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Assessing the Outbreak Risk of Epidemics Using Fuzzy Evidential Reasoning  

 

 

Abstract: Epidemic Diseases (EDs) present a significant but challenging risk endangering public 

health, evident by the outbreak of COVID-19. Compared to the other risks affecting public health 

such as flooding, EDs attract little attention in terms of risk assessment in the current literature. It 

does not well respond to the high practical demand of advanced techniques capable of tackling ED 

risks. To bridge this gap, an adapted fuzzy evidence reasoning method is proposed to realize the 

quantitative analysis of ED outbreak risk assessment (EDRA) with high uncertainty in risk data. 

The results provide useful insights for the regulatory bodies to 1) understand the risk levels of 

different EDs in a quantitative manner and 2) the sensitivity of different EDs to the identified risk 

factors for their effective control. For instance, in the case study, we use real data to disclose that 

influenza has the highest breakout risk level in Beijing. The proposed method also provides a 

potential tool of evaluating the out risk of COVID-19. 

 

Keywords: Risk assessment; evidential reasoning; epidemic diseases  

 

1 Introduction 

Epidemic Diseases (EDs) can spread faster and wider than even after its outbreaks in today’s 

community, where more and more mega-cities of over 10 million population appear and people 

communicate between cities more frequently thanks to advanced transport techniques. It is often 

the case that after the outbreak of an EDI, it is extremely difficult and costly, if not impossible, to 

control and eliminate it. It is evident that a few disasters witness spread of EDIs at a global scale, 

including “Avian Influenza” in 2006, H1N1 Influenza in 2009, Dengue Fever and H7N9 in 2013, 

Ebola Hemorrhagic Fever in 2014, and Middle East Respiratory Syndrome (MERS) 2015. More 

specific illustrative examples include the large-scale epidemic of SARS in 2003 and African swine 

fever in 2018-2019 in China and global pandemic of COVID-19 that caused and are causing huge 

economic loss and social system disorder, leading to a high demand for effective ED risk 

assessment mechanism. 

Since the painful experience caused by SARS in 2003, China has made a series of moves to 

strengthen the capacity of ED controlling. However, the outbreak of COVID-19 causes over 1.4m 

confirmed cases and over 82k death toll (by 08 April 2020), and the numbers are still increasing 

fast in 2020. The national-wide outbreak of epidemic in December 2017 also questions the 

effectiveness of the current running system, with a shortage of 310,000 packets of the special drug 

“Duffy” merely in its capital, Beijing. Consequently, it is direly urgent to develop a new proactive 

risk assessment system to assess ED's outbreak risk and take corresponding prevention actions. 

One of the innovations of this study is to use primary data obtained through our collaboration with 

Chinese Food and Drug Administration (CFDA) to develop a quantitative risk assessment method 

for evaluating outbreaks of EDs. 

Infectious disease outbreaks can spread rapidly, causing enormous losses to individual health, 

national economies, and social wellbeing. Through the early detection of an infectious disease 

outbreak, a small outbreak can potentially be contained at the local level, thereby reducing adverse 

impacts. Early detection has been and remains the current narrative of infectious disease 

http://www.baidu.com/link?url=nwjJhQDegmKa2cbyxZNe5uHSUrhkVpzRLfYN8pHkgBs3gA7QsfRdAok_7WbfTM4AHQQxukWs9kCUgk3L5KmaCTMOtO_l4IHWFqRdRZ8ox0gnOAlMEmTH7S3ZODhXp8L1&wd=&eqid=b9f00c0600014807000000065dcbdab5
http://www.baidu.com/link?url=nwjJhQDegmKa2cbyxZNe5uHSUrhkVpzRLfYN8pHkgBs3gA7QsfRdAok_7WbfTM4AHQQxukWs9kCUgk3L5KmaCTMOtO_l4IHWFqRdRZ8ox0gnOAlMEmTH7S3ZODhXp8L1&wd=&eqid=b9f00c0600014807000000065dcbdab5
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surveillance. However, it is challenging to assess the outbreak risk of EDs, given that it is affected 

by a variety of factors, both qualitative and quantitative, such as nature of the pathogen, people's 

communication style, medical treatment level, weather and natural environment. Besides, limited 

to the accessibility to data in certain occasion, some factors cannot be scaled precisely but 

described in a fuzzy way. For example, people's hygiene awareness is often described by "very 

good", "good", "fair", "bad" and "very bad". Moreover, domain experts that include all the senior 

managers of the Ministry of Health, the State Drug Administration, Chinese Center for Disease 

Control and Prevention (CCDC) and the designated (by the healthcare authorities) experts in the 

field of public medicine healthcare argue that they have low/medium confidence to make a 

reliable evaluation without the aid of advanced risk tools that can address the inherent high 

uncertainty in data. Obviously, the assessment of ED's outbreak risk involves the integration of 

qualitative and quantitative factors and requires to deal with fuzzy and incomplete information, 

where a fuzzy evidential reasoning (ER) approach fits in well. The aim of this paper is (1) to 

propose a fuzzy ER assessment approach to the ED's outbreak risk, (2) to apply the proposed 

approach to assess the outbreak risk of four kinds of major EDs in Beijing. 

The remainder of this paper is organized as follows. Section 2 reviews the relevant literature 

on emergent risk assessment methods. Section 3 introduces the evidence reasoning approach and 

proposes a new index system for the assessment and elaborates the ER based EDRA. Section 4 

conducts an empirical study related to ED risk of Beijing using the primary data from the experts 

of the highest healthcare authorities in China. Section 5 concludes the paper with implications and 

limitations.  

2 Literature Review 

There are few studies on risk assessment of ED’s outbreak in mega-cities in the current 

literature. This section describes the relevant literature of risk assessment in the areas of 

“humanitarian logistics”, “disaster operations management” and “outbreak of infectious diseases”. 

2.1 Humanitarian logistics 

Some studies address the network designing and inventory problems of humanitarian 

logistics based on cost analysis like monetary cost, time cost, social cost, etc. For examples, with 

consideration of relief time among others, Ahmadi et al. (2015) propose a multi-depot 

location-routing model to determine the locations of local depots and routing for last mile 

distribution after an earthquake. By minimizing facility placement, logistics, and deprivation costs, 

Loree and Aros-Vera (2018) proposes a model to determine the location of points of 

distribution and inventory allocation in Post-Disaster Humanitarian Logistics.  

However, some others argued that humanitarian should highlight “equity” (e.g., Gutjahr and 

Fischer, 2018). Once there is a disaster, relief commodities are to be supplied to the victims of a 

natural disaster, aid the organizations that not only have to take the total degree of demand 

satisfaction into account, but also require relief goods to be distributed as equally as possible 

among the affected population. Ideally, no region or population group should be disadvantaged 

(Farris, 2010; Yitzhaki and Schechtman 2013).  

Substantial studies on humanitarian logistics have been published, which mainly focused on 

transportation and allocation of disaster relief resources, taking into account the goal of equity 

(e.g., Tomasini and Van Wassenhove, 2009; Lin et al., 2011; Huang et al., 2015; Ransikarbum and 
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Mason, 2016). For example, a fuzzy multicriteria, multi-period linear programming model for 

relief distribution was presented in Tzeng et al. (2007). They measured the equity of distribution 

of relief materials to demand nodes by cumulating the least satisfaction score among demand 

points for each item and for each time period. Moreover, Sun et al. (2014) dealt with a 

patient-hospital allocation model for the case of an influenza pandemic. Equity was taken into 

account by considering the maximal travel distance to the assigned hospital as a second objective 

function in a bi-objective optimization model. The risk assessment of the outbreak of infectious 

diseases in this paper also involved the principle of “equity”, focusing on the infectious diseases 

affecting public health. 

 

2.2 Disaster operations management 

Research about disaster operations management mainly focuses on “natural disaster”, “war or 

terrorism”, but rare on the management of ED. Disaster operations management can be divided 

into resource/facilities management, response management and risk management (e.g. Al-Dahash 

et al., 2014; Tsadikovich et al., 2019).  

At first, several studies aimed to develop and increase the ability and facilities to cope with 

disasters and to mitigate some of the effects in order to minimize the consequences of the disaster 

(e.g., Harding, 2007; Al-Dahash et al., 2014). Furthermore, the case of the Katrina hurricane was 

considered by Baker and Refsgaard (2007) to identify successful strategies that enabled 

institutions to respond effectively at an appropriate scale. Finally, the paper by Carreño et al. in 

2007 proposed a risk management index. A group of indicators were brought together to measure 

risk management performance and effectiveness. Organizational, development, capacity and 

institutional actions were taken to reduce vulnerability and losses in a given area. Such factors 

were reflected by these indicators to prepare for crisis and to recover efficiently from disasters. 

This index was designed to assess risk management performance. Four public policies, include the 

identification of risk, risk reduction, disaster management, and governance and financial 

protection were constructed by the proposed risk management index. Although there are few 

studies on the risk management of ED, research on disaster operations management provides  

theoretical support for the construction of the ED risk assessment model in this paper. 

 

2.3 Outbreak of infectious diseases 

Regarding the outbreak of infectious diseases, there has been more studies in the medical 

field, focusing on the factors affecting the transmission of pathogens, propagation mode, and the 

control of infectious diseases (Lal et al., 2018). Some found that global environmental changes, 

especially climate change and human exploitation of productive ecosystems (e.g. Millennium 

Ecosystem Assessment 2005; Tilman et al., 2011) had important implications for infectious 

disease risk (Murray and Daszak, 2013; Cutler et al., 2010). As for the propagation mode, the 

parasites are primarily spread through contaminated drinking or recreational water; however, 

infection in humans may arise through contaminated food, contact with animals, especially 

livestock or infected individuals (Cacciòet al., 2005; Savioli et al., 2006). With regard to diseases 

control, a few studies identified that the environmental and sociodemographic exposures can help 

develop disease control priorities in high risk areas (Yoder and Beach, 2010; Lal et al., 2015).  

In addition to these theoretical studies, practitioners have also made many outstanding 

contributions to the investigation of the outbreak of infectious diseases. Innovative governance 
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structures have been established to promote early detection. Disease surveillance networks have 

been formed, such as the World Health Organization (WHO) Global Outbreak Alert and Response 

Network (GOARN), combining human and technical resources around the world to rapidly 

identify, confirm, and respond to outbreaks. Cross-border regional disease surveillance networks 

have been established across the globe, connecting epidemiologists, scientists, ministry officials, 

health workers, border officers, and community members to engage in activities, such as training, 

capacity-building, and multidisciplinary research. Agreements have been instituted, setting legal 

mandates around surveillance activities, such as the IHR (2005), which call for all the WHO 

member states to build, improve, and strengthen their capacity to prevent, detect, and respond to 

infectious diseases outbreaks that can have global spread (Steele et al., 2016). 

To the best of our knowledge, the risk assessment of ED's outbreak is still an open task, 

owing to the high complexity and requirements of integrating qualitative and quantitative factors 

and dealing with uncertainty in data. Fuzzy ER presents an effective solution to dealing with the 

above requirements. Therefore, this paper aims to use a fuzzy ER approach to develop a new risk 

assessment model for evaluating the ED's outbreak in mega-cities. 

 

3 Risk assessment of EDs using fuzzy evidential reasoning  

As far as the risk assessment of ED's outbreak is concerned, some factors cannot be precisely 

measured but be often described by subjective judgements using linguistic terms. Such linguistic 

terms are then modelled by with fuzzy membership functions to address their discretization. 

Linear (e.g. triangular and trapezoidal) fuzzy membership functions are widely used to describe 

the linguistics variables because of their simplification (Wang, 1997). A triangular fuzzy number is 

a fuzzy set with three parameters (a, b, c), where a is the membership function’s left intercept 

(lower boundary) with a grade of 0 and c is the membership function’s right intercept (upper 

boundary) with a grade equal to 0, while b is the value of having the highest membership with a 

grade equal to 1 (Pam et al., 2013). Fuzzy logic provides experts with a wide scope instead of a 

precise point to define the risk grade at which a key risk indicator (KRI) may contribute to a 

specific epidemic disease.  

Fig.1. visually depicts the proposed methodology composed of three major steps. The first 

step is to establish a fuzzy link-based KRI hierarchy, which can offer a generic platform for 

carrying out the risk assessment of a particular place under the outbreak of any specific ED. The 

developed generic framework can be appropriately modified with reference to the disease’s 

specifications, involving less or more KRIs. The second step is to analyze the risk level of a 

targeted area facing the impact of the specific disease. 
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Fig. 1. The methodology of EDRA using fuzzy evidential reasoning  

 

The evaluation of KRIs is a dynamic process depending on different EDs. All the estimations 

of the identified KRIs can then be aggregated using an ER approach to obtain an assessment result. 

It will then be measured by a risk threshold indicating whether the criticality of the outbreak under 

an ED is acceptable. The risk index value is obtained through aggregating the marginal risk 

estimation of each KRI. Otherwise, all the acceptable risk assessment results obtained from 

different impact factors and from different conditions will be aggregated to assess the overall risk 

level of an ED. The overall risk level can then be used as a benchmark to improve the level of 

prevention and monitoring of infectious diseases in CCDC, as well as a theoretical reference for 
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the government to regulate and control drug reserve. Details about ER can be found in the book 

(Lee and Yang, 2018) providing a comprehensive review. 

 

Step 1 Establishment of a fuzzy link-based hierarchy 

This section extracts the KRIs for the risk assessment from the four stages of the ED's 

outbreak process, including prevention stage, propagation stage, resistance stage, and post-control 

stage. We obtained the final indicator system in Table 1 by interviewing 10 experts. Out of these 

experts, 6 are from public healthcare authorities, 3 from the Chinese Food and Drug 

Administration, 3 from the Chinese Center for Disease Control and Prevention (CCDC). The other 

4 are the domain frontline experts from Chinese PLA General Hospital and People's Hospital of 

Peking University, two top-level medical institutions in China. We firstly drafted a set of 

indicators referring to the existing studies and some national regulations like National Regulations 

on Emergency Response to Public Health Emergencies. Then, we presented the draft to experts 

and asked them to make adjustment to the draft including adding new ones, alter the existing or 

drop the unsuited. The feedbacks from the experts are aggregated and sent back to the experts 

again for second round improvement. After two rounds, we finalized the indicator system by 

dropping those rejected by more than 6 experts. Appendix B presents the mapping from indicators 

in Table 1 to corresponding references. 

It is notable that the KRIs in Table 1, the value of R denotes the capacity of inhibiting 

diseases, thus a lower value of R implies higher outbreak risk. 

 

Table 1 The hierarchy of KRIs (R – Inhibiting level; P – Stage level; I – Indicator level). 

Code Key indicators (KRIs) KRIs linguistics grades 

R Capacity of inhibiting diseases Very high High Low Lowest  

R-P1 Prevention stage Good  Average Fair Poor  

R-P1-I1 Have corresponding effective 

vaccines 

Full  Partial Poor Barely No 

R-P1-I2 Personal hygiene awareness Very good  Good Average Bad Very bad 

R-P1-I3 The pathogenicity of the pathogen 

itself 

Very high  High Average Low Very low 

R-P2 Propagation stage Good  Average Fair Poor  

R-P2-I1 Speed of pathogen transmission Very fast Fast Average Slowly Very slowly 

R-P2-I2 People’s Anti-disease capacity Very high High Average Low Lowest 

R-P2-I3 Mortality rate Very high High Average Low Lowest 

R-P3 Resistance stage Good  Average Fair Poor  

R-P3-I1 Relevant stocks of drugs/vaccines Very 

sufficient 

Sufficient Average Inadequate Very 

inadequate 

R-P3-I2 The possibility of death and 

serious sequelae after infection in 

healthy people 

Very likely likely Average Unlikely Very 

unlikely 

R-P3-I3 Have good diagnosis and control 

ability 

Strongly 

Agree 

Agree Not 

sure 

Disagree Strongly 

disagree 

R-P3-I4 The effectiveness of the treatment Very good  Good Average Bad Very bad 

R-P4 Post-control stage Good  Average Fair Poor  
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R-P4-I1 Have comprehensive prevention 

and control plan 

Full  Partial Poor Barely No 

R-P4-I2 The level of drug stocks available very high High Average Low Lowest 

R-P4-I3 The ability of the government to 

regulate the supply of drugs 

Very high High Average Low Lowest 

R-P4-I4 Targeted science popularization 

work 

Very good  Good Average Bad Very bad 

 

The real meaning of risk in practice is varied and specific. Therefore, it is necessary to 

measure the risk of using KRI level descriptions of different units in common space. Triangular 

fuzzy membership functions developed on a [0–1] utility domain have been widely used to define 

different risk grades/descriptors (Yang et al., 2009), which include four to five linguistic terms 

(Table 1). The typical membership functions for four to five linguistic variables are defined and 

characterized (Table 2).  

 

Table 2 Fuzzy membership functions of KRI grades. 

Number of grades 4 5 

Triangular fuzzy membership 

functions 

(0, 0, 0.3), (0.2, 0.4, 0.6),  

(0.4, 0.6, 0.8), (0.7, 1, 1) 

(0,0, 0.3), (0.1, 0.3,0.5), (0.3, 0.5, 0.7), (0.5, 

0.7, 0.9), (0.7, 1, 1) 

 

There is some flexibility in the definition of membership functions to accommodate different 

risk situations. However, it is worth noting that any change in the defined member functions 

requires very cautious reasons from domain experts (Yang et al., 2013). New definitions of 

memberships need to be verified through empirical tests before being applied in practice. Once the 

fuzzy memberships are defined, the grades of the lowest level KRIs will need to be transformed 

and presented by the ones of the top level KRI so as to aggregate the risk estimations of all the 

KRIs on the same plate. Fuzzy similarity calculation can be used to model the transformation 

process, as follows (Yang et al., 2009): 

              ( , ) max[min( ( ), ( ( ))]
i jij i j A A

xx
M A A x x          (1) 

where x covers the domain [0,1] of the fuzzy memberships  and  of the lower level 

KRI grades Ai and the upper level KRI grades Aj, i, j  (4 or 5);  presents the similarity degree 

to which Ai belongs to Aj. To keep the completeness of risk estimation  is normalized into bij, as 

follows: 

1 ( ) ( )

( ) ( ) , , (4 5)

i j

i j

ij ij A A

ij

ij A An m

ij

i j

a x x

a
x x m n or

a

  

  

  


   





    (2) 

Therefore, all KRI scores at the lowest level can be converted and presented through the top 

KRI scores (Good, Average, Fair, Poor). An example of transforming KRI ‘‘R-P1-I2’’ to ‘‘R’ can 

be found in Fig. 2. The belief degrees assigned against each link in the figure is calculated by Eqs 

(1) and (2).  
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Step 2 Risk assessment of major infectious diseases 

In the face of different infectious diseases, the risk of a particular region will vary. Therefore, 

disease is identified in a region. When identifying specific diseases in a region, the risk level can 

be assessed by considering two types of estimates. One of them is to estimate the risk of all KRIs 

at the lowest level (level I), and the other is to assign weights to all relevant KRIs. For a specific 

disease, not all KRIs within the hierarchy have the same importance/weight. Some of them may be 

less (or even less) influence than others. The weights of all KRIs are dynamic and affected by 

identified diseases, so a set of KRI weights is needed for each region against a specific disease. 

Here Analytic Hierarchy Process (AHP) (Saaty, 1998) can be repeatedly used to assign the 

weights w, of KRIs (Yang et al., 2013). To ensure the minimal effects of the possible subjective 

bias in the process of using AHP, a high consistent ratio by a Delphi method (Yang et al., 2009b) 

in the relevant calculation (particularly when multiple experts’ judgments are used as the input) is 

required during this process. 

 

Fig. 2. The transformation of KRI grades 

 

 

After analyzing the weight allocation, the KRI risk assessment for each region-disease pair 

becomes simple and clear. To present assessors’ uncertainty when estimating KRI Ii, i {4, 5}, a set 

of probabilities pi is introduced correspondingly. For instance, pi of the KRI ‘‘R-P1-I1’’ can be 

estimated as {p1 Full, p2 Partial, p3 Poor, p4 Barely, p5 No}. Such estimation can be transformed 

through  in Eq. (2) and the pathways in Fig. 2 and expressed based on the four linguistics 

grades of R using Eq. (3). 

1

, (4 5)
n

i

j i ij

i

p j n or 


 
      (3) 

where 
1

( 1)
n

i ii
p p


  indicates the probabilities assigned to the grades in the lower level 

indicator;  means the normalized similarities between the grades of lower and upper levels 

(see Eq.(2));  represents the transformed probabilities assigned to the grades in the upper level 

indicator. Assume that wi and wj indicate the relative weights associated with the lower and upper 

level indicators, respectively. Then, 

i i jw w  
         (4) 

Capacity of inhibiting 

diseases 

Highest High Low Lowest 

Good Average Fair Poor Prevention stage 

Very good Good Average Bad Very bad 
Personal hygiene 

awareness 

1.0 1.0 1.0 1.0 

1.0 0.27 0.51 0.22 
0.5 0.5 

0.22 
0.51 

0.27 1.0 

Fuzzy output 
Assessment grade 

(Linguistic variables) 

Fuzzy input 
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where  represents the importance of the ith indicator at the lowest level in the process of 

synthesizing all the relevant lower level indicators to their common (the upper level jth) upper 

level indicator. Eqs. (3) and (4) can be repeatedly used to transform the risk estimation and 

importance of each indicator at the lowest level to the top level R. We note that the sum of all the 

 associated with the “R” is equal to one. 

As the risk estimations and weights of all the KRIs at the lowest level are transformed to their 

counterparts  and  at the“R” with respect to one region-disease pair (k = (1, 2, ..., L), where 

L means the total number of all the KRIs at the lowest level. To capture the non-linear relationship 

between all the KRIs at the lowest level, the ER approach (Yang and Xu, 2002a) is used to 

combine all  (transformed from each KRI at the lowest level) and generate a risk estimation of 

the region-disease pair. First, it is required to transform  into basic probability masses using 

Eqs. (5)–(8) (Yang and Xu, 2002a): 

k k

j k jm  
         (5) 

1 1

1 1
N N

k k k

D j k j

j j

m m  
 

    
        (6) 

1
k

D km  
         (7) 

1

(1 )
N

k
k

D k j

j

m  


 
        (8) 

where each  is a degree to which each KDI supports the final synthesized estimation D 

(inhibition level in Table 1); each  represents the relevant importance of the kth KRI and thus 

1
1

L

kk



 ; and 

kk
k

D DDm m m   for all k = (1, 2, ..., L). The probability mass of the kth KRI ( ) 

unassigned to the final synthesized estimation D, which is unassigned to any individual grades Dj 

(j = 1, 2, 3, 4), is split into two parts, one caused by the relative importance of the kth KRI ( ), 

and the other due to the incompleteness of the belief degree assessment . 

In view of the above, it is possible to aggregate all the risk estimation from each indicator to 

generate the combined degree of belief ( ) in each possible Dj of D. Suppose  is the 

combined belief degree in Dj by aggregating all  and  is the remaining belief degree 

unassigned to any Dj. Let  and . Then, the overall combined belief 

degree in Dj is generated as follows: 

           
  ( 1) ( ) 1 ( ) 1 ( ) 1

( 1): [ ]I k I k k I k k I k k

j j I k j j j D D jD m K m m m m m m   

  
    (9) 

                    

( )( )
( ) (1,2,..., 1)

I kI k
I k

D DDm m m k L   
        (10) 

         
 

1 ( )( 1) ( ) 1 ( ) 1

( 1): [ ]
k I kI k I k k I k k

j D D D D D Dj I kD m K m m m m m m
  

  
             (11) 

                       

( +1) ( ) 1

( 1)=
I k I k k

D D DI km K m m



 
                          (12) 
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( ) 1 1

( 1)

1 1

[1 ] (1,2,..., 1)
N N

I k k

I k j t

j t
t j

K m m k L 



 


   
                (13) 

                      

 
( )

( )
: (1,2,3,4)

1

I L

j

j j I L

D

m
D j

m
  

                      (14) 

                             

 
( )

( )
:

1

I L

D

j D I L

D

m
D

m
 

                           (15) 

where  indicates the normalized belief degree assigned to Dj in the final synthesized estimation 

D and  represents the normalized remaining belief degree unassigned to any Dj. To facilitate 

the calculations involved in Eqs. (5)–(15), IDS Software has been developed through a 

user-friendly interface by Yang and Xu (2002). The risk estimation result for the region-disease 

pair can then be expressed as {  Highest,  High,  Low,  Lowest,  Unknown}. To 

measure the acceptance of such risk result, Dj needs to be given utility values for a crisp risk result 

RC and  requires to be assigned back to  and  for the possible best risk RB and the 

possible worst risk RW. Consequently, 

4 4

1 1

2 1

3

4 4

1

4 4

2 1

2

( ) , 1;

( )

, 1

B W
C

B j j D j

j j

W j j D

j

C j j j

j j

R R
R

R U U when or

R U U

R U when

   

  

 

 



 





    



   


  


 



 
            (16) 

where each Uj  (j = 1, 2, 3, 4) represents the utility values of Dj, which can be calculated using a 

centroid defuzzification method as the set of {0.1, 0.4, 0.6, 0.9} from Table 2. Such defuzzied 

utility values can be used as the criteria to define the three risk levels (Yang, 2001), as follows:      

1( ) , 0.1 0.4

2( ) , 0.4 0.6

3( ) , 0 0

 

.6 .9

C

C

C

pecial vigilance

vigilance

Risk Level s Part A is needed when R

Risk Level heightened Part B is needed when R

Risk Level normal Part C ivigi s needed whlance en R

  

  

  
        (17) 

When RC<0.4, the risk level of the region-disease pair is unacceptable at a normal situation. 

Additional risk control measures should be developed and adopted to the KRIs with the highest 

risk contributions. Although this strategy seems to be debatable on the perspective of cost-benefit 

analysis, it is actually reasonable given that cost is not the first concern in a pandemic.  

When RC 0.4, the risk level is acceptable. When the risk levels of all the region-disease pairs 

related to a terminal become acceptable, the risk level of the terminal can be obtained through 

synthesizing all the risk levels of the involved region-disease pairs for risk improvement purposes. 

 and  obtained from Eqs. (14) and (15) are based on a specific region-disease pair by 

an expert. In practice, the risk level of a certain area with respect to all the possible diseases and 

disease response capacity in specific regions are likely to be assessed by multiple experts. 

Therefore, the risk estimations from multiple experts and all the region-disease pairs are 
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synthesized using the ER approach. If there are different risk results from multiple experts with 

respect to a specific pair, then  in Eq. (5) means the estimation from the kth expert. The weight 

 indicates the role/importance that the expert plays compared to the other experts. 

If all the region-disease pairs associated with a particular area under different disease are 

combined to calculate the risk level of the facility, then  in Eq. (5) represents the estimation 

from the kth region-disease pair. The weight  is determined by the taking into account both 

likelihood and consequence through a simple risk matrix approach of each disease. Similarly, if 

the risk estimations of all the facilities are synthesized to calculate the risk level of a certain area, 

then  in Eq. (5) represents the estimation from the kth type of disease under investigation. The 

corresponding RC can be used a benchmark to monitor the risk control of an area under the 

outbreak of diseases in a longitude study as well as to priories all the region-disease pairs to 

identify the risk vulnerability for optimal risk improvement. 

 

Step 3 Development of a decision-making tool to select the infectious disease for prevention 

In order to further analyze and verify the key factors affecting the outbreak of EDs, such as 

“which factor should attract the most attention by healthcare authorities”, we will conduct a 

sensitivity analysis. Decision makers are often interested in examining how much changes in 

attribute weights and alternative performance on an attribute can affect the overall ranking of 

alternatives. On top of score ranges, there are 3 other types of sensitivity analysis in ER and its 

associated computing software IDS: Change Weight, Change Input Data and TradeOff Analysis. 

In this paper, in order to obtain the key means to suppress the outbreak of infectious diseases, the 

method of change weight is selected to conduct sensitivity analysis. 

At present, the scope of drug and medical device reserve in China is mainly general accidents 

and disasters. However, in recent years, with the change of natural environment and ecosystem, as 

well as the increase of international exchanges of personnel and materials, the incidence and scale 

of new infectious diseases and infectious diseases in overseas epidemic areas have been 

continuously increasing. The incidence of unconventional epidemics and new infectious diseases 

is increasing, and epidemics and diseases beyond the control of the use of existing drugs and 

medical devices occur. At the same time, due to the shortage of supply, there is no domestic 

production capacity or insufficient production capacity, in the emergency response process, the 

event handlers often require the use of imported products on the premise of having domestic 

products. The inaccurate forecasting of epidemic trend and scale leads to the inability of reserve 

varieties and quantities to reflect emergency needs. Through sensitivity analysis, the key factors 

affecting the suppression of infectious disease outbreaks in the region can be obtained, which will 

provide useful insights for CCDC and other relevant departments in disease prevention, response 

and control decision-making. 

 

4 Empirical study of EDs in Beijing 
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The description of problem 

As the capital of China, Beijing is the political, economic and cultural center of China, which 

has a dense population and the number of permanent residents ranks 1st in the country. Taking 

Beijing’s public health emergency drug reserve as the object of empirical research has important 

theoretical value and practical significance for emergency measures of public health emergencies 

in mega-cities.  

The aforementioned expert panel recommend 4 disease worth careful investigation in light of 

their background knowledge, including influenza, human infection with highly pathogenic avian 

influenza (Avian Influenza), hand, foot and mouth disease (HFMD), and tuberculosis. 

Subsequently, we take Beijing as an example to explore the risk of the outbreak of the four 

infectious diseases. Firstly, based on the risk assessment system in Section 3, a questionnaire 

survey was conducted with the panel of experts. On the one hand, the scientific nature of the 

assessment system will be tested by the survey data, on the other hand, the data will be substituted 

for evidence reasoning method to make the risk assessment. Finally, we will conduct a sensitivity 

analysis on the key indicators affecting the risk of infectious disease outbreak. 

 

Question design 

The indicators used in this study are evaluated by a subset of perceptual items in the outbreak 

of disaster. First, we adopted indicators that had been validated by previous studies. Second, when 

indicators had not been well documented in the literature, we develop new indicators based on our 

observations and face-to-face interviews with the senior managers in the Ministry of Health, 

Chinese Food and Drug Administration (CFDA) and CCDC. 

The survey instruments included questions on the basic information of respondents, and 

evaluation of four main infectious diseases in four stages. In the prevention stage, we evaluate the 

risk in terms of effective vaccines (Lopes et al., 2018; Lucero et al., 2019), personal hygiene habits 

(Pehlivan et al., 2011; Zivich et al., 2018) and pathogens (Xue, 2019; Yanagihara et al., 2019); in 

the propagation stage, in terms of transmission speed (Yi et al., 2019; Feng and Jin, 2019), human 

beings’ resistance and mortality rate (Rao and Ayres, 2017; Emam et al., 2019); in the resistance 

stage, in terms of diagnosis and control of diseases, storage of drugs/vaccines, effectiveness of the 

treatment, and possibility of death (Odedra et al., 2019; Vaughn et al., 2019; Arji et al., 2019), and 

in the post-control stage, in terms of the level of drug stocks available, the ability to regulate the 

supply of drugs, and targeted science popularization work (Spencer et al., 2019; Tong et al., 2016). 

On the four stages affecting the outbreak of infectious diseases, all indicators were computed on a 

five-point Likert scale and are listed in the Appendix, with “1” indicating “strongly disagree” and 

“5” indicating “strongly agree”. 

 

Sample selection 

Through reliable research collaboration, we managed to survey CCDC, Chinese Drug 

Administration and the Ministry of Health using anonymous questionnaire in the period from 1st 

Oct. to 31st Oct., 2018. Four weeks were given to each respondent and every two weeks was 

considered as one period. We then sent reminding emails to the respondents when the first period 

passed. By the end of the fourth week, 76 respondents had responded to the survey. On the basis 

of a comprehensive check of returned answers, 55 questionnaires were valid, translating to a 

response rate of 72.3%. The samples cover all the senior managers of the Ministry of health, the 
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State Drug Administration, the CCDC and the designated (by the healthcare authorities) experts in 

the field of public healthcare. The good response rate and comprehensive coverages of the 

stakeholders ensure the representativeness of the sample data. Profiles of the respondents and the 

organizations are summarized in Table 3. 

 

Table 3 Profile of Respondents 

Characteristics Percentage (%) 

Respondent’s position  

Senior managers 13 

Middle managers 37 

General staff 35 

Medical experts 15 

Age of respondents  

<30 15 

31–40 37 

41–50 33 

>50 15 

Organisations  

CCDC 13 

Food and Drug Administration 30 

National Ministry of Health 12 

Local Health Bureau 45 

 

Analysis results 

According to Armstrong and Overton (1977), non-response bias should be tested based on the 

differences of measured items between early and late responses. In this study, 19 answers were 

collected at the end of the first period and 36 questionnaires were returned during the second 

period. By comparing the late responses obtained after a reminder email with early responses on 

the measured items and demographic variables, the results of t-tests indicate no significant 

differences between the responses in the two periods, suggesting that non-response bias was not a 

concern in this study. At the same time, we test the reliability of the data by using the Cronbach's 

alpha, and the result of this test is 0.786, showing a good reliability of the dataset. In addition, to 

ensure the suitability of collected data for the factor analysis, a Kaiser-Meyer-Olkin (KMO) 

measure of sampling adequacy and Bartlett’s test were conducted (Eltayeb et al., 2011). The 

overall result of the KMO and Bartlett’s test for the dataset is 0.873 and the minimum value of a 

single variable reached 0.753, which is for sphericity, showing a satisfactory result when p < 0.000. 

The results indicate that the correlation between variables were strong and the data set structure 

was robust. 

Principal Components Analysis (PCA) is employed by using SPSS on 14 measured variables 

with VARIMAX rotation to extract the crucial factors. An eigenvalue greater than 1 was used to 

determine the number of factors (Churchill, 1979). For simplicity, only loadings of 0.50 or higher 

were extracted (Hair et al., 1998). Therefore, these 14 variables were loaded on 4 factors (shown 

as Table 4). The cumulative variance explained by the four factors was 0.857 and the alpha value 

of each factor group was higher than the suggested threshold of 0.70 (Skipper and Hanna, 2009), 
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which indicates a good construct validity. Moreover, it shows that the factor model produced by 

factor analysis was largely consistent with the theoretical one. 

Next, the fuzzy link base hierarchy in Table 1 is directly employed in this section (Step 1). 

The risk assessment of the four diseases starts with the analysis of the KRI weights with respect to 

each region-disease pair and the risk estimation of each KRI at the lowest level (Step 2). AHP is 

first used to assign the four parameter (P1–P4) weights in the influenza analysis in Table 5. In a 

similar way, the relative weights of all other KRIs at the lowest level are assigned (Table 5). 

 

Table 4 Results of PCA 

Item Factor 1 Factor 2 Factor 3 Factor 4 

R-P1-I1 0.693    

R-P1-I2 0.768    

R-P1-I3 0.643    

R-P2-I1  0.794   

R-P2-I2  0.836   

R-P2-I3  0.778   

R-P3-I1   0.762  

R-P3-I2   0.775  

R-P3-I3   0.837  

R-P3-I4   0.830  

R-P4-I1    0.891 

R-P4-I2    0.878 

R-P4-I3    0.646 

R-P4-I4    0.642 

Mean 3.214 1.578 3.567 3.923 

S.D. 0.887 1.166 0.862 0.773 

Eigenvalue 5.002 4.888 4.549 4.028 

Cronbach’s α 0.846 0.944 0.929 0.924 

 

Next, the probabilistic risk estimation of each KRI using the defined linguistics grades is 

evaluated in the context of influenza by the panel of experts mentioned in Section 3 - step 1 (Table 

6). We adopt a 3-round Delphi algorithm to narrow the range of experts’ idea, then average them 

into a unified one. Using Eqs. (1)–(3), such probabilistic risk estimations can be transformed and 

expressed by the four linguistic grades of the R at the top level (Table 6). Based on Eqs. (4)–(15), 

all the transformed risk estimations of the KRIs can be synthesized using the ER approach.  

IDS software package is used to facilitate the synthesis process with the final combined risk 

estimation result of the influenza obtained as  

R(influenza)= {0.3533 Highest; 0.3432 High; 0.2653 Low; 0.0382 Lowest}. 

The above result can be interpreted as that, given the risk input of each KRI in Table 6, the 

risk level of the influenza pair is estimated as the highest with 35.33% degree of belief, high with 

34.32% degree of belief, low with 26.53% belief degree, the lowest with 3.82% degree of belief. 

This result is visually presented in Fig.3.   

 

Table 5 Parameter pairwise comparison matrix in terms of influenza 
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P #1 #2 #3 #4 Weight Consistency ratio (CR) 

#1 1.00 4.00 1.50 1.00 0.34  0.0821 

#2 0.25 1.00 0.30 0.20 0.08  

#3 0.67 3.33 1.00 0.90 0.26  

#4 1.00 5.00 1.11 1.00 0.33  

 

Table 6 KRIs’ weights and risk estimations in the context of influenza. Italic values show the 

weights of R-Ps (which are at the same level) 

Code Weights Probabilistic risk estimation of each KRI 
Transformed risk estimation at the 

R level 

R-P1 0.34      Good  Average Fair Poor 

R-P1-I1 0.40 0.3Full                       0.3Partial 0.2Poor 0.1Barely 0.1No 0.64 0.25 0.11 0 

R-P1-I2 0.30 0.4Very good          0.3Good 0.3Average   0.75 0.25   

R-P1-I3 0.30 0.4Very High                       0.3High 0.2Average 0.1Low  0.77 0.23 0  

R-P2 0.08          

R-P2-I1 0.30 0.55Very fast          0.25Fast 0.15Average  0.05Very 

slowly 

0.82 0.10 0.08  

R-P2-I2 0.30 0.3Highest 0.2High 0.2Average 0.2Low 0.1Lowest 0.60 0.40   

R-P2-I3 0.40 0.3Highest 0.3High 0.2Average 0.2Low  0.60 0.40   

R-P3 0.26          

R-P3-I1 0.30 0.5Very 

sufficient 

0.3Sufficie

nt 

0.2Average   0.60 0.40   

R-P3-I2 0.25 0.35Very 

likely 

0.25Likely 0.25Average 0.15Unlikely  0.85 0.15   

R-P3-I3 0.25 0.35Strongly 

Agree 

0.25Agree 0.25Not sure 0.1Disagree  0.81 0.10 0.09  

R-P3-I4 0.20 0.5Very good          0.3Good 0.2Average   1    

R-P4 0.33          

R-P4-I1 0.30  1Partial    0.75 0.25   

R-P4-I2 0.30  1High    0.75 0.25   

R-P4-I3 0.30 0.5Highest 0.5High    0.75 0.25   

R-P4-I4 0.10 0.5Very good          0.5Good    0.75 0.25   

Fig. 3. The risk level of influenza 

 

 



16 
 

The above results obviously indicate that, to a rather large extent, the KRIs have been 

assessed as the highest or the second highest grade. For example, R-P1-I1 has been assessed as 

‘Full’ with a belief of 30%; R-P2-I1 has been evaluated to a significantly larger extent as ‘Good’ 

with 30%. Since the risk level of a region-disease pair is determined by the risk performance of 

each basic indicator, the top risk level should be evaluated as ‘Highest’ to a large extent. This is 

harmonious with the results obtained above as the risk level of influenza has been assessed as 

‘Highest’ to the extent of 35.33%. The acceptance of the risk level could be measured by Rc using 

Equation (16) and the result is as follows: 
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RC =0.20402< 0.4 implies that the risk level of influenza is worth special vigilance. Similarly, 

the risk levels and their crisp utility values of the other three diseases can be obtained (Table 7). 

The results indicate that the risk levels of the other three infectious diseases are needed heightened 

vigilance, while the smaller the inhibitory effect on influenza, the greater the risk of outbreak (can 

see in Fig.4). 

 Fig. 5 shows the scoring of four infectious diseases in four stages, which indicates that in the 

prevention stage and resistance stage, the differences of four infectious diseases are small, while in 

the propagation stage and post-control stage, the scoring differences are large. In order to further 

analyze the key factors to inhibit the risk of infectious diseases outbreak, the sensitivity analysis of 

the indicators is made in the ensuing section. 

 

Fig. 4. The risk level of infectious diseases - inhibition 

 

 

Table 7 The risk levels of the four typical infectious diseases 

Infectious 

diseases 

Risk estimation Crisp utility value 

influenza 0.3628 Highest; 0.5331 High; 0.0857 Low; 0.0164 Lowest and 0 Unknown 0.20402 

Avian Influenza 0.7051 Highest, 0.1566 High, 0.1193 Low, 0.0190 Lowest and 0 Unknown 0.55887 

HFMD 0.5955 Highest, 0.2819 High, 0.1298 Low, 0.0234 Lowest and 0 Unknown 0.52174 
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tuberculosis 0.5845Highest, 0.2758High, 0.1143 Low, 0.0199Lowest and 

0.0056Unknown 

0.51035 

 

Fig. 5. Risk level comparison of four diseases in various stages 

 

 

Sensitivity analysis 

We invited the afore-mentioned 10 experts to provide the ranges of the weights of KRIs, 

considering each of them has at least 8 years of serving the governmental departments or medical 

institutes on the infectious disease. We formulate and adopt the overlapping range in the 

sensitivity analysis: the range of the weight of R-P2 (indicators in the propagation stage) is [0.07, 

0.61], while R-P4 (indicators in the post-control stage) [0.2, 0.8]. The results of sensitivity 

analysis are shown in Figs. 6-7, from which the following implications can be drawn: 

Firstly, as shown in Fig.6, the weights of indicators in the transmission stage impose 

significant impact on the results. Along with the weight increasing from 0.07 to 0.61, tuberculosis 

and avian influenza transpose their rankings in terms of inhibition level, which implies the ranking 

of outbreak risk change reversely; besides, influenza and HFMD drop a lot though their rankings 

remain unchanged. This indicates that the weight in the transmission stage should be determined 

with much cautiousness. To achieve this goal, integration of expert opinions, like in this study, 

could be a good option. 

Fig. 6. Sensitivity analysis on the weight in propagation stage 
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Secondly, as depicted in Fig. 7, the weight of R-P4 (indicators in the post-control stage) has 

no significant impact on the risk estimation of influenza, HFMD and tuberculosis, but relatively 

bigger influence on avian influenza. With the weight increasing from 0.2 to 0.8, of the first three 

diseases, the rankings keep unchanged and the inhibition levels gain only slight increase. In terms 

of avian influenza, the ranking keep unchanged, though the inhibition level gains bigger increase. 

This implies that the empirical result is robust on the weight of R-P4.  

 

Fig.7. Sensitivity Analysis on the Weight in post-control stage 

 

5 Discussion and Conclusion 

The paper reviews the current status of risk control process to identify the need of developing 

a quantitative risk assessment method. Following the development of a novel risk assessment 

method, a case study and sensitivity analysis are undertaken to validate the results. The unique 

contributions of this study comprise (1) constructing a new hierarchical system of indicators for 

outbreak risk evaluation, based on previous studies and the first-hand practical experience of the 

Chinese authoritative infectious disease control institutions like Ministry of Health, CFDA and 

CCDC; (2) proposing a general methodology of outbreak risk evaluation based on fuzzy evidential 
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reasoning, which could be easily extended to other areas or diseases. The proposed system of 

indicators thoroughly covers key elements in successive stages of fighting a disease including 

prevention stage, transmission stage and resistance stage, involving human, disease and preventive 

measures. By adopting fuzzy evidential reasoning, the proposed EDRA methodology is enabled to 

integrate the valuable expertise and quantitative analysis for more successful disease outbreak risk 

evaluation.  

The development of a quantitative EDRA methodology capable of realizing the integrity of 

risk identification, analysis, control and security improvement will enjoy substantial benefits, 

including a consistent regime which addresses all the aspects of infectious disease in a certain area 

through an integrated and quantitative manner; a rational basis that prevention control, and 

regulatory requirements are in proportion to the severity of the risks; a pro-active approach, 

enabling threats that have not yet given rise to tragedies to be properly considered. To further 

appreciate the benefits, the applications of the developed methodology in more real cases will be 

carried out. The method will be tailored to deal with specific requirements of CCDC or other 

healthcare authorities in a wide context (i.e., Other public health events in a certain area) in order 

to reinforce its validity and flexibility. To conclude, this study offers substantial value to scholars, 

planners and policymakers in the design, planning and evaluation of effective risk control 

measures and strategies, thus reducing the outbreak risk of infectious disease in a meg-city. 

Moreover, although the manuscript was prepared before the outbreak of COVID-19, the 

authors see much potential of the proposed model for risk analysis of COIVD-19. For instance, the 

model can be used at different scales, which implies that we can use it to evaluate the outbreak 

risk of COIVD-19 in a community, a city, and a regional/country. The uniqueness of this model 

lies in the fact that it covers all the stages of the pandemic development process, which enables the 

model to be an effective both alert and monitoring tool in the pandemic lifespan, thus it can not 

only evaluate the outbreak risk of COIVD-19 in those unaffected countries but also track the 

response capability of the countries suffering from COIVD-19. Besides, this model is more than 

generating a gross evaluation score. The scores on the specific KPIs provide us with deeper 

insights into the response system against COIVD-19 and facilitates us to explore the deficiency of 

the system, which offers an actionable method to enhance the effects of fighting the pandemic.    

Furthermore, although the world has input much effort to fight COIVD-19, there is a scarcity 

of interdisciplinary studies on how COIVD-19 reacts with other social systems. For example, how 

the logistics system can adapt to the large-scale epidemic outbreak. Hence, by focusing on 

Covid-19, the proposed model in this paper can be tailored to develop effective logistics strategies 

and planning in tackling the outbreak risk caused by the sudden, large-scale epidemic outbreak 

and to enhance the resilience of emergency logistics chains (e.g. medical and food). It can strive to 

achieve two interactive analysis results to provide insightful solutions to Covid-19: 1- outbreak 

risk assessment of Covid-19 and 2 - logistics adaptive responses. It can aid (1) to investigate and 

define the key factors influencing the outbreak risk (e.g. both likelihood and consequence) of 

Covid-19 in a country/society, (2) to develop a new risk index system to assess and monitor the 

dynamic risk levels of Covid-19, (3) to develop a novel dynamic multi-objective optimization 

model for logistics planning to support societies with respect to their dynamic Covid-19 risk levels, 

and (4) to apply the risk and logistics planning models in medical and/or food supply chains. 

Although this study contributes to both academics and practice, there are still some 

limitations. For example, by interviews and questionnaires, the indicators in this study are selected 
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by surveying infectious disease institutions located in Beijing, subsequently more indicators 

should be considered when it comes to other areas.  
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Appendix A. Questionnaire for qualitative indicators 

Risk Identification of X Public Health Emergencies 

The purpose of this questionnaire is to assess the risk factors for EDs and to select four 

representative infectious diseases, including: plague, influenza, SARS, avian influenza, hand, foot 

and mouth disease. Each question represents a type of indicator, each question has five options, 

and the more left option represents the higher the score value. Thank you very much for your 

support of this survey! 

Prevention stage 

1. There is the effective corresponding vaccine (the higher the score, the greater the impact on 

inhibiting the epidemic) 

2. Good personal hygiene awareness (washing hands, washing clothes, etc.) has a significant 

preventive effect on the spread of infectious diseases (the higher the score, the greater the impact 

on suppressing the epidemic) 

3. The pathogenicity of the pathogen itself (the higher the score, the greater the impact on the 

epidemic) 

 

Propagation stage 

4. Pathway of pathogen transmission and speed of transmission (the higher the score, the greater 

the impact on the epidemic) 

5. The level of immunity/resistance of the population to the disease (the higher the score, the 

smaller the impact on the epidemic) 

6. The possibility of death and serious sequelae after infection in healthy people (the higher the 

score, the greater the harm of the disease) 

 

Resistance stage 

7. Have relevant stocks of drugs/vaccine for the disease (the higher the score, the stronger the 

ability to control the disease) 

8. The possibility of death and serious sequelae after infection in healthy people (the higher the 

score, the weaker the ability to control the disease) 

9. Have good diagnosis and control ability for the disease (the higher the score, the stronger the 

ability to control the disease) 

10. The effectiveness of the treatment (the higher the score, the stronger the ability to control the 

disease) 

 

Post-control stage 

11. There is a comprehensive prevention and control plan for the disease (the higher the score, the 

stronger the ability to control the disease) 

12. The level of drug stocks available for this type of infectious disease (the higher the score, the 

stronger the ability to control the disease) 

13. The ability of the government to regulate the supply of drugs for this type of infectious disease 

(mainly including market scheduling, capacity control, availability of reserves) (the higher the 

score, the stronger the ability to control the disease) 

14. Targeted science popularization work for this type of infectious disease (the higher the score, 

the greater the impact of the measure on the suppression of the epidemic) 
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Appendix B. References for the indicators in Table 1 

 

R-P1 Prevention stage        References 

R-P1-I1 Have corresponding 

effective vaccines 

 Regulations on emergency response to public health emergencies, The State 

Council, The People’s Republic of China, May 9, 2003. (in Chinese) 

R-P1-I2 Personal hygiene 

awareness 

 Aiello A, Coulborn R, Perez V E. Effect of hand hygiene on infectious 

disease risk in the community setting: a meta-analysis. American Journal of 

Public Health, 2008, 98(8):1372-1381. 

R-P1-I3 The pathogenicity of the 

pathogen itself 

 National emergency plan for public health emergencies, National Health of 

Commission of The People’s Republic of China, January 10, 2006. (in 

Chinese) 

R-P2 Propagation stage       References 

R-P2-I1 Speed of pathogen 

transmission 

 Vescovi L, Rebetez M, Rong F. Assessing public health risk due to 

extremely high temperature events: climate and social parameters. Climate 

Research, 2005, 30(1):71-78. 

R-P2-I2 The level of 

immunity/resistance of 

the population to the 

disease 

 Fisman D N, Leung G M, Lipsitch M. Nuanced risk assessment for 

emerging infectious diseases. Lancet, 2014, 383(9913):189-190. 

R-P2-I3 Mortality rate  National emergency plan for public health emergencies, National Health of 

Commission of The People’s Republic of China, January 10, 2006. (in 

Chinese) 

R-P3 Resistance stage        References 

R-P3-I1 Relevant stocks of 

drugs/vaccines 

 National emergency plan for public health emergencies, National Health of 

Commission of The People’s Republic of China, January 10, 2006. (in 

Chinese) 

R-P3-I2 The possibility of death 

and serious sequelae 

after infection in 

healthy people 

 Law of the People’s Republic of China on the prevention and control of 

infectious diseases, National Health of Commission of The People’s 

Republic of China, August 28, 2004. (in Chinese) 

R-P3-I3 Have good diagnosis 

and control ability 

 Law of the People’s Republic of China on the prevention and control of 

infectious diseases, National Health of Commission of The People’s 

Republic of China, August 28, 2004. (in Chinese) 

R-P3-I4 The effectiveness of the 

treatment 

 Law of the People’s Republic of China on the prevention and control of 

infectious diseases, National Health of Commission of The People’s 

Republic of China, August 28, 2004. (in Chinese) 

R-P4 Post-control stage       References 

R-P4-I1 Have comprehensive 

prevention and control 

plan 

 Regulations on emergency response to public health emergencies, The State 

Council, The People’s Republic of China, May 9, 2003. (in Chinese) 

 Law of the People’s Republic of China on the prevention and control of 

infectious diseases, National Health of Commission of The People’s 

Republic of China, August 28, 2004. (in Chinese) 

 National emergency plan for public health emergencies, National Health of 

Commission of The People’s Republic of China, January 10, 2006. (in 
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Chinese) 

R-P4-I2 The level of drug stocks 

available 

 National emergency plan for public health emergencies, National Health of 

Commission of The People’s Republic of China, January 10, 2006. (in 

Chinese) 

R-P4-I3 The ability of the 

government to regulate 

the supply of drugs 

 Law of the People’s Republic of China on the prevention and control of 

infectious diseases, National Health of Commission of The People’s 

Republic of China, August 28, 2004. (in Chinese) 

 National emergency plan for public health emergencies, National Health of 

Commission of The People’s Republic of China, January 10, 2006. (in 

Chinese) 

R-P4-I4 Targeted science 

popularization work 

 Aiello A, Coulborn R, Perez V E. Effect of hand hygiene on infectious 

disease risk in the community setting: a meta-analysis. American Journal of 

Public Health, 2008, 98(8):1372-1381. 

 


