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Abstract 

Heteropody is the phenomenon in which the manus and pes of quadrupedal animals differ 

substantially in size and shape. The term is most often used in reference to the extreme 

foot size differences present in fossils and trackways of some non-avian dinosaurs, 

particularly sauropods. Previous studies have asserted the possibility that extreme 

heteropody developed in these animals as a mechanism to equalise underfoot pressure, 

compensating for unusually anterior/posterior centre of mass positions. This thesis sets 

out to test this hypothesis by answering the following questions: 

1. Can skeletal surface area predict soft tissue foot surface area? 

2. Is antero-posterior centre of mass position correlated with heteropody in extant 

taxa? 

3. Do underfoot forces and pressures in extant taxa indicate the presence of a 

pressure equalisation mechanism? 

4. Is there evidence in the fossil record for a link between centre of mass and 

extreme heteropody in dinosaurs? 

These questions were answered using the corresponding methods: 

1. Using CT scans of the feet of extant animals and a custom Matlab script to derive 

underfoot surface area for skeletal and soft tissue and if they correlate. 

2. Using digitized skeletons and convex hulls of quadrupedal extant animals to 

gather centre of mass and heteropody data for a range of extant animals, and 

seeing how they correspond with CoM positions. 

3. Combining new pressure mat recordings with recordings in the literature for 

quadrupedal animals and seeing how they correspond with CoM positions. 

4. Gathering heteropody data from sauropodomorph fossil trackways and some 

quadrupedal dinosaur body fossils, and testing how they correspond with 

previously established CoM position estimates.  
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From these lines of enquiry, no link between CoM position and heteropody was definitively 

established. Results for live animal studies showed more signal for a correlation than in 

skeleton-only studies, and dinosaur trackway analysis showed potential for a link in 

sauropodomorphs, but neither of these studies provided enough evidence to establish a 

correlation between CoM and heteropody in tetrapods. This thesis does not support the 

hypothesis that heteropody is used as a pressure equalisation mechanism in tetrapods, 

especially as a universal rule. This thesis also found that soft tissue underfoot surface 

area is highly predictable from skeletal underfoot surface area. In addition, it found that 

underfoot surface area based on soft tissue is larger in forefeet compared to hindfeet that 

would be expected from skeletal surface area alone.  
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Chapter 1 

Introduction 

 

1.1 Mass Distribution and Stability of Posture 

The distribution of mass across an animal’s limbs is linked to its stability, both during 

locomotion and when standing. The stability of each animal during locomotion, and its 

ability to support its own body weight, is a product of several anatomical and 

biomechanical factors, such as overall posture and the position of the limbs, distribution of 

mass throughout the body, the ability of the limbs to support that mass, and locomotory 

mode (Full et al., 2002; Hildebrand, 1980). An organism must be able to support its own 

weight and to be able to be able to carry its mass through locomotion without injury, 

(Gray, 1944; Biewener, 2005).  

During locomotion, the movements of an animal’s limbs are restricted to those that will 

keep the animal stable, lest the animal trip and fall, causing possible physiological 

damage, such as broken limbs and infection, and risking predation (Hildebrand, 1980; Eng 

and Winter 1993; Buchner et al., 2000; Pfau et al., 2006).  

Quadrupedal animals, when opting for a slow walk where stability is guaranteed, have the 

option of using three feet to form ‘triangles of stability’ – where (for example) three feet are 

on the ground at a time, and body mass is therefore supported by three limbs at once, 

with the animal in question’s centre of mass lying along the longest edge of these 

triangles (Figure 1.1) (Hildebrand, 1980; Henderson, 2006). This ensures stability in the 

animal by maximising support for the animal’s mass, and allowing the animal to selectively 

use the most favourable combinations of these feet for balancing. The result is a stable 

walk, however, having 3 limbs on the ground at a time limits gait options, and thus this 

option is far from universally used (McGhee and Frank, 1968; Alexander, 2003). The 
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same principle can be applied when building quadrupedal robots, or robots with more than 

four legs, to keep them stable during movement (Cho et al., 1995), and is found in 

hexapodal locomotion where ‘tripods’ alternate (Lee et al., 1988; Ting et al., 1994).  

 

 

Figure 1.1 Visualisation of how three limbs on the ground at a time in quadrupeds (eg. 

salamander) can act to form triangles of support in a sprawling animal, and the 

relationship of these triangles of support with centre of mass positions. The black dot on 

each animal represents the animal’s centre of mass. From Hildebrand (1980). 

In quadrupedal animals, the forelimb and the hindlimb can be utilised for different 

functional roles in locomotion. This is observed, for example, in primates and felines, 

where the hindlimbs apply the majority of the propulsive forces in steady state locomotion, 

while the forelimbs serve to provide the majority of forces used to brake or manoeuvre 

(Granatosky et al., 2018).  Across quadrupedal mammals this pattern is consistent, with 

forelimbs bearing more weight, providing more vertical support, and providing the majority 

of the braking/backward forces, and hindlimbs providing the majority of the 

forward/propulsive forces: the so-called ‘hindlimb drive’ model (Demes et al., 1994). This 

model applies primarily to steady state locomotion. When an animal is accelerating, all 

four limbs can be net contributors to propulsion (Demes and Günther, 1989). These roles 
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appear functionally consistent regardless of mass distribution on the limbs, as observed 

across a number of different species of quadrupeds (Lee et al., 2004).  

 

Figure 1.2 Simplified illustration of a primate quadruped (above) which uses hindlimb 

driven locomotion when moving at steady states, and non-primate quadruped (below) 

which, in contrast, primarily uses forelimbs for propulsion when moving at steady states, 

exposing them to higher forces. The propeller in the figure represents the limbs providing 

most of the propulsive force in locomotion in steady state locomotion, while the steering 

wheel represents the limbs most involved in determining the direction of locomotion in the 

same state from Kimura (1979). 
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The autopodia – the manus (the forefoot), and the pes (the hindfoot) – and their shape 

and posture, are important in determining the locomotory abilities of an animal. Since they 

are located at the ends of the limbs, they play a large role in both supporting an 

organism’s mass, and accelerating/braking during movement (Huson, 1991; Wright, et al., 

2012). Since animals with autopodia have diversified to fill a huge swath of ecological 

niches, from flying to swimming to burrowing, grasping, slashing, heavy load bearing, and 

more, there is incredible variety in the shape, size, and utility of autopodia, all while it is 

still necessary to retain efficient ability of the autopodia to support an animal’s body 

weight, and allow it to move. Arboreal animals require hands that can grasp branches, 

fossorial animals often develop large claws for digging, semi-aquatic animals can evolve 

webbed feet for more efficient propulsion during paddling or swimming (Shimer, 1903; 

Osburn, 1903; Lull, 1904; Lehmann, 1963; Patel et al., 2015).  

 

 

 

 

 

 

 

 

 

Figure 1.3 The skeletal anatomy of elephant autopodia (manus left, pes right), and 

demonstration of its unique posture (below), as compared to human autopodia (above, 

manus left, pes right). Ac = accessorium, ca = calcaneus, D3 = third digit, ds = digital 

sesamoids, mc1 = metacarpal 1, mt = metatarsal 1, ph = prehallux, pp = prepollex. 

Adapted from Hutchinson et al., (2011). 
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Variation in autopodial morphology based on dietary and locomotory niches is 

demonstrated in profound clearness by looking at the fossil ancestors of modern animals.  

For example, reductions in toe number in fossil horses as they transition from forest 

browsing to a cursorial life in grasslands (Janis, 2007), and in dinosaurs, where several 

groups of bipedal carnivores transitioned first into herbivory, then into quadrupedality, 

resulting in bird-like feet and clawed hands evolving into elephant-like feet with fatty pads 

in sauropods, and hoof-like structures in hadrosaurids (Hutchinson, et al., 2011; Hamilton, 

et al., 2019), in beautiful demonstrations of convergent evolution with the autopodial 

structures of extant herbivorous quadrupeds.  

Beyond the shape of the undersides of the feet, ecological niches are also reflected by the 

posture of the foot, with the bones and tissues of the autopodia arranged at differing 

positions relative to the leg and the rest of the body in order to support an organism’s 

needs.  

In general animal foot posture is divided into three main functional groups – unguligrade, 

digitigrade, and plantigrade. Plantigrade animals walk on their whole foot, digitigrade 

animals walk only on their digits, and unguligrade animals walk on the tips of their toes 

(their unguals). The latter posture is seen primarily in ungulates, who walk on their 

keratinous hoofs (Carrano, 1997). However, semi-digitigrade/subunguligrade foot 

postures are not uncommon, as in elephants, who walk with the support of a fatty foot 

pad, making them semi-digitigrade – walking on their toes but ‘functionally plantigrade’ 

(Carrano, 1997; Hutchinson et al., 2011) (see Figure 1.3). 

The digitigrade ancestors of ungulates appear to have developed unguligrade posture as 

a means of improving their cursorial ability for greater speed (Clifford, 2010). However, for 

most quadrupedal mammals, foot posture appears strongly linked to an animal’s size and 

mass. Larger mammals tend to adopt digitigrade foot postures, while plantigrade foot 

postures are favoured in smaller mammals (Kubo et al., 2019). Digitigrade foot posture 

has been associated with lower metabolic costs compared  to plantigrady, and thus larger 

animals may have adopted the foot posture as an energy saving mechanism as demands 
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for food grew larger in conjunction with their body mass (Reilly et al., 2007). It should be 

noted that it is not clear that this is a causative relationship, and it varies between animals, 

eg. between a horse and a dog, with ecological roles seemingly having more influence 

that drivers for energy optimisation (Reilly, et al., 2007). Many exceptionally large animals, 

such as elephants and rhinoceroses, possess semi-digitigrade feet, seemingly as the 

stress of their large body masses need additional support, such as from foot pads and 

thicker skin (Hutchinson et al., 2011). However, it should be noted that foot pads are 

common in many species to absorb impact and reduce autopodial stress, albeit not to the 

same extent and not to the point where they effectively alter an animal’s foot posture due 

to their size and the scope of their role (Chi and Roth, 2010). 

Limb posture plays an important role in how body mass is distributed between the limbs. 

In general, animals with a more ‘crouched’ posture tend to be smaller. Small animals save 

little energy from the spring and inverted pendulum mechanisms used in tetrapod 

locomotion due to differences in stride frequency relative to animals with more erect 

postures. In more erect animals the energetic costs of muscle activation are more 

effectively recovered through pendular mechanics and inertia. While in ‘crouched’ 

animals, external joint movement is higher and moment arms are lower, leading to higher 

activation levels, and therefore a greater overall energy cost to the organism (Griffin et al., 

2004; Reilly, et al., 2007). In more upright animals upright posture increases effective 

mechanical advantage of certain anti-gravity muscles (eg. m. gastrocnemius).  

1.2 Studying Locomotion in Extinct Animals 

Body fossils are, for the most part, purely skeletal remains. Where there are exceptions to 

this, e.g. skin impressions, they are rarely substantial enough, and high enough in 

number, to give definitive answers regarding the soft tissue makeup of extinct animals 

(Carpenter, 2007; Paik et al., 2017). There are of course, certain inferences that can be 

made from the skeletons of animals alone. However, much more context for the in vivo 

biology and biomechanics of extinct animals can be gained by studying living animals (In 

vivo herein referring to tissue as it would appear, and act, when an animal is alive). 
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Knowledge of the biomechanics of extant animals can, with reference to the known 

anatomy and ancestry of extinct animals, infer and inform the science of how extinct 

animals lived, and moved. 

When researching extinct animal locomotion, it is important to consider which extant 

animals are being studied to inform analysis of the extinct animals in question. For certain 

studies in functional anatomy, it makes sense to consider animals with similar bone 

structures, posture, size, etc. to the extinct animal in question. For example, when 

studying an animal with a sprawling gait, it makes sense to study sprawling gaits in 

lizards, newts, and salamanders, to inform how such an animal may have walked (Morse 

et al., 2013; Kawano and Blob, 2013). When studying how sauropod dinosaurs coped with 

their enormous size, it makes sense to study the methods by which the largest extant land 

animals cope with their unusual body mass (Coombs Jr, 1975; Hutchinson et al., 2011; 

Jannel et al., 2019).  

For other purposes, the most salient process by which to pick the extant animals that will 

inform an analysis of an extinct animal is that of the ‘extant phylogenetic bracket’ (Witmer, 

1995). To use the extant phylogenetic bracket (EPB) is to rely on at least the first two 

extant outgroups of the fossil organism in question – forming a bracket around the 

organism’s branch on a phylogenetic tree with its two outgroups. This relies on the 

increased likelihood of homological structures and similar anatomical phenotype of the 

extant animals in comparison to the extinct animal, compared to other extant organisms, 

to more accurately infer the likely anatomy, functional morphology, etc., of the extinct 

animal. This method is a natural outgrowth of the ‘outgroup method’ used in comparative 

biology, wherein comparing and contrasting characteristics of outgroups can be used to 

estimate ancestral states for an ingroup (Maddison et al., 1984; Huey, 1987; Lyons-Weiler 

et al., 1998). Using the EPB when studying soft tissue structures should aid 

palaeobiologists in understanding and reconstructing the soft tissues in extinct animals, by 

approximating the ancestral state of these tissues from their closest living relatives 

(Witmer, 1995). In this way, osteological correlates of soft tissues in extinct animals with 

no soft tissue preserved can be used as proxies for these soft tissues. This technique 
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helps the researcher to avoid excessive leaps of logic, and to avoid further interpretations 

of an extinct organism’s anatomy, behaviour, and evolution, based on flawed, naïve, or 

outright incorrect inferences (Witmer, 1995). While it is impossible to know for certain the 

exact soft tissue structure, behaviour, etc., of the extinct animals in question – combining 

this method with knowledge of appropriate modern analogues (e.g. elephants with foot 

pads and large size for sauropod foot comparisons), inferences are both informed, and 

sensible, drawing from the most likely outcomes.  

1.2.1 3D Modelling of Organisms  

With the use of computed tomography (CT) scans, 3D models of entire animals can be 

created, and segmented for research purposes. Models can also be obtained with 

magnetic resonance imaging (MRI) scans, or positron emission tomography (PET) scans, 

however, these are used less often in the study of animal biomechanics, and are 

expensive (Johnson et al., 1997; Watanabe et al., 1997; Zou et al., 2009; Yu et al., 2010). 

Alternatively, scans of the external surface of animals or animal skeletons can be obtained 

using laser scanning or photogrammetry (Figure 1.4), (Bates et al., 2009; Falkingham, 

2012). With these models, the anatomy of animals can be studied without having the 

animal to hand, and can be studied from remote areas where access to the relevant 

facilities would be unavailable. This makes the study of these animals more feasible on a 

larger scale, as more people can gain access to a computer that can run 3D modelling 

software, than can gain access to cadavers from zoos and farms, or specimens from 

museums and private collections, allowing a wider potential audience of researchers 

(Cignoni et al., 2008; Kent, 2014; Girardeau-Montaut, 2015; Murdock, 2017). In addition, 

the advent of open-source repositories for 3D models facilitate wider access to these 

models, removing yet more barriers to research (Rowe, 2002; Boyer et al., 2016). 

anatomy, and their centres of mass.  
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Figure 1.4 3D Point cloud of an Asian elephant (Elephas maximus) created using 

photogrammetry (Falkingham, 2012). 

 

Whole-body 3D models of organisms can subsequently be used to calculate geometric 

measures such as body mass and centre of mass. Since extinct animals lack the full 

extent of their preserved soft tissues, their overall mass, soft tissues included, must be 

estimated in order to accurately estimate their in vivo centre of mass positions. This can 

be done through the creation and application of 3D volumetric models, as demonstrated 

by work by Sellers and Allen among others and seen in Figure 1.5 (Allen et al., 2009; 

Sellers et al., 2012).  

The use of volumetric models, such as convex hulls to compute body mass and centre of 

mass has routinely been applied by palaeobiologists to track changes in centre of mass 

associated with evolution and phylogenetic position within clades containing extinct 

animals. For example, across sauropods and theropods, where changes in centre of mass 

position during the evolution of extremely large size (Bates et al., 2016), and across the 

transition from non-avian dinosaurs to birds (Allen et al., 2013), can be made respectively. 

Volumetric models can also be used to track changes of centre of mass during dramatic 

postural shifts, such as the transition from bipedalism to quadupedalism in several groups 
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of ornithischian dinosaurs (Maidment et al., 2014; Bates et al., 2016). In addition, 

alternative and perhaps more precise estimations of body mass for extinct animals than 

those accepted previously, can be obtained (Bates et al., 2009; 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Demonstration of the digitisation and 3D convex hulling of a museum 

specimen – a mounted skeleton of the polar bear (Ursus maritimus). A = original skeleton, 

B = 3D point cloud derived from laser scanning, C = the completed 3D convex hulls used 

to compute geometric measures. From Sellers et al., (2012). 
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1.3 Dinosaur Footprints, Heteropody, and Extreme Heteropody 

1.3.1 Ichnology and the Study of Footprints 

For evidence of extinct organisms outside of body fossils, palaeontologists can draw upon 

trace fossils. From fossil footprints, they can infer information about animal gait and foot 

anatomy, such as how far apart an animal kept its feet during walking, the orientation of 

the feet during walking, and differences in pressure based on how deep footprints are 

formed within a substrate, with the caveat that pressure and depth are not necessarily 

always directly related, and disparate foot shape and other confounding factors can 

influence the relationship between these variables (Casinos, 1996; McDonald, 2007; 

Richmond et al., 2012; Castanera et al., 2012; Hatala et al., 2013; 2016). In addition, 

certain questions about the extinct animal’s behaviour can be inferred, such as whether a 

trackmaker was an animal that travelled in herds, the composition of those herds, and 

whether they travelled and lived alongside species other than their own (Lockley et al., 

1983; Gierlinski and Sabath, 2008; Myers and Fiorillo, 2009).  

In theory, a footprint should, to some degree, reflect the underfoot contact area of its 

trackmaker. However, besides the basic foot anatomy of the trackmaker, the dynamics of 

the animal (the animal’s gait, how fast it is moving, etc.), and the substrate the animal is 

moving on, have a significant influence on how a footprint is formed, and the resultant 

shape of the footprint (Baird, 1957; Padian and Olsen, 1984a; Minter et al., 2007; 

Falkingham, 2014). In addition to this, the taphonomy of the footprint - how it changes with 

the influence of the environment when it is exposed to the air, its underlying geology and 

how it changes over the ages, and more, can change the eventual shape of the foot that 

ichnologists can eventually observe and analyse (Buatois and Mángano, 2004; Razzolini 

et al., 2014). In this way the shape of a footprint is not an exact mirror of the underfoot 

anatomy of its trackmaker, often far from it, but it can tell palaeobiologists much about its 

trackmaker regardless, and inform their view of the anatomy of trackmakers and the 

makeup of their communities. 
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1.3.2 Heteropody and Extreme Heteropody 

Heteropody is a term coined by Lockley et al., (1994a) to describe the difference in size 

between footprints of the manus (forefoot), and the pes (hindfoot), referring to this ratio as 

it pertains to underfoot contact area with the ground. It is a useful mechanism to quickly 

visualise the disparity of foot size in a trackway, particularly when describing trackways of 

sauropod dinosaurs, where ‘extreme heteropody’, an exceptionally large disparity 

between manus and pes size, is well-known (Henderson 2006; Falkingham et al., 2012). 

While heteropody here refers solely to autopodial size differences, it is, in the case of 

sauropods, accompanied by striking differences in foot shape, and posture. While 

heteropody itself is known across many ichnospecies, extreme heteropody is a notable 

feature in sauropods. Preserved trackways from these dinosaurs indicate that, rather than 

their foot impressions being of relatively equal area, their fore and hind feet impressions 

have significantly different areas (Falkingham et al., 2011;2012. In animals with extreme 

heteropody, size differences could indicate a correlation of foot size with centre of mass, 

to equalise underfoot pressure between the forefeet and hindfeet. This has the potential to 

reduce maximum underfoot pressure and excess internal strain in the foot (Cheung et al., 

2005). It follows then, that the relative size difference between manus and pes could 

relate to the position of an animal’s centre of mass. This is indeed found in some species 

of mammal (Henderson, 2006). However, how common this correlation is throughout 

Tetrapoda (limbed vertebrates) has yet to be fully explored.  
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Figure 1.6 – Examples of manus versus pes underfoot contact areas in sauropod 

dinosaurs of two different clades A = Diplodocus a diplodocid, B = Brachiosaurus, a 

macronarian. The relative areas of these footprints demonstrate different degrees of 

heteropody between the clades, with more extreme heteropody in B, likely leading to 

higher manual underfoot pressures.  From Falkingham et al., (2010). 

 

Manus-only (and manus-dominated) trackways are a phenomenon found in sauropod 

trackways, where pes tracks are absent across the entirety of a trackway. While there are 

a number of potential explanations for this phenomena, one that is especially relevant to 

this thesis is the idea that these trackways form where only the manus makes a deep 

enough impression in the substrate of the trackway to be preserved. Whether manus-only 

trackways indicate higher pressure under the manus compared to the pes in vivo is still 

debated, but the hypothesis has not yet been comprehensively tested (Falkingham et al., 

2011; 2012). The prevalence of these unusual trace fossils is dependent on the in vivo 

mass distribution under the limbs of the trackmakers. These mechanisms by which 

manus-only trackways may have been formed are dependent on the composition and 

compliance of the underlying substrate (Falkingham et al., 2011). Currently, there is no 

widely-accepted reason why manus-only trackways are formed, although possible links 

between heteropody and mass distribution in these organisms have been proposed 
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(Falkingham et al., 2011). Another potential explanation for this phenomenon is that it 

reflects locomotion in the water, whether swimming or punting, reflecting manual 

propulsion against a submerged substrate (Bird, 1944; Huh et al., 2003; Lee and Lee, 

2006; Xing et al,. 2016a). While this hypothesis lacks substantial evidence in its favour, it 

is the subject of some ongoing debate (Lockley and Rice, 1990; Pittman, 1993; Lockley et 

al., 1994c; Henderson, 2004; Ishigaki and Matsumoto, 2009; Falkingham et al., 2010; 

Harter et al., 2014). A recent study of manus-only trackways by Farlow et al., (2019) 

offered support for differential underfoot pressures as an explanation for the manus-only 

trackways analysed, while not ruling out unusual locomotion. 

Pes-only trackways are also known from multiple localities and ichnospecies. This 

phenomenon could be produced by similar mechanisms to those of manus-only 

trackways, or by overprinting, where a trackmaker places its pes where its manus had 

previously contacted the ground and left a print (Milàn and Hedegaard, 2010; Falkingham 

et al., 2010; Lockley et al., 2012; Xing et al., 2016a). While pes-only trackways do not 

necessarily indicate unusual behaviour on the part of their trackmakers, their existence 

does imply the presence of trackmakers for which heteropody will remain unrecorded, and 

therefore the diversity of heteropody in the fossil record is possibly understated, since 

animals walking in this manner are likely to continually overprint when walking at similar 

speeds/gaits, leaving scant few manus impressions (Mazzetta and Blanco, 2001; Milàn 

and Hedegaard, 2010).  

While the existence of manus and pes only trackways are noted here as a possible 

consequence of heteropody in sauropods, whether they are caused by pressure 

differences is beyond the scope of this thesis. Instead, they are part of the inspiration for 

the question of whether pressure and heteropody are linked in these animals. If indeed 

heteropody is linked to differential underfoot pressures, it could help to inform whether it is 

possible that differential underfoot pressures could also be responsible for these 

enigmatic trackways.  
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In extant quadrupeds, heteropody is primarily known from animals that habitually use 

locomotor gaits other than walking, such as frogs and rabbits who use exceptionally large 

hindfeet to hop, kangaroos, who employ a similar strategy while also employing use of 

their tail when walking, and beavers, who use their large, webbed hind feet to paddle in 

the water. Sauropod dinosaurs do not appear to have had the ability to jump, and they do 

not appear at all specialised for semi-aquatic locomotion (Henderson, 2004; Falkingham 

et al., 2010; Xing et al., 2016a).  

There are no extant animals with a body plan directly analogous to that of sauropods, 

either in terms of shape or size, to accurately use as a modern analogue. However, 

examination of a large number of tetrapods to determine how common correlations are 

between centre of mass and underfoot pressure, (especially in animals with heteropody) 

may expose interplay between these variables and therefore offer explanations for how 

and why extreme heteropody arises..  

1.4 Quantifying Pressure in Living Animals 

Pressure is the product of a force over an area. Heteropody then, referring to differences 

in underfoot area between the manus and pes of an animal, by its nature, is directly 

related to underfoot pressures experienced by the manus and the pes.  

With current technology, it is relatively simple and easy to measure underfoot pressure 

using pressure mats. Pressure mats have been demonstrated to be a practical and useful 

tool for measuring foot pressure in humans, and many other animals (Van der Tol et al., 

2003; Vereecke et al., 2003; Meijer et al., 2014).  

As with many techniques in biomechanics, studies of underfoot pressure have historically 

been focused on human gait, and as a diagnostic tool for pathologies (Apelqvist, 2012; 

Kinoshita et al., 2019; Yamashita et al., 2019). Similarly, amongst studies of underfoot 

pressure in animals, much work has been done in veterinary diagnostics, especially in 

ungulates such as domestic cattle and horses, where measuring underfoot pressure can 

help to diagnose lameness and the overall health of a hoof (Scott, 1989; Carvalho et al., 

2005; Grégoire et al., 2013). 
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Studies of animal gait from a functional morphology perspective using pressure mats, 

(Clarke et al., 2001) are commonplace.  For example, comparing different modes of 

locomotion within a single animal such as walking versus running (Lascelles et al., 2006), 

or climbing versus walking in arboreal animals (Lammers et al., 2006). It is important in 

these experiments that subject animals are not coerced into walking when conducting 

locomotory experiments, as this can affect results in a way that does not resemble their 

natural locomotory inclinations (Leasure and Jones, 2008).  

Quadrupedal mammals have been observed, in previous studies (herein citing vertical 

ground reaction forces to demonstrate load on the fore and hind limbs), to generally 

support 55-60% of their mass with their forelimbs (Reynolds, 1985a;b). Notable 

exceptions include primates, supporting about 30-45% of their mass with their forelimbs. 

Generally, cursorial mammals tend to use their forelimbs to support more weight, and 

cursoriality is associated with slightly anterior centre of mass positions (de Faria et al., 

2015). Reptiles generally use their hindlimbs more to support their body mass, possibly 

due to the prevalence of long, muscular tails, and their influence on overall body mass 

distribution (Allen et al., 2009; Willey et al., 2004). Ecological niche can also have a 

profound influence on pressure differences between the manus and pes of an animal. 

Fossorial mammals, such as anteaters, have forelimbs of double the muscle mass of their 

hindlimbs, for example, with this disparity directly affecting distribution of mass along the 

body, and therefore the stresses experienced under each foot (Lascelles, et al., 2006; 

Granatosky, et al., 2018). 

1.5 Extreme Heteropody as a Pressure Equalisation Mechanism? 

Knowledge of relative manus-pes size is important in understanding the ways an animal 

can move and support its weight. In a simplified sense, as demonstrated in Figure 1.7, an 

animal’s body can be understood as a simple beam, and its limbs the supports that hold 

the beam up (Alexander, 1985). In erect animals, where limbs are held under the trunk 

rather than to the side, the supports are directly under the beam, and thus the weight is 

distributed to each of its supports, relative to centre of mass location (Halliday et al., 
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2013)), in a way that does not require constant force exertion and avoids the shear 

stresses in bones that are associated with a sprawled posture (Blob, 2000). In theory, a 

central load would be distributed equally between the limbs, and a load closer to one side 

will result in more load bearing on the side in question. If the area at the base of these 

supports (i.e. foot surface area) were increased on the load bearing side, the result would 

be equal stress on each support, despite unequal loads (Henderson, 2006). In this way, 

extreme heteropody, as exhibited in sauropod dinosaurs, could potentially be utilised to 

equalise underfoot pressures, and stabilise a front heavy, or back heavy, animal, with 

changes in heteropody corresponding to shifts in centre of mass (Falkingham, 2012; 

Falkingham et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7 The proposed relationship between heteropody and underfoot pressure, 

demonstrated using a simple beam and support model. From Henderson (2006). 
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Ultimately it is potential disparity of pressure between manus and pes that is most 

pertinent to the question of how quadrupedal dinosaurs distribute their body weight. If 

centre of mass and foot pressure are related across quadrupedal animals, the explanation 

of heteropody as an equalising model (Figure 1.7) would potentially be supported. If it is 

unrelated, then other explanations would be necessary to understand the prevalence of 

extreme heteropody, and shifting heteropody, in the dinosaur fossil record. Comparing 

centre of mass and pressure differences in extant tetrapods should indicate whether there 

is a universal link between these variables. If there is not, then extreme heteropody could 

be a condition resulting from evolving quadrupedality from bipedal ancestors (with 

heteropody presumably decreasing over time as manus and pes adapt to performing 

similar functions), disparity in foot posture and structure between manus and pes, or due 

to ecological pressures or lack thereof. This thesis aims to investigate the presence or 

absence of heteropody and differential underfoot pressures in extant animals, and 

whether this presence/absence is reflective of heteropody in terms of underfoot surface 

area, and/or centre of mass position, to equalise pressure.  
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1.6 Thesis Aims  

Each research chapter of this thesis attempts to answer a question that will aid in 

answering the larger question of whether there is a functional link between heteropody 

and centre of mass in tetrapods, and whether this has implications in the current 

understanding of extreme heteropody in dinosaurs. To do this, chapters two through five 

of this thesis explicitly ask the following questions: 

1. Can skeletal surface area predict in vivo surface area (Chapter 2) 

2. Is antero-posterior centre of mass correlated with heteropody in extant taxa? 

(Chapter 4) 

3. Do underfoot forces and pressures in extant taxa indicate a pressure equalisation 

mechanism? (Chapter 6) 

4. How do the above answers apply to extreme heteropody in dinosaurs? (Chapter 7) 

By answering these questions, a greater understanding of how soft tissue and skeletal 

tissue interact to determine underfoot area, how underfoot area relates to centre of mass 

position, and whether heteropody appears to be used to equalise pressure, in terms of 

extant quadrupedal tetrapods should be gained, in addition to how these answers apply in 

context of sauropod dinosaur trackways. 
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Chapter 2 

The contents of this chapter were published in the Journal of Anatomy.  

 

Strickson, E.C., Hutchinson, J.R., Wilkinson, D.M. and Falkingham, P.L. (2020), Can 

skeletal surface area predict in vivo foot surface area?. J. Anat., 236: 72-84. 

doi:10.1111/joa.13090 
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Chapter 2 

Can Skeletal Surface Area Predict in vivo Foot Surface Area? 

 

2.1 Summary of Chapter 

The surface area of feet in contact with the ground is a key morphological feature that 

influences animal locomotion. Underfoot pressures (and consequently stresses 

experienced by the foot), as well as stability of an animal during locomotion, depend on 

the size and shape of this area. Here, whether the area of a skeletal foot could predict in 

vivo soft tissue foot surface area was tested. Computed tomography scans of 29 extant 

tetrapods (covering mammals, reptiles, birds and amphibians) were used to produce 

models of both the soft tissues and the bones of their feet. Soft tissue models were 

oriented to a horizontal plane, and their outlines projected onto a surface to produce two-

dimensional silhouettes. Silhouettes of skeletal models were generated either from bones 

in CT pose or with all autopodial bones aligned to the horizontal plane. Areas of these 

projections were calculated using alpha shapes (mathematical tight-fitting outline). Under-

foot area of soft tissue was approximately 1.67 times that of skeletal tissue area (~2 times 

for manus, ~1.6 times for pes, if analyzed separately). This relationship between skeletal 

foot area and soft tissue area, while variable in some of this chapter’s study taxa, could 

provide information about the size of the organisms responsible for fossil trackways, 

suggest what size of tracks might be expected from potential trackmakers known only 

from skeletal remains, and aid in soft tissue reconstruction of skeletal remains for 

biomechanical modelling. 
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2.2 Introduction 

The surface area of tetrapod autopodia (feet) reflects several important biomechanical 

factors, including body mass (McMahon, 1975), habitat (Blackburn et al., 1999), speed 

(Segal et al., 2004), and bipedal or quadrupedal locomotory habits (Snyder, 1962). Foot 

surface area is determined by autopodial morphology and posture (Hildebrand, 1980; Full 

et al., 2002), and, in conjunction with the body mass and locomotory mode of an animal, 

determines underfoot pressure (Miller et al., 2008; Michilsens et al., 2009; 

Panagiotopoulou et al., 2012; Qian et al., 2013; Panagiotopoulou et al., 2016a;b). 

For very large animals, such as rhinoceroses and elephants, foot surface area needs to 

be large, as a method of reducing underfoot pressure and avoiding injury to the foot, as 

well as avoiding sinking on soft ground (Falkingham et al., 2011). However, foot contact 

area does not appear to scale isometrically with mass. Larger animals often have smaller 

foot contact areas than would be expected, and the relationship between foot contact area 

and mass differs between unguligrade, digitigrade and plantigrade animals (Michelsens et 

al., 2009; Chi and Roth, 2010). Large animals must compensate for their size with other 

mechanisms, such as fatty footpads, in order to reduce stress (Panagiotopoulou et al., 

2012). Presumably the extinct sauropod dinosaurs, many times larger than extant 

elephants (Bates et al., 2016) used similar compensatory adaptations (Platt and Hasiotis, 

2006).  

Foot surface area is also reflective of an animal’s posture and limb use (Biewener, 1989), 

with bipedal animals requiring feet large enough to support their body weight with half as 

many limbs as their quadrupedal counterparts (Gatesy and Biewener, 1991), and, in the 

case of birds, in a huge range of environments and ecological niches with different 

demands (Alexander, 2004). An animal’s balance (e.g. keeping the body’s centre of mass 

(CoM) close to the centre of pressure of feet-- influenced by foot area) is also of vital 

importance, as the stability of an animal during locomotion is vital to its ability to catch 

prey, escape predators, migrate effectively, and avoid injury when overexerting itself and 
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when moving on unstable ground (Hodgins and Raibert, 1991; Patla, 2003; Geyer et al., 

2006; Birn-Jeffery et al., 2014).  

Foot surface area appears to correlate with relative speed during certain forms of 

locomotion. Body mass has a direct effect on maximum running speed, especially notable 

in large animals, as speed scales with body mass up to moderate sizes and then declines 

(Garland, 1983; Bejan and Marden, 2006), and the duration of foot contact with the 

ground also scales with body mass (Farley et al., 1993). The position and number of toes 

also tends to be a specialisation for terrestrial running, with a reduced number of toes 

present in both horses and ostriches (among other cursorial taxa; Coombs, 1978), 

reducing foot weight, a useful adaptation because heavier feet necessitate more energy 

usage to recover from a stride (Snyder, 1962; McGuigan and Wilson, 2003; Schaller, et 

al., 2011). Peak plantar pressure and speed are demonstrably linked in humans 

(Rosenbaum et al., 1994; Segal et al., 2004; Pataky et al., 2008) and ostriches (Schaller, 

et al., 2011); however, this link has not been fully explored in other terrestrial animals, 

especially quadrupeds. 

Large feet have a potentially conflicting relationship with speed in that they will be more 

massive and thus have greater inertia, making them more difficult to swing quickly through 

the air (Taylor et al., 1974; Fedak et al., 1982; Kilbourne and Hoffman, 2013; Kilbourne 

and Carrier, 2016). Nonetheless, it is important that foot surface area and underfoot 

pressures evolve to allow an organism’s locomotion to be energy-efficient and its posture 

stable, while enabling sufficient bursts of speed if necessary. In other words, the surface 

area of the autopodia should be subject to selective pressures in the same manner as any 

other part of the locomotor system. 

Foot surface area is also potentially influenced by Allen’s rule (Allen, 1877; Allee and 

Schnidt, 1937), which supposes that warm-blooded animals in cold climates will tend to 

have smaller feet than their relatives in warmer clines (Blackburn et al., 1999). This may 

or may not be due to causal links (i.e. natural selection) to either reduce surface area 

exposed to the cold, or be a reflection of adaptations in warmer climates to increase 
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surface area to promote heat dissipation. This ‘rule’ may conflict with constraints imposed 

by keeping pressures low (i.e. foot areas large) to avoid sinking into soft substrates such 

as snow or sand. Allen’s rule also potentially conflicts with the outcome of Bergmann’s 

rule – the contentious but broadly supported tendency for ectotherms to be larger in colder 

climates (Clarke, 2017). Therefore, colder conditions will tend to correlate with increased 

body mass, implying a larger foot surface area while simultaneously selecting for smaller 

feet. 

Some animals exhibit notable disparity in the size of fore- and hind-feet, which is apparent 

in their foot surface area: a condition known as heteropody. A previous study (Henderson, 

2006) demonstrated that the ratio of fore- and hind-foot surface areas, in its subject 

animals, could match CoM position, e.g. an elephant has 40%/60% relative fore- vs. hind-

foot surface area, and a CoM of 40% of the distance from the glenoid to the acetabulum. It 

would seem logical to assume that animals spread their body  relatively evenly over their 

feet, in order to reduce maximum pressure, excess tissue or substrate stress and strain 

(Cheung et al., 2005), and to prevent sinking when walking across compliant substrates 

(Falkingham et al., 2011). However, this assumption runs contrary to pressure 

experiments showing higher mean peak pressures in elephant forelimbs 

(Panagiotopoulou et al., 2012). It is therefore worth exploring a possible correlation of the 

relative sizes of an animal’s manus and pes, and CoM with both observations in mind, and 

worth considering possible implications of such a correlation across Tetrapoda. 

Heteropody is a common occurrence in some extinct animals, such as sauropod 

dinosaurs, as indicated by trace fossil evidence (Lockley et al., 1994a; Henderson, 2006). 

Preserved trackways from these dinosaurs indicate that often their fore- and hind-feet 

impressions differ in depth (Falkingham et al., 2010; Falkingham et al., 2012), implying 

differential underfoot pressures. Determining foot surface area in these animals can be 

complex, however, and attribution of specific trackmakers to trackways is notoriously 

difficult (Farlow, 1992; Clack, 1997; Falkingham, 2014), partly because matching 

impressions of fully fleshed feet to skeletal remains would require accurate methods of 
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predicting skeletal to skin foot morphology, which is currently difficult and largely 

speculative (Jannel et al., 2019). Indeed, matching the tracks of extant animals to the 

correct species is often not straightforward – as illustrated by the existence of field guides 

produced to help fieldworkers with this problem (e.g. Bang and Dahlstrøm, 2001).  

For terrestrial and arboreal fauna, the substrate underfoot can have a noticeable effect on 

locomotion, and the way the foot moves in a step. Both substrate and autopodial tissue 

will be compressible to varying degrees, slightly altering foot contact area during stance 

(Gatesy, et al., 1999; Gatesy, 2003; Falkingham and Gatesy, 2014; Gatesy and 

Falkingham, 2017).  

Palaeobiologists must rely on soft tissue data from extant animals to infer many facets of 

the morphology of extinct animals (Witmer, 1995), because preservation of soft tissues is 

rare and only partial details about muscle and tendon structures can be inferred from the 

skeletal elements they interacted with. In this way, a study of the relationship of flesh and 

skeletal foot surface area should help to fill gaps in the current understanding of the 

anatomy of extinct animals’ feet, as well as the interaction of foot structure and CoM, and 

would be particularly valuable for linking fossil trackways and supposed trackmakers. This 

chapter aims to test whether skin and skeletal surface area are correlated across 

Tetrapoda, and if so, if their correlation is strong enough to make it a useful tool in the 

study of fossils and trackways. 

2.3 Materials & Methods 

In order to compare skeletal and fully fleshed foot anatomy in extant animals, computed 

tomography (CT) scans of cadaveric autopodia from 29 species of tetrapod (one 

specimen of each except for Crocodylus moreletii and Osteolaemus teraspis – see 

supplementary material), covering amphibians, reptiles, birds, and mammals, were 

analysed. The sex of individuals was unknown, and all but Crocodylus niloticus were 

adults. All specimens were museum or zoo-donated specimens whose cause of death 

was unrelated to this study (and generally unknown).  
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MeVisLab (Heckel et al., 2009) was used to segment the scans into separate 3D models 

(OBJ format meshes) of the soft tissue and skeletal elements. The resultant meshes were 

then imported into Autodesk Maya 2018, where they were cleaned, aligned and re-posed 

to the horizontal plane (Figure 2.1). The aligned meshes were then processed using 

Matlab), where they were ‘flattened’ by setting the vertical component of each vertex to 0. 

This flattening produced 2D ‘silhouettes’ of the models, either as soft tissue of the foot or 

its skeleton, from which area was calculated using an alpha shape (see below). 

Skin models were oriented and posed so that only areas of the feet that would touch the 

ground during locomotion would be used upon flattening the models, and any parts of the 

models that extended past this area were removed (figure 1B). The extent of the soles of 

the feet were, for the most part, obvious from visible anatomy. In addition, from in vivo 

biplanar fluoroscopy studies, X-ray images, and photographs in situ, where available, 

educated estimates of accurate positions for some taxa were made (Astley and Roberts, 

2014; Bonnan, et al., 2016; Kambic et al., 2015; Panagiotopoulou, et al., 2016). For a 

more repeatable approach (Pose 2, see below), parts of the skin model extending past the 

functional foot area (the unguals for unguligrade animals, the digits for digitigrade animals, 

and the entire sole of the foot for plantigrade animals and semi-digitigrade animals, so that 

the full extent of fatty foot pads were accounted for) were removed where present.  
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Figure 2.1 Projected area calculated from 3D models. A) Hippopotamus Left forelimb, 

soft tissue and bones reconstructed from CT data. B) The soft tissue was cropped at a 

point representative of the area that would contact the ground during life. The bones were 

cropped based on the same posterior extent (pose 1). C) The alpha shape (pink) and the 

convex hull (green) were used to determine underfoot area of the bones alone and D) the 

soft tissue. E) Bones were laid flat for a more repeatable approach (pose 2). Where semi-

digitigrade animals were treated as digitigrade (pose 2a) only bones in pink were used, 

where semi-digitigrade animals were treated as intermediate between digitigrade and 

plantigrade (pose 2b), blue and pink bones were used, and where semi-digitigrade 

animals were treated as plantigrade, all bones including those in green were used. F) 

Alpha shapes for poses 2a-c, where pink is 2a, blue is 2b, and green is 2c. G-K) 

Distinctive foot morphologies in the data set. Scale bar = 10cm for all but G, where scale 

bar = 1cm. 

 

However, since these models were taken from CT scans, without the full weight of the 

animal deforming the foot underneath, the true shape of the foot during stance for many of 

these animals may have been slightly different, due to compliant soft tissues (Alexander, 

et al., 1986; Gatesy, 2003). This is especially significant for those animals with large fatty 

foot pads such as Elephas and Ceratotherium, and less significant for the majority of 

ungulates, whose hooves are stiff, and more resistant to deformation (Hinterhofer, et al., 

2000; Hutchinson, et al., 2011).  

Skeletal models were posed in one of two ways. Firstly (Pose 1), matching the pose of 

skin models (Figure 2.1B-D), secondly (Pose 2), with all bones aligned to the horizontal 

(Figure 2.1E-F). For the latter pose, models were cropped proximal to the digits for 

digitigrade animals, proximal to the unguals for unguligrade animals, proximal to the 

tarsals/carpals for plantigrade animals.  

For large, semi-digitigrade/subunguligrade animals (Elephas maximus, Ceratotherium 

simum, and Hippopotamus amphibius), proximal foot elements are raised off the ground, 
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supported by fatty foot pads, increasing foot contact area. Therefore using only the 

phalanges, as for other digitigrade animals, would severely underestimate contact area. 

To explore this ambiguity, skeletal outlines were generated from just the digits (Pose 2a), 

the digits plus metatarsals (Pose 2b), and with the entire foot skeleton (Pose 2c). This 

analysis was designed to be more objective and repeatable in determining skin from 

skeletal surface area, particularly, in extinct animals, where knowledge of in vivo foot 

posture may be lacking.  

Results for area where left and right forefeet or hindfeet were available were averaged 

(mean), as were area results for animals with multiple specimens, and Camelus, where 

both feet were unassigned as forefeet or hindfeet.  

It should be noted that the 29 animals studied include 10 ungulates, possessing large, 

keratinous hooves, much harder and stiffer than most other tissues categorised under 

‘soft tissues’ in this study. While ungulate hooves have properties that distinguish them 

from other soft tissues, and take longer to decompose than softer tissues, they are also 

distinct from skeletal tissue, and are rarely preserved, especially in fossils (Pollitt, 2004; 

Saitta, et al., 2017). In terms of comparisons between skeletal and fossil remains and the 

overall foot structure of living animals, hooves clearly are an important part of a living 

ungulate’s foot structure, and their ability to locomote; thus being able to predict their size 

from skeletal remains is as much of a part of the goal of this study as predicting the areas 

of softer tissues (Warner, et al., 2013). In this sense, the term ‘soft tissue’ as used in this 

study refers to ‘non-skeletal tissue’, with the hardness of these tissues largely irrelevant. 

Initially, 2D convex hull (a shape made by joining the outermost data points in a simplified 

representation of the data (see Figure 2.1C-D, in green)) of each silhouette was 

calculated, but it was found via pose tests using bird feet that this method was extremely 

sensitive to pose, particularly whether the digits were laterally spread or not 

(Supplementary material 1). Instead, 2D, tight-fitting alpha shapes (where the outermost 

data points were joined in a shape that most closely fits the silhouette’s true shape (Figure 

2.1C-D, in pink)) were produced for each silhouette, and the area of these alpha shapes 



46 
 

calculated. The alphaShape command in MatLab uses an ‘alpha value’ to determine the 

maximum distance between edge points to bridge (a sufficiently large ‘alpha value’ will 

produce a convex hull). The default alpha value for each alpha shape was used, which is 

calculated based on the density of vertices in the model, as this produced the tightest 

fitting single shape for any given set of points, adjusting for the size of each foot to 

enclose all points. The hole threshold was set to be extremely large (larger than the foot 

as a whole) to remove any holes from the interior of the alpha shape. The surface area of 

the skeleton’s alpha shape as a percentage of the skin’s shape was then used to compare 

each organism.  

The dataset was then run through PGLS (phylogenetic generalised least squares) 

regression analyses to assess the significance of the relationship between the variables, 

and how much impact common ancestry between the animals studied affected the results 

(Blomberg et al., 2012; Felsenstein, 1985). This was accomplished using Mesquite 

(Maddison and Maddison, 2001) to draw three simple trees (manually compiled 

“consensus” phylogenies based on the most recent and broadly accepted phylogenies at 

the time of writing, within which the placement of Carnivora, Cetartiodactyla and 

Perissodactyla in relation to each other, was the only major point of contention (Gauthier 

et al., 1988; Nery et al., 2012; Prum et al., 2015)) connecting the organisms involved in 

this study. The trees were dated using first and last appearance dates taken from the 

paleobiology database, and PGLS ran via the Ape (Paradis et al., 2004), Geiger (Harmon 

et al., 2008), Nlme (Bliese, 2006) and Phytools (Revell, 2012) packages in R. Results for 

forefeet, hindfeet, and all feet were each tested. The influence of body mass was also 

tested as an external variable, in order to determine whether phylogeny, body mass, or a 

combination of both factors had a significant effect on the relationship between skin and 

skeletal foot surface area. P values <0.05 were considered significant. Body masses were 

taken from scan metadata where possible, or based on reported masses from the 

literature (e.g. Dunning Jr, 1992) where such metadata were not available (Supplementary 

material 1).  
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Skin surface area was plotted against skeletal surface area for all analyses, using the 

entire data set, and then broken up into smaller groups: unguligrade, digitigrade, 

plantigrade, terrestrial, semi-aquatic, erect posture, sprawling posture, mammals, and 

birds. The plots were framed in terms of the predictability of skeletal area from skin area, 

to emphasise potential utility for trackmaker identification from fossils. However, these 

data are intended to be interpretable both ways, and the prediction of in vivo surface area 

from skeletal remains is of equal utility. For the purposes of these analyses, the digitigrade 

(Pose 2a) and plantigrade (Pose 2c) poses of semi-digitigrade/subunguligrade (sensu 

Carrano, 1997) animals were added to their respective groups, whereas Pose 2b was 

used for the remaining groups, as it represents an intermediate pose. Semi-aquatic 

included amphibians, crocodilians and hippopotamuses, terrestrial did not include birds 

except for Dromaius novaehollandiae, and sprawling (here meaning non-erect) posture 

included amphibians, lepidosaurs and crocodilians, although crocodilians use a range of 

limb postures spanning the sprawling-to-erect continuum (Gatesy, 1991; Reilly and Elias, 

1998). 

2.4 Results 

For the Pose 1 analysis (approximate life position), projected foot skeleton surface area 

as a percentage of projected fully fleshed foot surface area (Figure 2.2, above cladogram) 

was an average of 56% (both mean and median) for all organisms measured (three 

amphibians, four crocodilians, seven birds, and fourteen mammals), with means of 49% 

for amphibians (53% median), 47% for crocodilians (48% median), 68% for birds (67% 

median), and 55% for mammals (54% median) with an average standard deviation of 

13%. Extremely similar results were found with bones oriented as in Pose 2. The smallest 

percentages of skeletal vs. fleshed surface area observed were in Equus species (Equus 

quagga at 34%, Equus ferus caballus 38%), Giraffa camelopardalis (38%), Crocodylus 

niloticus (38%), and Cryptobranchus alleganiensis (39%). However, besides Equus and 

Giraffa, other ungulates did not stand out as having particularly low skeletal areas relative 

to skin areas. Carnivorans had proportionately high skeletal calculated area. The highest 



48 
 

skeletal areas relative to skin areas (as seen from the underside, and in two dimensions) 

were Coturnix coturnix at 83%, followed by Panthera leo persica and Ceratotherium 

simum, at 81% and 73%, respectively.  

Where skeletal models were set flat (Pose 2), all unguligrade animals expressed lower 

skeletal area compared to skin surface area, compared with Pose 1 (Figure 2.2). The 

zebra stood out most with just 22% skeletal representation. 

Elephas, Hippopotamus, and Ceratotherium showed considerable variability depending on 

which foot bones (Pose a/b/c) were used to predict skeletal area: Hippopotamus 

(37/76/100%), Ceratotherium (31/74/98%), Elephas (17/42/68%). 100% skeletal surface 

area representation in the hippopotamus clearly suggests that treating these animals as 

plantigrade does not yield results representative of these animals’ foot morphology, or 

indeed results that are useful for predictive purposes, especially given the steep 

(subvertical) angle at which these animals position their feet in situ. 

Carnivorans, particularly cats, typically do not have their digits extended fully when 

walking or standing, as such relative skeletal area calculated from Pose 2 (eg. Panthera 

93%, Vulpes 92%) generally produces higher relative skeletal areas than the more life-like 

Pose 1 (eg. Panthera 81%, Vulpes 70%). 
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Figure 2.2 Bar graph showing projected skin surface area as a percentage of 

projected skeletal surface area across all specimens in A) Pose 1, with phylogeny for 

context, and B) Pose 2 (for elephant, rhino, and hippo, main bar represents Pose 2b and 

additional bars show poses 2a and 2c). Silhouettes from Phylopic. Mammalia data are in 

purple, Aves data in red, Crocodylia data in green, Lepidosauria data in blue, and 

Lissamphibia in yellow. 

 

Overall, mammalian data were highly variable (47% range from maximal to minimal 

values in Pose 1, over 80% range in Pose 2). Given that mammalian species dominated 

the study sample (then birds, then crocodilians), perhaps with more data the variability 

within other groups would increase to comparable levels. However, that mammalian feet 

have unusually high morphological disparity compared to other taxa in the sample, is 

reflective of their unusually high morphological disparity in terms of body size, foot 

anatomy, and posture compared to other groups (Kubo et al., 2019). 

Bird and crocodilian data were more consistent than mammals (25% range for birds in all 

analyses, 18% range for crocodilians). Dromaius, which was morphologically and 

functionally distinct from the other birds in the study in terms of being large and flightless, 

fell neatly within the range for birds.  

Raw numbers for projected skeleton and projected skin surface area, calculated from 

Pose 1, were plotted as a log graph, and a power trendline fitted (Figure 2.3). This plot, 

despite the variation seen in Figure 2.2, showed a strongly positive correlation (R² = 0.99, 

p value <0.05) in ‘Pose 1’ between skin and skeletal foot surface area. This correlation 

can be described with the equation y = 0.59x0.99 (where y = skeletal foot surface area and 

x = foot skin surface area). This skin and skeletal foot surface area’s scaling relationship 

was close to isometry (slope of 1.0). Soft tissue surface area may therefore be predicted, 

on average, as approximately 1.67 times skeletal surface area. There were very few 

outlying animals, indeed, Elephas and Ceratotherium were the only animals that diverged 

notably  
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Figure 2.3 Log10 plots for projected skin surface area against projected skeletal 

surface area (mm2) in A) Pose 1, for all limbs, B) For Pose 1, for forelimbs, C) For Pose 1, 

for hindlimbs, Silhouettes from Phylopic. All numbers rounded to two significant figures. 

Mammalia data are in purple, Aves data in red, Crocodylia data in green, Lepidosauria 

data in blue, and Lissamphibia in yellow. 
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from the linear trendline. If the three largest animals were removed from the data set, or 

the three smallest, the strength of the correlation was unaffected, but soft tissue area 

predictions from skeletal area decreased (Supplementary Material 1). If both groups were 

removed, the predicted value decreased further. 

When the forelimb and hindlimb results were calculated separately, the equations differed 

noticeably (y = 0.52x0.99 and y = 0.64x0.98 respectively); although the difference in slope 

was not statistically significant, and R² values remained ~0.99 (Figure 2.3). However, soft 

tissue area was ~2 times skeletal area in the forelimb, but only ~1.56 times in the 

hindlimb. See Table 2.1 for full list of formulae, R² values, p values, and confidence 

intervals based on coefficient estimates and standard error, all rounded to two significant 

figures (and see Supplementary Material 1 for slope uncertainties for all poses, and for all 

limbs, forelimbs, and hindlimbs.). 

Table 2.1 Regressions and Confidence Intervals for Main Analyses 

Analysis Linear Regression Linear R² 
Log 
Regression Log R² 95% CI P value 

Pose 1 - All limbs y = 0.51x + 146.71 R² = 0.94 y = 0.59x0.99 R² = 0.99 1.92 ± 0.06 < 2.2E-16 

Pose 1 - Forelimbs y = 0.45x + 641.27 R² = 0.92 y = 0.52x0.99 R² = 0.99 1.92 ± 7.89E-02 3.27E-15 

Pose 1 - Hindlimbs y = 0.59x - 292.02 R² = 0.97 y = 0.64x0.98 R² = 0.99 1.92 ± 0.06 < 2E-16 

Pose 2a -All limbs y = 0.20x + 1303.8 R² = 0.82 y = 0.87x0.91 R² = 0.99 3.93 ± 0.36 1.93E-11 

Pose 2a -Forelimbs y = 0.21x + 1345.4 R² = 0.85 y = 0.69x0.93 R² = 0.97 3.96 ± 0.40 8.68E-09 

Pose 2a -Hindlimbs y = 0.19x + 1177.4 R² = 0.79 y = 1.06x0.89 R² = 0.96 4.16 ±0.42 2.08E-10 

Pose 2b - All limbs y = 0.48x + 436.75 R² = 0.87 y = 0.58x0.98 R² = 0.97 1.86 ± 0.12 5.98E-15 

Pose 2b - Forelimbs y = 0.52x + 410.47 R² = 0.89 y = 0.47x0.10 R² = 0.97 1.71 ± 0.14 3.39E-10 

Pose 2b - Hindlimbs y = 0.44x + 535.85 R² = 0.89 y = 0.71x0.96 R² = 0.97 2.03 ± 0.14 4.83E-14 

Pose 2c - All limbs y = 0.74x - 700.51 R² = 0.93 y = 0.49x1.00 R² = 0.97 1.28 ± 6.23E-02 < 2.2E-16 

Pose 2c - Forelimbs y = 0.79x - 1120.2 R² = 0.95 y = 0.40x1.02 R² = 0.97 1.21 ± 6.47E-02 3.03E-13 

Pose 2c - Hindlimbs y = 0.69x - 228.13 R² = 0.92 y = 0.57x0.99 R² = 0.97 1.33 ± 7.68E-02 8.04E-16 

 

For all flat pose analyses (Pose 2), heavier animals remained the outliers, with Elephas, 

Hippopotamus, and Ceratotherium diverging most from the trendline (Figure 2.4). Similar 

to the Pose 1 analysis, Pose 2b suggested high predictability, with soft tissue as 

approximately 1.67 times skeletal surface area. Regressions for Pose 1 and Pose 2b were 



53 
 

statistically similar. The analysis treating semi-digitigrade/sub-unguligrade as plantigrade 

(Pose 2c) suggested soft tissue as approximately 2.04 times skeletal surface area, and 

semi-digitigrade as digitigrade (Pose 2a) resulted in soft tissue as 1.05 times skeletal 

surface area. Interestingly, the hindlimbs-only regression for Pose 2b was significantly 

different from its equivalent with both fore- and hindlimbs and forelimbs-only (Table 2.1). 

 

Figure 2.4 Log10 plots for projected skin surface area against projected skeletal 

surface area (mm2)  for A) Pose 2a, all limbs,  B) Pose 2b, all limbs, and C) For Pose 2c, 

all limbs. Silhouettes from Phylopic. Mammalia data are in purple, Aves data in red, 

Crocodylia data in green, Lepidosauria data in blue, and Lissamphibia in yellow. All 

numbers rounded to two significant figures. 
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PGLS results (e.g. for all feet, in ‘Pose 1’, with Carnivora and Perissodactyla in a single 

clade) produced a Pagel’s lambda value ~1. Similar results were found when running the 

same tests on fore-and hind-feet separately, with the other two phylogenetic tree 

arrangements. When skeletal elements were laid flat Pagel’s lambda remained ~1, 

(Supplementary material 1). However, p values were ~0 which seems to contradict this, 

with mixed results for p value suggesting no clear answer on whether body mass is a 

significant driver either. These results are not sufficient to suggest whether phylogeny or 

body mass are significant drivers of the correlations found.  

Separate regressions for unguligrade, digitigrade, plantigrade, terrestrial, semi-aquatic, 

erect posture, sprawling posture, birds and mammals, all showed strong correlations 

(Table 2.2, Supplementary material 1 and 2). Equations for all the analyses varied, with 

opposing regressions (e.g. sprawling versus erect posture, or terrestrial versus semi-

aquatic) statistically different from each other (Table 2.2, equations and R2 values rounded 

to two significant figures). Although R2 values suggest high correlations for these 

regressions, the lack of data points in each of them (particularly those with the highest R2 

values) suggests their predictive value is relatively low at present. There are potentially 

functional reasons why, for example, sprawling animals, semi-aquatic animals, and birds 

would have stronger correlations and more predictable foot morphologies, but the lower 

scores in groups with more data points suggests high correlation in groups with few data 

points may be an artefact, and should be viewed with caution. 
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Table 2.2 Regressions and Confidence Intervals for Analysis Subgroups 

Analysis Linear Regression Linear R² 
Log 
Regression Log R² 95% CI P value 

Unguligrade y = 0.36x - 593.56 R² = 0.95 y = 0.27x1.01 R² = 0.97 2.61 ± 0.29 0.00 

Digitigrade y = 0.19x + 1823.1 R² = 0.83 y = 2.02x0.84 R² = 0.97 4.34 ± 0.54 2.02E-06 

Plantigrade y = 0.74x + 1128.3 R² = 0.96 y = 0.35x1.06 R² = 0.99 1.30 ± 0.09 1.25E-07 

Terrestrial y = 0.45x + 491.99 R² = 0.91 y = 0.68x0.96 R² = 0.91 2.00 ± 0.18 4.25E-08 

Semi-aquatic y = 0.77x + 408.03 R² = 1.00 y = 0.42x1.02 R² = 0.99 1.30 ± 0.02 4.26E-09 

Erect y = 0.48x + 588.49 R² = 0.89 y = 0.94x0.93 R² = 0.95 1.85 ± 0.15 1.37E-10 

Sprawling y = 0.51x - 19.70 R² = 0.99 y = 0.50x0.99 R² = 1.00 1.96 ± 0.07 1.13E-07 

Birds y = 0.59x + 32.25 R² = 1.00 y = 0.87x0.96 R² = 0.99 1.69 ± 0.02 1.59E-09 

Mammals y = 0.48x + 903.78 R² = 0.87 y = 0.57x0.98 R² = 0.91 1.84 ± 0.20 9.87E-07 
 

      

 

 

2.5 Discussion 

Projected skeletal surface area as a percentage of projected skin surface area varied 

between the organisms studied, most notably in mammals, which yielded both the lowest 

and second highest values (Figure 2.2). Bird feet are all similarly digitigrade in their 

posture and are largely made up of skeleton (with three major digits and consistent 

phalangeal numbers), skin, and connective tissue, so their more consistent percentages 

are not surprising considering that some of the mammals in this dataset had hooves, fatty 

footpads, and a wide range of foot anatomies and postures (from plantigrade to 

unguligrade). PGLS results suggested that the correlation between skin and skeletal foot 

surface area in all poses, as well as being very strong, still held with phylogeny taken into 

account. This suggestion was supported by Figures 2.3 and 2.4.  

Equus and Giraffa stood out in this dataset for having an especially low relative skeletal 

surface area. All extant horses have one toe with a large, keratinous hoof (Bowker et al., 

1998), so this was perhaps to be expected. Giraffes also have relatively small feet and 

gracile legs compared to other animals of similar size, and a combination of high body 

mass and high running speeds, which contribute to an overall unique morphology (van 

Sittert et al., 2015). Pose 2 resulted in a lower relative skeletal area across unguligrade 
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animals, though none as extreme as either Equus species. By focusing on ungual bones, 

it became clear that the keratinous sheath that forms the hoof dominates the ‘silhouettes’, 

with skeletal tissue only represented by the very tip of the toe, so this is to be expected. 

Non-unguligrade ungulates: Ceratotherium, Hippopotamus, Camelus dromedaries, and 

Vicugna pacos, did not yield similar results to unguligrade ungulates, and varied 

significantly from this group, as well as from each other.  

For Crocodylus niloticus, the fact that Crocodylia have relatively thin, long, digital bones, 

somewhat similar to human phalanges, that converge to form a surprisingly robust foot, 

could have some effect (Ferraro and Binetti, 2014). Furthermore, joint range of motion 

studies have suggested an unusual wrist function and resultant manus posture in 

crocodilians favouring rigidity, which could affect potential foot contact area (Hutson and 

Hutson, 2014). This rigidity could potentially aid in swimming, with the stiff foot acting in a 

flipper-like fashion to push through water efficiently, which smaller crocodilians tend to rely 

upon (Seebacher, et al., 2003). Furthermore, the Crocodylus niloticus specimen used was 

the only juvenile in this study, and its phalanges were small and spaced far apart in some 

cases, so this result could be an artefact of ontogeny, or the quality of the models used. 

Further studies on the effect of ontogeny on skeleton to skin surface area ratio could 

elucidate this further. Indeed, in future studies consideration should be given to levels of 

ossification of manus and pes bones. For example, this chapter’s Cryptobranchus CT 

scan was missing wrist bones on all feet when segmented because these elements were 

cartilaginous in the specimen scanned, and were indistinguishable from soft tissue. Such 

ossification is likely to vary across species, and across ontogeny. 

At the other extreme, where skeletal surface area was high (most closely approaching 

projected skin surface area), several birds (most notably Coturnix, Accipiter nisus, and 

Alectoris chukar) along with carnivorans and Ceratotherium (as well as Hippopotamus in 

Pose 2b and 2c) stood out the most. For birds, this is understandable considering their 

relative lack of musculature and fat in their feet. For carnivorans this could be explained 

by their claws, extending beyond the main body of the foot, by the resting position of their 
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digits in vivo, and by their footpads, for which stiffness scales directly with body mass, 

while foot contact area lags behind (Chi and Roth, 2010). This scaling allows carnivorans 

to maintain relatively small feet that are light enough to be moved quickly (Kilbourne and 

Carrier, 2016; Kilbourne and Hoffman, 2013).  

Body mass seemed to have little general effect on the relationship between skin and 

skeletal foot surface area. Previous studies have found a scaling relationship between 

body mass and foot contact area not significantly different from isometry (Michilsens et al., 

2009), implying that the ratio of skeleton to soft tissue in the foot was not affected by this 

scaling effect. The scaling relationship between the ratio of skin to skeletal foot surface 

area was at best trivially different from isometry– a sensible result given that the variables 

are two facets of the same structure (i.e. the manus or pes), and therefore their structure 

and development are intrinsically linked. Despite this result, the largest animals in the 

dataset were the most outlying (much less so when plotted logarithmically (Figure 3)). It is 

notable that these largest animals, namely, Elephas, Ceratotherium, and Hippopotamus, 

were also the only semi-digitigrade/subunguligrade animals in this chapter’s data. These 

animals both had the largest feet in the study and possess fatty foot pads to reduce loads 

on their individual toes and spread out underfoot pressure due to their large body masses 

(Hutchinson et al., 2011; Regnault et al., 2013). The divergence of these data appears to 

be influenced by their foot posture as well as their large size, with the adaptation of a 

semi-digitigrade posture potentially occurring specifically to support their large body 

weights.  

It may be worth considering that beyond a certain weight threshold, specialised foot 

morphologies are necessary for weight support and locomotion, and thus successively 

heavier animals may have more disparate soft tissue structure and foot posture 

adaptations to cope with increased load (Hutchinson, et al., 2011). This has implications 

for the inherent predictability of this study’s methods for very large extinct animals, such 

as sauropod dinosaurs, especially where foot posture is loosely inferred and little 

information about soft tissue structure is available. Follow-up studies on semi-digitigrade 
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foot postures and how they support loads differently to other foot postures, as well as 

similar studies to this, using additional heavy and semi-digitigrade animals, would 

increase understanding of this variation of foot form and function. Contrary to the semi-

digitigrade animals in this study, the giraffe, an unguligrade animal, was the largest other 

tetrapod (<1500kg vs. 3000+kg in larger individuals of the semi-unguligrade taxa), and 

deviated little from trendlines. 

The strength of the correlation between skin and skeletal foot surface area, despite 

variations seen in Figure 2.2, implied sufficient reliability to predict one from the other 

(Figure 3). Despite this, birds only appeared above the trendline (Figure 3). Perhaps a 

more accurate correlation could be achieved for birds alone with a larger avian dataset 

(with a wider range of foot sizes), which would allow more accurate predictions of bird foot 

surface area, and of foot surface area for animals with similar pedal anatomy to birds 

(such as non-avian theropod dinosaurs). Although this study’s main results could be 

refined with a much larger tetrapod data set, it appears that foot surface area can be 

predicted from foot skeletal surface area, with soft tissue generally predictable as 

approximately 1.67 times skeletal foot surface area, as demonstrated in Poses 1 and 2b. 

However, when analyzed separately, manus and pes presented differing ratios, with soft 

tissue surface area of the former being predicted as ~2 times skeletal area, but just ~1.56 

times for the pes. This correlation could potentially be used to estimate skeletal foot 

surface area of animals from their footprints, and its inverse used to predict skin-on-foot 

surface area of extinct animals from their skeletons, and even of cadavers from skeletons, 

with potential forensic applications.  

For Pose 2, Elephas, Ceratotherium, and Hippopotamus were tested in three different 

poses. Their foot anatomy is unusual in that they have a foot posture with most foot 

elements far off the ground, but also have fatty pads which give them a large foot surface 

area. With this in mind, all foot elements being in line with the horizontal plane, as in Pose 

2c, is highly unrealistic. Pose 2a is perhaps more realistic than 2c, but assumes fewer foot 

elements are supportive during stance than is accurate in vivo. The most representative 



59 
 

position for semi-digitigrade would arguably be Pose 1, as this did not force these animals 

into an unrealistic foot posture. However, both Pose 1, and Pose 2b both result in the 

same 1.67 times skeletal surface area value, and Pose 2b’s intermediate nature tests a 

pose in between digitigrade and plantigrade. Pose 2b then, is perhaps the best repeatable 

method. If, despite this, this chapter’s other methods were chosen to predict foot surface 

area, skin surface area would be equal to 1.05 times skeletal surface area for Pose 2a, 

and 2.04 times skeletal surface area for Pose 2c. The variability in these analyses does 

reveal that altering the results of the largest animals in the study alters the equation used. 

Larger animals have have unique selective pressures on foot structure and locomotion, 

specializing more for bearing large loads, and less for speed and maneuverability, 

resulting in reduced locomotor performance and therefore smaller percentages of their 

body weight being borne on a single foot at any one time (Iriarte-Diaz, 2002). Therefore, 

perhaps this method would be best applied to smaller and non-semi-digitigrade animals. 

However, variation in area results is to be expected when fundamentally changing the 

number of skeletal elements in an analysis. 

Where data were divided into smaller groups for analysis, strong correlations were found 

in results for plantigrade animals, semi-aquatic animals, sprawling posture, and birds 

(Table 2.2). Selective pressures potentially could drive a need for similar foot anatomy 

across these groups, and therefore predictable foot structures, such as adaptations for 

perching, swimming, and supporting body weight when feet are not directly under the 

body. Yet considering that these groups were also the groups with the fewest data points, 

definitive conclusions cannot be drawn from these results.  

In terms of methods used, it was found that convex hulls are highly sensitive to foot pose, 

such as the size of inter-digital angles (Supplementary material 1), a result consistent with 

previous findings (Cholewo and Love, 1999). This could be the cause of wide error 

margins if these hulls were used for predictive purposes. This is especially relevant in re-

posed foot models, where inter-digital angles are manipulated to resemble in vivo 

arrangements, and in animals that have long, thin digits, such as crocodilians. Alpha 
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shapes produced more consistent, ‘tight-fitting’ outlines for area calculation, a much more 

accurate measure of the real scope of foot surface area for these models.  

Inevitably, models derived from CT scans, such as those used in this study, ignore certain 

in vivo factors such as foot deformation during contact with the ground. While in this study 

an attempt was made to stick closely to the in situ positions of feet (Pose 1), and aimed 

for a more objective iteration of this study’s analysis by laying bones flat to remove 

subjectivity (Pose 2), deformation is a very difficult issue to control for. Collection of the 

data needed to account for this would require advanced in vivo imaging techniques such 

as biplanar fluoroscopy (i.e. “XROMM”; Brainerd et al., 2010; Gatesy et al., 2010); 

however, such techniques remain limited in the size of potential subjects (e.g. 

Panagiotopoulou et al., 2016) and can be expensive and time-consuming to conduct. 

Despite this issue, deformation of the foot should generally not be significant enough that 

it should diminish the usefulness of this study or the predictability of the methods 

employed here, as even in soft footpads, foot contact area does not maintain constant 

stress with body mass, and larger body mass can lead to increased foot stiffness (Chi and 

Roth, 2010). Combining this methodology with XROMM data for elephants and other 

animals with large, fatty foot pads, however, would be advantageous in determining the 

overall effect of deformation on the predictability of these methods and on foot surface 

area in general, as this particular aspect of foot anatomy is the most prone to deformation 

with body weight, due to its high compliance (Hutchinson, et al., 2011). Overall, CT scans 

are a reliable resource for studies like these, and their utility in determining foot surface 

area could potentially contribute to future studies on animal locomotion and posture if 

used in conjunction with in vivo loading, centre of mass and pressure data. However, as in 

this study, where quality of the models varied, results could potentially be limited by the 

fidelity of the scans available, and therefore, more scans available for each animal to have 

the option to pick and choose the most complete and highest quality, as well as more 

computing power and high-end software, would be a boon to future studies. 
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Most studies concerning underfoot areas and pressures have focused on humans and 

other primates. Adaptations for arboreal locomotion have resulted in large functional 

differences between the forelimb and hindlimb in primates (Schmitt and Hanna, 2004). 

Such differences would make them an interesting subject for a follow-up study. 

Assigning specific trackmakers to fossilised trackways is a difficult task (Falkingham and 

Gatesy, 2014). It is intended that these results could be used to constrain potential 

trackmaker identity. However, as an extrapolation from a bivariate plot, with a number of 

variables unaccounted for such as soft tissue and substrate compliance, the applications 

of figure 3 and its predictions are currently limited, and such identifications of trackmakers 

must be undertaken cautiously.  

When predicting the skeletal surface area of the feet of extinct animals, and identifying 

trackmakers, the many complexities of footprint formation must be taken into account. The 

shape of footprints is determined not only by foot anatomy, but also dynamics of the limbs, 

and substrate consistency (Falkingham, 2014; Minter et al., 2007; Padian and Olsen, 

1984a). Underfoot pressures (Hatala et al., 2013), centre of mass position (Castanera et 

al., 2013), and style of locomotion (Hatala et al., 2016) all contribute to variations in limb 

dynamics, and consequently the morphology of a track. Given that foot size and shape is 

the focus of this study, the findings herein concern matters of critical importance to 

footprint formation and trackmaker identification, relating as they do to both anatomy and 

dynamics. 

When trying to model footprint formation and dynamics of extinct animals, centre of mass 

and underfoot pressures of the animals in question are determining factors. When 

considering these factors, the difference between manus and pes size and pressure is of 

great importance. Disparity between the cranial and caudal parts of the body is especially 

notable as previous biomechanical models have often underestimated mass in the cranial 

half of the body (See discussion in Allen et al., 2009). Simply put, taking into account the 

differences between soft tissue area in manus and pes could make a notable difference in 

estimations of underfoot pressures and simulations of footprint formation. As an example, 
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when the skeletal remains of Plateosaurus engelhardti feet were laid flat, and their skin 

areas predicted from alpha hulls, estimated manus skin area was 32% of pes area when 

using the 1.67 multiplier from combined analyses, and 40% of pes area using the 

separate multipliers (2 for manus, 1.6 for pes). Using body mass and centre of mass 

calculations from Allen et al. (2013), these results predicted manus underfoot pressure of 

80% pes pressure when combined, and 64% when separate (Supplementary Material 1). 

This effect should also be considered in the inverse when considering trackmaker 

anatomy from fossil footprints. In this way, this method is a useful tool to consider in digital 

reconstruction and trackmaker identification.  

2.6 Conclusions 

The surface areas of the skin of the foot in situ and of the foot’s skeletal components are 

strongly correlated and thus should be predictable in terrestrial tetrapods. Skin surface 

area was approximately 1.67 times that of skeletal surface area (~2 times for manus, ~1.6 

times for pes, if analysed separately). This trend was not affected by body mass and 

showed little evidence of being strongly affected by phylogeny. This predictability has 

potential in aiding with estimating the size and possible species of trackmakers in the 

fossil record, both by estimating the size of skeletal feet using footprints, and by 

estimating foot size, and therefore potential footprint size, from fossil feet.  
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Chapter 3 

Foot Shape Tests 

 

3.1 Purpose 

When analysing fossil footprints, most publications approximate area and area differences 

between manus and pes using ‘heteropody index’ (HI) (HI=[(manus length x manus 

width)/(pes length x pes width)]*100) (Equation 1), a simple length x width proxy (Riga and 

Calvo, 2009). This is useful as a quick and easy method of generating area estimates, but 

in reality, footprints rarely resemble regular polygons, and on occasion the differences in 

shape of the manus and pes are so stark that approximating them as both the same 

shape could potentially be more misleading than helpful (Falkingham, 2010). This chapter 

set out to investigate how foot shape and size affects calculations of area and heteropody 

based on simple area proxies, to determine how much, error can be expected when this 

technique is employed. From this data, it should be more apparent whether this is a useful 

measure to employ in the next few chapters, and how well its use in future chapters will 

approximate area of animal feet to determine whether there is a functional link between 

heteropody and centre of mass for the purpose of pressure equalisation.  

 

3.2 Methods 

This series of tests pitted the area estimates of length x width (area of a square and other 

regular quadrilaterals), and pi x radius squared (area of a circle), against the true area for 

three basic shapes, and how using these area proxies would affect calculations of 

heteropody index for combinations of these shapes (i.e. square ‘manus’ as a % of circle 

‘pes) compared to heteropody index calculated using their true areas. The shapes tested 

were: equilateral triangle, square, and circle (height 10mm, width 10mm).  
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The difference between the true area and the proxy area was recorded in the form of raw 

numbers and percentage difference. Then, to test how different shaped feet affect 

heteropody in animals, two shapes at a time were compared using the formula for 

heteropody index (Equation 1), to simulate how heteropody index changes when an 

animal has a manus and pes of different sizes and shape. Heteropody index was 

calculated using area values for true area, and area proxies, to see how accurate proxies 

were at estimating area difference between manus and pes, versus true difference in 

area, again using raw difference and percentage difference. All shapes were combined in 

all possible combinations, and for all combinations of shapes, size was tested for where 

one shape – the ‘manus’ is 25%, 50%, 75% and 100% size, to test whether size of these 

shapes, as well as the different shapes themselves, affected HI predictions for different 

methods.  

Following this, the same protocol was used to test area proxy accuracy and accuracy of 

proxies for calculating heteropody, using animal foot outlines. The animal foot outlines in 

question were derived from CT scans, using the same custom Matlab script described in 

Chapter 2, where true area is known and calculated using alpha hulls. For all of these 

except the cow, horse, and elephant, a new metric (besides length x width, pi x radius 

squared, and true area), length x ‘carpal width’ was calculated, replacing overall width with 

the width of the foot at the most proximal point where the toes touch the ground, aiming 

representing an estimation of the minimum width of the foot, not reliant on how toes are 

splayed to determine width. Since for ungulates and elephants, only the tip of the foot 

bones touch the ground, an estimate for this would be tricky with foot outlines, and so they 

were not calculated for these animals. Following this, combinations of animal feet (one 

manus, one pes, as before) were carried out using the same methods employed for basic 

shapes above, comparing all methods to true area, with manus as four different sizes 

compared to pes. Animal feet included Dromaius, Brachycephalus, Osteolaemus, 

Sphenodon, Bos, Equus, Elephas, and Panthera, as described in Chapter 2. A two-way 

ANOVA was then performed to test if there was a significant difference in HI estimates 

using the 3 methods, for all animals where all 3 methods could be applied.  
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 The manus and pes outlines for Plateosaurus used in Chapter 2 where then repurposed 

to calculate how their area estimates would compare, comparing the methods tested in 

this chapter to area estimates from skeleton models, and with the skin area estimates 

established in Chapter 2 to demonstrate the most accurate method for determining foot 

area and heteropody in a dinosaur.  

 

3.3 Test Outcomes 

3.3.1 Basic Shapes 

Area calculations revealed LxW to be a better estimate for shapes in general than PiR2 

overall, with the latter being a better estimate for the circle (as it give the true area of a 

circle) (Table 3.1). When shapes were combined the same pattern was not found, with 

LxW HI estimates resulting in an average 7.81% difference from true area across all 

combinations, with PiR2 resulting in 2.89% difference (Table 3.2). However, this will 

change based on which basic shapes are tested and is not necessarily a general rule. 

Table 3.1 Area proxies compared to true area for basic shapes (mm2) 

 MEASUREMENTS OF AREA IN SHAPES (mm2) AREA PROXIES VERSUS TRUE AREA  

 AREA PROXIES   RAW ERROR (mm2) % DIFFERENCE 

Shapes Length*Width Pi*Radius Squared True Area LxW PiR2 LxW PiR2 

Eq Triangle 86.60 104.59 43.30 43.30 61.29 100.00 141.55 

Square 100.00 157.08 100.00 0.00 57.08 0.00 57.08 

Circle 100.00 78.54 78.54 21.46 0.00 27.32 0.00 

    Average % Difference 42.44 66.21 
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Table 3.2 Combinations for basic shapes to test estimates for area differences 

between manus and pes (HI = manus as % of pes) 

BASIC SHAPES  Heteropody Index (HI) with Manus (M) as % of Pes 

Difference from True Area Area Proxy HI M=25% HI M=50% HI M=75% HI M=100% Overall 

Raw Error LxW -3.12 -6.25 -9.37 -12.50 -7.81 

Raw Error PiR2 -1.16 -2.31 -3.47 -4.62 -2.89 

Raw Error LxCW         #DIV/0! 

% Difference LxW 8.51 8.51 8.51 8.51 8.51 

% Difference PiR2 13.61 13.61 13.61 13.61 13.61 

% Difference LxCW         #DIV/0! 
 

3.3.2 Animal Foot Outlines 

In terms of raw area calculations for individual animal feet, LxW was much more accurate 

as an area proxy compared to PiR2, except for in ungulates, where the more rounded 

shape of the keratinous hoof appeared to prove well-suited to estimating foot area based 

on circle area. Where LxCW was used as an area proxy, it proved much more accurate 

than either LxW or PiR2, at -6.55% difference compared to 71.44% and 123.39% 

respectively. It should be noted that for ungulates, both LxCW and PiR2 area estimates 

were more accurate than for other animals, which only reached similar levels of accuracy 

with LxCW methods (Table 3.3). With ungulates removed from the data, efficacy of LxW 

as an estimate decreased. 

When employing these proxies in combinations of feet - testing how this affects 

heteropody calculations (including at 4 different sizes), a similar result was found, with 

LxCW combinations averaging 3.72% difference from true area estimates, compared to 

LxW at 5.56% and PiR2 at 34.32% (Figure 3.1, Table 3.4). It appears then, that the 

lessons learned from area estimation accuracy can be carried through to manus and pes 

ratios, such as heteropody index. 

Despite this, ANOVA tests for percentage difference for all animals for which LxCW was 

available as a measure, resulted in a significant difference only between LxCW-based 

estimates and PiR2-based estimates (Table 3.5). 
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Table 3.3 Area proxies compared to true area for animal foot outlines (mm2) 

ANIMAL FOOT RAW MEASUREMENTS (mm2)  ERROR TRUE VS PROXY (mm2) % DIFFERENCE TRUE VS PROXY 

Taxon/Autopodium LxW PiR2 LxCW True Foot Area LxW PiR2 LxCW LxW PiR2 LxCW 

Dromaius Pes 18700.00 22698.01 8500.00 8524.23 10175.77 14173.77 -24.23 119.37 166.28 -0.28 
Brachycephalus 
Manus 2.96 5.60 1.47 1.65 1.31 3.95 -0.18 79.46 239.03 -11.08 
Brachycephalus 
Pes 5.88 12.57 3.40 3.39 2.49 9.18 0.01 73.45 270.68 0.29 
Osteolaemus 
Manus 3520.00 5026.55 1600.00 1733.12 1786.88 3293.43 -133.12 103.10 190.03 -7.68 

Osteolaemus Pes 4753.00 7389.81 2910.00 3678.33 1074.67 3711.48 -768.33 29.22 100.90 -20.89 

Sphenodon Manus 1816.41 1842.69 522.16 962.97 853.44 879.73 -440.81 88.63 91.36 -45.78 

Sphenodon Pes 2250.00 2827.43 1020.00 960.43 1289.57 1867.00 59.57 134.27 194.39 6.20 

Salamandra Manus 145.00 122.72 82.50 88.94 56.06 33.78 -6.44 63.04 37.99 -7.24 

Salamandra Pes 258.75 336.54 129.38 124.89 133.86 211.65 4.49 107.18 169.47 3.59 

Bos Manus 17589.00 16060.61 0.00 15663.52 1925.48 397.09   12.29 2.54 0.00 

Bos Pes 15180.00 14957.12 0.00 12729.92 2450.08 2227.20   19.25 17.50 0.00 

Equus Manus 19250.00 18626.50 0.00 16103.96 3146.04 2522.54   19.54 15.66 0.00 

Equus Pes 19712.00 18626.50 0.00 14886.19 4825.81 3740.31   32.42 25.13 0.00 

Elephas Manus 150000.00 125663.71 0.00 115297.70 34702.30 10366.01   30.10 8.99 0.00 

Elephas Pes 144892.19 191083.89 0.00 106205.00 38687.19 84878.89   36.43 79.92 0.00 

Panthera Manus 13750.00 12271.85 9625.00 9849.39 3900.61 2422.46 -224.39 39.60 24.60 -2.28 

Panthera Pes 9605.00 10028.75 8701.00 7690.17 1914.83 2338.58 1010.83 24.90 30.41 13.14 

 

Table 3.4 Combination comparisons for all animal print outlines to test estimates for 

area differences between manus and pes (HI = manus as % of pes) for varying foot sizes. 

ALL FOOT OUTLINES HI M=25% HI M=50% HI M-75% HI M=100% Overall 
Raw Error LxW -6155.08 -12310.15 -18465.23 -24620.30 -15387.69 
Raw Error PiR2 -14626.77 -29253.53 -43880.21 -58507.06 -36566.89 
Raw Error LxCW 420.85 841.69 1262.54 1683.38 1052.11 
% Difference LxW 5.56 5.56 5.56 5.56 5.56 
% Difference PiR2 19.62 19.62 78.44 19.62 34.32 
% Difference LxCW 3.72 3.72 3.72 3.72 3.72 
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Figure 3.1 Box and whisker plot to show % error in estimating accurate heteropody 

values from animal foot area, for all animals and all sizes, for all area proxies, compared 

to true area. 

 

Table 3.5 ANOVA results for animal foot outlines where all measurements were 

available for comparison 

ANOVA: LxW Vs 
Degrees of 
Freedom 

Sum of 
Squares 

Mean of 
Squares F Value P Value  

PiR2 1 4907 4907 5.43 0.05 
LxCW 1 3 3 0 0.96 
PiR2:LxCW 1 2154 2154 2.38 0.17 

 

3.3.3 Dinosauria Predictions 

Applying the techniques used above and the lessons learned therein to extinct animals, 

where Plateosaurus was tested, estimates for skin area from Chapter 2 were very close to 

those predicted by LxCW area proxies, particularly for the pes, and closer when using 

separate forelimb and hindlimb predictions as outlined in Chapter 2. LxCW predictions 

lead to less close results, with PiR2 the furthest from Chapter 2 estimates (Table 3.6). If 

possible, this method of foot area estimation appears likely to be more accurate than 
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simply calculating length x width, for animals in general, where the proximal extent of the 

foot touching the ground is able to be estimated accurately. Based on this, calculations of 

area estimates and heteropody index for several dinosaurs based on measurements from 

the literature is given in Table 3.7. 

Table 3.6 Area proxies compared to estimated true area in Plateosaurus based on 

skeletal remains and estimates of underfoot skin surface area as predicted in Chapter 2. 

ANIMAL FOOT RAW MEASUREMENTS   RAW ERROR TRUE VS PROXY % DIFFERENCE TRUE VS PROXY 

Taxon/Autopodium LxW PiR2 LxCW True Foot Area LxW PiR2 LxCW LxW PiR2 LxCW 

Plateosaurus Manus 0.05 0.05 0.03 0.02 0.03 0.03 0.01 150.62 173.67 67.53 

Plateosaurus Pes 0.11 0.18 0.10 0.06 0.05 0.12 0.04 82.48 199.10 58.68 
Plateosaurus Manus Skin 
Estimate with Limbs Together 0.05 0.05 0.03 0.03 0.02 0.02 0.00 50.07 63.88 0.31 
Plateosaurus Pes Skin 
Estimate with Limbs Together 0.11 0.18 0.10 0.10 0.01 0.08 -0.01 9.27 79.10 -4.98 
Plateosaurus Manus Skin 
Estimate with Limbs Separate 0.05 0.05 0.03 0.04 0.01 0.01 -0.01 25.31 36.84 -16.24 
Plateosaurus PesSkin 
Estimate with Limbs Separate 0.11 0.18 0.10 0.10 0.01 0.08 0.00 14.05 86.94 -0.83 

 

Table 3.7 Area estimations based on LxCW for dinosaur measurements from the 

literature (mm2) and their predicted manus and pes ratios (HI)  

Taxon Source Digit L*CW Manus Digit L*CW Pes Heteropody Index 

Plateosaurus The Complete Dinosaur 24800 14300 173.4266 

Apatosaurus The Complete Dinosaur 134400 373333.33 36 

Plateosaurus The Dinosauria 24201.39 68750 35.20202 

Riojasaurus The Dinosauria 5866.667 36100 16.25115 

Yunnanosaurus The Dinosauria 7744.444 8243.8017 93.94263 

Anchisaurus The Dinosauria 1787.5 23100 7.738095 

Shunosaurus The Dinosauria 97500 48442.907 201.2679 

Lufengosaurus Young 1941a and b  26624 103360 25.75851 

Camarasaurus Schopp, 2015 58500 62900 93.00477 
 

3.4 Conclusions 

The findings of these tests suggest that where possible, the width of the most proximal 

part of the foot touching the ground should be used in place of general width for area 

estimations where possible. It also established that in general LxW is a better proxy for 

area in most animals than PiR2, except in animals with close to circular foot shape, as is 

the case in some ungulates. However, for those animals where LxW is a better estimate 
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than PiR2, LxCW is more accurate. These trends work for both estimating area of a foot, 

and for estimating heteropody index – a manus to pes area ratio. In addition, by 

combining the findings of these tests with those of Chapter 2, foot area estimations for 

dinosaurs can be estimated to a more accurate degree using LxCW, to find an area close 

to estimates for soft tissue area. Where possible in future works, this method should be 

employed to find accurate underfoot areas and heteropody. 
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Chapter 4 

Are Heteropody and Centre of Mass Position Linked in Skeletons 

of Extant Tetrapods? 

 

4.1 Summary of Chapter 

To investigate a possible correlation of different sized manus and pes (heteropody) with 

centre of mass, 57 extant, quadrupedal, digitised animal skeletons (representing 

mammals, crocodiles, and lepidosaurs) were compiled. The digital skeletons consisted of 

freely available laser scans, CT scans, and specimens from the Liverpool World Museum 

digitised using photogrammetry.  Several foot measurements were recorded from these 

animals and used to calculate heteropody. Convex hulls of the skeletons were then used 

to calculate centre of mass positions for each. The data were used to attempt to answer 

the question of whether centre of mass position was correlated with heteropody in extant 

animals. Most animals clustered around a centre of mass of ~50-70% gleno-acetabular 

distance in front of the hip, and a heteropody index of ~60-140% (manus is 0.6 to 1.4 

times pes size).The lizards studied had CoM of less than 25% gleno-acetabular distance 

in front of the hip. The majority of semi-aquatic species exhibited extreme heteropody. 

Semi-aquatic animals (excluding lizards) were the only sub-group to show a strong 

correlation, with higher heteropody ratios associated with a more anterior centre of mass. 

This indicates that differential foot size and centre of mass may be linked in certain groups 

but not as a general rule across Tetrapoda. 
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4.2 Introduction 

Heteropody, as defined by Lockley, et al (1994a), refers to the ratio of manus to pes area 

(specifically foot contact area). It is commonly used in reference to footprints, particularly 

fossil trackways of large dinosaurs such as sauropods, for whom this ratio is often more 

exaggerated compared to other, especially extant, animals. As well as ‘extreme 

heteropody’, sauropod dinosaurs have been associated with large numbers of ‘manus-

only’ and ‘manus-dominated’ sauropod trackways, a possible explanation for which 

involves the forelimbs, carrying a disproportionate amount of the animal’s body weight on 

a smaller area, sinking deeper into compliant substrate than the hindlimbs, potentially 

implying large differences in underfoot pressure as well as area (Lee and Lee, 2006).  

Sauropods, and some ornithischian dinosaurs, are also notable for having evolved from a 

bipedal ancestor into quadrupeds. Since no extant vertebrates share this evolutionary 

history, palaeobiologists can only test how their unique ancestry impacted their forelimb 

and hindlimb pressures through simulations, extrapolation of known anatomy, and 

biomechanical principles. This has become less of an obstruction to science in recent 

years, as computational methods are becoming increasingly sophisticated, and through 

this, reconstructions of  the musculoskeletal systems for sauropods (Sellers et al., 2013), 

and other dinosaurs (Hutchinson and Gatesy, 2000; Carrano and Hutchinson, 2002; 

Hutchinson and Gatesy, 2006; Sellers et al., 2009; Maidment and Barrett, 2011), have 

been made and their capabilities inferred. 

In simplified terms, a quadrupedal animal’s relationship to its centre of mass can be 

explained with the trunk as a beam, and the limbs as its supports (Alexander, 1985), as 

demonstrated in Figure 1.7. In erect animals, limbs are held under the trunk rather than to 

the side - directly under the beam, and therefore directly supporting the animal. Weight is 

distributed to each of the beam’s supports, relative to centre of mass location (Halliday et 

al., 2013; Blob, 2000). In theory, a central load would be distributed equally between the 

limbs, and a load closer to the forelimbs or hindlimbs will result in more load bearing on 

the side in question. If the area at the base of these supports (i.e. foot surface area, for 
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example, of forefeet compared to hindfeet) were increased on the load bearing side, the 

result would be equal stress on each support, despite unequal loads (Henderson, 2006). 

In this way, by having larger hindfeet for example, where centre of mass is closer to the 

tail, extreme heteropody, as exhibited in some sauropod dinosaurs, could potentially result 

in equalisation of underfoot pressures, and could stabilise an otherwise front heavy, or 

back heavy, animal (Falkingham, 2012; Falkingham et al., 2010). Inversely, reduced 

heteropody would imply less extreme centre of mass positions, as demands to 

compensate for limb loads on one side of the body decrease, allowing for more uniform 

underfoot areas for equal pressure under both manus and pes. 

4.2.1 Mechanical Roles of the Forelimb and Hindlimb 

Going beyond the beam and supports model, forelimbs and hindlimbs have important 

roles in locomotion, with hindlimbs providing the majority of the propulsive power of the 

animal, and forelimbs the braking (Demes et al., 1994). These roles appear to be linked to 

CoM position, relative to limb contact points with the ground/substrate (Granatosky et al., 

2018). In addition, the beam and supports model can only explain so much, and 

quadrupedal animals have bodies that are complicated, perform a variety of functions, and 

can be adapted for multiple behaviours and traits that add confounding factors that can 

not be accounted for by the model as it is. As a result, it is important to consider the 

positions of the CoM, manus, and pes, as a dynamic system, and recognise the limitations 

of the insights that can be gained from static, simplified models.  

The degree to which an animal is upright, or ‘crouched’, (for example, the columnar limbs 

of an elephant versus those of a mouse), could also affect the distribution of its mass. In 

these cases, gleno-acetabular distance would, on the occasion the limbs are not held 

directly under the hip and shoulder joints, not equal manus-pes distance. In this instance 

the metaphor of simple columns supporting a beam would lose a little of its explanatory 

power. Perhaps crouched animals, then, do not equalise stress in the same way as their 

upright counterparts.  
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Heteropody could also be influenced by ecological niche and locomotory mode. Fossorial 

animals require muscular forelimbs for efficient digging (Lehmann, 1963), and in extreme 

cases lose their hindlimbs completely (Sakata and Hikida, 2003). Arboreal animals often 

require manual adaptations for grasping (Cartmill, 1974). Semi-aquatic animals may use 

large pedes for more efficient swimming (Grasse, 1951; Hershkovitz, 1971), although 

such animals often also make use of enlarged musculature and increased propulsion from 

their tails, as seen in beavers (De Muizon and McDonald, 1995; Reynolds, 1993) and 

crocodilians (Gatesy, 1990; Willey et al., 2004). Digitigrady in animals, as well as 

plantigrady, unguligrady, and intermediate foot postures, may also play a role in 

determining heteropody, although it does not necessarily follow that having a certain foot 

posture is a precursor to heteropody or otherwise. 

CoM position changes during locomotion (Biewener, 2006), but when an animal is 

standing still its CoM should be relatively stable in comparison (preventing tipping and 

falling) (Ting et al., 1994), and therefore easier to estimate, at least in extinct species 

where in vivo movement cannot be tracked (Eames et al., 1999; Henderson, 1999). The 

CoM should, in the case of the beam and supports model mentioned above, lie along the 

beam somewhere between the two supports, namely the glenoid (shoulder joint) and 

acetabulum (hip joint) in quadrupeds, preventing tipping and allowing the animal to stay 

stable while still (Henderson, 2006). In crouched and sprawling animals, the position of 

the manus and pes may extend beyond the glenoid or acetabulum, granting additional 

manoeuvrability, but increasing the intensity of muscle and bone stress on the limbs 

(Biewener, 1983a; Schmitt, 1994).  

If, as theorised above, uneven loads in the body are offset by differences in the surface 

area of the manus and pes affected (i.e. a front-heavy animal benefits from having 

relatively large manus in comparison to its pedes), CoM position would be expected to 

correlate with heteropody, and animals with extreme heteropody would be expected to 

also demonstrate unusually offset CoM positions. 
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4.3 Materials & Methods 

4.3.1 3D Models and Hulls 

A database of 57 digitised animal skeletons was gathered using photogrammetry 

performed on the zoology collections at the Liverpool World Museum, previously 

published data (Sellers et al., 2012), and from CT scans from Crocbase (Hutchinson, 

2016). These skeletons were manipulated so that their necks and tails were straight and 

aligned with the X axis, and that their limbs were straight and parallel to the Z axis, in line 

with the standard ‘neutral posture’ of previous studies (Allen et al., 2009; Bates et al., 

2016, 2015) (example in Figure 4.1). Reposing the skeletons in this way ensured that the 

pose of the skeleton would not be responsible for variation in results, for example, 

curvature of the trunk and tail, or upright posture of the neck.  
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Figure 4.1 Example of convex hulls beside the Bos taurus skeleton they are derived 

from, at multiple angles, with legs, neck, and spine in neutral pose.  

Horns, tusks, and antlers -where present- were deleted from the digitised skeletons, 

leaving only the main body of the animal to be used in calculations, following the protocol 

of Sellers et al. (2012). Keratin sheaths, i.e. on claws and hooves, were not present in 

most taxa. In the reindeer, Rangifer, however, the keratin of the hoof was obviously 

present, and its point cloud could not be removed without removing the entire foot. Even 

in this instance, however, assuming keratin on the manus and pes decayed at the same 

rate, the ratio of manus to pes size should still be reflective of the same ratio in the 

skeleton, especially as skin and skeletal surface area appear to be correlated (previous 
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chapter). Foot length, for the purposes of this study includes claw length, since claws 

serve a functional use in the locomotion of some taxa, for example, the giant anteater, 

Myrmecophaga (de Faria et al., 2015). 

Each digitised skeleton was divided into its functional components (usually consisting of 

head, neck, trunk, tail, fore and hind feet, and upper and lower limb) (Sellers et al., 2012), 

for each of which a 3D minimum convex hull was calculated in Meshlab (Cignoni et al., 

2008). These individual hulls were merged into a single mesh and, again in Meshlab, its 

CoM co-ordinates calculated, along with its mass (mesh volume*893.36, the total bulk 

density of horses in kg/m3 (Buchner et al., 1997)). In previous studies, lung volume was 

also calculated to account for its density difference compared to the rest of the body. 

Assuming isometric scaling of lung density (at % volume per unit volume of animal), the 

lack of modelled lungs should not affect the spread of data, if isometric scaling is an 

invalid model, this could potentially be a source of error. It should still be noted, due to 

this, that the CoMs and masses calculated herein are estimates, and true CoM positions 

for this chapter’s taxa would perhaps be positioned more anteriorly. In the same vein, if 

tail hulls were to underestimate tail size and mass, true CoM positions would be more 

posterior. Other animals would vary throughout their life cycle, i.e. seasonal growth and 

loss of antlers in deer. It should be noted here that while this is unlikely to affect lung 

volume, gut volume can vary significantly in mammals depending on diet (Clauss, et al., 

2016).  

CoM, in terms of % length from the acetabulum to the glenoid (gleno-acetabular distance) 

of each animal, was calculated by importing the CoM co-ordinates for each model (see 

above) into Autodesk Maya, and determining the relative co-ordinates of the centre of the 

glenoid and acetabulum. With these co-ordinates, the distance on the x-axis between the 

acetabulum and the glenoid, and the acetabulum and the CoM were used to calculate 

percentage gleno-acetabular distance. 
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4.3.2 Anatomical Measurements 

In order to compare foot size between taxa, several anatomical measurements of the 

manus and pes were taken for each, using CloudCompare for point clouds (Girardeau-

Montaut, 2015) or Maya for meshes constructed from CT data. Measurements recorded 

were: ungual length, digit length, whole foot length, posed width (width of the extent of the 

foot in pose), and carpal width, representing the maximal length of each facet (see Figure 

4.2). Whole foot length included all bones up to and including the most proximal 

wristbones (manus) or calcaneum (pes), i.e. every bone more distal than the radius and 

ulna, or tibia and fibula (Figure 4.2C).  

To calculate ‘functional foot lengths’ (where ‘functional foot’ is the extent of the foot that 

interacts with the ground during walking), it was necessary to outline the foot posture of 

each taxa. Foot posture in tetrapods is generally split into three groups: plantigrade, 

digitigrade, and unguligrade, based on which parts of the foot are in contact with the 

ground during standing and locomotion (Carrano, 1997). Intermediate stages exist, such 

as semi-digitigrade, however, in this study the definition outlined in Kubo, et al. (2019) was 

used, separating the animals in this analysis into these three functional groups based on 

whether their tarso-metatarsal joints, and metatarso-phalangeal joints, are clearly off the 

ground. This determines how semi-digitigrade ‘functional foot length’ was measured, while 

semi-digitigrade animals themselves were still considered a separate subset of data. 

Each animal’s ‘Functional foot length’ was determined based on its foot posture: ungual 

length for unguligrade animals, digit length for digitigrade animals, and whole foot length 

for plantigrade animals. For semi-digitigrade animals, digit length was used rather than an 

intermediate measurement for the purposes of this study, as their tarso-metatarsal joints 

are clearly off the ground (Kubo et al., 2019).  
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Figure 4.2 Foot measurements used for analysis and demonstration of Heteropody 

Index methods displayed on a skeletal Hippopotamus foot.  
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For animals with one set of plantigrade feet and one set of digitigrade feet, their functional 

foot lengths were derived from different measurements for manus and pes. For the 

purposes of this study, carpal width and posed width were multiplied by ‘functional foot 

length’ to generate proxies for foot area. Carpal length was assumed to be more reliable, 

as foot pose in mounted skeletons is arbitrary, while carpal width was approximately equal 

to the width of the foot with all toes adducted (Figure 4.2).  

Heteropody measures were calculated for all foot measurements by comparing them 

between manus and pes for each specimen, along with functional foot length multiplied by 

posed width, functional foot length multiplied by carpal width, and heteropody index for 

functional foot with posed width, and with carpal width. Heteropody Index is a ratio of 

manus to pes area (Equation 1) used to represent and compare heteropody in fossil 

footprints (Riga and Calvo, 2009).  

 

HI=[(manus length x manus width)/(pes length x pes width)]*100  [Equation 1] 

 

A Heteropody Index of 100 represents an equal sized manus and pes, HI = 50 represents 

a manus half the size of the pes, and HI = 150 represents a pes half the size of the manus 

(Figure 4.2). 

4.3.3 Analysis 

The different measurements of heteropody were then plotted against CoM position. All 

taxa were examined via linear regression, along with several subgroups: namely 

unguligrade, digitigrade, semi-digitigrade, plantigrade, erect posture, semi-aquatic, and 

terrestrial. For the purposes of this study, semi-aquatic animals are any animals that 

spend a significant part of their life in water. For the taxa included here, this consisted of 

crocodiles, tapirs, beavers, hippos, polar bears, capybaras, otters, and water monitors. 

The results of this analysis were then run through phylogenetic comparative methods 

(Cooper et al., 2016) phylogenetic generalised least squares (PGLS) tests, to statistically 
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analyse the effects of phylogeny (based on Brownian Motion, Ornstein-Uhlenbeck, and 

Pagel’s Lambda models, and dated using first appearance dates reported on Paleodb 

(Uhen, et al., 2013), and then analysed with body mass as a discrete predictor, using 

mass estimates from the literature (Supplementary material)), on the spread of data. 

4.4 Results 

Calculated CoMs were generally around 50-70% GA distance in front of the hip, with 

anteaters, beavers, the wolverine, Gulo, and the civet, Civettictis being slightly lower 

(Figure 4.3). Lowest of all were the lizards, at less than 25% distance, largely due to the 

length of their tails. Despite their outlying CoM result, they were within the range of 

heteropody values of the remaining taxa, which (using carpal width and functional foot 

length to derive a heteropody index) clustered around 60 -140% heteropody (manus is 0.6 

to 1.4 times pes size), although they fell into the lower range of the cluster at 63 and 76% 

heteropody for the green iguana, Iguana and Asian water monitor, Varanus respectively 

(Figure 4.4).  
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Figure 4.3 Range of centre of mass results for the taxa studied, arranged by 

phylogeny. Purple data points are mammals, blue are lepidosaurs, and green are 

crocodiles. 
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There were some examples of extreme heteropody in this chapter’s data set, primarily in 

the beavers and crocodiles. In fact, most semi-aquatic animals had a much larger pes 

than manus. Heteropody in favour of pes size was mainly an artefact of functional foot 

differences, where one foot is digitigrade, and one is plantigrade, as in the bearcat, 

Arctictis and the hyrax, Procavia. The African elephant, Loxodonta also displayed notable 

manus dominance, but only about 10% more than the main cluster of the data. In fact, all 

large semi-digitigrade animals were slightly manus dominant, making up a large part of 

the high end of the cluster (both elephants and rhinos, as well as Hippopotamus, with the 

pygmy hippo, Choeropsis the lowest, at 118% HI).  

 

Figure 4.4 Plot of heteropody vs, centre of mass (percentage GAD in front of hip) of 

linear regression models for all taxa using heteropody index (manus size as percentage of 

pes size), for functional foot length multipled by carpal width. Purple data points are 

mammals, blue are lepidosaurs, and green are crocodilians. 
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Table 4.1 Table showing linear model regression, correlation, confidence based on 

coefficients and standard error, and p value, for the different heteropody versus centre of 

mass position analyses plotted in Figures 4.4 and 4.5 

Analysis vs CoM Linear Regression Linear R² 95% CI P Value 

Functional Foot Length y=-0.01x+1.67 0.11 -12.88±39.29 0.74 

Ungual Length y=-0.00x+1.28 0.01 19.59±7.46 0.01 

Digit Length y=-0.00x+1.60 0.09 -29.25±11.89 0.02 

Whole Foot Length y=-0.00x+1.51 0 2.36±4.44 0.6 

Carpal Width y=-0.00x+1.32 0.01 2.088±38.12 0.96 

Heteropody Index (using FFL*CW) y=0.84x+50.19 0.07 0.01±0.17 0.97 

Heteropody Index (using FFL*PW) y=0.68x+56.27 0.04 -0.04±0.086 0.68 
 

Table 4.2 Table showing linear model regression, correlation, confidence based on 

coefficients and standard error, and p value, for the different data subgroups of the 

heteropody versus centre of mass position analyses (based on heteropody index for 

functional foot length multiplied by carpal width as a proxy for underfoot area) plotted in 

Figure 4.6 

Analysis (Heteropody Index (FFL*CW) vs CoM) Linear Regression Linear R² 95% CI P Value 

Terrestrial y=0.69x+62.53 0.02 0.03±0.03 0.42 

Semi-Aquatic y=6.46x-282.83 0.73 0.11±0.02 0 

Erect y=1.18x-0.99 0.09 0.05±0.03 0.14 

Unguligrade y=0.54x+67.38 0.01 0.02±0.05 0.72 

Digitigrade y=1.10x+35.26 0.06 0.06±0.06 0.37 

Semi-Digitigrade y=4.09x-131.8 0.31 0.08±0.04 0.1 

Plantigrade y=0.14x+67.15 0.01 0.04±0.14 0.79 
 

There was no clear universal correlation between CoM and heteropody for any of the foot 

measurement methods used (maximum R2 was 0.1, for functional foot length ratio), with 

the majority of the animals, particularly the mammals (in purple), clustering around a 

central point where CoM is around 60% and manus and pes size is roughly equal.  

This remained true no matter which anatomical measure is used, even while individual 

taxa results varied between methods (Figure 4.4). Similar results were achieved with 

smaller analyses: for erect animals, unguligrade, semi-digitigrade, digitigrade, and 
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plantigrade animals, semi-aquatic and terrestrial animals (Figure 4.5). Semi-digitigrade 

animals achieved an R2 of 0.3, which is only notable for being an order of magnitude 

higher than other functional subgroups of the data. The only analysis performed which 

showed positive correlation was for semi-aquatic animals, when Varanus, a clear outlier, 

was excluded (0.73 R2).  For that analysis, higher heteropody ratios (larger manus 

compared to pes size), were associated with a more anterior CoM.  

Despite this, the fact that cursorial mammals clustered around a similar CoM and relative 

homopody is arguably a positive result, with these animals having the lack of heteropody 

that would be expected for a relatively mid-trunk centre of mass position if heteropody and 

CoM were correlated. As such, while there is not enough data to say for certain that this is 

representative of a wider pattern, and indeed other animals do not seem to fit this trend, 

pressure equalisation could indeed be the reason for lack of heteropody in these animals.  
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Figure 4.5 Plots of heteropody vs, centre of mass (percentage GAD in front of hip) of 

linear regression models for all taxa using various foot measurements (Heteropody Index 

with posed width, Functional foot length, Ungual length, Digit length, Whole foot length, 

Carpal width). Purple data points are mammals, blue are lepidosaurs, and green are 

crocodilians. 
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Figure 4.6 Graphs showing centre of mass (percentage GAD in front of hip) and 

heteropody (manus size as percentage of pes size, for functional foot length multipled by 

carpal width), for all taxa for subgroups of taxa (B: Taxa with erect posture, C: Terrestrial 

taxa, D: Semi-aquatic taxa (excluding Varanus salvator), E: Unguligrade taxa, F: 

Digitigrade taxa, G: Semi-digitigrade taxa, H: Plantigrade taxa). Purple data points are 

mammals, blue are lepidosaurs, and green are crocodilians. 

 

In phylogenetic comparative tests (Supplementary Table 3.S1), it was made clear that 

phylogeny had no effect (PIC, Brownian model PGLS) to a negative effect (OU model 

PGLS). Body mass was also shown to have no effect.  In addition, T-tests demonstrated 
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no significant difference between left and right feet for this analysis (Supplementary Table 

4.S2). 

4.5 Discussion 

The focus of this study was the question of whether centre of mass and heteropody may 

be linked. While the results of this study might be surprising based on this premise, the 

clustering of CoM data within a narrow range is rather typical. CoM position for mammals 

is generally in the 50-70% range produced by this chapter’s analysis (Henderson, 2006; 

Lammers et al., 2006). For other animals with long fleshy tails the CoM will typically be 

affected. In fact, removing the tail from a crocodilian model may result in a ~40% anterior 

shift in CoM position, as demonstrated with Alligator mississipiensis (Willey et al., 2004). 

That this typical CoM position also clusters around equal manus and pes sizes implies 

that animals with roughly equal fore and hind feet have CoM positions in the expected 

range. However, animals with high or low heteropody did not necessarily have unusual 

CoM positions to match, with the exception of anteaters and beavers (Figure 4.4). This 

may suggest that pressure equalisation is a factor in the relatively equal manus and pes 

size of cursorial mammals, while not being a universal factor across tetrapod species. It 

should be noted here that cursorial mammals do not, for the most part, require any degree 

of heteropody for foraging or locomotion, compared to fossorial animals, or animals which 

swim primarily with their hind legs and tail, such as beavers.   

The correlation between semi-aquatic animal CoM and heteropody (excluding Varanus) is 

interesting, as these animals have a range of ~20-~140% heteropody index, ranging from 

the large-footed beavers, then the river otter, Lutra, Hydrochoerus, tapirs, the polar bear, 

Ursus maritimus, and hippos at the top. The high position of the hippos is possibly 

connected to their semi-digitigrade foot posture, as elephants, also semi-digitigrade, 

showed notably high heteropody indices. Some of these animals, beavers most notably, 

could be described as displaying extreme heteropody. Using this case as an example 

then, certain groups of animals may show a link between CoM and heteropody, as is the 

case here. Perhaps semi-aquatic animals lack the evolutionary pressures of terrestrial 
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mammals to maintain a relatively even manus-pes ratio. The unique anatomy of certain 

dinosaur groups could make them susceptible to evolutionary pressures to equalise 

underfoot pressure. Follow-up studies should consider this line of inquiry. It is notable that 

larger semi-aquatic animals appeared to be more manus-dominant (with the exception of 

the Morelet’s crocodile, Crocodylus moreletii), with the hippos, then the tapirs and Ursus 

maritimus being the top five points, then Hydrochoerus below, followed by Lutra, the 

beavers, and Crocodylus moreletii. The larger mammals, listed above, have very small 

tails compared to crocodiles, beavers and otters, and thus the utility of the tail and hind 

legs for propulsion in swimming would be why the smaller semi-aquatic animals are pes-

dominant, whereas hippos, tapirs, and polar bears, use all four limbs for paddling, which, 

while less efficient, does not require a large tail or full body oscillation (Fish, 1996).  

It is notable that this work was based on skeletons, and that using heteropody figures 

based on in vivo functional foot length, width, and/or area, may have produced variable 

results, especially in animals with a large non-bony component to their feet such as 

elephants with their fatty foot pads (Hutchinson et al., 2011), and horses with their large, 

keratinous hooves (Casanova and Oosterlinck, 2012). 

It should be acknowledged at this point that there are quite stark limitations of the 

explanatory power of unexpanded convex hulls for which no density information is 

available. Whereas it might make sense to process a large amount of data in a short time 

to presume that all animals will suffer a uniform amount of error due to lack of density 

information, this may only truly apply to animals with similar body plans and diets. While 

herbivorous mammals have similar gut volumes, for example, these volumes can differ 

significantly compared to animals with different diets (Clauss, et al., 2016). In addition, 

long tails and necks could potentially pull estimated centre of masses into extreme 

positions when not split into small sections and hulled separately, as a single hull for, for 

example, a lizard tail, could overestimate the volume of the tail considerably due to its 

length and relatively gracile structure not being conducive to the same hulling process as, 

for example, a thigh. This could explain the difference between the Iguana and 

Sphenodon CoM measurements (~5 and ~65% respectively), despite their relatively 
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similar body plans. In addition, when comparing, for example, Elephas CoM values from 

the literature (58.03% GAD (Henderson, 2006), compared to 67.54% in this study), results 

vary from what one would expect by about 10%. Therefore, these CoM values should not 

be taken as realistic CoM values for the animals as they would be in life, but as estimates 

to compare to each other.  

While the idea that extreme heteropody in animals could be linked to CoM position in a 

potential pressure equalisation mechanism does not appear to be supported by this study, 

outside of promising signs in cursorial mammals, it is important to note that the majority of 

the animals in this study did not exhibit extreme heteropody. Those that did were only a 

few points in the data set. Furthermore, the classic examples of extreme heteropody, 

sauropod dinosaurs, are long extinct, and there are no extant analogues for animals their 

size and shape. Arguably, their closest modern analogues are elephants (Coombs Jr, 

1975), which in this study do indeed sit on the higher end of the range of heteropody, as 

well as the higher end of the ranges of centres of mass. 

While this study does not support a universal pressure equalisation role linking tetrapod 

CoM and heteropody (Falkingham, 2012; Falkingham et al., 2010), it is possible that no 

living animal has similar enough foot anatomy to sauropod dinosaurs to truly test whether 

pressure equalisation is a factor in these animals through studies of extant tetrapods such 

as this. It does not necessarily follow, after all, that multiple lineages of large tetrapods 

reached the same solutions to the problem of managing unequal stresses on the limbs. 

Still, the question of how much of the extreme heteropody and variations in heteropody in 

sauropods seen in the fossil record is due to preservational bias, substrate compliance, or 

a result of the anatomy of sauropod feet in situ, should be considered. It remains the case 

that there are no fully preserved, mummified sauropod feet with which to accurately model 

their exact soft tissue anatomy. Hence it is not known how adaptations for large size, such 

as fatty foot pads seen in elephant feet (Hutchinson et al., 2011), could affect the shape of 

their foot contact areas in ways that may not be able to accurately accounted for by 

inferring shape from skeletons. Using Figure 4.1, and its variant adjusted for skin 

(Supplementary Figure 4.S1), it will be possible to compare heteropody in extant animals 
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to that of sauropod dinosaurs using heteropody index and CoM data from trackways, of 

which there is a wealth, to evaluate whether they are a truly exceptional group in this 

regard, or if they follow the lack of pattern seen in the rest of terrestrial Tetrapoda. 

The fact that a specific subgroup of this chapter’s data showed a correlation, while the rest 

did not, suggests that while heteropody may not universally reflect CoM position, extreme 

heteropody may evolve as a result of unequal underfoot pressures in groups without 

strong evolutionary pressures to keep manus and pes area relatively equal. Terrestrial, 

cursorial tetrapods, which tend to have more uniform manus and pes sizes (Lull, 1904), 

would be most restricted in this way, requiring forefoot and hindfoot parity for effective 

propulsion and braking at speed, and this bears out in this study’s data. Semi-aquatic 

animals, armoured animals, and animals too large to run would be capable of functional 

foot size disparity, whether for stability, pressure equalisation, or for behavioural 

purposes. 
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Chapter 5 

Calibration Tests for Footscan Pressure Mat 

 

5.1 Purpose 

The pressure mat data being gathered for this thesis from live animals, by necessity 

cannot be calibrated to each individual animal. Due to time constraints, and lack of data 

gathered by Blackpool Zoo, weight and shoe size of each animal was not available prior to 

data gathering, and data was gathered based on which animals were available at the zoo 

at the time. As such, the pressure mat was calibrated to a human, the writer of this thesis.  

Since this is not an ideal scenario, it is necessary to test whether calibrations that do not 

match the subject being observed significantly impact pressure mat readings. In particular, 

it is important to determine whether manus vs pes load remains consistent across trials, 

despite any potential inconsistencies in raw pressure data.  

5.2 Methods 

For these tests of the 1m Footscan pressure mat, a 135x245x390mm plastic tub (553g), 

filled with varying weights of ‘The Big B’ builder’s sand (each time made level with the tub 

rim to avoid bias) was used, with four table leg raisers supporting the sand-filled tub 

(90x90x90x90 contacting the tub, 120x120x120x120 contacting the pressure mat, with 

95x95x95x95 sides, at an acute angle, and 135g each) to act as stand-ins for subject 

animal legs, placed 10mm back from the most distal short end of the tub on both sides. 

The base set up of the tub with all raiser ‘legs’ and no sand weighed 1095g. The set up 

with and without sand (pre-flattening) is demonstrated in Figure 5.1. 
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Figure 5.1 Calibration test set up using Tupperware tub and table leg risers with (B) 

and without (A) sand to simulate a quadruped of varying weights for different calibration 

settings. 

To record pressure data via the Footscan 1m pressure mat, the pressure mat must be 

calibrated to a specific weight and shoe size (given in UK shoe sizes or length in mm). For 

data collected from Blackpool Zoo this necessitated using a human subject for calibration, 

as foot dimensions and weight of animals was not provided prior to live animal tests. 

To test how calibration of the pressure mat affects pressure results and comparative load 

between manus and pes read by the mat, a series of 10 different calibration trials were set 

up: one calibrated to humans (the writer of this thesis), and 9 using the sand box with legs 

(3 trials calibrated accurately with 5kg, 10kg, and 15kg sand with accurate shoe size for 
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table leg riser feet, 3 with half foot length of riser feet at same weights, and 3 with double 

foot length of riser feet at same weights).  For each of these calibration tests, the tub filled 

with 5kg, 10kg, and 15kg of sand were measured for load on each ‘foot’ and pressure on 

each ‘foot. In this way we were able to test the effect of inaccurate calibration versus 

accurate calibration on pressure mat readings, for both different weights and shoe sizes 

for the same ‘animal’, but also for when a subject animal’s data is collected while the 

pressure mat is calibrated to human weight and shoe size. 

Since an empty tub is not heavy enough to detect pressure from all table leg riser ‘feet’, 

empty box tests were not performed. However, for potential interest, the results for an 

empty tub are presented in Table 5.1, with the caveat that the results given are dubious 

and their accuracy hard to discern. 

For the purposes of these tests, legs on the left side of the pressure mat were considered 

forelegs, and legs on the right considered hindlegs. 

These trials were tabulated in Table 5.1, and the average error of each trial in terms of 

manus vs pes load and maximum pressure recorded, compared to accurate calibrations, 

tabulated in Tables 5.2 and 5.3 respectively. 

Following this, paired T-tests were performed to test whether there was a significant 

difference in manus versus pes load readings for each tub test across all 10 calibrations. If 

there was no significant difference, this would lend support to the idea that despite any 

difference to pressure readings in terms of raw numbers, manus versus pes load 

percentages would remain objective and accurate, thereby validating the reliability of the 

Blackpool Zoo data despite the setbacks.  

 

5.3 Test Outcomes 

5.3.1 Human Calibration 

While results varied across all calibrations (Table 5.1), tub tests examined while calibrated 

to humans produced high degrees of error, overestimating manus load by about 10% 
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(Table 5.1), and maximum pressure by -161.1 n/cm2 (Table 5.2), the highest error margin 

in terms of maximum pressure readings, and in the mid-range for percentage load error. 

This degree of error was most apparent on human calibration with 5kg sand, with error 

decreasing as weight was added to the tubs, a fact consistent across different calibration 

methods. This indicates that lighter loads are perhaps less accurately read, or that the 

closer the calibrated weight is to the actual weight, the more accurate the results.  

 

Table 5.1 Percentage load and error results for different trials at different calibrations 

% Load Error  Actual Subject of Trial 
 

Calibrated to Shoe Size (mm) 5kg Box 10kg Box 15kg Box Avg Error 

Human 280 13.9 8.3 7.3 9.83 

5kg Box 120   7.5 7.7 7.6 

10kg Box 120 -6   0.5 -2.75 

15kg Box 120 -16.1 -1.9   -9 

5kg Box 240 -16.5 -10.5 -10.6 -12.53 

10kg Box 240 -16.1 -4.6 -3.5 -8.07 

15kg Box 240 -16.1 -1.9 0 -6 

5kg Box 60 -24.7 -8.9 -3.6 -12.4 

10kg Box 60 -20.1 -2.2 -4 -8.77 

15kg Box 60 -23.9 -10.4 -9.5 -14.6 
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Table 5.2 Max pressure and error results for different trials at different calibrations 

Calibrated to Shoe Size (mm) 5kg Box 10kg Box 15kg Box Avg Error 

Human 280 -78.5 -106.8 -298 -161.1 

5kg Box 120   42.8 -101 -29.1 

10kg Box 120 4.4   -82.2 -38.9 

15kg Box 120 15.8 88.2   52 

5kg Box 240 -4.1 -24.4 -236.7 -88.4 

10kg Box 240 -38.7 -30.5 -217.4 -95.53 

15kg Box 240 15.8 88.2 0 34.67 

5kg Box 60 -14.9 -16.2 -216.5 -82.53 

10kg Box 60 -36.6 -64.6 -233.5 -111.57 

15kg Box 60 -20.1 -9.4 -184.4 -71.3 

 

5.3.2 Weight and Shoe Size Calibration 

Calibrating the tub to alternate weights produced equivalent to greater error compared to 

human calibration in 5kg trials, with less impact on 10 and 15kg, with the same pattern 

when shoe size calibrations were changed, supporting the conclusions of the previous 

paragraph. 

5.3.3 T-tests 

T-test results revealed significant difference between manus and pes results when 

comparing all calibrations, for all trials. This proves that manus versus pes loads will be 

affected by calibrations, and therefore cannot be considered objective despite differences 

in raw pressure readings (Table 5.3).  

In light of these results, extra attention should be given to the differences highlighted by 

tests on calibrating with human measurements, as guidelines on the likely errors to be 

encountered when testing animals without prior knowledge of their foot and mass 

dimensions, relying on calibration by humans of known weight and shoe size.  



97 
 

Following this, caution must be urged regarding recording pressure results for animals 

without prior knowledge of the subjects, and their body mass and foot size. This makes it 

difficult to gain lots of data quickly, as processing whatever animals are to hand on a 

certain day at a zoo or farm will result in skipping the step of recording the necessary data 

to calibrate the pressure mat accurately and gain an accurate picture of underfoot 

pressure and area in these animals.  

 

Table 5.3 T-test results for all calibrations for all trials to test consistency in manus 

and pes result disparity across different weights and calibration methods 

T Tests  5kg 10kg 15kg 

T value 2.97 3.5 2.72 

DFs 9 9 9 

p-value 0.02 0.01 0.02 

95% CI upper 5.37 5.2 1.77 

95% CI lower 39.59 24.16 19.15 

mean differences 22.48 14.68 10.46 

 

5.4 Conclusions 

There will be significant differences between the readings gathered for the purpose of this 

study, and those that would have been gathered if all calibrations were accurate and had 

enough preparation time. As a result, data from live animals gathered for this study must 

be considered in this context, with a high margin for error. Data gathered from the 

literature for this study should not have this same problem, as the studies referenced for 

the most part focused on a single subject animal, with the time and resources needed to 

accurately calibrate their equipment for the subject.  
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Chapter 6 

Are Underfoot Pressures Reflective of Heteropody and Centre of 

Mass Position? 

 

6.1 Summary of Chapter 

Heteropody is the phenomenon in which the manus and pes of quadrupedal animals differ 

substantially in size and shape. The term is most often used in reference to the extreme 

heteropody present in fossils and trackways of some non-avian dinosaurs, particularly 

sauropods. Previous studies have asserted the possibility that extreme heteropody 

developed in these animals as a mechanism to equalise underfoot pressure, 

compensating for unusually anterior/posterior centre of mass positions. To investigate this 

possibility, pressure data were collected from extant taxa, and supplemented from the 

scientific literature, to establish whether centre of mass position reflects heteropody. Data 

for cursorial mammals tended to cluster around centre of mass 52-64% (% gleno-

acetabular distance from hip) with area, vertical force, and pressure under the manus 

~100-140% that of the pes. Data collected as part of this thesis was combined with data 

from the literature (3 crocodilians, 25 mammals - of which 7 were primates and 8 were 

ungulates). In newly collected data, correlations of more anterior CoM positions with 

increased manus area, increased manus underfoot vertical forces, and slightly negative 

manus underfoot pressures, compared to those of the pes were found, but with only 5 

data points (R² between 0.7 and 0.85). When these data were combined with data from 

the literature, the correlation was much weaker (R² between 0.26 and 0.32). These results 

do not offer substantial support to the hypothesis that heteropody equalises underfoot 

pressure. 
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6.2 Introduction 

Heteropody, as discussed in previous chapters, is a phenomenon in which manus and 

pes size are observably distinct (Lockley et al., 1994a). Work by Falkingham (2012) 

suggested extreme heteropody in quadrupeds arises as a result of selective pressures to 

equalise underfoot pressures, in correspondence with centre of mass (CoM) position (i.e. 

where a CoM is far enough anterior or posterior that an animal’s mass is 

disproportionately supported by two of its four limbs). This idea arose as a way of 

explaining extreme heteropody in sauropod dinosaurs (Falkingham et al., 2010; 2012), as 

seen in their body fossils and footprints, where foot contact area of the manus and pes 

can be vastly different. This extreme heteropody has been linked to the trace fossil 

phenomenon of ‘manus-only trackways’, often attributed to derived sauropod dinosaurs 

(Lee and Lee, 2006). In combination with increasingly anterior CoM positions, 

hypothetically, unusually small manus impressions in sauropod trackways would produce 

greater underfoot pressures. Subsequently, deeper tracks would be produced under the 

manus than the pes. 

Foot size has a direct and observable effect on foot pressure, whether this hypothesis is 

ultimately accepted or rejected, since pressure equals force divided by area. Even with a 

centre of mass exactly halfway between the shoulder (glenoid) and hip joints 

(acetabulum), a smaller manus will exert greater underfoot pressure, whereas a larger 

foot will exert less pressure, as the force of the animal’s weight is allowed a larger area to 

disperse. The same logic should hold true across varied centre of mass positions. In this 

way it is also important to emphasise the role of foot shape on in situ foot pressure 

exertions and how this feeds into a more complex interaction between an animal and its 

underfoot forces than the simplified model illustrated in Henderson (2006) and chapter 1 

might suggest (Falkingham, 2014). In vivo, differing foot postures (digitigrady, plantigrady, 

etc.), and foot support mechanisms such as fatty foot pads, can influence foot angle, size, 

and shape in a way that is not accounted for in a simple plank and struts model, since 
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structural support mechanisms may act in a pressure-saving manner beyond simply foot 

contact area, absorbing some of the pressure cost with thick layers of soft tissues, for 

example (Carrano, 1997; Hutchinson et al., 2011).  

Much of the literature around underfoot pressure has centered primate gait and 

pathological studies (Kinoshita et al., 2019; Yamashita et al., 2019; Apelqvist, 2012), with 

a number of non-human animal studies also focused on veterinary diagnostics rather than 

locomotory biomechanics in healthy animals, mostly concerned with lameness and hoof 

health (Scott, 1989; Grégoire et al., 2013; Carvalho et al,. 2005). However, a lot of 

important work has been done on underfoot pressure across the animal kingdom, 

particularly regarding pressure scaling (Michilsens, et al., 2009; Panagiotopoulou, et al., 

2012). Because foot pressure has a history as a human and animal diagnostic tool, there 

is a variety of tools available for measuring foot pressure, such as pressure mats (Xu et 

al., 2017; Franklyn-Miller et al., 2014). Despite being designed primarily for human use, 

this equipment has been demonstrated on many occasions to be an appropriate and 

useful tool for measuring underfoot pressures and locomotion in non-human, and notably 

for this study, quadrupedal, animals (Meijer et al., 2014; Van der Tol et al., 2003; 

Vereecke et al., 2003). 

Pressure differences between manus and pes have previously been measured in multiple 

extant animals. Generally, quadrupedal mammals have been found to support 55-60% of 

their body weight on their forelimbs (Reynolds, 1985a). Elephants, as an example of the 

typical quadrupedal pattern, support around 60% of their weight with their forelimbs when 

standing or walking (Henderson, 2006; Panagiotopoulou et al., 2016). In primates this 

number tends to be lower, around 30-45%, and reptiles, which tend to have longer and 

more muscular tails than mammals, generally support more weight still with their 

hindlimbs (Allen et al., 2009; Willey et al., 2004). Cursorial animals tend to use their 

forelimbs to support more weight, and additionally have centres of mass closer to their 

forelimbs (de Faria et al., 2015).  
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6.3 Materials & Methods 

To examine differences in forefoot and hindfoot foot pressure and area, data both newly 

collected, and from the scientific literature were gathered.  

Data from the literature where any variables of interest (centre of mass, foot surface area, 

peak pressure, and peak vertical force) were recorded and made available were collected 

into a database for analysis. The aforementioned literature data used in this chapter were 

derived from the following papers: (Henderson, 2006; Panagiotopoulou et al., 2012; 2016; 

Warner et al., 2013; Willey et al., 2004; Allen et al., 2009; Kubo, 2011; McElroy et al., 

2014; Reynolds, 1985b; Raichlen, 2004; Schmitt and Hanna, 2004; Schmitt, 2003; de 

Faria et al., 2015; Agostinho et al., 2012; Scott, 1989; Verdugo et al., 2013; Lascelles et 

al., 2006; Lascelles et al., 2007; Lammers, 2007; Walter and Carrier, 2007; Clarke, 1995; 

Howard et al., 2000; Clarke et al., 2001; Ueda et al., 1981; Oosterlinck et al., 2011; 

Panagiotopoulou et al., 2019). While most of these studies were on mammals, data for 

crocodilians, lizards, and turtles were used where possible. These data were recorded, 

compared, and kept for comparison with newly collected data. Especially of interest were 

data recorded for animals for which previously estimated centre of mass data from 

skeletons existed (Chapter 4). It should be made clear at this point that peak pressure and 

force in this case refer to the highest pressure or force of the footfall overall, collected over 

the course of the footfall, and not the highest pressure or force detected in any part of the 

foot, as is the case in Figures 6.2 and 6.3, and in the previous chapter. 

New data, consisting of underfoot pressure, area, and vertical force were collected from 

five animals (dog, alpaca, goat, pony, and tapir – Canis, Vicugna, Capra, Equus, and 

Tapirus, in latin) using a 1m (1068mm x 418 mm x 12 mm) Footscan pressure mat (up to 

200Hz for recording), Footscan 9 software, and a high speed camera (1000 fps, 1280x720 

resolution, Slowmo camera company) to film subject animals during data collection to aid 

in identifying footprints.  

Dog data were collected at Liverpool John Moores University. Ethical approval was given 

for all live animal studies. The subject animal was a male adult husky weighing 44kg. 
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Data for the remaining subject animals were collected at Blackpool Zoo, where the 

subjects were a male tapir weighing 153kg, a male goat weighing 11.8kg, and a male 

alpaca and male pony, weights unknown. During trials, the pressure mat was covered in a 

protective mat (PedalPro – 180x70x0.6cm, shock resistant PVC) to prevent damage from 

hooves and claws. The subject animals were guided over the pressure mat by their 

respective handlers, as the animals for the most part avoided the pressure mat altogether 

without guidance, and only with encouragement from trainers would walk over the mat 

enough times to collect sufficient data. 

 

Figure 6.1 Still image from high-speed camera footage of subject animal (goat/Capra 

aegagrus herpus) walking across the pressure mat, covered by the protective mat, guided 

by its handler. 

Raw data from Footscan 9 were exported and then analysed using a custom Matlab script 

(https://github.com/pfalkingham/matlabPressureAnalysis). This script identified the total 

underfoot surface area of each foot as well as peak and median temporal vertical force 

and pressure for each recorded footfall (where median represents the vertical force or 

pressure halfway through the time the foot produces a readable input (inputs begin when 

any sensor is triggered)). Recorded footfalls were identified as forefeet or hindfeet, and 

left or right, using a combination of the dynamic recordings in Footscan 9, and high speed 

camera footage. Once extracted, these data were tabulated and plotted into box plots, 

comparing manus and pes for each animal.  

https://github.com/pfalkingham/matlabPressureAnalysis
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Manus and pes data for each subject animal were then subjected to paired T-tests to 

determine whether manus and pes were significantly different across the relevant 

variables, for each subject animal, i.e. to establish whether there is statistical support for 

heteropody, or significantly different underfoot pressures. In addition paired T-tests were 

performed to investigate whether there was a significant difference between left and right 

feet for each animal. 

Newly collected data were then combined with literature data, and previously calculated 

area values (from Chapter 2, (Strickson et al., 2019)). This combined data set was plotted 

to examine heteropody and differential forces and pressures across multiple species, and 

to determine whether any trend exists between manus/pes differences in area, vertical 

force, and pressure, and estimated centre of mass. CoM values for each animal can be 

found in table 6.S4. Since CoM estimates from convex hull analysis were combined with 

those from the literature, it is worth noting that the methods by which CoM were derived in 

different studies, and therefore, any associated error or bias, were somewhat inconsistent. 

CoM estimates from convex hulls did not adjust for lung volume and other air-filled 

organs, which can have a significant effect on body mass estimation but affects CoM 

calculations much more on the ventral-dorsal axis than the anterior-posterior axis (Allen et 

al., 2009; Sellers et al., 2009; Bates et al., 2009). Since only the latter axis is used in this 

study’s CoM measures this effect should be minimal, but it is acknowledged that a small 

amount of error may be present. 

Beyond this, the same limitations apply as in Chapter 4, regarding convex hulls without 

density information, and without calculating each body segment separately and carefully. 

This is especially relevant when looking at animals with long tails and necks, where a 

small error could make a body segment seem much larger, and therefore move the centre 

of mass considerably.  
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6.3.1 Pressure Mat Use 

Calibrating the pressure mat required a subject of known weight and shoe size. These 

were entered for the author of this thesis, and the pressure mat calibrated prior to each 

experiment. 

The Footscan pressure mat is designed primarily for experiments on humans. This 

presents a potential issue with the size of the sensors within the mat. Each sensor in the 

Footscan 9 pressure mat is 7.62mm x 5.08mm. The size and shape of these sensors is 

much less noticeable in the feet of large animals (such as humans, or for the purposes of 

this study, tapir, equids, large dogs), but could potentially affect area and pressure 

estimates for smaller animals, where the size of the sensors compared to the size of their 

feet results in a ‘blocky’ estimate of foot shape, which distorts the true shape of the foot 

compared to that of animals with larger feet. This variation can be seen visually in Figure 

6.4.  

As mentioned above, a protective mat (PedalPro – 180x70x0.6cm, shock resistant PVC) 

was used for all animal tests to protect the pressure mat from damage from hooves and 

claws. When testing the mat with the author of this thesis as subject (figure 6.2), reduced 

pressures were detected when using the protective mat, versus without, but a greater 

area of the foot was detected with the mat, and differences in pressure between foot 

regions were lessened. These tests imply that peak values for pressure and vertical force 

may be underestimated with use of the protective mat.  

In addition to this, the calibration tests outlined in the previous chapter, indicate that 

inaccurate calibration can affect manus and pes ratios as well as overall pressure 

detected. Since it is necessary for this experiment to calibrate the pressure mat to humans 

rather than each animal individually, this should be noted and considered carefully before 

making conclusions from the live animal data collected. The same issues should not be 

present in the data collected from the literature. 
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Figure 6.2 Pressure mat test results with a human subject, showing differences in 

detected pressures across the left and right foot with A) no protective mat, and B) with a 

protective mat. Foot impressions are representative samples, and speed of footfall varied 

for each individual footfall. 

 

6.4 Results 

Pressure mat analyses conducted for this study showed an overlap between manus and 

pes area, peak/median vertical forces, and peak/median pressures, for the majority of 

animals, although this was not without exceptions, and ranges of results for each foot 

varied. (See Table 6.1, see Figure 6.3.)  
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Table 6.1 Table showing linear model regression, correlation coefficients, confidence 

intervals (based on coefficients and standard error), and p value, for area, peak pressure, 

and peak vertical force vs CoM for newly-collected data, and newly-collected data 

combined with data from the literature, as plotted in Figure 6.5. 

Newly Collected Data Linear Regression Linear R² 95% CI P Value 

Area y=6.05x-229.17 0.70 -0.35±0.70 0.71 

Peak Vertical Force y=10.70x-466.76 0.75 0.24±0.46 0.69 

Peak Pressure y=3.11x-53.64 0.85 0.29±0.44 0.74 

     
Combined Data Linear Regression Linear R² 95% CI P Value 

Area y=1.50x+23.63 0.32 1.74±0.12 0.12 

Peak Vertical Force y=2.44x-18.33 0.27 -1.20±0.26 0.26 

Peak Pressure y=-1.74x+216.71 0.28 -0.27±0.54 0.54 
 

Area results for combined data ranged from manus area as 92-140% of pes area. Manus 

peak vertical force ranged from 101-184% pes peak vertical force (always higher than pes 

peak vertical force). Manus peak pressure ranged from 111-134% pes peak pressure 

(always higher than pes peak pressure). Of these animals, the Vicugna, Canis, and 

Tapirus consistently fell within the middle of this range (Table 6.1), as well as having 

similar estimated centres of mass (all ~57% gleno-acetabular distance, from the hip). 

Equus consistently demonstrated the lowest manus dominance out of all newly-tested 

animals, across all variables, with the lowest manus pressure, area, and vertical force. 

Inversely, Capra consistently represented the highest value in each range, demonstrating 

the highest level of manus dominance for each variable. Equus and Capra as the highest 

and lowest in the range is consistent to their estimated centres of mass, with the 

estimated CoM of Equus at 52% G-A distance from the hip, and of Capra at 59%. 

Although the range of CoMs and manus-dominance was somewhat narrow, centre of 

mass position was a reliable predictor of a subject animal’s degree of heteropody, and 

vertical force distribution. In fact, linear models of each of these values against estimated 

CoM results in a strong correlation between CoM and heteropody for area, peak vertical 

force, where manus is larger, or produces more vertical force, the more anterior the 

estimated CoM. The slope of these models is notably shallow, however, but this may be 
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because all subject animals occupied a narrow range of centre of mass positions. Despite 

this pattern, there was still some overlap in ranges between forefeet and hindfeet for some 

variables for all animals (Figure 6.4). 

 

 

Figure 6.3 Examples of heat maps for pressure (N/cm²) for newly-collected data, with 

one example for each foot, along with number of whole footprints recorded (partials were 

discarded). Pressures recorded here are fore different foot regions, not representative of 

the data presented in the rest of this study, which tracks pressure for the entire foot across 

a footfall. 
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Figure 6.4 Box plots comparing results for area (cm²), peak pressure (N/cm²), and 

median pressure (N/cm²), for all four feet of each subject animal, along with total number 

of footprints collected. 

 

Paired T-tests assessed whether the difference in manus and pes values (for all variables) 

for each animal were significant, and those testing pressure in left versus right feet were 

not significant (Table S6.2 and S6.3). Capra manus and pes values were significantly 

different for all variables (p < 0.05 for all, p < 0.01 for all except peak and median 

pressure). Canis manus and pes values were significantly different (p < 0.01) for all 
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variables except area. Tapirus manus and pes values were significantly different for peak 

vertical force (p < 0.05), and for area (p < 0.01), and not significant for pressure. Vicugna 

manus and pes values were largely not significantly different (median vertical force p < 

0.01, other variables non-significant). Equus manus and pes values were not significantly 

different for area, pressure, or vertical force. It should be noted that the animals with the 

largest number of footsteps sampled, Canis and the Capra (n = 41 and n = 21, 

respectively) displayed the most significant differences between their respective manus 

and pes. It is perhaps possible that with equal sample sizes, manus and pes differences 

across all animals would be more significant.  
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Figure 6.5 Linear plots showing data for centre of mass against area, peak vertical 

force, and peak pressure, for newly-collected data, and newly-collected data combined 

with data from the literature. 

 

Data from the literature showed a range of manus area as 38-135% pes area. Both the 

low and high extremes of this range were lizards (Pogona and Furcifer respectively). No 
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mammal displayed heteropody less than 100% (manus smaller than pes) based on data 

from the literature alone. However, using calculated areas based on CT scans (Chapter 2) 

domestic cat data showed a mammalian low of 95%. Scores below 100% were common 

for reptiles, representing the majority of crocodile, lizard, and turtle data compiled. Peak 

manus vertical force data from the literature ranged from 39-170% of pes peak vertical 

force. The low end of the peak vertical force range mainly represented reptiles and 

primates, with the high end almost entirely composed of cursorial mammals. Very few 

peak pressure data were extracted from the literature. What data were available was 

entirely made up of cursorial mammals and ranged from 89-265% manus peak pressure 

as a percentage of pes peak pressure. However, the 265% figure belonging to 

Ceratotherium, is a significant outlier, and without it the range would be 89-140% with Sus 

and Felis at the low and high ends, respectively. It might be expected that Ceratotherium’s 

large, horned head would make it a special case, not representative of general trends 

across Tetrapoda or Mammalia, however, its calculated centre of mass is not equally 

extreme, at 56% G-A distance from the hip. Given these findings, Ceratotherium was 

excluded from further analysis. 

Analyses using combined literature and new data displayed no discernible correlation 

between area and peak pressure manus-pes distribution, but a weak correlation between 

area and peak vertical force distribution, where comparatively greater underfoot peak 

vertical force in the manus was associated with a larger manus area relative to pes area 

(Figure 6.5). In general, more anterior centre of mass was associated with greater manus 

area and manus peak vertical force, compared to pes area and peak vertical force, with 

the inverse true in terms of pressure. This would imply that as anterior vertical force 

increases and CoM moves anteriorly, manus area increases relative to pes area, which 

results in reduced peak underfoot pressures. However, the correlations associated with 

these trends were weak and non-significant (Figure 6.5), and newly collected data was not 

calibrated in a way that makes them reliable as an indicator of overall trends. Correlation 

increased with removal of certain outliers, but not to a point where it rose to moderate or 

strong. This effect could possibly be strengthened with greater sample size.  
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6.5 Discussion 

Across all analyses, most animals maintained manus area, peak vertical force, and peak 

pressure, as 100-140% that of pes area, peak vertical force, and peak pressure. This 

range is consistent with CoM positions of 52-64% G-A distance in front of the hip. Given 

the sheer number of animals in this range, this appears to be a relatively consistent state 

for quadrupedal mammals, especially for cursorial mammals, which make up most of the 

data in this cluster (Figure 6.5). Animals with CoM >52% that do not fit in this range 

include anteaters, goats, sheep, possums, and the outlying Ceratotherium (Figure 6.5 

excludes Ceratotherium as an outlier).  

In the same way that animals with CoM <52% (and pes dominance in terms of area and 

peak vertical force) were largely animals with muscular tails used for non-terrestrial 

locomotion, i.e. crocodilians and new world monkeys (Lemelin, 1995; Seebacher et al., 

2003), outlying animals with CoM >52% may have possessed anatomical features that 

prevented them from achieving the otherwise standard 100-140% manus dominance. The 

most obvious of these is the clear outlier, Ceratotherium, with its large head and horns. 

Large skulls with ornamentation have been suggested to influence CoM position in 

ceratopsian dinosaurs (Maidment et al., 2014).  

As seen in Figure 6.5, more anterior centres of mass appear associated with more 

anterior peak vertical forces, and larger manus surface areas compared to pes surface 

areas. Since most literature sources presented data for only force or area, and very few 

gave data for pressure, less data was available for pressure analysis. However, the data 

collected resulted in a shallow, negative slope, indicating that manus pressure compared 

to pes pressure decreased with more anterior centre of mass positions.  

While this could be construed as an argument for the model of pressure equalisation 

(Henderson, 2006), correlations were much lower with the combined data set. As well as 

this, the high p values of associated linear models, and the shallow slope of the newly-

collected data deserve careful consideration. Why the findings of this chapter conflict 

slightly with those of chapter 4 could potentially relate to the findings of chapter 2 of this 
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thesis, wherein underfoot soft tissue extent was greater in the manus than the pes 

compared to skeletal tissue extent. Following the logic of chapter 2’s findings, analysis of 

osteology alone would underestimate heteropody, and in vivo analysis would reveal 

greater disparity between manus and pes underfoot areas.  

One reason why a weakened correlation may be present in the combined data set (Figure 

6.5) is the morphological disparity, and the varying sample sizes for each morphology, 

present in the data. CoM values <50% G-A distance (closer to the hip) are limited to 

reptiles, new world monkeys, Myrmecophaga, and Cercopithecus. The remainder of the 

data, which are entirely mammalian, has CoM values between 50 and 64%. The 

distinction in this difference appears to be the presence or absence of a robust tail, as 

present in Crocodilia (Willey et al., 2004; Seebacher et al., 2003), and new world 

monkeys, who possess prehensile tails (Lemelin, 1995). Many mammals in this study 

(notably, ungulates) have short tails (Siegfried, 1990; Stankowich, 2008). Unfortunately, 

most data available on centre of mass, underfoot forces, pressure, and area, are 

mammalian, and thus the data are primarily distributed around the typically mammalian 

CoM position of ~50-70% G-A distance from the hip, across a wide range of morphologies 

and ecologies (Reynolds 1985b). In this case the 50-64% CoM range includes all 

ungulates, carnivores, anteaters, elephants, rhinos, and most primates. This results in a 

situation where the more anterior CoM positions have a much wider range of taxa 

represented, and thus have more disparate results. However, the fact remains that there 

are too many issues with the new data collected to use them to argue that more data 

would result in more desirable results.  

The main outliers in the 50-64% CoM range possess adaptations that could affect 

heteropody and relative underfoot vertical forces. For example, rhinos, which were by far 

the most outlying, have large keratinous horns, large heads, and are protected by a thick 

layer of skin that reduces its investment in adaptations for cursoriality compared, for 

example, to horses or gazelles (Berger and Cunningham, 1998; Shadwick et al., 1992). 

Giant anteaters have large claws on their manus which aid in digging, an adaptation also 

seen in their arboreal relatives, the tamandua and the sloths, and does not seem to be 
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advantageous to terrestrial locomotion (Coombs, 1983; Naples, 1999; de Faria et al., 

2015). Possums are arboreal marsupials (Lammers et al., 2006), goats and sheep 

possess horns of bone and keratin (although cows and deer also possess these features 

and are non-outlying) (Zhang et al., 2018). These adaptations could reduce selective 

pressures to maintain equalised underfoot pressures for balanced posture during 

terrestrial locomotion. Yet these adaptations are still potentially important to survival and 

ability to compete for mates. In this way pressure equalisation via heteropody could 

potentially act as a default mechanism for maintaining stability during terrestrial 

locomotion, with outliers emerging when outside selective pressures are prioritised. 

The correlation is much stronger with only the five animals directly measured as a part of 

this study. However, it is not advisable to draw conclusions from graphs with only five data 

points, and there were several issues present in the data collection due to inability to 

calibrate accurately for each animal. Still, since the five animals involved are all cursorial 

mammals (although tapirs are also semi-aquatic and removing them does not change the 

relationship) (Stein and Casinos, 1997; Endo et al., 2019), their stronger correlation could 

lend support to the above postulation, wherein heteropody is employed to equalise 

pressure in the absence of obstructive selective pressures. The same relationship 

remains when Capra, and Tapirus, are removed. However, it does not hold when Capra 

and Equus (the animals with the most posterior and anterior CoM positions) are both 

removed. With the remaining three animals, area and peak vertical force values are lower 

on the manus with more anterior CoM positions, with R²s of 0.96 and 0.99 respectively. 

Therefore, any support for the idea of heteropody as a pressure equalisation mechanism 

from this subsection of the data remains speculative and unjustified. The hypothesis that 

heteropody functions as a pressure equalisation mechanism then, is not supported. 

With the above in mind, it should be noted that a lack of definitive correlation between 

CoM position and heteropody corresponds with the findings of the previous chapter, albeit 

with an increased signal. When using length and width of skeletal feet to determine area, 

CoM position did not seem to have any correlation with heteropody, except in semi-

aquatic animals. However, almost all the skeletons used for that analysis were of cursorial 
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mammals. Of the four non-mammals in that analysis, only Sphenodon fell within the range 

of the cursorial mammals, with both lizards and Crocodylus as clear outliers. In fact, the 

two lizards are in a position relative to the rest of the data that would put them on the 

trendline seen in this study for heteropody (area) vs CoM position (Figure 6.5). In addition, 

the skeletal data’s most outlying mammals were non-cursorial, for example: beavers, 

anteaters, bearcats, hyraxes, and otters (Stein and Casinos, 1997). Animals with large 

heads and/or horns/tusks, such as elephants, rhinos, and hippos were at the high end of 

the range, with Loxodonta outlying. In this chapter, there were more animals present that 

were not cursorial mammals, such as fully arboreal primates, and additional crocodilians. 

With a dataset with equal representation across different clades and modes of life, 

especially non-mammalian clades, it is possible that skeletal data would show a clear 

correlation, and that a stronger correlation would be seen in this study. A more 

representative dataset would ideally contain more crocodilians, large lizards (varanids, 

iguanas), tortoises, giant salamanders, as well as specialised hopping, fossorial, semi-

aquatic, and arboreal mammals.  

It is also possible that skeletal data produced different results due to determination of 

heteropody data from skeletal anatomy rather than in vivo foot dimensions. As determined 

in chapter 2, forelimbs and hindlimbs tend to have different ratios of skeletal tissue to soft 

tissue, with pes underfoot surface area lower relative to skeletal underfoot surface area 

than that of the manus. In this way, heteropody could be underestimated in studies reliant 

solely on skeletal data. In addition, the analysis of heteropody using static skeletons, 

rather than measuring the total area of the foot that contacts the ground in a footfall in 

vivo, makes assumptions about how much of the foot area to count in heteropody 

assessments, and, by necessity, requires value judgements of which parts of the foot to 

count in measurements, using simplified categories (Carrano, 1997).  

Despite the results of this chapter, it is still possible that with their unique body plan and 

extreme heteropody, sauropod dinosaurs utilised heteropody as a pressure equalisation 

mechanism while other animals do not. As with several other animals in this study, centre 

of mass for sauropodomorph dinosaurs underwent anterior shifts in relation to adaptations 
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in the head and neck, first in association with the origin of quadrupedality (associated with 

increased neck lengths), and second in titanosauriformes who possess more upright 

necks and long forelimbs relative to their hindlimbs (Bates et al., 2016). In addition, 

previous studies have suggested that some sauropods may have possessed fatty foot 

pads on their feet (Paik et al., 2017; Jannel et al., 2019), a technique used by heavier 

mammals such as elephants and rhinos (Hutchinson et al., 2011; Panagiotopoulou et al., 

2019). Titanosauriformes, unlike elephants and rhinos, possessed a fleshy tail, affecting 

requirements for foot posture, and had bird-like air cavities in their vertebrae (Lambertz et 

al., 2018; Zurriaguz and Cerda, 2017). The front feet in these animals would experience 

high pressures due to their long necks (although relatively longer necks are found in other 

sauropods), and anterior CoM. Vertical forces experienced by the forelimbs would also be 

more severe in titanosauriformes due to more anterior CoM positions (Bates et al., 2016; 

Klinkhamer et al., 2019).  

The unusual body plan of sauropods is potentially an unsolvable problem for studies of 

this kind. Their sheer size as a terrestrial animal, and their unusual body plan – with their 

long necks and tails, are unmatched by any extant analogues. These animals however, 

can only be studied with the tools, and modern analogues, available. How they can be 

biomechanically analysed with their unique biology is a perhaps useful test for how 

reliably the anatomy and mechanics of extinct animals in general can be understood 

(Currie, 2018). 

The hypothesis of heteropody as a pressure equalisation mechanism then, is not 

supported based on extant data. Even if it is employed within certain functional groups or 

clades not studied here, it is not a universal mechanism. 
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Chapter 7 

Does the Fossil Record of Dinosauria Suggest the Use of Extreme 
Heteropody as an Underfoot Pressure Equalisation Mechanism? 

 

7.1 Summary of Chapter 

This chapter sought to investigate a possible link between centre of mass position and 

heteropody in non-avian dinosaurs, particularly sauropodomorphs. No link was found 

between centre of mass position and heteropody across Dinosauria through osteological 

analysis using skeletons, a finding consistent with previous chapters. However, the 

necessarily small sample size does not lend itself towards a definitive conclusion. There 

was also no marked shift in the presence of heteropody in the body fossil record through 

geological time.  

Fossil trackways demonstrated two spikes in heteropody in sauropodomorph dinosaurs, 

as would be expected if heteropody and centre of mass position were functionally linked. 

However, these spikes are associated with spikes in fossil trackway sampling, rather than 

with anterior shifts in centre of mass position during sauropodomorph evolution as 

described in (Bates et al., 2016) and are, notably, 40-50 million years removed from the 

two CoM shifts, making a link between CoM shifts and heteropody spikes very unlikely.  

7.2 Background for Heteropody and Pressure Equalisation in Palaeobiology 

Heteropody, the ratio of manus to pes underfoot area (Lockley et al., 1994a), is a useful 

metric to the study of fossil trackways, as the size and shape of a footprint should, in 

theory, reflect the ground contact area of the underside of an animal’s foot. However, 

footprint size and shape is not a pure reflection of a trackmaker’s anatomy (Padian and 

Olsen, 1984a; Minter et al., 2007; Falkingham, 2014). Typically, and herein, heteropody is 

measured using ‘heteropody index’: manus foot contact area as a percentage of pes foot 

contact area (Riga and Calvo, 2009) (Equation 1).  
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Pressure equalisation is an important factor to consider in the stability and biomechanical 

structure of animals. The weight of an animal during standing, or during locomotion, exerts 

pressures on the limbs, and especially the feet, that can lead to long term damage over 

time, particularly in animals with large masses, such as elephants and rhinoceroses 

(Michilsens et al., 2009; Panagiotopoulou et al., 2016; Panagiotopoulou et al., 2019). To 

counter this stress, animals can evolve mechanisms to offset, or spread out pressure, 

evening out loads across the foot, as demonstrated by the presence of foot pads in many 

animals (Chi and Schmitt, 2005; Chi and Roth, 2010; Barbera et al., 2019), and the larger 

and more elaborate fatty foot pads present in elephants (Hutchinson et al., 2011). In 

dinosaurs, although the presence of pneumaticity within the bones might somewhat 

reduce mass (Zurriaguz and Cerda, 2017), the large size of many of these animals makes 

it likely that mechanisms to reduce excess pressures underfoot would have evolved to 

cope with these pressures and prevent damage over time. These adaptations include 

theorised fatty foot pads in sauropod dinosaurs (Jannel et al., 2019), and their upright 

posture, compared to other diapsids such as lizards (Kubo and Benton, 2007).  

Previous explanations for the phenomenon of extreme heteropody have posited its 

potential as a mechanism to equalise pressure, offsetting potential excess stress caused 

by unusually anterior centre of mass positions in some sauropod species (Henderson, 

2006; Falkingham et al., 2012). These explanations hypothesise that a condition of equal 

sized autopodia is beneficial in animals with centre of mass positions around the centre of 

the trunk. Inversely, where mass is distributed more anteriorly, or posteriorly, along the 

trunk, a larger manus or pes, respectively, is beneficial, resulting in more equal pressure 

under each foot despite an offset centre of mass. It is possible that this is the reason for 

the extreme heteropody found in many sauropod trackways (Falkingham, et al., 2012). 

This could be demonstrated by observing a clear link between heteropody and underfoot 

pressure or CoM in these dinosaurs, for example, CoM positions closer to the hip in the 

most extreme cases of extreme heteropody – indicating a trend towards pressure 

equalisation. This hypothesis is complicated by the possibility that manus-only sauropod 

trackways could have been formed by sauropods with high underfoot pressure under the 



119 
 

manus compared to the pes (Falkingham et al., 2010; Falkingham et al., 2012). Pes-only 

trackways may have been formed in a similar way, but could also have been formed by 

overprinting (Milàn and Hedegaard, 2010; Falkingham et al., 2010; Lockley et al., 2012; 

Xing et al., 2016a). Alternatively, manus-only trackways could have been formed while 

swimming or punting against a submerged substrate (Bird, 1944; Huh et al., 2003; Lee 

and Lee, 2006). Both explanations are disputed, and the subject of ongoing debate. If high 

underfoot pressure under the manus is the main driver of manus-only trackway creation, it 

is unlikely that pressure equalisation via changes in heteropody is happening in these 

organisms, or at least that it is happening to the point that it makes a noticeable difference 

to differential underfoot pressures between manus and pes. 

7.2.1 Factors in Footprint Formation 

Footprints are traces that act as reflections of the gait of an animal, interacting with a 

substrate at a particular point in time. Studying how the feet of extant animals interact with 

substrates of different mechanical compositions in situ (Brand, 1996; Padian and Olsen, 

1984a;b; Hatala et al., 2013), as well as in simulations (Margetts et al., 2006; Bates et al., 

2013; Falkingham and Gatesy, 2014), can provide a useful model of how fossil trackways 

were formed. Importantly, composition of geological formations can inform the type of 

substrate underfoot during trackway formation. Knowledge of these factors improves 

understanding of the confounding factors leading to the eventual shape of a fossil 

footprint, and how it both reflects and distorts the underfoot anatomy of its trackmaker 

(Buatois and Mángano, 2004; Razzolini et al., 2014). 

According to (Minter et al., 2007), building on work by (Baird, 1957; Padian and Olsen, 

1984a), trace fossil formation is driven by three influences: behaviour, producer, and 

substrate, which can be represented as a Venn diagram, with the interactions between 

these three influences (eg. substrate and behaviour = sediment mechanics), leading to the 

myriad of differences between trace fossils, and how they are formed and preserved. This 

concept was reinterpreted in (Falkingham, 2014), as a three dimensional graph, with 

anatomy, dynamics, and substrate as the three primary drivers of track morphology. In 
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this model, if a substrate is consistent across a number of track traces, track morphology 

varies based on the disparate anatomy or dynamics of the trackmaker, with similar 

inferences for consistency across the other two axes (Figure 7.1). 

This is important to note, as it is tempting when looking at ichnofossils from a biologist’s 

perspective to assume a one to one relationship between the shape of a trackmaker’s foot 

and the resultant footprint, and from a sedimentologist’s perspective to overstate the role 

of the underlying substrate, when anatomy, and gait dynamics, are equally crucial factors 

(Hatala et al., 2013; Gatesy and Falkingham, 2017).  

 

Figure 7.1 A visual representation of the three-dimensional graph proposed by 

Falkingham (2014) to demonstrate the three fundamental factors in footprint formation. 
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7.2.2 Extreme Heteropody and Manus-Only Trackways as Phenomena 

Extreme forms of heteropody are relatively rare in extant, quadrupedal taxa, especially 

among cursorial animals (as demonstrated in chapters 4 and 6). Extant animals with 

pronounced heteropody are most often animals that specialise in non-cursorial forms of 

locomotion, with heteropody often accompanied by differences in posture - i.e. frogs, 

rabbits and kangaroos, specialised for hopping, and beavers, for swimming (see chapter 

4). Extreme heteropody is perhaps more common in the fossil record, with sauropod 

dinosaurs being an example of a group in which extreme heteropody is common, and one 

where all species appear fully terrestrial and ill-suited for hopping or digging. 

Manus-dominated trackways have been attributed to both wide- and narrow-gauge 

trackmakers (they are preserved where only the manus exerts enough pressure to leave 

an impression in substrate). It has been hypothesised the formation of these trackways 

may be related to more anterior centre of mass positions in their trackmakers (Vila et al., 

2005; Falkingham et al., 2010).  

Wide gauge trackways are most often attributed to derived macronarian sauropods, many 

of them titanosauriforms, the only sauropod group to survive up until the K-Pg mass 

extinction event 66 million years ago (Lee and Lee, 2006; Castanera et al., 2011; Mannion 

and Upchurch, 2011; Vila et al., 2012). 

7.2.3 Centre of Mass and Convex Hulls 

Many previous studies have focused on producing centre of mass data for non-avian 

dinosaurs, with the aim of giving context to postural transitions, such as reversions to 

quadrupedality in ornithischian dinosaurs (Maidment et al., 2014), and shifts towards 

avian posture in derived theropods (Allen et al. 2013), and to investigate locomotory ability 

(Henderson, 2004; Alexander, 2006). The findings of Bates et al. (2016) are important to 

consider for the context of this chapter, finding two significant shifts in centre of mass 

across sauropodomorph evolution, with the evolution of quadrupedalism, and the 

evolution of titanosauriforms, both associated with elongation of the neck. If heteropody 

and CoM position are functionally linked, there could be similar shifts occurring in 
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sauropod heteropody to match – namely shifts away from extreme heteropody, towards 

more even sized manus and pes, which would presumably be observable in fossil 

trackway evidence.  

7.2.4 Aims 

This chapter aims to identify potential links between heteropody and CoM position in 

sauropod dinosaurs using the fossil record. This is attempted in two ways: by examining 

heteropody in sauropodomorph trace fossils, and how it compares to known trends in 

CoM position in this clade, and by examining preserved manus/pes pairs in dinosaur body 

fossils where CoM position estimates are available. If, as previously hypothesised, shifts 

in heteropody in sauropod dinosaurs are reflections of a pressure equalisation 

mechanism, their trackway data should indicate two major shifts away from heteropody. 

This would be consistent with the CoM positions shifts demonstrated in Bates et al. 

(2016). Such a trend could also be expected from body fossil evidence.  If this were the 

case however, its signal would likely be muted due to manus-pes differences in soft tissue 

extent, as demonstrated in Chapters 2 and 6.  

7.3 Methods for Examining Heteropody and Its Implications in the Fossil Record 

Since all quadrupedal members of the clade Dinosauria are extinct, no in vivo data can be 

gathered to test differences in manus and pes pressures, vertical forces, or contact areas, 

during locomotion, nor heteropody in a static position. Nor are sufficient soft tissue 

remains available to aid in estimations of centre of mass data. Despite this, there is a 

wealth of literature describing the anatomy of dinosaur body fossils in detail, along with 

comprehensive descriptions of trace fossils. These data partly reflect the behaviour and 

biomechanics of extinct organisms, such as dinosaurs, in vivo. Unfortunately, finding 

articulated manus and pes for any dinosaur is a rare occurrence (Bonnan, 2003; 2005; 

Bedell Jr. and Trexler, 2005). Therefore the body fossil dataset for this study is small. 

Fossil trackways containing preserved manus and pes prints from dinosaurs are much 

more common, and a useful resource for observing heteropody. However, assigning 

trackmakers to fossil trackways is a difficult task (Lockley et al., 1994b; Smith and Farlow, 
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2003; Castanera et al., 2013). To keep the trackway analysis portion of this study less 

dependent on the distinctions between trackmakers, only heteropody measures from 

sauropodomorph trackways were collected, with distinctions made only between 

macronarian and diplodocid trackmakers. 

7.3.1 Methods Involving Body Fossils 

To examine any possible correlation between heteropody and centre of mass position in 

non-avian dinosaurs, a similar technique as employed in chapter 3 was used. In that 

chapter, manus and pes underfoot area was estimated by multiplying the maximum width 

of the foot at the carpals/tarsals (the wrist/ankle joint) with ‘functional foot length’, 

corresponding to the foot posture of the animal in question. In the case of Dinosauria, the 

current evidence points to the majority of non-avian dinosaurs being functionally 

digitigrade (Carrano, 1997; Sereno, 1997). The possible exception to this rule is derived 

sauropod dinosaurs, who most likely possessed a semi-digitigrade pes with a fatty foot 

pad to help deal with excessive stress. Similar structures are found in the foot anatomy of 

modern elephants, which, in terms of their interactions with substrate, are functionally 

plantigrade, despite their osteology (Hutchinson et al., 2011; Jannel et al., 2019).  

The lengths and widths of the skeletal elements of the manus and pes of dinosaurs with 

both sets of autopodia preserved were taken, and the length of the longest digit in each, 

where both elements were preserved, was multiplied by the maximum width at the 

carpals/tarsals. Of the available data, 7 were sauropodomorphs (5 of which were 

sauropods), 3 were thyreophorans, and 3 were ornithopods. The sample size was small 

due to lack of preserved, articulated manus and pes for quadrupedal dinosaurs, outside of 

composites. 

Digit length was obtained through figures, photographs, and diagrams from the literature 

for each specimen, from sources from the literature are outlined in Table 7.1. 

Heteropody index was then calculated (manus underfoot area, as a percentage of pes 

underfoot area) (Riga and Calvo, 2009). In chapter 4, no correlation was found between 

heteropody and centre of mass position using these methods, except for in semi-aquatic 
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animals. However, despite the terrestriality of non-avian dinosaurs, evidence from fossil 

trackways suggests a higher prevalence in extreme heteropody among dinosaurs than in 

the extant taxa tested in chapter 4, in which case they might prove to show correlation, as 

semi-aquatic animals did. It may also highlight differences between foot contact area with 

the ground, and underfoot area of the foot as measured osteologically. 

Centre of mass data was also gathered using sources from the literature (Table 7.1) 

(Henderson, 2006; Allen et al., 2013; Maidment et al., 2014; Bates et al., 2016). In 

addition to these sources, centre of mass values for Iguanodon, Edmontosaurus, and 

Tenontosaurus were calculated as in chapter 3, using laser scans retrieved from a 

previous study (Sellers et al., 2012), reposed into a neutral position, and combined whole-

body convex hulls. It is important to consider that collating CoM values derived using three 

different methods is potentially dubious, especially considering some of the surprising 

findings of Maidment et al., regarding thyreophoran CoMs. However, this study is limited 

by the scope of the data available, while any findings as a result of this collation of 

methods should be interpreted with extra scepticism. 

Table 7.1 Osteological data for dinosaurs where whole body CoM and manus/pes 

lengths were available, with references. 

 
Taxon 

CoM (% G-A 
Distance 
from hip) 

HI (manus 
as % of 
pes) CoM Value Reference 

 
Manus/Pes Dimensions Reference 

   

Lufengosaurus 31.20 25.76 (Bates et al., 2016) (Young, 1941; 1947)    

Plateosaurus 11.30 173.43 (Henderson, 2006) (Farlow and Brett-Surman, 1999)    

Apatosaurus 30.40 36.00 (Henderson, 2006) (Farlow and Brett-Surman, 1999)    

Brachiosaurus 37.40 28.43 (Henderson, 2006) (Falkingham, 2010)    

Diplodocus 11.50 45.80 (Henderson, 2006) (Falkingham, 2010)    

Camarasaurus 30.90 93.00 (Henderson, 2006) (Tschopp et al., 2015)    

Shunosaurus 27.40 201.27 (Henderson, 2006) (Weishampel et al., 2007)    

Edmontosaurus 26.80 43.03 Original Calculation (Farlow and Brett-Surman, 1999)    

Iguanodon 29.92 11.48 Original Calculation (Farlow and Brett-Surman, 1999)    

Tenontosaurus 21.95 118.11 Original Calculation (Farlow and Brett-Surman, 1999)    

Scelidosaurus 21.00 42.75 (Maidment et al., 2014) Photo Reference    

Euoplocephalus 19.00 127.91 (Maidment et al.,  2014) (Coombs Jr, 1986)    

Stegosaurus 4.00 78.34 (Maidment et al.,  2014) (Weishampel, et al., 2007)    
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Where both heteropody and centre of mass values could be derived using the above 

methods, centre of mass was plotted against heteropody for 18 taxa, with heteropody 

index recorded for 31 taxa. Articulated manus and pes non-avian dinosaur fossils are 

rarely found for the same specimen, so a small sample size was to be expected. Age data 

for the taxa in question were gathered using Paleodb (Uhen et al., 2013). 

7.3.2 Methods Involving Trace Fossils 

To examine heteropody in fossil footprints, papers published on sauropod fossil trackways 

where both manus and pes imprints were preserved were collected to determine 

heteropody over geological time, for sauropodomorphs, macronarian sauropodomorphs, 

and diplodocid sauropodomorphs. These data were not compatible with collected centre 

of mass data due to difficulties assigning tracks to trackmakers. However, by tracking 

heteropody in fossil trackways through time, it should be possible to observe whether 

there are major shifts in heteropody in sauropods concurrent with shifts in sauropod CoM 

position, as observed in Bates et al. (2016), (Figure 7.2) which would suggest heteropody 

and CoM position are functionally linked. In addition, it is possible to observe heteropody 

in quadrupedal sauropodomorphs across temporal and, to some extent, phenotypic, 

distance from their bipedal ancestors. If this is the case, in data for all sauropodomorphs, 

there should be a shift in heteropody with the evolution of, and proliferation of, 

quadrupedal sauropods, and a second shift should be visible in data for all 

sauropodomorphs, and in data for macronarians, which is absent in data for diplodocids, 

as it is associated with the evolution of, and proliferation of, titanosauriforms.  

Manus and pes data for individual trackways were collected, and the average manus 

length and width per trackway was used to determine heteropody index, as described 

above, in section 7.2.1. Age data for each trackway was gathered from the individual 

papers describing the trackways and their sites and were binned into time units of 5 

million years each.  

Since manus and pes data are both necessary for this analysis, this data does not 

account for the presence of manus-only, or pes-only trackways. While this may result in 
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some obfuscation of the true range of heteropody in Sauropodomorpha, manus-only 

trackways do not necessarily indicate extreme heteropody in and of themselves, since 

many manus-dominated trackways with faint pes impressions have relatively even 

manus/pes area (Lee and Huh, 2002; Falkingham et al., 2012).  

A database of 136 sauropodomorph trackways was assembled, where manus and pes 

data for the trackway were available with which to calculate heteropody index, 

representing a spread of disparate geological eras and sauropod ichnotaxa, of which 93 

were identified as macronarians, and 32 as diplodocids. These data were collected using 

the studies outlined in Table 7.2 

These results were plotted alone as well as against those of Bates et al. (2016), both raw 

taxon values and ancestral states estimations, to compare and contrast how CoM and 

heteropody changed in sauropodomorphs over time (Figure 7.2).  

To account for potential sampling bias, diversity curves for sauropod dinosaurs and the 

ichnotaxa analysed in this study alone were created using data from Paleodb (Uhen, et 

al., 2013) (Figure 7.5). In addition, heteropody results for sauropod trackways were plotted 

alongside number of trackways sampled and range of results to make the diversity of 

results, and effect of sampling, transparent (Figure 7.6).  

Table 7.2 Trackways used for analysis in this chapter, with their assigned ichnotax, 

age in millions of years, heteropody index (manus area as percentage pes area), and their 

reference from the literature. 

Ichnotaxon Age (Ma) 
HI (Manus 
as % Pes) Reference 

Polyonyx 142 41.07 (Fernández-Baldor et al., 2015) 

Polyonyx 142 40.34 (Fernández-Baldor et al., 2015) 

Misc. Sauropod 168.5 15.44 (Barnes and Lockley, 1994) 

Breviparopus 167.2 25.25 (dePolo et al., 2018) 

Misc. Titanosaurid 72.1 39.67 (Bates et al., 2008) 

Misc. Titanosaurid 72.1 47.82 (Bates et al., 2008) 

Misc. Titanosaurid 72.1 41.27 (Bates et al., 2008) 

Misc. Sauropod 119 29.17 (Casanovas et al., 1997) 

Sauropodichnus giganteus 142 40.23 (Castanera et al., 2011) 

Sauropodichnus giganteus 142 43.18 (Castanera et al., 2011) 

Sauropodichnus giganteus 142 33.54 (Castanera et al., 2011) 



127 
 

Sauropodichnus giganteus 142 44.25 (Castanera et al., 2011) 

Misc. Sauropod 142.4 31.84 (Castanera et al., 2012) 

Misc. Sauropod 142.4 27.89 (Castanera et al., 2012) 

Brontopodus pentadactylus 106.75 61.07 (Kim and Lockley, 2012) 

Brontopodus pentadactylus 106.75          66.10 (Kim and Lockley, 2012) 

Misc. Titanosaurid 69.05          39.30 (Lockley et al., 2002) 

Brontopodus 154.7 32.17 (Marty et al., 2010) 

Parabrontopodus 154.7 17.07 (Marty et al., 2010) 

Misc. Sauropod 154.7 31.49 (Marty et al., 2010) 

Misc. Sauropod 154.7 48.36 (Marty et al., 2010) 

Breviparopus taghbaloutensis 157.8          16.79 (Marty et al., 2010) 

Breviparopus taghbaloutensis 157.8 19.82 (Marty et al., 2010) 

Titanopodus mendozensis 72.1 32.36 (Riga and Calvo, 2009) 

Brontopodus 112.75 18.63 (Xing et al., 2014) 

Brontopodus 112.75 42.83 (Xing et al., 2014) 

Brontopodus 112.75 40.15 (Xing et al., 2014) 

Brontopodus 112.75 44.36 (Xing et al., 2014) 

Brontopodus 112.75 32.99 (Xing et al., 2014) 

Brontopodus 112.75 35.19 (Xing et al., 2014) 

Brontopodus 112.75 25.25 (Xing et al., 2015a) 

Liujianpus shunan 187.7 35.88 (Xing et al., 2016c) 

Liujianpus shunan 187.7 43.18 (Xing et al., 2016c) 

Brontopodus 187.7 38.55 (Xing et al., 2016c) 

Parabrontopodus 106.75          43.80 (Xing et al., 2017) 

Misc. Sauropod 187.7 25.25 (Xing et al., 2016d) 

Misc. Sauropod 187.7 30.67 (Xing et al., 2016d) 

Misc. Non-Titanosauriform Macronarian 142.4 31.84 (Arribas et al., 2008) 

Misc. Prosauropod 186.75 30.87 (Avanzini et al., 2001) 

Lavinipes cheminii 199.3 35.63 (Avanzini et al., 2003) 

Misc. Macronarian 66 23.88 (Diaz-Martinez et al., 2018) 

Elephantopoides  152.4 32.62 (Diedrich, 2011) 

Elephantopoides  152.4 42.03 (Diedrich, 2011) 

Elephantopoides  152.4 33.22 (Diedrich, 2011) 

Elephantopoides  152.4 33.17 (Diedrich, 2011) 

Elephantopoides  152.4 39.02 (Diedrich, 2011) 

Elephantopoides  152.4 18.42 (Diedrich, 2011) 

Elephantopoides  152.4 39.93 (Diedrich, 2011) 

Elephantopoides  152.4 18.77 (Diedrich, 2011) 

Titanopodus mendozensis 72.1 40.35 (Riga et al., 2015) 

Titanopodus mendozensis 72.1 31.58 (Riga et al., 2015) 

Misc. Brachiosaurid 112.75 96.34 (Hwang et al., 2004) 

Misc. Brachiosaurid 112.75 66.11 (Hwang et al., 2004) 

Misc. Brachiosaurid 112.75 69.59 (Hwang et al., 2004) 

Misc. Brachiosaurid 112.75 66.04 (Hwang et al., 2004) 

Misc. Brachiosaurid 112.75 71.04 (Hwang et al., 2004) 

Misc. Brachiosaurid 112.75 55.98 (Hwang et al., 2004) 

Misc. Brachiosaurid 112.75 66.96 (Hwang et al., 2004) 

Misc. Brachiosaurid 112.75 57.36 (Hwang et al., 2004) 

Misc. Brachiosaurid 112.75 50.59 (Hwang et al., 2004) 

Misc. Brachiosaurid 112.75 68.41 (Hwang et al., 2004) 

Parabrontopodus 148.55 45.31 (Le Lœuff et al., 2006) 
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Parabrontopodus 148.55 37.42 (Le Lœuff et al., 2006) 

Parabrontopodus 148.55 26.03 (Le Lœuff et al., 2006) 

Parabrontopodus 148.55 37.56 (Le Lœuff et al., 2006) 

Parabrontopodus 148.55 42.22 (Le Lœuff et al., 2006) 

Parabrontopodus 148.55 40.68 (Le Lœuff et al., 2006) 

Misc. Titanosaurid 93.9 58.09 (Martin et al., 2017) 

Misc. Sauropod 93.9 29.71 (Martin et al., 2017) 

Parabrontopodus 150.275 28.17 (Marty et al., 2013) 

Parabrontopodus 150.275 31.49 (Marty et al., 2013) 

Brontopodus plagnensis 150.275 47.10 (Mazin et al., 2017) 

Parabrontopodus 157 28.20 (Mazin et al., 2016) 

Brontopodus 157 48.77 (Mazin et al., 2016) 

Misc. Sauropod 157 38.96 (Mazin et al., 2016) 

Brontopodus 157 59.58 (Mazin et al., 2016) 

Misc. Sauropod 157 22.11 (Mazin et al., 2016) 

Parabrontopodus/Breviparopus 157 25.75 (Mazin et al., 2016) 

Misc. Sauropod 157 56.93 (Mazin et al., 2016) 

Misc. Sauropod 157 36.00 (Mazin et al., 2016) 

Misc. Sauropod 157 26.13 (Mazin et al., 2016) 

Misc. Sauropod 157 58.84 (Mazin et al., 2016) 

Misc. Sauropod 157 30.43 (Mazin et al., 2016) 

Misc. Sauropod 157 52.67 (Mazin et al., 2016) 

Misc. Sauropod 157 46.70 (Mazin et al., 2016) 

Parabrontopodus/Breviparopus 157 23.80 (Mazin et al., 2016) 

Misc. Sauropod 157 51.71 (Mazin et al., 2016) 

Misc. Sauropod 157 46.60 (Mazin et al., 2016) 

Brontopodus 89.8 45.37 (Mezga et al., 2006) 

Brontopodus 89.8 18.72 (Mezga et al., 2006) 

Brontopodus 146.775 30.41 (Mezga et al., 2007) 

Parabrontopodus 106.75 20.61 (Moratalla, 1994) 

Titanopodus 72.1 38.87 (Riga and Tomaselli, 2019) 

Titanopodus 72.1 32.11 (Riga and Tomaselli, 2019) 

Titanopodus 72.1 42.91 (Riga and Tomaselli, 2019) 

Misc. Sauropod 106.75 27.27 (Santos et al., 2015) 

Misc. Sauropod 168.3 24.27 (Wagensommer et al., 2012) 

Brontopodus 113 52.59 (Xing et al., 2013) 

Parabrontopodus 113 58.95 (Xing et al., 2013) 

Brontopodus 100.5 58.95 (Xing et al., 2015b) 

Brontopodus 100.5 58.34 (Xing et al., 2015b) 

Brontopodus 100.5 29.08 (Xing et al., 2015b) 

Parabrontopodus 122.75 25.69 (Xing et al., 2015c) 

Parabrontopodus 122.75 23.30 (Xing et al., 2015c) 

Brontopodus 112.5 61.22 (Xing et al., 2015b) 

Parabrontopodus 145.5 41.12 (Xing et al., 2015d) 

Misc. Titanosaurid 145.5 39.68 (Xing et al., 2015d) 

Misc. Titanosaurid 145.5 49.91 (Xing et al., 2015d) 

Misc. Titanosaurid 113 31.33 (Xing et al., 2015e) 

Brontopodus 112.5 41.89 (Xing et al., 2016e) 

Brontopodus 159.55 33.94 (Xing et al., 2016b) 

Brontopodus 159.55 45.65 (Xing et al., 2016b) 

Misc. Titanosauriform 113 41.97 (Xing et al., 2016f) 
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Misc. Titanosauriform 113 58.20 (Xing et al., 2016f) 

Misc. Titanosauriform 113 39.50 (Xing et al., 2016f) 

Parabrontopodus-like 106.75 43.80 (Xing et al., 2017a) 

Brontopodus 187.7 35.32 (Xing et al., 2019a) 

Parabrontopodus 105 18.62 (Xing et al., 2018) 

Parabrontopodus 105 22.71 (Xing et al., 2018) 

Brontopodus 105 68.00 (Xing et al., 2018) 

Brontopodus 105 48.37 (Xing et al., 2019b) 

Brontopodus 105 32.96 (Xing et al., 2019b) 

Brontopodus 90.1 37.57 (Xing et al., 2019c) 

Brontopodus 90.1 43.66 (Xing et al., 2019c) 

Brontopodus 90.1 31.93 (Xing et al., 2019c) 

Brontopodus 90.1 36.46 (Xing et al., 2019c) 

Brontopodus 90.1 36.90 (Xing et al., 2019c) 

Brontopodus 90.1 42.85 (Xing et al., 2019c) 

Brontopodus 122.25 34.03 (Zhang et al., 2006) 

Sauropodichnus giganteus 119 34.48 (Meyer et al., 2018) 

Brontopodus 125 45.45 (Meyer et al., 2018) 

c.f. Brontopodus 69.05 33.33 (Meyer et al., 2018) 

Rotundichnus 154.6 27.78 (Meyer et al., 2018) 

Rotundichnus 142.4 29.41 (Meyer et al., 2018) 

Brontopodus 125 41.67 (Meyer et al., 2018) 

Calorckosauripus 69.05 54.05 (Meyer et al., 2018) 
 

 

 

7.4 Results  

7.4.1 Trace Fossil Analysis 

Analysis of sauropodomorph trackways demonstrated a great deal of diversity in 

heteropody, particularly in trackways assigned to macronarian trackmakers, ranging from 

almost equal sized manus and pes, to manus of ~15% pes size (with diplodocid-assigned 

trackmakers showing a range of ~17-60% manus size as % pes size) (Table 7.1).   

Data did not appear to closely match that of Bates et al (2016), either with ancestral states 

estimations, or with raw taxon data. Despite two apparent peaks in heteropody reduction 

in the dinosaur track data, these peaks were greatly temporally offset from the anterior 

CoM shifts found by Bates et al, are linked with known sampling bias, and do not show 

any indication that these two variables are linked (Figure 7.2). 
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Figure 7.2 Estimated centre of mass trends (gleno-acetabular distance in front of the 

hip) over geological time in sauropodomorphs (and outgroups), showing major CoM shifts 

across sauropodomorph evolution, based on centre of mass estimates from 3D convex 

hulls of mounted skeletons (from Bates et al., 2016), overlaid with sauropodomorph 

trackway data collected in this chapter (green dots). Above – Estimated evolutionary 

patterns based on taxon data and calculated ancestral states versus trackway data. Below 

– Raw taxon values versus trackway data.  
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Linear models of heteropody over time for individual trackways showed R² = 0.05 for all 

sauropodomorpha, 0.02 for macronarian-assigned ichnotaxa, and 0 for diplodocid 

assigned taxa (Figure 7.3). The linear model for individual trackways for all 

sauropodomorphs was significant, where no other analyses were (Figures 7.3 and 7.4). 

Taking the mean of heteropody results for time bins of 5Ma (from 66Ma backwards) as 

linear models resulted in R² = 0.15 for all sauropodomorpha, 0.16 for macronarians, and 

0.05 for diplodocids. These results imply no overall increase or decrease in heteropody 

over time, as might be expected if heteropody decreased or increased with phylogenetic 

and temporal distance from the bipedal ancestors of sauropodomorphs. Instead, 

increases in diversity of heteropody results, accompanied by peaks in heteropody index 

results are observable at ~160 and ~110 Ma, indicating lowering heteropody at these 

points. However, the periods in which these peaks occur are coincide with the largest 

number of samples per time bin, both in terms of those trackways analysed in this study, 

and fossil trackway samples in general (Figures 7.5 and 7.6). Since the timing of these 

sampling and heteropody peaks are so similar, sampling error is likely the reason for 

these apparent peaks, and not the anterior shifts in CoM found in Bates et al (2016), 

which are offset by millions of years. 

 Peaks at ~160 and ~110 Ma are most prominent in macronarian-assigned taxa, at 

averages of ~42 and ~57% manus as % pes size, compared to ~38 and ~47% for all 

sauropodomorphs. This pattern is less clear in diplodocid-assigned ichnotaxa, where, 
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aside from one trackway from (Xing et al., 2013), which was obviously outlying at almost 

60% manus size as % pes size, heteropody index remained between around 20-40%. 

 

Figure 7.3 Trackway analysis results for sauropodomorphs. A – all individual 

trackways and linear model. B – trackways averaged by 5 Ma time bins and linear model 

data. C – individual trackways and linear model for macronarians. D – trackways 

averaged by 5 Ma time bins and linear model data for macronarians.  
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Figure 7.4 Trackway analysis results for diplodocid sauropodomorphs (A and B 

excluding Xing, et al., 2013). A and C – all individual trackways and linear model. B and D 

– trackways averaged by 5 Ma time bins and linear model data.  
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Figure 7.5 Taxa diversity in sauropodomorphs over time from total sauropod fossil 

diversity (above), and diversity of the ichnotaxa analysed in this chapter (below) to 

highlight possible sampling bias in the fossil footprint literature.  
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Figure 7.6 Heteropody in sauropodomorph trackways over time, plotted with number 

of samples per 5Ma time bin and error bars for range of heteropody values for each 5Ma 

time bin.  

7.4.2 Body Fossil Analysis 

For osteological analyses, weak correlations between centre of mass position and 

heteropody index were found for both quadrupedal dinosaurs in general, and 

sauropodormophs (R² = 0.11 and 0.14 including Shunosaurus, and 0.27 and 0.36 without 

Shunosaurus, respectively, none of which had p value <0.05) (Figure 7.7). From these 

correlations, ~10% of the data fits the hypothesis quadrupedal dinosaurs, especially 

sauropods, have a smaller manus compared to their pes associated with more anterior 

centre of mass positions. If the hypothesis were true, it would theoretically mean higher 

pressure in the manus is associated with more anterior CoM, which would rule out any 

universal pressure equalisation mechanisms at work. However, given the small sample 

size present, allowing for human error in measuring the feet, and the fact that this method 

only accounts for skeletal underfoot surface area, and not the entire in vivo extent of the 

foot, along with the weak correlations found, there are many reasons to doubt this result. 

In addition, the range of CoM positions seen across these data is small. In context of the 
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diversity of CoM positions in tetrapods, as seen in previous chapters, and not plotted as 

linear models, these results might not appear as unusual. This result could possibly 

become more pronounced, or the opposite, with more data, and more fossil discoveries. 

However, articulated manus and pes fossils are rare finds.  

Of the manus and pes pairs used for this analysis, only 6 belonged to sauropodomorphs, 

and 5 to members of Sauropoda. Most notably, there were no titanosaurs with both 

manus and pes to analyse, (outside of composites of multiple specimens) which, in this 

analysis underrepresents the spread of extreme heteropody in the clade, as demonstrated 

by the trace fossil analysis in 7.4.1. In addition, Shunosaurus as an outlier in the data is 

noteworthy, given it possesses a shorter neck than many other sauropods as a 

plesiomorphic trait (Zheng, 1996; Henderson, 2013), and that changes in neck size were 

found to be associated with CoM position changes in sauropodomorphs in (Bates et al., 

2016). 
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Figure 7.7 
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7.5 Discussion, Implications and Explanations of Dinosaur Analysis 

The above evidence suggests no definitive trend between centre of mass position and 

heteropody in the osteology of Dinosauria. This makes sense given the findings of chapter 

4, where tetrapods in general, showed no universal trend between these variables when 

looking at osteology. It is possible that a larger sample size, with representative numbers 

for different sauropodomorph clades would produce more compelling results. However, 

that is speculative, and previous chapters seem to suggest a more likely explanation, 

wherein osteological heteropody shows no clear link with centre of mass, with more of an 

effect visible from analyses that take account of soft tissue. In this way, the trackway 

analysis in this chapter could have potentially offered a more promising result in terms of 

establishing the presence/absence of a functional link between heteropody and centre of 

mass position. However, this does not appear to have borne out in the data, with no clear 

evidence for a functional link even in trackway data.  

The result that two peaks in heteropody over geological time were found in this chapter’s 

trackway analysis may at first suggest a result reflective of centre of mass shifts reported 

in Sauropodomorpha over time, in which two significant centre of mass shifts were 

recorded, coinciding with the onset of quadrupedality in sauropodomorphs, and the 

evolution of titanosauromorphs, with both shifts associated with increases in neck length 

(Bates et al., 2016). There is, however, 40-50 Ma between the reported shifts in CoM 

position in sauropodomorphs, and the two potential peaks in heteropody index found in 

this chapter. This could reflect on the time it took for quadrupedal sauropodomorphs, and 

titanosaurs, to proliferate enough in terms of numbers, diversity, and cosmopolitanism to 

leave more fossil trackways than other sauropodomorphs. However, there were enough 

body fossils being left for them to be known in the fossil record throughout this time. The 

peaks more likely reflects a preservation bias, supported by the diversity plots in Figure 

7.5, and the close association between spikes in number of samples and heteropody 

shown in Figure 7.6. This sample biasing could potentially be exacerbated by the 

geographic distribution of titanosaurs versus other sauropodomorphs. Since it has 

previously been proposed that titanosaurs lived in inland, mountainous regions, compared 
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to a more coastal distribution for other sauropods (Mannion and Upchurch, 2010; 2011). 

Where these animals lived, and had potential to fossilise, could be influencing the strength 

of their signal in these data. However, poor preservation in mountainous regions also 

applies to osteology.  

7.5.1 Potential Trackway Issues 

Manus-only fossil trackways have been described by multiple teams, at multiple sites (Vila 

et al., 2005; Falkingham et al., 2010; Farlow et al., 2019). While their necessary absence 

from this study potentially downplays the diversity of manus track size in the fossil record, 

since the formation of these trackways is influenced by substrate, it can be assumed that 

these trackmakers have left other trackways in different substrates that are reflected in the 

data (Falkingham et al., 2010).  

Pes-only trackways are necessarily absent from the data for the same reasons. However, 

since these trackways are potentially formed by animals overprinting on the manus with 

the pes (a behaviour recorded in extant animals when filming them with high speed 

cameras in previous chapters), animals that exhibit this behaviour regularly would possibly 

lack definitive preserved manus and pes prints in the fossil record, and therefore are 

perhaps less likely to be represented in the data than animals forming manus-only 

trackways (Zhang et al., 2006; Falkingham et al., 2010; Milàn and Hedegaard, 2010; 

Lockley et al., 2012; Xing, Li, Falkingham, et al. 2016).  

In addition, since what is counted definitively as a manus or a pes print is dependent on 

assignments by individuals, there is a risk of manus and pes sizes being impacted by 

proximity, wherein a previous print may be distorted by the formation of the new one and 

the movement of the relevant substrate (Lockley et al., 2002; Schumacher and Lockley, 

2014). This problem would also be more common in more compliant substrates, and as 

such can vary from trackway to trackway (Jackson et al., 2010; Razzolini, 2017). 
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7.5.2 Sauropod Foot Posture 

It is worth noting that, while all dinosaurs were counted as digitigrade in the osteological 

potion of this study, the true foot posture of the sauropod pes is likely semi-digitigrade, 

with the existence of a fatty foot pad underneath the toes restricting movements, akin to 

that found in elephants (Platt and Hasiotis, 2006; Foster and Hunt-Foster, 2011; 

Hutchinson et al., 2011; Paik et al., 2017; Jannel et al., 2019).  

This posture would render the sauropod pes ‘functionally plantigrade’. However, since the 

extra support comes in the form of unpreserved soft tissue, rather than bone, using 

osteology to estimate foot size would not give an accurate estimate of sauropod foot size. 

At the same time, ‘functionally plantigrade’, and plantigrade, are rather different concepts, 

and not interchangeable. Since sauropods with this foot posture would still be walking on 

their digits, with added functional support, they were considered digitigrade, and 

measured as such (Carrano, 1997). Based on the research done in chapter 2 however, it 

appears that measuring heteropody via osteology underestimates heteropody, with the 

underfoot surface area of the manus in vivo larger than the underfoot surface area of the 

pes that would be expected based on osteology alone. In addition, in vivo analysis of 

heteropody showed more possibility of a functional link with centre of mass position than 

found looking at osteology alone. It is also likely that, as with the semi-digitigrade animals 

studied in Chapter 2, estimates of sauropod foot size would vary wildly with how the foot is 

posed. In this way, footprint evidence is vital to understanding the true surface area of 

sauropod feet. While using the formulae from Chapter 2 may produce a more accurate 

estimate of heteropody in this way, by adjusting for differences in soft tissue, it does not 

change the weakness of correlations found and thus an adjusted osteology results graph 

was not included in this chapter.  

7.5.3 Cursoriality 

In chapters 4 and 6, the tendency of cursorial mammals to retain largely equal-sized 

manus and pes, with associated centre of masses just anterior of the centre of the trunk 

was postulated, and evidence found to support this.  
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While bipedal dinosaurs, and therefore the ancestors of quadrupedal dinosaurs, were 

largely cursorial, quadrupedal dinosaurs retained few adaptations for cursoriality, and 

were more likely graviportal or mediportal (Coombs Jr, 1978; Carrano, 1999). Many of 

these dinosaurs retained a centre of mass position much closer to the hip than would be 

expected for a large, quadrupedal animal (Maidment et al., 2014). 

In chapter 4, it was postulated that cursoriality prevents the ability of an animal to 

effectively utilise heteropody to equalise pressure in quadrupeds, as it would potentially be 

more advantageous to maintain relatively equal sized fore and hindfeet, potentially to 

keep propulsive/braking capabilities of the feet even, or for balance purposes. Cursorial 

animals tend to have digitigrade foot postures and reduced numbers of digits, as well as 

potentially fusing/reducing the bones of the wrist/ankle, which could serve to further 

restrict morphological disparity (Lull, 1904). This was not to say that any non-cursorial 

quadrupeds would equalise pressure in this way, rather that they would be freer from 

potential selective pressures not to do so. Sauropodomorpha as a clade would 

presumably have had greater selective pressures to equalise their underfoot pressures, 

due to their unprecedented body size and mass. However, this is not borne out in the 

data, suggesting that these animals found other solutions to this problem, perhaps 

reflected in their very different manus and pes foot postures, the effects of which, and how 

they evolved from bipedal hands and feet, will be a fruitful source of follow-up research to 

this thesis.  

7.5.4 What Can Be Gleaned from Osteological Analyses 

The lack of a definitive effect of CoM on heteropody seen in analyses of osteology, 

suggests several possibilities. First, this effect was small. Second, that the phenomenon 

of extreme heteropody is largely due to soft tissue differences between the manus and 

pes of these dinosaurs. Third, that there were other factors involved in influencing the 

disparity between manus and pes sizes, and spread of centre of masses found in the 

clade, outside of a biomechanical link between heteropody and centre of mass for 

pressure equalisation purposes. Fourth, some combination of the above.  
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If the lack of correlation between heteropody and centre of mass position were to remain 

the case with more evidence to hand, this would support the idea that dinosaurs do not 

use extreme heteropody as a pressure equalisation mechanism. In this case, there would 

be little selective pressure preventing the manus-pes underfoot pressure differences that 

would produce manus-only, and pes-only trackways naturally on land. This does not 

necessarily disprove the idea that these trackways were caused by swimming, or punting, 

sauropods, but would instead make the presupposition of aquatic locomotory habits less 

necessary for explaining the presence of these trackways. This would potentially be an 

interesting result, but is somewhat contradicted by the results of the trackway analysis in 

this chapter. 

With more fossil discoveries, a link between CoM position and heteropody could 

potentially be found using the same methods as this chapter. This possibility is given 

validity by the absence of a representative sample of sauropods in the osteological 

analysis, in particular a complete absence of data representing Titanosauria. In this way, 

the weak correlations found here may be suggestive of a possible correlation between 

heteropody and centre of mass across the clade in the ancient past, and a snapshot of the 

real trend. However, it is possible that the presence of extreme heteropody in Dinosauria 

is more a product of soft tissue distribution between manus and pes than a phenomenon 

easily visible in osteology, as has been suggested is the case in extant animals in 

previous chapters.  

7.5.5 Soft Tissue Implications 

As with the analysis of heteropody in extant quadrupedal tetrapods (chapters 4 and 6), the 

true picture of heteropody is incomplete without in vivo evidence, or at least, evidence of 

the extent of soft tissue under the foot, for both manus and pes. In this chapter, an 

analysis of fossil trackways was performed to provide information about the extent of soft 

tissue heteropody in sauropodomorphs where both manus and pes tracks were 

preserved. However, fossil tracks are by no means a perfect representation of in vivo foot 

anatomy, and rely on its interactions between the substrate, and the dynamics of the 
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trackmaker (Baird, 1957; Padian and Olsen, 1984a; Minter et al., 2007; Razzolini et al., 

2014).  

Based on the analysis of soft tissue and skeletal differences in underfoot surface area 

from chapter 2, it is likely that the in vivo foot surface areas of these animals would be 

defined by greater surface area taken up by soft tissue in the manus, compared to the 

pes. In this case heteropody results found in the body fossil analysis herein would change. 

However, this effect may be offset by the presence of fatty foot pads in most sauropod 

pes (Jannel et al., 2019), and the vast size, and unique morphology of the clade, which is 

unlike anything covered in chapter 2.  

7.5.6 Centre of Mass Diversity, and Explanations for Extreme Heteropody 

The bipedal ancestry of all quadrupedal dinosaurs (VanBuren and Bonnan, 2013; 

Maidment et al., 2014) means that ancestral centre of mass positions for these animals 

are much more posteriorly positioned than would be expected for, for example, a 

quadrupedal mammal (Warner, et al., 2013) or even past the range of lizards (Clemente, 

et al., 2008). In ornithischian dinosaurs, centre of mass position can be close to the hips, 

as in Stegosaurus, or more anterior, as seen in Chasmosaurus (associated with an 

enlarged and elongated skull of substantial mass) (Maidment et al., 2014). In 

sauropodomorphs, significant anterior shifts in centre of mass position have been found at 

two pivotal points in their evolution, during the shift to quadrupedality, and the evolution of 

titanosauriforms, both associated with shifts in neck size (Bates et al., 2016).  

In chapters 4 and 6, it was proposed that extreme heteropody in sauropod dinosaurs 

might be a product of phylogenetic inertia, an ‘evolutionary hangover’ from their bipedal 

ancestry. Support for this postulation was not found in the results of the analysis herein, 

largely because this is hard to test for without macroevolutionary analyses. However, 

based on the lack of positive results for a link between CoM and heteropody here, and the 

different foot postures found in sauropod manus and pes, this will be the subject of further 

study. 
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It is also possible that the extreme heteropody seen in sauropod trackways, is a function 

of the evolution of a fatty foot pad to support the pes (Jannel et al., 2019). Since fatty foot 

pads act to prevent excess pressures underfoot, this is not necessarily an argument 

against the use of heteropody as a pressure equalisation mechanism. Rather, it is further 

evidence that pressure reduction strategies were necessary in sauropods, and were 

selected for, due to their large size and mass. These adaptations could theoretically work 

in tandem (Chi and Roth, 2010; Hutchinson et al., 2011; Jannel et al., 2019). The 

analyses in this chapter however, do not lend sufficient support to support this case. No 

clear evidence was found for a functional link between heteropody and centre of mass 

position in sauropod dinosaurs.  
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Chapter 8 

Discussion 
 

8.1 Summary of Preceding Chapters and Wider Implications 

The preceding major chapters (chapters 2, 4, 6, and 7), along with the ancillary test 

chapters (chapters 3 and 5), represent four parts of an investigation into whether the 

phenomenon of extreme heteropody, seen in sauropod dinosaurs, was correlated with 

unusually anterior/posterior centre of mass positions in quadrupedal tetrapods. If this were 

the case, heteropody in tetrapods could act as an underfoot pressure equalisation 

mechanism. Chapter 2 explored how the underfoot surface area differs between the 

results for live, and skeletons of, extant tetrapods, which is necessary for understanding 

how the latter chapters relate to each other, and how to interpret data from the fossil 

record in comparison to living species. Chapters 4, 6, and 7 directly attempt to address a 

possible correlation between heteropody and centre of mass (CoM), through 

investigations of live, and skeletons of, extant animals, as well as evidence from the fossil 

record. In summary, to answer the question of whether extreme heteropody is functionally 

linked to unusual antero-posterior CoM positions in extant tetrapods, the following 

questions were proposed and answered: 

1. Can skeletal surface area predict in vivo foot surface area? 

2. Is antero-posterior CoM position correlated with heteropody? 

3. Do underfoot forces and pressures indicate the presence of a pressure 

equalisation mechanism? 

4. Is there evidence in the fossil record for a link between CoM position and 

heteropody variation in dinosaurs? 

The findings of each of this thesis’ research chapters, in which these questions were 

answered, are summarised in the following sections: 



146 
 

 

8.1.1 Predictability of in vivo from Skeletal Foot Contact Area 

In chapter 2, CT scans of the feet of 29 extant tetrapods were segmented and reposed so 

that alpha shape ‘footprints’ of the skeletal tissue and soft tissue could be created. From 

there underfoot surface area was calculated for each and how predictable one was from 

the other was tested. Analyses in both an approximated ‘life pose’ and with bones laid flat 

against the plane both determined that in vivo surface area was highly predictable at 

approximately 1.67 times skeletal surface area, with phylogeny and body mass not 

significantly affecting this relationship. Interestingly, when analysing manus and pes 

separately, soft tissue area was approximately 2 times skeletal surface area in the manus, 

and 1.6 times skeletal surface area in the pes. This study outlined a new method for 

predicting approximate in vivo foot size for extinct animals based on fossil specimens, with 

applications for narrowing down potential fossil trackmakers. This study highlights the 

importance in considering differential soft tissue amounts between the manus and pes, 

which is directly considered in later chapters as a possible explanation for extreme 

heteropody in sauropod dinosaurs. 

8.1.2 Pressure Measurements and their Utility 

There are multiple ways of measuring underfoot pressure, mean pressure over time, 

maximum pressure during a footfall, pressure at median footfall time, pressure across 

time intervals, etc (Duckworth, et al., 1985; Bus, 2016). This thesis put more emphasis on 

maximum and median pressure during a footfall, but there are merits and downsides to 

any method of pressure measurement. For the purposes of this thesis, maximum pressure 

over the course of a footfall was a useful measurement as it coincided with the point at 

which the subject animal’s entire foot was placed upon the ground. In addition, the studies 

where literature data was pulled from recorded peak pressure data, and so recording peak 

pressure in the new data made comparing these data more comparable with the literature. 

Median pressure values tended to be close to, or identical to, peak values. As well as this, 

since one of the major aims of this thesis was to decipher how weight distributed across 
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the feet was connected to foot area, it was beneficial to analyse the maximum load a foot 

regularly deals with during walking, so loads under each foot were not underestimated. 

While measuring underfoot pressure this way makes sense in studies like this where 

multiple animals are being compared and maximum load on each foot is relevant, for 

instance, when studying a single animal’s locomotion in depth, it would be beneficial to be 

extensive, analysing total pressure over each footfall, and collecting means 

(panagiotopoulou, et al. 2016). Stationary animals, or animals performing alternative gaits 

such as galloping, hopping, or running would have additional considerations. During rapid 

locomotion, such as running or hopping, CoM movement is the inverse of its movements 

during walking, as such, forefoot/hindfoot pressure recorded during such gaits would not 

be reflective of walking (Zhang, et al., 2017). However, these measurements should be 

considered carefully based on each individual circumstance. For example, measuring 

mean pressure across a footfall could potentially be beneficial for comparing animals with 

very different footfall speeds, or gaits, where maximum load under each foot is more 

relative.  

For these instances, however, more considerations need to be taken, as changing gait, 

stance time, or duty factors in the forelimbs or hindlimbs can be used to reduce pressure 

equalisation in ways not directly related to foot anatomy (Biewener, 1983b; Assaf, et al., 

2019). In addition, heteropody, as it refers to differences in foot contact area under the 

manus and the pes, can be changed in real time in these cases, by changing foot posture 

for different gaits, to cope with the mechanical challenges of different speeds, terrain, or 

overall gait (Young, et al., 1992). In addition, pressure reduction techniques are not the 

exclusive purview of the area of the foot touching the ground, and foot posture, leg 

posture and structure, and anatomical gait restrictions can affect how pressure under the 

foot is managed in ways that may not be obvious from the anatomy of foot contact area 

(Biewener, 1983b; Biewener and Patek, 2018). These factors, both anatomical and non-

anatomical, will inevitably change how pressure is recorded. Maximum pressure will vary 

across different gaits, so studying pressure over time, and taking the mean, could be a 

more useful metric. This measure becomes less useful in instances of changing duty 
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factor, where time on each foot is adjusted. Running animals may reduce both foot 

contact area and contact time, and measures of heteropody would not reflect the foot 

contact area of walking gaits. As might be expected, consulting similar studies in the 

literature is advised for optimising data collection in this regard, and avoiding error. 

8.1.3 Linking Centre of Mass Position and Heteropody In Extant Tetrapod 

Skeletons 

In chapter 4, the possibility of a functional link between CoM position and underfoot 

surface area in extant tetrapods was examined using foot measurements and whole-body 

convex hulls of 57 skeletons. This followed the shape analysis in chapter 3, which 

established length x ‘carpal width’ (minimum width on most proximal area of foot in 

contact with the ground) as the most accurate area proxy. No correlation between 

heteropody and CoM position was found, except arguably in cursorial mammals. Cursorial 

mammals were found to cluster together with slightly anterior centres of mass and roughly 

equal foot sizes. There was also a strong correlation between heteropody and CoM 

position in semi-aquatic animals (excluding the Asian water monitor, Varanus salvator), 

with relatively larger manus areas associated with a more anterior centre of mass. This 

study did not support the hypothesis that heteropody and centre of mass are functionally 

linked in a mechanism to equalise underfoot pressure. However, it did not rule out certain 

groups exhibiting this correlation, as in semi-aquatic animals, and the clustering of 

cursorial animals together in a narrow range could potentially indicate an equalisation 

effect.  These chapters established the usefulness of different foot area proxies for 

determining foot area from footprints and the likelihood for cursorial mammals to retain a 

relatively central CoM position. 

8.1.4 Manus-Pes Disparity During Locomotion in Pressure, Area and Vertical 

Force 

Chapter 6 sought to test whether centre of mass was correlated with relative differences 

between underfoot area, vertical force, and pressure, of the manus and pes of extant 

animals, using footfall data from animals walking on pressure mats, both new and from 
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the literature. Cursorial mammals showed a similar pattern to chapter 4 for all three 

underfoot measurements. However, contrary to the findings in chapter 4, overall data 

showed a slight association between more anterior CoM positions and relatively greater 

manus area/peak vertical force, as well as very slightly lower manus pressure. The 

correlations associated with these trends were weak when applied to the entire data set. 

There was a strong and significant correlation when using only the newly collected taxa, 

but this was limited to only 5 data points. However, the pressure mat tests carried out in 

chapter 5 suggest that these data are not reliable on their own due to issues with 

calibration of the plate using humans as a baseline. These results, therefore were not 

convincing enough to support the hypothesis that CoM position could act as a pressure 

equalisation mechanism in extant tetrapods during movement. In addition, these results 

further indicated the importance of accounting for soft tissue, as indicated by differential 

soft tissue coverage in the manus and pes in chapter 2. The differences between the 

results of this chapter and those of chapter 4 indicate that an analysis of heteropody data 

from non-avian dinosaurs from osteology alone would potentially underestimate 

correlations between heteropody and CoM position. Since there is little direct evidence of 

full soft tissue extents in the manus and pes of non-avian dinosaurs, it follows that 

evidence for foot contact area of dinosaurs in vivo should ideally be analysed based on 

fossil footprints, which are more frequently preserved than dinosaur soft tissue. But 

difficulty linking tracks and trackmakers makes this very difficult in practice. These 

chapters established a lack of overall trend between CoM position and 

heteropody/pressure distribution in extant animals. 

8.1.5 Heteropody and Centre of Mass Trends in Quadrupedal Dinosaurs 

The data for extant animals, analysed in chapters 2, 3, 4 and 6, indicated no relationship 

between CoM and heteropody index. However, sauropod dinosaurs exhibit extremes of 

size well beyond modern terrestrial taxa, and may have been under stronger selection 

pressures to reduce underfoot pressures. Chapter 7 attempted to examine the case for a 

functional link between CoM and heteropody in quadrupedal dinosaurs. By examining 

both osteological and trackway evidence, this chapter aimed to establish whether 
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evidence for a link was inconclusive, or underestimated with osteological data only, as 

demonstrated in the contrast between chapters 4 and 6.  

A database of 136 sauropodormorph trackways, with data for trackway age and 

heteropody index, was gathered from the literature to establish trends in heteropody over 

geological time within the clade. In addition, heteropody and centre of mass data for 13 

dinosaurs where articulated manus and pes were available was gathered to compare 

using the same methods as chapter 4. Osteological data showed no clear trend between 

CoM position and heteropody in dinosaurs. Data from fossil trackways suggested what 

could be two peaks in heteropody reflecting increased manus area compared to pes area 

in sauropodomorph dinosaurs throughout geological time. While two major peaks in 

centre of mass were previously detected across geological time for the same clade (Bates 

et al., 2016), the peaks in heteropody as observed in trackways occurred 40-50 million 

years after the observed anterior shifts in CoM position, and are very unlikely to be 

connected. Analysing sampling of fossil footprints revealed these peaks to most likely be 

an artefact of preservation/publishing bias. This chapter determined the lack of a clear link 

between heteropody and CoM position in sauropod dinosaurs. 

 

8.2 Wider Implications of This Work 

Through the synthesis of the findings of the previous chapters, several points stand out as 

having implications beyond the scope of the individual chapters, and this thesis, 

themselves. 

8.2.1 Heteropody as a Potential Equalisation Mechanism 

This thesis set out to investigate the potential of heteropody as a potential mechanism to 

equalise underfoot pressure. This possibility was previously asserted as an explanation 

for disparity in heteropody in sauropod dinosaurs (Falkingham et al., 2012; Falkingham et 

al., 2010), but was never tested. Chapters 4, 6, and 7 took different approaches to 

answering this question directly. Clustering of cursorial mammal data in chapters 4 and 6, 
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might indicate that such a mechanism is utilised by certain groups. However, this thesis 

found little evidence that this mechanism of pressure reduction occurs universally across 

quadrupedal animals. An interesting follow-up study to this would focus on cursorial 

mammals, looking at how CoM and heteropody interact with them, along with comparative 

anatomy of the hoof, and relative speed, in order to build a clearer picture of the factors at 

play in this investigation.  

It remains possible that more extreme heteropody is applied as a pressure equalisation 

mechanism within certain groups, where manus and pes anatomy, and centre of mass 

position, are not constrained by adaptations to terrestrial running. Sauropod dinosaurs 

could potentially have benefitted from this mechanism if this is the case, as they could rely 

on their large size as a defence mechanism, and likely could not run at speed (Sellers et 

al., 2013). The trackway analysis in chapter 7, however, does not support this. Compared 

with two anterior shifts in CoM position (Bates et al., 2016), the two apparent peaks in 

heteropody found in sauropod trackways were temporally separated from the CoM shifts 

by 40-50Ma, and lined up with peaks in fossil sampling. 

The absence of this mechanism in dinosaurs then raises the question of what the reasons 

are behind extreme heteropody in sauropod dinosaurs. Future work will try and answer 

this question by focusing on the disparities between manus and pes foot structures and 

posture, and whether the manus and pes evolved at different speeds, combining 

comparative biomechanics and phylogenetic comparative methods. 

8.2.2 Implications of Soft Tissue Disparity and Heteropody 

The results of chapter 2 suggest that soft tissue makes up a greater percentage of 

underfoot surface area in forelimbs than hindlimbs in tetrapods. This could potentially 

explain why there is more signal found for a possible link between heteropody and CoM 

position overall in chapter 6, compared to chapter 4, since the former analysed soft tissue 

extent while chapter 4 compared estimates of skeletal underfoot surface area exclusively. 

When forelimb underfoot surface area is underestimated/hindlimb underfoot surface area 

is overestimated, the true ratio of forefoot to hindfoot surface area is not communicated. 
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Furthermore, since most pressure-reducing structures in the feet of tetrapods, such as 

foot pads and hooves, are composed entirely of soft tissue (Chi and Roth, 2010; Chi and 

Schmitt, 2005; Hutchinson et al., 2011; Warner et al., 2013), it follows that the true picture 

of how underfoot pressures are potentially equalised using heteropody would be obscured 

by analysing osteology alone.  

With that said, the studies with a further focus on soft tissue extents do not offer any 

further support to the hypothesis that heteropody acts as a pressure equalisation 

mechanism in its relationship to centre of mass. If anything, their further lack of support 

indicates that such a mechanism being universal to tetrapods is extremely unlikely. 

The presence of more soft tissue underfoot in the manus than the pes, that would be 

expected from osteology alone has implications for the study of fossil trackways, and the 

possible identity of fossil trackmakers. If the results from chapter 2 are indicative of manus 

versus pes underfoot soft tissue surface area in dinosaurs and other extinct animals, the 

degree of heteropody displayed by trackways would be unlikely to be directly reflected in 

osteological remains of candidate species. This would add a further obstacle in the 

process of identifying potential trackmakers, an already difficult task. It is, however, 

possible that some extinct animals would not follow this trend, as it was established using 

extant animals. In addition, sauropod dinosaurs, have no modern analogues of their vast 

size and unusual body plan. In addition sauropods have a unique (for an obligate 

quadruped) disparity in structure and posture between their manus and pes (Falkingham, 

2010). By combining trackway data with structural information from osteological correlates 

for soft tissue structures, a more clear picture of sauropod soft tissue extent and disparity 

between manus and pes could be established. 

8.2.3 Body Plans of Taxonomic Groups and Heteropody 

As discussed above, the possibility of heteropody as a pressure equalisation mechanism 

used universally across tetrapods appears unlikely to be true. This thesis did, however, 

note some interesting results from individual tetrapod clades that highlight how the 
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diversity of body plans in tetrapods is reflected in their degrees of heteropody and general 

underfoot anatomy.  

In chapters 4 and 6, cursorial mammals clustered around relatively equal forefoot and 

hindfoot size, and slightly anterior CoM positions, where animals with other locomotory 

modes, body plans, and specialised limbs were more likely to have results outside of 

these clusters. Cursorial mammals are specialised for running, so a relatively central CoM 

position and relatively equal foot size makes a certain amount of sense. Cursorial 

mammals tend to be digitigrade, increasing the functional length of their limbs, with rigid 

spines to reduce stress from oscillations (Hildebrand, 1962). They have relatively even 

underfoot area and CoM positions, and must be able to run at speed and accelerate 

quickly when needed to evade predators (Stein and Casinos, 1997). Uneven foot sizes 

and unusually antero-posterior CoM positions could potentially reduce their ability to do 

this efficiently, changing how these animals are balanced, by potentially resulting in 

unequal underfoot pressures and how weight is distributed among the limbs so one set 

dominates, and changing how propulsive and braking forces of the forelimbs and 

hindlimbs translate into underfoot pressures (Demes and Günther, 1989; Demes et al. 

1994; Henderson, 2006; Granatosky et al., 2018). Heteropody in extant mammals is more 

common among hopping mammals such as rabbits and kangaroos, and semi-aquatic 

mammals, such as beavers.  

In chapter 4, heteropody and CoM position were strongly correlated in semi-aquatic 

animals. By not having to rely exclusively on terrestrial cursoriality, it is possible that in 

non-cursorial, or partly cursorial animals, adaptations for heteropody are more selected 

for. In other words, selective pressures to keep relatively even-sized manus and pes 

reduces with reduced terrestrial cursoriality. In this way, beavers, for example, would be 

free to adapt their hindfeet for paddling more as they relied on aquatic locomotion more 

than terrestrial locomotion. Results for primates in chapter 6 also largely exist outside of 

the cluster of results for cursorial mammals, suggesting that this clustering of cursorial 

mammals around relatively even foot areas and slightly anterior CoM positions is related 

to their locomotory mode, and possibly selected for. 
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8.2.4 Why Have Extreme Heteropody? 

If extreme heteropody is not used as a pressure equalisation mechanism, as the 

inconclusive nature of the above results hint at, why might this phenomenon otherwise 

occur? 

In some animals, heteropody clearly occurs for a functional purpose, for example, to aid 

with locomotion in rabbits, hares, and kangaroos (Alexander and Vernon, 1975; Farley et 

al., 1993), or in some semi-aquatic animals (Reynolds, 1993). Sauropod dinosaurs, 

however, were too large to be able to hop, and the idea that sauropods spent a 

substantial amount of their life swimming is largely unsupported (Coombs Jr, 1975; 

Henderson, 2004).  

Previous chapters speculated that extreme heteropody in sauropod dinosaurs could have 

occurred as a result of their evolution from a bipedal ancestor. No extant quadruped is 

known to be descended from bipeds, so this assertion would be difficult to test through 

extant analogues. However, more data to support this could be gathered from osteological 

correlates, phylogenetic comparative methods, and comparative anatomy of the manus 

and pes in different sauropod clades, compared with a more expansive trackway analysis.  

Heteropody may also be reflective of methods of stress reduction, and other functional 

adaptations, in soft tissue and posture. Fatty foot pads, as seen in elephants and other 

large animals (Hutchinson et al., 2011), do seem likely to be have been present in 

sauropod dinosaurs, and, as with elephants, seem likely to have adopted a semi-

digitigrade foot posture (Carrano, 1997; Hutchinson et al., 2011). These structures appear 

to be more prominent on the pes compared to the vertically posed manus, which would be 

reflected by extreme heteropody in trackways. Following the logic of chapter 2, these 

adaptations, which would have resulted in underfoot area extents largely being 

determined by fatty foot pads, could have resulted in unusually different manus and pes 

sizes, in conjunction with different foot postures. Presumably too, without selective 

pressures for cursoriality, there is less of a mechanical need to equalise underfoot 

pressure in these animals.  
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With future studies in foot anatomy and centre of mass, these possibilities may be able to 

be explored and their validity tested. A universal mechanism for pressure equalisation 

through heteropody appears unlikely to be found, even with more data. However, for 

certain functional groups, further studies with additional data could potentially support or 

disprove currently speculative possible links.  

8.3 Potential Future Studies 

8.3.1 Larger/More Focused Data Sets 

Data sets with more animals, especially reptiles, amphibians, and non-cursorial mammals, 

could potentially produce results with clearer conclusions for the methods employed in 

chapters 4 and 6. The same applies for the dinosaur analysis in chapter 7, in regards to 

osteological evidence, as well as the problems presented by sampling bias hindering the 

chapter’s trackway analyis. Dinosaur analyses, as with many palaeobiological studies, 

would be aided by the collection of more, and more diverse, body fossils with articulated 

manus and pes, and fossils complete enough to be able to employ convex hulling to 

estimate whole-body CoM. In addition, a wider range of sauropod track fossils, both in 

terms of samples, localities, and trackway ages, would be able to give a clearer picture of 

heteropody trends in these creatures. 

In addition, studies focusing on individual functional or phylogenetic groups would be ideal 

follow-ups to this research. Birds stood out in chapter 2 as having different soft tissue 

compared to skeletal tissue underfoot, which could have potential implications for 

trackmaker identification in theropod and ornithopod dinosaurs. Chapters 4 and 6 suffered 

slightly for having cursorial mammals make up the bulk of the data points, at the expense 

of reptiles or animals that employ alternate means of locomotion. (Studies on terrestrial 

locomotion are quite likely to favour cursorial mammals, so future literature-based studies 

on locomotion will likely face the same issues.)  However, studying cursorial mammals in 

terms of heteropody, CoM position, and comparative foot anatomy would be an interesting 

avenue in which to take this research, and one that will be considered for future work. 

Chapter 3 indicated a potential link between CoM position in heteropody in semi-aquatic 
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animals, and chapter 4 indicated that the relationship between CoM position and 

heteropody is different in primates compared to other animals. Both findings would be 

interesting and potentially fruitful to explore, with a large dataset limited to these groups.  

8.3.2 Foot Posture  

Variation in foot posture and its relationship with underfoot area and heteropody in the 

context of mass distribution could be an interesting avenue with which to continue this 

field of inquiry. In chapter 4, osteological remains were binned by foot posture to calculate 

their ‘functional foot area’ in the context of examining a possible universal link between 

heteropody and CoM. However, how the underfoot areas and pressures of animals with 

different foot postures differ, and are influenced by mass distribution, as well as their soft 

tissue versus skeletal tissue distribution underfoot, could be examined in a similar manner 

with large and comparable sample sizes for underfoot pressure and area of each foot 

posture gathered using pressure mats, and CT scans.  

The potential effect of foot posture on extreme heteropody in sauropod dinosaurs would 

also be interesting to examine, especially given the morphological transitions in the 

evolution of sauropod dinosaurs from digitigrade, cursorial bipeds, to extremely large, 

potentially semi-digitigrade quadrupeds. Studies of this nature should consider differential 

soft tissue distribution between the manus and pes, especially if reconstructing manual 

and pedal soft tissue based on osteological correlates. Ideally manus and pes 

comparisons on an anatomical level would be made for different species, representative 

of different clades, and paired with evolutionary rates analyses to investigate if manus and 

pes evolved at different speeds, and how they diverged on an anatomical and mechanical 

level.  

8.3.3 Manus Versus Pes Underfoot Soft Tissue Distribution 

Future studies could examine further the distinction between manus and pes underfoot 

surface area of soft and skeletal tissue found in chapter 2. How universally this distinction 

applies, and how it presents in different clades and functionally similar groups using larger 
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datasets could be interesting avenues to explore. Analyses of this type would likely 

involve large numbers of CT scans, or dissections, to gather enough data.  

8.4 Conclusions 

1.  Underfoot surface area in vivo is highly predictable from skeletal surface area 

2. Soft tissue underfoot surface area in the manus is proportionately higher than soft 

tissue area in the pes compared to skeletal underfoot surface area. 

3. Length x minimal width at most proximal end of foot touching the ground, or ‘carpal 

width’, is a more accurate predictor of foot area than either length x width, or pi x 

radius squared, with length x width being the second most accurate. 

3. Antero-posterior CoM position and heteropody are not universally correlated in 

tetrapods. Heteropody is therefore unlikely to have been employed universally as a 

pressure equalisation mechanism. 

4. Cursorial mammals retain relatively similar CoM and heteropody values, whereas 

animals with differing locomotory modes, and non-mammals are less likely to. 

5. More signal for a link between CoM position and heteropody was present using in 

vivo data compared to results relying on osteology alone, but no link was present. 

This disparity of results may be related to manus-pes soft tissue differences 

underfoot. 

6 Sauropod dinosaurs do not appear to have employed heteropody as a pressure 

equalisation mechanism, with a more likely explanation for variation in heteropody 

in these animals being disparities in morphology and posture between manus and 

pes, resulting from bipedal ancestry. 
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Supplementary Material 

 

Chapter 2 Supplementary Material 

 
The following supplementary material contains the following: 

1. Supplementary tables, showing phylogenetic comparative methods tests, 

alongside body mass tests – using generalised least squares to establish the roles 

of phylogeny and body mass in determining the correlations found in Chapter 2, 
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tables with raw data and their regressions, tables with latin and common names for 

taxa, and tables showing data for regressions for large and small animals, as well 

as the fossil test using Plateosaurus engelhardti. 

2. Supplementary graphs showing Chapter 2 data for different poses, as well as data 

for subgroups based on foot posture, overall posture, ecology, and phylogeny. 

3. Outlines for the foot alpha shapes generated via matlab, for each animal. 

 

 

 

 

 

 

 

 

 

 

 
Supplementary Tables 

Supplementary Table S2.1 – Phylogenetic and Body Mass Comparative GLS Tests 
for All Limbs  

  
PIC 

  
PGLS 

   

Analysis 
Correlation at 
Intercept CI SE T value P Value Lambda 

Pose 1 -0.15 1.693 0.094 18.02 0 1.027319 

Pose 2 -0.05 1.294 0.099 13.02 0 1.030825 

       

Analysis 
Correlation at 
Intercept CI SE T value P Value  

Pose 1 with Body Mass 0.35 0 0 0.37 0.72  
Pose 2 with Body Mass 0.42 0 0 3.15 0  
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Supplementary Table S2.2 – Area (mm2) Measurements for All Animals and 
Proportions of Skeleton to Skin Surface Area (%) 

Pose 1 
    

Specimen Fore/Hind Foot Skin SA Skel SA Skeleton as % of Skin 

Salamandra salamandra Forefoot 88.93501 52.14457 58.6322122 

Salamandra salamandra Hindfoot 124.8898 59.64688 47.75962093 

Cryptobranchus alleganiensis Forefoot 181.4453 82.04254 45.21613433 

Cryptobranchus alleganiensis Hindfoot 311.3837 103.9794 33.39268462 

Brachycephlus nodoterga Forefoot 1.6515 0.852027 51.59112909 

Brachycephlus nodoterga Hindfoot 3.39012 1.973128 58.20229633 

Sphenodon punctatus Forefoot 962.9668 447.0096 46.42004335 

Sphenodon punctatus Hindfoot 960.4319 487.3412 50.74188493 

Crocodylus niloticus Forefoot 553.7884 162.1849 29.28643561 

Crocodylus niloticus Hindfoot 1228.612 566.4358 46.10373211 

Osteolaemus teraspis Forefoot 1733.117 962.1605 55.51618621 

Osteolaemus teraspis Hindfoot 3678.328 2070.685 56.29419196 

Caiman crocodilus Hindfoot 1902.971 935.316 49.15029816 

Crocodylus moreletii Forefoot 3619.647 1447.981 40.00337567 

Crocodylus moreletii Hindfoot 6721.266 3618.094 53.83053494 

Alectoris chukar Hindfoot 451.7428 318.1106 70.4185217 

Tyto alba Hindfoot 721.4122 475.5846 65.92411232 

Pica pica Hindfoot 382.6398 222.9701 58.2715291 

Columba livia Hindfoot 397.7637 236.5437 59.46839319 

Coturnix coturnix Hindfoot 404.1557 334.2137 82.69428892 

Accipiter nisus Hindfoot 262.7824 189.0737 71.95065971 

Dromaius novaehollandiae Hindfoot 8524.232 5689.942 66.75019735 

Bos taurus Forefoot 15663.52 7659.069 48.8974879 

Bos taurus Hindfoot 12739.92 5669.063 44.49841375 

Elephas maximus Forefoot 115297.7 47094.3 40.84583773 

Elephas maximus Hindfoot 106205 62562.12 58.90696806 

Ceratotherium simum Forefoot 52322.45 37586.9 71.8370514 

Ceratotherium simum Hindfoot 43938.84 32640.53 74.28627909 

Vicugna pacos Forefoot 3879.717 2447.911 63.09507459 

Vicugna pacos Hindfoot 3737.41 1889.661 50.56071099 

Giraffa camelopardalis Forefoot 28591.02 10324.47 36.11087691 

Giraffa camelopardalis Hindfoot 21393.04 8422.208 39.36892218 

Panthera leo persica Forefoot 9849.389 8485.304 86.15055843 

Panthera leo persica Hindfoot 7690.173 5819.748 75.6777249 

Felis catus  Forefoot 651.6308 367.1313 56.34038863 

Felis catus  Hindfoot 724.9928 446.6624 61.6092115 
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Equus ferus caballus Forefoot 16103.96 6521.98 40.49922225 

Equus ferus caballus Hindfoot 14886.19 5258.705 35.32606867 

Sus scrofa Forefoot 5833.796 3301.937 56.60015442 

Sus scrofa Hindfoot 5410.751 3703.087 68.43944159 

Cervus elaphus Forefoot 3876.212 2398.473 61.87673137 

Cervus elaphus Hindfoot 3644.912 2343.958 64.30766863 

Equus quagga Forefoot 10510.49 3188.5 30.33636481 

Equus quagga Hindfoot 10438.59 3927.968 37.62927945 

Camelus dromedarius Unassigned 25222.78 12990.49 51.50299004 

Vulpes vulpes Forefoot 939.0155 575.1637 61.25178197 

Vulpes vulpes Hindfoot 974.4242 759.2161 77.91433447 

Hippopotamus amphibius Forefoot 40556.15 19879.08 49.01619162 

Hippopotamus amphibius Hindfoot 43485.7 19909.79 45.78468328 

Pose 2 
    

Salamandra salamandra Forefoot 88.93501 52.14457 58.6322122 

Salamandra salamandra Hindfoot 118.7929 58.1717 48.9690014 

Cryptobranchus alleganiensis Forefoot 179.4845 75.75179 42.2052092 

Cryptobranchus alleganiensis Hindfoot 398.9009 121.8758 30.55289108 

Brachycephlus nodoterga Forefoot 1.6515 0.852027 51.59112909 

Brachycephlus nodoterga Hindfoot 3.39012 1.973128 58.20229633 

Sphenodon punctatus Forefoot 962.9668 394.6228 40.97989334 

Sphenodon punctatus Hindfoot 960.432 467.5052 48.67655561 

Crocodylus niloticus Forefoot 553.7884 162.1849 29.28643561 

Crocodylus niloticus Hindfoot 1228.612 566.4358 46.10373211 

Osteolaemus teraspis Forefoot 1733.117 962.1605 55.51618621 

Osteolaemus teraspis Hindfoot 3678.328 2070.685 56.29419196 

Caiman crocodilus Hindfoot 1902.971 935.316 49.15029816 

Crocodylus moreletii Forefoot 3619.647 1447.981 40.00337567 

Crocodylus moreletii Hindfoot 6721.266 3618.094 53.83053494 

Alectoris chukar Hindfoot 463.5517 312.3395 67.37963874 

Tyto alba Hindfoot 721.4122 475.5846 65.92411232 

Pica pica Hindfoot 398.4393 221.1307 55.49920666 

Columba livia Hindfoot 430.617 254.0651 59.00024677 

Coturnix coturnix Hindfoot 374.0761 306.0736 81.82121905 

Accipiter nisus Hindfoot 262.7824 189.0737 71.95065971 

Dromaius novaehollandiae Hindfoot 7189.013 4273.903 59.45048029 

Bos taurus Forefoot 14860.38 4672.811 31.44475656 

Bos taurus Hindfoot 12400.11 3656.876 29.49067084 

Elephas maximus Forefoot pose 2a 115297.7 21888.71 18.98452046 

Elephas maximus Hindfoot pose 2a 106205 16361.32 15.40542458 

Elephas maximus Forefoot pose 2b 115297.7 53085.99 46.04255484 
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Elephas maximus Hindfoot pose 2b 106205 39665.72 37.34827271 

Elephas maximus Forefoot pose 2c 115297.7 85872.49 74.47894594 

Elephas maximus Hindfoot pose 2c 106205 64990.32 61.19330515 

Ceratotherium simum Forefoot pose 2a 40263.47 15929.85 39.56403613 

Ceratotherium simum Hindfoot pose 2a 43571.67 14885.36 34.1629407 

Ceratotherium simum Forefoot pose 2b 50319.26 38994.05 77.49327689 

Ceratotherium simum Hindfoot pose 2b 43938.84 31147.23 70.88768228 

Ceratotherium simum Forefoot pose 2c 40263.47 40068.14 99.51486813 

Ceratotherium simum Hindfoot pose 2c 43571.67 43695.43 100.2840375 

Vicugna pacos Forefoot 3651.553 2680.183 73.39842765 

Vicugna pacos Hindfoot 3349.815 2141.799 63.93783478 

Giraffa camelopardalis Forefoot 28591.02 10324.47 36.11087691 

Giraffa camelopardalis Hindfoot 21393.04 8422.208 39.36892218 

Panthera leo persica Forefoot 9849.389 9416.026 95.60010391 

Panthera leo persica Hindfoot 7690.173 6969.753 90.63193541 

Felis catus  Forefoot 651.6308 367.1313 56.34038863 

Felis catus  Hindfoot 680.9717 412.0175 60.50435475 

Equus ferus caballus Forefoot 16103.96 4560.854 28.3213136 

Equus ferus caballus Hindfoot 14886.19 3679.188 24.71545112 

Sus scrofa Forefoot 2182.029 665.3783 30.49356342 

Sus scrofa Hindfoot 1730.437 621.656 35.92479041 

Cervus elaphus Forefoot 2213.147 556.7199 25.15511885 

Cervus elaphus Hindfoot 1835.489 631.2443 34.39107695 

Equus quagga Forefoot 9146.338 1911.856 20.902962 

Equus quagga Hindfoot 7881.42 1775.487 22.5275036 

Camelus dromedarius Unassigned 19383.7 9322.263 48.09331236 

Vulpes vulpes Forefoot 939.0155 789.1365 84.03871265 

Vulpes vulpes Hindfoot 974.4242 958.9808 98.41512652 

Hippopotamus amphibius Forefoot pose 2a 40263.47 15929.85 39.56403613 

Hippopotamus amphibius Hindfoot pose 2a 43571.67 14885.36 34.1629407 

Hippopotamus amphibius Forefoot pose 2b 40263.47 34742 86.28665173 

Hippopotamus amphibius Hindfoot pose 2b 43571.67 29026.14 66.61700047 

Hippopotamus amphibius Forefoot pose 2c 40263.47 40068.14 99.51486813 

Hippopotamus amphibius Hindfoot pose 2c 43571.67 43695.43 100.2840375 

 

Supplementary Table S2.3 - Body Mass for Each Subject Animal and Source of Data 

 

Species Body Mass (g) Source 

Salamandra salamandra 19.1 Encyclopedia of Life 
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Cryptobranchus alleganiensis 358 Encyclopedia of Life 

Brachycephalus nodoterga 1 Pires Jr et al, 2005 (Toxicon, vol. 45, issue 1, 73-79) 

Sphenodon punctatus 700 Animal Diversity Web 

Caiman crocodilus 2174 Hutchinson metadata (Crocbase) 

Osteolaemus tetraspis 7820 Hutchinson metadata (Cocbase) 

Crocodylus moreletii 14150 Hutchinson metadata (Crocbase) 

Crocodylus niloticus 1336 Hutchinson metadata (Crocbase) 

Dromaius novaehollandiae 34200 CRC Handbook of Avian Body Masses 

Columba livia 358.7 Encyclopedia of Life 

Pica pica 151.3865 Encyclopedia of Life 

Tyto alba 520 Animal Diversity Web 

Accipiter nisus 237.5 CRC Handbook of Avian Body Masses 

Coturnix coturnix 112.5 Encyclopedia of Life 

Alectoris chukar 503.5 CRC Handbook of Avian Body Masses 

Elephas maximus 3269794.34 Pantheria 

Camelus dromedarius 492714.47 Pantheria 

Vicugna pacos 64900 Pantheria 

Sus scrofa domesticus 84471.54 Pantheria 

Hippopotamus amphibius 1536310.4 Pantheria 

Cervus elaphus 240867.13 Pantheria 

Bos taurus 618642.42 Pantheria 

Giraffa camelopardalis 964654.73 Pantheria 

Vulpes vulpes 4820.36 Pantheria 

Panthera leo persica 158623.93 Pantheria 

Felis catus 2884.8 Pantheria 

Equus quagga 400000 Pantheria 

Equus ferus caballus 403598.53 Pantheria 

Ceratotherium simum 2285939.43 Pantheria 

 

Supplementary Table S2.4 – Slope Uncertainties for all Poses and Combinations of 
Limbs 

 
All Limbs 1 Forelimbs 1 Hindlimbs 1 

All Limbs 
2a 

Forelimbs 
2a Hindlimbs 2a 

Slope 1.83 2.05 1.66 3.82 3.74 4.08 

Uncertainty 
(Slope) 0.07 0.14 0.05 0.28 0.42 0.42 

Correlation 
Coefficient 
(R²) 0.94 0.92 0.97 0.80 0.82 0.79 

F Statistic 700.03 217.89 1006.50 182.37 80.86 95.99 

Regression of 
Sum of 
Squares 2.62E+10 1.33E+10 1.27E+10 2.16E+10 1.13E+10 1.03E+10 
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Y-Intercept 551.14 -127.88 756.10 -2637.39 -2776.37 -2629.16 

Uncertainty 
(Y-Intercept) 992.47 2047.32 742.55 1908.16 3271.67 2369.49 

Standard 
Error for Y 
Estimate 6114.66 7825.46 3557.13 10892.56 11822.08 10379.59 

Degrees of 
Freedom 47.00 18.00 26.00 47.00 18.00 26.00 

Residual Sum 
of Squares 1.76E+09 1.10E+09 3.29E+08 5.58E+09 2.52E+09 2.80E+09 

 

All Limbs 
2b 

Forelimbs 
2b Hindlimbs 2b 

All Limbs 
2c 

Forelimbs 
2c Hindlimbs 2c 

Slope 1.83 1.71 2.03 1.27 1.23 1.32 

Uncertainty 
(Slope) 0.10 0.14 0.14 0.05 0.07 0.08 

Correlation 
Coefficient 
(R²) 0.89 0.89 0.89 0.93 0.95 0.92 

F Statistic 367.33 151.26 213.21 648.43 345.79 289.64 

Regression of 
Sum of 
Squares 2.47E+10 1.29E+10 1.17E+10 2.54E+10 1.31E+10 1.21E+10 

Y-Intercept 618.26 900.74 43.67 1652.98 1986.94 1142.07 

Uncertainty 
(Y-Intercept) 1325.83 2363.94 1571.50 986.25 1534.95 1335.15 

Standard 
Error for Y 
Estimate 8205.80 9233.32 7419.28 6255.62 6162.94 6452.82 

Degrees of 
Freedom 47.00 18.00 26.00 47.00 18.00 26.00 

Residual Sum 
of Squares 3.16E+09 1.53E+09 1.43E+09 1.84E+09 6.84E+08 1.08E+09 

 

 

Supplementary Table S2.5 – List of Taxa Used with Common Names and Latin 
Names 

Latin Name Common Name 

Salamandra salamandra Salamandra 

Cryptobranchus alleganiensis Hellbender 

Brachycephalus nodoterga Saddleback Toad 

Sphenodon punctatus Tuatara 

Caiman crocodilus Nile Crocodile 

Osteolaemus tetraspis Dwarf Crocodile 

Crocodylus moreletii Spectacled Caiman  

Crocodylus niloticus Morelet's Crocodile 

Dromaius novaehollandiae Chukar 
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Columba livia Barn Owl 

Pica pica Magpie 

Tyto alba Pigeon 

Accipiter nisus Quail 

Coturnix coturnix Sparrowhawk 

Alectoris chukar Emu 

Elephas maximus Cow 

Camelus dromedarius Elephant 

Vicugna pacos Rhinoceros 

Sus scrofa domesticus Alpaca 

Hippopotamus amphibius Giraffe 

Cervus elaphus Lion 

Bos taurus Cat 

Giraffa camelopardalis Horse 

Vulpes vulpes Pig 

Panthera leo persica Deer 

Felis catus Zebra 

Equus quagga Camel 

Equus ferus caballus Fox 

Ceratotherium simum Hippopotamus 

 

Supplementary Table S2.6 – Examples of Results with Large and Small Animals 
Removed 

 
R Squared Equation Multiplier 

Original Data 0.9877 y=0.5901x0.9865 1.671751 

Without Largest 0.9848 y=0.6225x0.9777 1.569478 

Without Smallest 0.9754 y=0.7582x0.9592 1.265102 

Without Largest and Smallest 0.9636 y=0.969x0.9257 0.955315 

 

Supplementary Table S2.7 – Example of Study Utility Using Plateosaurus 
engelhardti 

Plateosaurus Skeleton 
Skin (Combined 
Estimate) Skin (Manus and Pes Distinct) 

 
Manus Area 0.0194 0.032398 0.0388 

   
Pes Area 0.0605 0.101035 0.0968 

   
Manus as % of Pes 32.0661157 32.0661157 40.08264 

   

       
Plateosaurus 

      

 
Body Mass (N) 7384 

    

 
CoM (%GAD) 20.43 
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Manus Load 1508.5512 

    

 
Pes Load 5875.4488 

    
Combined  Manus Pressure 46563.09649 

    

 
Pes Pressure 58152.6085 

    
Separate Manus Pressure 38880.18557 

    

 
Pes Pressure 60696.78512 

    

       
Skeleton Area Load Pressure 

   
Manus 0.0194 1508.5512 77760.37 

   
Pes 0.0605 5875.4488 97114.86 

   
Manus as % of Pes 32.0661157 25.67550584 80.07052 

   

       
Combined (Skin) Area Load Pressure 

   
Manus 0.032398 1508.5512 46563.1 

   
Pes 0.101035 5875.4488 58152.61 

   
Manus as % of Pes 32.0661157 25.67550584 80.07052 

   

       
Separate (Skin) Area Load Pressure 

   
Manus 0.0388 1508.5512 38880.19 

   
Pes 0.0968 5875.4488 60696.79 

   
Manus as % of Pes 40.08264463 25.67550584 64.05642 
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Figure S2.1 Linear plots for projected skin surface area against projected skeletal 

surface area in pose 

1, for forelimbs, hindlimbs, and all limbs. Silhouettes from Phylopic. 
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Figure S2.2 Linear and Log10-transformed plots for projected skin surface area against 

projected 

skeletal surface area, in pose 2a, for forelimbs, hindlimbs, and all limbs. Silhouettes from 

Phylopic. 
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Figure S2.3 Linear and Log10-transformed plots for projected skin surface area against 

projected 

skeletal surface area, in pose 2b, for forelimbs, hindlimbs, and all limbs. Silhouettes from 

Phylopic. 
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Figure S2.4 Linear and Log10-transformed plots for projected skin surface area against 

projected 

skeletal surface area, in pose 2c, for forelimbs, hindlimbs, and all limbs. Silhouettes from 

Phylopic. 
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Figure S2.5 Linear and Log10-transformed plots for locomotor mode sub-analysis of 

projected skin 

surface area against projected skeletal surface area, in pose 2. Silhouettes from Phylopic. 
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Figure S2.6 Linear and Log10-transformed plots for posture sub-analysis of projected 

skin surface area 

against projected skeletal surface area, in pose 2. Silhouettes from Phylopic. 
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Figure S2.7 Linear and Log10-transformed plots for clade-based sub-analysis of 

projected skin surface area against projected skeletal surface area, in pose 2. Silhouettes 

from Phylopic. 
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Figure S2.8 Linear and Log10-transformed plots for ecological sub-analysis of projected 

skin surface area against projected skeletal surface area, in pose 2. Silhouettes from 

Phylopic. 

 

 

 

Presented below are the alpha shape outlines generated via matlab. 
Outlines are presented for skin surface area and skeletal area in pose 1 
(approximate life position), and skeletal outlines for pose 2 (bones laid flat 
on the horizontal plane). 

 
In some cases (e.g. many crocodilians), pose 1 and pose 2 were 
identical, as the foot bones are horizontal in both poses. 

 
Large digitigrade/sub-unguligrade animals (Elephant, Hippo, and Rhino) 
which in life walk on a large fatty pad beneath the foot, had skeletal 
areas calculated in Pose 2 from just the digits (Pose 2a, as digitigrade), 
the digits and metatarsals/metacarpals (Pose2b, intermediate) and from 
the entire Pes/Manus (Pose 2c, as plantigrade). 

 
All units are in mm, except the Tuatara where units are in 0.1mm. 
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Chapter 3 Supplementary Material 

 

The following supplementary material contains the following: 

1. Tables for phylogenetic comparative methods tests, alongside body mass tests – 

using generalised least squares to establish the roles of phylogeny and body mass 

in determining the (lack of) correlations found in Chapter 3 for various foot 

measurement methods for establishing heteropody in skeletons of extant animals. 

2. Contrasting graphs for data using skeletons, and those adjusted for skin as per the 

formulae for forelimb/hindlimb differences in skin underfoot surface area compared 

to skeletal underfoot surface area as established in Chapter 2.  

3. Images of combined convex hulls of skeletons used to calculate centre of mass in 

Chapter 3, with locators indicating the positions of the centres of mass, and 

approximate glenoid and acetabulum positions.  

 

 

 

 

 

 

 

 

 

Supplementary Table S3.1 Results for phylogenetic independent constrasts, and 

phylogenetic generalised least squares statistical tests (with additional tests for effect 

of body mass) for the different measures of heteropody listed in Table 1 of Chapter 3 

using the Grafen Method. 
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PIC and PGLS 
Results PIC      

pgls - 
browni
an     pgls - OU     

Body 
Mass 
Effect     

Manus:Pes 
Ratio Type 

Multiple 
R2 

Adjusted 
R2 CI SE 

F 
Statisti
c 

F p-
value 

Correl
ation CI2 SE2 t value p value 

Correlati
on2 CI3 SE3 t value2 

p 
value2 

Correl
ation3 CI4 SE4 T p 

Functional Foot 
x CW 0.04269 0.02529 -2.334 1.49 

2.453 
on 1 
and 55 
DF 0.1231 -0.092 -3.1409 1.769222 -1.775302 0.0814 -0.833 -2.87037 1.624315 -1.767126 0.0828 -0.066 -0.00225 0.021547 -0.1044181 0.9172 

Functional Foot 
x PW 0.05639 0.03923 -2.353 1.298 

3.287 
on 1 
and 55 
DF 0.0753 -0.076 -2.5216 1.446548 -1.743182 0.0869 -0.787 -1.83585 1.275082 -1.43979 0.1556 0.024 -0.01345 0.03015 -0.4460046 0.6574 

Functional Foot 
Length 0.1193 0.1033 -10.678 3.912 

7.451 
on 1 
and 55 
DF 

0.0084
99 -0.222 

-
16.33454 4.645767 -3.516006 0.00009 -0.963 -10.6428 4.168159 -2.553357 0.0135 -0.033 0.00347 0.03711 0.0935217 0.9258 

Ungule Length 
0.000215

5 -0.01703 1.453 4.337 

0.1123 
on 1 
and 52 
DF 0.7389 -0.188 -2.79145 4.191316 -0.6660077 0.5084 -0.95 -2.70674 3.198277 -0.690798 0.4928 -0.083 -0.07858 0.04858 -1.6174656 0.1121 

Digit Length 0.06614 0.04916 -7.583 3.842 

3.895 
on 1  
and 55 
DF 

0.0534
6 -0.207 

-
14.10787 4.843347 -2.912836 0.0052 -0.962 -9.91097 4.223648 -2.346543 0.0226 -0.069 0.00945 0.038236 0.2471244 0.8058 

Whole Foot 
Length 0.01358 -0.004354 -2.856 3.282 

0.7572 
on 1 
and 55 
DF 0.388 -0.225 -4.63799 4.28775 -1.081684 0.2841 -0.966 -2.83119 3.546297 -0.798351 0.4281 -0.032 -0.01891 0.031457 -0.6011158 0.5503 

Carpal Width 0.005718 -0.01236 -1.733 3.081 

0.3163 
on 1 
and 55 
DF 0.5761 -0.136 -2.17314 3.544463 -0.6131088 0.5423 -0.938 -3.06027 3.454012 -0.887005 0.3795 -0.117 -0.01322 0.029668 -0.4454303 0.6578 

Heteropody 
Index (CW) 0.1206 0.1046 0.11679 0.04253 

7.54 
on 1 
and 55 
DF 

0.0081
39 -0.147 0.12071 0.042512 2.839538 0.0063 -0.95 0.08531 0.041291 2.066122 0.0435 -0.01 -0.00002 0.000186 -0.0972409 0.9229 

Heteropody 
Index (PW) 0.08558 0.06895 0.09532 0.04201 

5.147 
on 1 
and 55 
DF 

0.0272
3 -0.149 0.13188 0.042862 3.076935 0.0033 -0.935 0.05503 0.037764 1.457246 0.1507 0.024 -0.01345 0.03015 -0.4460046 0.6574 



 

Supplementary Table S3.2 PGLS results for main foot area proxy (functional foot 

length x carpal width) including body mass analysis, with manually dated tree. 

PGLS Analysis      
Functional Foot Length x 
Carpal Width 

Brownian 
Motion 

Ornstein-
Uhlenbeck 

Martin's 
Correlation 

MC with Body 
Mass 

Correlation at Intercept -0.05 -0.83 -0.81 0.12  
Confidence Interval -0.75 -2.87 -2.79 0.01  
Standard Error 1.67 1.62 1.90 0.02  
T value -0.45 -1.77 -1.47 0.37  
P Value 0.66 0.83 0.15 0.71  
AIC 499.51 439.81    
Log Likelihood -246.75 -211.41    
Martin's Alpha   58.89 58.89  

 

Supplementary Table S3.3 AIC and log likelighood for phylogenetic generalised 

least squares statistical tests with Brownian motion, for the different measures of 

heteropody listed in Table 1 of Chapter 3. 

 
 
Analysis vs CoM AIC 

Log 
Likelihood 

Functional Foot Length 495.47 -244.74 
Ungual Length 478.85 -236.42 
Digit Length 438.53 -215.26 
Whole Foot Length 508.29 -251.14 
Carpal Width 506.64 -250.32 
Heteropody Index (using FFL*CW) 499.23 -246.62 
Heteropody Index (using FFL*PW) 503.97 -248.98 

 

Supplementary Table S3.4 T-test results comparing heteropody index values for 

functional foot length between left and right feet. 

Skeletons Manus    
Left vs Right    
T 0.82557    
df 52    
p 0.4128    
alt hypo true difference in means not equal to 0 
95% CI -37.2341 89.28732   
mean of 
differerences 26.02661    
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Skeletons Pes    
Left vs Right    
T 0.48344    
df 55    
p 0.6307    
alt hypo true difference in means not equal to 0 
95% CI -4.9144 8.039248   
mean of differerences 1.562423   
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Supplementary Figure S3.1 Main graph (centre of mass position against heteropody 

index (based on functional foot length multiplied by carpal width) contrasted with the same 

data adjusted to represent heteropody of in situ feet, using the formulae for forelimbs and 

hindlimbs established in Chapter 2. 

Supplementary Figures S3.2-59 Images of combined convex hulls of skeletons used 

to calculate centre of mass in Chapter 3, with locators indicating the positions of the 

centres of mass, and approximate glenoid and acetabulum positions.  

African Elephant: 
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Bison bison - American Bison: 

 

Dasypus novemcinctus - Armadillo: 
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Elephas maximus - Asian Elephant: 

 

Varanus salvator - Asian Water Monitor: 
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Arctictis binturong - Bearcat: 

 

Castor fiber - Beaver: 
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Cephalophus niger - Black Duiker: 
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Diceros bicornis - Black Rhino: 

 

 

 

Camelus dromedaries - Camel: 
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Castor canadensis - Canadian Beaver: 

 

 

 

 

Hydrochoerus hydrochaeris - Capybara: 
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Felis catus - Cat: 

 

 

 

 

Acinonyx jubatus - Cheetah: 
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Civettictis civetta - Civet: 

 

 

 

 

 

 

Bos taurus - Cow: 
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Hystrix cristata - Crested Porcupine: 

 

 

 

 

Canis lupus - Dog: 
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Tachyglossus aculeatus - Echidna: 

 

 

 

 

Macroscelides proboscideus - Elephant Shrew: 
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Dama dama - Fallow Deer: 
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Vulpes vulpes - Fox: 

 

 

 

 

Gazella gazella - Gazelle: 
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Myrmecophaga tridactyla - Giant Anteater: 

 

 

 

 

Giraffa Camelopardalis - Giraffe: 
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Iguana iguana - Green Iguana: 

 

 

 

 

 

Lama guanicoe - Guanaco Llama: 
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Cavia porcellus - Guinea Pig: 

 

 

 

 

Hippopotamus amphibius - Hippo: 
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Equus ferus caballus - Horse: 

 

 

 

 

Procavia capensis - Hyrax: 
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Bos gaurus - Indian Bison: 

 

 

 

Tragulus javanicus - Javan Mouse Deer: 
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Lemmus lemmus - Lemming: 

 

 

 

Panthera pardus - Leopard: 
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Panthera leo - Lion: 

 

 

 

 

 

 

Tapirus indicus - Malayan Tapir: 
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Herpestes edwardsi - Mongoose: 

 

 

 

 

 

 

Crocodylus moreletii - Morelet’s Crocodile: 
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Okapia johnstoni - Okapi: 

 

 

 

 

Lutra lutra - Otter: 
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Cuniculus paca - Paca: 

 

 

 

 

 

 

Pecari tajacu - Peccary: 
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Sus scrofa - Pig: 

 

 

 

 

Ursus maritimus - Polar Bear: 
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Choeropsis liberiensis - Pygmy Hippo: 

 

 

 

Ovis aries - Ram: 



253 
 
 

 

Cervus elaphus - Red Deer: 

 

 

Ailurus fulgens - Red Panda: 
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Rangifer tarandus - Reindeer: 

 

 

 

 

Dicerorhinus sumatrensis - Sumatran Rhino: 
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Tamandua tetradactyla - Tamandua: 

 

 

 

 

 

 

 

Tapirus terrestris - Tapir: 
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Panthera tigris - Tiger: 

 

 

 

 

 

Sphenodon punctatus - Tuatara: 
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Gulo gulo - Wolverine: 

 

 

 

 

 

 

 

Vombatus ursinus - Wombat: 
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Chapter 4 Supplementary Material 

 

The following supplementary material contains the following: 

1. Tables for phylogenetic comparative methods tests for combined data 

2. Tables for T-tests for newly-collected data 

3. Tables showing raw data collected. 
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Table S4.1 Table showing results of phylogenetic generalised least squares for tests 

for newly-collected data combined with data from the literature. 

PGLS - Brownian Correlation 95% CI P Value  
Area -0.79 -0.24±0.10 0.04  
Peak Vertical Force -0.58 -0.06±0.04 0.19  
Peak Pressure -0.90 -0.11±0.05 0.05  

     
PGLS - Pagel's Lambda Correlation Lambda 95% CI P Value 

Area -1 -2.23 0.21±0.02 0 

Peak Vertical Force -0.69 0.94 -0.02±0.05 0.68 

Peak Pressure -0.94 0.90 -0.11±0.05 0.08 

     
PGLS - Ornstein-Uhlenbeck Correlation 95% CI P Value  
Peak Vertical Force -0.73 -0.02±0.05 0.67  
Peak Pressure -0.97 -0.12±0.06 0.07  

4.  

5. Table S4.2 Table showing results of T-tests investigating possible significant 

differences between manus and pes results for newly-collected data for all relevant 

variables. 

Variable vs CoM Subject Animal T Value DF P Value 95% CI 95% CI 
Mean of 
Differences 

Area Alpaca 1.57 2 0.26 -17.72 38.10 10.19 

Area Dog 1.00 18 0.33 -2.19 6.18 2.00 

Area Pony -0.71 2 0.55 -13.63 9.76 -1.94 

Area Goat 8.22 8 3.59E-05 5.60 9.97 7.78 

Area Tapir 2.95 2 0.10 -15.69 83.82 34.06 

Peak Force Alpaca 2.20 3 0.11 -20.33 111.89 45.78 

Peak Force Dog 3.85 19 0.00 7.90 26.70 17.30 

Peak Force Pony -0.08 3 0.94 -51.81 49.12 -1.34 

Peak Force Goat 4.10 9 2.69E-03 4.53 15.71 10.12 

Peak Force Tapir 3.62 3 0.04 10.89 168.43 89.66 

Median Force Alpaca 2.61 3 0.08 -8.98 90.04 40.53 

Median Force Dog 3.58 19 0.00 6.51 24.84 15.68 

Median Force Pony 1.24 3 0.30 -47.33 107.59 30.13 

Median Force Goat 3.81 9 4.15E-03 4.06 15.93 9.99 

Median Force Tapir 1.26 3 0.30 -118.26 274.1 77.92 

Peak Pressure Alpaca 2.25 3 0.11 -0.19 1.12 0.46 

Peak Pressure Dog 4.59 19 0.00 0.16 0.42 0.29 

Peak Pressure Pony 0.74 3 0.51 -0.56 0.96 0.17 

Peak Pressure Goat 2.52 9 3.30E-02 0.02 0.39 0.21 

Peak Pressure Tapir 1.28 3 0.29 -0.51 1.20 0.34 

Median Pressure Alpaca 2.14 3 0.12 -0.19 1.00 0.40 

Median Pressure Dog 4.16 19 0.00 0.12 0.36 0.24 

Median Pressure Pony 1.44 3 0.25 -0.35 0.94 0.29 
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Median Pressure Goat 2.85 9 1.90E-02 0.048 0.42 0.23 

Median Pressure Tapir 1.01 3 0.39 -0.78 1.51 0.36 

6.  

1. Supplementary Table 4.S3 Table showing results of T-tests investigating 

possible significant differences between left and right results for newly-collected 

data for all relevant variables. 

Variable vs CoM Subject Animal T Value DF P Value 95% CI 95%CI Mean of Differences 

Area Alpaca 0.7 1 0.61 -92.95 103.79 5.15 

Force Alpaca -1.95 1 0.3 -336.32 246.68 -44.82 

Pressure Alpaca 1.13 1 0.46 -5.01 5.99 0.49 

Area Dog 0.76 9 0.47 -4.4 8.82 2.21 

Force Dog -1.62 9 0.14 -19.09 3.17 -7.96 

Pressure Dog -2 9 0.08 -0.27 0.02 -0.13 

Area Pony NOT ENOUGH DATA TO PERFORM TEST   
Force Pony NOT ENOUGH DATA TO PERFORM TEST   
Pressure Pony NOT ENOUGH DATA TO PERFORM TEST   
Area Goat 0.26 4 0.81 -5.33 6.41 0.54 

Force Goat 0.73 4 0.5 -10.96 18.8 3.92 

Pressure Goat 1 4 0.37 -0.31 0.66 0.17 

Area Tapir 5.36 1 0.12 -15.63 38.47 11.42 

Force Tapir 4.04 1 0.15 -37.89 73.22 17.67 

Pressure Tapir -0.45 1 0.73 -1.86 1.73 -0.06 
2.  

3. Supplementary Table 4.S4 Table containing raw data, both newly-collected, and 

from the literature. 

New Data 
CoM Est 
(% GAD) 

Area 
(cm2) 

Peak 
Force (N) 

Median 
Force (N) 

Peak 
Pressure 
(N/cm2) 

Median 
Pressure 
(N/cm2) 

Alpaca - Vicugna pacos 56.98 111.05 133.74 140.50 119.51 127.09 

Dog - Canis lupus  57.36 103.83 126.94 125.27 125.52 122.37 

Pony – Equus ferus caballus 52.49 92.53 101.58 122.27 111.75 118.43 

Goat – Capra aegagrus herpus 59.09 140.12 184.07 216.97 134.00 150.82 

Tapir – Tapirus terrestris 56.57 114.68 143.28 143.52 120.11 124.21 

       

Literature Data 
CoM Est 
(%GAD) 

Area 
(cm2) 

Peak 
Force (N) 

Median 
Force (N) 

Peak 
Pressure 
(N/cm2) 

Median 
Pressure 
(N/cm2) 

Elephas maximus 58.03 128.08  148.10  117.07 

Loxodonta africana 63.92 102.73 116.78  113.36  
Alligator mississippiensis 30  77.36    
Crocodylus porosus 50.98 50.10     
Paleosuchus trigonatus 30 83.65     
Tomistoma schlegelii  48.35     
Tiliqua scincoides intermedia  67.36     
Gerrhosaurus major  55.34     
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Varanus komodoensis  69.32     
Varanus exanthematicus  79.54     
Varanus rudicollis  49.45     
Eublepharis macularius  88.75     
Pogona vitticeps  38.69     
Calumma parsonii  62.30     
Furcifer pardalis  135.33     
Shinisaurus crocodilurus  130.71     
Corucia zebrata  69.44     
Smaug warreni   116.25    
Eulamprus quoyii   57.69    
Stellagama stellio   142.61    
Leiocephalus schreibersii   97.14    
Oplurus cuvieri   63.64    
Tropidurus torquatus   47.12    
Varanus exanthematicus   90.69    
Cuora flavomarginata  117.42     
Chaco abingdonii  121.82     
Geochelone platynota  82.30     
Rhinella schneideri  88.14     
Pan troglodytes 59.59  78.33    
Pongo abelii 60.58  80.12    
Chlorocebus pygerythrus   78.56    
Erythrocebus patas   74.83    
Ateles fusciceps 39.78  42.86    
Ateles belzebuth 39.78  39.58    
Lemur fulvus   62.96    
Cercopithecus talapoin 47.84  78.57    
Papio cynocephalus 53.58  60.13    
Macaca fascicularis   97.63    
Papio anubis 53.58  110.14    
Erythrocebus patas   100.85    
Macaca mulatta   88.68    
Callithrix jacchus   116.26    
Cheirogaleus medius   70.64    
Myrmecophaga tridactyla 48.00  169.48    
Ovis aries 59.09  166.03    
Bos taurus 61.34 119.84 123.73  103.24  
Addax nasomaculatus   102.38    
Felis catus 51.58 95.69 134.63  140.69  
Macropus rufus   38.72    
Monodelphis domestica 63  170.16    
Canis lupus familiaris   149.48    
Rattus norvegicus   95.79    
Mus musculus   108.73    
Equus ferus caballus 52.21 104.31 133.34  117.86  
Camelus dromedarius 56.98  100    
Vicugna pacos 56.98 109.01 116.67  107.03  
Cervus elaphus 60.54 120.58 140  116.11  
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Sus scrofa domesticus 63.34 126.10 112.5  89.22  
Ceratotherium simum 56.21    265  
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Chapter 5 Supplementary Material 

 

The following supplementary material contains the following: 

1. Figure showing results of osteological analysis with Shunosaurus included 

2. Images of whole-body convex hulls of dinosaur skeletons where used 
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Figure 6.S1 
Scatter graphs show

ing linear m
odel regressions for osteological analysis, w

ith heteropody index against centre of m
ass 

position as a percentage of gleno-acetabular distance in front of the hip (including S
hunosaurus). A – analysis w

ith sauropodom
orphs and 

ornithischians. B – analysis w
ith ornithischians alone. C

 – analysis w
ith sauropodom

orphs alone.  
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Iguanodon:  

 

Edmontosaurus: 

 

Tenontosaurus: 

 


