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Dynamic optimization of emergency resource scheduling in a 

large-scale maritime oil spill accident 

Abstract: Current maritime emergency logistics studies on oil spills are largely 

conducted based on static analysis to optimize resource scheduling. This does not 

suitably address the practical industrial demand, where the oil spill risk in nature 

dynamically depends on the motion of oil films. To better simulate the reality, this paper 

aims to conduct a study on a novel dynamic multi-objective location-routing model 

with split delivery considering practical characteristics, such as the time-varying 

demands of contaminated areas, uncertainty in the state of associated transportation 

networks and interrelationship between the changes in spilled oil films and emergency 

operations, which all result from the dynamic motion of oil films at sea. To address 

model complexity, we propose a two-stage optimization model, whereby a hybrid 

heuristic algorithm is developed to obtain Pareto solutions. To demonstrate the 

proposed model and approaches, a case study involving a series of sensitivity analyses 

is presented to highlight the importance of the proposed model and determines its 

implications.  

Key words: Emergency logistics; Maritime oil spill; Split delivery; Location-

routing problem; Hybrid heuristic algorithm 

1 Introduction 

Offshore oil exploration and tanker vessels are the major sources of accidental oil 

spills in the marine environment (ITOPF, 2020). With the rapid development of offshore 

oil exploration and transportation activities at sea, the risk of major maritime oil spill 

accidents is increasing year by year (Garrett et al., 2017). When a large-scale maritime 

oil spill occurs, the decision making for the emergency response can be challenging and 

intractable. This is because decision makers (emergency and rescue commanders) must 

coordinate numerous resources and develop appropriate response schemes with 

considerations of urgency (Xu et al., 2016), uncertainty (Huang et al., 2020), resource 

constrains (Liu et al., 2018) and potential consequences (Wang et al., 2020). 

For example, BP's oilfield in the Gulf of Mexico experienced a serious spill in 

2010, which caused great damage to the ecological environment of the coastal areas, 

with an estimated cost of more than $20 billion. After the Deepwater Horizon Oil Spill 

occurred, under the charge of the U.S. National Commission on the Deepwater Horizon 

Oil Spill and Offshore Drilling, over 39,000 personnel, 5000 vessels and 110 aircrafts 

were dispatched, over 700 km booms were deployed, 275 controlled burns were carried 

out, approximately 27 million gallons of oil-water mixture were recycled by skimmers, 

and more than 1.5 million gallons of dispersant were used. Nevertheless, improper 

decisions on emergency resource scheduling usually caused waste to manpower and 

budgets (U.S. National Commission on the Deepwater Horizon Oil Spill and Offshore 

Drilling, 2011). It is followed by another large-scale oil spill of ConocoPhillips in the 

Bohai Bay in 2011, which polluted an area of about 6,200 square kilometers around and 

northwest of the oilfield and 870 square kilometers of which was heavily polluted. 

Compared with the national oil spill emergency response system in the U.S., China's 



 

 

oil spill emergency response system was still in its infancy stage and had not yet formed 

a complete emergency response mechanism (He, et al., 2013). Therefore, there were a 

lot of deficiencies in department coordination and emergency resource scheduling. 

After interviewing the local maritime bureau that was directly involved in the 

emergency response, we have learned that the vessels participating in the emergency 

response composed of the local maritime department's own emergency vessels and 

private vessels of the surrounding ports and fishermen. Nevertheless, the emergency 

operations and transportation activities of these vessels in the emergency response were 

completely autonomous and lack of overall planning, which leaded to the low efficiency 

of the emergency response. More recently, in 2018, the Panamanian-flagged tanker 

Sanchi that was carrying 110,000 tons of condensate oil collided, collided with the 

Hong Kong-flagged cargo ship CF Crystal in the East China Sea. About 1,900 tons of 

the Sanchi’s own fuel oil and unknown amount of condensate sank along with the 

Sanchi. Under the command of the Ministry of Transport in China, various 

regional/provincial administrations such as the East China Sea Rescue Bureau and the 

Shanghai Salvage Bureau were mobilized to clean up the spilled oil. The total area of 

cleanup was up to 225.8 square nautical miles. Compared with the oil spill emergency 

response in the Bohai Bay in 2011, China's oil spill emergency response mechanism 

was considerably improved and the emergency force carried out emergency operations 

and emergency resource transportation in the form of marshalling, which improved the 

responsiveness to some extent. However, there was only a macro division of the 

responsibilities of the relevant emergency forces without specific instructions for 

emergency operations and means of resource coordination among them (Yin, 2019). 

Thus, it can be seen that a large-scale oil spill may occur anywhere at any time, 

which has always represented a major threat to human society. However, in terms of 

the actual state of the emergency response to oil spills, decision makers more or less 

face the problem of the uncoordinated scheduling of emergency resources. Several 

officials from the Maritime Safety Administration of China who have participated in 

the response efforts to the ConocoPhillips oil spill in the Bohai Bay admitted that due 

to the absence of theoretical decision support, the scheduling of oil spill emergency 

resources usually relies on subjective experience, which can result in a low 

responsiveness and even chaos in the emergency response. A severe oil spill emergency 

situation requires us to conduct the research on emergency resource scheduling to 

enhance the practical emergency efforts in response to oil spills. Of course, a series of 

catastrophic oil spills has created a shockwave globally across the industry, government, 

and research community (Ye et al., 2019). Subsequently, the problems related to oil spill 

emergency have become the research area of increased interest, which has resulted in a 

large number of studies on contingency management, environmental impact assessment, 

and simulation technique development (Payam et al., 2019; Xiong et al., 2015; Wang 

et al., 2020; Chen et al., 2016). Nevertheless, there are only a limited number of studies 

on the development of process optimization and decision making in maritime 

emergency logistics targeting oil spills. Research on the scheduling of emergency 

resources in response to oil spills remains in the early stage. 

In contrast to the studies on maritime emergency logistics, the problems of 



 

 

emergency resource scheduling in regard to land-based disasters have been extensively 

studied in recent decades and notable progress has been attained in research on land-

based emergency logistics (Alem et al., 2016). The context of emergency operations 

after large-scale land-based disasters can be dynamic and challenging. The demand for 

emergency resources in affected areas may change over the phase of the response efforts 

depending on conditions, such as livelihood recovery and secondary disasters 

(Campbell et al., 2018). Similarly, the state of transportation networks can also vary 

due to any road damage caused by disasters and transportation recovery (Mehmet et al., 

2020). Such characteristics of land-based emergency logistics highlight that any 

developed models must fully consider the changing conditions in the emergency 

response to effectively support decision makers. Therefore, a great deal of research on 

land-based emergency logistics has been devoted to address the dynamic issues in the 

emergency response, and a series of theoretical approaches has been developed to 

reflect the dynamic decision-making environment (Abdolhamid et al, 2020; Maharjan 

et al., 2020; Cao et al., 2018; Alem et al., 2016). Although numerous empirical research 

results have demonstrated that these approaches have good application effect in the 

process of making decisions on land-based emergency logistics, their assumptions are 

too restrictive to be applicable to making decisions on maritime emergency logistics. 

In response to land-based disasters, the changing conditions exhibit periodic persistence 

characteristics. Each time external conditions change, the resulting state lasts for a 

period of time. Frequently used approaches have been developed based on these 

characteristics and are naturally applicable to the emergency response to land-based 

disasters. In contrast, the dynamic characteristics of the emergency response to oil spills 

mostly depend on the dynamic motion of oil films (i.e., diffusion and drift). Diffusion 

could lead to an increase in the size of the contaminated area to be cleaned up, resulting 

in a change in the demand for emergency services. Moreover, drift could alter the 

position of oil films and consequently affect the transportation routes of the vessels 

participating in the response. The dynamic motion of oil films is continuous in reality, 

which implies that the external conditions in the response to oil spills also continuously 

changing over time. Within the content of the maritime decision-making environment, 

the assumptions of the above frequently adopted approaches to land-based emergency 

logistics are obviously inapplicable, that the state of external conditions can be 

maintained constant for some time before subsequent changes occur. To simplify the 

problem of maritime emergency logistics, the reviewed studies on emergency resource 

scheduling in response to oil spills have usually neglected the characteristics of the 

dynamic motion of oil films, which could be the reason why decision makers are 

reluctant to apply the existing analytic models and may explain the absence of effective 

theoretical support for decision making. From this point of view, it is of great 

significance to develop a novel methodology based on the characteristics of the oil spill 

emergency response to bridge the above research gap and to provide theoretical support 

for decision makers in terms of emergency resource scheduling to cope with oil spills 

at sea. 

To be specific, the emergency response to major oil spills represents a complicated 

decision-making problem and the response strategy has usually relied on methods such 



 

 

as mechanical, chemical and biological techniques (Li et al., 2016). Mechanical 

techniques are recognized as the most environmentally friendly solutions, as they all 

directly remove pollution from the sea. Therefore, mechanical recovery (i.e., skimming) 

belonging to mechanical techniques tends to be one of the most preferred options 

despite the corresponding high capital investment and operational complexity (Li et al., 

2014b; Wang et al., 2018). In the emergency response to major oil spills, mechanical 

recovery usually plays a vital role in spilled oil cleanup tasks. Besides, mechanical 

recovery requires support from vessels and trained personnel which can be highly 

affected by harsh conditions due to the dynamic motion of the oil films and the fragile 

marine ecosystems (Li et al, 2014b). It is desirable to conduct oil spill recoveries under 

such conditions in a timely manner. Keeping this in mind, we realize the necessity and 

significance of developing an effective emergency resource scheduling methodology 

for oil spill emergency response, especially mechanical recovery. Moreover, when a 

large-scale oil spill occurs, the available resources (both monetary and non-monetary) 

are often considered to be economically constrained (Huang et al., 2020; Xu et al., 

2016). Decision makers therefore have to ensure a high responsiveness while balancing 

the economic cost and effect. Therefore, we are determined to propose a novel 

optimization model to provide decision makers with an efficient emergency resource 

scheduling strategy for recycling spilled oil via mechanical recovery by striking the 

balance between responsiveness and the total response cost. We consider the changing 

conditions in the maritime decision-making environment by developing a time-varying 

planning approach, which enables decision makers to consider the time-varying 

demand of emergency services and the uncertain state of transportation networks 

caused by the dynamic motion of oil films. 

The remainder of this paper is organized as follows. Section 2 provides the 

literature review about emergency logistics problems related to our work. Section 3 

briefly reviews the problem definition and analyzes the dynamic motion of oil films, 

which provides the foundation for the model formulations. Section 4 develops the 

model for optimal scheduling of emergency resources in the response to a large-scale 

maritime oil spill. Section 5 proposes a hybrid heuristic algorithm to deal with the 

model and adopt an alternative quantitative method to select the optimal option from 

the set of Pareto non-dominated solutions. Next, the model and algorithm are applied 

in a case study and a series of scenarios are depicted to test the performance of the 

model and the proposed approaches in Section 6. Finally conclusions are drawn in 

Section 7. 

2 Literature review 

Decision makers always face intractable challenges in developing efficient 

emergency resource scheduling schemes due to the existence of various uncertainties 

(Wang et al., 2014). For instance, with burstiness of disaster events, decision makers 

are often unable to gather data in advance on affected areas so that they must make 

decisions in the face of uncertain demand. Moreover, demand in emergency resources 

could change over the course of emergency response due to changes in external 

conditions. So does the infrastructure status (transportation networks). To solve the 

issues of uncertainty and dynamics in the crucial emergency period of a large-scale 



 

 

land-based disaster, the following three approaches have been widely adopted: the time 

period planning horizon (e.g., Abdolhamid et al, 2020; Loree et al., 2018; Maharjan et 

al., 2020; Zhou et al., 2017 ), the rolling planning horizon (e.g., Daniel et al, 2020; Liu 

et al., 2019; Lu et al, 2016; Huang et al., 2015; Cao et al., 2018) and the scenario 

planning approach (e.g., Zhang et al., 2019; Gökalp et al, 2020; Hu et al., 2019; Ahmadi 

et al., 2015; Alem et al., 2016). The time period planning horizon approach describes 

the response phase into several fixed time periods so that the complicated dynamic 

problem is transformed into a relatively static problem to address easier (Hoyos et al., 

2015). In the rolling planning horizon approach, multiple planning horizons are 

considered and the parameters of the model can be updated at the beginning of each 

horizon. According to Huang et al. (2015), it is able to effectively address the 

uncertainties in disaster response because decisions can be revised at several time points 

based on the available real-time information. The scenario planning approach is 

proposed on the basis of disaster scenario information updates in an attempt to 

coordinate efficiency and cost through timely and appropriate decisions regarding 

issues such as vehicle routing and emergency resource allocation. Scenario analysis 

largely targets long-term decision making and strategic planning (Charles et al. 2016; 

Ransikarbum et al, 2016). Although this approach is obviously superior to a 

deterministic approach which ignores the uncertainty presented in practice, it is often 

not very efficient for coping with real-world problems (Najafi et al., 2013). 

Emergency logistics has received increased attention in the reviewed literature, 

but most of the existing studies have focused on the emergency response to land-based 

disasters (Alem et al., 2016). Even under the context of the land-based decision-making 

environment, the emergency resource scheduling strategy encompasses rather difficult 

tasks to be accomplished. These difficult situations may become even more 

sophisticated and worse when the decision making becomes more dynamic depending 

on the uncertainty of changing maritime conditions. As a result, the aforementioned 

approaches can effectively copy with dynamic issues existing in the emergency 

response to land-based disasters, but they are not qualified to deal with the dynamic 

emergency response to oil spills at sea. This is mainly due to the essential differences 

between the land-based and maritime decision-making environments. In regard to 

uncertainty, the main assumptions of the commonly adopted approaches (e.g., the time 

period planning horizon and the rolling planning horizon) to the existing emergency 

logistics models are that the demand for emergency resources and transportation 

network state in the affected areas remain relatively stable at different time intervals. 

Only when the emergency response phase reaches several specific time points will the 

demand and transportation network state in the system be updated. In the emergency 

response to maritime oil spills, these assumptions are too restrictive and are thus 

inapplicable. Under the action of surface tension, oil films at sea continuously diffuse, 

resulting in the continuous expansion of the contaminated areas. Since the demands of 

contaminated points for oil spill cleanup services are usually positively correlated with 

the oil film areas, the demands correspondingly increase with increasing oil film 

diffusion. In addition, oil films may simultaneously drift under the influence of waves 

and currents, which indicates that the transportation routes of vessels may change 



 

 

dynamically as a result. The aforementioned dynamic processes occur constantly, 

without pauses or periodic changes. Herein, we should apply the time-varying approach 

representing the dynamic conditions in the response to oil spills instead of the 

conventional approaches proposed for the response to land-based disasters. 

Moreover, the existing studies have focused on only the impact of the uncertainty 

in external surroundings on emergency logistics (Abdolhamid et al., 2020; Zhang et al., 

2019; Daniel et al., 2020; Loree et al., 2018; Maharjan et al., 2020;). Few studies have 

addressed the influence of emergency operations on both the demand for emergency 

services and state of transportation networks. In fact, because oil films have dynamic 

motion in terms of diffusion and drift, there exists an interrelationship between the 

changes in oil films and emergency operations regarding emergency resource 

scheduling. On one hand, there is no doubt that the changes in the area and position of 

oil films affect the scheduling decision. On the other hand, emergency operations 

impact the changes in oil films as well. For example, the efficient scheduling of vessels 

equipped with skimmers can clean up the oil film and reduce the quantity of the spilled 

oil in a timely manner, thus effectively restraining the diffusion of the oil film, which 

is closely related to the spilled oil quantity. It could be more justified when there is no 

existence of emergency logistics models capable of addressing the particular concern 

of increasing size of oil tankers leading to larger-scale oil spills, which requires the 

time-varying model considering interrelationship between the changes in the decision-

making environment due to dynamic motion of the oil films and emergency operations. 

Therefore, how to quantitatively analyze the interrelationship between emergency 

resource scheduling and changes in the oil films, which is usually ignored in the 

literature reviewed, is a vital and urgent task in the field. 

In addition, given the high demand for emergency resources in the affected areas 

during the emergency response phase, decision makers inevitably need to resolve the 

issue of an insufficient transportation capacity. In this case, they need to consider the 

available transportation serving an affected area several times instead of the one-time 

delivery proposed in most emergency logistics models. This phenomenon is referred to 

as split delivery in the relevant studies (Hu et al., 2019; Daniel et al., 2020; Liu et al., 

2019; Moreno et al., 2018; Wang et al., 2014; Lin et al., 2011). Dror and Trudeau (1989) 

first empirically showed that benefits could be obtained by adopting split delivery in 

both the total travel distance and number of vehicles required to deal with the limited 

transportation capacity. However, the existing models considering split delivery only 

require emergency resources to be delivered before the end of the emergency response 

phase and do not consider the specific consumption process in detail, which is sufficient 

to deal with land-based emergency logistics but is unable to meet the requirements of 

oil spill emergency response. In the land-based emergency response, sufficient 

emergency resources can ensure responsiveness as long as they are delivered within the 

required time limit, and redundant resources that are not currently needed can be stored 

at the demand points for subsequent use. In contrast, in the absence of storage 

conditions at sea, the transportation of emergency resources must be coordinated with 

the specific cleanup operations (i.e., the consumption of emergency resources). Since 

the loading capacity of an emergency vessel is limited and no storage conditions are 



 

 

available at sea, immediate replenishment is necessary before the emergency resources 

of the emergency vessel are depleted. 

At present, there are only a limited number of studies on the emergency response 

to chemical spills at sea (Grubesic et al., 2019; Garrett et al., 2017; Huang et al., 2020; 

Xu et al., 2016; Liu et al., 2018; Li et al., 2014a). To our knowledge, these studies do 

not fully consider the essential characteristics of the emergency response to chemical 

spills at sea. To ensure the effectiveness of the proposed emergency resource scheduling 

strategy in practice, we take advantage of the fact that it can be adequately represented 

by mathematical models of the oil film dynamic motion whereby oil films continue to 

diffuse and drift at sea (Chen et al., 2016). Consequently, both the demands in the 

contaminated areas and the state of transportation networks at sea are to be addressed 

through the time-varying planning approach, which makes use of time-varying 

parameters and constraints to reflect the dynamic conditions in the emergency response 

and provides a foundation to address the interrelationship between emergency 

operations and oil film changes. When considering split delivery, we also set a 

corresponding time window based on the characteristics of the emergency response to 

maritime oil spills to ensure that the delivery of supplementary emergency resources is 

completely consistent with the actual cleanup operations. Ultimately, this paper 

proposes, in nature, a dynamic multi-objective location-routing model to determine the 

emergency resource reserved bases (ERRBs) to constitute those fleets participating in 

the emergency response and to manage the routes of the fleets dispatched to clean up 

the spilled oil and transport supplementary resources.  

To support the trade-offs between the responsiveness and total response cost, the 

proposed model has two objective functions: minimization of the value of the 

ecological loss caused by oil spill pollution, and minimization of the total response cost. 

However, there are always contradictions between the various objectives in a multi-

objective optimization problem. Therefore, it is difficult to determine a unique non-

dominated solution satisfying all the optimization objectives. Generally, multi-

objective problems are resolved using the weighted sum method (Baharmand et al., 

2020; Maharjan et al., 2020; Cao et al., 2018; Oscar et al., 2018; Huang et al., 2015; 

Ransikarbum et al., 2014). The main idea is to assign a certain weight to each objective 

and convert the multi-objective problem into a single-objective problem. Nevertheless, 

the quality of the solution obtained heavily depends on the assigned weight coefficient, 

and weight setting often occurs too subjectively and unreasonably (Zhang et al., 2019). 

Therefore, we adopt an alternative solution based on the cost performance method to 

determine the ideal option from the obtained non-dominated solutions, which 

effectively avoids the subjectivity of the weight coefficient setting and ensure the 

validity and rationality of the selected solutions. 

The main contributions of this paper include: 

1 This paper develops the time-varying approach to present the dynamic 

conditions in the emergency response to oil spills instead of utilizing conventional 

approaches proposed for land-based emergency logistics, which are not applicable to 

supporting the decision making in the maritime environment. 

2 The interrelationship between the decision-making environment and emergency 



 

 

operations is taken into consideration in a pioneering way, which is vital to the 

emergency response to oil spills but is always neglected in the existing literature. 

3 To solve the issues of insufficient transportation capacity in the oil spill 

emergency response, an optimization model with split delivery is developed. 

Considering that the storage conditions in the maritime environment and the land-based 

environment are essentially different, this paper make use of the corresponding time 

window for split delivery to coordinate emergency operations and transportation of 

supplementary emergency resources for oil spills, which is hardly considered in the 

land-based emergency logistics but is necessary for the emergency response to oil spills. 

4 An alternative solution based on the cost performance method is adopted to 

select the ideal option from the obtained non-dominated solutions for the proposed 

multi-objective model. 

3 Background of the problem 

Here, we describe the problem of scheduling emergency resources for oil spills. 

This paper aims to respond to a major oil spill accident by means of transporting and 

delivering emergency resources to the demand points at sea. However, the dynamic 

motion of oil films always plays an important role in the response to oil spills. Hence, 

the dynamic motion of oil films is also analyzed in this section. 

3.1 Problem definition 

The emergency response to maritime oil spills is sophisticated and the framework 

requires support from numerous methods. Since mechanical recovery (i.e., skimming) 

is the most common means of cleaning up spilled oil (Li et al., 2014b; Wang et al., 

2018), this paper focuses on the emergency resource scheduling required for 

mechanical recovery. To be specific, mechanical recovery utilizes the vessels equipped 

with skimmers (i.e., emergency vessels) to recycle spilled oil mixed with seawater. The 

recycled oil-water mixture is then loaded into onboard floating oil bladders to clean up 

the contaminated area. Due to the limited capacity of the floating oil bladders onboard 

the vessel, the emergency response faces the problem of the insufficient capacity of the 

emergency vessels. In a real-world oil spill emergency response, to address these issues, 

another type of vessels (i.e., transportation vessels) must be implemented to provide 

emergency vessels with a continuous supply of empty floating oil bladders to ensure 

that the emergency work is continuously executed. The fully-loaded floating oil 

bladders are transported by the transportation vessels to the ERRBs or surrounding 

ports for emptying. Different emergency fleets are responsible for various demand 

points, and the number of times they need to retrieve supplies is also various, which 

requires the transportation fleet to complete supply transport via split delivery. 

It is worth noting that the emergency response to large-scale oil spills is often 

associated with a centralized decision-making organization. The organization is under 

the command of the administrative department at the national/reginal level to schedule 

emergency resources and to assign tasks during emergency operations to related 

participants and emergency forces. This was evident from the emergency responses to 

the Deepwater Horizon Oil Spill in the Gulf of Mexico and the Sanchi incident in China. 

When decision makers formulate a corresponding scheduling decision, the first aspect 

to be considered involves the dynamic changes in oil films at sea. This process mainly 

includes diffusion and drift, which implies that the area and position of oil films 

continuously expand and change over time. Since the workload of emergency 

operations and the consumption of emergency resources are often proportional to the 



 

 

oil film area, the demand for emergency services and resources at each demand point 

also varies over time during the emergency response. Similarly, when emergency 

resources are transported to each demand point, the transportation networks also exhibit 

time-varying features to oil film drift.  

To demonstrate the decision-making process, an illustration is shown in Fig. 1. 

First, efficient cleanup of the spilled oil in a timely manner with emergency fleets 

inhibits the expansion of oil films to reduce the contaminated area and time to recover 

the spilled oil. The recycled oil-water mixture volume and the cleaning area of the 

skimmers remain fixed per unit time. If a longer emergency response is needed, this 

means that the emergency fleets require more emergency resources (i.e., oil floating 

bladders) to handle the recycled oil-water mixture, which increased in volume. 

Furthermore, when analyzing the relationship between the travel distance and 

emergency operations, the situation becomes more complicated. If oil films drift toward 

the ERRBs, the later the emergency fleet arrive at the demand points, the shorter the 

travel distance will be, and vice versa. In contrast, if oil films drift away from the ERRB, 

the earlier the emergency resources arrive at the demand points, the shorter the travel 

distance will be, and vice versa. When the floating oil bladder capacity of the 

emergency fleet is insufficient, it is necessary to make a corresponding decision on 

transport of supplementary resources to ensure that additional floating oil bladders 

reach the position of the emergency fleet before the capacity is exhausted. In contrast 

to conventional land-based emergency resource scheduling, the potential impact of 

emergency operations on oil film changes must be considered in the decision-making 

process of emergency resource scheduling in response to large-scale maritime oil spills 

in addition to the impact of oil film changes on scheduling decisions. 

 

 
Fig. 1. The flow chart of the decision-making. 

 

This paper aims to help the centralized decision-making body to coordinate the 

emergency response and delivery of emergency resources from the ERRBs to the 

demand points. The specific actions required in a scheduling scheme are: 1) to 
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the routes for the transportation fleets to provide supplementary floating oil bladders 

for the emergency fleets facing a shortage in the capacity of floating oil bladders and 6) 

to dispatch vessels to the transportation fleets. 

3.2 Dynamic motion of oil films 

3.2.1 Diffusion motion 

Under the influence of tension, the area of the oil spill will undergo a change 

process from small to large in size, which is called the diffusion motion. Fay (1969) 

proposed a scientific oil film diffusion model, that divides the whole process into three 

stages according to the effects of various forces at different stages, comprehensively 

considering the effects of gravity, surface tension, inertial force and adhesion force. At 

present, the model is still used by some international mainstream oil spill prediction 

systems, and has quite a great deal of universal applicability. Since then, on the basis of 

Fay's theory, many researchers have made further explorations. After integrating the 

three-stage oil film diffusion model, Liu and Leendertes (1981) proposed an improved 

oil spill diffusion model, as follows:  
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D is the oil film diameter; w  is seawater density; 0  is the oil density;   is 

simply a parameter, and defined by 01 / w    ; g is the acceleration of gravity; Vo 

is the volume of oil; wv is the viscosity coefficient; t is the time; and   is the net 

surface tension coefficient. In view of its high reliability and wide application, this 

paper adopts the equation to present the spilled oil diffusion process. 

3.2.2 Drift motion 

When affected by wind, waves and currents, oil films will migrate, which is called 

the drift motion. The drift motion of the oil films at sea is mostly affected by geostrophic 

force, surface flow and sea surface wind (Chen et al., 2016). The drift velocity can be 

determined by the following functions: 

r c c wu a u u                                                         (2) 

10w wu a u                                                           (3) 

ru is the velocity vector of the oil film in the sea; cu  is the surface flow velocity; 

ca  is the drift coefficient of surface flow; wu  is the velocity vector of wind-induced 

currents; wa  is the coefficient of wind-induced currents; 10u  is the wind speed at the 

height of 10 m above sea level. 

 
Fig. 2. Analysis diagram of drift velocity of the oil film. 

3.3 Quantification of ecological loss value 

In order to evaluate the value of ecological loss caused by the leakage of oil, 

 

  
 



 

 

chemicals and other toxic materials, many researchers have proposed mature economic 

evaluation methods (Ando et al., 2004). Nevertheless, these methods often require a 

huge amount of data and take a long time to evaluate the value. Simplified formulas or 

models are therefore used in many American states to assess ecological damage. This 

kind of simplified evaluation methods has the advantages of simplicity, low cost, small 

demand for information and easier operation in practice. Among these models, Florida 

formula has been proved to be a fast and low-cost method in oil spill ecological damage 

assessment (Faass et al., 2010). Therefore, Florida formula is selected as the evaluation 

method of ecological loss in this paper. Within the context of this study, this formula is 

modified as follows: 

Dam EK M SMA PC                                                 (4) 

Dam is the value of ecological loss; EK is the value coefficient of different 

ecological environment; M is the area of ecological environment contaminated; SMA is 

the environmental sensitivity coefficient; PC is the physicochemical coefficient of the 

pollutant.   

4 Model formulations 

This paper aims to develop an efficient resource scheduling strategy for emergency 

logistics in response to oil spills, which respects the constraints and specifics of oil 

spills. Our approaches consider the complexities of the response, such as the time-

varying demands of the contaminated areas, the dynamic state of the transportation 

networks at sea and the interrelationship between the changes in the spilled oil films 

and emergency operations. A dynamic optimization model for emergency resource 

scheduling in response to a large-scale oil spill is developed in this section. We first put 

forward the assumptions and define the relevant parameters and decision variables. We 

then propose the optimization model based on the above premises. 

4.1 Assumptions 

(1) The position of the demand points and the amount of the spilled oil can be 

identified through geographic information system (GIS), and no additional 

contaminated areas or spilled oil will be generated during the emergency 

response. 

(2) External surroundings can remain stable in the emergency response, so the 

drift speed remains constant. Similarly, the vessels can travel at a constant 

speed.  

(3) When a shortage of transportation capacity occurs, the ERRBs can obtain 

timely support from nearby ports without a waiting time. Ports have sufficient 

vessels to meet the replenishment needs of the ERRBs, but the operation cost 

of supplementary vessels is higher than that of the ERRBs’ own vessels. 

(4) Due to the principle of territorial management, vessels in the same fleet should 

be assigned by the same ERRB, and there is no situation in which a fleet is 

composed of vessels from multiple ERRBs. The vessels in an assembled fleet 

remain with the fleet until the end of the emergency response. 

(5) The fleets participating in the oil spill emergency can only be constituted by 

the ERRBs, and the ports nearby have no right to constitute a fleet 

independently. While both the ports and ERRBs have the capacity to handle 

floating oil bladders filled with oil-water mixture. 

(6) After the cleanup by skimming, the oil films will be controlled in time and the 



 

 

contaminated area will not expand any more. 

4.2 Notations and definitions 

Sets and indices 

A Set of the demand points, {1,2, , }a A A  ; 

B Set of the ERRBs, { 1, 2, , }b B A A A B     ; 

C Set of surrounding ports, { + B 1, + B 2, , }c C A A A B C      ; 

V Set of all the nodes in the transportation networks, V A B C ; 

VE Set of all the nodes providing emergency services in the emergency system, 

VE B C ;  

RE Set of the emergency fleets, {1,2, , }re RE RE  ; 

RT Set of the transportation fleets, {1,2, , }rt RT RT  ; 

R Set of the fleets participating in the emergency response, r RE RT ;  

Time-varying parameters 

( )ijdis t  Distance between nodes i and j at time t, ,i j V ; 

( , )a atg t Vo  Growth rate of the demand in emergency services at demand point a 

at time t, where atVo  is the quantity of spilled oil at demand point a at time t, a A ; 

( )re ijtt  Travel time required for emergency fleet re from node i to node j, re RE , 

,i j V ; 

rjt  Moment when fleet r arrives at node j, r R , j V ;  

rjT  Moment when fleet r is about to leave node j for the next node, r R , j V ;  

( ) ( )( )rt ij re att m   Travel time required for transportation fleet rt from nodes i to j, 

when emergency fleet re services demand point a and transportation fleet rt provides it 

with the ( )re am -th supplementary floating oil bladders; 

( ) ( )( )rt j re aT m  Moment when fleet rt is about to leave node j for the next node when 

emergency fleet re services the demand point a and transportation fleet rt provides it 

with the ( )re am -th supplementary floating oil bladders. 

Normal parameters 

bk  Total number of vessels reserved at ERRB b, b B ; 

rek  Total number of vessels assigned to emergency fleet re, re RE ; 

rtk  Total number of vessels assigned to transportation fleet rt, rt RT ;  

eqk  Rate of recycling oil-water mixture per vessel; 

reeq  Rate of recycling oil-water mixture of emergency fleet re, re RE ; 

ek   Rate of oil cleanup per vessel (i.e., the contaminated area cleaned by an 

emergency vessel per unit time); 

ree  Rate of oil cleanup of emergency fleet re, re RE ; 

( )re aQ   Remaining volume of floating oil bladders for emergency fleet re after 

completing emergency operations at point a, re RE , a A ; 

( )( - )re aQ  Remaining volume of floating oil bladders for emergency fleet re after 

completing emergency operations at the point just before point a, re RE , -a A  ; 

( )( )re at m  Moment when emergency fleet re services demand point a at the ( )re am

-th time a shortage occurs in the capacity of floating oil bladders; 



 

 

( )re am   Ordinal number of the capacity shortages in floating oil bladders when 

emergency fleet re services demand point a, with ( ) ( )={0,1,2 , }re a re am n ， where 

( )re an  is the maximum ordinal number in this case and if ( ) =0re an , a shortage never 

occurs, re RE ，a A ; 

jv  Drift velocity of the oil film at point j ( j A ); 

vk  Speed of the vessels; 

NK Positive integer representing the maximum number of vessels allowed per fleet; 

qe  Maximum capacity of floating oil bladders carried by an emergency vessel; 

qt  Maximum capacity of floating oil bladders carried by a transportation vessel; 

ock  Fixed operating cost of the emergency vessels owned by the ERRBs; 

sck  Fixed operating cost of the emergency vessels temporarily acquired from the 

nearby ports; 

ct  Travel cost per nautical mile of a vessel; 

T̂  Time difference between the completion of contaminated area monitoring and 

the beginning of emergency operations; 

EK Value coefficient of the different ecological environments;  

SMA Environmental sensitivity coefficient;  

PC Physicochemical coefficient of the pollutant.  

Decision Variables 

rbu  1, if fleet r is contributed by ERRB b, and 0 otherwise, r R , b B ;  

( )re ijy  1, if emergency fleet re travels from nodes i to j, and 0 otherwise, 

re RE , ,i j V ; 

( )re az  1, if emergency fleet re is responsible for demand point a, and 0 otherwise, 

re RE , a A ; 

( ) ( )( )rt ij re al m  1, if transportation fleet rt travels from nodes i to j on the way to 

transport floating oil bladders when emergency fleet re services demand point a at the 

( )re am -th time a shortage occurs in the capacity of floating oil bladders, and 0 

otherwise, re RE ， rt RT ， ,i j V ; 

( ) ( )( )rt a re ah m  1, if transportation fleet rt provides supplies to demand point a 

when emergency fleet re services demand point a at the ( )re am -th time a shortage 

occurs in the capacity of floating oil bladders, and 0 otherwise, re RE , rt RT ，
i B , a A ; 

rek  Number of vessels assigned to emergency fleet re, re RE ; 

rtk  Number of vessels assigned to transportation fleet rt, rt RT . 

4.3 Optimization model of emergency resource scheduling 

4.3.1 Objective functions 

Through reviewing the recent studies on land-based emergency logistics (Ahmadi 

et al., 2015; Moreno et al., 2018; Maharjan et al., 2020; Zhang et al., 2019) and maritime 

emergency logistics (Xu et al., 2016; Li et al., 2014a), it can be demonstrated that a 

successful sudden-onset disaster response should meet the needs of effectiveness in the 

shortest amount of time (responsiveness) with the least amount of resources (cost 

efficiency) (Hu et al., 2016; Kunz et al., 2017; Baharmand, 2019). Therefore, 

responsiveness and the response cost are both considered as the optimization objectives 

in this paper. The two objectives have conflicting nature, which decision makers need 



 

 

to strike a balance to pursue the optimal scheme for oil spill emergency. 

Objective 1: Minimization of the value of the ecological loss caused by oil spill 

pollution 

The first objective is mostly reflected in the value of ecological loss caused by 

oil spill pollution. The higher the efficiency, the more quickly spilled oil can be 

controlled and cleaned, and thus the smaller the ecological loss will be. This value is 

directly determined by the area contaminated by the oil films. When emergency fleet re 

has completed its cleanup operations at demand point a, the area eventually 

contaminated at demand point a is simply the area cleaned by emergency fleet re. 

Therefore, based on Equation (4), the first objective function is formulated as follows: 

1 ( ) ( ) ( )min  Z  ( )re a re a re re a

a A re RE

EK SMA PC T t e z
 

                             (5) 

Objective 2：Minimization of the total response cost  

The total response cost generated during the emergency response mostly includes 

the fixed operation cost of the vessels and the vessel travel cost. Specifically, the total 

cost consists of five components, namely, the fixed operating cost of the vessels owned 

by the ERRBs, the fixed operating costs of any temporarily requisitioned vessels from 

nearby ports, the generated travel cost of the emergency fleets between the network 

nodes, the generated travel cost of the emergency fleets with the oil film drift, and the 

generated travel cost of transportation fleets between the network nodes. The second 

objective function is thus presented as follows: 
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          (6) 

To minimize the first objective function, the time required to recycle the spilled 

oil has to be decreased as much as possible. This cannot be achieved unless the largest 

amount of emergency resources is invested in the emergency response to complete the 

cleanup as soon as possible. Nevertheless, this contradicts the nature of the second 

objective function, which aims to minimize the total response cost. 

4.3.2 Constraints of the multi-objective model 

( ) ( ) ( ) ( )( )re j re i re ij re ij

i V

t T tt y


   , re RE   ,i j V                          (7) 

( )rij rit F T   r R  , ,i j V                                         (8) 

Constraint (7) defines the moment when emergency fleet r reaches node j. Constraint 

(8) defines the travel time of the fleets between the nodes, and the specific expansion 

is explained below referring to Equation (35). 
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Constraints (9) and (10) define the moment when the emergency fleets leave each node 

for the next node, where ( , )i atg t Vo  is determined by t and atVo . Since atVo  varies 



 

 

over time under skimming, it is replaced by the mean quantity of the initial and final 

spilled oil quantity at demand point a. Because the oil film at demand point a will be 

completely cleaned under ideal conditions, the final spilled oil quality is zero, which 

results in the mean quantity being half of the initial spilled oil quantity. 

( ) ( ) ( , )re i re re i i itz e z g t Vo   , re RE   , i A                             (11) 

re ree k ek  ,  re RE                                               (12) 

Constraint (11) stipulates that the efficiency of the emergency fleet must be higher than 

the growth rate of the demand for emergency services at the demand point it is 

responsible for in terms of cleanup. Constraint (12) defines the rate of oil cleanup for 

emergency fleet re. 

rek NK ,  re RE                                                 (13) 

Constraint (13) stipulates that the maximum number of vessels allowed per emergency 

fleet must not exceed NK due to the budget constraints and limited resources. 

 
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
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Constraint (14) defines the growth rate of demand for emergency services at demand 

point a at time t and ( , )atf t Vo , which is expressed in Equation (1). 
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i V i V
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 

   , re RE  , j V                                 (18) 

Constraint (15) stipulates that the origin of an emergency fleet contributed by ERRB i 

is just ERRB i. Constraint (16) indicates that the fleet does not travel between the 

ERRBs. Constraint (17) represents fleet flow conservation. Constraint (18) indicates 

that each node allows the emergency fleet to pass no more than once, to eliminate any 

route subloops and avoid the establishment of a circular route, which does not pass 

along the ERRBs. 

( ) 1re a

re RE

z


 , re RE  , a A                                       (19) 

Constraint (19) indicates that each demand point is served by one and only one 

emergency fleet. 

 ( ) ( ) ( ) 0re ij re j re iy t t   , re RE  , ,  i j V                              (20) 

Constraint (20) indicates that the nodes along the route of the emergency fleets occur 

sequentially. 
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h m z


  ， re RE  , ( ) 1er am                           (22) 

Constraints (21) and (22) indicate that when emergency fleet re faces a short-term 

capacity in floating oil bladders for the ( )re am -th time, one and only one transportation 

fleet is assigned to provide supplementary floating oil bladders. 
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re RE  , a A , ( ) ( )( ) 0rt i re aT m  , ( ) 1re am                             (23) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )rt i re a rt ij re a rt ja re a rt a re a rt ij re a rt ja re a re a re a re a

rt RT j VE

T m tt m tt m h m l m l m z t m z
 

            

re RE  , i V , a A , ( ) ( )( ) 0rt i re aT m  , ( ) 1re am                        (24)  

Constraints (23) and (24) define the time window for the transportation fleet to transport 

supplies to the emergency fleet to avoid emergency operation stagnation. Constraint 

(23) defines the time window when the transportation fleet first leaves its origin ERRB 

when transporting supplies to the emergency fleet, while Constraint (24) defines the 

time window in the other cases. 
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Constraint (25) defines the maximum ordinal number of the shortages in capacity of 

floating oil bladders when emergency fleet re services demand point a. Constraint (26) 

denotes the remaining volume of floating oil bladders for emergency fleet re after 

completing its emergency operations at point a. Constraint (27) requires the capacity of 

floating oil bladders carried by transportation fleet rt to be no lower than that of 

emergency fleet re. 

 0 ,  1riu  , r R  , i B                                           (28) 

 ( ) 0 ,  1re ijy  , re RE   , ,  i j V                                    (29) 

 ( ) 0 ,  1re iz   , re RE  , i A                                      (30) 

( ) ( )( ) {0 ,  1}rt ij re al m  , re RE  , ,i j V  , a A  , ( ) 1er am               (31) 

( ) ( )( ) {0 , 1}rt a er ah m  , re RE  , a A   , ( ) 1er am                       (32) 

Binary integer constraints for the various decision variables are given in Constraints 

(28)-(32). 

In addition, oil films always drift due to the influence of external surroundings at 

sea. When fleet r completes its emergency operations at the current demand point i and 

travels to the next demand point j, the travel distance continuously changes. To 

determine the travel time of the emergency fleets between the different nodes, we 

provide a detailed explanation in the form of a mathematical derivation, and the position 

of the nodes at sea is shown in Fig. 3, where ia  is the position of point i, 
ja  is that 

of point j and ja
 is the location where the fleet meets point j. 

 
  

  

  

  
  

  

  



 

 

Fig. 3. Stroke diagram of the dynamic route. 

 

Based on the cosine theorem, the following equation is proposed: 
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According to Equation (33), the following speed constraint must be satisfied 

when fleet r is able to travel to point j: 

2 2 2sin 0 sinj jvk v vk v                                            (34) 

Therefore, the function of the travel time between the nodes is formulated as 

follows: 
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5 Solution procedure 

To solve the proposed model which contains a number of parameters with time 

coupling, we convert it into a two-stage counterpart, which yields the same optimal 

solutions and retains the calculation logic of the problem identical. 

5.1 Hybrid heuristic algorithm 

The first-stage model determines the origin ERRB of each emergency fleet, plans 

the routes and dispatches the vessels to the emergency fleets. When an emergency fleet 

exhibits an insufficient capacity of floating oil bladders in the scheduling scheme 

developed by the first-stage model, the second-stage model is triggered to formulate 

decisions related to the transportation fleets to provide supplementary empty floating 

oil bladders and handle fully loaded ones. 

The first-stage model is developed as: 
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rek NK ,  re RE                                                 (44) 
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Objective function (36) expresses the minimum value of the ecological loss caused 

by the oil spills during the emergency response. Objective function (37) represents the 

minimum total response cost, and the meaning of each part is consistent with that in 

objective function (6). However, 3Z  cannot be determined until the completion of the 

second-stage model, which expresses the operation cost of all fleets and the logistics 

cost related to the transportation fleets. Constraints (38)-(54) have been defined in 

Section 4.3. In essence, it is a multi-objective location-routing model. Since multi-

objective particle swarm optimization (MPSO) attains a high convergence rate, good 

robustness and notable global search ability, and avoids any complex genetic operations 

similar to the genetic algorithm, MPSO is adopted to solve the first-stage model. 

However, conventional multi-objective particle swarm optimization (CMPSO) easily 

falls into the local optima in the late search process. To improve the search ability of 

the algorithm and ensure the diversity of Pareto non-dominated solutions, we propose 

an improved particle swarm optimization (IMPSO) for solving the model. 

The second-stage model is developed as follows: 
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( ) ( )( ) {0 ,  1}rt ij re al m  , re RE  , ,i j V  , a A  , ( ) 1er am              (64) 

( ) ( )( ) {0 , 1}rt a er ah m  , re RE  , a A   , ( ) 1er am                      (65) 

Objective function (55) mostly compromises the operation cost of all fleets and 

the logistics cost of the transportation fleets, and combined objective function (37), it 

constitutes the objective function of the total response cost. Constraints (56) - (65) have 

been defined in Section 4.3. The optimization objective of the second-stage model is 

mostly determined by the total cost of the transportation fleets. Therefore, the 

optimization objective of the second-stage model is achieved based on the 

transportation fleets with the minimal total operating cost and by planning the shortest 

transportation routes on the premise that the responsiveness of the emergency fleets is 

not affected. During the response phase, each transportation fleet provides 

supplementary floating oil bladders to the emergency fleets on several occasions from 

different nodes in the emergency logistics networks. Therefore, the optimization 

problem is essentially a multi-source shortest-path problem. Since the Floyd algorithm 

has been applied as a basic tool for multi-source shortest-path problem (Zhao et al., 

2019), it is adopted to solve the second-stage model in this paper as well. 

To resolve the two-stage model, a hybrid heuristic algorithm (HHA) is proposed, 

which combines the above two independent algorithms to achieve the purpose of 

overall optimization in an organic way. The HHA is also composed of two stages, 

similar to the transformed model, whose upper layer involves the IMPSO algorithm, 

while the lower layer contains the Floyd algorithm. A calculation flow chart of the HHA 

is shown in Fig. 4, and the detailed procedure is described in the following sections. 
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Fig. 4. Flow chart of the HHA combining IMPSO with the Floyd algorithm 

 

5.2 The IMPSO algorithm 

5.2.1 Standard PSO 

The standard PSO algorithm is an intelligent optimization algorithm that simulates 

the behavior of birds in flight and searches for the optimal solution through the 

cooperation among particles (Kennedy and Eberhart, 1995). In this algorithm, solutions 

to the optimization problem are regarded as particles in the search space, and the 

optimal solution is obtained by continuous iteration. During the iteration process, each 

particle updates its own position and generates a new particle for the next generation 

by tracking individual optimal position pi and global optimal position pg. Let the 

number of particles in population be N , where the velocity and position of the i-th 

particle after the -  th iteration in D-dimensional space are 

1 2, , , , ,i i i id iDv v v v v          and  1 2, , , , ,i i i id iDx x x x x         respectively.  In 

standard PSO, the updated functions for the velocity and position of particles are 

formulated as follows: 
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1 1

id id idx x v                                                          (67) 

  is the inertial weight and 
max max min( )


      


 where max  and min are 

the maximum and minimum weights respectively.    is the current number of 

iterations and   is the maximum number of iterations. 1c  and 2c  are the learning 

factors, which are usually set as 1 20 , 2c c    to ensure algorithm convergence. 1r  

and 2r  are random numbers evenly distributed between 0 and 1. maxv
 is the limitation 

of maximum speed, which determines the search accuracy of particles in the feasible 

region. The optimal solution obtained by particle i after the -  th iteration is the 

individual optimal solution iPbest , and its position is 
1 2[ , , , , , ]i i i id iDp p p p p     . 

While the optimal solution found for the whole population is the global optimal solution 

Gbest , and its position is 
1 2[ , , , , ]g g g gd gDp p p p p     . 

When dealing with multi-objective optimization problems, the global optimal 

position is no longer unique, and there are multiple solutions among which no one is 

superior to the others. The selection and preservation of pi and pg is the key issue in 

transforming standard PSO into MPSO. In CMPSO, these values are randomly selected 

(Zhang et al., 2017). During the iteration, when too many particles are gathered in a 

local area of the external archive, the probability of the global optimal position coming 

from this area will increase greatly. Thus, the particles in the whole iteration process 

are guided to move toward this region so that the local convergence and prematurity of 

the calculation easily occur. To avoid such issues, we propose IMPSO with better search 

ability, which adopts the niche sharing mechanism to select the global optimal position. 

5.2.2 Introduction of the niche sharing mechanism 

According to the niche sharing mechanism, the fitness of particle ix   in the 

external archive is defined as follows: 

1
,  1,2, ,i s

i

F i N
S

                                                 (68) 

sN   is the total number of particles in the current external archive, and iS   is the 

sharing degree of particle ix , which can be formulated as follows: 

1

( ),  1,2, ,
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i sh ij s

j

S f d i N


                                           (69) 

( )sh ijf d   is the shared function between particles ix   and 
jx  , and represents the 

degree of closeness between them. The function is defined as follows: 
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  is the parameter that controls the shape of the shared function, usually set as 1 or 2. 



 

 

share  is the shared distance. 
ijd  is the distance between particles ix  and 

jx , which 

is usually measured by the Euclidean distance: 

2

1

( )
D

ij i j id jd

d

d x x x x   



                                            (71) 

When some particles in the external archive appear to aggregate, the degree of 

sharing among particles there will increase significantly, and their fitness value in the 

niche will decrease accordingly, and vice versa. In the iteration of MPSO, this method 

can be used to evaluate the fitness of the particles in the external archive, and then to 

select the proper particle as the global optimal position 
gp  following the principle of 

roulette selection. This method can effectively reduce the probability of similar particles 

being selected in the iteration, to ensure the diversity of particles in the evolutionary 

process and to avoid the occurrence of local convergence and prematurity. 

5.2.3 Particle coding operations 

In this paper, we adopt decimal particle coding to represent the solutions in IMPSO. 

Each encoding sequence denotes an emergency fleet scheduling scheme for a large-

scale oil spill accident. Each particle is represented by 
ix  defined in Section 5.2.1. 

Specifically, the encoding sequence of each particle consists of four sub-strings as 

shown in Equation (72), and the total number of the code bits is D. 
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11 12 1 21 22 2 31 32 3 41 42 4{( , , , ) , ( , , , ) , ( , , , ) , ( , , , )}

i i i i

i i i i n i i i n i i i l i i i l

x x x x

x x x x x x x x x x x x x

   

                (72) 

The encoding sequence of the particle is a D-dimensional vector with each bit 

randomly generated between 0 and 1. The numbers of code bits in sub-strings 
1ix  and 

2ix  are both n, the same as that of demand points. Both sub-string 
3ix  and 

4ix  are 

sequences with l bits, the same number as that of the emergency fleets. Thus, each 

encoding sequence of the particle (given by n + n + l+ l=D) is a D-dimensional vector.  

Sub-strings 
1ix  and 

2ix  together make the routing decisions for each emergency 

fleet. Sub-string 
1ix  will be multiplied by l and rounded up. The codes of sub-string 

2ix  will be converted into random numbers from 1 to n according to the rank of the 

decimals of each coding bit in the sequence in order from small to large. The 

emergency fleet denoted by the first bit in sub-string 
1ix   is responsible for the 

demand point denoted by the first bit in sub-string 
2ix ; the emergency fleet denoted 

by the second bit in sub-string 
1ix  is responsible for the demand point denoted by the 

second bit in sub-string 
2ix , and so forth.  

Sub-string 
3ix   makes the location decisions for each fleet's origin ERRB, by 

which each fleet is constituted. The codes of sub-string 
3ix  will be converted into 

random numbers from 1 to m (the total number of the candidate ERRBs) by 

multiplying the codes with m and rounding up. The ERRB denoted by the first bit in 

sub-string 
3ix   is responsible for constituting the first emergency fleet; the ERRB 

denoted by the second bit in sub-string 
3ix  is responsible for constituting the second 

emergency fleet, and so forth.  

Sub-string 
4ix  is used to determine the number of vessels to be assigned to each 

emergency fleet. The codes of sub-string 
4ix  will be converted into random numbers 



 

 

within the acceptable interval, which indicates the number of vessels assigned to an 

emergency fleet is constrained in accordance with Constraint (42)-(44). 

5.2.4 The procedure of the IMPSO algorithm 

The steps of the IMPSO are described as follows: 

Step 1: The population is initialized. The initial position 0

ix  and initial velocity 
0

iv   of N particles are randomly generated. The optimal position of an initialized 

particle is its initial position (i.e., 0 0

i ip x ). The external archive is empty. 

Step 2: The fitness value of the particle is calculated on the basis of its current 

position. 

Step 3: The non-dominated solutions are identified based on Pareto dominance 

and saved to the external archive. 

Step 4: The external archive is updated and maintained. Only the non-dominated 

particles in the external archive are retained. If the number of particles in the external 

archive exceeds the set capacity, any excess particles are then removed in ascending 

order based on the niche fitness value until the solution number meets the set capacity. 

Step 5: The termination condition is assessed, and the procedure is stopped and 

the calculation results are output if the iteration   is equal to    (the maximum 

number of iteration times). Otherwise, 1   . 

Step 6: The global optimal position gp
 and individual optimal position 

ip  are 

determined. On the basis of the niche fitness values of the particles in the external 

archive, a particle under the global optimal solution is selected through roulette 

selection. In regard to the individual optimal position, particle 
ix   is compared to 

1

ip  , and the non-dominated particle is selected as the individual optimal position 
ip  

of the current generation. 

Step 7: The velocity and position of the particles are updated based on Equations 

(66)-(67) and the process returns to Step 2. 

5.3 The Floyd algorithm 

The steps of the Floyd algorithm are detailed as follows: 

Step 1: According to the scheduling scheme of the emergency fleets established 

by the first-stage model, the time nodes ( ( )( )re at m ) are identified when these emergency 

fleets face an insufficient floating oil bladders capacity. The time nodes are then 

arranged in time order as the set of the latest arrival time nodes of the transportation 

fleets (  1 2, , , ,m m m m mT t t t t  ). 

Step 2: The time node to be currently resolved in set mT   is 
mt  , which is the 

( )re am  -th ( ( ) 1re am   ) time an insufficient floating oil bladder capacity occurs while 

emergency fleet re services demand point a. All the transportation fleets that meet 

Constraint (63) are selected to form a set of candidate transportation fleets RT  . If 

RT   , the algorithm proceeds Step 3, while otherwise the algorithm turns to Step 

4. 

Step 3: The ERRB that meets the time window (i.e., Constraint (59)) is selected as 

the candidate ERRB responsible for providing the current transportation fleet. If 

multiple candidate ERRBs occur, following the principle of the minimum operating 

cost of the transportation fleets, ERRB b with the largest number of currently reserved 

vessels is selected to provide transportation fleet rt consisting of a minimum number of 

vessels that satisfies Constraint (63). The travel time determines the earliest arrival time. 



 

 

When transportation fleet rt arrives at demand point a, it replaces the empty floating oil 

bladders of emergency fleet re and stores the fully-loaded floating oil bladders. The 

position of demand point a at 
mt  is the current waiting point of transportation fleet rt. 

If    , the algorithm proceeds to Step 6, and otherwise, for 1   , the algorithm 

returns to Step 2.  

Step 4: A transportation fleet (rt) is randomly selected from RT   , which 

determines that the origin of the shortest path of transportation fleet rt is the last waiting 

point (i.e., node i), and the destination (i.e., node j) is the position of demand point a at 
mt . The following path judgment equation is constructed: 

( )rt rt rt m

ioj io ojd d d t  , o VE                                         （73） 

Each node o ( o VE  ) is successively substituted into Equation (73) for evaluation, 

and path rt

iojd   with the smallest value is selected among all the 
rt

iojd  values, which is 

the shortest path for transportation fleet rt to transport additional floating oil bladders 

to the demand point a at 
mt . If the current path rt

iojd   meets the time window (i.e., 

Constraint (60)), it is substituted into DRT  set and RT   set is updated by removing 

the corresponding rt element (i.e., /{ }RT RT rt  ). If RT   , Step 4 is repeated, 

and otherwise, the algorithm proceeds to Step 5. 

Step 5: If DRT  , the algorithm returns to Step 3. Otherwise, the smallest value 

is selected from DRT   as ˆ rt

iojD 
  and the corresponding travel time is calculated to 

determine the earliest arrival time. The decision information related to ˆ rt

iojD 
 is regared 

as part of the scheduling scheme. The DRT   set is then cleared for the next 

determination of the shortest travel distance of each candidate transportation fleet. If 

   , the algorithm proceeds to Step 6, and otherwise, the algorithm proceeds to Step 

2. 

Step 6: At     , all transportation fleets still at their last waiting points are 

allowed to return to their origin ERRBs with fully-loaded floating bladders. All the 

scheduling processes are then recorded as the supplementary transportation scheme 

developed for all emergency fleets requiring floating oil bladder replenishment. Finally, 

the calculation results are output. 

5.4 Selection of the ideal solution 

The common desire of decision makers is to obtain high responsiveness at a lower 

response cost, that is, to obtain high cost performance. The Pareto fronts are usually 

unevenly distributed, which implies that there are diverse rates of change, from which 

important information similar to cost performance can be mined. On this basis, we 

adopt an alternative solution based on the cost performance method to select the ideal 

option for Pareto non-dominated solutions. 

(1) Mean variability: this refers to the mean value of the slope of the line between any 

point (except the endpoint) in the Pareto frontier and its adjacent two points. Let 
1

sZ  

and 
2

sZ   represent the values of the objective functions corresponding to the non-

dominated Pareto solution numbered s ( 2,3, , 1s S  ). Without loss of generality, 

the points of the Pareto frontier are numbered from small to large according to the value 

of the cost objective function. The mathematical definition of the mean variability of 

the Pareto solution numbered s for the two objective functions is as follows: 
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(2) In particular, for the endpoint ( 1 or s S ), the mean variability of the two objective 

functions is defined as follows: 
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(3) Sensitivity ratio: this refers to the ratio of the values of the two kinds of mean 

variability of a Pareto non-dominated solution in the Pareto frontier to the values of the 

corresponding objective functions and is defined as follows: 
s

s

s

k

Z






  , 1,2, ,s S , 
1 0sZ  ,  1,2                             (80) 

(4) The above definition shows that the value of the sensitivity ratio reflects the 

sensitivity of the mean variability of the objective function value relative to the unit 

value of the objective function. To facilitate the next comparison, the sensitivity ratio 

must be standardized as follows: 
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, 1,2, ,s S ,  1,2                                   (81) 

(5) Pareto dominance based on sensitivity ratio: similar to the definition of Pareto 

dominance, if the sensitivity ratios of solution ix  are at least equal to those of 
jx , and 

better than those of 
jx  in at least one sensitivity ratio, then solution ix  dominates 

solution 
jx  (denoted 

i jx x ). In formal terms, 
i jx x  can be defined as follows: 

( {1,2}  , , {1,2, , }i j S , i j

   ) ( {1,2}  , , {1,2, , }i j S , i j

   ) 

(82) 

(6) Skewness based on sensitivity ratio: this reflects the degree of preference for 

different objectives, and its value range is between 0 and 1. 
1

sw   and 
2

sw   are the 

skewness of the Pareto non-dominated solution numbered s based on the sensitivity 

ratio to the objective functions 1Z  and 2Z , respectively, which can be formulated as 

follows: 

1 2

=
s

s

s s
w 




 
, s S ,  1,2                                        (83) 

where S  is the set of Pareto non-dominated solutions based on the sensitivity ratio. 

When
1

sw   is the largest, the corresponding solution is the strongly biased one 

toward the objective function 1Z  , and vice versa. Therefore, the cost performance 



 

 

method is able to provide decision makers with more convenient quantitative indexes 

for weighing and comparing, which effectively avoids the subjectivity of the weight 

coefficient setting. 

6 Application of the proposed methodology 

6.1 Test instances 

During the ConocoPhillips oil spill in the Bohai Bay, over 7,000 barrels of oil and 

3,000 barrels of mineral oil-based drilling muds were released into the sea, which 

polluted an area of approximately 6,200 square kilometers around and northwest of the 

oilfield. This was one of the largest oil spills in maritime transportation over the past 

decade. To verify that the proposed model and approaches effectively support such a 

large-scale oil spill, the test instances are defined based on the ConocoPhillips oil spill 

in the Bohai Bay. The parameters must be determined prior to vessel dispatching, route 

planning and resource allocation. Because certain oil spill accident data have not yet 

been released by the government, we manually substitute derived data based on the 

information provided by the local maritime bureau to validate the proposed model and 

approaches, which does not yield essentially different results. The corresponding 

parameters are set as follows. 

(1) Demand information. Four hours ( T̂  ) passed from the monitoring of the 

accident area to the beginning of emergency operations. Aircraft aerial 

reconnaissance revealed a large and dispersed oil film area at sea. According 

to the characteristics of the oil films in different areas, the analysis of the 

required resources shows that there are 24 points with thick oil films in need 

of cleanup, as shown in Fig. 5.  

(2) Oil films (the demand points). Two different drift velocities occur in the 

contaminated area of the sea under the action of two different currents. Some 

oil films drift to the south by east 42° at a speed of 1.2 knots. The other films 

drift to the north by west 36° at a speed of 0.8 knots. The relevant information 

on the quantity, position and drift velocity of the spilled oil at each demand 

point is listed in Table 1. 

(3) Nearby ERRBs and ports. There are four ERRBs near the contaminated area, 

namely those of Dalian, Yantai, Tianjin and Qinhuangdao. Moreover, there are 

four ports nearby, namely, those of Penglai, Longkou, Dongying and Jingtang. 

The information related to the locations of these ERRBs and ports and the 

vessel configuration of each ERRB are summarized in Table 2. 

(4) Vessels. To simplify the analysis, all vessels are assumed to be of the same type 

and exhibit the same performance, the details of which are provided in Table 

3. In regard to the emergency response, six emergency fleets are expected to 

be dispatched to service all the demand points. 

 



 

 

 
Fig. 5. Distribution of the demand points. 

Table 1 

Data on the oil films at the demand points. 

No. 

Oil 

Quantity 

(t) 

Coordinates 

(E/N) 

Velocity 

(knots)  
No. 

Oil 

Quantity 

(t) 

Coordinates 

(E/N) 

Velocity 

(knots)  

1 50 
119.8887 

/38.8055 
0.8  13 36 

119.7528 

/38.4276 
1.2 

2 126 
119.6075 

/38.5593 
0.8  14 64 

119.8988 

/38.5618 
1.2  

3 148 
119.8108 

/38.7249 
1.2  15 162 

120.0174 

/38.6533 
1.2 

4 40 
119.5685 

/38.4067 
1.2  16 58 

120.113 

/38.7488 
1.2  

5 98 
119.6444 

/38.4683 
0.8  17 35 

119.8445 

/38.4773 
0.8  

6 67 
119.7171 

/38.525 
0.8  18 153 

119.997 

/38.5847 
1.2  

7 154 
119.8467 

/38.6379 
1.2  19 62 

119.7234 

/38.3042 
1.2 

8 78 
119.8886 

/38.6906 
1.2  20 52 

119.8089 

/38.3948 
0.8 



 

 

9 58 
119.9925 

/38.7771 
0.8 21 73 

119.9738 

/38.522 
1.2 

10 72 
119.7953 

/38.5469 
0.8 22 93 

120.1368 

/38.6434 
0.8 

11 113 
119.9666 

/38.7054 
0.8 23 118 

119.9294 

/38.3773 
0.8 

12 45 
120.0991 

/38.812 
1.2 24 69 

120.0979 

/38.5697 
0.8 

 

Table 2 

Data on the candidate nearby ERRBs and ports. 

No. 
Type of 

nodes 

Name of the 

nodes 

Coordinates 

(E/N) 

Number of 

reserved 

vessels 

25 ERRB Dalian 
121.1333 

/38.75 
58 

26 ERRB Yantai 
121.396 

/37.548 
62 

27 ERRB Tianjin 
117.720833 

/38.984722 
55 

28 ERRB Qinhuangdao 
119.607222 

/39.906667 
52 

29 Port Penglai 
120.67531 

/37.81459 
- 

30 Port Longkou 
120.302275 

/37.637814 
- 

31 Port Dongying 
118.9225 

/38.0694 
- 

32 Port Jingtang 
119.00268 

/39.20983 
- 

 

Table 3 

Data on the emergency and transportation vessels. 

Type of vessel 
Speed 

(knots) 

Capacity 

of the 

bladder 

(m3) 

Recycling 

rate 

(m3/h) 

Cleanup 

rate 

(m2/h) 

Operation 

cost of a 

self-

owned 

vessel 

(CNY) 

Operation 

cost of 

vessel 

lease 

(CNY) 

Unit 

travel 

cost 

(CNY/n 

mile) 

Emergency 

vessel 
12 400 120 4800 3500 5000 20 

Transportation 

vessel 
12 800 - - 3500 5000 20 



 

 

6.2 Performance analysis 

We utilize MATLAB 2016b to solve the model and follow the proposed HHA 

proposed. All the numerical experiments are carried out on the same computer with 3.6 

GHz i3-9100F processor, 8 GB of RAM, and a 64-bit Microsoft Windows 10 ultimate 

operating system. With the considerable research data, the appropriate values of all 

control variables are empirically determined as follows: N = 50, max = 0.9, min = 0.4, 

1 2c c   1.49445,   = 300, and share  = 3.2. To investigate the performance of the 

HHA, it is necessary to compare it to the Non-dominated Sorting Genetic Algorithm II 

(NSGA-II), which is one of the most appropriate heuristic algorithms for solving 

resource planning problems and extensively utilized to solve multi-objective models 

(Abdolhamid et al., 2020). Similarly, the number of chromosomes in the population is 

set to 50, and the maximum number of iterations is set to 300. The crossover rate is set 

to 0.9. The mutation rate is set to 0.1. 

Since the problem to be resolved is an NP-hard problem, to determine the 

approximate Pareto optimal solutions of the model, ten runs are performed for each test 

instance with the HHA and NSGA-II. The sets of approximate Pareto optimal solutions 

under this specific accident scenario are shown in Fig. 6. It is directly observed that the 

Pareto solutions obtained with the HAA algorithm generally dominate those obtained 

with the NSGA-II. 

 
Fig. 6. Computational results of the specific accident scenario. 

To further investigate the performance of the two algorithms, three commonly 

used metrics are adopted as follows: space metric (Ghasemi et al., 2019), mean ideal 

distance (Ghasemi et al., 2019) and quantity metric (Rezaei et al., 2020). The 

comparison results in terms of space metric (SM), mean ideal distance (MID), quantity 

metric (QM) and computation time (CPU) are shown in Table 4. The last row in the 

table shows the average (Avg) of the values for these four metrics in the ten replications. 

SM measures the uniformity of the spread of the non-dominated solutions. The smaller 

the value of SM is, the lower the dispersion of the non-dominated solutions will be. As 

for MID, it is one of the all-purpose metrics to evaluate convergence of the Pareto-

based multi-objective optimization algorithm. The algorithm with a smaller value of 

MID has a better performance in convergence. In addition, the value of QM is 
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represented by the number of the obtained non-dominated solutions. Obviously, the 

larger the value of QM is, the higher quality non-dominated solutions the algorithm can 

provide for decision makers. According to Table 4, it can be demonstrated that the HHA 

has better performance in solving the proposed model due to the smaller values of SM 

and MID and the large value of QM, which implies that the introduction of the niche 

sharing mechanism can provide more opportunities for the HHA to explore the 

unexplored feasible region so as to ensure the diversity and robustness of the results. In 

addition, due to the advantages of simplicity of the heuristic framework of PSO, the 

HHA can effectively avoid complex genetic operations like selection, crossover and 

mutation, and performs better than the NSGA-II in computation time. 

 

Table 4 

Results of the performance metrics for the case study 

No. 
HHA NSGA-II 

SM MID QM CPU(s) SM MID QM CPU(s) 

1 0.185 0.636 37 339.21 0.191 0.812 29 321.66 

2 0.213 0.731 31 327.29 0.285 0.975 30 381.88 

3 0.279 0.895 38 327.65 0.200 1.023 29 373.59 

4 0.201 0.774 32 343.57 0.254 1.089 27 381.90 

5 0.200 0.817 39 351.26 0.265 0.979 29 329.80 

6 0.288 0.848 34 333.91 0.180 0.772 28 353.52 

7 0.186 0.803 33 327.95 0.248 0.723 33 337.00 

8 0.199 0.796 38 330.11 0.180 0.772 28 328.00 

9 0.185 0.728 32 332.51 0.265 0.711 29 350.73 

0 0.185 0.767 39 337.68 0.295 0.682 31 366.17 

Avg 0.212  0.779  35.30  335.11  0.237  0.854  29.30  352.42  

 

6.3 Application results 

Similar to previous studies of most multi-objective optimization problems, the 

non-dominated solutions obtained do not directly provide decision-makers with a 

specific scheduling scheme. To furnish the decision makers with high-quality decision 

support, we adopt the cost performance method proposed above to determine the ideal 

option in the set of non-dominated solutions. First, the solutions in the Pareto frontier 

are numbered in ascending order of the total response cost. Without loss of generality, 

we set 1  as the serial number of the responsiveness objective, while 2   is set 

for that of the cost objective. Following the procedure of the cost performance method 

proposed in Section 5.4, we obtain the corresponding mean variability k  

( {1,2}  ), sensitivity ratio   ( {1,2}  ) and standardized sensitivity ratio   

( {1,2}   ), the details of which are summarized in Table 5. Fig. 7 shows the 

distribution of the sensitivity ratio after standardization and Fig. 8 shows the 

distribution of the Pareto frontier based on the standardized sensitivity ratio. 

 
Table 5 

Corresponding parameters of the cost performance method. 

No k1
2( 10 )   k2

-2( 10 )  
3

1( 10 )   8

2 ( 10 )   2

1( 10 )   2

2 ( 10 )   



 

 

1 0.311 3.213 0.386 2.825 0.615 3.673 

2 0.336 2.996 0.418 2.602 0.667 3.382 

3 0.447 2.327 0.561 1.979 0.895 2.572 

4 0.349 3.975 0.442 3.301 0.704 4.291 

5 1.143 3.273 1.448 2.714 2.309 3.528 

6 1.078 15.157 1.368 12.206 2.181 15.867 

7 0.821 15.232 1.049 12.251 1.672 15.925 

8 0.878 3.693 1.125 2.898 1.793 3.767 

9 0.300 4.486 0.388 3.490 0.619 4.537 

10 2.280 1.226 2.968 0.938 4.731 1.219 

11 2.129 3.466 2.772 2.634 4.418 3.424 

12 0.881 3.654 1.150 2.770 1.833 3.601 

13 1.264 0.855 1.653 0.642 2.635 0.835 

14 0.521 4.533 0.683 3.372 1.088 4.384 

15 0.869 4.298 1.151 3.173 1.834 4.125 

16 1.519 0.661 2.020 0.469 3.220 0.609 

17 1.334 0.753 1.779 0.524 2.836 0.681 

18 0.730 2.703 0.976 1.851 1.556 2.407 

19 0.516 2.914 0.695 1.983 1.107 2.577 

20 0.931 1.091 1.260 0.724 2.008 0.941 

21 0.882 1.174 1.200 0.759 1.912 0.987 

22 0.722 1.385 0.988 0.876 1.576 1.139 

23 0.533 2.164 0.731 1.355 1.166 1.761 

24 1.830 1.626 2.538 1.002 4.045 1.303 

25 2.057 0.780 2.862 0.461 4.562 0.599 

26 0.640 1.658 0.896 0.960 1.429 1.248 

27 1.939 1.176 2.736 0.671 4.360 0.872 

28 3.305 0.303 4.666 0.171 7.437 0.223 

29 1.767 1.738 2.500 0.957 3.985 1.243 

30 0.865 1.937 1.230 1.059 1.961 1.376 

31 0.962 1.334 1.374 0.713 2.190 0.927 

32 2.267 1.105 3.250 0.586 5.181 0.762 

33 2.616 0.538 3.759 0.277 5.992 0.360 

34 0.952 1.133 1.369 0.580 2.183 0.754 

35 1.243 0.998 1.795 0.506 2.860 0.658 

36 2.479 0.437 3.586 0.219 5.715 0.285 

37 1.736 1.798 2.521 0.864 4.019 1.122 

38 0.305 3.280 0.446 1.565 0.711 2.034 

 



 

 

 
Fig. 7. Sensitivity ratio distribution after standardization. 

 

 
Fig. 8. the Pareto frontier based on the standardized sensitivity ratio. 

 

In the original Pareto solution set, there are 30 solutions that are filtered out 

according to the Pareto dominance of the sensitivity ratio as described in Section 5.4. 

The 8 retained solutions constitute a subset of Pareto non-dominated solutions based on 

the standardized sensitivity ratio, which further narrows the range of ideal options for 

decision makers. In emergency management, for the sake of humanitarianism, decision 

makers usually prefer the responsiveness objective over the cost objective. When both 

the values of the responsiveness and cost objectives are acceptable, the solution with 

the largest skewness to the responsiveness objective is supposed to be selected as the 

most suitable option. Therefore, the solution numbered 28 is selected as the ideal 

solution, the skewness of which to the responsiveness objective is 0.971, which is the 

largest value. The corresponding scheduling scheme is listed in Tables 6 and 7. Under 

such a scheme, the value of the ecological loss is 7.08 810  CNY, and the total response 

cost amounts to 1.77 610   CNY. Table 8 indicates the latest time allowed for the 

supplementary resources and the earliest arrival time of the actual transportation fleet 

under the scheduling scheme skewed toward responsiveness. When the decision-
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making environment is a under severe budgetary pressure, decision makers may choose 

the solution numbered 7, the skewness of which to the cost objective reaches 0.905. 

The corresponding scheduling scheme is listed in Tables 9 and 10. Under this scheme, 

the value of the ecological loss is 7.83 810  CNY, and the total response cost amounts 

to 1.24 610  CNY. Table 11 describes the situation of the transportation timeframe of 

the supplementary resources under the scheduling scheme skewed toward the total 

response cost. 

 
Table 6 

Scheduling scheme of the emergency fleets skewed toward responsiveness. 

No. of emergency 

fleets 
Subordinate to Route planning 

Number of 

vessels 

Area of 

cleanup (m2) 

1 Dalian 25-18-13-25 28 8.20 510  

2 Dalian 25-3-7-9-21-11-6-25 30 3.04 610  

3 Yantai 26-4-10-12-5-23-26 28 1.99 610  

4 Dalian 25-2-15-8-19-1-25 28 2.38 610  

5 Dalian 25-16-17-20-24-25 24 1.14 610  

6 Dalian 25-22-14-25 28 7.53 510  

 

Table 7 

Scheduling scheme of the transportation fleets skewed toward responsiveness. 

No. of 

transportation 

fleets 

Subordinate to 
Number 

of vessels 
Route planning 

1 Qinhuangdao 14 28-18-29-15-29-19-28 

2 Qinhuangdao 15 28-3-32-9-32-23-32-11-28 

3 Tianjin 12 27-17-27 

4 Tianjin 14 27-2-32-5-27 

5 Yantai 14 26-14-29-8-26 

6 Tianjin 15 27-7-29-21-32-6-27 

7 Qinhuangdao 14 28-10-32-5-32-1-28 

8 Yantai 12 26-20-26 

 

Table 8 

Transportation timeframe of the supplementary resources under the scheduling scheme skewed 

toward responsiveness. 

No. of 

demand 

points 

Latest arrival 

time 

(h) 

Earliest 

arrival time 

(h) 

No. of 

demand 

points 

Latest arrival 

time 

 (h) 

Earliest 

arrival time  

(h) 

18 7.63 7.45 8 19.03 18.12 

3 8.18 6.64 5 19.63 16.26 

17 8.99 8.19 19 22.68 21.99 

2 9.45 7.34 5 22.96 18.94 

14 10.89 6.70 21 25.87 18.01 

7 12.02 9.48 23 26.95 24.32 

10 12.25 6.15 1 30.93 27.98 



 

 

20 12.61 8.42 11 34.39 32.69 

15 15.40 15.08 6 38.02 35.46 

9 18.02 15.98    

 

Table 9 

Scheduling scheme of the emergency fleets skewed toward the total response cost. 

No. of emergency 

fleets 
Subordinate to Route planning 

Number of 

vessels 

Area of 

cleanup (m2) 

1 Tianjin 27-17-6-24-27 16 9.60 510  

2 Yantai 26-13-5-18-19-26 15 1.92 610  

3 Yantai 26-2-23-8-21-14-26 16 2.57 610  

4 Yantai 26-15-9-16-3-12-26 15 2.60 610  

5 Tianjin 27-22-7-1-11-27 16 2.20 610  

6 Yantai 26-20-10-4-26 15 9.43 510  

 

Table 10 

Scheduling scheme of the transportation fleets skewed toward the total response cost. 

No. of 

transportation 

fleets 

Subordinate to 
Number 

of vessels 
Route planning 

1 Dalian 8 25-15-29-7-29-18-29-16-29-3-25 

2 Qinhuangdao 8 28-22-31-24-28 

3 Dalian 8 
25-20-29-4-29-8-29-21-29-21-29-14-

29-14-29-12-25 

4 Qinhuangdao 8 28-6-32-9-32-1-32-11-28 

5 Dalian 8 25-2-32-23-25 

6 Qinhuangdao 8 28-5-28 

7 Dalian 8 25-15-29-18-29-8-29-3-25 

8 Qinhuangdao 8 28-10-28 

9 Dalian 8 25-6-32-9-32-1-32-11-25 

10 Tianjin 8 27-2-32-23-27 

11 Qinhuangdao 8 28-5-28 

12 Dalian 8 
25-7-29-7-29-18-29-18-29-19-29-3-29-

3-25 

 

Table 11 

Transportation timeframe of the supplementary resources under the scheduling scheme skewed 

toward the total response cost. 

No. of 

demand 

points 

Latest arrival 

time 

(h) 

Earliest 

arrival time 

(h) 

No. of 

demand 

points 

Latest arrival 

time 

(h) 

Earliest 

arrival time  

(h) 

15 10.52 4.13 18 27.22 25.39 

22 11.23 6.82 8 30.34 28.65 

20 11.46 5.29 18 30.55 28.09 

6 12.08 6.26 1 31.72 28.57 



 

 

2 12.37 6.32 16 32.06 31.73 

5 12.88 6.49 8 33.68 26.29 

15 13.86 3.99 18 33.89 33.73 

10 15.28 5.98 1 35.05 25.24 

6 15.41 6.14 3 35.83 34.92 

2 15.70 7.02 19 37.78 37.06 

5 16.21 6.32 21 38.01 36.58 

7 16.76 4.26 11 39.06 38.90 

24 19.61 18.99 3 39.16 36.39 

23 19.85 19.55 21 41.34 39.38 

7 20.09 17.77 11 42.39 35.55 

4 20.68 20.38 3 42.50 41.07 

9 20.69 18.56 14 45.00 42.40 

23 23.18 22.46 3 45.83 45.31 

7 23.42 23.27 14 48.33 45.87 

18 23.89 19.88 12 49.74 49.16 

9 24.02 21.46    

 

The most obvious difference between the two schemes is the size of the fleets. 

There is no doubt that the fleet size of the scheme biased toward the responsiveness 

objective is much larger than that of the scheme biased toward the cost objective. In 

addition, regarding the selection of the ERRBs to provide the emergency fleets, the two 

schemes also exhibit differences. The responsiveness-oriented scheme tends to select 

Dalian, which is the closest to the initial position of the contaminated area, to provide 

emergency fleets to ensure that the emergency service needs of the contaminated area 

are met as quickly as possible. The cost-oriented scheme assigns relatively far away 

ERRBs such as Yantai and Tianjin to be responsible for emergency fleets, which is 

mainly a cost-saving measure. With increasing travel time of the emergency fleets, the 

latest time allowed for the supplementary resources is postponed, and more time is 

allowed for the transportation fleets to transport supplies, which is helpful to minimize 

the number of transportation fleets and the number of temporarily acquired vessels. 

Interestingly, the transportation fleets tend to exhibit a relatively singular choice of 

transit points, with few fleets choosing different transit points. In fact, this indicates that 

there exists a principle of proximity when the transportation fleets select the transport 

objects of supplies, to ensure a high transportation efficiency, which contributes to the 

cost objective. 

6.4 Sensitivity analysis 

We also perform a sensitivity analysis to demonstrate how changes in the 

parameters of the decision-making environment affect the computational results 

obtained with the proposed model considering the time-varying conditions. The 

parameters involved in the analysis include the shipping speed ( vk ), oil film drift speed 

( av , a A ) and emergency time difference ( T̂ ). The reason why these parameters are 

selected is because any change in the related factors can considerably impacts the values 

of the objective functions, and the values of these parameters exhibit a wide range of 



 

 

variation during the response to different accidents according to our interviews with the 

maritime authority. 

6.4.1 Sensitivity to the shipping speed 

The impact of the change of shipping speed by -40%, -20% , +20% and +40% on 

the value of the ecological loss and total response cost is shown in Fig. 9. Both 

objectives are sensitive to changes in the shipping speed. However, the change in the 

values of both objective functions is more notable when the shipping speed decreases. 

This phenomenon most likely occurs due to the irregular pattern of the oil film change. 

In reality, the diffusion rate of the oil film area does not remain constant but increases 

with increasing area. With decreasing shipping speed, the emergency fleets take longer 

to reach the demand points, which provides the oil films with a longer time for fast 

diffusion, leading to a considerable increase in the demand for emergency services. The 

increase in demand results in a long cleanup time and high response costs. When 

dealing with the oil film at the next demand point, this phenomenon is further 

intensified, similar to the bullwhip effect. Under the influence of a series of chain 

reactions, a decreasing shipping speed could lead to major changes in both the 

responsiveness and total response cost. 

 

 
Fig. 9. Impact of the shipping speed change. 

 

6.4.2 Sensitivity to the drift speed 

The drift speed of oil films at sea is one of the main uncertain factors during the 

emergency response. Fig. 10 shows the analysis outcome of the sensitivity of the multi-

objective model by investigating the impacts of varying the drift speed by -40%, -20%, 

+20% and +40%. As shown in the figure, both the responsiveness and cost objectives 

vary with the drift velocity, but the trend is complex. Generally, with increasing the drift 

speed, non-dominated solutions move a certain distance toward the origin direction, 

indicating that the emergency response achieves a better responsiveness at a lower cost. 

The main reason is that the increase in drift speed shortens the distance between the oil 

films and the coast for fast emergency services and hence boosts the responsiveness. 

Moreover, when the transportation fleets transport floating oil bladders to the 
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emergency fleets, thus providing emergency services to the demand points, the travel 

time is reduced to a certain extent so that fewer transportation fleets are needed, which 

decreases the response cost. Notably, this phenomenon gradually decreases or almost 

disappears with increasing input of emergency resources. This occurs because as the 

size of the emergency fleet increases, so does the responsiveness of the emergency 

response and the overall time of the emergency response is considerably reduced. 

Before major difference in the oil film drift distance between the diverse decision-

making environments occurs, the emergency fleets have already completed the 

provision of emergency services. 

 

 
Fig. 10. Impact of the drift speed change. 

 

6.4.3 Sensitivity to the differences in the emergency response time  

When a large-scale oil spill accident occurs at sea, the emergency response is not 

immediately activated. First, the monitoring method is applied to detect the oil spillage 

area and collect relevant data, and the command center then formulates the emergency 

scheme according to the actual situation. Hence, a time difference occurs between the 

completion of contaminated area monitoring and the launch of emergency operations. 

Fig. 11 shows the impacts of the considered time difference changes of -40%, -20% 

+20% and +40% on the model objective. It is observed that the distribution of non-

dominated solutions in the different decision-making environments is not significantly 

different at the beginning, but with increasing emergency resources, the gap gradually 

expands. This is the exact opposite of the phenomenon shown in Fig. 10. The main 

reason for this occurrence is that the emergency response time differs. When the 

emergency response cost is low, the responsiveness of the emergency fleets is 

correspondingly low, and the emergency response time is generally long. Herein, the 

difference in the demand for emergency services caused by the change in emergency 

time difference is relatively limited in terms of its proportion of the total demand. 

Nevertheless, with increasing emergency resources and emergency fleet responsiveness, 

the oil film diffusion process at all demand points is restrained, thus greatly reducing 
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the total demand for emergency services. In this case, the difference in the demand for 

emergency services caused by the change in emergency time difference increases 

proportionally to the total demand, and the impact of the emergency time difference on 

the responsiveness becomes more apparent. 

 

 
Fig. 11. Impact of the time difference change. 

7 Conclusions 

In this paper, we propose a dynamic multi-objective location-routing model 

considering time-varying factors to support the real-world emergency response in a 

large-scale oil spill accident. To facilitate the solution of the proposed model, it is 

converted into a two-stage model. In view of the specifics of the two-stage model, we 

propose the HHA, which combines the IMPSO algorithm with the Floyd algorithm. 

Considering that the non-dominated solutions obtained by solving multi-objective 

optimization models do not directly provide decision makers with a specific scheduling 

scheme, we adopt the cost performance method to help decision makers determine the 

ideal scheduling scheme. This method effectively avoids the setting of weight 

coefficients, which often involves a subjective bias. A numerical analysis of a large-

scale oil spill accident that occurred in the Bohai Bay is conducted to illustrate the 

application of the proposed approaches. By comparing the scheduling schemes based 

on the different preferences of decision makers, it is found that these approaches 

provide scientific and rational decision support according to the actual decision-making 

environment, while the findings also verify the effectiveness and feasibility of the 

proposed model. To further evaluate the performance of the dynamic model with time-

varying features for practical implications, we also consider certain randomly generated 

numerical instances to assess the sensitivity of the objectives with respect to selected 

critical parameters. The results of the sensitivity analysis demonstrate that both the 

responsiveness and cost objectives are sensitive to these parameters, but the sensitivity 

of these objectives varies greatly between the diverse decision-making environments. 

These changes in sensitivity are closely related to the characteristics of the oil spill 
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emergency response, which further confirms the practical feasibility of the proposed 

model and approaches. The above series of quantitative analyses facilitates the 

investigation of the application of the dynamic multi-objective location-routing model 

and the HHA to other multi-objective emergency logistics problems with time-varying 

features. 

Although our study bridges several notable gaps between the literature and real 

accident conditions, a future extension should explore other improvements. To further 

address the complexity of the oil spill emergency resource scheduling process, in future 

research, based on analysis of the dynamic motion of oil films, we will examine the 

emergency logistics problem in more detail. First, after a major oil spill accident, the 

vastness of the polluted area produces varying oil film conditions at distinct demand 

points that necessitate different cleanup stages, leading to differences in emergency 

resource requirements. However, we have only proposed a mono-resource optimization 

model for the response to oil spills. Second, since no material storage conditions are 

available at sea, various resources are only delivered in stages to the demand points 

according to the emergency response disposal schedule. The scheduling coordination 

of different emergency resources remains to be resolved. Finally, compatibility issues 

persist between the different resources and transportation mean. In particular, distinct 

modes of transportation are applicable to different resources. This paper has only 

considered emergency vessels participating in oil spill emergency, but has not yet 

analyzed the coordinated transportation of emergency resources by both sea and air. 
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