 5.1-1 the overall process laid out. As presented, it consists of four main stages. These stages

are organised according to the state of the data and the kind of analysis or transformation being done

to it. This is in contrast to the hardware overview, which is organised according to what the goal of the

hardware is within the system (creation of data, control and organisation of the data, and manipulation

of the data). The process stages are Initialisation and Creation, Extraction, Analysis and Mitigation.

Figure 5.1-1 – Flow diagram to show the flow of data within the system

50

Of note is the new orange box. This is the activity that is envisioned would happen on the IMS. As

mentioned in Section 4.1.3, this could be the same physical device as the SDN controller, or a separate

physical box that uses the SDN controllers’ northbound interface to collect relevant data.

It should be noted that the logs are processed in parallel to the network flows until they are finally

grouped. This is done to attempt to ensure the system will scale, as processing both logs and flows in

series could affect scalability. Additionally, as has been mentioned in Section 4.2 there is an assumption

that while flows will always be created, logs may not be, and this design aids that assumption by allowing

logs to be matched to flows when they are created but doesn’t wait for them or require them. This is

also tested with the SSH Compromise Detection Using Netflow/IPFIX Dataset, which did not have

corresponding logs for every flow. The log data is supplementary data to aid classification, and not

essential.

5.2 Initialisation and Creation

The initialisation process includes all actions required to create a network flow. This is significant as it

is possible to create a flow without creating any logs. For example, with the network hardware given

above, an internal HTTP request for an external website would likely not generate any logs, but would

generate multiple network flows (DNS query, HTTP flow itself, etc.). A request like this would still need

to be analysed, especially as these requests can be used to track botnet activity. It should also be noted

that logs that are created without flows are not being considered, as this would fall within the scope of

HIDSs. As stated in Section 4.1.1, creation of the data is handled by devices in the Data plane. This

includes logs from servers, as well as network flows from switches. More specifically, switches provide

flow data to the SDN controller, and the servers create logs that are provided or accessed by the log

server. As such in the rest of this section shall discuss the creation of the logs and flows.

5.2.1 Flows

Flows are the first kind of data to be created and are the primary source of data for the IMS. A network

flow is created whenever data arrives at an SDN-enabled switch and does not match any previously

encountered data. When comparing a packet to previously encountered data to determine which flow

entry a packet belong to, OpenFlow specifies 12 fields a packet can be compared against:

1. Switch Input Port

2. VLAN ID

3. VLAN Priority

4. Ethernet Source Address

5. Ethernet Destination Address

6. Ethernet Frame Type

7. IP Source Address

8. IP Destination Address

9. IP Protocol

10. IP Type of Service bits

11. Source Port (For TCP or UDP)

51

12. Destination Port (For TCP or UDP)

Not all the fields are required, and there are three types of compliance:

 Full compliance: where all fields are supported.

 Layer 2 conformance: where the layer 2 headers are supported (fields 2-6)

 Layer 3 conformance: where the layer 3 headers are supported (fields 7-12)

It is noteworthy that packets can be matched to multiple flow entries (effectively belonging to multiple

flow entries), and in order to manage this the OpenFlow specification states that the packet will be

assigned to the flow entry with the highest priority, and no more searches for other matches will be

made.

Typically, NIDS datasets (such as the UNSW-NB15, and University of Twenté dataset outlined in

Section 2.6) do not contain fields 1-6, but only IP addresses and ports. This work assumes an

organisation will be using a layer 3 compliant switch in order to gather the data, thus providing the

following 6 fields for us to use:

1. IP Source Address

2. IP Destination Address

3. IP Protocol (TCP/UDP etc)

4. IP Type of Service Bits

5. Source Port

6. Destination Port

However, an OpenFlow table also contains counters and timeouts. The specification [37] requires a

counter to be used for active entries, duration, received packets and received bytes. This increases the

features used to 9. There are other counters available, but these are not required by the OpenFlow

specification and so are not assumed to be available for the purposes of this work. Other SDN solutions

may provide more data, however this is on a case by case basis, and the project seeks to create a

solution that should be applicable to as many SDN based solutions as possible. OpenFlow has been

chosen as it forms the basis of other commercial SDN solutions [4], and so even if a company is not

using an OpenFlow product specifically, it is likely the same assumptions about available data can be

made.

5.2.2 Server Logs

Logging is enabled on most server-based systems by default, and is generally required for legal and

compliance reasons, as well as security and monitoring. Figure 5.2-1 shows a log from the

NetFlow/IPFIX dataset from the University of Twenté [40].

52

Figure 5.2-1 – Extract from the logs of the Netflow/IPFix Dataset

The logs in this dataset come from Kippo and OpenSSH servers, and contain date, time, service, source

IP address or hostname as well as log text. This is broadly in line with syslog (RFC 5424), which

specifies a log should contain Hostname or IP address, Timestamp, Facility, Severity, and the message

itself. Windows system logs contain Date, Time, Computer, Source, Event ID, Level and Category, as

well as log text. While logs are not standardised, there are some similarities between different log

formats, and data that can be gleamed almost universally, that being the date and time of creation of

the log, hostname or IP address of the system, log text and service that resulted in the log creation. It

is logical that these attributes would be included in most log systems, simply because for a log to be

useful these are the minimum attributes required. If a log does not have a time or date, an administrator

cannot tell when the log was created or attempt to discern what events may have been happening at

the same time to cause its creation. Similarly, while IP address or hostname may not be required when

dealing with a single machine, if transferred to a central log server (a common practice in business

environments) an administrator will need to know where a log originated, and the service it relates to.

As such, it can be assumed that logs within a business environment contain:

1 Date

2 Time

3 Hostname or IP Address

4 Service

5 Log text

However, the only feature this easily adds to the proposed system is Service, since port number is not

necessarily a reliable representation of the service being used on a network level. Date, time, and IP

are already provided by the network flow, and log text can vary enough within a single service that

without further processing it simply cannot be used. It may also be possible to add severity to the list,

however, different log formats use different ratings for severity. This comes in the form both rating

number and scale itself. For example, syslog uses a rating of 0-7 to represent Emergency, Alert, Critical,

Error, Warning, Notice, Informational and Debug, whereas windows uses a rating of 1-5, representing

Critical, Error, Warning, Information and verbose. If using this measure to determine the severity of the

event, the question becomes how should these separate ratings be compared? For example, should a

critical error in syslog (level 2) be comparable to a critical error on windows (level 1), or an Error on

windows (level 2). Given the range of different log services, and the variety of potential different levels,

an alternative method to determine the severity is required.

53

5.3 Extraction

The base level features that can be extracted have been identified in Section 5.2. However, this base

level data is not suitable for intrusion detection alone. Additionally, it was stated that log text needs

more processing in order to be useful. The SDN flows do not require the same kind of processing as

the logs do, and features derived from network flows are features the SDN controllers keep track of

anyway. For example, one such feature includes total size of flow (both in terms of packet number and

bytes). Switches send the size of individual flow instances to the controller, and the controller updates

the flow table with the cumulative sum of the flow instances to get the size of the flow in total. While

more data can be derived (such as an average flow instance size) the goal is to create a system that

will work with the data provided by a SDN controller.

5.3.1 Flow Features are Extracted

The first step is to load flows into the database since the network flows are always generated and are

used as a comparison to the logs. Flows are received in a textual form, an example of which can be

seen in Figure 5.3-1:

Figure 5.3-1 – An example of an OpenFlow flow

This can effectively be read as a CSV, with cookie=0x0 being the first column, duration=6.402s being

the second, etc. This can be performed with pseudocode like:

1. import csv
2. string = getFlow()
3. x = csv.reader(string)
4. for row in x:
5. #Process the row

Pseudocode 5.3-1 – Pseudocode for reading a flow

In Pseudocode 5.3-1, the getFlow() function runs an appropriate command on the SDN controller to

view flows (for OpenFlow this would be the ovs-ofctl dump-flow command), and returns the contents.

From here, the contents of various fields can be accessed through row[x] where x is the number of the

field you wish to access. For features that consist of just a number, a regular expression filter such as

re.sub("[^0123456789\.\:]","",row[x]) can be applied, which will remove any characters except numbers,

decimal points or colons (for IPv6 addresses). So, for the string in Figure 5.3-1, Table 5.3-1 shows the

features obtained, and where they were obtained within the string:

Feature Was Filter Used? Row Number Result

IP Source Address Yes Row[13] 10.0.0.2

IP Destination Address Yes Row[14] 10.0.0.1

IP Protocol No Row[8] arp

IP Type of Service Bits Yes Row[7] 65535

54

Source Port Yes Row[15] 2

Destination Port Yes Not applicable for ARP,

same as Source Port

2

Duration Yes Row[1] 6.402

Received Packets Yes Row[3] 1

Received Bytes Yes Row[4] 42

Table 5.3-1 – Table to show features gained from an Example ARP flow, including location they were taken from

For the TCP flow shown in Figure 5.3-2, the corresponding table is shown in Table 5.3-2.

Figure 5.3-2 – An example of a TCP OpenFlow flow

Feature Was Filter Used? Row Number Result

IP Source Address Yes Row[13] 10.0.0.1

IP Destination Address Yes Row[14] 10.0.0.2

IP Protocol No Row[8] tcp

IP Type of Service Bits Yes Row[7] 65535

Source Port Yes Row[16] 80

Destination Port Yes Row[17] 52930

Duration Yes Row[1] 16.012

Received Packets Yes Row[3] 12

Received Bytes Yes Row[4] 2945

Table 5.3-2 – Table for an example TCP flow

This data can now be used to compare the flow received to flows within the main IMS database. This

database, similar to a SDN flow table, keeps a list of flows that are traversing the network, and its

corresponding data aggregated data. The term Network Health Flow (NHF) is proposed to describe the

aggregated data being kept on the IMS. An SDN flow can be matched to a NHF using IP Source and

Destination, IP Protocol, and Source and Destination ports collectively. If a match is found, then

Duration, Received Packets and Received Bytes can be updated with the new information, otherwise a

new NHF can be entered into the IMS database. This is shown in Pseudocode 5.3-2.

1. import mysql.connector
2.
3. mydb = mysql.connector.connect(
4. host=host,
5. user=user,
6. passwd=password,
7. database="flowDB"
8.)
9. mycursor = mydb.cursor(buffered=True)
10.

55

11. query=”SELECT count(*) FROM flowTable WHERE ip_src = ip_src AND

ip_dst = ip_dst AND port_src = port_src AND port_dst = port_dst AND

protocol = protocol;”

12.

13. mycursor.execute(query)

14. result = mycursor.fetchone()

15.

16. if result[0] > 0:

Pseudocode 5.3-2 – Pseudocode for creating a new flow entry to updating an existing entry

After the flows have been updated and new flows added, any logs that have been generated can be

matched to the flow data. The first stage in this is adding data to a temporary log database, to make the

processing quicker. This is performed using a query that is very similar to that used to match the network

flows, but the match is made on the host IP address (after being converted if necessary), as well as the

service and the time created. Pseudocode for this is provided in Pseudocode 5.3-3. This simultaneously

gives us the first feature derived directly from the logs, the number of instances of duplicate logs being

generated.

1. import mysql.connector
2.
3. mydb = mysql.connector.connect(
4. host=host,
5. user=user,
6. passwd=password,
7. database="logDB"
8.)
9.
10. mycursor = mydb.cursor(buffered=True)

11. query=”SELECT count(*) FROM logTable WHERE hostIP = hostIP AND

service = service AND time>= time AND logText = logText

12.

13. mycursor.execute(query)

14. result = mycursor.fetchone()

15.

16. if result[0] > 0:

17. query = “UPDATE logTable SET instances = instances + 1,

time = time, date = date

18. WHERE hostIP = hostIP AND service = service AND time>=

time;”

19. Else:

20. query = “INSERT INTO logTable hostIP, service, date, time,

logText, instances

21. VALUES hostIP, service, date, time, logText, 1;”

22.

23. mycursor.execute(query)

Pseudocode 5.3-3 – Code to match log entries to flow entries

5.3.2 Log Features are Extracted

More features can be extracted from the logs; the first aspect considered is whether there is a successful

login. The only way to get this data without the use of decryption techniques and deep packet inspection

is to analyse the log text. Because logs are generally highly structured, and the text does not deviate

56

significantly between different instances of the same log it is possible to use source code similar to

Pseudocode 5.3-4:

1. log = getLogFromDataServer()
2. x = log.split()
3. for word in x:
4. if (word == “Accepted”):

5. accepted = 1

6. elif (word == “password”):

7. password = 1

8.
9. if (password == 1) && (accepted == 1):
10. loginAttempt = 1

11. else:

12. loginAttempt = 0

Pseudocode 5.3-4 – Entry to show whether a login attempt has been made

The code simply looks for the words “Accepted” and “Password”. If a single log contains both of these

words, it is considered to have been a successful login. It should be noted that these words were chosen

specifically for Kippo and OpenSSH logs, which log a successful login with a log like that shown in

Figure 5.3-3:

Figure 5.3-3 – Accepted Password Log

And log failed logins with Figure 5.3-4:

If the log is recorded with a different message along the lines of Figure 5.3-5:

Figure 5.3-5 – Alternative Failed Password Log

The relevant code would have to change to accommodate an additional qualifier of the word “not”. If

the word “not” is found, then the result of the code is multiplied by -1 in order to generate a minus

number if the log displays a failed login. In the code, this is replicated through use of another if statement

to detect the word “Failed” (which only appears in failed password logs). Upon finding this, the

loginAttempt variable is set to -1. This means on the log database now contains:

 Date

 Time

 Host IP

 Service

 Log Text

 Instances

 Login Success

Figure 5.3-4 – Failed Password Example

57

The next step is to determine a sentiment score for the log. The sentiment score needs to be an indicator

of how positive or negative the log text is overall. The reasoning for this is that logs depicting negative

events are typically going to contain negative words, such as “error”, “failure” and “closed”. If a flow is

producing mainly negative logs, then that could be taken as an indicator that the flow is malicious.

The Python textblob library has been selected, which contains the sentiment.polarity function. This

function scores words individually and is based upon Vader used in the Natural Language Tool Kit

(NLTK). This creates a normalised, weighted composite score based upon the lexicon that was

generated within VADER [75]. VADER is a sentiment lexicon that is sensitive to both the intensity and

polarity of the statement being read and is fast enough to be used with online streaming data. The

score it generates varies between -1 and 1, where scores close to -1 are almost entirely negative,

whereas scores close to 1 are almost entirely positive, and scores close to 0 are neutral. While normally

used for sentiment analysis for online reviews, Vader has some advantages for this work as well. Vader

attempts to qualify sentiment not only using its own lexicon, but also qualifies the sentiment being

expressed by including punctuation and use of capital letters. This allows it to shift sentiment

appropriately when confronted with a phrase like: “VADER is VERY SMART, handsome, and FUNNY!!”

compared to: “Vader is very smart, handsome, and funny.” The first phrasing clearly has more emphasis

on the positive attributes, given by the capitalisation and exclamation marks, and so will gain a more

positive score. While logs are more structured than online comments, the use of capitals and

punctuation is not uncommon the bring attention of the administrator to major errors or warnings. From

the NetFlow/IPFIX dataset, there is evidence of this in some logs such as in Figure 5.3-6:

Figure 5.3-6 – Capitalisation of a Log being used for emphasis

Another advantage of using textblob and Vader is that is computationally efficient [75], testing having

shown it producing sentiment scores faster than more complex machine learning methods of producing

sentiment, without losing accuracy. This speed is noteworthy, since any delays in producing the NHF

will inevitably delay the final classification and slow any possible response. Pseudocode for the textblob

found in Pseudocode 5.3-5.

1. import mysql.connector
2. from textblob import TextBlob
3.
4. mydb = mysql.connector.connect(
5. host=host,
6. user=user,
7. passwd=password,
8. database="logDB"
9.)
10.

11. mycursor = mydb.cursor(buffered=True)

12.

13. log = getLogFromDataServer()

14.

15. blob = TextBlob(log)

16. sentiment = blob.sentiment.polarity

58

17.

18. query = “UPDATE logTable SET sentiment = sentiment

19. WHERE hostIP = hostIP AND service = service;”

20.

21. mycursor.execute(query)

Pseudocode 5.3-5 – Example code for the textblob

It is also possible to obtain the remote IP address from the Log text. This is typically not recorded

separately and so does need log analysis to determine the address. Pseudocode for this is found in

Pseudocode 5.3-6.

1. import mysql.connector
2. import re
3.
4. mydb = mysql.connector.connect(
5. host=host,
6. user=user,
7. passwd=password,
8. database="logDB"
9.)
10.

11. mycursor = mydb.cursor(buffered=True)

12.

13. log = getLogFromDataServer()

14. re.finadall(r'(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})', log)

Pseudocode 5.3-6 – Code to determine IP Address from a Log

Where IP is the IP address found within the text of the log. The regex in the final line captures four 1-3

digit inclusive numbers, which are separated by a full stop. The log database now contains the following

fields:

 Date

 Time

 Host IP

 Service

 Log Text

 Instances

 Login Success

 Sentiment

 Remote IP Address

The final structure of an NHF can be found in Table 5.3-3:

From both flows and logs – Mandatory for matching

Date Time Host IP Remote IP Service

Logs Flows Logs

Instances Received Packets Received Bytes Duration Sentiment

Table 5.3-3 - Structure of an NHF

59

5.4 Analysis

The analysis consists of a number of stages, laid out as follows:

 Aggregation

The logs and network flows need to be aggregated into an NHF. This is achieved through

matching IP Addresses, services and ports that have been extracted in Section 5.3.1 and

Section 5.3.2. Also utilised are two rules that state that the log must have been generated within

a 5-minute period of a flow, and that the log must have been generated after a flow. This is

because logically, logs must be created after a network flow, however, logs should not be

matched to flows that have been idle too long. Because the amount of time between a flow

being registered and a log being created can vary depending upon network conditions, server

usage, server location within the network and a number of other conditions, a 5-minute grace

period was selected. This period was based upon works such as [40] where similar periods

have been chosen. Another advantage of this is that it aids in detection and consolidation of

micro flows. Micro flows are flows that can last less than a second, and typically contain little

data. Due to their small size and duration, micro flows are often not kept on the flow table by

SDN controllers very long, but these can still be a sign of malicious activity. By using a process

to drop flows that depends solely on the amount of time a flow has been idle it is possible to

detect flows that are small and do not last long but can be frequent.

 Initial Analysis

It has been mentioned that there will need to be a way to organize the NHFs into a priority

queue. Deep learning is resource intensive, and while the NHFs contain fewer features than

many other datasets, some form of sampling is still likely. Here a risk score to evaluate which

flows are high risk shall be calculated. This is done as a way to ensure that malicious flows can

be analysed at line speed.

 Initial Classification

An initial binary classification of the NHF is made. Separate to the risk analysis made earlier,

this uses a deep learning model that produces a classification as to whether the flow is

malicious. The machine learning model for this is a deep one and consists of multiple

convolutional and dense layers to arrive at the classification. While this is a complex model, its

slowness can be compensated for in the risk analysis mentioned earlier, which should ensure

that most benign flows are not required to be analysed.

5.4.1 Aggregation

Once features have been extracted from both the logs and the flows, they can be aggregated to create

the NHF. From examining the log table and the flow table, it can be seen that there are several features

that are shared (IP addresses, times and service). These will be used to match the various features of

both logs and flows. Pseudocode for this is shown in Pseudocode 5.4-1.

60

1. import mysql.connector
2.
3. mydb = mysql.connector.connect(
4. host=host,
5. user=user,
6. passwd=password,
7. database="logDB"
8.)
9.
10. mycursor = mydb.cursor(buffered=True)

11.

12. destIP, sourceIP, time, port = getFlowData()

13. query = select instances, loginSuccesses, sentiment, FROM

logFlows

14. WHERE (destIP == hostIP || destIP == remoteIP) AND

15. (sourceIP == hostIP || sourceIP == remoteIP) AND

16. port == service AND

17. time <= logTime AND

18. time + datetime.timedelta(minutes=5) >= logtime

Pseudocode 5.4-1 – Creation of the NHF

As can be seen, the first two WHERE statements match the IP addresses. The OR statements are

used, as a reply from a server will have the source as the server IP, whereas the original message will

have the server IP as destination. Marking these separately would result in two separate flows, when

they are clearly supposed to be connected. Additionally, on the final line, timedelta is utilised. Logs will

be generated after flows inherently, and so included is a requirement that logs must have been

generated after the initial flow time. However, logs that are generated hours or even days after the initial

flow time should not be grouped together. So, the final line gives a time limit of 5 minutes. If a log is

generated more that 5minutes after the initial flow time, then it will be assigned to a new flow. This

matches the flow entries, where a flow is dropped from the database if it has not been updated within 5

minutes. A time of 5 minutes has been chosen as this broadly matches the time of many password

lockout policies. If a malicious user initiates a brute force or dictionary attack, and the account gets

locked, the malicious user would need to wait longer than five minutes for the system to not group the

malicious attacks together. More accurately, if the malicious user started the attack at time s, and

paused after receiving an account locked message at time t the amount of time the malicious user

would have to wait (w) is shown in Equation 5.4-1:

 𝑤 = 5 + (𝑡 − 𝑠)

Equation 5.4-1

5.4.2 Initial Analysis

Now that the NHF has been formed, the initial analysis and risk assessment can be implemented. Every

flow will need to go through this process, sometimes more than once as flows get updated with new

data. As such, the process for this initial analysis needs to be computationally efficient.

Deep learning models are computationally expensive, and this process will be adding more expense

on top of that. As such, the first goal for the initial analysis will be to provide a method to decrease

processing.

61

Often, IDS/IPS solutions will require sampling for the solutions to work at line speed. Sampling

strategies are a focus of research, however, these have often come across what is ultimately the same

issue, that being that less you sample, the more likely that some attacks will not be noticed simply

because they are not sampled [76][77]. The NHFs being analysed should be quicker to analyse then

individual packets, since the NHFs can be considered an abstract representation of the packets they

represent. However, there still needs to be some consideration given to the analysis happening at line

speed.

A slight variant to sampling involves creating a “priority list”, whereby rather than packets being sampled

randomly, or based upon position in a flow, packets are prioritised for analysis based on some measure.

The difference being that if the computational resources are available, then every packet will be

analysed, however those that are deemed to be high risk are analysed first. As such, a priority list is

implemented. This leads to the second requirement, to provide an indication of the amount of risk the

flow contains.

This should not be a definitive sign that a flow is malicious, but that it contains some features that have

been shown to be malicious. This stage can be completed with clustering of the flows. Clustering

algorithms are unsupervised algorithms that place records into groups depending upon how alike they

are. Several clustering algorithms exist; however, HDBScan is chosen. This is because HDBScan has

several advantages. These include:

 Not requiring a set number of groups

Several clustering algorithms (such as K-Means) require that the number of clusters be known

in advance. This is not known as the data has not been analysed. While datasets such as the

NSL-KDD or UNSW-NB15 could have the number of clusters configured to be the number of

different classes within the dataset, it should not be assumed that this is known in advance for

most intrusion detection systems.

 Being resilient to noise

Another issue with K-means (and other centroid-based clustering algorithms) is that it assumes

every record is part of some group, when this may not be the case. Network datasets are

inherently noisy, and it is entirely possible to get benign flows that do not seem to be related to

any other flow (a benign anomaly). As HDBScan is a density-based approach to clustering, it

does not have this issue. Instead, there is are hyper-parameters to be set to control at what

point a group of records can be considered a cluster. Any records that appear outside one of

these clusters is placed into the -1 category (or simply unclassified).

 Not assume a Gaussian cluster

K-means assumes that clusters are Gaussian in nature and can misclassify based upon this.

HDBScan holds no such assumption and can classify clusters of any shape or density

distribution.

62

 Being efficient

The process overall is supposed to ensure that any malicious flows are analysed quickly. If this

process is computationally expensive, then this negates the benefits of the system as malicious

flows may have stopped before they are detected. While HDBScan is not quite as efficient as

K-Means (not achieving O(n log(n)) complexity), it is more efficient than many other clustering

algorithms, and has less than O(n2) complexity [78]. K-means also has an advantage in that

increasing the number of features has little effect on the efficiency of the computation. However,

this work is inherently limited in the number of available features and as such the advantage of

k-means in this regard is of limited use.

Clustering will ideally group malicious flows together, however the goal is not classification but to

determine a risk for the various clusters. This allows us to analyse flows in high risk groups first, leaving

low risk groups for later should the system become too busy to analyse all the flows. The risk factor can

be determined by calculating the proportion of malicious flows within each cluster. If a cluster has an

unusually high proportion of malicious flows, then any later flow assigned to it can be assigned a higher

risk.

Assuming M is a malicious flow, and that a C is a cluster with size S, then the risk factor R can be

determined using Equation 5.4-2:

𝑅 =

∑ 𝑖𝑀∈𝐶
𝑖=0

𝑆

Equation 5.4-2

This will result in a value between 0 and 1, where 0 is a very low risk, and 1 is very high risk. The

process logically requires supervised learning, since flows will have needed to be declared malicious

before the risk analysis can be conducted. This feeds into the choice of a supervised model later for the

analysis.

Pseudocode for the process can be found in Pseudocode 5.4-2.

1. import hdbscan
2.
3. groupList = []
4. var = []
5. count = 0
6.
7. def UpdateGroupRisk(group):
8. query = SELECT COUNT(*) from flowTable WHERE group = group

9. malicious = SELECT COUNT(*) from flowTable WHERE group = group

AND malicious = 1

10. mycursor.execute(query)

11. number = mycursor.fetchone()

12. mycursor.execute(malicious)

13. maliciousInGroup = mycursor.fetchone()

14. newRisk = maliciousInGroup / number

15.

16. query = UPDATE riskTable SET risk = newRisk

17. WHERE group = group

18.

19. return

20.

63

21. training, y = getTrainingData()

22. data = getFlowData()

23.

24. clusterer = hdbscan.HDBSCAN(min_cluster_size=x,

gen_min_span_tree=True,

25. metric='manhattan', min_samples=y,

prediction_data=True)

26.

27. clusterer.fit(training)

28.

29. for flow in data:

30. mark = 0

31. test_cluster, tested_strength =

hdbscan.approximate_predict(clusterer, data)

32. for label, y, in zip(clusterer.labels_, y):

33. mark = 0

34. for cluster in clusterList:

35. if cluster[0] == y:

36. cluster[1] = cluster[1] + 1

37. mark = 1

38. if y == 1

39. cluster[2] =

cluster[2] + 1

40. if mark == 0:

41. if y == 0:

42. appendList =

[cluster, 1, 0]

43.

 clusterList.append(appendList)

44. else:

45. appendList =

[cluster, 1, 1]

46.

 clusterList.append(appendList)

47.

48.

49. query = “UPDATE flowTable SET group = group[0]

50. WHERE hostIP = hostIP AND service = service AND time = time;”

51. execute.query()

52.

53. UpdateGroupRisk(group[0])

Pseudocode 5.4-2 – Code to show how risk is created and updated

Within this, min_cluster_size and min_samples are hyper-parameters that need to be configured

according to the dataset. min_cluster_size is the amount of records required for a cluster to be

considered a cluster. At a min_cluster_size of 1, all records would be clustered, though some would

only be clustered with themselves (which logically does not make sense). At values larger than 1, these

points would be put into group -1, and considered noise. As min_cluster_size increases, the number of

clusters decreases and the volume of records in -1 increases, as smaller clusters no longer reach the

requirements to be considered a cluster at all. min_samples is similar, however refers to the number of

records within a neighbourhood for a point to be considered a core point.

5.4.3 Initial Classification

After the initial analysis and risk detection, a classification can be made. For this precision is prioritised

over recall, as this will reduce the number of false positives that are passed onto the mitigation system.

64

Ideally both recall and precision will be achieved, but when it is possible to have benign usages blocked

or redirected in an automatic fashion, it is believed that minimising the number of these would be

preferable. Other false negatives could be caught by a later security process (for example, malware

could still be caught through local anti-malware scans, even if it evades detection of its transmission

over the local network).

Data preparation will also need to be undertaken. Studies [79][80] have found that good data

preparation can impact results significantly. As such, the flows that have been formed will undertake

the following steps:

1. Convert Categorical Data

The datasets contain several pieces of categorical data, for example protocol type. This comes

in the form of TCP, UDP, ICMP etc. These need to be converted to numerical data, as the

model does not recognise string input. This can be done simply by assigning a number to each

different element (0 for TCP, 1 for UDP etc.). However, this is not enough by itself. Machine

learning can be prone to giving bias to larger numbers [81]. As such, with the procedure set out

above, it would give UDP greater weight than TCP, simply because 1 is larger than 0. In order

to counter this, any categorical fields that have been converted to an integer then need to be

binarised. This takes the values and converts them into a binary vector, e.g. 001 for TCP, 010

for UDP. This has the by-product of increasing the feature space, as instead of 1 column for

protocol type, there is now have one column for each protocol.

2. Scaling

Not all the numerical data conforms to the same scales. For example, duration is measured in

seconds and rarely lasts longer than a few minutes (or hundreds of seconds). Similarly, the

duration of flows can also frequently last less than 1 second, leading to decimal values of less

than 1. Port number on the other hand, can extend up to 65535. Additionally, the range from

49152-65535 are officially unassigned, and free for use, which means than when determining

which port to contact a client on with a client/server relationship, it will likely be one of those

ports. The different scale of these numbers can lead to issues with bias being given to the larger

numbers [81][82]. As such Min-Max scaling is employed. This will bring all elements of the sets

to within the range 0-1.

3. Reduce the Feature Space

This may at first seem at odds with the rest of the thesis. Much of this paper has so far consisted

of gathering additional features to those generated by a SDN controller. However, in step 1 on

this process the feature space was increased by binarising categorical features. This leads to

the situation where some features are redundant. To take the protocol example again,

assuming the dataset only consists of TCP, UDP and ICMP transmissions, then the sum of

TCP, UDP and ICMP features will always be 1. Therefore, the ICMP feature could be removed

completely, as if the sum of the remaining TCP and UDP columns does not equal 1, then the

65

transmission must have been ICMP. Removing features like this has been shown to not have

any significant effect on the model’s overall accuracy and can increase the processing speed

of the model dramatically [54], [55].

4. Balance the Training Set

Raw network datasets are incredibly imbalanced. The NetFlow/IPFIX dataset contains a 96% to

4% imbalance of benign to anomalous flows for instance. This imbalance is a significant issue

and can result in overfitting to the majority class (i.e. the model classifies every record as benign,

as this gives greatest accuracy and precision). Balancing the dataset can have a marked

improvement on accuracy, through forcing it to learn the minority classes.

More details of each of these steps will be given later in the chapter. The classification itself can then

proceed. As discussed, efficiency is important, while steps have been taken earlier in the process to

decrease computational complexity, it is still important that the model at this point is efficient. This is the

primary reasoning for choosing a CNN, as they have been shown to have an advantage in accuracy

over ANNs [16], but for network datasets this advantage is typically small [83]. However, they are also

significantly more efficient, requiring fewer parameters to get those results. For example, a convolutional

layer with a kernel size of 3 and 16 filters has 160 parameters to compute. The equivalent fully

connected layer of 144 has 17,568 parameters [46]. This is also the reason a CNN is used over other

RNNs such as LSTM. LSTMs have been shown to be effective in this kind of classification [84], but are

more computationally expensive, and CNNs can still get comparable (or better) accuracy [41]. The

major disadvantage CNNs face is that it is a supervised learning model. Unfortunately, within the

intrusion detection space, large and well-labelled datasets are scarce and require a great deal of

expertise to gain. When moving to local networks that will likely require their own custom dataset for a

system to work, (since different networks have different architectures and designs) this means that the

expertise to create and label a dataset needs to be within the company responsible for maintaining the

network. Additionally, as networks develop over time, it is likely that the data used to originally train the

network will become outdated, meaning the training process needs to begin again. For this reason,

unsupervised methods are generally seen as being a more practical approach, as data does not need

to be labelled. However, this lack of labelling does come with drawbacks. Unsupervised models are

often less accurate overall than their supervised counterparts. In addition, the proposed solution

requires labelled data for the risk analysis stage (even though HDBScan is unsupervised). This is

generally going to be true of any system that attempts to sample data based upon risk, as logically you

cannot determine a risk level without knowing what kind of activity is risky. As such it is determined that

a CNN best suits the requirements for the classification.

The structure of the model is also important. Multiple papers have found it is generally better to have

multiple small convolutional layers [85][86][87], rather than a single larger convolutional layer. Two

convolutional layers with a kernel of size 3 are equivalent to a single layer of size 5 (each decreasing

the feature space by 4), however the two separate layers would generally lead to superior results. It

has also been found that pooling, and in particular max pooling can be beneficial in reducing overfitting

[88], [89]. However, pooling dramatically reduces the feature space, halving it each time it is used. In

66

most cases this is beneficial, as it reduces the parameters that need to be calculated. However, we

have a small feature space to begin with. This limited feature space dramatically decreases the variety

of layers available to us within the CNN, and while decreasing overfitting would be beneficial, it needs

to be considered within the context of its effect on the model in general. This leads us to conclude that

batch normalisation would be the best choice for reducing overfitting within the CNN itself. Batch

normalisation was originally thought to decrease overfitting by reducing internal covariate shift, which

changes the distribution of inputs of each layer. By reducing the variance of the hidden values, the

values of the next layer can be more tightly controlled. There is some minor benefit of regularisation as

well. Similar to dropout multiplying some nodes by 0 to drop them from the network, and prevent a

network from overusing that node, batch normalisation can have a similar effect, reducing the chance

of overuse of a single node and forcing the rest of the network to be used. The theory of reducing

internal covariate shift is disputed [90][91], but batch normalisation does aid in reducing overfitting

[90][92], as well as offer some minor regularisation effects [89], [93].

Pseudocode for the model can be found in Pseudocode 5.4-3:

1. #Training and testing data are located, for testing data
2. # this would be new flows or flows that need to be reanalysed
3. # with the model being called as an object
4.
5. x_train, y_unsampled = getTrainingData()
6. x_test = getFlow()
7. #Scaling is performed on the training data
8. scaler = MinMaxScaler()
9. scaler.fit(x_train)
10. x_train_unsampled = scaler.transform(x_train)
11.
12. #Encoding is performed on the training data
13. encoding = OneHotEncoder()
14.
15. #This allows for additional columns to be added later
16. cols = [‘protocol’’]
17.
18. for n in cols:
19. encoding.fit(x_train[:, n])
20. x_train[:, n] = encoding.transform(x_train[:, n])
21.
22. #PCA is performed to removed redundant data and quicken learning
23. pca = PCA(H)
24. pca.fit(x_train)
25.
26. x_train = pca.transform(x_train_unsampled)
27.
28. #The training data is balanced, this will not be applied to testing
29. #data at any stage
30. ada = ADASYN()
31. X, y = ada.fit_resample(x_train, y_unsampled)
32.
33. #The model is created using Keras
34. model = Sequential()
35.
36. #A single dense layer allows us to know the shape of the data
37. #after PCA changed it to an unknown shape
38. model.add(Dense(121, activation='softmax', input_dim=int(inputShape)))
39.
40. model.add(Reshape((11, 11, 1)))
41.
42. #Convolutional Layers followed by batch normalaization
43. model.add(Conv2D(H, (H, H), activation='H'))

67

44. model.add(BatchNormalization())
45.
46. # More layers are added after this initial one
47. model.add(H Conv2D layers)
48.
49. model.add(Flatten())
50. # Output
51. model.add(Dense(H, activation='H'))
52.
53. optimizer = H(lr=H)
54. model.compile(optimizer=optimizer,
55. loss='binary_crossentropy',
56. metrics=['categorical_accuracy', 'accuracy']
57.)
58. model.fit(X, y, validation=x_unsampled, y_unsampled)
59.
60. #Testing can be performed, this allows for individual flows to be tested
61. #as they come into the system
62. for x in x_test:
63. x = scaler.transform(x)

64. x = encoding.transform(x)

65. x = pca.transform(x)

66. prediction = model.predict(x)

Pseudocode 5.4-3 – Code for the model, H represents Hyper-parameters to be tuned

As can be seen, the code had space for multiple hyper-parameters (H) that will need to be individually

tested and configured. This testing will be explained in the next Chapter (implementation). The following

will need to be configured:

1 PCA components

As has been explained, a system is required to reduce the data after it has been expanded to

remove features that do not aid with classification. PCA has been chosen for this task, as it is

efficient [94], [95] and has been shown to be helpful in reducing features and increasing

accuracy on IDS datasets in the past [55][96]. This is done so the model is not hindered in

attempting to use features that have little effect on the end classification, either because they

have high correlation with other features, or contain a low entropy. Previously, in binarising the

dataset features that have a high correlation have been explicitly added, and so this step is

important in reducing these features and decreasing computational complexity and time.

2 Convolutional Kernel Size

The kernel size relates to the size of the convolutional filter that traverses the feature space.

These have seen a steady reduction in size over recent years, from 7x7 kernels being common

to 2x2 or 3x3 sizes being more common throughout the models, with occasionally 5x5 or 7x7

being used to start the model.

3 Convolutional Filters

This indicates the dimensionality of the output space. As more layers are added the feature

space decreases, but the output space should increase. This allows prominent features of the

input to be recognised in early layers, and later layers to recognise less prominent features.

4 The Activation Function

68

The activation function determines whether a neuron fires (or activates) or not. If the input

values to a neuron are above a threshold, then that neuron will activate, if they are not then it

will not. The threshold can be thought of as the centre of a curve that varies from function to

function. As such, activation functions are important in the make-up of deep learning models.

There are a few types of activation functions available, with various advantages and

disadvantages. It would also be possible to design a custom activation function, however that

is outside the scope of this work. One of the most prominent functions would be sigmoid.

Sigmoid tends to be used for binary classification at the end of a model (i.e. end classification),

since it produces a steep curve near the centre that will naturally mean most outputs will be

pushed to one side or the other, producing clearer results. However, it does suffer from the

issue of vanishing gradients at either side of the curve, meaning that learning will slow or stop

if used in the middle of a deep model. Tanh has similar issues, being a scaled version for

sigmoid.

Rectified Linear Unit (ReLu) has a different approach, it uses a linear activation for values above

0, else 0. It has greater efficiency than both sigmoid or tanh since any value less than 0 is

simply made 0. However, this can cause the dying ReLu problem. This is caused when areas

of the network have a negative or 0 value, the gradient of the network in that area will become

0, preventing learning. This issue can be aided with a leaky ReLu. Instead of 0, this multiplies

the figure by 0.01, ensuring the value is small and close to 0, but not actually 0 itself. This can

aid if overfitting is occurring due to the dying ReLu problem. Finally, softmax is another

activation function that performs well as an end classifier. Another potential issue of sigmoid is

that its outputs are not related to each other. For a single class problem, this is not an issue,

however for multi-class problems this can lead to a sum of probabilities becoming greater than

1. With softmax, the outputs sum to 1, which makes sense for multi-class problems where the

output must be one of the classes.

5 Learning Rate

The learning rate determines the extent of change in the model, in response to the loss. There

is a trade off in learning rate, as higher rates will not see the model converge to the optimum

solution, whereas smaller rates will take more epochs to converge. Generally accepted rates

are in the range 0.01-0.0001, but this is a parameter that needs to be tuned according to the

network, as well as the choice of optimiser.

6 Optimiser

The role of the optimiser is to update the weights and biases within the model in order to reduce

the loss. Constant rate optimisers always change the weights and biases by the same amount

(the learning rate), stochastic gradient decent falls into this category. Adaptive optimisers

change the learning rates on a per-parameter basis, reducing the risk of the issue outlined in

point 5, where the model can fail to converge. An example of this is Adagrad, which uses larger

updates for infrequent parameters, and smaller ones for more frequent updates. However,

69

Adagrad runs into issues of diminishing learning on more frequently updated parameters, which

can cause models to stop learning prematurely. Optimisers such as Adadelta, RMSProp and

Adam attempt to fix this. Adam is frequently used in practice, as it is again computationally

efficient [97].

With the model completed, a probability for the final classification will have been made. This can be

attached to the flow and if it is over a threshold send it to the mitigation system. The probability is

included as it gives an indication of the level of certainty that exists about the flow and the requirement

to mitigate it. With a high degree of certainty that a flow is malicious, more dramatic mitigation measures

can be employed.

A table showing the model dimensions is shown in Table 5.4-1

Layer (Type) Output Shape Number of parameters

dense_1 (Dense) (121) 8349

reshape_1 (Reshape) (11, 11, 1) 0

conv2d_1 (Conv2D) (9, 9, 8) 80

batch_normalization_1 (Batch

Normalization)

(9, 9, 8) 32

conv2d_2 (Conv2D) (7, 7, 16) 1168

batch_normalization_2

(BatchNormalization)

(7, 7, 16) 64

conv2d_3 (Conv2D) (5, 5, 32) 4640

batch_normalization_3 (Batch

Normalization)

(5, 5, 32) 128

conv2d_4 (Conv2D) (3, 3, 64) 18496

batch_normalization_4 (Batch

Normalization)

(3, 3, 64) 256

conv2d_5 (Conv2D) (1, 1, 128) 73856

batch_normalization_5 (Batch

Normalization)

(1, 1, 128) 512

flatten_1 (Flatten) (128) 0

dense_2 (Dense) (32) 4128

dense_3 (Dense) (2) 33

Table 5.4-1 - Table to show Deep Model Layers

70

5.5 Mitigation

The final mitigation is achieved through classifying malicious flows according to an attack taxonomy.

This is achieved using an ensemble of classifiers that classify according to each dimension of the

taxonomy. Whilst this may sound especially computationally complex, in reality it is envisioned that this

stage will only be used on a small proportion of traffic, as any benign flows should be declared as such,

and no mitigation needs to take place. The goal of the taxonomy is to determine the threat the malicious

flow poses and recommend a course of action. For flows where the threat is low, no action beyond

notification to the administrator is a possible choice. For medium threats, flows can be redirected to

protect essential services, whereas high threats can result in the flow being dropped.

The intended taxonomy differs from other taxonomies in that the goal is to formulate an automated

response to the attack that is being identified. This means that the branches should be designed in

order to provide a solution that can be undertaken. Many taxonomies are designed to separate different

attacks, ensuring that each attack type is classified in only one way (the uniqueness of the

classification). This is beneficial for administrators seeking to classify an attack in the forensic analysis

stage of an attack (i.e. after an attack has happened and the goal is to assess the impact and determine

any additional threat), or testing phase (to ensure the system is secure). However, it is not as beneficial

for the initial response. For the initial response, it rarely matters if two different attacks are classified a

similar way if the response should be the same to both [67]. The target for this taxonomy is also

important. Many taxonomies seek to address localhost (e.g. someone performing a password attack by

typing in passwords on the computer they seek to gain access to) and physical attacks (e.g. someone

physically turning off a computer), whereas this work is strictly concerned with attacks that can be

recognised and mitigated through the network. As such, this work is built upon the work of Wu et al.

[69], Souissi [67] and Fu et al. [68]. Wu et al. propose a response orientated taxonomy that consists of

Source, Technique and Results, proposing that defence can be built from these. Souissi builds upon

this and noting that Wu et al. acknowledge that blended attacks would pose an issue for their taxonomy

propose a solution that includes Source, Vector, Target and Impact. Both papers, however, are for

generic attacks that can be carried out on computer networks, including local attacks. As such,

inspiration is also taken from Fu et al. who designed a taxonomy for routing systems, and use Attack

Plane, Vector, Target and Impact. The use of attack plane rather than source makes more sense within

the confines of a strictly network attack taxonomy, as while source can refer to internal or external

attacks, attack plane allows the system to see exactly what level of the SDN is being used to initiate the

attack.

A diagram of the Taxonomy used is shown in Figure 5.5-1.

71

Figure 5.5-1 – The taxonomy used

The four major aspects (Plane, Target, Vector and Impact) of the taxonomy is discussed below:

Plane

Related to the OSI [98] model this refers to the level the attack is taking place on. Fu et al. utilize

physical, network or application as the attack planes. The physical layer refers to individual devices.

Unplugging a cable, turning off a server or using a radio frequency transmitter to interfere with wireless

signal would belong on the physical layer. The network layer includes attacks that target network

infrastructure, but do not depend on a specific application or OS. An example would be a port scan, or

many types of DDoS or flood attacks, where the goal is to overload processing resources, rather than

a SYN flood, which requires open ports. The final layer is the application layer, which includes anything

that requires an application or OS. The SYN flood mentioned earlier is one example, while another

would be a XSS (Cross Site Scripting) attack.

Target

Different from the Attack Plane, this is specifically for what the attack is targeting. For example, a SYN

flood specifically targets an OS, while the Plane is the Network (a network vulnerability being used to

target a singular device). This contains three levels, as described:

 Network

This contains attacks such as floods or port scans. These attacks operate on the network level

and work irrespective of the OS or Applications on the device or devices being targeted. If

something attacks the network, rather than a particular service or OS it should be placed here.

72

 OS

This contains attacks such as fingerprinting, or attacks that target specific operating systems.

Many (though not all) buffer overflow attacks operate on the OS level for example, as different

operating systems may treat malformed network packets in slightly different ways.

 Application

This contains attacks which specifically target the services being provided (HTTP, FTP etc.).

This can involve XSS attacks, or slightly further down the stack buffer overflows that target an

SQL server (for instance).

Vector

The Vector consists of what kind of attack is being performed, or what exploits attackers are hoping to

take advantage of. Souissi shows this can be separated into six categories:

 Misconfiguration

This consists of administrators themselves making a mistake in the configuration of a service.

The root password being left at default may be an example of this, or configuration files for a

web server being left in a publicly accessible location would be another.

 Insufficient Validation

Insufficient validation is caused by a system failing to validate user input appropriately. Buffer

overflows are typically validation errors, as are boundary condition errors or malformed input

(such as SQL injection).

 Vulnerabilities

Vulnerabilities are defined as potential exploits in the software being used. Administrators

typically have little control over vulnerabilities, instead requiring the first party supplier to provide

patches, fixes, or workarounds.

 Users

Users is a large source of attack vectors and consists of user error providing the exploit. A user

not following password policy may be one example. Another might be a user opening a suspect

email attachment, and then agreeing to install the attached software.

 System Limitations

System Limitation attacks involve taking advantage of the fact that systems do not have

unlimited resources. Floods can fit here, taking advantage of the fact that networks do not

contain unlimited bandwidth.

Impact

73

The impact involves assessing what the end effect of the attack would be if it were not mitigated or

stopped. Related to the CIA (Confidentiality, Integrity and Availability) model, this contains three

categories:

 Confidentiality

This is used when the confidentiality of data is at risk. The obvious example is leaked

usernames and passwords, or card details in an online commerce application with something

like a SQL injection attack. However, most probes or fingerprinting attacks also fit into this

category, as information about the network structure is leaked.

 Integrity

These attacks edit or change the data or a service. SQL injection attacks can be placed here

as well if the attack is used to insert false data into a database or change records within it, for

example, adding an illegitimate username or password to a user credentials database.

 Availability

These attacks seek to disrupt the availability of data or a service. Most DoS attacks would be

placed in here for example, as would the ransomware attacks described in Section 2.1 where

the encryption key was deleted after data was encrypted, making recovery almost impossible

without access to unencrypted backups. Data destruction, rather than data leakage or

modification falls within availability, as do any attacks that disrupt a service.

Using these four aspects, it is possible to determine a SDN mitigation for the malicious activity. Knowing

the attack plane means it may be possible to block or redirect the attack at levels 2 or 3 of the OSI

model, ensuring that devices are kept safe. Knowing the attack target potentially allows us to refine this

further. For example, rather than blocking level 2 or 3 data, if it is determined that an attack is at level 6

or 7, then only that data could be blocked. The attack vector again allows us to refine this further again.

For example, in the case of a brute force password attack, the attack would be at the OS or application

level, but if it is known that all passwords are secure then the attack might be safely ignored. Finally,

the attack impact provides the context required for other actions. If the attack is attempting to target the

availability of a service, then quarantining the system (while protecting it from further damage) would

be seen as a success from the attacker’s point of view. Alternatively, if the target is the integrity of the

system, then quarantining it for a short period may be preferable.

This culminates in a requirement to develop a system that can determine these aspects. Again, machine

learning can be used in this situation, as it is effectively now a classification problem. Proposed for this

is the usage of multiple deep learning models, which feed their answer from one model to the next. The

way the four aspects have been arranged, information from each aspect is useful to the classification

of the next aspect. For example, if it is determined that the first aspect involves an attack happening in

the application plane, this is useful to the second step which can typically eliminate the network from

consideration as it would be unusual (though not unheard of) to have an attack target the network

through the application plane.

74

The mitigation actions the system can use in response to a malicious flow also need to be defined.

These actions need to be suitable for a range of malicious activity and be implementable through SDN.

These potential actions have been identified:

 Action 1 – Block or Drop Flows

Result: Suspicious flows are permanently dropped from all devices.

Impact: High – Used in situations where the integrity or confidentiality of data may be

compromised and requires a high degree of certainty.

Potential Side Effects: This could result in benign flows being permanently dropped or

blocked, resulting in an unintended DoS. This is more serious when the flows are integral to

the systems being used. For example, if a HTTP server had all its SQL requests to a SQL

server blocked, this could result in a website going down.

This is an extreme action, with potentially serious consequences for mislabelled flows. However, this

will also ensure that the malicious activity is stopped. Similar to the methods proposed by Yoon et al.

[60], this would effectively turn every SDN-enabled switch within the network into an inline security

appliance, programmed to drop matching flows. This means that the moment the flow is detected it is

dropped, rather than having to wait until the flow meets an IPS. This could be used on flows that have

a high degree of certainty of being malicious, and are performing malicious activity low down the

network stack, which isn’t targeting particular machines or services (for example, port scans, or flood

DoS attacks.)

 Action 2 – Block or Drop an IP address or machine

Result: A single IP address is no longer able to communicate with the network

Impact: High - Used in situations where the integrity or confidentiality of data may be

compromised and requires a high degree of certainty.

Potential Side Effects: This could result in devices no longer being able to access network

resources, resulting in an inadvertent DoS. For example, a user may not be able to access an

FTP site or be able to login to a shared community hub.

While like Action 1, the difference is in the scale. Action 1 will only stop the malicious activity that is

being undertaken in relation to a specific flow, while this action prevents an IP address from performing

any network activity (even legitimate activity). Rather than an IPS, this action could be thought of more

like making the switches a firewall, with a blacklist of banned IP addresses. Again, this is an extreme

example, but could be useful in instances where the integrity of the network is at stake.

 Action 3 – Redirect the flow

Result: A flow is redirected to a honeypot or other illegitimate destination

Impact: High - Used in situations where the integrity or confidentiality of data may be

compromised and requires a high degree of certainty.

75

Potential Side Effects: This could result in a legitimate user receiving illegitimate data as they

are redirected to a site that seems like the data being requested. If not redirected to a honeypot,

then it could result in an inadvertent DoS.

The flow could be redirected to a honeypot or other secure area of the network. This is potentially useful

in cases where the flow is deemed to be attempting to exploit vulnerabilities, this could allow an

administrator to monitor the activity and learn of any potential exploits without exposing actual systems

to damage. However, this would also likely be a temporary measure while the activity is being analysed,

before being blocked completely.

 Action 4 - Quarantine a system or IP

Result: A system or IP is temporarily unable to communicate with the network

Impact: Moderate – Used in situations where certainty is not as high and includes DoS attacks

or potentially high-risk devices.

Potential Side Effects: Could result in temporary inadvertent DoS.

While superficially like action 2, the difference is in the length of time a system will be blocked, as well

as the extent of that blocking. Broadly, this action should be time limited, whereas actions one and two

are indefinite and could be permeant (assuming there are no negative consequences). This could be

useful in instances where a password attack is deemed to be taking place, slowing the speed of the

attack.

 Action 5 – Quarantine the flow

Result: A suspicious flow is temporarily blocked or dropped.

Impact: Moderate - Used in situations where certainty is not as high and includes DoS attacks

or potentially high-risk devices.

Potential Side Effects: Could result in a temporary DoS of a service if used in a high-risk

environment

Rather than blocking an IP address, a flow could be temporarily dropped. Again, while similar to Action

4, the difference is in the scope. If all activity from a service is quarantined then that service would suffer

an unintended DoS, however, users would still be able to interact with most network resources.

 Action 6 – Create a “sinkhole”

Result: Responses to a potentially malicious IP are never received by that IP

Impact: Moderate – Used in situations where certainty is not as high and can include DoS

attacks or potentially high-risk devices.

Potential Side effects: May not guarantee stopping attacks where responses are not required

and can result in inadvertent DoS as legitimate users could potentially have replies blocked or

dropped.

76

While the term sinkhole typically refers to DNS applications, SDN can create a similar effect. Any traffic

that is being directed towards a particular IP (or set of IPs) could be directed towards a non-existent

address (such as 0.0.0.0) and dropped. This technique has proven successful in disrupting the

command and control infrastructure (C&C) of botnets in the past. This is different from actions 1 and 2,

since the focus is on traffic directed towards a remote IP. That remote IP would still be able to send

data into the network but would never receive a response. Due to the fact this would only affect remote

IP addresses, it can be considered to have a moderate impact.

 Action 7 – Redirect through legitimate source

Result: Stress on individual devices is lessoned

Impact: Low – Used in situations where certainty is low, and typically is used for DoS attacks

to protect high risk devices.

Potential Side Effects: Ineffective against access privilege or information disclosure attacks.

May cause slightly slower services for legitimate users depending upon network composition.

Rather than redirecting to a honeypot, traffic can be redirected to a different but still legitimate

destination. Like load balancing, a SDN could direct suspect traffic through an alternative route, or to

secondary servers. These servers and routes would still contain the same data and be subject to the

same risks as the primary servers and routes, however in the case of DoS attacks the impact of the

secondary servers going down would be lessened. The network impact of this would be low.

 Do Nothing

Result: No action is taken beyond logging and/or alerting an administrator

Impact: Low - Used in situations where uncertainty about the attack is high, or the impact would

 be minimal

Potential Side Effects: Ineffective against legitimate damaging attacks

If the potential impact of the attack is low, and the uncertainty of the attack is high, then potentially the

wisest course of action would be to not employ any additional measures beyond informing the

administrator of potential malicious activity. This could be used in password-based attacks where it is

not certain that an attack is happening (rather than a user being forgetful). The potential impact to the

network is low, assuming that password policies are upheld, and the services being targeted have

methods to slow this kind of attack (timeout policies, account lockout policies etc.).

The response that will cause the least amount of disruption to the network if a classification is incorrect

should also be sought. Now possible responses have been found, the next step is to determine the

optimum response. This involves using the certainty of the classification; the lower the classification

certainty, the more likely a low impact response will be chosen. These two statements are proportional,

so it is possible to just take the certainty provided by the first model and use that as an indication as to

which response is correct. The certainty will have come in the range 0.5-1.0 (as below 0.5 the model

77

classifies it as benign) and so Min/Max normalisation is performed to scale these values to the range

0-1.

This can be calculated using Equation 5.5-1:

�̅� =

𝑥 − 0.5

1 − 0.5

Equation 5.5-1

Where x is the probability from the first model. x̄ can not become less than 0, as any probability entering

this stage will have been at least 0.5. The flow can then be assigned a mitigation according to Table

5.5-1.

 Low certainty (0-

0.25)

Moderate Certainty

(0.26-0.75)

High Certainty (0.76-

1)

Block Flow Access Privilege,

Information Disclosure

Block IP Access Privilege,

Information Disclosure

Redirect Flow to

honeypot

 Access Privilege,

Information Disclosure

Sinkhole DoS DoS

Quarantine IP Access Privilege,

Information Disclosure

Quarantine Flow Access Privilege,

Information Disclosure

Access Privilege,

Information Disclosure

Redirect to legitimate

source

DoS DoS

Do nothing Access Privilege,

Information Disclosure

or DoS

Table 5.5-1 – Mitigation according to probability

The certainty ranges were chosen as in the initial analysis we aim to have as few flows classified near

0.5 as possible. All flows reaching this point should have been classified in the initial assessment as

being between 0.5-1, and the min-max normalisation will extend that range to 0-1, meaning differences

in risk should be greater. This means that malicious flows that fall between 0-0.25 we were initially very

unsure were malicious, while flows between 0.76-1 we were very sure were malicious. Risk

management may normally use ranges 0-0.1 for low, 0.1-0.5 for medium and 0.5-1 for high, however

these ranges are not suitable for us, as we expect many values around 0.5 (which can later be seen in

6.3.1). Ideally, we want the system to either be very sure of the result, or very unsure, so that correct

responses can be organised. If the system is only moderately certain, then that could lead to situations

where a quarantine is issued instead of a block, or a DoS is redirected to a legitimate source instead of

a sinkhole being arranged. As such we use a H-range measurement to help determine whether the

system is achieving its goals. Even so, these number could be changed depending upon the level of

78

risk the administrator is willing to take, and different interpretations of these risk probabilities are given

in the results.

As can be seen, there are numerous instances where there are multiple possible actions. For example,

in the low-risk category there is always the option to do nothing, as well as quarantining or redirection

depending upon the kind of attack. Which option is taken will depend upon the vector of the attack.

Some vectors will also be higher risk that others. Misconfiguration and Insufficient Validation should be

fairly low risk (if the developers and administrators have followed good practice) and the odds of such

an attack working should be low. Vulnerabilities and Users indicate a higher risk. If the attacker is

attempting to use vulnerabilities it indicates that some preliminary reconnaissance has been carried out

and the attacker is now attempting to exploit a known vulnerability. Users have a lower level of expertise

than administrators or developers and are more prone to making mistakes. Finally, system limitations

are also considered low since the SDN itself should generally be capable of managing itself to aid with

managing its resources.

As an example, if an attack is detected to be high certainty, and the impact is determined to be

information disclosure while the vector is determined to be vulnerability then the response would be to

block the flow (the most extreme action available for the high risk and high certainty attack.)

Alternatively, if we were only moderately certain that there was an attack, then the flow would be

quarantined instead.

5.6 Models

The deep learning models for the determination of the branches of the taxonomy are similar to those

used earlier for the initial classification as it is a similar problem. However, there are of some differences.

PCA does not need to be used a second time and using it multiple times on the same data would reduce

the useful data being kept. While data is added after each model, the detrimental effect of using PCA

outweighs the potential processing gains.

The problem has also shifted from a binary classification problem (i.e. is the flow malicious or not?) to

several multiclass problems (i.e. Does the attack target the Network, OS, or Application levels?). This

places potentially more emphasis on using softmax as the end classifier, over something like sigmoid.

This, combined with the additional data, means that the structure of the models may be different. The

training process for the models should also be considered.

Since the models should only experience malicious data, one potential option is to take all the malicious

flows from the original training set, configure their outputs and use that data. However, this is not

representative of the data that the model will receive. While false positives will be reduced to a minimum,

the possibility of false positives still exists. If the process laid out above is used for training data, then

these false positives will never be seen by the models. The alternative of this is also true, the model will

be trained on true positives that are never seen. This leads to the best solution being that the model is

trained on the training data that the initial model produces, even if that data is incorrect. The next step

is to create pseudocode for the models that will determine which subcategory of Plane, Target, Vector

79

and Impact the malicious activity falls into. As there are four models, there are also four sets of

pseudocode (one for each model) as follows:

1. def plane():
2. K.clear_session()

3. model = load_model(path)

4. tf.Session().as_default()

5. with K.get_session().as_default()

6. prediction = model.predict(flow)

7. return prediction

8.
9. def vector():
10. K.clear_session()

11. model = load_model(path)

12. tf.Session().as_default()

13. with K.get_session().as_default()

14. prediction = model.predict(flow)

15. return prediction

16.

17. def target():

18. K.clear_session()

19. model = load_model(path)

20. tf.Session().as_default()

21. with K.get_session().as_default()

22. prediction = model.predict(flow)

23. return prediction

24.

25. def result():

26. K.clear_session()

27. model = load_model(path)

28. tf.Session().as_default()

29. with K.get_session().as_default()

30. prediction = model.predict(flow)

31. return prediction

32.

33.

34. x_train, y_unsampled = getTrainingData()

35. x_trainResult = getTrainingResult()

36.

37. x_test = getFlow()

38. x_testResult = getResult()

39. X = np.concatenate(x_train, x_trainResult)

40. #First model

41. model.add(Conv2D(H, (H, H), activation='H'))

42. model.add(BatchNormalization())

43.

44. # More layers are added after this initial one

45. model.add(H Conv2D layers)

46.

47. model.add(Flatten())

48. # Output

49. model.add(Dense(H, activation='H'))

50.

51. optimizer = H(lr=H)

52. model.compile(optimizer=optimizer,

53. loss='categorical_crossentropy',

54. metrics=['categorical_accuracy']

55.)

56. model.fit(X, y, validation=x_unsampled, y_unsampled)

57.

80

58. model.save(plane.h5)

Pseudocode 5.6-1 – Showing how the first model is set up and how the models are called

Pseudocode 5.6-1 shows how the models are set up and they are called. Note that there are still hyper-

parameters that will need to be configured, as with the initial model, and these hyper-parameters fall

into the same categories with learning rate, the exact structure being used, and activation. There are

also several classes to move from one model to another, pulling the saved weights and structures from

training to run the models on demand.

From here the pseudocode is broadly similar, as the changes are in the hyperparameters and the name

of the model being called. The basic shape is shown in Pseudocode 5.6-2.

1. #Basic model
2.
3. X = np.concatenate(X, previousResult)
4.
5. k.clear_session()
6.
7. model.add(Conv2D(H, (H, H), activation='H'))
8. model.add(BatchNormalization())
9.
10. # More layers are added after this initial one

11. model.add(H Conv2D layers)

12.

13. model.add(Flatten())

14. # Output

15. model.add(Dense(H, activation='H'))

16.

17. optimizer = H(lr=H)

18. model.compile(optimizer=optimizer,

19. loss='categorical_crossentropy',

20. metrics=['categorical_accuracy']

21.)

22. model.fit(X, y, validation=x_unsampled, y_unsampled)

23.

24. model.save(categoryName.h5)

25.

26.

27. targetResult = model.predict(X)

Pseudocode 5.6-2 – Pseudocode to show the basic code structure for the models

In line 3, training results from previous models are concatenated into the training data of the next model.

In line 24 the model is saved under the category name, and it is this model that will be restored within

the classes of Pseudocode 5.6-1. The same hyperparameters as earlier still need to be configured,

though of course this is on a model by model basis and may not be the same for all the models.

The final process is to select a mitigation that matches the results of the models, pseudocode for which

can be found in Pseudocode 5.6-3.

1. X_test = np.concatenate(x_test, x_testResult)
2.
3. y_test = plane(X_test)
4. X_test = np.concatenate(x_test, y_test)

81

5. Y_test = vector(X_test)
6.
7. X_test = np.concatenate(x_test, y_test)
8. Y_test = Target(X_test)
9. target = Y_Test
10.

11. X_test = np.concatenate(x_test, y_test)

12. Y_test =Result(X_test)

13.

14. certainty = (y_test-0.5)/0.5

15. action = [1,2,3,4,5,6,7,8]

16.

17. if y_test == DoS:

18. action.drop(1,2,3)

19. else:

20. action.drop(4,7)

21.

22. certainty = x_testResult

23. if certainty < 0.25

24. action.drop(1,2,3,4)

25. elif certainty > 0.75

26. action.drop(5,6,7,8)

27. else:

28. action.drop(1,2,3,8)

29.

30. if action.count == 1

31. EmployAction(action)

32. elif (target == vulnerability) || (target == user)

33. action = max(action)

34. EmployAction(action)

35. Else

36. action = min(action)

37. EmployAction(action)

Pseudocode 5.6-3 – Showing how the mitigation is chosen

This ultimately ends with one action being selected and undertaken by the SDN, using the code that

comes with the SDN controller. This code will vary from controller to controller, but for an OpenFlow

controller it would be similar to that shown in Table 5.6-1:

Action Command

Block Flow ovs-ofctl add-flow brX ip nw_src=xxx.xxx.xxx.xxx,

nw_dst=xxx.xxx.xxx.xxx, ,actions=drop

Block IP ovs-ofctl add-flow brX ip nw_src=xxx.xxx.xxx.xxx,actions=drop

Redirect Flow to honeypot ovs-ofctl add-flow brX ip nw_src=xxx.xxx.xxx.xxx,

nw_dst=xxx.xxx.xxx.xxx, ,actions=mod_nw_src:xxx.xxx.xxx.xxx

Sinkhole ovs-ofctl add-flow brX ip nw_src=xxx.xxx.xxx.xxx,

nw_dst=xxx.xxx.xxx.xxx, ,actions=mod_nw_src:0.0.0.0

Quarantine IP ovs-ofctl add-flow brX ip nw_src=xxx.xxx.xxx.xxx, idle_time-

out=Y,actions=drop

82

Quarantine Flow ovs-ofctl add-flow brX ip nw_src=xxx.xxx.xxx.xxx,

nw_dst=xxx.xxx.xxx.xxx, idle_time-out=Y ,actions=drop

Redirect to legitimate source ovs-ofctl add-flow brX ip nw_src=xxx.xxx.xxx.xxx,

nw_dst=xxx.xxx.xxx.xxx, ,actions=mod_nw_src:xxx.xxx.xxx.xxx

Table 5.6-1 – Showing commands that may be issued in response to threats

83

6 Implementation

Discussed within this chapter is how the methodology is implemented for testing purposes, including

actual code extracts linked to the pseudocode code discussed in previous chapters, as well as

discussing any changes that have been made.

6.1 Initialisation and Creation

While Section 5.2 discusses how to potentially obtain the features available, it does not describe how

these features will be obtained within this work. While creation of a new dataset is possible, through

setting up a SDN (using a tool such as Mininet), this means that it becomes difficult to compare to other

works (a problem that has been highlighted in Chapter 2). Instead a combination of the NetFlow/IPFIX

dataset and the UNSW-NB15 dataset is used.

6.1.1 The SSH Compromise Detection using Netflow/IPFIX dataset

The NetFlow/IPFIX dataset consists of connection monitoring for multiple SSH servers, which is

organised into flows matching the IPFIX standard. The dataset consists of both the flows, and the logs

from the SSH servers. The purpose of this dataset is to show process the data goes through, and

realistic results that could be obtained. An example of the flows is shown in Figure 6.1-1.

Figure 6.1-1 – An example of the flows from the NetFlow/IPFIX Dataset

The first step is to clean up the flows and logs, keeping only the useful data. Lines such as those from

58-63 would need to be removed completely since these lines are just metadata about the later flows.

This was done with use of a script, shown in Code 6.1-1.

1. #!/bin/bash
2. FILES=/media/dataset.log
3. sed -i -e '/^[0-9]/ !d' $FILES

Code 6.1-1 – Code to remove extra lines

This simply checks if the line starts with an integer (0-9). If it does, then the line is not deleted, otherwise

it is. This way all flows are kept, while the additional lines are deleted. From here, the flow lines

themselves need to be organized into a csv with categories previously identified for the flows.

There are no commas included within the flow lines, and so these can be added first.

sed -e 's/ */,/g' dataset.log > dataset2.log

84

This converts any amount of blank space into a comma. It also reads the new data into a new file, called

dataset2.log. This allows comparing to the original file if needed. Finally, the -> between the two IP

addresses can be removed with the use of:

sed -e 's/->/ /g' dataset2.log > dataset3.log

This results in lines that look like:

2014-01-09,23:11:10.898,0.478,TCP,42.22.248.22:22, ,161.166.5.234:35568,17,66356,1

Additionally separation the port numbers from the IP addresses is necessary, however this cannot be

done in the exact same way as previously, as the symbol separating them is a colon. This is also what

separates the hour, minute, and seconds within the time field. However, given that every line has the

same format, the following code will achieve the desired effect:

sed -e 's/://2g' dataset3.log > dataset4.log

This will replace every colon after the first two within a line. The following features have now been

obtained:

 Date

 Time

 Duration

 Protocol

 Source IP

 Source port

 Destination IP

 Destination Port

 Packets

 Bytes

 Number of Flows

The only differences between Table 5.3-1 and this is that the flows in the NetFlow/IPFIX dataset do not

contain a priority field, and instead do contain a “number of flows” entry. This is acceptable since

Number of flows was one of the optional fields discussed in Chapter 2. The loss of priority is unfortunate,

however this is not considered important, since priority does not relate to the packets themselves, but

to how the SDN has determined the priority of the rule for the flow as a whole, and therefore is another

derived field.

The data is then imported into the database for comparison with log data, as is explained in SectionFlow

Features are Extracted 5.3.1. This is accomplished using the script presented in Code 6.1-2.

1. import csv
2. import mysql.connector
3. mydb = mysql.connector.connect(
4. host="localhost",
5. user="user",

85

6. passwd="password",
7. database="flows"
8.)
9.
10. mycursor = mydb.cursor(buffered=True)

11. query="INSERT /*+ append */ into flows VALUES

('%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s');"

12.

13. with open(r'dataset4.log') as csv_file:

14. reader = csv.reader(csv_file, delimiter=',')

15. for row in reader:

16. date = row[0]

17. time = row[1]

18. duration = row[2]

19. protocol = row[3]

20. sourceIP = row[4]

21. sourcePort = row[5]

22. destinationIP = row[7]

23. destinationPort = row[8]

24. packets = row[9]

25. bytes = row[10]

26. flows = row[11]

27. mycursor.execute(query%(date, time, duration,

protocol, sourceIP, sourcePort,

28. destinationIP, destinationPort, packets, bytes, flows))

29. mydb.commit()

30. print("Done")

Code 6.1-2 – Code to show import of flows to SQL DB

It should be noted that row[6] is not imported. This is because that row is empty. In the final example

flow given above, it can be seen that there is a gap between the source and destination IPs, where the

-> symbol was. This is still surrounded by two commas, and so is imported as a blank cell by the CSV

reader.

The next process is the aggregation of the log files; an example of the log files provided is shown in

Figure 6.1-2.

Figure 6.1-2 – An example of the log file from the NetFlow/IPFIX Dataset

Again, some clean-up is needed before the lines can be incorporated into the database. Similar sed

commands as earlier are used, however this time there is no need to delete any lines, as each line is

86

an addition to the log. The first step is to remove some hidden characters (in particular a ^A character

which normally results from a Control +A key combination in a console) with:

sed -i -e 's/ //g' logs.log > logs2.log

Then double spaces are removed from the file with:

sed -i -e 's/ */ /g' log2.log > log3.log

There are no headers or footers, and so the data can now be converted into a CSV format. This is done

by replacing the 2nd, 3rd, 4th and 5th spaces with a comma, as shown below:

sed -e 's/ */,/2' log3.log > log4.log

sed -e 's/ */,/3' log4.log > log5.log

sed -e 's/ */,/4' log5.log > log6.log

sed -e 's/ */,/5' log6.log > log7.log

The following fields have been obtained:

 Date

 Time

 Server IP

 Service

 Log text

This again closely matches the listed available features in Section 5.3.2, only missing the derived fields

of Instances, Login Successes, Sentiment and Remote IP. However, these steps are accomplished

within the database. As such, the logs can be uploaded to the server using code like that of Code 6.1-2.

The missing features can be obtained using the pseudocode throughout Section 5.3.2, and are

explained as follows:

Remote IP Address

The remote IP address can be obtained using the Pseudocode 5.3-6, and in particular the string:

SELECT * FROM logs WHERE logText REGEXP '[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}+$';

However it will only obtain all the records that include a remote IP, in effect becoming the query required

for getLogFromDataServer() in Pseudocode 5.3-6. The full code is found in Code 6.1-3:

1. import mysql.connector
2. import re
3.
4. mydb = mysql.connector.connect(
5. host=host,
6. user=user,
7. passwd=password,

87

8. database="logDB"
9.)
10.

11. mycursor = mydb.cursor(buffered=True)

12.

13. query = SELECT * FROM logs WHERE logText REGEXP '[0-9]{1,3}\\.[0-

9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}+$';

14.

15. result = mycursor.execute(query)

16. mydb.commit()

17.

18. for text in result:

19. ip = re.findall(r'(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3})', text)

20. query2 = INSERT INTO logs (rip) VALUES(ip) WHERE id = id

21. mycursor.execute(query2)

22. mydb.commit()

Code 6.1-3 – Getting remote IP Address

Instances

Instances becomes easier to check within the SQL database, and can be obtained using the code:

SELECT count(*) FROM logs WHERE hostIP = hostIP AND service = service AND time>=

time AND date = date AND remoteIP = remoteIP;

Full code can be found in Code 6.1-4:

1. import mysql.connector
2. import re
3.
4. mydb = mysql.connector.connect(
5. host=host,
6. user=user,
7. passwd=password,
8. database="logDB"
9.)
10.

11. mycursor = mydb.cursor(buffered=True)

12.

13. query = SELECT count(*) FROM logs WHERE hostIP = hostIP AND

service = service AND time>= time AND date = date AND remoteIP =

remoteIP;

14.

15. result = mycursor.fetchall(mycursor.execute(query))

16. mydb.commit()

17.

18. for row in result:

19. id = row[0]

20. number = row[1]

21. query2 = INSERT INTO logs (instances) VALUES(number) WHERE id =

id

22. mycursor.execute(query2)

23. mydb.commit()

Code 6.1-4 – Check Instances within SQL Database

Login Success

88

Again, the pseudocode from Section 5.3.1 is used, however the full SQL command can be substituted

in, and the full code is shown in Code 6.1-5.

1. import mysql.connector
2. import re
3.
4. mydb = mysql.connector.connect(
5. host=host,
6. user=user,
7. passwd=password,
8. database="logDB")
9.
10. mycursor = mydb.cursor(buffered=True)

11.

12. query = SELECT id, text FROM logs;

13.

14. result = mycursor.fetchall(mycursor.execute(query))

15. mydb.commit()

16.

17. for row in result:

18. id = row[0]

19. text = row[1]

20. password = 0

21. Not = 1

22. x = text.split()

23. for word in x:

24. if (word == “not”) or (word == “Failed”):

25. Not = 1

26. elif (word == “password”):

27. password = 1

28.

29. if (password == 1):

30. loginAttempt = 1

31. if (Not == 1):

32. loginAttempt = loginAttempt * -1

33.

34. query2 = INSERT INTO logs (loginAttempt) VALUES(loginAttempt)

WHERE id = id

35. mycursor.execute(query2)

36. mydb.commit()

Code 6.1-5 – Get Login Successes

Seen is that the changes for the “not” have been included, so if a failed login occurs, the result should

be -1 in the loginAttempt column. Additionally, if a password attempt has not been made then the result

will be 0, and if one succeeded the result will be 1. The word “not” could be expanded to additional

words that could indicate a failed password attempt (for instance, failed), however this is sufficient for

the logs used.

Sentiment

The sentiment analysis can be completed in the same manner, with the final code being provided in

Code 6.1-6:

1. import mysql.connector
2. import re
3.

89

4. mydb = mysql.connector.connect(
5. host=host,
6. user=user,
7. passwd=password,
8. database="logDB")
9.
10. mycursor = mydb.cursor(buffered=True)

11.

12. query = SELECT id, text FROM logs;

13.

14. result = mycursor.fetchall(mycursor.execute(query))

15. mydb.commit()

16.

17. for row in result:

18. id = row[0]

19. text = row[1]

20. blob = TextBlob(text)

21. sentiment = blob.sentiment.polarity

22.

23. query2 = INSERT INTO logs (sentiment) VALUES(sentiment) WHERE id

= id

24. mycursor.execute(query2)

25. mydb.commit()

Code 6.1-6 – Get Login Successes

Each of the steps described above was performed individually, and so the code is as written.

The dataset is not labelled, so the next step is to label the dataset appropriately. While the dataset

provided is not labelled, the authors do provide details of what they consider to be an attack. They

consider any flow that has six unsuccessful login attempts and has no idle period of more than one hour

to be an attack. This requires comparing the flows to the logs, since the logs are the only way to confirm

a login. The method used for this is described below.

Compared is the logs and flows using Remote IP address, time, and date. The flow time and log time

are by necessity going to be slightly different. This is because the flow will always be generated before

the log. Additionally, it is possible that a single flow can generate multiple logs. Indeed, Hofstede et al.

[99] explicitly state that a single flow can result in three failed password logs, before the flow is reset

and a new connection needs to be made. The SQL command used for this is:

SELECT * FROM logs WHERE logRemoteIP = flowRemoteIP AND logTime > flowTime – 5mins

AND logTime < flowtime

A timer of five minutes was chosen as this matches the account lockout duration of many security

policies, and if connection attempts are still being registered after an account has been locked out this

can be a sign of automated malicious activity (a brute force or password attack). After the process has

finished, the completed NHFs contain:

 Date

 Time

 Duration

 Protocol

90

 Source IP

 Source Port

 Destination IP

 Destination Port

 Packets

 Bytes

 Flows

 Instances

 Login Success

 Sentiment

This comes from the code found in Code 6.1-7:

1. import mysql.connector
2. import re
3.
4. mydb = mysql.connector.connect(
5. host=host,
6. user=user,
7. passwd=password,
8. database="logDB")
9.
10. mycursor = mydb.cursor(buffered=True)

11.

12. query = select * FROM flows;

13. query2 = SELECT instances, loginsuccess, sentiment FROM logs

WHERE remoteIP = flowRemoteIP AND time > flowTime – 5mins AND time

< flowTime AND date = flowDate;

14.

15. result = mycursor.fetchall(mycursor.execute(query))

16. mydb.commit()

17.

18. for row in result:

19. flows = row[10]

20. bytes = row[9]

21. packets = row[8]

22. dport = row[7]

23. destip = row[6]

24. sport = row[5]

25. flowRemoteIP = row[4]

26. protocol = row[3]

27. duration = row[2]

28. flowTime = row[1]

29. flowDate = row[0]

30.

31. results2 = mycursor.fetchall(mycursor.execute(query2))

32. for rows in results2:

33. count = count + 1

34. instances = rows[0] + instances

35. sentimentsum = rows[2] + sentimentsum

36. sentiment = sentimentsum / count

37. if count > 6:

38. attack = 1

Code 6.1-7 – Getting the Network Health Flows

91

The flows that can be used for the analysis are complete. The attack column is removed for most of this

process and is only used as the Y value in any supervised training, and for analysing results at the end

of the process.

6.1.2 The UNSW-NB15 Dataset

As has been explained in Section 2.6, the prepared UNSW-NB15 dataset contains 43 features and 2

labels. These are shown in Table 6.1-1.

Feature

Number

Feature Name Feature

Number

Feature Name Feature

Number

Feature Name

1 id 16 dloss 31 response_body_len

2 dur 17 sinpkt 32 ct_srv_src

3 proto 18 dinpkt 33 ct_state_ttl

4 service 19 sjit 34 ct_dst_ltm

5 state 20 djit 35 ct_src_dport_ltm

6 spkts 21 swin 36 ct_dst_sport_ltm

7 dpkts 22 stcpb 37 ct_dst_src_ltm

8 sbytes 23 dtcpb 38 is_ftp_login

9 dbytes 24 dwin 39 ct_ftp_cmd

10 rate 25 tcprtt 40 ct_flw_http_mthd

11 sttl 26 synack 41 ct_src_ltm

12 dttl 27 ackdat 42 ct_srv_dst

13 sload 28 smean 43 is_sm_ips_ports

14 dload 29 dmean 44 attack_cat

15 sloss 30 trans_depth 45 label

Table 6.1-1 – List of features available in the UNSW-NB15 Dataset

However, most of these features are not available. There are many similarities to the features obtained

from the Netflow/IPFIX dataset, however. The matched features are shown below:

1. Duration (Entry 2 – Dur)

2. Protocol (Entry 3 – Proto)

3. Packets (Entry 6 spkts and entry 7 dpkts)

4. Bytes (Entry 8 sbytes and entry 9 dbytes)

5. Login Success (Entry 38 Is_ftp_login)

Several other features can be used, using the same methodology as is described in Section 5.3, these

include:

6. Source packets retransmitted or lost (Entry 15 sloss)

7. Destination packets retransmitted or lost (Entry 16 dloss)

8. Source bits per second (Entry 13 sload)

9. Destination bits per second (Entry 14 dload)

10. Number of flows that has a command in the ftp session (Entry 39 ct_ftp_cmd)

92

11. Number of flows that has methods such as Get and Post in http service (Entry 40

ct_flw_http_mthd)

12. If source equals destination IP addresses and port numbers are equal, this variable takes value

1 else 0 (Entry 43 is_sm_ips_ports)

Entries 6 and 7 are typically derivable through looking for flow entries with the same ACK numbers

within a single flow. This is something many SDN solutions will keep track of regardless, since

retransmitted packets can be a sign that a network is reaching capacity and starting to drop flows. The

optional counters Receive Drops and Transmit Drops within the SDN specification track the same sort

of activity, except they count a switch dropping packets (which would inevitably lead to retransmitted

ACKS).

Entries 8 and 9 are extremely easily derivable from the data already collected, simply being a division

of bytes by the duration of the flow, both of which are required by the OpenFlow specification. The same

is true for entry 12, which compares the source and destination IP addresses and ports, and if they are

equal assigns a 1.

Entries 10 and 11 can be determined in a similar manner to that of the Login Success, which is explained

in Section 5.3.2. The change is that instead of searching for the word “Success” or “failure” you instead

search for logs containing the HTTP or FTP commands you are interested in tracking. This adds load

to the log processing sections of the system, but this is the area least concerned about load.

6.1.3 Comparison of Both Datasets

The features that have been determined as available from both datasets are shown in Table 6.1-2.

NetFlow/IPFIX from the University of Twenté UNSW NB-15

1 Date 1

2 Time 2

3 Duration 3 Duration

4 Protocol 4 Protocol

5 Source IP 5 Source retransmitted

bits per second

6 Source Port 6 Destination

retransmitted bits per

second

7 Destination IP 7 Source bits per second

8 Destination Port 8 Destination bits per

second

93

9 Packets 9 Packets

10 Bytes 10 Bytes

11 Flows 11 Number of flows that

has a command in the

ftp session

12 Instances 12 Number of flows that

has a command in the

HTTP session

13 Login Success 13 Login Success

14 Sentiment 14 Are source and

destination IP address

and ports equal

Table 6.1-2 – Table comparing features of the Datasets Used

It can be seen the datasets contain different features. However, this is typical of real-world situations.

Networks are diverse, and very few have the same SDN configuration, let alone server configurations.

However, all the features can be found using the methodology shown in Chapter 5. The most important

difference is the lack of a sentiment score within the UNSW-NB15 dataset. This is because the pre-

prepared version of the dataset does not come with logs to analyse in the same way as the

NetFlow/IPFIX dataset. The full version does have Bro IDS logs, however, these logs do not contain

log text to analyse in the same way sentiment analysis requires. Instead, Bro-IDS logs consist of listing

requests and the server result of that request. For instance, in Figure 6.1-3 the result for inbound

requests on the SSH server can be found. The “log text” for this would simply be “Failure”, “Success”

or “Undetermined” which allows for simpler methods to be used to be understood.

Figure 6.1-3 – Bro IDS logs from the UNSW-NB15 Dataset for SSH connections

The FTP and HTTP logs are much the same, except they also list the command being used (for

example, “RETR README.txt - 226 Transfer complete” for FTP logs)

However, it does highlight the ease of determining the counts that have been used within the dataset.

After comparing time and IP addresses from the flows and logs, and on a match add one to the

corresponding count in the log table.

94

Ultimately, depending on the logs being generated, sentiment analysis may not be required or suitable

and exactly what is suitable will vary from server to server. It is believed that the sentiment analysis

makes sense for the Kippo/Open SSH logs for the NetFlow/IPFIX dataset, but not for the UNSW-NB15

dataset. With the different features it becomes obvious that the datasets are not directly comparable.

However, the reasoning behind using both datasets is different. The NetFlow/IPFIX dataset advantage

is that it does have both logs and flows and so the full process can be followed from start to finish.

However, it is not as well known or used, and so comparisons to other works are difficult. The UNSW-

NB15 dataset is better known and understood. Additionally, direct comparisons to other works can be

made as no additional unusual features are being used. Finally, the NetFlow/IPFIX dataset is for SSH

connections only, while the UNSW-NB15 dataset contains a mix of services. This allows for examination

of how the system works when moved over to services outside SSH.

6.2 Extraction

From here the data preparation needs to be performed. The first step is to convert any text data into

numerical data. This is performed through the use of the LabelEncoder() function within sklearn. This

encodes strings into an integer between 0 and n_classes-1. So, for a dataset that contains TCP, UDP,

ICMP and ARP, the values would be converted into 0, 1, 2 and 3. Within the dataset only protocol needs

to be converted this way. The code for this is shown in Code 6.2-1:

1. from sklearn.preprocessing import LabelEncoder
2. encoding = LabelEncoder()
3. i = ['proto']
4.
5. for n in i:
6. print("Processing column", n)
7. encoding.fit(X_train[:, n])
8. X_train[:, n] = encoding.transform(X_train[:, n])
9. X_test[:, n] = encoding.transform(X_test[:, n])

Code 6.2-1 – Code to shown LabelEncoder Function

Where X_train is the training set, and X_test is the testing set. However, this method potentially

introduces bias within the process. The implication is that protocol is ordinal, and so that larger values

are “more significant” than smaller ones. In practice, this is not true. The data is therefore transformed

once more using OneHotEncoding(). This converts the integer into a binary vector. Using the example

of the four protocols above, this means there would be 0,0,0,1 – 0,0,1,0 – 0,1,0,0 and 1,0,0,0. Each

new column refers to one of the protocols, and these in practice become new features. The code for

this is shown in Code 6.2-2:

1. from sklearn.preprocessing import LabelEncoder
2. encoding = OneHotEncoder()
3. i = ['proto']
4.
5. for n in i:
6. print("Processing column", n)
7. encoding.fit(X_train[:, n])
8. X_train[:, n] = encoding.transform(X_train[:, n])

95

9. X_test[:, n] = encoding.transform(X_test[:, n])

Code 6.2-2 – Code to show OneHotEncoder

Recently, sklearn has allowed OneHotEncoder to take strings as inputs, however that was not the case

when this code was originally developed, and the data need to be converted into numerical form before

One Hot Encoding could be applied. As such the only code needed now is the code shown in Code

6.2-2 for the OneHotEncoder.

The data will then need to be scaled. Later processes can show bias towards larger numbers, deciding

that they are more significant. Again, this is not necessarily true. As such, the data will be transformed

using Min-Max scaling. The process for this is carried out by the sklearn MinMaxScaler() function, with

the code very similar to the above encoding functions and is shown in Code 6.2-3:

1. scaler = MinMaxScaler()
2. scaler.fit(X_train)
3. training_data = scaler.transform(X_train)
4. testing_data = scaler.transform(X_test)

Code 6.2-3 – Code for the MinMaxScaler

This will fit the data according to the training data. If values in the testing data are larger than those

supplied within the training data appear, then this will mean that those values will appear as over 1 with

the testing data. Similarly, smaller values in the testing data then those that appear in the training data

will become negative values. However, this is not considered a significant disadvantage, since these

values are statistically abnormal, and so appearing outside the normal 0-1 range would emphasise this

discrepancy.

The code for the functions in this section does not change for the different datasets.

6.3 Analysis

While this Section does consist of aggregation, initial analysis, and initial classification, in practice the

aggregation for the datasets has been completed in the previous step. This means this subsection will

consist of initial analysis and initial classification, for which the primary steps to be discussed are the

way the values for the hyper-parameters for the models discussed in Section 5.4.2 and Section 5.4.3

have been determined.

6.3.1 Initial Analysis

The goal of this assessment is to gain an initial idea as to the category of risk the flows contain. In

Section 5.4.2 it was discussed how this would take the form of a clustering algorithm that creates a risk

score based upon the ratio of benign to malicious flows within each cluster. As the goal is ultimately to

create a risk score for the clusters, metrics such as accuracy are not the best indication of success. It

is not significant if occasional benign samples are mixed with malicious samples, so long as the mixing

of benign and malicious is not equal (i.e. clusters of benign and malicious samples evenly mixed). The

goal is to achieve two sets of groups of clusters (or two sets of super clusters, i.e. clusters of clusters),

one with as high to a value of 1 as possible, and one with a value as close to 0 as possible as this gives

96

the best indication as to whether flows are malicious or benign. If placed on a graph with risk score as

the X axis, and number of samples in the Y axis, this should result in a graph that resembles an y2 +

0.5 line, so that when x reaches 0.5 reaches y reaches 0, where y is the number of samples.

Additionally, minimising the number of groups would be beneficial, as too many groups defeat the

purpose of being efficient. As discussed, there are 2 hyper-parameters to be configured,

min_cluster_size and min_samples. Both values can be increased to increase the number of records

that are clustered into a specific group.

HDBScan works through plotting the records onto an n-dimensional graph (where n is the number of

features). It then groups together records depending upon their distance from other clusters. As stated

in chapter 3, for a cluster to be defined, there must be at least n records, where n is the min_cluster_size.

Single linkage splits that contain fewer points than this will be considered noise, rather than a separate

cluster. Additionally, min_samples refers to the number of samples within a neighbourhood for a point

to be considered a core point. The effect of increasing these is to make more points be considered

noise, or to be put into the -1 cluster. These points have little relation to other core points, either not

having enough points close enough to be considered a cluster by themselves, or not having enough

points close enough together for a core point (and therefore a cluster) to be defined. In this sense,

min_cluster_size can be considered to be the absolute number of points required for a cluster to exist,

while min_samples can be considered the minimum density of the points required for a cluster centre

to be defined.

There is a balance between having values too high and too low for both values. If values are too low

then there will not be enough clusters, as clusters will be merged into each other, leading to the risk

scores tending towards 0.5. Alternatively, if the values are too high than too many points will be regarded

as noise.

While testing started with low values for both min_cluster_size and min_samples and increased them

until the -1 cluster started to increase in size significantly. This led to an optimum min_cluster size of

2000, and a min_sample size of 400, resulting in the risk score to cluster size graph found in Figure

6.3-1:

97

Figure 6.3-1 – Risk score against size of clusters for Min_cluster size of 2000 and min_sample size of 400 for the
UNSW-NB15 dataset

The only cluster between the risk score of 0.4 and 0.6 is the unclustered group -1. Additionally, there is

only one group between the risk score of 0.3-0.7, and this is a borderline line case with a probability of

0.30273. Five groups have between 2000-2500 samples, and seven have between 3000-4000, with the

largest of these being 3658. This means 12 of the 21 groups have less than 4000 samples. If the size

of the hyper-parameters is increased beyond this, the size of the -1 cluster increases significantly as

the five smaller clusters become unclustered. Smaller values start to have multiple clusters not be well

defined in terms of their risk score, with scores between 0.4 and 0.6, additionally it also results in more

clusters being created, which adds computational complexity in a system designed to reduce it.

The next step is to ensure that the clustering is effective over multiple datasets using the same hyper-

parameters, and so the results for the NetFlow/IPFIX dataset in Figure 6.3-2:

0

10000

20000

30000

40000

50000

60000

70000

80000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

er
 o

f
Sa

m
p

le
s

Risk Score

98

Figure 6.3-2 – Risk score against size of clusters for Min_cluster size of 2000 and min_sample size of 400 for the
NetFlow/IPFIX dataset

The same pattern as with the UNSW-NB15 dataset emerges. The only cluster to have a risk score

between 0.4-0.6 is the -1 grouping, which has a risk score of 0.4067. Additionally, the only clusters

between 0.3-0.7 are two clusters with risk scores 0.67 and 0.68. These indicate good probabilities of

any flows being assigned as being benign or malicious, respectively. There is a high number of

completely benign clusters, which will significantly aid in reducing the number of flows that require

analysis, however the malicious clusters are not as focused as in Figure 6.3-1. In practice, the only

difference should be that there is not as high a degree of certainty moving into the Initial Classification

stage, as any flows with a risk score above 0.7 should be being analysed with a high priority. With the

-1 group score being so low, it is possible there is scope to tune these results further, by increasing the

hyper-parameter values, however, it is considered that these are sufficient to proceed with and doing

so allows us to keep the hyper-parameters the same between the UNSW-NB15 and NetFlow/IPFIX

datasets. As such the final hyper-parameters chosen are a min_cluster size of 2000 and min_sample

size of 400.

During this run, it took approximately 7mins to fit the UNSW-NB15 training data using an Intel Core I7-

3770 clocked at 3.4GHz, and another 3mins to analyse the testing dataset.

6.3.2 Initial Classification

The first step is the feature reduction, for which PCA is used. PCA has been found to be useful in

reducing features in the past, with common values above 0.95 and below 1, or when n_components is

above 1, the top n ranked features are selected [100]. PCA works through measuring the variance that

can be explained through the feature. This is done through finding new variables that are linear functions

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u

m
b

er
 o

f
Sa

m
p

le
s

Risk Score

99

of the original dataset, which maximise the variance and are unrelated to each other (which is

important).

The binarisation of the protocol feature (explained in Sections 5.4.3 and 6.2) means there is always at

least one feature that can be removed without any loss of data, since the sum of the protocol features

should always equal 1, and the protocol features will always be labelled 0 or 1 (e.g. UDP 0, TCP 0,

ICMP 1). Collectively, this means that if one of the features is removed (for example, the ICMP feature)

it can be inferred from the remaining features. This does extend to features outside of the expanded

ones created, however. Additionally, several papers have found that some features are more useful

than others or explain more variance than others [101], [71], [102], [103].

The goal of feature reduction is to remove only those redundant features that are left after the initial

processing, and any features that do not contribute to the overall model. This means using higher values

of n_components.

As was stated in Section 5.4.3, a method of balancing the training data is also needed. Section 3.1.3

highlighted how SMOTE based techniques have improved accuracy, and as such comparing both

SMOTE and ADASYN is required.

Default “reasonable” values for other hyper-parameters within the model were selected. The model was

then run using these reasonable values on a range of values for n_components, using 10-fold cross

validation to gather a suitable average of the results.

The results on the UNSW-NB15 dataset are shown in Table 6.3-1 and Table 6.3-2:

PCA Value (Amount of variance

explained)

Accuracy Recall Precision F1 Features

Selected

0.99 83.81 87.63 83.93 85.63 118/171

0.98 83.05 70.48 98.23 82.08 84/171

0.97 85.06 75.41 96.73 84.75 51/171

0.96 81.66 74.81 90.20 81.79 23/171

0.95 82.05 70.51 95.78 81.22 16/171

0.94 80.44 75.17 87.55 80.89 13/171

Table 6.3-1 – Table to show the effect of PCA n_components value on Accuracy, Precision, Recall, F1 and

number of features on the UNSW-NB15 Dataset using ADASYN

PCA Value (Amount of variance

explained)

Accuracy Recall Precision F1 Features

Selected

0.99 84.87 89.57 84.01 86.70 118/171

0.98 85.34 87.68 85.98 86.82 84/171

0.97 85.10 86.40 86.51 86.46 51/171

0.96 83.92 92.53 80.97 86.37 23/171

0.95 81.60 96.00 76.55 85.18 16/171

100

0.94 83.02 89.09 81.72 85.25 13/171

Table 6.3-2 – Table to show the effect of PCA n_components value on Accuracy, Precision, Recall, F1 and
number of features on the UNSW-NB15 Dataset using SMOTE

It can be seen from the tables that accuracy and F1 score start to be affected negatively below 0.97. At

this point, so many features are being removed that overfitting starts earlier. Figure 6.3-3 shows loss

against epoch for the PCA value 0.96, which shows this overfitting occurring.

Figure 6.3-3 – Accuracy against epoch for PCA n_component = 0.96

Accuracy peeks at the 61st (86.7%) epoch, and the model settles into a local optimum at about that

same point. The other peaks at points 80 and 92 were both lower than the 61st result, with the 92nd

epoch still being lower than the 80th (85.67% vs 85.14%). It is likely that even if training had been

allowed to continue beyond the 100th epoch, the results would have continued to decline as the model

become more and more overfitted. We can compare this to the same graph at 0.98 for the PCA

n_component value (Figure 6.3-4).

101

Figure 6.3-4 – Accuracy against epoch for PCA n_component = 0.98

The graph starts to find the local optimum at epoch 44 here (rather than epoch 39 above). It also finds

values nearing 90% at epochs 56, 61 and 67. The tail also appears to be flatter, with less variance

between epochs. This could indicate that the extra data has given more stability to the optimum solution

found by the model.

From the effects on the UNSW-NB15 dataset, it can be seen that SMOTE has the effect of increasing

Recall at the expense of Precision. Alternatively, ADASYN has the effect of increasing Precision at the

expense of Recall. This makes sense because the aim of ADASYN is to give more training data to more

difficult-to-classify records. ADASYN would make more records of the difficult-to-classify malicious

activity, whereas SMOTE will just make more malicious examples, without targeting the difficult to

classify records. This would naturally have the effect of increasing precision with ADASYN over

SMOTE. F1 scores however show a slight preference for SMOTE. This indicates that while ADASYN

may be better at ensuring benign records are not misclassified, SMOTE may be more successful at

detecting malicious activity overall. SMOTE with a PCA n_components value of 0.98 is chosen.

6.3.3 Binary Classification

The next step is the initial classification itself. The goal of the initial classification is to determine which

flows will undergo the mitigation process (i.e. a binary classifier). This is different to determining which

flows are malicious, in that even if this initial classification determines a flow is malicious, the mitigation

process may later decide the flow is benign or not a threat. A secondary consideration of this is that this

stage can be used to add more data to the mitigation process. Therefore, a softmax classifier is used

to produce the end classification result. This is unusual, as typically binary classification would be

performed with a sigmoid classifier. However, sigmoid gives results as a float that is not constrained

and therefore it is difficult to compare different runs of the same model. Softmax alternatively gives

102

results in a float between 0 and 1, where the result is a direct probability of record being that class, and

where the sum of the probabilities equal 1.

As a CNN-based model is being used, there are various hyper-parameters that require tuning (identified

within Section 5.4.3), such as learning rate, epochs and batch size. The issue with these values is that

the optimum for them can change depending upon other hyper-parameters. For the hyper-parameters

involved with the PCA analysis and the model structure, it would be expected the same trends to follow

regardless of other hyper-parameters. With learning rate, batch size, epochs this is not the case.

Changing one can have a marked effect on the optimum value for the other values. There are several

ways to manage this. The first is to change each value one at a time, and mark down results for every

possible value. While this will work, it is time consuming. The second is to use either a grid or random

search.

Grid search can be thought of as exhaustive searching. The programmer specifies several values to

test and the model will test every combination of those values. This reduces the time involved in

specifying new values for hyper-parameters, recording the results, and restarting the model, but can

result in large processing times otherwise. For the three key hyper-parameters identified, if each hyper-

parameter is given 5 values, this would result in 53 or 125 runs of the model. With 10-fold validation,

this becomes 1,250 runs. Assuming one full run of the model were to take 30 minutes, this would result

in a run time of 37,500 minutes, or slightly over 26 days. This time can be reduced by configuring fewer

hyper-parameters, or running fewer validations.

The optimum learning rate can be estimated to be in the range 0.01-0.0001. This means reasonable

values can be 0.01, 0.001 and 0.0001. Likewise, batch size can be estimated to be between 50 and

200 based upon previous works [92][104]–[106]. This means reasonable values can be 50, 125 and

200. Finally, epochs can be estimated using the values 10, 50, and 75. This will cut the processing time

from 26 days to approximately 4.5 hours (or 270 runs, using the same estimate on processing time).

This is significantly more manageable; however, it also means that the optimum values are somewhere

close to the ones selected, rather than being a conclusive estimate.

Random search is an alternative method, where instead of predetermined values being selected,

random values are selected to be testing in a range of values that are specified. So, for learning rate,

instead of selecting 0.01, 0.001 and 0.0001, a range 0.01-0.0001 can be selected. Then the model will

randomly select learning rates within the range to test on. The advantage with this method is that it is

possible to select the number of runs that are made, corresponding to how long the model should run

for. The model will randomly select values for the hyper-parameters for each run. This randomness

makes it difficult to determine whether the optimum value have been obtained, however random search

has been shown to obtain good results in the past [107], [108], [109], [110].

One other possibility to reduce the amount of processing time is to use early stopping. Early stopping

only varies the number of epochs and works through measuring the results of each epoch. If the results

for the epoch do not improve, then it is assumed the model is optimised, and results are shown for that

number of epochs. This in itself can be configured a number of ways, including waiting for a specific

103

number of epochs to see if results improve any further, how much a results need to improve by, and

importantly which measure to use when comparing results through epochs. Using early stopping could

allow us to remove epochs as a hyper-parameter from the grid search, which would result in a squared

increase with number of features, rather than cubed. It does however then mean that new parameters

need to be selected in order to gather a suitable stopping point (hyper-parameters to configure hyper-

parameters).

From the graphs of accuracy compared to epochs shown earlier (Figure 6.3-3 and Figure 6.3-4), it can

be seen that accuracy can vary quite dramatically from epoch to epoch. Therefore, parameters to

determine when accuracy may have peaked need to are defined. Weights will need to have had time

to stabilise before training stops. Again, using the graphs, it appears that broadly if accuracy is to

increase at all again, it will increase within 20 epochs. Much of the time, 10 epochs would be enough,

however there are edge cases where this is not true. For instance, there was a peak at epoch 26, which

was not overtaken until epoch 44. At epoch 26 the model had clearly not had enough time to stabilise

and did not start to stabilise until around epoch 50. The patience parameter is therefore set to be 20.

With a patience parameter so high, restore_best_weights will be changed to true as the values 20

epochs after the optimum are likely to be different. Other details can be left at default. Min_delta looks

for any improvement, and mode defaults to auto which will work for the proposed model. This produces

code similar to Code 6.3-1:

1. earlyStopping = EarlyStopping(monitor='val_recall', min_delta=0.1,
patience=20, verbose=50, mode='auto', restore_best_weights=True)

Code 6.3-1 – Code to show Early Stopping

A combination of early stopping and grid search is used in order to find the optimum values for the

hyper-parameters. While the learning rate options will remain at 0.01, 0.001 and 0.0001, the batch size

options can be increased to 50, 100, 150 and 200 in order to home in on the right batch size more

quickly. As earlier tests have shown a direct relationship between precision and recall, recall is selected

as the parameter to test against with the early stopping. It shall also be tested against the validation set

and not the main set in order to prevent overfitting. The test set is the same set as the main training set,

but without any of the additional records created by ADASYN or SMOTE. While ideally training and

validation sets would be completely separate, in order to allow for comparisons to other works to still

be made, the testing and training set of the UNSW-NB15 cannot be changed dataset beyond what has

been described in the data pre-processing steps. Reusing the training set allows for the testing set to

be completely unseen until testing is required.

Moving on to the structure of the model itself, CNN models generally have become deeper, not wider,

with convolutions kernel sizes of 1x1 being used. This size of convolution would not reduce the size of

the feature set but allows for the number of layers to be increased. Generally, the kernel sizes should

decrease as the number of layers increase, which should allow the model to find increasingly latent

features. As such proposed are models with 1x1 kernel sizes in the last few layers, increasing the

104

number of layers in the model. Also proposed are models with the 1x1 kernels earlier and spaced

throughout the model to see the effects this will have.

Several model structures will need to be tested, and generally the kernel size should decrease in size

as the model progresses. This is based on works such as [47], [46], [111]. Because of the small size of

the feature space, and the need for multiple layers, the first layer should be limited to at most a kernel

size of 5x5, and 3x3 should be tested. As such the following model sizes will be tested:

1 3x3 kernels stacked

2 3 3x3 kernels, followed by 1x1 kernel, 2 3x3 kernels

3 2 3x3 kernels followed by 1x1 kernels, 3 3x3 kernels

4 2 3x3 kernels, 1 1x1 kernel, 2 3x3 kernels, 1 1x1 kernel, 1 3x3 kernel

5 3 3x3 kernels, 4 2x2 kernels

6 1 5x5 kernel, 3 3x3 kernels

As such code for the final model will be coded as shown in Code 6.3-2:

1. def create_model(dropout_rate=0.2, learn_rate=0.01):
2. # create model

3. model = Sequential()
4. model.add(Dense(121, activation='softmax',

input_dim=int(inputShape)))

5.
6. model.add(Reshape((11, 11, 1)))
7.
8. model.add(Conv2D(8, (3, 3)))
9. model.add(BatchNormalization())
10. model.add(Activation('relu'))

11.

12. model.add(Conv2D(16, (3, 3)))

13. model.add(BatchNormalization())

14. model.add(Activation('relu'))

15.

16. model.add(Conv2D(32, (3, 3)))

17. model.add(BatchNormalization())

18. model.add(Activation('relu'))

19.

20. model.add(Conv2D(64, (3, 3)))

21. model.add(BatchNormalization())

22. model.add(Activation('relu'))

23.

24. model.add(Conv2D(128, (3, 3)))

25. model.add(BatchNormalization())

26. model.add(Activation('relu'))

27.

28. model.add(Flatten())

29. model.add(Dropout(dropout_rate))

30.

31. model.add(Dense(32, activation='relu'))

32. model.add(Dense(1, activation='softmax'))

33.

34. optimizer = RMSprop(lr=learn_rate, rho=0.9)

35. model.compile(optimizer=optimizer,

36. loss='binary_crossentropy',

37. metrics=[km.binary_precision(), 'accuracy']

38.)

105

39.

40. return model

Code 6.3-2 – Full model code

The model shapes are tested by only changing the model function. Results for the different model

structures are as follows:

Model Epoch

Stopped

Batch

Size

Learning Rate Accuracy Precision Recall F1

1 100 75 0.001 85.39% 97.05% 75.76% 85.10%

2 100 100 0.001 84.06% 98.64% 73.60% 84.30%

3 100 50 0.01 85.03% 90.52% 81.33% 85.68%

4 100 100 0.01 66.78% 67.16% 77.62% 72.01%

5 100 100 0.01 72.37% 76.65% 71.65% 74.07%

6 100 100 0.001 83.82% 99.19% 71.19% 82.90%

Table 6.3-3 – Model accuracy, precision, recall and f-score, as well as grid search metrics for the UNSW-NB15
dataset

Model Epoch Stopped Batch

Size

Learning Rate Accuracy Precision Recall F1

1 100 100 0.001 89.7% 91.5% 97.5% 94.4%

2 75 150 0.01 82.1% 72.3% 87.54% 79.22%

3 75 100 0.01 83.82% 70.62% 99.98% 82.77%

4 100 100 0.001 83.81% 71.06% 99.29% 82.84%

5 100 100 0.001 85.5% 73.96% 98.00% 84.29%

6 100 100 0.001 83.2% 72.81% 97.81% 83.51%

Table 6.3-4 – Model accuracy, precision, recall and f-score, as well as grid search metrics for the NetFlow/IPFIX
dataset

Models 1, 2 and 3 perform best in terms of accuracy and F-Score. A requirement for precision to be

emphasised has been stated, so that as few false positives are passed to the mitigation system as

possible. This would lead us to using Model 1 or 2, and since Model 1 has a slight advantage over

Model 2 in terms or F1 and accuracy, Model 1 will continue to be used.

Using an Intel I7-3770 with a base clock at 3.4GHz, and 16GB of DDR3 RAM training takes 53secs per

epoch. With early stopping on, the amount of time each run takes does vary, however, the models

usually stop training before 50 epochs, we can say that one complete run takes approximately 8 hours.

Using a GPGPU dramatically decreases this, and runs using a RTX2080 typically took less than 2hrs

when combined with an Intel I9-9900 clocked at 3.6GHz.

6.4 Mitigation

This section shall be split into four subsections, each representing one model within the mitigation plane.

These are the Network Layer, the Attack Target, the Attack Vector, and the Attack Intended Impact.

106

6.4.1 Network Layer Targeted

While the model for the first stage of the mitigation process could be based off the model for the binary

classification (Section 6.3.3), there are several changes that would need to be made to make it suitable

for multi-class classification. Previously the model (shown in Code 6.3-2) used precision to compare

the success of it between epochs. This logically does not make sense for a multi-class problem, and so

the metric is changed to mean squared error. Rather than attempting to increase precision, the model

will now attempt to reduce the error between epochs. The different model shapes and sizes can be

tested once more. The reduced size and composition of the datasets (caused by not training on any

records that have not been identified as malicious in the initial analysis) means the other model shapes

might be more effective. The model structures chosen are shown in Table 6.4-1.

Model Number Model Structure

Model 1 3x3, 3x3, 3x3, 2x2

Model 2 2x2, 2x2, 2x2, 2x2, 2x2, 2x2, 2x2

Table 6.4-1 – Table of model structures for the Layer Mitigation Model

Additionally, the loss metric should be changed from binary crossentropy to mean squared error, as the

problem is no longer a binary problem.

In Chapter 3, it was stated that flows that were marked as being malicious from the classification phase

would be used. This gives a better representation of the data the models would actually receive more

generally, as if only malicious flows from the dataset were used, then the model would not ever be

trained on benign data (or false positives). Part of the reasoning for this is that false positives should be

flagged as having no action taken against them, and so should be included in the training set. The code

needed to gather the data for training and testing is comparatively simple, as shown in Code 6.4-1:

1. for row, Y in zip(X, classification_results):
2. if Y == 1:
3. layerX.append(X)

Code 6.4-1 – Code to gather data for mitigation stage

This leads to the results found in Confusion matrix 6.4-1 and Confusion matrix 6.4-2:

 Benign Network Application

Benign 88.0% 0.9% 11.1%

Network 4.7% 69.5% 25.8%

Application 16.8% 0.3% 82.9%

Confusion matrix 6.4-1 – Results for the Network Layer model within the Mitigation taxonomy with the first model
structure

 Benign Network Application

Benign 44.7% 2.1% 53.2%

Network 1.8% 74.3% 23.9%

Application 12.2% 0.4% 87.3%

107

Confusion matrix 6.4-2 – Results for the Network Layer model within the Mitigation taxonomy with the second
model structure

Seen is that the first model has greater success in correctly identifying benign flows, while the second

model has greater success in identifying Network and Application level attacks. At this stage, it is still

important to minimise the number of misclassified benign flows, and the advantage the Model 2 has in

accurately identifying Network and Application malicious activity is minor compared to Model 1 (74.3%

vs 69.5% for Network and 87.3% vs 82.9% for Application). Additionally, the advantage for Model 1 in

accurately defining benign flows is significant (88% vs 44.7%). For this reason, the Model 1 structure is

chosen to continue. However, it is important to note that there are more malicious flows defined as

benign for Model 1. This means automatic mitigation will not be undertaken against these flows;

however, an alert will still have been raised with an administrator.

6.4.2 Attack Target

The next stage is the Attack Target. This model serves two main functions, the first is to remove any

remaining benign activity. The second is to gain a reasonable idea of where the attack is taking place,

so that this can be fed into the final decision on the activity to take.

There are not many benign records left within the data set, and this can cause errors with upscaling

methods such as SMOTE or ADASYN, since the number of examples can be less than the number of

neighbours. Random Oversampling is therefore used in place and is compared to no oversampling at

all. This is shown in Confusion matrix 6.4-3 and Confusion matrix 6.4-4:

Benign Network OS Application

Benign 100% 0% 0% 0%

Network 3.8% 75.5% 1.3% 22.4%

OS 1.2% 0.3% 31.1% 67.3%

Application 0.3% 0% 1.0% 98.6%

Confusion matrix 6.4-3 – Confusion Matrix for the Target in the Mitigation system with Random Oversampling

Benign Network OS Application

Benign 0% 66.7% 33.3% 0%

Network 0% 75.8% 24.2% 0%

OS 0% 0.3% 99.6% 0%

Application 0% 0% 84.9% 15.1%

Confusion matrix 6.4-4 – Confusion Matrix for the Target in the Mitigation system without Random Oversampling

With oversampling all remaining benign flows are detected as such (with a small number of malicious

flows being misclassified as benign). Without oversampling, no benign flows are detected as being

classified as benign. Additionally, with the Random Oversampling the results for OS drop significantly

(from 96.6% without to 31.1% with), however, this comes at the cost of also misclassifying Application

Targets which also have results that drop without Random Oversampling (from 98.6% with

Oversampling to 15.1% without). Taken collectively it is concluded that random oversampling should

continue.

108

6.4.3 Attack Vector

The next stage is to determine the Vector for the remaining attacks. Again, the effect of random

oversampling can be seen, however, now all benign flows have been classified as such the effects may

not be as prominent. The results for these are shown in Confusion matrix 6.4-5 and Confusion matrix

6.4-6.

Benign Misconfiguration Insufficient

Validation

Vulnerabilities Users System

Limitations

Benign NA NA NA NA NA NA

Misconfiguration 0% 78.8% 18.0% 3.2% 0% 0%

Insufficient

Validation

0% 65.7% 29.3% 4.2% 0.8% 0%

Vulnerabilities 0% 53.6% 11.4% 32.7% 2.0% 0.4%

Users 0% 0% 0% 50.0% 50.0% 0%

System

Limitations

7.2% 18.9% 3.5% 2.1% 0.3% 68.0%

Confusion matrix 6.4-5 – Confusion Matrix for the Vector in the Mitigation system with Oversampling

Benign Misconfiguration Insufficient

Validation

Vulnerabilities Users System

Limitations

Benign NA NA NA NA NA NA

Misconfiguration NA 0.3% 0% 99.7% 0% 0%

Insufficient

Validation

NA 0.2% 26.3% 73.5% 0% 0%

Vulnerabilities NA 0% 0% 99.6% 0% 0.3%

Users NA 0% 0% 100% 0% 0%

System

Limitations

NA 0% 0% 25.4% 0% 74.6%

Confusion matrix 6.4-6 – Confusion Matrix for the Vector in the Mitigation system without Oversampling

As expected, the case to keep oversampling is far less clear. While it has a positive effect on the

accuracy of Misconfiguration, Insufficient Validation and Users, it has a negative effect on all other

vectors. 7.2% of System Limitation vector-based attacks are incorrectly classified as benign, meaning

those attacks would not be automatically mitigated. However, without oversampling most vectors are

being labelled as vulnerabilities. This is potentially showing signs of overfitting, as the model starts to

show preference to the majority class. It is chosen to continue with oversampling for now.

6.4.4 Impact Sought from Attack

The final stage is to determine the impact the attack is attempting to achieve. The confusion matrix for

impact is shown in Confusion matrix 6.4-7 and Confusion matrix 6.4-8:

109

Benign DoS Information

Disclosure

Access Privilege

Benign NA NA NA NA

DoS 0.1% 93.6% 0.5% 5.8%

Information

Disclosure

0% 12.0% 87.4% 0.6%

Access Privilege 0% 67% 0.3% 32.6%

Confusion matrix 6.4-7 – Confusion Matrix for the Impact in the Mitigation system without Oversampling

Benign DoS Information

Disclosure

Access Privilege

Benign NA NA NA NA

DoS 0% 99.7% 0.3% 0%

Information

Disclosure

0% 5.1% 94.9% 0%

Access Privilege 0% 0% 0% 100%

Confusion matrix 6.4-8 – Confusion Matrix for the Impact in the Mitigation system with Oversampling

It can again be seen that oversampling does aid overall accuracy. While both DoS and Information

Disclosure attacks have good results without the oversampling, achieving 93.6% on DoS and 87.4% on

Information Disclosure. However, only 32.6% of Access Privilege attacks are identified correctly.

Additionally, only 0.1% of records are misclassified as benign, meaning that 99.9% of malicious activity

that makes it to the final model will have some sort of mitigation applied to it. However, adding in

oversampling achieves 100% accuracy on Access Privilege attacks, with 99.7% of DoS attacks correctly

classified and 94.9% of Information Disclosure attacks correctly classified. This leads us to believe that

Oversampling is still helping with the training process, despite the mixed results for Section 6.4.3 and

the Attack Vector.

110

7 Evaluation and Results

This Chapter will practically demonstrate the extent to which the objectives outlined in Section 1.2 have

been achieved. This will be done by listing the objective, the experiment performed to show the objective

was achieved and the results of the experiment.

7.1 Develop a method to mitigate the effects of the limited data

While the effects of the limited data on detection accuracy have been mitigated through using

techniques such as SMOTE or ADASYN, as well as developing a custom model designed to handle

the fewer features, this needs to be put into the context of wider works. As such, this section will

compare the initial classification results to other state of the art results. This primarily needs to be done

with the UNSW-NB15 dataset, as this is the most widely used. This work is compared to [41], [42], [43],

[44].

Figure 7.1-1 – A comparison of this work to other state of the art results

This work is broadly comparable to the others listed; however, this needs to be put into the perspective

of the features used. All the comparable papers listed use the entire dataset, and all its features to gain

their results. Alternatively, these results use a fraction of the features (70% fewer features than the

cutting-edge works compared against). While accuracy may be slightly lower (at 85.1% vs an average

of 89.5%), precision, and F-score are both competitive. SMOTE reaches a precision of 86.5% vs an

average of 87.1%, and ADASYN achieves a higher precision then any of the works mentioned.

Similarly, F-Score reaches 86.5% for SMOTE, verses an average of 88.5% for the other papers. The

model should run quicker on comparable hardware (simply because there are fewer features to

process) and requires less post processing to gather features, while maintaining comparable results.

0

10

20

30

40

50

60

70

80

90

100

Accuracy Precision Recall F-Score

111

7.2 Identify Other Potential Data Sources

While results are comparable to other in the space, it is still needed to identify if the extra data extracted

from logs has aided this, and to what extent. This can be performed through measuring the success of

the initial model both with the extra data collected by logs and without.

In Tables Table 7.2-1 and Table 7.2-2 are the results from models 1 and 3 for the UNSW-NB15 dataset.

These models were chosen as they achieved the highest accuracy and F1-scores in Section 6.3.3.

Model Epoch

Stopped

Batch

Size

Learning Rate Accuracy Precision Recall F1

1 100 75 0.001 85.39% 97.05% 75.76% 85.10%

3 100 50 0.01 85.03% 90.52% 81.33% 85.68%

Table 7.2-1 – Results with the highest Accuracy and F-score for the UNSW-NB15 dataset with logs

Model Epoch

Stopped

Batch

Size

Learning Rate Accuracy Precision Recall F1

1 50 75 0.001 80.96% 88.43% 75.27% 81.32%

3 75 100 0.001 84.06% 99.35% 71.52% 83.17%

Table 7.2-2 – Results with the highest Accuracy and F-score for the UNSW-NB15 dataset without logs

There is a clear difference, with accuracy and F-Score consistently lower for the results without logs.

Precision is high for model 3 without logs, however this comes with very low recall, which indicates that

overfitting is occurring, and the model is starting to register all activity as malicious. The number of

epochs is lower for the results without the log data. This is another indication that overfitting is occurring,

as early stopping is stopping the model learning significantly earlier than with the log data as accuracy

has peaked.

The results on the NetFlow/IPFIX dataset can be seen in Table 7.2-3 and Table 7.2-4:

Model Epoch

Stopped

Batch

Size

Learning Rate Accuracy Precision Recall F1

1 100 100 0.001 89.7% 91.5% 97.5% 94.4%

3 75 150 0.01 82.1% 72.3% 87.54% 79.22%

Table 7.2-3 – Results with the highest Accuracy and F-score for the NetFlow/IPFIX dataset with logs

Model Epoch

Stopped

Batch

Size

Learning Rate Accuracy Precision Recall F1

1 75 100 0.01 79.4% 79.3% 99.1% 88.1%

3 50 150 0.01 76.2% 75.7% 99.4% 85.9%

Table 7.2-4 – Results with the highest Accuracy and F-score for the NetFlow/IPFIX dataset without logs

These show similar trends, with lower accuracies and fewer epochs being run. It should also be noted

that without logs, it is recall that showcases the overfitting, with results over 99% while precision is less

than 80% for both models without logs. The difference between precision and recall is much less

pronounced in both models with the extra log data.

112

7.3 Determine how to run the system at near line speed

While steps have been taken throughout this thesis to ensure that processing complexity is kept to a

minimum, it was stated in Sections 1.2 and 2.5 it was likely that some sort of sampling method for the

occasions network load exceeds capacity to analyse that load. To that end a method has been

established to assess the risk a flow may pose, through the use of HDBScan clustering. The next step

is to determine if the clustering was successful. The goal of the clustering was to provide a risk score

so that high risk clusters could be analysed first, and low risk clusters could be analysed last, or even

ignored if system resources were stretched. In practice, both the UNSW-NB15 and NetFlow/IPFIX

datasets that were used contain more malicious activity than would be normal. The NetFlow/IPFIX

dataset was taken from a real-world network, however as part of the data preparation the size of the

dataset was reduced, and malicious activity oversampled. Effectively this means that malicious data

increased from being approximately 4% of the total dataset to being approximately 39%. This means

that looking at absolute numbers is not effective, since these would not be representative.

As such the proportion of flows that would have been clustered in a correct flow is analysed. For these

four categories of risk are proposed. Clusters within 0%-25% are considered low, clusters within 26%-

50% are considered moderately low, clusters within 51%-75% are considered moderately high and

clusters within 76%-100% are considered high risk. Ideally benign clusters are labelled as low risk, and

malicious clusters being labelled as high risk. Table 7.3-1 shows this.

Cluster risk

score

grouping

NetFlow/IPFIX UNSW-NB15

Number

of

attacks

Proportion of

total attacks

Proportion of

flows within

the class

Number

of

attacks

Proportion of

total attacks

Proportion of

flows within

the class

0% - 25%

Low Risk

789 0.015 0.012 211 0.002 0.012

26% - 50%

Moderately

Low Risk

6421 0.125 0.406 1481 0.012 0.303

51% - 75%

Moderately

High Risk

6373 0.124 0.678 48508 0.406 0.596

76% - 100%

High Risk

37705 0.735 0.876 68141 0.571 0.959

Table 7.3-1 – Proportion of malicious flows in the super clusters

It can be seen that for both datasets the proportion of flows that is considered low risk (0%-25% risk

score) is exceptionally small, with only 1.5% of the NetFlow/IPFIX dataset, and 0.2% of the UNSW-

NB15 dataset. This is good since these flows are least likely to be analysed further. Additionally,

malicious flows only make up 12.5% of moderately low risk (26%-50%) flows within the NetFlow/IPFIX

dataset, and 1.2% for the UNSW-NB15 dataset.

113

Similarly, most malicious flows are correctly identified as high risk (76%-100%). For the NetFlow/IPFIX

dataset, 73.5% of malicious flows are deemed high risk, and 57.1% of flows for the UNSW-NB15

dataset. This means that 87.6% of flows within the high-risk category for the NetFlow/IPFIX dataset are

malicious, and 95.9% of high-risk flows within the UNSW-NB15 are malicious. In both cases, even if

only high-risk flows were analysed, more than 70% of malicious activity would be analysed. If this

analysis is moved to include both high and moderately high risk (51%-75%), then more than 85% of

malicious activity will be analysed for the NetFlow/IPFIX dataset, and more than 95% of malicious

activity will be analysed for the UNSW-NB15 dataset. This compares to only slightly more than 10% of

benign flows being analysed for the NetFlow/IPFIX dataset, however slightly more than 60% of benign

activity would also be analysed for the UNSW-NB15. Still, in a real-world system, being able to ignore

40% of flows in exchange for analysing 95% of malicious activity might be considered worthwhile.

7.4 Determine a method to mitigate even 0-day threats

The mitigation method developed is flexible, and rather than attempting to identify the exact attack being

performed (something that is logically not always possible for 0-day threats), instead attempts to

determine the major aspects of the attack that could lead to a successful mitigation strategy. To

determine whether this method has been successful, two factors need to be established. The first is

whether the cascading nature (i.e. the feeding of results from lower level models to higher level models)

of the mitigation models has been successful. If there is no benefit from the cascading results, then the

models could be run in parallel to decrease reaction time. The second is to compare the results to other

state of the art results attempting to classify all attack types, to ensure the results are comparable.

The first step is to identify that the cascading model structure is effective through comparing results on

the Vector and Impact models, both with and without the previous model’s data. Vector and Impact are

chosen, as these have the largest effect on what the end mitigation would be.

7.4.1 Vector

The first step is to compare the Vector results with and without the extra data provided by previous

models in Confusion matrix 7.4-1 and Confusion matrix 7.4-2:

Benign Misconfiguration Insufficient

Validation

Vulnerabilities Users System

Limitations

Benign NA NA NA NA NA NA

Misconfiguration NA 0.3% 0% 99.7% 0% 0%

Insufficient

Validation

NA 0.2% 26.3% 73.5% 0% 0%

Vulnerabilities NA 0% 0% 99.7% 0% 0.3%

Users NA 0% 0% 100% 0% 0%

System

Limitations

NA 0% 0% 25.4% 0% 74.6%

Confusion matrix 7.4-1 – Vector Confusion Matrix with taking extra data from earlier models

114

Benign Misconfiguration Insufficient

Validation

Vulnerabilities Users System

Limitations

Benign NA NA NA NA NA NA

Misconfiguration NA 0% 0% 99.4% 0% 0.6%

Insufficient

Validation

NA 0% 24.4% 75.2% 0% 0.4%

Vulnerabilities NA 0% 0.1% 99.4% 0% 0.5%

Users NA 0% 0% 100% 0% 0%

System

Limitations

NA 0% 0% 24.6% 0% 75.4%

Confusion matrix 7.4-2 – Vector Confusion Matrix without taking extra data from earlier models

While there are common trends between both confusion matrixes (such as the propensity for malicious

activity to be labelled as vulnerabilities) it can be seen that the extra data seems to have had an effect.

Insufficient validation, vulnerabilities and misconfiguration all show an increase in accuracy (albeit

minor) and misclassified flows are generally higher without the extra data. The exception is system

limitations, which has slightly more flows classified as vulnerabilities with the additional data. It is

possible that the changes are caused by run to run variance, as they are all within 3%, and frequently

within 1%. It should be noted however, that by this point the dataset is growing quite small as all benign

flows have been removed. This means that comparatively small numbers of flows changing classes

can cause comparatively large shifts in the results. It should also be remembered that the models were

run 10 times (through 10-fold cross validation) in an attempt to remove variance. It is concluded

therefore that the extra data does have a positive effect, though the effect is small for the Vector itself.

Additionally, it should be remembered that the small size of the remaining dataset will be affecting

accuracy. Deep learning models require large volumes of information (Section 2.3) and by this point all

benign data has been removed from the dataset, as well as some misclassified malicious data, reducing

the amount of data available to learn.

7.4.2 Impact

The same comparison is then made, but with Impact rather than Vector. The final model is most

important, since it has the largest effect on the end mitigation taken. Quarantining systems under a DoS

attack for example would not be effective, and redirection of flows to another legitimate target will not

be effective for Access Privilege attacks. Presented are the results of the Impact both with and without

the extra data in Confusion matrix 7.4-3 and Confusion matrix 7.4-4:

Benign DoS Information

Disclosure

Access Privilege

Benign NA NA NA NA

DoS 0% 99.7% 0.3% 0%

Information

Disclosure

0% 5.1% 94.9% 0%

115

Access Privilege 0% 0% 0% 100%

Confusion matrix 7.4-3 – Confusion Matrix for Impact with extra data from earlier models

Benign DoS Information

Disclosure

Access Privilege

Benign NA NA NA NA

DoS 0% 0.8% 0.7% 98.5%

Information

Disclosure

0% 0% 87.6% 12.4%

Access Privilege 0% 0% 0.6% 99.3%

Confusion matrix 7.4-4 – Confusion Matrix for Impact without taking extra data from earlier models

Here the results are much more pronounced than with the Vector. All categories achieve above 90%

accuracy with the data from previous models. The difference is clearly in the classification of Access

Privilege Impacts, which while only increasing accuracy from 99.3% to 100% also eliminates any

misclassification of other Impacts as Access Privilege. Without the extra data there is a tendency for

the model to classify as Access Privilege, which is particularly pronounced in DoS attacks. This again

could be a sign of overfitting, which the extra data negates.

7.4.3 Comparisons to previous works

While comparisons to previous works are more difficult, owing to the novel way malicious activity is

being classified, some comparisons can still be made. Table 7.4-1 shows this work compared to others

with categorial accuracy and FAR:

Work Accuracy FAR

This work 88.2% 10.3%

Deep Reinforcement Learning

based Intrusion Detection

System for Cloud Infrastructure

[112]

83.8% 2.6%

A Network Intrusion Detection

Method Based on Stacked

Autoencoder and LSTM [84]

89.2 10.8%

An Ensemble-based Network

Intrusion Detection Scheme

with Bayesian Deep Learning

[113]

96.9% 0.9%

Hybrid Machine Learning For

Network Anomaly Intrusion

Detection [114]

95.4% 11.9%

Table 7.4-1 – Comparisons of multi-class classification

116

It can be seen that this work achieves comparable accuracy to other state of the art works, however

FAR is slightly higher than usual. Part of the reasoning for this is that there was an emphasis on ensuring

that there were no benign flows being mitigated. As such, all of the misclassified flows are from

malicious flows being misclassified as other types of malicious flows. Most of these are from the Vector

model, which from Confusion matrix 7.4-1 can be seen did have a number of misclassified flows, notably

Users and Insufficient validation.

It should also be noted that the same thing is not strictly being classified. All of the above papers are

classifying based on the single attack type (described in Section 2.6). This is potentially more difficult,

since there are 9 classes, rather than the (at most) 6 used in this work. At the same time, this work uses

far fewer features, and a far smaller dataset with all of the benign records removed by this point.

Additionally it should also be noted that [113] and [114] use the full unprepared dataset, which has been

stated is slightly easier. At the time of running, the dataset has been reduced to 74,854 records from

the original 175,341, a reduction of more than 100,000 records, or 58% of the dataset records. This

work is also still only using the data features provided in earlier sections, plus the additional analysis

performed as part of the process. We start with only 28% of the features, and less than half of the

dataset records, but still achieve the results above.

117

8 Discussion

The clustering method to create a risk score was successful. While it is possible that some flows may

not be analysed due to being placed in a low risk grouping, this is possible with any kind of sampling

method. It is unlikely with the method proposed however, with only 1.2% of all attacks for the

NetFlow/IPFIX dataset and 0.2% of all attacks for the UNSW-NB15 dataset being placed into the lowest

risk grouping. Additionally, 57.1% of malicious flows from the UNSW-NB15 dataset, and 73.5% of

malicious flows from the NetFlow/IPFIX dataset are placed in the highest risk class, ensuring they are

analysed with a high priority. This extends to over 95% for the UNSW-NB15 dataset and over 85% for

the NetFlow/IPFIX dataset if you include any cluster that had a risk score of over 50%.

With regards to the initial classification, it is acknowledged that recall could use improvement, with the

best results from SMOTE being around 86%-89%. However, this means that precision is lowered,

meaning that more benign flows could be classified as malicious. It is also important to note that these

results should be taken into consideration with other results from other authors. The UNSW-NB15

prepared dataset is difficult, and the best state of the art results range between 90%-95%. Chapter 2

shows this with some comparative papers, and the results achieved within this thesis tend to be within

5% of the best. This work also uses only 29% of the whole dataset, and that these comparative works

use the entire set. The benefits of using a smaller dataset include faster processing time, as well as it

being more applicable to multiple SDN environments and situations.

It should also be noted that that the ADASYN model has lower recall specifically. This is likely due to

overfitting starting to occur, combined with ADASYN increasing the number of difficult to classify

attacks. SMOTE (which increases all records equally) instead sees an increase in recall n_components

equalling 0.96 onwards. The ADASYN model is used in order to reduce the number of false positives,

however given the mitigation solution removes false positives as well, it could be considered better to

aim for higher recall at this stage and reduce the number of false positives later.

Additionally, the classifier for the model is a DNN with a softmax activation. Other types of shallow

classifiers have been found to work particularly well, including more recently random forests. While

some experimentation was carried out, the initial results were not significantly better than the DNN after

the CNN, and so more experimentation and refinement was not pursued. However, previous studies

[103] show that this is potentially something to return to, and random forests can prove effective

classifiers after a CNN has been used to reduce the dataset. Potentially the initial lack of results could

have been due to the use of PCA at the start of the process, and again this is something that could be

experimented with.

The same can be said of PCA itself. There are numerous ways of reducing the feature space. PCA was

chosen as it has been shown to be successful in the past [49], [84], and its implementation allows for

us to decide how much information to keep, whereas other methods decide how many features to have

at the end of the process. It is possible however, that other systems would lead to better classification

accuracy. Again, some experimentation was carried out with using random forests as a feature

118

extractor, but the results were not significantly better than PCA and so further experimentation or

refinement was not pursued.

The process of “chaining” together multiple models in order to gather a final classification and mitigation

proved successful as the results show that data from previous models aids in accuracy of the following

models, even though they are not directly classifying the same thing. The fact that there is always an

option for benign results mean that any benign flows get removed after the second (Target) model. The

number of false negatives also stays consistently low, meaning that most of the initially detected attacks

stay within the mitigation system. More to the point, the type of attack (DoS, Information Disclosure or

Access privilege) is successfully determined with high degrees of success. 93.6% of DoS attacks are

correctly identified, which is important since they have been assigned a unique mitigation measure

(sinkhole or redirection to other legitimate source depending upon the certainty of malicious intent).

Information disclosure is correctly predicted 87.4% of the time, however Access privilege is only

correctly predicted 32.6% of the time. More importantly access privilege is incorrectly identified as DoS

67% of the time. This will cause issues with the mitigation strategies, as it means several access

privilege attempts will be mitigated through Sinkhole or redirection. Developing a sinkhole would work,

in much the same way blocking the relevant IP would work, however redirection would not be successful

at all.

Both methods would remove the opportunity to view the attacker’s actions through the safety of a

honeypot, which could be the preferred option as it would give an idea as to what access the malicious

user was aiming for, and why. However, it is likely that the sinkhole option would be deployed, as

malicious clusters were typically given a risk score of above 0.75. This also means that the option of

“Do nothing” should never actually be employed, and all malicious activity should have a mitigation

measure employed.

119

9 Conclusions and Future Works

This chapter shall discuss whether the overall aims of the project succeeded, and what potential future

work could consist of. To do this the aims will be discussed, and how they were accomplished, along

with any improvements that can be made, and then turn to future work.

9.1 An initial risk assessment mechanism

As discussed in Chapter 8, the initial risk assessment was largely successful. Malicious flows were

largely clustered together, giving a good indication as to the level of risk an individual flow within a

cluster might possess (Table 7.3-1). Likewise, benign flows are largely clustered together, giving a good

indication of low risk. In fact, with the NetFlow/IPFIX dataset there were 11 clusters that contained no

malicious flows (making a risk score of 0 (Figure 6.3-2)). Assuming that a system’s resources would be

stretched to the point of only being able to analyse moderately high risk or greater flows, this would

mean that 60.2% of flows would be ignored with the NetFlow/IPFIX dataset, while still analysing over

85% of malicious activity. The method could use improvement for the UNSW-NB15 dataset however,

with only 13% of flows being ignored. However, this does come with the caveat that 97.7% of malicious

activity is considered moderately high risk or greater, and so would be analysed.

If the criteria were changed to be only high-risk flows were analysed, then 59.5% of data is ignored,

while still analysing 57.1% of all malicious activity for the UNSW-NB15 dataset. While still not quite as

good as the NetFlow/IPFIX dataset, this does indicate there is room for setting what risk level an

administrator is happy to live with, verses how much of the data traversing the network they want to

analyse.

It should be remembered that the system proposed would probably not be used in isolation, but as the

initial part of a holistic defence that seeks to stop as much malicious activity as possible without

disruption to services or users. Unfortunately, for each model the “unclustered” cluster -1 was the largest

cluster. In of itself this might not be considered an issue. The fact that the data points were unclustered

indicates they were anomalous. The risk score for the -1 cluster was also the closest to being 50% in

both datasets, however, even so it did have a risk score of 56.9% for the UNSW-NB15 dataset and

40.7% for the NetFlow/IPFIX dataset, which still indicates a preference for malicious and benign flows

respectively. In particular it is believed the result for the NetFlow/IPFIX dataset is particularly good

considering the noise inherent in such datasets. The -1 cluster is an intended effect of using HDBScan.

Every flow does not need to be clustered, since again the fact that they are a part of the unclustered

cluster is significant. Other clustering methods were considered, such as k-means, which will ensure

every point is within a cluster. However, instead of producing 1 cluster that had an ambiguous risk

score, it produced many smaller clusters with ambiguous risk scores as the -1 grouping was split into

smaller groups without any significant change in risk scores.

9.2 An alternative to network packet data

It can be seen that adding the logging data increased accuracy and F-score overall, with increases of

almost 10% (Section 7.2 and Table 7.2-3 and Table 7.2-4 in particular). This log data is readily available

120

and allowed the system to compare favourably against other state-of-the-art systems (Section 7.1) that

are using much more computationally expensive methods to gather data. While log processing speed

has not specifically analysed, it is felt that this is a fast and efficient way to integrate data into future

IDSs given that much of the log analysis may be being done, as a separate part of business security

processes, and one that should allow real time analysis of network flows in a useful manner. From the

results in Section 7.1, this work compares favourably with the results from the most relevant and current

state-of the-art works. An important point is that this work uses only 28% of the data other researchers

use with the same dataset, moving from 43 features to only 12 in the case of the UNSW-NB15 dataset,

and only 11 features being used in the NetFlow/IPFIX dataset. Usually, deep models are trained on

images consisting of at least hundreds (in the case of datasets such as MNIST) and more commonly

thousands of features. Much of the reason for the comparable results comes from the addition of the

few extra features that were added in the form of log analysis, as well as data pre-processing from

ADASYN or SMOTE, however shown is that small but deep models can still be successful in analysing

these smaller datasets. It is believed that this is the first time that such a small but deep model has been

used in this manner to achieve these kinds of results. This is important, as smaller models take less

time to train and run (Section 3.1.2, [87], [115]). This is a very time sensitive environment, and for any

mitigations to take place, the analysis needs to be completed before the flow has finished. A smaller

model helps with this. Often pooling layers are used to aid in reducing computational complexity, with

a minimum of effect on accuracy [88], [89]. While not shown, these layers were also tested, and it was

found that the reduction in the feature space adversely affected accuracy, precision and recall as the

model could not be made as deep, even with the addition of 1*1 sized kernel layers to help. This again

shows the limitations of the datasets with so few features.

Having said that the model is not perfect. Recall is lower than would be preferred, which would lead to

malicious activity not being flagged. Higher values can be achieved, but this comes at the cost of

precision, making accuracy and F-Score typically stay around the same level. Additionally,

unsupervised methods could be considered. Unsupervised machine learning is making great strides in

the network anomaly research area, as it is seen as being more practical than supervised learning, not

required labelled datasets. However, the use of the HDBScan risk assessment is considered cause

enough to continue with a supervised approach. Any kind of machine learning is more computationally

complex than the signature approach in use now, and even signature approaches struggle with network

load, and more efficient sampling or prioritisation techniques are required.

9.3 Mitigation system capable of bespoke responses to different threats

Most works attempt to classify flows according to the grouping they are placed in within the dataset

(DoS, Fuzzer, etc). However, this does not help in mitigating an attack. It is true that in order to mitigate

an attack you must be able to tell what the attack is, however, the classifications given within datasets

do not necessarily help. For instance, DoS attacks can come in many forms. DDoS attacks are typically

flood based attacks which attempt to overwhelm a networks capacity (Network Plane, Network Target,

System Limitation Vector and DoS Impact). A buffer overflow DoS on the other hand, will attempt to

exploit vulnerabilities in the OS or Application which cause it to error and crash (Application Plane, OS

121

or Application Target, Vulnerabilities Vector and DoS Impact). It is fair to say that the datasets in use

only offer what the Impact of the attack will be, and not the information required to mitigate it. Within

this work inspiration was taken from [68] in building a deep learning system designed to identify what

Plane, Target and Vector are being used, and designed a mitigation system that would build a response

based upon these. If a DoS impact had been identified, then the system should never completely block

a system, since this would achieve the attacker’s goals. Likewise, redirecting to legitimate sources

should never be used in situations where a malicious actor is attempting to gain access to restricted

information, since this would have no real effect. The implementation of the system is largely successful,

with good accuracy rates considering the reduced dataset being used. Additionally, it has been shown

that feeding the results from one CNN to the next was particularly helpful, increasing accuracy by up to

10%.

It is believed this is the first time a taxonomy has been used in this way. Typically, once an attack has

been identified by name, an appropriate response would be looked up (either in a database or by hand)

and the measures implemented (e.g. installing a patch). The method proposed should be more

generalisable since it does not rely on previous attacks being analysed and a defence process being

formed. Any attack that that the same attributes will have the same mitigation measures put in place,

even if they are otherwise unrelated. However, it does suffer in terms of total number of attacks being

mitigated, with only 65% of all malicious activity having a mitigation automatically undertaken. This

could have been configured to be higher, however you start to get benign activity having mitigations

measures automatically undertaken which could have unpredictable consequences.

9.4 Limitations

This work does of course have a number of limitations. The datasets being used are one significant

limitation. While the UNSW-NB15 dataset is the state of the art for research in this area, it does not

perfectly encapsulate the desired features (such as the sentiment analysis from the logs from the

NetFlow/IPFIX dataset). Likewise, the NetFlow/IPFIX dataset is far from perfect. As has been stated,

since it consists of raw data, the training, testing, and evaluation datasets had to be generated. This

makes comparisons to other works more difficult, even assuming there would be many other works to

make comparisons to. Unfortunately, there is no “one size fits all” in this respect. Datasets offering the

raw data needed generally do not have prepared datasets to make easy comparisons. One area where

this is slightly different is in the area of log analysis itself, where there are some datasets with the raw

data separated up to make comparisons easier. However, these do not contain network flow data since

the emphasis is on HIDS. Even within the HIDS arena, datasets are somewhat limited by the wide

variety of possible hardware implementations. A dataset looking at SSH compromise is inherently

different to an Android malware system call dataset for instance.

Moving away from datasets, the choice of OpenFlow as the base for deciding what data is available is

not perfect either. OpenFlow is only one SDN implementation, and while many high profile networking

companies are using OpenFlow as the base in their solutions [4], they may choose to offer different

features than those that have been listed. OpenFlow is the most universally available SDN solution,

however it rarely exists as a product in of itself, rather as a product that service providers can offer

122

support for in cross platform network environments. This work takes the same approach, attempting to

ensure that any features that are used will always be available, but it is possible that other features are

available that were missed as they are not “guaranteed” available. Likewise, not every SDN solution is

built on OpenFlow, and for those solutions it is possible features may have been used that do not exist

in those implementations.

This moves into a broader limitation, that being those made in Section 4.1 about the network structure.

As has been stated, networks are changing, and the conventional view of a network being comprised

of servers and clients is changing. On top of that, even superficially similar networks will have different

structures and services. A variety of possible log data types have been incorporated, that show what

may be possible, however exactly what log features are used will change from network to network.

There is no way to fully account for all network types, or even all log types.

The work also makes extensive use of scikit-learn [100], which is a scientific library designed for

research in shallow machine learning techniques. It may not be the best tool to use in production

environments, and compile times, hyperparameter options and tuning may be different for production

tools. These could change even the accuracy of the results. TensorFlow [116] and Keras were also

used, however these are much more used to being used in production environments.

9.5 Future Work

The work presented could be applied to different domains and continued in different areas. Some areas

for future research involve:

1. Cloud Computing

As has been stated in Section 9.4, not all network environments have been considered, and

cloud computing is an example of one area where this is true. Cloud computing has become

more popular over recent years, as individuals and businesses attempt to leverage the scales

of economy server farms such as Microsoft’s Azure or Amazon’s AWS provide. This work

assumes a traditional network infrastructure with all servers being monitored in house.

However, this is not necessarily true. Microsoft and Amazon are responsible for the security of

servers placed with them, but do not necessarily have full access to logs, and likewise the

administrators of the servers do not have full access to the network flows that interact with their

servers. However, this work does pose some possible advantages for cloud environments.

Established is that log data can supplement network flow data to aid in detection of anomalies,

however the reverse should also be true, i.e. network flow data should be able to aid in the

detection of anomalies for HIDS, perhaps supplementing the data for any HIDS Microsoft and

Amazon have to increase accuracy and keep customers secure. Additional data could also

potentially come from network devices such as routers or switches. These devices do keep

their own logs, though usually for a short period of time due to memory concerns. These logs

could potentially be used to increase accuracy on HIDS through monitoring anomalous network

events (short flows, burst flows etc).

2. IoT

123

The work could be extended to IoT and sensor networks, potentially as a fog network extension.

The sensors in sensor networks are coming under more scrutiny, and methods for securing

these networks are still evolving. One of the challenging aspects is how to run IDS systems on

such low power devices. However, SDN is being investigated as a potential aid to help manage

these low power networks, using fog systems to run the SDN controller. The same process

could happen with this system. Instead of attempting to run security systems on these low

powered devices, move the processing to the fog, with the SDN flows serving as an indicator

of malicious activity. Additionally, the sensor information itself could potentially serve as an

invaluable source of data in the security process, taking the place of log data in the proposed

solution. While sensor data monitoring temperature (for example) is clearly not a detailed log,

combining the temperature reading with flow data at the time of malicious activity may give a

better indication of that malicious activity (i.e. does the temperature fluctuate at the time of the

malicious activity, or is the temperature reading missing entirely).

3. Traffic Shaping

A change of focus could lead this research to being used as a way to balance legitimate traffic.

Generally, SDN helps administrators balance network traffic through dynamically changing the

flow rules based up measures such as traffic volume or packet size. However, using the NHFs

provided in this work, along with logs consisting of server resource usage, it could be envisioned

that rather than responding to malicious activity the system could predict loads that are going

to be computationally expensive, and dynamically redirect them to servers that have a low load.

Essentially the models would be predicting traffic that is going to be computationally expensive

and directing it dynamically to ensure QoS requirements are maintained.

4. Semi-supervised or Unsupervised deep learning IDS

The initial risk assessment could be expanded up on to create its own IDS. While the HDBScans

results were not sufficient to rely upon as an IDS itself, it has been shown how adding additional

small amounts of data can aid with results. It is possible that adding other small amounts of

data could allow the risk assessment to perform well as an unsupervised IDS. This is something

that was briefly looked into, however timing restrictions prevented a full analysis.

5. Other Network Types

This work has been carried out on an assumption of it being placed into a midsized corporate

network, large enough to realise the benefits of SDN, but also have access to traditional server

logs. However, it could be expanded to other network types with different logs types. Backbone

internet companies are frequently transitioning to using SDN, and though not looked at in this

work, router logs could be a source of valuable information for this kind of tool (packets dropped

due to age, or invalid destinations etc). The limitations however would still be the load required

to run the service. As traffic increases, so will the load of the IMS and SDN controller, and so

the viability of moving to backbone internet structure would need to be assessed. Digital Twins

are an evolving area of research, and some of the work regarding logs could be transferred to

there, potentially to detect attacks on physical assets by monitoring associated meta data and

changes to that data.

124

125

References

[1] Cisco and I. Cisco Systems, “Cisco Visual Networking Index: Forecast and Trends, 2017–2022,”

pp. 2017–2022, 2019, [Online]. Available:

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-

vni/white-paper-c11-741490.pdf.

[2] Cisco, “Cisco Visual Networking Index: Forecast and Methodology, 2015-2020,” 2015. [Online].

Available: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-

index-vni/complete-white-paper-c11-481360.pdf.

[3] Open Networking Foundation, “ONF SDN Evolution,” 2016.

[4] I. Cisco Systems, “Software-Defined Networking : Why We Like It and How We Are Building On

It,” 2013.

[5] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444,

2015, doi: 10.1038/nature14539.

[6] M. Ahmed, A. Naser Mahmood, and J. Hu, “A survey of network anomaly detection techniques,”

Journal of Network and Computer Applications, vol. 60. pp. 19–31, 2016, doi:

10.1016/j.jnca.2015.11.016.

[7] Verizon, “2018 Data Breach Investigations Report,” p. 7, 2018.

[8] Symantec Corporation, “ISTR Internet Security Threat Report Volume 24 | 02/19,” 2019.

[9] Verizon, “2016 Data Breach Investigations Report,” 2016.

[10] Symantec, “Internet Security Threat Report ISTR,” no. April, 2018, [Online]. Available:

https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf.

[11] IBM Services, “SDN Verses Traditional Networking Explained | IBM,” 2020.

https://www.ibm.com/services/network/sdn-versus-traditional-networking (accessed Nov. 26,

2020).

[12] Cloudflare, “What is BGP? | BGP Routing Explained.” available:

https://www.cloudflare.com/learning/security/glossary/what-is-bgp/.

[13] I. Cisco Systems, “Understanding Rapid Spanning Tree Protocol.”

https://www.cisco.com/c/en/us/support/docs/lan-switching/spanning-tree-protocol/24062-

146.html.

[14] V. G. Ivakhnenko, A. G.; Lapa, Cybernetic predicting devices. United States. Joint Publications

Research Service., 1965.

[15] L. Deng and D. Yu, “Deep Learning: Methods and Applications,” Found. Trends® Signal

Process., vol. 7, no. 3–4, pp. 197--387, 2013, doi: 10.1136/bmj.319.7209.0a.

[16] M. Z. Alom et al., “A state-of-the-art survey on deep learning theory and architectures,” Electron.,

126

vol. 8, no. 3, 2019, doi: 10.3390/electronics8030292.

[17] J. E. van Engelen and H. H. Hoos, “A survey on semi-supervised learning,” Mach. Learn., vol.

109, no. 2, pp. 373–440, 2020, doi: 10.1007/s10994-019-05855-6.

[18] G. Wilson and D. J. Cook, “A Survey of Unsupervised Deep Domain Adaptation,” ACM Trans.

Intell. Syst. Technol., vol. 11, no. 5, 2020, doi: 10.1145/3400066.

[19] G. Zhang, Y. Liu, and X. Jin, “A survey of autoencoder-based recommender systems,” Front.

Comput. Sci., vol. 14, no. 2, pp. 430–450, 2020, doi: 10.1007/s11704-018-8052-6.

[20] Google, “AlphaGo | Deepmind,” 2018. https://deepmind.com/research/alphago/.

[21] T.-Y. Mu, A. Al-Fuqaha, K. Shuaib, F. M. Sallabi, and J. Qadir, “SDN Flow Entry Management

Using Reinforcement Learning,” vol. 13, no. 2, 2018, [Online]. Available:

http://arxiv.org/abs/1809.09003.

[22] S. Hooda and S. Mann, “Distributed synthetic minority oversampling technique,” Int. J. Comput.

Intell. Syst., vol. 12, no. 2, pp. 929–936, 2019, doi: 10.2991/ijcis.d.190719.001.

[23] “SMOTE | Azure Machine Learning studio,” [Online]. Available: https://docs.microsoft.com/en-

us/azure/machine-learning/studio-module-reference/smote.

[24] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive synthetic sampling approach for

imbalanced learning,” Proc. Int. Jt. Conf. Neural Networks, no. 3, pp. 1322–1328, 2008, doi:

10.1109/IJCNN.2008.4633969.

[25] O. E. David and N. S. Netanyahu, “DeepSign: Deep learning for automatic malware signature

generation and classification,” in Proceedings of the International Joint Conference on Neural

Networks, 2015, vol. 2015-Septe, doi: 10.1109/IJCNN.2015.7280815.

[26] K. Gerrigagoitia, R. Uribeetxeberria, U. Zurutuza, and I. Arenaza, “Reputation-based Intrusion

Detection System for wireless sensor networks,” 2012 IEEE Work. Complex. Eng. COMPENG

2012 - Proc., pp. 128–132, 2012, doi: 10.1109/CompEng.2012.6242969.

[27] Google, “Google Transparency Report.” Accessed: May 04, 2018. [Online]. Available:

https://transparencyreport.google.com/safer-email/overview?hl=en.

[28] “NSL-KDD | Datasets | Research | Canadian Institute for Cybersecurity | UNB,” Canadian

Institute for Cybersecurity | University of New Brunswick.

http://www.unb.ca/cic/datasets/nsl.html (accessed Jul. 12, 2018).

[29] N. Moustafa and J. Slay, “The Significant Features of the UNSW-NB15 and the KDD99 Data

Sets for Network Intrusion Detection Systems,” 2015 4th Int. Work. Build. Anal. Datasets Gather.

Exp. Returns Secur., pp. 25–31, 2017, doi: 10.1109/badgers.2015.014.

[30] S. Zargari and T. Janarthanan, “Feature selection in UNSW-NB15 and KDDCUP’99 datasets,”

in 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE), 2017, pp. 10–15,

doi: 10.1109/ISIE.2017.8001537.

127

[31] N. Moustafa and J. Slay, “UNSW-NB15: A Comprehensive Data set for Network Intrusion

Detection systems,” Mil. Commun. Inf. Syst. Conf., vol. 8, pp. 1–6, 2015, doi:

10.1109/MilCIS.2015.7348942.

[32] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine learning at scale,” 5th Int.

Conf. Learn. Represent. ICLR 2017 - Conf. Track Proc., pp. 1–17, 2017.

[33] K. Ren, T. Zheng, Z. Qin, and X. Liu, “Adversarial Attacks and Defenses in Deep Learning,”

Engineering, vol. 6, no. 3, pp. 346–360, 2020, doi: 10.1016/j.eng.2019.12.012.

[34] C. Szegedy et al., “Intriguing properties of neural networks,” 2nd Int. Conf. Learn. Represent.

ICLR 2014 - Conf. Track Proc., pp. 1–10, 2014.

[35] E. Alhajjar, P. Maxwell, and N. D. Bastian, “Adversarial Machine Learning in Network Intrusion

Detection Systems,” pp. 1–25, 2020, [Online]. Available: http://arxiv.org/abs/2004.11898.

[36] K. Yang, J. Liu, C. Zhang, and Y. Fang, “Adversarial Examples Against the Deep Learning Based

Network Intrusion Detection Systems,” Proc. - IEEE Mil. Commun. Conf. MILCOM, vol. 2019-

Octob, pp. 559–564, 2019, doi: 10.1109/MILCOM.2018.8599759.

[37] ONF, “OpenFlow Switch Specification 1.4.0,” 2013.

[38] Candian Institute for Cyber Security, “No Title.” http://www.unb.ca/cic/datasets/nsl.html

(accessed Jun. 07, 2018).

[39] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD CUP 99

data set,” IEEE Symp. Comput. Intell. Secur. Def. Appl. CISDA 2009, no. Cisda, pp. 1–6, 2009,

doi: 10.1109/CISDA.2009.5356528.

[40] R. Hofstede, L. Hendriks, A. Sperotto, and A. Pras, “SSH Compromise Detection using

NetFlow/IPFIX,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 5, pp. 20–26, 2014, doi:

10.1145/2677046.2677050.

[41] M. Azizjon, A. Jumabek, and W. Kim, “1D CNN based network intrusion detection with

normalization on imbalanced data,” pp. 218–224, 2020, doi: 10.1109/icaiic48513.2020.9064976.

[42] B. A. Tama, M. Comuzzi, and K. H. Rhee, “TSE-IDS: A Two-Stage Classifier Ensemble for

Intelligent Anomaly-Based Intrusion Detection System,” IEEE Access, vol. 7, pp. 94497–94507,

2019, doi: 10.1109/ACCESS.2019.2928048.

[43] H. He, X. Sun, H. He, G. Zhao, L. He, and J. Ren, “A Novel Multimodal-Sequential Approach

Based on Multi-View Features for Network Intrusion Detection,” IEEE Access, vol. 7, pp.

183207–183221, 2019, doi: 10.1109/ACCESS.2019.2959131.

[44] Y. Su, “Research on network behavior anomaly analysis based on bidirectional LSTM,” Proc.

2019 IEEE 3rd Inf. Technol. Networking, Electron. Autom. Control Conf. ITNEC 2019, no. Itnec,

pp. 798–802, 2019, doi: 10.1109/ITNEC.2019.8729475.

[45] M. Al-Zewairi, S. Almajali, and A. Awajan, “Experimental evaluation of a multi-layer feed-forward

128

artificial neural network classifier for network intrusion detection system,” Proc. - 2017 Int. Conf.

New Trends Comput. Sci. ICTCS 2017, vol. 2018-Janua, pp. 167–172, 2017, doi:

10.1109/ICTCS.2017.29.

[46] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional

neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, 2017, doi: 10.1145/3065386.

[47] C. Szegedy et al., “Going deeper with convolutions,” Proc. IEEE Comput. Soc. Conf. Comput.

Vis. Pattern Recognit., vol. 07-12-June, pp. 1–9, 2015, doi: 10.1109/CVPR.2015.7298594.

[48] J. Kim, N. Shin, S. Y. Jo, and S. H. Kim, “Method of Intrusion Detection using Deep Neural

Network,” Int. Conf. Big Data Smart Comput., pp. 313–316, 2017, doi:

10.1109/BIGCOMP.2017.7881684.

[49] M. Al-Qatf, Y. Lasheng, M. Al-Habib, and K. Al-Sabahi, “Deep Learning Approach Combining

Sparse Autoencoder with SVM for Network Intrusion Detection,” IEEE Access, vol. 6, pp. 52843–

52856, 2018, doi: 10.1109/ACCESS.2018.2869577.

[50] G. Andresini, A. Appice, N. Di Mauro, C. Loglisci, and D. Malerba, “Multi-Channel Deep Feature

Learning for Intrusion Detection,” IEEE Access, vol. 8, pp. 53346–53359, 2020, doi:

10.1109/ACCESS.2020.2980937.

[51] S. Phetlasy, S. Ohzahata, C. Wu, and T. Kato, “Applying SMOTE for a sequential classifiers

combination method to improve the performance of intrusion detection system,” Proc. - IEEE

17th Int. Conf. Dependable, Auton. Secur. Comput. IEEE 17th Int. Conf. Pervasive Intell.

Comput. IEEE 5th Int. Conf. Cloud Big Data Comput. 4th Cyber Sci., pp. 255–258, 2019, doi:

10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00054.

[52] M. Labonne, A. Olivereau, B. Polve, and D. Zeghlache, “A Cascade-structured Meta-Specialists

Approach for Neural Network-based Intrusion Detection,” 2019 16th IEEE Annu. Consum.

Commun. Netw. Conf. CCNC 2019, 2019, doi: 10.1109/CCNC.2019.8651856.

[53] B. Dong and X. Wang, “Comparison Deep Learning Method to Traditional Methods Using for

Network Intrusion Detection,” 8th IEEE Int. Conf. Commun. S oftw are N etw ork s, pp. 581–585,

2016, doi: 10.1109/ICCSN.2016.7586590.

[54] Akashdeep, I. Manzoor, and N. Kumar, “A feature reduced intrusion detection system using ANN

classifier,” Expert Syst. Appl., vol. 88, pp. 249–257, 2017, doi: 10.1016/j.eswa.2017.07.005.

[55] N. Praneeth, N. M. Varma, and R. R. Naik, “Principle component analysis based intrusion

detection system using support vector machine,” 2016 IEEE Int. Conf. Recent Trends Electron.

Inf. Commun. Technol. RTEICT 2016 - Proc., pp. 1344–1350, 2017, doi:

10.1109/RTEICT.2016.7808050.

[56] M. Bahrololum, E. Salahi, and M. Khaleghi, “Machine learning techniques for feature reduction

in intrusion detection systems: A comparison,” ICCIT 2009 - 4th Int. Conf. Comput. Sci. Converg.

Inf. Technol., pp. 1091–1095, 2009, doi: 10.1109/ICCIT.2009.89.

129

[57] J. Liu and S. S. Chung, “Automatic feature extraction and selection for machine learning based

intrusion detection,” Proc. - 2019 IEEE SmartWorld, Ubiquitous Intell. Comput. Adv. Trust.

Comput. Scalable Comput. Commun. Internet People Smart City Innov.

SmartWorld/UIC/ATC/SCALCOM/IOP/SCI 2019, pp. 1400–1405, 2019, doi:

10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00254.

[58] S. Shin, L. Xu, S. Hong, and G. Gu, “Enhancing Network Security through Software Defined

Networking (SDN),” 2016 25th Int. Conf. Comput. Commun. Networks, pp. 1–9, 2016, doi:

10.1109/ICCCN.2016.7568520.

[59] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson, “FRESCO: Modular

Composable Security Services for Software-Defined Networks,” vol. 2, no. February, 2013, doi:

10.1.1.297.7129.

[60] C. Yoon, T. Park, S. Lee, H. Kang, S. Shin, and Z. Zhang, “Enabling security functions with SDN:

A feasibility study,” Comput. Networks, vol. 85, no. 2015, pp. 19–35, 2015, doi:

10.1016/j.comnet.2015.05.005.

[61] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “SDN security: A survey,” SDN4FNS 2013 -

2013 Work. Softw. Defin. Networks Futur. Networks Serv., 2013, doi:

10.1109/SDN4FNS.2013.6702553.

[62] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host mutation,” p. 127, 2012, doi:

10.1145/2342441.2342467.

[63] S. Shin and G. Gu, “Attacking software-defined networks: A first feasibility study,” Proc. Second

ACM SIGCOMM Work. Hot Top. Softw. Defin. Netw., pp. 165–166, 2013, doi:

10.1145/2491185.2491220.

[64] S. Shin, “AVANT-GUARD : Scalable and Vigilant Switch Flow Management in Software-Defined

Networks Categories and Subject Descriptors,” Proc. 2013 ACM SIGSAC Conf. Comput.

Commun. Secur., pp. 413–424, 2013.

[65] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho, “Deep learning approach

for Network Intrusion Detection in Software Defined Networking,” 2016 Int. Conf. Wirel. Networks

Mob. Commun., pp. 258–263, 2016, doi: 10.1109/WINCOM.2016.7777224.

[66] Q. Niyaz, W. Sun, and A. Y. Javaid, “A Deep Learning Based DDoS Detection System in

Software-Defined Networking (SDN),” no. Dl, pp. 1–18, 2016, [Online]. Available:

http://arxiv.org/abs/1611.07400.

[67] S. Souissi, “A novel response-oriented attack classification,” Int. Conf. Protoc. Eng. ICPE 2015

Int. Conf. New Technol. Distrib. Syst. NTDS 2015 - Proc., 2015, doi:

10.1109/NOTERE.2015.7293480.

[68] M. Fu, G. Yi, Z. Wang, and L. Zhang, “A security threats taxonomy for routing system intrusion

detection,” Proc. - 12th Int. Conf. Comput. Intell. Secur. CIS 2016, pp. 267–270, 2017, doi:

130

10.1109/CIS.2016.67.

[69] Z. Wu, Y. Ou, and Y. Liu, “A taxonomy of network and computer attacks based on responses,”

Proc. - 2011 Int. Conf. Inf. Technol. Comput. Eng. Manag. Sci. ICM 2011, vol. 1, pp. 26–29,

2011, doi: 10.1109/ICM.2011.363.

[70] C. Simmons, C. Ellis, S. Shiva, D. Dasgupta, and Q. Wu, “AVOIDIT: A Cyber Attack Taxonomy,”

2009, doi: 10.1016/0002-9343(81)90253-9.

[71] A. Binbusayyis and T. Vaiyapuri, “Identifying and Benchmarking Key Features for Cyber

Intrusion Detection: An Ensemble Approach,” IEEE Access, vol. 7, pp. 106495–106513, 2019,

doi: 10.1109/ACCESS.2019.2929487.

[72] M. A. Aydin, A. H. Zaim, and K. G. Ceylan, “A hybrid intrusion detection system design for

computer network security,” Comput. Electr. Eng., vol. 35, no. 3, pp. 517–526, 2009, doi:

10.1016/j.compeleceng.2008.12.005.

[73] Z. Chiba, N. Abghour, K. Moussaid, A. El Omri, and M. Rida, “A Cooperative and Hybrid Network

Intrusion Detection Framework in Cloud Computing Based on Snort and Optimized Back

Propagation Neural Network,” Procedia Comput. Sci., vol. 83, pp. 1200–1206, 2016, doi:

10.1016/j.procs.2016.04.249.

[74] E. Bursztein, “Inside the infamous Mirai IoT Botnet: A Retrospective Analysis,” CloudFlare, 2017.

https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/

(accessed Jun. 07, 2018).

[75] C. J. Hutto and E. E. Gilbert, “VADER: A Parsimonious Rule-based Model for Sentiment Analysis

of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-

14).”,” Proc. 8th Int. Conf. Weblogs Soc. Media, ICWSM 2014, 2014, [Online]. Available:

http://sentic.net/.

[76] S. Hublikar, V. Eligar, and A. Kakhandki, “Detecting Denial-of-Service Attacks Using sFlow,” in

Inventive Communication and Computational Technologies, 2020, pp. 483–491.

[77] R. M. A. Ujjan, Z. Pervez, K. Dahal, A. K. Bashir, R. Mumtaz, and J. González, “Towards sFlow

and adaptive polling sampling for deep learning based DDoS detection in SDN,” Futur. Gener.

Comput. Syst., vol. 111, pp. 763–779, 2020, doi: 10.1016/j.future.2019.10.015.

[78] L. McInnes, J. Healy, and S. Astels, “Benchmarking Performance and Scaling of Python

Clustering Algorithms - hdbscan 0.8.1 documentation,” 2020.

https://hdbscan.readthedocs.io/en/latest/performance_and_scalability.html.

[79] H. Chawla and P. Khattar, “Data Preparation and Training Part I,” in Data Lake Analytics on

Microsoft Azure: A Practitioner’s Guide to Big Data Engineering, Berkeley, CA: Apress, 2020,

pp. 99–142.

[80] M. J. Willemink et al., “Preparing medical imaging data for machine learning,” Radiology, vol.

131

295, no. 1, pp. 4–15, 2020, doi: 10.1148/radiol.2020192224.

[81] T. G. Dietterich and E. B. Kong, “Machine Learning Bias, Statistical Bias, and Statistical Variance

of Decision Tree Algorithms,” pp. 0–13, 1995.

[82] D. Jing and H. B. Chen, “SVM based network intrusion detection for the UNSW-NB15 dataset,”

Proc. Int. Conf. ASIC, pp. 1–4, 2019, doi: 10.1109/ASICON47005.2019.8983598.

[83] R. U. Khan, X. Zhang, M. Alazab, and R. Kumar, “An improved convolutional neural network

model for intrusion detection in networks,” Proc. - 2019 Cybersecurity Cyberforensics Conf. CCC

2019, no. Ccc, pp. 74–77, 2019, doi: 10.1109/CCC.2019.000-6.

[84] Y. Yan, L. Qi, J. Wang, Y. Lin, and L. Chen, “A Network Intrusion Detection Method Based on

Stacked Autoencoder and LSTM,” IEEE Int. Conf. Commun., vol. 2020-June, 2020, doi:

10.1109/ICC40277.2020.9149384.

[85] G. Larsson, M. Maire, and G. Shakhnarovich, “FractalNet: Ultra-Deep Neural Networks without

Residuals,” pp. 1–11, 2016, [Online]. Available: http://arxiv.org/abs/1605.07648.

[86] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional

networks,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern Recognition, CVPR 2017, vol. 2017-

Janua, pp. 2261–2269, 2017, doi: 10.1109/CVPR.2017.243.

[87] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for simplicity: The all

convolutional net,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Work. Track Proc., pp. 1–14,

2015.

[88] V. Christlein, L. Spranger, M. Seuret, A. Nicolaou, P. Kral, and A. Maier, “Deep generalized max

pooling,” Proc. Int. Conf. Doc. Anal. Recognition, ICDAR, no. 1, pp. 1090–1096, 2019, doi:

10.1109/ICDAR.2019.00177.

[89] H. Wu and X. Gu, “Max-pooling dropout for regularization of convolutional neural networks,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),

vol. 9489, pp. 46–54, 2015, doi: 10.1007/978-3-319-26532-2_6.

[90] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch normalization help

optimization?,” Adv. Neural Inf. Process. Syst., vol. 2018-Decem, no. NeurIPS, pp. 2483–2493,

2018.

[91] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing

internal covariate shift,” 32nd Int. Conf. Mach. Learn. ICML 2015, vol. 1, pp. 448–456, 2015.

[92] J. Yan, R. Wan, X. Zhang, W. Zhang, Y. Wei, and J. Sun, “Towards Stabilizing Batch Statistics

in Backward Propagation of Batch Normalization,” pp. 1–17, 2020, [Online]. Available:

http://arxiv.org/abs/2001.06838.

[93] E. Phaisangittisagul, “An Analysis of the Regularization Between L2 and Dropout in Single

Hidden Layer Neural Network,” Proc. - Int. Conf. Intell. Syst. Model. Simulation, ISMS, vol. 0,

132

pp. 174–179, 2016, doi: 10.1109/ISMS.2016.14.

[94] Y. Liu, X. Gao, Q. Gao, L. Shao, and J. Han, “Adaptive robust principal component analysis,”

Neural Networks, vol. 119, pp. 85–92, 2019, doi: 10.1016/j.neunet.2019.07.015.

[95] Z. Cui, F. Li, and W. Zhang, “Bat algorithm with principal component analysis,” Int. J. Mach.

Learn. Cybern., vol. 10, no. 3, pp. 603–622, 2019, doi: 10.1007/s13042-018-0888-4.

[96] J. Wu, D. Peng, Z. Li, L. Zhao, and H. Ling, “Network intrusion detection based on a general

regression neural network optimized by an improved artificial immune algorithm,” PLoS One,

2015, doi: 10.1371/journal.pone.0120976.

[97] S. Bock and M. Weis, “A Proof of Local Convergence for the Adam Optimizer,” Proc. Int. Jt.

Conf. Neural Networks, vol. 2019-July, no. July, pp. 1–8, 2019, doi:

10.1109/IJCNN.2019.8852239.

[98] A. C. Zamfira and H. Ciocarlie, “Developing an ontology of cyber-operations in networks of

computers,” Proc. - 2018 IEEE 14th Int. Conf. Intell. Comput. Commun. Process. ICCP 2018,

pp. 395–400, 2018, doi: 10.1109/ICCP.2018.8516644.

[99] R. Hofstede et al., “Flow monitoring explained: From packet capture to data analysis with

NetFlow and IPFIX,” IEEE Commun. Surv. Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014, doi:

10.1109/COMST.2014.2321898.

[100] scikit-learn developers, “sklearn.decomposition.PCA - scikit-learn 0.23.2 documentation.”

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html (accessed

Nov. 05, 2020).

[101] A. International, P. Reviewed, T. S. Urmila, and R. Balasubramanian, “Journal of Analysis and

Computation (JAC) AN EFFICIENT ALGORITHM FOR FEATURE SELECTION IN IDS,” pp.

1–8.

[102] A. A. Salih and M. B. Abdulrazaq, “Combining Best Features Selection Using Three Classifiers

in Intrusion Detection System,” 2019 Int. Conf. Adv. Sci. Eng. ICOASE 2019, pp. 94–99, 2019,

doi: 10.1109/ICOASE.2019.8723671.

[103] A. A. Sallam, M. N. Kabir, Y. M. Alginahi, A. Jamal, and T. K. Esmeel, “IDS for Improving DDoS

Attack Recognition Based on Attack Profiles and Network Traffic Features,” Proc. - 2020 16th

IEEE Int. Colloq. Signal Process. its Appl. CSPA 2020, no. Cspa, pp. 255–260, 2020, doi:

10.1109/CSPA48992.2020.9068679.

[104] S.-Y. Zhao, Y.-P. Xie, and W.-J. Li, “Stagewise Enlargement of Batch Size for SGD-based

Learning,” no. 1, pp. 1–26, 2020, [Online]. Available: http://arxiv.org/abs/2002.11601.

[105] Y. You, Y. Wang, H. Zhang, Z. Zhang, J. Demmel, and C.-J. Hsieh, “The Limit of the Batch Size,”

pp. 1–22, 2020, [Online]. Available: http://arxiv.org/abs/2006.08517.

[106] M. Banton, N. Shone, W. Hurst, and Q. Shi, “Intrusion Detection Using Extremely Limited Data

133

Based on SDN,” in Proceedings of 2020 IEEE 10th International Conference on Intelligent

Systems Intrusion, 2020, pp. 304–309.

[107] I. Loshchilov and F. Hutter, “CMA-ES for Hyperparameter Optimization of Deep Neural

Networks,” no. 2001, 2016, [Online]. Available: http://arxiv.org/abs/1604.07269.

[108] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization,” J. Mach. Learn.

Res., vol. 13, pp. 281–305, 2012, doi: 10.1162/153244303322533223.

[109] A. C. Florea and R. Andonie, “Weighted Random Search for hyperparameter optimization,” Int.

J. Comput. Commun. Control, vol. 14, no. 2, pp. 154–169, 2019, doi:

10.15837/ijccc.2019.2.3514.

[110] A. Nugroho and H. Suhartanto, “Hyper-Parameter Tuning based on Random Search for

DenseNet Optimization,” in 7th International Conference on Information Technology, Computer,

and Electrical Engineering, ICITACEE 2020, 2020, pp. 96–99, doi: https://doi.org/10.1109.

[111] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, “Improving

neural networks by preventing co-adaptation of feature detectors,” pp. 1–18, 2012, [Online].

Available: http://arxiv.org/abs/1207.0580.

[112] K. Sethi, R. Kumar, N. Prajapati, and P. Bera, “Deep Reinforcement Learning based Intrusion

Detection System for Cloud Infrastructure,” 2020 Int. Conf. Commun. Syst. NETworkS,

COMSNETS 2020, pp. 1–6, 2020, doi: 10.1109/COMSNETS48256.2020.9027452.

[113] J. Zhang, F. Li, and F. Ye, “An Ensemble-based Network Intrusion Detection Scheme with

Bayesian Deep Learning,” IEEE Int. Conf. Commun., vol. 2020-June, pp. 11–16, 2020, doi:

10.1109/ICC40277.2020.9149402.

[114] Z. Chkirbene, S. Eltanbouly, M. Bashendy, N. Alnaimi, and A. Erbad, “Hybrid Machine Learning

for Network Anomaly Intrusion Detection,” 2020 IEEE Int. Conf. Informatics, IoT, Enabling

Technol. ICIoT 2020, pp. 163–170, 2020, doi: 10.1109/ICIoT48696.2020.9089575.

[115] Y. Xiao, C. Xing, T. Zhang, and Z. Zhao, “An Intrusion Detection Model Based on Feature

Reduction and Convolutional Neural Networks,” IEEE Access, vol. 7, pp. 42210–42219, 2019,

doi: 10.1109/ACCESS.2019.2904620.

[116] M. Abadi et al., “TensorFlow: A System for Large-Scale Machine Learning TensorFlow: A

system for large-scale machine learning,” 12th USENIX Symp. Oper. Syst. Des. Implement.

(OSDI ’16), pp. 265–284, 2016, doi: 10.1038/nn.3331.

