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An Integrated Fuzzy Sustainable Supplier Evaluation and Selection Framework for 

Green Supply Chains in Reverse Logistics 

Abstract 

Green supply chain management considers the environmental effects of all activities related to the 

supply chain, from obtaining raw materials to the final delivery of finished goods. Selecting the 

right supplier is a critical decision in green supply chain management.  We propose a fuzzy green 

supplier selection model for sustainable supply chains in reverse logistics. We define a novel 

hierarchical fuzzy best-worst method (HFBWM) to determine the importance weights of the green 

criteria and sub-criteria selected. The fuzzy extension of Shannon’s entropy, a more complex 

evaluation method, is also used to determine the criteria' weights, providing a reference 

comparison benchmark. Several hybrid models integrating both weighting techniques with fuzzy 

versions of complex proportional assessment (COPRAS), multi-objective optimization by ratio 

analysis plus the full multiplicative form (MULTIMOORA), and the technique for order of 

preference by similarity to ideal solution (TOPSIS) are designed to rank the suppliers based on 

their ability to recycle in reverse logistics. We aggregate these methods' ranking results through a 

consensus ranking model and illustrate the capacity of relatively simple methods such as fuzzy 

COPRAS and fuzzy MOORA to provide robust rankings highly correlated with those delivered 

by more complex techniques such as fuzzy MULTIMOORA. We also find that the ranking results 

obtained by these hybrid models are more consistent when HFBWM determines the weights. A 

case study in the asphalt manufacturing industry is presented to demonstrate the proposed methods' 

applicability and efficacy.  

Keywords: green supply chain; reverse logistics; hierarchical fuzzy best-worst method; Shannon’s 

entropy; maximize agreement heuristic; consensus ranking.  
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1. Introduction  

Environmental issues related to waste and toxic gas emissions have raised concerns over the 

environment and public health (Khor and Udin, 2013). Globalization and legal environmental 

provisions have forced companies and organizations to promote environmental performance 

(Abdel-Baset et al., 2019). One of the critical matters in this area is recycling, which begs attention. 

The pressures posed by regulators and stakeholders for recycling benefit the environment and lead 

to a sustainable competitive advantage (Bai et al., 2019). The principal goal of recycling is to 

reduce the waste and efficient use of resources, which has both economic and environmental 

benefits. Due to the severe environmental impacts, manufacturers have been encouraged to change 

their reverse logistics (RL) networks into green concepts and reduce harmful ecological impacts 

(Haji et al., 2015).  

RL refers to operations collecting used goods for reuse, repair, remanufacturing, recycling, 

or disposal to produce new products (Alkahtani et al., 2021; Chen et al., 2021). Also, RL is a 

process of moving a typical product in an inverse path from the mainstream logistics to retrieve 

value or ensure proper disposal (Hansen et al., 2018; Tavana et al., 2016). Furthermore, it is a tool 

to recover and recycle or green disposal of goods to reduce pollution (Zarbakhshnia et al., 2019). 

RL helps companies gain a competitive advantage by creating economic value through reuse and 

retrieval.  Being the main step in green supply chain initiatives, RL allows manufacturers to enter 

the reused products into the production cycle (Mavi et al., 2017). In RL, materials used can be 

transformed into new products that could return to the same market or other markets (Ribeiro et 

al., 2021). The core objectives of RL are cost minimization, profit maximization, and 

environmental benefits (Liao, 2018). Companies pursue three main activities in RL: (i) gathering 

- where consumers discard their used products; (ii) reconstruction – where separation, 

rehabilitation, or recycling is done; and (iii) demand centers - where restored products are sold 

(Ravi, 2014).  

Many manufacturing companies with limited capabilities outsource some of their 

reconstruction activities to their suppliers. Suppliers rebuild, repair, and recycle the collected 

products and reconstruct the final products that can be reused in the manufacturing process within 

RL companies. As environmental agencies and organizations control the industry activities, 

suppliers play a critical role in the RL companies. Hence, evaluating suppliers and assessing their 

impacts on the company’s productivity is of great importance for RL companies. 
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In the tire industry, companies operate RL processes to recycle worn-out tires as raw 

material. In tire and rubber recycling, the process takes place on worn or ruptured tires, which are 

not repairable and not suitable for use. There are crucial concerns about this process as worn-out 

tires are among the leading causes of environmental contamination. The spoiled tires are 

considered hazardous wastes since burning them emanate black and harmful smoke causing air 

pollution. Burying tires is also detrimental to the environment as they produce dangerous gas 

bubbles (also known as cavitation), which contaminates underground water resources. Tires can 

be recycled for different types of products; for instance, they can be used in the hot asphalt 

production process, where they improve the asphalt durability and increase the asphalt 

compressive strength. Moreover, recycled tires can also be used in Portland cement, production of 

new tires, sports fields, shoe industry, flooring, and artificial grass. This study aims to shed light 

on the waste recycling processes and the environmental pollution concerns in the asphalt 

manufacturing companies. In this regard, the main empirical contribution of this research focuses 

on the recycling process of worn-out tires and their use as raw material.  

The model proposed to evaluate and rank the set of potential green suppliers incorporates 

two main novel features. First, it extends the fuzzy best-worst method (BWM) into a hierarchical 

structure, defining a relatively simple weighting technique whose performance is more consistent 

than that of more complex methods such as the fuzzy version of Shannon’s entropy. Second, we 

design a hybrid ranking model that incorporates the previous weights into the fuzzy extensions of 

evaluation techniques such as the complex proportional assessment of alternatives (COPRAS), 

multi-objective optimization on the basis of ratio analysis (MOORA), MOORA plus full 

multiplicative form (MULTIMOORA) and the technique for order of preference by similarity to 

ideal solution (TOPSIS). The empirical results obtained allow for a direct comparison of the 

rankings provided by these techniques and their aggregation into a unique consensus ranking via 

the maximize agreement heuristic (MAH) method. 

The main contributions of this research can be summarized as follows: 

• Our study case focuses on tire recycling and the use of recycled tires as raw materials, an 

important problem that has received relatively little attention in the literature. Tires are made 

of polymeric materials that do not decompose easily in nature, constituting a severe long-term 

problem that cannot be initially solved by burning or burying them. Two main sets of 

consequences follow from their correct re-utilization. From an environmental viewpoint, worn-
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out recycling tires reduce waste and reinforces the material cycle in nature. From a financial 

viewpoint, recycled tires can be incorporated into production cycles, becoming a source of 

economic profitability and helping industrial development; a particularly important feature is 

less developed countries. 

• We develop a novel hierarchical extension of the fuzzy best-worst method, denoted by 

HFBWM, which allows for the simultaneous determination of the weights of criteria and sub-

criteria within a fuzzy environment. 

• We propose several enhanced hybrid ranking models that incorporate HFBWM and fuzzy 

Shannon’s entropy, allowing for direct comparisons across methods and resulting in more 

accurate aggregate results. 

The rest of this research is arranged in the following order: In the second section, this study 

reviews the current literature on RL, tire recycling, and evaluation and assortment of green 

suppliers. The literature review generates the supplier evaluation criteria for tire recycling in RL.  

In the third section, this research presents the suggested fuzzy green supplier selection model. In 

the fourth section, a case study in the asphalt manufacturing industry is presented to stress the 

proposed method’s applicability and efficacy. In the final section, we conclude with a discussion 

and conclusions.   

2. Literature review 

In this part, the present study provides a concise review of the literature on RL, tire recycling, and 

green supplier evaluation and selection. 

2.1. Reverse logistics 

Today, RL has attracted many manufacturers (Ramírez and Morales, 2014), and the RL operations 

refer to all restructuring actions in which the factory directly or indirectly benefits from the 

changes. RL is related to the process of retrieval of goods at the final stage of the lifecycle for 

regeneration, recycling, or green disposal (Zarbakhshnia et al., 2019). RL is the efficient control 

of raw materials, finished goods, and in-process inventory from production to consumption to 

regain value from the disposed goods (Rogers and Tibben-Lembke, 1999). Figure 1 presents an 

RL system. A typical RL system involves product acquisition, collection, examination and 

classification, disposal, and redistribution processes. The disposition process includes five steps of 

repair, refurbish, remanufacture, cannibalize, and recycle. In this research, the focus is on the 

recycling step of the disposition process. Next, this study presents the RL processes from a 



6 
 

literature perspective (Agrawal et al., 2016b, 2016a; Rachih et al., 2019).  

Insert Figure 1 Here 

Reverse logistic processes encompass different stages that include product acquisition 

(gatekeeping), collection (gathering), inspection and sorting, disposition, and redistribution, all of 

which are described below. 

Product acquisition (gatekeeping) 

Product acquisition refers to operations in which goods are collected and returned from the end-

users (Jayaraman et al., 2008). In this process, companies use agents in the purchasing sector to 

identify the market for consumer goods and buy the used or returned products (Agrawal et al., 

2016b). 

Collection (gathering)  

Collection or gathering refers to goods received from interior and exterior end-users and includes 

the processes of delivery of the returned goods and their transport (Lambert et al., 2011). In this 

process, the company takes ownership of the products by purchasing them from retailers (Agrawal 

et al., 2016a). After the purchase, products are harvested and prepared for recycling, repair, or 

disposal (Agrawal et al., 2016b). Three methods of the collection include direct contact with 

customers, retailers, or a third party. 

Inspection and sorting 

The collected products often have different qualities and appearances.  Therefore, inspection and 

isolation are needed to sort these products. In this step, a separate inspection is carried out to 

categorize these products accordingly (Agrawal et al., 2016b). Generally, sorting involves deciding 

on the goods and products returned (Lambert et al., 2011). This process can be complex when 

hazardous goods are being sorted. 

Disposition 

Disposition refers to goods that are either defective or have reached the end of their lifetime so 

that they can be re-produced and enter the consumption cycle. Returned products can also be used 

as raw material in the production of new products (Jayaraman et al., 2008). Generally, this process 

involves deciding whether to repair, refurbish, remanufacture, cannibalize, or recycle the product. 

Redistribution 

Redistribution is the process of diverting reusable goods to a market for resale purposes. Reusable 

goods can be traded through redistribution on a secondary market (Agrawal et al., 2016a). 
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2.2. Tire recycling 

The primary consumers of tire products are asphalt manufacturing and automotive industries. Tire 

waste is usually obtained from the tire production process or products consumed by customers 

(Fukumori et al., 2002). Tire waste recycling is an example of recycled solids that has received 

considerable attention due to its environmental benefits (Price and Smith, 2015). The natural 

destruction of tires is often time-consuming, expensive, and causes environmental pollution. The 

environmentally conscious approach to tackle this problem is recycling and reusing the tire waste 

(Adhikari, 2000). These tire recycling approaches lead to economic and social benefits such as: 

reducing energy consumption, diminishing production cost by combining rubber powder from 

recycled rubber, and reducing rubber waste (Fang et al., 2001). 

Tire recycling methods are divided into mechanical and chemical approaches. In the 

mechanical approach, tires are divided into smaller pieces. This process is done in several steps by 

shredder and granulator machines. Each step produces different products, which are used in 

various industries. Some industries use coarse granules, and others use a very soft tire powder. In 

the chemical approach, the tire is burned, and the metal wires or the tire become pyrolyzed. In 

pyrolysis, the tire is burned in a vacuum, and several products are extracted, such as diesel fuel, 

oil, etc. Recycled tire products vary based on the mechanical or chemical recycling: rubber 

granulate, rubber powder, recycled metal, reclaimed tire, asphalt and bitumen polymer, gasoline 

fuel, and the car battery.  

2.3. Green supplier assessment and assortment 

Supplier assessment and assortment have a significant role in creating an impressive and 

competitive chain (Freeman and Chen, 2015, Ghadimi et al., 2019). Due to outsourcing activities, 

companies' dependence on suppliers has increased; thus, supplier evaluation and selection have 

become of great importance. The supplier evaluation and selection procedure are done with 

different objectives (Govindan et al., 2015b). In addition, as public awareness about the 

environmental impacts increases, principles and strategies for green supply chain activities happen 

to be the key success factors for companies (Liao et al., 2016). One of the critical principles in 

green activities is removing or reducing wastes, which causes hazardous solid waste, energy losses, 

and greenhouse gas emissions. Improving waste management can turn into a core competency for 

suppliers (Torabzadeh Khorasani, 2017). This research conducted a thorough literature review to 

explore the environmental dimensions and the primary standards for assessing and selecting the 
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best suppliers for tire recycling presented in Table 1. 

Insert Table 1 Here 

Different approaches have been suggested and applied for green supplier assessment and 

assortment, including grey-based Decision Making Trial and Evaluation Laboratory (DEMATEL) 

(Fu et al., 2012), grey Analytic Network Process (ANP) (Dou et al., 2014), Data Envelopment 

Analysis (DEA) (Dobos and Vörösmarty, 2014), fuzzy additive ratio assessment and multi-

segment goal programming (Liao et al., 2016), the qualitative flexible multiple method (Wang et 

al., 2017), DEMATEL-ANP (Jiang et al, 2018), TOPSIS (Shafique, 2018), elimination and choice 

expressing reality (Gitinavard et al., 2018), Visekriterijumska Optimizcija I Kaompromisno 

Resenje (VIKOR) (Demir et al., 2018), TOPSIS-VIKOR-grey relational analysis (Banaeian et al., 

2018), the preference ranking organization technique for improving assessments (Abdullah et al., 

2018), fuzzy Analytic Hierarchy Process (AHP) (Zafar et al., 2019), BWM and TOmada de 

Decisao Interativa Multicriterio (TODIM) (Bai et al., 2019), and hybrid FUll COnsistency Method 

(FUCOM) and Rough Simple Additive Weighting (SAW) techniques (Durmić et al., 2020). 

Prakash and Barua (2015) studied RL obstacles and used AHP and TOPSIS to rank 

barriers. Similarly, Bouzon et al. (2016) investigated RL obstacles in Brazil's electronic industry, 

identified barriers based on expert opinion using the fuzzy Delphi method, and ranked them by 

applying the AHP approach. Govindan et al. (2016) used a model of multi-objective particle swarm 

optimization for an effective and viable RL network outline considering the environmental, social, 

and economic domains. Moreover, Mangla et al. (2016) used DEMATEL, and AHP approaches 

to examine the RL critical success elements in Indian industries. Ravi and Shankar (2017) 

investigated RL principles in the automobile industry using interpretive structural modeling.  

2.4. COPRAS, MULTIMOORA, and TOPSIS 

MCDM models are applied to identify and select the best possible solution from a set of 

alternatives based on different decision criteria. For example, prior research has used COPRAS to 

plan water transfer between basins (Roozbahani et al., 2020), rank hybrid wind farms (Dhiman & 

Deb, 2020), select green suppliers (Kumari & Mishra, 2020), evaluate the performance of 

contractors (Jasim, 2021), assess construction project safety (Wei et al., 2021), rank effective risks 

in natural gas supply projects (Balali et al., 2021), and evaluate COVID-19 regional safety (Hezer 

et al., 2021). In addition, previous studies have used MULTIMOORA for selecting suppliers 

(Tavana et al., 2020) and logistic service providers (Sarabi & Darestani, 2021), examining the 
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barriers to the adoption of renewable energy (Asante et al., 2020), selecting car subscription station 

sites (Lin et al., 2020), choosing stable battery suppliers (Wang et al., 2021), and evaluating 

technology project review experts (Wang et al., 2021). A similar range of applications arises when 

considering previous research works that implement TOPSIS, including supplier selection (Lei et 

al., 2020), the evaluation of unusual emergency events (Zhan et al., 2020), the assessment of lake 

eutrophication levels (Lin et al., 2020), sustainable supply chain risk management (Abdel-Basset 

& Mohamed, 2020), risk analysis of cutting system (Kushwaha et al., 2020), transportation 

management (Sarkar & Biswas, 2021), risk prioritization in self-driving vehicles (Bakioglu & 

Atahan, 2021), and the evaluation of renewable energy production capabilities (Wang et al., 2021). 

2.5. BWM and fuzzy Shannon’s entropy 

BWM, proposed by Rezaei (2016), is an MCDM technique used to determine the weights of 

criteria. BWM has been developed and applied by researchers across several disciplines. For 

instance, Bonyani & Alimohammadlou (2019) integrated BWM with ANP to improve pair-wise 

comparison processes. Amiri et al. (2020) developed a group-BWM and integrated it with a fuzzy 

preference programming method to examine hospital performance. Other studies have also used 

BWM for evaluation purposes, including the performance of solid waste management (Behzad et 

al., 2020), insurance companies (Dwivedi et al., 2021), and healthcare departments (Torkayesh et 

al., 2021), driver’s behavior in road safety (Moslem et al., 2020), the green performance of airports 

(Kumar et al., 2020), selection of providers (Muravev & Mijic, 2020), and ship recycling (Soner 

et al., 2021). Similarly, the method based on Shannon’s entropy is an appropriate technique for 

specifying the relevance of weights in multiple attribute decision-making methods. For instance, 

this method has been used to rank cities (Storto, 2016), assess flood vulnerability (Yang et al., 

2018), analyze barriers to the implementation of continuous improvement (Tavana et al., 2020), 

study surface air temperature and rainfall (Ray & Chattopadhyay, 2021), and rank the structural 

analysis of software applications (Jarrah et al., 2021). 

3. Methodology  

This study uses a fuzzy green supplier selection model for sustainable supply chains in RL. To 

prioritize those green suppliers with a robust ability to recycle in RLs, we use fuzzy extensions of 

COPRAS, MULTIMOORA, and TOPSIS. COPRAS, MULTIMOORA, and TOPSIS are robust 

MCDM techniques applied to evaluate the performance of a series of alternatives according to 

different criteria. The relative importance assigned to these criteria is determined by the separate 
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implementation of the fuzzy extension of Shannon’s entropy and our proposed approach, namely, 

HFBWM. This latter method constitutes one of the main contributions of the current study. We 

extend FBWM into HFBWM to evaluate the weights of the criteria and sub-criteria used to rank 

alternatives through COPRAS, MULTIMOORA, and TOPSIS. Integrating these MCDM methods 

into hybrid evaluation techniques aims to improve the accuracy and robustness of the results 

compared to those obtained when applying a single method. We also use fuzzy Shannon’s entropy 

to determine the weights of the criteria and sub-criteria of the different hybrid models, allowing us 

to compare the rankings derived from both weighting techniques. The comparisons performed both 

across hybrid MCDM models and between weighting techniques aim at improving the quality of 

decision-making and the reliability of the results obtained. 

As depicted in Fig. 2, the procedure of current research entails six phases. First, this 

research reviews the literature and identifies the green supplier assortment benchmarks. In 

addition, the green supplier assortment benchmarks for the tire recycling industry are classified 

accordingly. Second, this research uses fuzzy Shannon’s entropy and HFBWM to compute the 

importance weight of the green supplier assessment benchmarks. Third, this study uses fuzzy 

COPRAS in Phase 3, fuzzy MULTIMOORA in Phase 4, and fuzzy TOPSIS in Phase 5 to rank the 

suppliers. We compare the rankings provided by the set of methods implemented throughout the 

evaluation procedure, illustrating fuzzy COPRAS and fuzzy MOORA's capacity to deliver 

sufficiently robust rankings relative to more complex techniques such as fuzzy MULTIMOORA. 

Finally, in Phase 6, this research aggregates the rankings obtained from the fuzzy COPRAS, fuzzy 

MULTIMOORA, and fuzzy TOPSIS techniques using the Maximize Agreement Heuristic (MAH) 

method proposed by Beck & Lin (1983) to reach an agreement for the rankings produced by the 

different hybrid methods. Several consensus ranking methods, such as the Copeland approach, 

exist. MAH is commonly used since it provides an effective consensus ranking framework that 

maximizes agreement in decision-making. It is a practical method that has been introduced to 

motivate the application of our integrated model by future researchers. We conclude by 

highlighting the hybrid models’ capacity based on HFBWM to provide consistent ranking results 

while requiring a simpler evaluation framework than those based on the fuzzy extension of 

Shannon’s entropy.  

Insert Figure 2 Here 

In Phase 1, this study conducted a rigorous literature review and explored the benchmarks 
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and environmental dimensions to assess and assort the best suppliers for tire recycling.  As 

depicted in Fig. 3, the green supplier selection benchmarks chosen in this study were classified 

into the four environmental dimensions of pollution control, green product, environment 

management, and pollution production. 

Insert Figure 3 Here 

3.1 Fuzzy Shannon’s entropy method 

Entropy refers to the quantitative measure of information (Shannon, 1948), leading to a higher 

degree of compression (Naidu et al., 2018). According to Pourhamidi (2013), the entropy approach 

has its roots in the Boltzmann entropy of conventional statistical methods. Fuzzy entropy refers to 

the fuzzy information obtained from the fuzzy system (Al-Sharhan et al., 2001), and it differs from 

Shannon entropy, which is an estimate of unpredictability. The difference is mainly the 

probabilistic nature of Shannon entropy. According to Lotfi & Fallahnejad (2010), it is a good 

technique in specifying the relevant weights in multiple attribute decision-making methods. 

Previous research improved this method for fuzzy data (Lotfi and Fallahnejad, 2010). The steps of 

the fuzzy Shannon’s entropy approach are presented as follows: 

Step 1: This step involves transforming the fuzzy numbers to set-level data. In a fuzzy variable 
~

ijx

, the 𝛼 -level set indicates a class of intervals that has a participation of minimum value , i.e., 

( )~

~

ij

ij ij ij
x

x X Rl u X


  
=     

   
. The following formula indicates the 𝛼 -levels set: 

( )  ( ) 
~ ~

, ,
ij ij ij ij

l u

ij ij x ij x ij x ij x ijx x Min x R u X Max x R u X
 

      =                 

 

in which  0 < 𝛼 ≤ 1.  

Through the different levels of confidence interval limits in terms of 1-, the fuzzy data is 

transformed to the different interval set values of 
~

0 1ijx



  

   
  

. 

Step 2: In this step, the 
l

ijp  and 
u

ijp  values are calculated through the parameters of Eq. (1): 

1 1

, , 1,..., ; 1,...,

l u

ij ijl u

ij ijm mu u

ij ijj j

x x
p p j m i n

x x
= =

= = = =

 
  

(1) 

Step 3: In the following stage, the ℎ𝑖
𝑙
 and ℎ𝑖

𝑢
 formulas as min and max interval values are computed 
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through the Eq. (2): 

 0 01 1
.ln , .ln , 1,...,

m ml l l u u

i ij ij ij ijj j
h Min h p p h p p i n

= =
= − − =   

(2) 

 0 01 1
.ln , .ln , 1,...,

m mu l l u u

i ij ij ij ijj j
h Max h p p h p p i n

= =
= − − =    

in which ( )
1

0 lnh m
−

=   and .lnl l

ij ijp p  or .lnu u

ij ijp p  are zero in case 0l

ijp =  or 0u

ijp = . 

Step 4: In this step, the 
l

id  and 
u

id  diversification interval values are assigned in Eq. (3): 

1 , 1 , 1,...,l u u l

i i i id h d h i n= − = − =   (3) 

Step 5: In this step, the 𝑤𝑖
𝑙 and 𝑤𝑖

𝑢 values are assigned as the base and upward value limits of the 

interim weights of the attribute 𝑖, where 𝑖 = 1, . . . , 𝑛, as shown in Eq. (4). 

𝑤𝑖
𝑙 =

𝑑𝑖
𝑙

∑ 𝑑𝑠
𝑢𝑛

𝑠=1
, 𝑤𝑖

𝑢 =
𝑑𝑖

𝑢

∑ 𝑑𝑠
𝑙𝑛

𝑠=1
 (4) 

Step 6: This research calculates ' ,
2

l u

i i
i

w w
w

+
=  then computes 

'n

i i
w , and finally calculates iw  

using Eq. (5) to obtain the final weight. 

'

'

i
i n

ii

w
w

w
=


 (5) 

3.2. Hierarchical Fuzzy Best-Worst Method 

Rezaei (2015) proposed the Best-Worst Method as an MCDM technique used to determine the 

weights of criteria via pairwise comparisons of the best criterion relative to all the other criteria 

and all the criteria relative to the worst criterion (Bonyani & Alimohammadlou, 2019). Immediate 

extensions were developed by Tabatabaei et al. (2019), who introduced the Hierarchical BWM, 

and Guo and Zhao (2017), who proposed a fuzzy version of the BWM. The HBWM allows 

considering the weights of the criteria and sub-criteria within a simultaneous programming model 

so as to calculate the global weights of the set of sub-criteria (Ren & Toniolo, 2021).  

We propose the Hierarchical Fuzzy Best Worst Method (HFBWM) based on the fuzzy 

BWM (FBWM) introduced by Guo and Zhao (2017) and the HBWM defined by Tabatabaei et al. 

(2019). The steps of the HFBWM can be summarized as follows: 

Step 1. Identify the set of criteria  1 2, ,..., nC C C  and sub-criteria  1 2, ,...,S S nSC C C . 

Step 2. Identify the best (most important) criteria and sub-criteria, B, and the worst (least 
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important) criteria and sub-criteria, W. 

Step 3. Determine the fuzzy preference for the best criterion over each of the other criteria on a 

scale from 1 to 5. The fuzzy best-to-others criteria are defined as follows: 

~ ~ ~ ~

1 2, ,...,B B B BnA a a a
 

=  
 

 (6) 

where 
~

Bja  is the fuzzy preference of B over jC  ( 1, 2,...,j n= ), and ( )
~

1,1,1BBa = . 

Step 4. Determine the fuzzy preference of all the criteria over the worst criterion on a scale from 

1 to 5. The fuzzy others-to-worst criteria are defined as follows: 

~ ~ ~ ~

1 2, ,...,W W W nWA a a a
 

=  
 

 (7) 

where 
~

jWa  is the fuzzy preference of jC  ( 1, 2,...,j n= ) over W, and ( )
~

1,1,1WWa = . 

Step 5. Determine the fuzzy preference of the best sub-criterion over each of the other sub-criteria 

in a scale from 1 to 5. The fuzzy best-to-others sub-criteria are defined as follows: 

~ ~ ~~

1 2, ,...,j j j
BS B B BnA a a a

 
=  
 

 (8) 

where 
~

j
BSa  is the fuzzy preference of the best sub-criterion over the S-th sub-criterion within the 

j-th criterion, and ( )
~

1,1,1j
BBa = . 

Step 6. Determine the fuzzy preference of all sub-criteria over the worst sub-criterion on a scale 

from 1 to 5. The fuzzy others-to-worst sub-criteria are defined as follows: 

~ ~ ~~

1 2, ,...,j j j
SW W W nWA a a a

 
=  
 

 (9) 

where 
~

j
SWa  is the fuzzy preference of the S-th sub-criterion over the worst sub-criterion within 

the j-th criterion, and ( )
~

1,1,1j
WWa = . 

Step 6. Calculate the weights of the criteria ( )1 2, ,...,c c c

nw w w  and sub-criteria ( )1 2, ,...,j j j

Sw w w , 

and then calculate the final weights of the sub-criteria as 
j c sj

S j SGw w w=   
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( )

( )

~ ~

~ ~

~ ~

~ ~

~ ~

1

1

min

. :

, 1,...,

, 1,...,

, 1,...,

, 1,...,

1,

1,

, 1,...,

, , 0, 1,...,

j

j

B
Bj

j

j
jW

W

j
jB

j BS j
S

jj

S
SWj j

W

j j

S j S

n

j

j

n
j

S

j

w w w

j j j

w w w

j j j

s t

w
a j n

w

w
a j S

w

w
a j S

w

w
a j n

w

Gw w w

R w

R w

l m u j n

l m u j n

 









=

=

+

−   =

−   =

−   =

−   =

= 

=

=

   =

  =







 

(10-1) 

( )

( )

~ ~

~ ~

~ ~

~ ~

~ ~

1

1

min

. :

, 1,...,

, 1,...,

, 1,...,

, 1,...,

1,

1,

, 1,...,

, , 0,  1,...,

j

j

BjB j

jWj W

j j j

B BS S j

j

j j
SWS W j

j j

S j S

n

j

j

n
j

S

j

w w w

j j j

w w w

j j j

s t

w a w j n

w a w j S

w a w j S

w a w j n

Gw w w

R w

R w

l m u j n

l m u j n

 









=

=

+

−   =

−   =

−   =

−   =

= 

=

=

   =

  =







 

(10-2) 

In Model (10-2), ( )jR w  and ( )j

SR w  are the average weights of the criteria and sub-criteria, jw  

and 
j

Sw , respectively: 

The consistency ratio of the comparisons is calculated according to Equation (12) and Table2 as 

follows:  

*

Consistency Ratio
Consistency Index


=  (12) 

 where 
~ ~

*

j

j

  = +  for all criteria and sub-criteria. 

Insert Table2 Here 

3.3. Fuzzy COPRAS 

COPRAS is a multiple attribute decision-making approach developed by Zavadskas et al. (1994). 

The COPRAS approach calculates the solution by considering the best solution ratio. This 

approach surmises the proportionate and direct association between the importance-efficiency 

measures of checked versions and a system of criteria in which it explains the alternatives, weights, 

and values of the criteria accordingly (Yazdani et al., 2015). Zavadskas and Antucheviciene (2007) 

developed the fuzzy COPRAS approach. The phases of the ranking process used for fuzzy 

( ) ( )
4

,
6

w w w

j j jj

j S

l m u
R w R w

+ +
=  (11) 
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COPRAS (Zarbakhshnia et al., 2018) are appended below: 

Step 1: According to Table 3, the fuzzy Decision Matrix (DM) is built in this step. 

11 11 11 12 12 12 1 1 1

~

1 1 1 2 2 2

, , , , ... , ,

. . .

. . ... .

. . .

, , , , ... , ,

l m u l m u l m u

n n n

l m u l m u l m u

m m m m m m mn mn mn

x x x x x x x x x

X

x x x x x x x x x

            
 
 

=
 
 
 
            

 (13) 

The 𝑚 parameter in the matrix outlines how many alternatives are assigned, and the 𝑛 

parameter highlights the existing benchmarks, and the 𝑥𝑚𝑛 parameter indicates the efficiency of 

alternative 𝑖 in criteria 𝑗. Table 3 shows the guidelines used for the conversion process of fuzzy 

membership functions (M. P. Amiri, 2010; Zarbakhshnia et al., 2018). 

Insert Table 3 Here 

Step 2: In this stage, the fuzzy normalization DM is calculated for estimating its analogous 

sufficiency. As ( )
~

* * * *, ,l m u

ij ij ij ijX x x x=  and ,i j ;  

* 2 2 2

1
/ ( ) ( ) ( )

ml l l m u

ij ij ij ij iji
x x x x x

=
 = + +   (14) 

* 2 2 2

1
/ ( ) ( ) ( )

mm m l m u

ij ij ij ij iji
x x x x x

=
 = + +   (15) 

* 2 2 2

1
/ ( ) ( ) ( )

mu u l m u

ij ij ij ij iji
x x x x x

=
 = + +   (16) 

Step 3: In this stage, the weight of the benchmarks that were calculated utilizing the fuzzy Shannon 

is computed. 

Step 4: In this stage, the weighted normalized DM is calculated.  

Step 5: In this stage, higher values of the sum of attributes 
~

jp  are preferred for each alternative 

(optimization direction is maximization), with k representing the number of attributes that must be 

maximized: 

~ ~

1

k

j ij

i

p x
=

=  (17) 

Step 6: In this stage, lower values of the sum of attributes 
~

jR  are preferred for each alternative 
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(optimization direction is minimization), with (m− k) representing the number of attributes that 

must be minimized: 

~ ~

1

m

j ij

i K

R x
= +

=   (18) 

Step 7: In this stage, the lower bound of 𝑅 ̃𝑗 as 𝑅 ̃ minimum is calculated: 

~ ~

min min ; 1,2,...,j jR R j n= =  (19) 

Step 8: In this stage, the comparative importance of every variable is calculated: 

~ ~

~ ~ min 1

~
~

min

~1

; 1,2,...,

n

jj

i j

n

j j

j

R R
Q p j n

R
R

R

=

=

= + =




 
(20) 

Step 9: In this stage, the 𝑄 ̃𝑗 function to a non-fuzzy value using Eq. (21) is defuzzified. 

( ) ( )
3

u l m l

ij ij ij ij l

ij ij

x x x x
x x

− + −
= +  (21) 

Step 10: In this stage, the best alternative is chosen according to Eq. (22) in which the upper weight 

limit of the alternatives is calculated according to the preference value. 

max ; 1,2,...,j jK Q j n= =  (22) 

Step 11: In this stage, the scope of parameters in every variable is computed with Eq. (23). 

Furthermore, all numbers are defuzzified in this phase: 

max

100%; 1,2,...,
j

j

Q
K j n

Q
=  =  (23) 

In this equation, Qj and Qmax are referred to as the non-fuzzified comparative importance 

of each alternative as well as the best alternative value. With regards to the Kj parameter, the 

alternative values are classified and graded downward so that the superior value of Kj is the best 

alternative. 

3.4. Fuzzy MULTIMOORA 

The MULTIMOORA approach is a combination of Multi-Objective Optimization with Ratio 

Analysis (MOORA) and the Full Multiplicative Form (FMF) of multiple objectives. 

MULTIMOORA is a vigorous method in multiple objective optimizations (Brauers & Zavadskas, 
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2011). Previous studies had applied MULTIMOORA approach in various disciplines such as risk 

assessment (Fattahi & Khalilzadeh, 2018), project management initiatives (Dorfeshan et al., 2018), 

automobile selection (Wu et al., 2017), choosing home structure and fabric (Zavadskas et al., 

2017), logistics (Awasthi & Baležentis, 2017), supplier selection (Liu et al., 2018), recycling (Ding 

& Zhong, 2018), entertainment (Wu et al., 2018), automobile design (Liu et al., 2018), ERP (Tian 

et al., 2017), robotics (You et al., 2018), agriculture (Hafezalkotob et al., 2018), and housing 

industry (Zavadskas et al., 2017). 

3.4.1 Fuzzy MOORA 

Brauers and Zavadskas (2006) initially recommended the MOORA for improving two or more 

contradicting attributes that are bound to specific limitations. The MOORA approach is a 

multicriteria decision-making method commonly used to solve business challenges such as 

manufacturing, gas and oil industry, process design, or every flawless decision that considers 

several other contradicting attributes (Akkaya et al., 2015). According to Ceballos et al. (2016), 

the MOORA method builds a ranking system that is resorted to three computations: the Reference 

Point (RP), the ratio system, and the FMF of multiple objectives (Ceballos et al., 2016). The fuzzy 

MOORA approach as a multicriteria decision-making technique for privatization research in a 

subsistence economy is proposed by Brauers and Zavadskas (2006). The stages of the fuzzy ratio 

approach used in this research are identical in the previous applications of this method by Karande 

& Chakraborty (2012), Gupta et al. (2017), and Akkaya et al. (2015): 

Step 1: In this stage, a DM is formed using triangular fuzzy numbers. 

11 11 11 12 12 12 1 1 1

~

1 1 1 2 2 2

, , , , ... , ,

. . .

. . ... .

. . .

, , , , ... , ,

l m u l m u l m u

n n n

l m u l m u l m u

m m m m m m mn mn mn

x x x x x x x x x

X

x x x x x x x x x

            
 
 

=
 
 
 
            

 (24) 

Step 2:  In this stage, the DM is changed to a normalized Fuzzy DM (FDM) utilizing Eqs. (25), 

(26), and (27): 

As ( )
~

* * * *, ,l m u

ij ij ij ijX x x x=  and ,i j ; 

(25) * 2 2 2

1
/ ( ) ( ) ( )

ml l l m u

ij ij ij ij iji
x x x x x

=
 = + +   
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(26) * 2 2 2

1
/ ( ) ( ) ( )

mm m l m u

ij ij ij ij iji
x x x x x

=
 = + +   

(27) * 2 2 2

1
/ ( ) ( ) ( )

mu u l m u

ij ij ij ij iji
x x x x x

=
 = + +   

Step 3: In this stage, the weighted normalized FDM is determined by using Eqs. (28), (29) and 

(30):  

 ( , , );l m u

ij ij ij ijV v v v=   

(28) 
*l l

ij j ijv w =  

(29) 
*m m

ij j ijv w =  

(30) 
*u u

ij j ijv w =  

This research used the weights calculated previously by the fuzzy Shannon entropy to 

compute the weighted normalized FDM. 

Step 4: In this stage, Eq. (31) is used to compute the normalized performance measures where the 

total cost measures are deducted from overall benefit measures as follows: 

( ), , ;l m u

ij ij ij ijV v v v=    

1 1

g n

i ij ij

j j g

y V V
= = +

= −   (31) 

where 
1

g

ij

j

V
=

  shows the benefit measures (for 1,…,g), 
1

n

ij

j g

V
= +

  indicates the cost measure (for 

g+1,…,n), where g  and ( )n g−  show the maximum and the minimum number of measures, 

respectively.  For the benefit measures, the total ratings of an alternative can be computed for the 

low, center, and high limits of the triangular membership function, which are appended below:  

max

1

n
l l

i ij

j

y v j J+

=

=    (32) 

max

1

n
m m

i ij

j

y v j J+

=

=    (33) 

max

1

n
u u

i ij

j

y v j J+

=

=    (34) 

In addition, the cost measures are computed in the same way for the entire ratings of an 

objective, as shown below: 
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max

1

n
l l

i ij

j

y v j J−

=

=    (35) 

max

1

n
m m

i ij

j

y v j J−

=

=    (36) 

max

1

n
u u

i ij

j

y v j J−

=

=    (37) 

Step 5: In this stage, the entire performance index (yi) for each objective is identified by computing 

the defuzzified boundaries of the total ratings of the benefit and cost measures for all the 

alternatives utilizing the vertex approach appended below: 

( ), , ;l m u

i i i iy y y y=   

( )
( ) ( )

3

u l m l

i i i i l

i i i

y y y y
BNP y y

− + −
= +   (38) 

within which the Eq. (38) indicates the total performance value of the i-th alternative (objective). 

Step 6: In this stage, the total performance index is arranged from high to low values, and this 

study ranks all the alternatives from the excellent to the inferior. Amongst the alternatives, the 

most preferred choice is the alternative with the highest total performance index. 

3.4.2. Fuzzy reference point method 

Equations (25), (26), and (27) compute the RP method. This method utilizes the normalized 

performance of the i-th objective on the j-th measure based on the aforementioned equations. In 

addition, a maximum measure RP is identified between the normalized performances as a non-

subjective and feasible to the coordinates ( )jr . In Eq. (39), the minimum-maximum metric 

formula is described, and previous research highlights that this is the appropriate formula for the 

RP (Adalı and Işık, 2017) as follows: 

( )

( )

~
* * *

~
* * *

max ,max ,max , ; for criteria to be maximized

min ,min ,min , ; for criteria to be minimized

l m u
j ij ij ij

i i i

l m u
j ij ij ij

i i i

r x x x j g

r x x x j g

+

=


= 


 = 


 (39) 

On condition that decision-makers decide to assign a higher value to a particular measure, 

Eq. (39) is recalculated through examining the weights of the measures as follows: 
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*~ ~

min max j ijj
i j

W r x
 

 −  
 

 (40) 

The objectives are eventually ranked based on Eq. (38), and the most attractive objective 

is selected based on the lowest overall distance from the RPs (Adalı & Işık, 2017). 

3.4.3. Fuzzy full multiplicative form  

The third phase of the MULTIMOORA approach is FMF. This approach was initially proposed 

by Miller and Starr (1969), and it is both consisted of max and min values of a completely 

multiplicative utility formula. The key features of the FMF include not using attribute weights, 

being non-additive, and non-linear (Adalı & Işık, 2017). The appended formula, based on the 

guidelines of Hafezalkotob et al. (2019), calculates the FMF’s utility function as a fraction of the 

weighted normalized alternatives’ ratings on the benefit measures over the weighted normalized 

alternatives’ ratings on the cost measures.  

~
~

~

i
i

i

A
U

B

 =  (41) 

where ( )
~

*

1 2 3 1
, , ( ) j

g w
i i i i ijj

A A A A x
=

= =  represents the result of the number of objectives of the i-

th alternative to get augmented with terms of 1, 2,...,g n=  and ( )
~

*

1 2 3 1
, , ( ) j

m w
i i i i ijj g

B B B B x
= +

= =

represents the result of the objectives for the i-th alternative to get reduced with the condition of 

n g− . In Eq. (41), propagating the weights with the normalized ratings is conducive to a similar 

outcome in which no weights are evaluated. Therefore, weights need to be referred to as the 

exponents of the Eq. (41) in the FMF. Since the result of the overall utility function 
~

iU
  
 

 has a 

fuzzy digit, defuzzification is required based on Eq. (38) to grade each of the alternatives. 

According to Akkaya et al. (2015), the rank of each of the i-th alternative is greater if the iBNP  

receives a greater value. 

According to the FMF, the most advantageous alternative contains the maximum utility 

(which is retrieved from Eq. (41)) 
~

iU
  
 

, and the ranking procedure for this approach is computed 

in the following formula: 
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max max
... .

i i
i i

FMF i u i u
R A A

 
=   
 

 (42) 

3.4.4. Final ranking 

The trio approaches of the MULTIMOORA method are equally important. Several approaches are 

applied to combine the rankings of the three supporting approaches. The final ranking of this 

research (in terms of measures used) is rooted in the dominance theory. This theory is a popular 

ranking aggregation method in MULTIMOORA related research (Hafezalkotob et al., 2019). As 

suggested by previous research, to get the final ranking of the measures, transitiveness principles, 

general dominance approaches, and absolute dominance is applied (Brauers & Zavadskas, 2011). 

3.5. Fuzzy TOPSIS 

Hwang and Yoon (1981) proposed the TOPSIS method as an MCDM technique to rank 

alternatives by considering positive and negative ideal solutions. Chen (2000) was the first to 

extend TOPSIS into a fuzzy environment (Tavana et al., 2016). We implement the fuzzy TOPSIS 

extension developed by Sun (2010), whose steps can be summarized as follows: 

Step 1. Determine the fuzzy decision matrix. 

Step 2. Calculate the normalized fuzzy decision matrix using Eqs. (43) and (44) below 

ij m n
R r


 =     

, , max ( )
ij ij ij

ij ij ij

ij ij ij

l m u
r and u u benefit criteria

u u u

+

+ + +

 
= =  
 

 (43) 

, , min (cos )
j j j

ij j ij

ij ij ij

l l l
r and l l t criteria

u m l

− − −

−
 

= =  
 

 (44) 

Step 3. Calculate the weighted normalized fuzzy decision matrix. 

Step 4. Calculate the fuzzy positive ideal solution and the fuzzy negative ideal solution. 

Step 5. Calculate the fuzzy positive and fuzzy negative distances 
~

id
+

 and 
~

id
−

 for the different 

alternatives. 

Step 6. Calculate the closeness coefficients by applying Eq. (45) below 

i
i

i i

d
CC

d d

−

− +
=

+
 (45) 

3.6. Consensus ranking: maximize agreement heuristic 
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In mathematics, the term consensus is ambiguous susceptible to a myriad of explanations, and 

Edmond and Mason (2002) indicate that little is known about consensus ranking. Beck and Lin 

(1983) showed that the maximization of rater agreement is considered as a rational measure for a 

consensus function, and they proposed the Maximize Agreement Heuristic (MAH) method for 

representing consensus or collective agreement in decision-making problems. In ranking the 

objects, they also show how agreement and disagreement are achieved in the Final Consensus 

Ranking (FCR). This study mainly resorts to Beck and Lin (1983)’s guidelines for consensus 

ranking. Edmond and Mason (2002, p. 17) provide a solution to the consensus ranking problem 

by coming up with a measure of agreement between pairs of ranking and choosing those rankings 

which maximize overall average agreement. The MAH is an effective consensus ranking method 

used within a wide span of multi-criteria decision-making problems (Kengpol & Tuominen, 2006; 

Tavana, 2002, 2003, 2004; Tavana et al., 1996; Tavana & Banerjee, 1995). 

In this research, the MAH method is applied to arrive at a final ranking of the alternatives 

(objects) selected by different raters (methods, i.e., fuzzy FM rankings, fuzzy COPRAS, fuzzy RP 

rankings, and fuzzy ratio method rankings).  Given k multi-criteria methods that have all ranked n 

alternatives, an agreement matrix, A, is defined, where ija  indicates the number of methods which 

prefer Alternative i over j. If the summation for each Alternative i is calculated for all the columns, 

a column vector in which each element shows the total number of times Alternative i is favored 

over all other alternatives are created. This vector is called the positive preference vector P:  

1

, 1,2,3,..., .
n

i ij

j

P a i n
=

= =  (46) 

In addition, if the summation for each Alternative j is calculated for all rows, a row vector 

in which each element shows the total number of times Alternative j isn’t favored over all other 

alternatives is created. This vector is called the negative preference vector N:  

1

, 1,2,3,..., .
n

i ji

j

N a i n
=

= =  (47) 

This study uses Eqs. (46) and (47) and formulate the following selection criterion. If 

Alternative i receives a zero-value-entry in the negative preference vector N, it indicates that 

Alternative i isn’t ranked lower than other alternatives. Therefore, if Alternative i is entered in the 

upcoming obtainable value from the uppermost of FCR, there is no disappointment when the result 

of the objective function is reached. However, suppose Alternative i receives a zero-value-entry in 
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the positive preference vector P. In that case, this indicates that this alternative isn’t ranked ahead 

of other alternatives, following Beck and Lin's (1983) guidelines. Thus, Alternative i has no 

positive impact on the objective function and should be placed in the lowest available consensus 

ranking position, according to Beck and Lin (1983).  The quantity ( )i iP N−  provides a reasonable 

selection criterion for cases in which there exist no zero-entries in each negative and positive 

preference vectors. Therefore, it seems more logical to consider the Max .i iP N−  When 

concentrating on Max i iP N− , if ( )i iP N−  is positive, Alternative i should be put at the top of 

the FCR because Alternative i has the greatest positive impact on the objective function. Similarly, 

if for the Max i iP N− , the ( )i iP N−  gets a negative value, Alternative i should be placed at the 

upcoming obtainable position at the bottom of the ranking because this placement of Alternative i 

reduces that alternative’s negative effect on the objective function. The following algorithm 

formulates the discourse above: 

Step 1. In this step, the agreement matrix A is produced, and parameter n is set equal to the number 

of alternatives. 

Step 2. In this step, Eqs. (48) and (49) are used to compute the entries for the negative and positive 

preference vectors N and P: 

n

i ij

j

P a=  (48)  

n

i ji

j

N a=  (49) 

Step 3. In this step, any alternatives with zero value entries in each of both negative and positive 

preference vectors are candidates for entry into the FCR. In line with the guidelines of Beck and 

Lin (1983), if the zero-value-entry takes place in the positive preference vector P, this study enters 

Alternative i in the upcoming obtainable value from the lowermost of consensus ranking. 

However, if the zero-value-entry takes place in the negative preference vector N, current research 

enters Alternative i in the upcoming obtainable value in the uppermost of the ranking. In either 

case, this research reduces the row and column effects of the alternatives in Matrix A, and 

subsequently moves to Step 5, as shown below. 

Step 4. In this step, this study examines the i iP N−  difference for all i in case there is no zero-



24 
 

value entries in both N or P. Furthermore, Alternative i is chosen with the largest absolute 

difference, and Alternative i is entered in the upcoming obtainable value from the uppermost of 

the ranking in case a positive difference is achieved. In this step, the Alternative i is entered in the 

upcoming obtainable value from the lower level of the ranking if the difference is negative, 

according to Beck and Lin (1983). In case of a tie where more than one alternative is a candidate 

for the FCR, the tie is broken arbitrarily. In the next step, the row and column results of the 

agreement matrix A is subsequently removed for Alternative i accordingly. 

Step 5. In this step, set n = n-1  

Step 6. In this step, if n>1, move to Step 2, and If n=1, enter the last alternative in the upcoming 

obtainable position on the top of the ranking and stop. 

Finally, the above exploratory process in this study is applied to solve both incomplete and 

complete ranking problems. In a complete ranking problem, all methods have ordinally or 

cardinally ranked every alternative. In contrast, in an incomplete ranking problem, each method 

ranks only a subset of the alternatives (Beck & Lin, 1983). 

4. Case study 

In this section, this research presents a case study in the asphalt manufacturing industry to signify 

the adequacy and applicability of the suggested model of this study. Technopave1 is the largest 

asphalt manufacturing company in southern Pennsylvania using tire powder recycled by suppliers 

to produce road-paving asphalt. The tire powder is the main asphalt ingredient with several 

advantages, including increasing strength and stability, decreasing thickness, increasing life span, 

reducing maintenance costs, improving bitumen adhesion, reducing crack, and more resistant to 

high temperatures. In summary, using tire powder in asphalt creates rubberized asphalt, which has 

much better quality than ordinary asphalt.  Technopave is considering twelve alternative suppliers 

with tire recycling capabilities for their rubberized asphalt line. This research used the model 

proposed in this study to help Technopave choose the most preferred suppliers.   

4.1. Fuzzy Shannon results 

Technopave appointed six managers to this project. This study used their expert opinions to 

compute the weight of the green supplier assessment benchmarks, according to Eqs. (1) – (5) and 

the linguistic variables presented in Table 4.  As tabulated in Table 4, this study used Eq. (1) to 

normalize the interval DM. In addition, this research used Eq. (2) to calculate the lower- and upper-

                                                            
1 The name of the company is changed to protect its anonymity. 
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limit, respectively. Next, Eq. (3) is utilized to assign the base and upper-value limits of the 

diversification intervals.  In the next step, this study used Eqs. (4) and (5) to compute the weights 

of the benchmark presented in Table 5. These benchmarks weights were applied in this research 

for the fuzzy COPRAS, fuzzy MULTIMOORA, and fuzzy TOPSIS methods for the sake of 

ranking the suppliers.  

Insert Tables 4 and 5 Here 

4.2. HFBWM results 

In this section, the weights of the criteria and sub-criteria are calculated using HFBWM. We asked 

several experts to identify the best and worst criteria and sub-criteria to determine the fuzzy 

preference of the best criterion relative to the other criteria and that of all criteria relative to the 

worst criterion on a scale from 1 to 5. The same procedure was applied to the different sub-criteria.  

The resulting fuzzy preferences are presented in Tables 6a and 6b. The model proposed in 

Eq. (10) is then applied to calculate the weights of the criteria and sub-criteria, as well as the global 

weights of the sub-criteria. These latter weights, described in Table 7, will be implemented within 

the fuzzy COPRAS, fuzzy MULTIMOORA, and fuzzy TOPSIS methods to rank the suppliers. 

Insert Tables 6a, 6b, and 7 Here 

The consistency of the model is calculated using Eq. (12), with 
*  determined by running 

the model in LINGO 18 software. The optimal 
*  equals 0.56155, with CI=6.69 (as described in 

Table 2) and CR=0.0839. The CR is close to 0, implying that our model has high consistency. 

4.3. Fuzzy COPRAS results 

After determining the green supply chain criteria weights based on expert opinions, we used the 

fuzzy Shannon entropy approach, HFBWM, and the fuzzy COPRAS to rank the suppliers 

according to Eqs. (13) – (23).  This study first used Eq. (13) to assess the FDM for every supplier 

(see Table 8).  Eqs. (14) -(16) are then applied to normalize the FDM. Next, the fuzzy Shannon 

entropy weights presented in Table 5 and the HFBWM weights presented in Table 7 are utilized 

to calculate the weighted normalized FDM for each supplier.   

Insert Table 8 Here 

In the final step, the Eqs. (17) -(23) and the fuzzy COPRAS method are applied to rank the 

suppliers utilizing the weighted normalized FDM tabulated. Eqs. (17) and (18) were used to 

estimate the total of the aggregate values of the parameters for the maximum and minimum values, 
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respectively. Next, Eq. (20) is used to calculate the comparative importance of every option and 

Eq. (21) is computed to defuzzify them. To rank the suppliers, as the next step, Eqs. (20) and (23) 

are applied accordingly. The supplier rankings are tabulated in Tables 9 and 10. The findings of 

these tables, resulting from the fuzzy Shannon entropy- and HFBWM-FCOPRAS approaches, 

suggest that Supplier 2 is the most preferred provider. 

Insert Table 9 and 10 Here 

4.4. Fuzzy MULTIMOORA 

This study applies the fuzzy MULTIMOORA approach in assessing the alternatives. Twelve 

different suppliers (S1, S2, S3, …, S11 and S12) were considered in the evaluation process. This 

research applied Eqs. (23), (24), and (25) to normalize the FDM. In addition, Eqs. (26), (27), and 

(28) are applied for the sake of computing the weighted normalized FDMs for the benefits and 

cost. Eq. (29) is used to compute the total ratings of the benchmarks of the alternative. Furthermore, 

Eqs. (30), (31) and (32) are used for the benefit benchmarks to calculate the alternatives' total 

ratings for the lower-middle-upper measures of the triangular membership formula. In addition, 

considering the cost measures, Eqs. (33), (34) and (35) are applied to calculate the total score of 

an alternative for the lower-middle-upper values of the triangular membership formula, 

respectively. Further, Eq. (36) is used to defuzzify the overall score of the measures.  By virtue of 

the fuzzy ratio system approach, the results of the ranking for suppliers are tabulated in Tables 11 

and 12. Based on both approaches, namely, fuzzy Shannon entropy and HFBWM, Supplier 2 is 

shown as the distinguished alternative provider for the Technopave company. 

Insert Table 11 and 12 Here 

Next, utilizing the fuzzy RP method, Eqs. (37) and (38) are used to compute the overall 

performance measure of the alternatives (Adalı and Işık, 2017). Eq. (36) is then applied to compute 

the fuzzy RPs rankings presented in Tables 13 and 14. Based on the fuzzy RPs approach, together 

with fuzzy Shannon entropy and HFBWM, Supplier 2 is the distinguished alternative provider for 

the Technopave company. 

Insert Table 13 and 14 Here 

 In addition, the FMF of multi-criteria is computed using Eq. (39). The FMF is non-additive 

and non-linear, and the form doesn’t utilize the weights of the measures. The overall utility 

functions of the alternatives utilizing the FMF (
~

iU  ) are tabulated in Table 15. Considering the 

fact that the overall utility function has a fuzzy digit, defuzzification is required based on Eq. (36) 
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for the sake of computing iBNP  values and grade each of the alternatives. Table 15 highlights the 

overall ranking for the suppliers. Based on the FMF approach, combined with fuzzy Shannon 

entropy and HFBWM, Supplier 2 is the most distinguished alternative for the Technopave 

company. 

Insert Table 15 and 16 Here 

In addition, being rooted in dominance theory, the final rankings presented in Tables 17 

and 18 are computed for all the suppliers utilizing the fuzzy MULTIMOORA, together with fuzzy 

Shannon entropy and HFBWM. The results show that Supplier 2 is the most preferred supplier.  

Insert Table 17 and 18 Here 

4.5. Fuzzy TOPSIS results 

For comparative purposes, the fuzzy TOPSIS method is applied to assess the alternatives. Twelve 

different suppliers (S1, S2, S3, …, S11 and S12) were considered in the evaluation process, which 

applies the results described in Table 8 together with Eqs. (43-45) to generate a ranking. Based on 

the fuzzy TOPSIS approach, combined with fuzzy Shannon entropy and HFBWM, Supplier 2 is 

the most preferred one. The corresponding results are presented in Tables 19 and 20. 

Insert Table 19 and 20 Here 

As illustrated in these tables, the ranking results delivered by FTOPSIS differ from those 

of FCOPRAS and FMULTIMOORA. These latter techniques focus on the maximum and 

minimum values of the attributes, as described within Eqs. (17, 18, and 20) and Eqs. (31, 40 and 

41), respectively, to generate the corresponding rankings. On the other hand, FTOPSIS is based 

on comparisons relative to the positive and negative ideal solution benchmarks, increasing its 

susceptibility to the weights assigned to the criteria. As a result, the rankings delivered by these 

techniques are expected to differ whenever the weighting methods differ.  

4.6. Consensus raking 

Given the different results obtained, we use the MAH to reach a consensus raking of the alternative 

rankings proposed by fuzzy MULTIMOORA, fuzzy COPRAS, and fuzzy TOPSIS. The MAH 

evaluates alternatives simultaneously and builds agreement matrices until all alternatives are 

ranked without any prior ranked alternatives (Tavana et al., 2007). The MAH is conducted by 

constructing first the matrices given in Tables 21 and 22 to evaluate and compare all alternatives 

to each other through the ranking results suggested by the methods described in Tables 9-20. That 

is, Tables 21 and 22 summarize the rankings delivered by each technique. 
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Insert Table 21 and 22 Here 

Next, based on the MAH method, the number of preferences in each row are aggregated to 

obtain the total number of methods agreeing on each supplier ( ).iP  The same procedure is applied 

to obtain the total number of methods disagreeing on each supplier ( ).iN  In case any entry in the 

P column receives zero value, the supplier with that entry is included at the top of the FCR. The 

opposite takes place (the supplier with that entry is included at the bottom of the FCR) in case any 

entry in the N row receives a zero value. Then, the greatest positive difference (33 when 

considering the fuzzy Shannon entropy setting and 55 in the HFBWM case) placed supplier 2 at 

the top of the final consensus ranking. Following this placement, supplier 2 was deleted, and a new 

matrix was produced. As tabulated in the next Matrix, ( ) ,iP  ( ) ,iN  and ( )i iP N−  are calculated 

for the remaining suppliers. The same procedure is applied to the remaining suppliers. Tables 23 

and 24 outlines the outcome of the MAH process and indicate the number of times each supplier 

is favored over the rest by each method, resulting in the final consensus ranking.  

Insert Table 23 and 24 Here 

We conclude by highlighting an important argument developed throughout the manuscript. 

Figure 4 illustrates the substantial similarity exhibited by the rankings generated through the fuzzy 

versions of COPRAS, MOORA, and MULTIMOORA when implementing the HFBWM weights. 

This similarity contrasts with the lower one exhibited by these ranking techniques when 

implementing Shannon’s entropy's fuzzy extension. A similar intuition follows from the analysis 

of the rankings delivered by the methods implemented to extend fuzzy MOORA into fuzzy 

MULTIMOORA, particularly the Reference Point one. The dissimilarities arising among the 

corresponding rankings under both weighting techniques are presented in Figure 5.  

Insert Figures 4 and 5 Here 

Thus, when implementing the HFBWM weights, fuzzy COPRAS suffices to generate 

rankings that display an identical order to fuzzy MULTIMOORA, a method requiring more 

elaborated and complex computations. Note also that the fuzzy MOORA and fuzzy 

MULTIMOORA techniques deliver identical rankings, that is, the procedure required to extend 

MOORA into MULTIMOORA is not always necessarily justified.  

Insert Tables 25 and 26 Here 

However, this is not the case when implementing the weights generated via fuzzy 

Shannon’s entropy. In this regard, notice how, particularly in the TOPSIS and Reference Point 
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cases, the rankings obtained display higher variability than those generated using the HFBWM 

weights. These results are formally complemented through the Spearman rho correlation tests 

presented in Tables 25 and 26, highlighting that intuitively simpler techniques such as HFBWM 

can be implemented in more complex evaluation structures while preserving (indeed, improving) 

the consistency of the rankings obtained. 

5. Discussion 

RL is one of the key factors determining the success of SC sustainability (Wang et al., 2021). On 

the one hand, the worldwide existence of environmental pollution has increased the pressure on 

companies to consider sustainability in RL (Richnák & Gubová, 2021). On the other hand, 

environmental protection has become a global issue (Daniels, 2017), and concerns about 

environmental protection have stimulated researchers and practitioners to pay more attention to 

waste recycling. For instance, Yang et al. (2018) investigated waste disposal and management to 

reduce poverty and pollution in low- and middle-income countries. Li et al. (2020) studied 

effective policy tools to recycle the waste of construction and demolition. Liu et al. (2020) 

considered the effect of construction and demolition waste and its recycling when minimizing 

waste and protecting natural resources. Wang et al. (2020) examined sustainable waste 

management for household solid waste to raise public awareness.  

Even though these studies are informative, additional research is required focusing on each 

particular industry dealing with RL. Tire waste increases daily due to the increasing population 

and subsequent demand for tires, which are hazardous to the environment and public health due to 

the fact that tire waste is not biodegradable and is usually stored and disposed of improperly 

(Svoboda et al., 2018). The best way to protect the environment and prevent the improper burial 

of worn-out tires is recycling and the reuse of tire waste. One of the most important applications 

of tire recycling is its use in the production of asphalt. Several industries, including the asphalt 

manufacturing industry, have adopted green supply chain philosophy and used recycled tires to 

produce various products such as rubberized asphalt, rubberized bitumen, reclaim rubber, and 

rubber ground flooring. Suppliers play an important role in tire recycling as they mainly produce 

and deliver the tire powder and granule to produce rubberized asphalt. Therefore, finding the best 

supplier is critical for environmentally conscious. 

Research on RL is in its infancy in developing countries, and there is a need for examining 

green RL initiatives in emerging economies (Bouzon et al., 2016). Companies can embark on RL 
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initiatives by taking small steps and engaging in simple implementation strategies (Hammes et al., 

2020). Recycling and green supply chain management are effective strategies for protecting the 

environment and reducing production costs (Zarbakhshnia et al., 2018). Choosing the right green 

supplier is a critical success factor in RL systems, and any initiative aimed at reducing production 

waste in the tire industry is beneficial to both the environment and manufacturing companies. 

6. Conclusion, limitations, and future research 

This study proposed a fuzzy green supplier selection model for sustainable supply chains in RL. 

The HFBWM was applied to determine the importance weights of the green criteria and sub-

criteria. For comparative purposes, fuzzy Shannon’s entropy was also used to determine the 

weights of criteria. The fuzzy Shannon’s entropy approach and HFBWM were then integrated with 

fuzzy COPRAS, fuzzy MULTIMOORA, and fuzzy TOPSIS to prioritize and rank suppliers with 

a robust ability to recycle in RL. 

 Finally, this research used the MAH method to find the consensus ranking of the suppliers. 

A real-world case study in the asphalt manufacturing industry was presented to highlight the 

efficacy and show the applicability of the models suggested in this study. The results derived from 

the different hybrid models illustrate the higher ranking variability generated by the fuzzy 

Shannon’s entropy weighting method relative to HFBWM. 

The main findings of the current paper are of substantial importance for manufacturing 

companies moving towards a closed-loop supply chain. Future research can extend the methods 

proposed in this study to industries other than tire recycling ones. Additional research is needed to 

integrate other relevant methods and expand the number of measures considered to strengthen the 

precision and accuracy of the proposed assessment and selection model.   

We conclude by emphasizing that relatively simple ranking methods such as fuzzy 

COPRAS and fuzzy MOORA manage to provide sufficiently robust evaluations. In this regard, 

even though having a larger number of methods at their disposal may seem to endow managers 

with a complete picture of the evaluation procedure, the use of multiple techniques can also be 

confusing, particularly when dealing with complex ranking methods implemented through several 

technical steps.  
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Figure 3: The green supplier selection criteria 
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4(a). HFBWM framework. 

 
4(b). Fuzzy Shannon entropy framework. 

Figure 4: Rank similarity among COPRAS, MOORA, and MULTIMOORA
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4(a). HFBWM framework. 

 
4(b). Fuzzy Shannon entropy framework. 

Figure 5: Rank similarity among FULL MULTIPLICATIVE, MOORA, and REFERENCE POINT
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Table 1: Environmental dimensions and criteria for green supplier selection 

 

Table 2: Consistency Index in BWM 

BWa ,
j

BWa  Exactly Equal (E) 
Slightly Strong 

(SS) 

Fairly Strong 

(FS) 
Very Strong (VS) 

Absolutely Strong 

(AS) 

CI 3.00 3.80 5.29 6.69 8.04 

 

Table 3: Linguistic variables for fuzzy COPRAS, fuzzy MULTIMOORA, fuzzy BWM and 

Shannon’s entropy methods  

Linguistic variables for rating the 

suppliers 
Linguistic variables for the weighting of each criterion 

Interval values 

for linguistic 

variables 

Linguistic 

variables 

Triangular fuzzy 

number for Fuzzy 

COPRAS and Fuzzy 

MULTIMOORA 

Linguistic variables 

(priority weights) 

Triangular fuzzy 

numbers of 

the fuzzy BWM 

(Guo & Zhao, 

2017) 

Linguistic variables 

(priority weights) 

Triangular fuzzy 

number 

For Fuzzy 

Shannon 

Interval data at 

3.0  

Very low (VL) (0,0,0.25) Equally importance (EI) (1,1,1) Unimportant (UI) (0,0,0.2) [0,0.17] 

Low (L) (0,0.25,0.5) Weakly importance (WI) (2/3,1,3/2) Slightly important (SI) (0,0.2,0.4) [0.07,0.42] 

Medium (M) (0.25,0.5,0.75) Fairly importance (FI) (3/2,2,5/2) Fairly important (FI) (0.2,0.4,0.6) [0.32,0.67] 

High (H) (0.5,0.75,0.1) Very importance (VI) (5/2,3,7/2) Important (I) (0.4,0.6,0.8) [0.57,0.92] 

Very High (VH) (0.75,1,1) 
Absolutely importance 

(AI) 
(7/2,4,9/2) Very important (VI) (0.6,0.8,1) [0.82,1] 

  

Environmental 

dimensions 
Environmental criteria Objective References 

Pollution 

controls 

C1 

C11 Energy consumption MIN 

Cao et al., 2015; Kannan et al., 2015; Datta  et 

al., 2012; Lee et al., 2009;  Noci, 1997; 

Fallahpour  et al.,2016; Qin et al., 2017; Shaik 

& Abdul-Kader, 2011; Yeh & Chuang, 2011. 

C12 Use of harmful material MIN 
Kannan et al., 2015; Datta et al., 2012; Lee et 

al., 2009; Govindan et al., 2015a. 

C13 Pollution control initiatives MAX Kannan et al., 2015. 

C14 Pollution decrease capability MAX 
Kannan et al., 2015; Humphreys  et al.,2006; 

P. Humphreys et al., 2003. 

Green product 

C2 

C21 Recycle MAX 

Kannan et al., 2015; Datta et al., 2012; Lee et 

al., 2009; Büyüközkan & Çifçi, 2012; 

Govindan & Sivakumar, 2016; Jabbour & 

Jabbour, 2009; Shaik & Abdul-Kader, 2011; 

P. Humphreys et al., 2006; P. K. Humphreys 

et al., 2003. 

C22 Reuse MAX 
Jabbour & Jabbour, 2009; Shaik & Abdul-

Kader, 2011; P. Humphreys et al., 2006. 

C23 Re-manufacture MAX 

Hashemi et al., 2015; Kannan et al., 2015; 

Jabbour & Jabbour, 2009; Datta et al., 2012; 

Shaik & Abdul-Kader, 2011; P. Humphreys et 

al., 2006; P. K. Humphreys et al., 2003. 

Environment 

protection/ 

environment 

management 

C3 

C31 The capability of preventing pollution MAX Kannan et al., 2015. 

C32 
Continuous pursuit and regulatory 

compliance 
 Kannan et al., 2015. 

C33 Environmental management system MAX 

Kannan et al., 2015; Shen  et al., 2013; Çifçi 

& Büyüközkan, 2011; Rezaei et al., 2016; 

Yazdani 2017. 

C34 Environmental protection plans MAX Kannan et al., 2015. 

Pollution 

production 

C4 

C41 Production of polluting agents MIN Bai & Sarkis, 2010. 

C42 Production of toxic products MIN Bai & Sarkis, 2010. 

C43 Waste production MIN Bai & Sarkis, 2010. 
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Table 4: Interval DM for the fuzzy Shannon’s entropy method 

Criteria DM1 DM2 DM3 DM4 DM5 DM6 Aggregate DMs 
C11 H VH H VH VH VH [0.7366 0.9733] 

C12 VH I M VH H H [0.6116 0.9066] 

C13 H VI H H H H [0.57 0.92] 

C14 H VH H VH VH VH [0.7366 0.9733] 

C21 VH VH VH H H H [0.659 0.96] 

C22 VH VH H H H H [0.6533 0.946] 

C23 VH VH VH VH H VH [0.7783 0.9866] 

C31 H H H H H H [0.57 0.92] 

C32 M H H M H H [0.4866 0.84] 

C33 VH H H H H VH [0.6533 0.9466] 

C34 H H VH VH H H [0.6533 0.9466] 

C41 VH H VH H H VH [0.695 0.96] 

C42 H M H M H H [0.4866 0.84] 

C43 VH H H H H M [0.57 0.8933] 

C11 H VH H H H H [0.6116 0.9333] 

Note: Green supplier selection & evaluation (GSSE) 

 

Table 5: Final weights for the fuzzy Shannon entropy’s method 

Criteria [hl     hu] [dl      du] [w l    W u] w’i 

C11 [0.0573 0.0686] [0.9313 0.9426] [0.0654 0.0673] 0.0664 

C12 [0.0506 0.0656] [0.9343 0.9493] [0.0656 0.0678] 0.0667 

C13 [0.0482 0.0662] [0.9337 0.9517] [0.0656 0.0679] 0.0668 

C14 [0.0573 0.0686] [0.9319 0.9426] [0.0654 0.0673] 0.0664 

C21 [0.0551 0.0686] [0.9319 0.9448] [0.0655 0.0676] 0.0665 

C22 [0.0529 0.0674] [0.9325 0.9470] [0.0655 0.0676] 0.0666 

C23 [0.0594 0.0691] [0.9308 0.9405] [0.0654 0.0671] 0.0663 

C31 [0.0482 0.0662] [0.9337 0.9517] [0.0656 0.0679] 0.0668 

C32 [0.0432 0.0624] [0.9375 0.9567] [0.0659 0.0683] 0.0671 

C33 [0.0529 0.0674] [0.9325 0.9470] [0.0655 0.0676] 0.0666 

C34 [0.0529 0.0674] [0.9325 0.9470] [0.0655 0.0676] 0.0666 

C41 [0.0551 0.0680] [0.9319 0.9448] [0.0655 0.0674] 0.0665 

C42 [0.0432 0.0624] [0.9375 0.9567] [0.0659 0.0683] 0.0671 

C43 [0.0482 0.0649] [0.9350 0.9517] [0.0657 0.0679] 0.0668 
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Table 6a: Linguistic terms for fuzzy preferences of the Criteria by experts 

  Criteria 

Best criterion Worst criterion C1 C2 C3 C4 

C1 - (1,1,1) (2.5,3,3.5) (1.5,2,2.5) (0.67,1,1.5) 

- C2 (2.5,3,3.5) (1,1,1) (0.67,1,1.5) (1.5,2,2.5) 

 

Table 6b: Linguistic terms for fuzzy preferences of the Sub-criteria by experts 

 
Best 

criterion 

Worst 

criterion 
Sub-criteria 

C1 

  C11 C12 C13 C14 

C11 - (1,1,1) (0.67,1,1.5) (2.5,3,3.5) (1.5,2,2.5) 

 C13 (2.5,3,3.5) (1.5,2,2.5) (1,1,1) (0.67,1,1.5) 

C2 

 C21 C22 C23  

C21 - (1,1,1) (2.5,3,3.5) (1.5,2,2.5)  

- C22 (2.5,3,3.5) (1,1,1) (0.67,1,1.5)  

C3 

 C31 C32 C33 C34 

C31 - (1,1,1) (0.67,1,1.5) (2.5,3,3.5) (1.5,2,2.5) 

- C33 (2.5,3,3.5) (1.5,2,2.5) (1,1,1) (0.67,1,1.5) 

C4 

 C41 C42 C43  

C42 - (1.5,2,2.5) (1,1,1) (0.67,1,1.5)  

- C41 (1,1,1) (1.5,2,2.5) (0.67,1,1.5)  

 

Table 7: Weights of the Sub-criteria determined by HFBWM 

Sub-criteria C11 C12 C13 C14 C21 C22 C23 

j

SGw  0.015852 0.012362 0.005945 0.007132 0.037442 0.013576 0.016744 

Sub-criteria C31 C32 C33 C34 C41 C42 C43 

j

SGw  0.012847 0.010018 0.004818 0.00578 0.026442 0.044879 0.034449 

 

Table 8: Fuzzy DM results for each supplier 

Criteria 
Supplier 

S1 S2 S3 … S11 S12 

C11 0.3125 0.5625 0.8125 0.0625 0.3125 0.5625 0.0625 0.3125 0.5625 … 0.375 0.625 0.875 0.25 0.5 0.75 

C12 0.25 0.5 0.75 0.0625 0.1875 0.4375 0.125 0.375 0.625 … 0.75 1 1 0.3125 0.5625 0.8125 

C13 0.1875 0.4375 0.6875 0.625 0.875 1 0.3125 0.5625 0.8125 … 0.125 0.375 0.625 0.125 0.375 0.625 

C14 0.0625 0.3125 0.5625 0.5 0.75 1 0.25 0.5 0.75 … 0.0625 0.3125 0.5625 0.125 0.375 0.625 

C21 0.3125 0.5625 0.8125 0.5 0.75 1 0.5 0.75 1 … 0.0625 0.25 0.5 0.0625 0.25 0.5 

C22 0.375 0.625 0.875 0.625 0.875 1 0.4375 0.6875 0.9375 … 0.0625 0.25 0.5 0.0625 0.3125 0.5625 

C23 0.375 0.625 0.875 0.5 0.75 1 0.4375 0.6875 0.9375 … 0.0625 0.25 0.5 0.125 0.375 0.625 

C31 0.1875 0.4375 0.6875 0.5625 0.8125 1 0.375 0.625 0.875 … 0.0625 0.1875 0.4375 0.0625 0.1875 0.4375 

C32 0.1875 0.4375 0.6875 0.625 0.875 1 0.25 0.5 0.75 … 0.1875 0.4375 0.6875 0.0625 0.25 0.5 

C33 0.25 0.5 0.75 0.5 0.75 1 0.25 0.5 0.75 … 0.25 0.5 0.75 0.0625 0.25 0.5 

C34 0.125 0.375 0.625 0.5 0.75 1 0.4375 0.6875 0.9375 … 0.1875 0.4375 0.6875 0.1875 0.4375 0.6875 

C41 0.4375 0.6875 0.9375 0.0625 0.25 0.5 0.125 0.375 0.625 … 0.4375 0.6875 0.9375 0.5625 0.8125 1 

C42 0.3125 0.5625 0.8125 0.0625 0.125 0.375 0.0625 0.3125 0.5625 … 0.4375 0.6875 0.9375 0.5 0.75 1 

C43 0.1875 0.4375 0.6875 0.0625 0.125 0.375 0.0625 0.125 0.375 … 0.25 0.5 0.75 0.4375 0.6875 0.9375 
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Table 9: Alternative rankings with fuzzy COPRAS-FShannon 

Supplier 
~

jp  

~

jR  

~

jQ  

Non-fuzzy 

~

j
Q  

jK  

Fuzzy 

COPRAS 

ranking 

1 0.0383 0.0801 0.1219 0.0279 0.0511 0.0744 0.0572 0.1201 0.182 0.1198 0.5158 7 

2 0.0759 0.1105 0.1383 0.0048 0.0154 0.0346 0.1853 0.2436 0.2676 0.2322 1 1 

3 0.0589 0.0996 0.1404 0.0079 0.0272 0.0499 0.1252 0.1748 0.2301 0.1767 0.7611 2 

4 0.0438 0.0876 0.1314 0.017 0.0402 0.0645 0.0746 0.1385 0.2007 0.1379 0.5941 3 

5 0.0254 0.0711 0.1168 0.0318 0.0572 0.0826 0.0419 0.1069 0.1709 0.1066 0.4591 8 

6 0.0315 0.0705 0.1096 0.038 0.0597 0.0804 0.0453 0.1048 0.1652 0.1051 0.4527 9 

7 0.0634 0.0942 0.119 0.0291 0.0463 0.0617 0.0814 0.1384 0.1915 0.1371 0.5906 5 

8 0.0617 0.0934 0.1208 0.0282 0.0459 0.0609 0.0804 0.138 0.1942 0.1375 0.5925 4 

9 0.0212 0.0614 0.1016 0.0448 0.0671 0.085 0.033 0.0919 0.1543 0.093 0.4008 10 

10 0.0625 0.0929 0.1157 0.0321 0.049 0.0617 0.0789 0.1346 0.1882 0.1339 0.5768 6 

11 0.0203 0.0572 0.1 0.0429 0.0668 0.0858 0.0325 0.0878 0.1521 0.0908 0.3912 11 

12 0.0174 0.0559 0.1007 0.0411 0.066 0.0897 0.0302 0.0869 0.1506 0.0892 0.3844 12 

 

Table 10: Alternative rankings with fuzzy COPRAS-HFBWM 

Supplier 
~

jp  

~

jR  

~

jQ  

Non-fuzzy 

~

j
Q  

jK  

Fuzzy 

COPRAS 

ranking 

1 0.0086 0.0166 0.0245 0.0112 0.0205 0.0298 0.0158 0.0317 0.0482 0.0319 0.4489 7 

2 0.0142 0.0208 0.0264 0.0019 0.0055 0.0132 0.0561 0.0773 0.0798 0.0711 1 1 

3 0.0127 0.0205 0.0282 0.0029 0.0103 0.0194 0.0403 0.0506 0.0646 0.0518 0.7293 2 

4 0.0108 0.0191 0.0275 0.0066 0.0158 0.0256 0.0229 0.0387 0.0551 0.0389 0.5475 3 

5 0.005 0.0137 0.0224 0.0139 0.0241 0.0344 0.0108 0.0265 0.0429 0.0267 0.3763 8 

6 0.0053 0.0128 0.0202 0.0159 0.0246 0.0328 0.0104 0.0254 0.0418 0.0258 0.3637 9 

7 0.011 0.0169 0.0221 0.0105 0.0174 0.0239 0.0187 0.0347 0.0516 0.035 0.4924 5 

8 0.0112 0.0173 0.0229 0.0096 0.0167 0.0232 0.0196 0.0358 0.0533 0.0363 0.5104 4 

9 0.0039 0.0116 0.0193 0.0192 0.0281 0.0346 0.0082 0.0226 0.0397 0.0235 0.3305 10 

10 0.0113 0.0171 0.0218 0.0114 0.0182 0.024 0.0184 0.0342 0.0512 0.0346 0.4868 6 

11 0.003 0.0095 0.0176 0.0157 0.0253 0.034 0.0081 0.0217 0.0384 0.0227 0.3201 11 

12 0.0029 0.01 0.0185 0.018 0.028 0.0375 0.0074 0.0211 0.0373 0.0219 0.3087 12 

 

Table 11: Alternative rankings with the fuzzy ratio method-FShannon 

Supplier 

~ ~

1 1

g n

ij iji

j j g

y v v
= = +

= −   

i
BNP  

Fuzzy 

ratio 

ranking Benefits Cost  iy  

l m u l m u 
l

iy  
m

iy  
u

iy  

S1 0.1443 0.3155 0.4867 0.0965 0.1799 0.2633 -0.119 0.1356 0.3902 0.1356 7 

S2 0.2355 0.3433 0.431 0.0434 0.1296 0.3032 -0.0677 0.2137 0.3875 0.1778 1 

S3 0.1906 0.3273 0.4641 0.0459 0.153 0.2914 -0.1008 0.1744 0.4182 0.1639 2 

S4 0.1487 0.3166 0.4844 0.0694 0.1704 0.277 -0.1283 0.1461 0.415 0.1443 6 

S5 0.1056 0.3049 0.5042 0.0987 0.1804 0.2621 -0.1565 0.1245 0.4055 0.1245 9 

S6 0.1293 0.3109 0.4925 0.1161 0.1852 0.2513 -0.1221 0.1257 0.3765 0.1267 8 

S7 0.2275 0.3417 0.4356 0.1156 0.1864 0.2506 -0.0231 0.1553 0.32 0.1507 4 

S8 0.2219 0.3387 0.4411 0.1108 0.1858 0.2522 -0.0303 0.1528 0.3303 0.1509 3 

S9 0.1008 0.3033 0.5059 0.1254 0.1898 0.243 -0.1422 0.1136 0.3805 0.1173 10 

S10 0.2284 0.3436 0.4331 0.122 0.1899 0.2439 -0.0156 0.1537 0.3111 0.1498 5 

S11 0.0963 0.2862 0.5157 0.1181 0.1878 0.2471 -0.1508 0.0984 0.3976 0.1151 11 

S12 0.086 0.2833 0.5201 0.1129 0.1845 0.2532 -0.1671 0.0987 0.4072 0.1129 12 
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Table 12: Alternative rankings with the fuzzy ratio method-HFBWM 

Supplier 

~ ~

1 1

g n

ij iji

j j g

y v v
= = +

= −   

i
BNP  

Fuzzy 

ratio 

ranking Benefits Cost  iy  

l m u l m u 
l

iy  
m

iy  
u

iy  

S1 0.031 0.061 0.091 0.039 0.072 0.106 -0.075 -0.011 0.053 -0.011 7 

S2 0.044 0.065 0.083 0.018 0.049 0.123 -0.078 0.016 0.064 0.001 1 

S3 0.039 0.063 0.087 0.018 0.06 0.118 -0.079 0.003 0.069 -0.002 2 

S4 0.032 0.061 0.09 0.028 0.068 0.111 -0.079 -0.007 0.062 -0.008 3 

S5 0.021 0.058 0.096 0.042 0.073 0.104 -0.084 -0.015 0.054 -0.015 8 

S6 0.023 0.059 0.095 0.047 0.075 0.1 -0.077 -0.016 0.047 -0.015 9 

S7 0.041 0.064 0.085 0.044 0.074 0.102 -0.061 -0.01 0.041 -0.01 5 

S8 0.041 0.064 0.085 0.041 0.073 0.104 -0.063 -0.01 0.044 -0.009 4 

S9 0.019 0.058 0.097 0.052 0.077 0.096 -0.077 -0.019 0.044 -0.017 10 

S10 0.043 0.065 0.084 0.046 0.075 0.101 -0.058 -0.01 0.038 -0.01 6 

S11 0.016 0.052 0.1 0.045 0.074 0.101 -0.086 -0.022 0.055 -0.018 11 

S12 0.015 0.053 0.1 0.047 0.075 0.101 -0.085 -0.022 0.053 -0.018 12 

Table 13: Alternative rankings with fuzzy RP-FShannon 

Supplier 

*
~ ~

max j ij
j

j

W r x −
 
 
 

 
i

BNP  
Fuzzy reference 

point ranking 

S1 0.0137 0.0155 0.0049 0.0124 4 

S2 0.0022 0 0.0191 0.0053 1 

S3 0.0048 0.0078 0.0147 0.0088 2 

S4 0.0062 0.0124 0.0119 0.0107 3 

S5 0.0156 0.0159 0.0038 0.0128 5 

S6 0.0163 0.0178 0.004 0.0139 7 

S7 0.0203 0.0125 0.0058 0.0128 8 

S8 0.0203 0.0125 0.0058 0.0128 9 

S9 0.0195 0.02 0 0.0149 11 

S10 0.022 0.0137 0.0038 0.0133 10 

S11 0.0248 0.0156 0 0.014 12 

S12 0.0184 0.0164 0.0021 0.0134 6 

 

Table 14: Alternative rankings with fuzzy RP-HFBWM  

Supplier 

*
~ ~

max j ij
j

j

W r x −
 
 
 

 
i

BNP  
Fuzzy reference 

point ranking 

S1 0.009 0.01 0.003 0.008 7 

S2 0.003 0 0.01 0.003 1 

S3 0 0.008 0.007 0.006 2 

S4 0.003 0.009 0.006 0.007 3 

S5 0.01 0.011 0.003 0.009 8 

S6 0.012 0.011 0.001 0.009 10 

S7 0.008 0.01 0.004 0.008 5 

S8 0.008 0.01 0.004 0.008 4 

S9 0.014 0.012 0 0.009 12 

S10 0.009 0.01 0.003 0.008 6 

S11 0.011 0.011 0.002 0.009 9 

S12 0.012 0.011 0.001 0.009 11 
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Table 15: Alternative rankings with the fuzzy full multiplicative form-FShannon 

Supplier 
~

iA  

~

iB  Non-fuzzy

~

iA  Non-fuzzy

~

iB  

~
~

~

i
i

i

A
U

B

 =  

Fuzzy full 

multiplicative 

ranking 

S1 0.4111 0.68 0.8819 0.6587 0.8138 0.924 0.6577 0.7988 0.8233 7 

S2 0.5702 0.7154 0.8199 0.5036 0.7256 0.9685 0.7018 0.7325 0.9581 1 

S3 0.5004 0.6955 0.8573 0.5102 0.767 0.9557 0.6844 0.7443 0.9195 2 

S4 0.422 0.6814 0.8792 0.5786 0.7991 0.9397 0.6609 0.7725 0.8556 6 

S5 0.3422 0.6664 0.901 0.6636 0.8146 0.9226 0.6365 0.8003 0.7954 8 

S6 0.3726 0.6738 0.8881 0.7009 0.8216 0.9096 0.6448 0.8107 0.7954 9 

S7 0.5564 0.7134 0.8249 0.7001 0.8233 0.9088 0.6983 0.8107 0.8613 4 

S8 0.5489 0.7096 0.8312 0.6878 0.8224 0.9102 0.6966 0.8068 0.8634 3 

S9 0.3297 0.6642 0.9028 0.7197 0.8282 0.8992 0.6322 0.8157 0.7751 10 

S10 0.5571 0.7157 0.8218 0.7116 0.8283 0.9 0.6982 0.8133 0.8585 5 

S11 0.3211 0.6399 0.913 0.7033 0.8252 0.9037 0.6247 0.8107 0.7705 11 

S12 0.3055 0.6362 0.9179 0.6943 0.8207 0.9118 0.6199 0.8089 0.7663 12 

 

Table 16: Alternative rankings with the fuzzy full multiplicative form-HFBWM  

Supplier 
~

iA  

~

iB  Non-fuzzy

~

iA  Non-fuzzy

~

iB  

~
~

~

i
i

i

A
U

B

 =  

Fuzzy full 

multiplicative 

ranking 

S1 0.856 0.931 0.975 0.845 0.921 0.969 0.921 0.911 1.01 7 

S2 0.897 0.938 0.964 0.765 0.872 0.988 0.933 0.875 1.066 1 

S3 0.882 0.934 0.969 0.76 0.895 0.983 0.929 0.879 1.056 2 

S4 0.861 0.931 0.973 0.806 0.914 0.976 0.922 0.899 1.026 3 

S5 0.819 0.926 0.98 0.854 0.922 0.967 0.908 0.914 0.994 8 

S6 0.824 0.927 0.979 0.869 0.925 0.962 0.91 0.919 0.991 9 

S7 0.889 0.936 0.966 0.86 0.923 0.965 0.931 0.916 1.016 5 

S8 0.889 0.936 0.967 0.852 0.922 0.966 0.931 0.914 1.019 4 

S9 0.811 0.925 0.981 0.88 0.929 0.956 0.906 0.922 0.983 10 

S10 0.892 0.937 0.965 0.865 0.925 0.962 0.931 0.917 1.015 6 

S11 0.793 0.914 0.985 0.863 0.924 0.963 0.897 0.917 0.979 11 

S12 0.791 0.915 0.985 0.869 0.924 0.962 0.897 0.919 0.977 12 

 

Table 17: Fuzzy MULTIMOORA rankings (aggregation and comparison)-FShannon 

Supplier 

Fuzzy ratio 

method rankings 

(Table 11) 

Fuzzy reference 

point rankings 

(Table 13)  

Fuzzy full 

multiplicative rankings 

(Table 15)  

Fuzzy 

MULTIMOORA 

ranking 
S1 7 4 7 7 

S2 1 1 1 1 

S3 2 2 2 2 

S4 6 3 6 6 

S5 9 5 8 8 

S6 8 7 9 9 

S7 4 8 4 4 

S8 3 9 3 3 

S9 10 11 10 10 

S10 5 10 5 5 

S11 11 12 11 11 

S12 12 6 12 12 

 

  



52 
 

Table 18: Fuzzy MULTIMOORA rankings (aggregation and comparison)-HFBWM 

Supplier 

Fuzzy ratio 
method rankings 

(Table 12) 

Fuzzy reference 

point rankings 

(Table 14)  

Fuzzy full 

multiplicative rankings 

(Table 16)  

Fuzzy 

MULTIMOORA 

ranking 
S1 7 7 7 7 

S2 1 1 1 1 

S3 2 2 2 2 

S4 3 3 3 3 

S5 8 8 8 8 

S6 9 9 10 9 

S7 5 5 5 5 

S8 4 4 4 4 

S9 10 10 12 10 

S10 6 6 6 6 

S11 11 11 9 11 

S12 12 12 11 12 

 

Table 19: Fuzzy TOPSIS rankings-FShannon 

Supplier d+ d- 

Fuzzy full 

multiplicative 

rankings 

(Table 9)  
S1 13.2678 0.014 7 

S2 12.7863 0.0334 1 

S3 13.0154 0.0232 5 

S4 13.2215 0.0158 6 

S5 13.3849 0.0102 9 

S6 13.3533 0.0118 8 

S7 12.9701 0.0271 2 

S8 13.0294 0.0243 4 

S9 13.4205 0.0097 10 

S10 13.0087 0.0256 3 

S11 13.4457 0.0091 11 

S12 13.4521 0.009 12 

 

Table 20: Fuzzy TOPSIS rankings-HFBWM 

Supplier d+ d- 

Fuzzy full 

multiplicative 

rankings 

(Table 9)  

S1 13.814 0.001 7 

S2 13.697 0.003 1 

S3 13.735 0.003 2 

S4 13.796 0.002 4 

S5 13.85 0.001 8 

S6 13.857 0.001 11 

S7 13.773 0.002 3 

S8 13.786 0.002 6 

S9 13.863 0.001 10 

S10 13.784 0.002 5 

S11 13.869 0.001 12 

S12 13.866 0.001 9 
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Table 21: The initial individual rankings-FShannon 

Method 
Supplier 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Fuzzy COPRAS ranking (Table 9) 7 1 2 3 8 9 5 4 10 6 11 12 

Fuzzy MULTIMOORA ranking(Table 17) 7 1 2 6 8 9 4 3 10 5 11 12 

Fuzzy TOPSIS ranking (Table 19) 7 1 5 6 9 8 2 4 10 3 11 12 

 

Table 22: The initial individual rankings-HFBWM 

Method 
Supplier 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

Fuzzy COPRAS ranking (Table 10) 7 1 2 3 8 9 5 4 10 6 11 12 

Fuzzy ratio method rankings (Table 12) 7 1 2 3 8 9 5 4 10 6 11 12 

Fuzzy reference point rankings (Table14) 7 1 2 3 8 10 5 4 12 6 9 11 

Fuzzy full multiplicative rankings (Table 16) 7 1 2 3 8 9 5 4 10 6 11 12 

Fuzzy TOPSIS ranking (Table 20) 7 1 2 4 8 11 3 6 10 5 12 9 

 

Table 23: Consensus ranking calculations using MAH-FShannon 

Supplier S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Pi Pi - Ni Rank(Pi - Ni) 

S1 0 0 0 0 3 3 0 0 3 0 3 3 15 -3 7 

S2 3 0 3 3 3 3 3 3 3 3 3 3 33 33 1 

S3 3 0 0 3 3 3 2 2 3 2 3 3 27 21 2 

S4 3 0 0 0 3 3 1 1 3 1 3 3 21 9 6 

S5 0 0 0 0 0 2 0 3 3 0 3 3 14 -5 8 

S6 0 0 0 0 1 0 0 0 3 0 3 3 10 -13 9 

S7 3 0 1 2 3 3 0 1 3 3 3 3 25 17 3 

S8 3 0 1 2 0 3 2 0 3 2 3 3 22 11 4 

S9 0 0 0 0 0 0 0 0 0 0 3 3 6 -21 10 

S10 3 0 1 2 3 3 0 1 3 0 3 3 22 11 4 

S11 0 0 0 0 0 0 0 0 0 0 0 3 3 -27 11 

S12 0 0 0 0 0 0 0 0 0 0 0 0 0 -33 12 

Ni 18 0 6 12 19 23 8 11 27 11 30 33    

 

Table 24: Consensus ranking calculations using MAH-HFBWM 

Supplier S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Pi Pi - Ni Rank(Pi - Ni) 

S1 0 0 0 0 5 5 0 0 5 0 5 5 25 -5 7 

S2 5 0 5 5 5 5 5 5 5 5 5 5 55 55 1 

S3 5 0 0 5 5 5 5 5 5 5 5 5 50 45 2 

S4 5 0 0 0 5 5 4 5 5 5 5 5 44 33 3 

S5 0 0 0 0 0 5 0 0 5 0 5 5 20 -15 8 

S6 0 0 0 0 0 0 0 0 4 0 4 4 12 -31 9 

S7 5 0 0 1 5 5 0 1 5 5 5 5 37 19 5 

S8 5 0 0 0 5 5 4 0 5 4 5 5 38 21 4 

S9 0 0 0 0 0 1 0 0 0 0 4 3 8 -39 10 

S10 5 0 0 0 5 5 0 1 5 0 5 5 31 7 6 

S11 0 0 0 0 0 1 0 0 1 0 0 4 6 -43 11 

S12 0 0 0 0 0 1 0 0 2 0 1 0 4 -47 12 

Ni 30 0 5 11 35 43 18 17 47 24 49 51    
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Table 25: Correlations among the different rankings under FShannon 

  COPRAS MOORA MULTIMOORA 
REFERENCE 

POINT 

FULL 

MULTIPLICATIVE 
TOPSIS 

Spearman’s rho 

COPRAS 

Correlation 

Coefficient 
1.000 .951** .958** .622* .958** .867** 

Sig. (2-tailed)  0.000 0.000 0.031 0.000 0.000 

N 12 12 12 12 12 12 

MOORA 

Correlation 

Coefficient 
.951** 1.000 .993** 0.483 .993** .937** 

Sig. (2-tailed) 0.000  0.000 0.112 0.000 0.000 

N 12 12 12 12 12 12 

MULTIMOORA 

Correlation 

Coefficient 
.958** .993** 1.000 0.497 1.000** .930** 

Sig. (2-tailed) 0.000 0.000  0.101  0.000 

N 12 12 12 12 12 12 

REFERENCE 

POINT 

Correlation 

Coefficient 
.622* 0.483 0.497 1.000 0.497 0.315 

Sig. (2-tailed) 0.031 0.112 0.101  0.101 0.319 

N 12 12 12 12 12 12 

FULL 

MULTIPLICATIVE 

Correlation 

Coefficient 
.958** .993** 1.000** 0.497 1.000 .930** 

Sig. (2-tailed) 0.000 0.000  0.101  0.000 

N 12 12 12 12 12 12 

TOPSIS 

Correlation 

Coefficient 
.867** .937** .930** 0.315 .930** 1.000 

Sig. (2-tailed) 0.000 0.000 0.000 0.319 0.000  

N 12 12 12 12 12 12 

** Correlation is significant at the 0.01 level (2-tailed).  

* Correlation is significant at the 0.05 level (2-tailed).  
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Table 26: Correlations among the different rankings under HFBWM 

  COPRAS MOORA MULTIMOORA 
REFERENCE 

POINT 

FULL 

MULTIPLICATIVE 
TOPSIS 

Spearman’s rho 

COPRAS 

Correlation 

Coefficient 
1.000 1.000** 1.000** .965** 1.000** .916** 

Sig. (2-tailed)    0.000  0.000 

N 12 12 12 12 12 12 

MOORA 

Correlation 

Coefficient 
1.000** 1.000 1.000** .965** 1.000** .916** 

Sig. (2-tailed)    0.000  0.000 

N 12 12 12 12 12 12 

MULTIMOORA 

Correlation 

Coefficient 
1.000** 1.000** 1.000 .965** 1.000** .916** 

Sig. (2-tailed)    0.000  0.000 

N 12 12 12 12 12 12 

REFERENCE 

POINT 

Correlation 

Coefficient 
.965** .965** .965** 1.000 .965** .902** 

Sig. (2-tailed) 0.000 0.000 0.000  0.000 0.000 

N 12 12 12 12 12 12 

FULL 

MULTIPLICATIVE 

Correlation 

Coefficient 
1.000** 1.000** 1.000** .965** 1.000 .916** 

Sig. (2-tailed)    0.000  0.000 

N 12 12 12 12 12 12 

TOPSIS 

Correlation 

Coefficient 
.916** .916** .916** .902** .916** 1.000 

Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.000  

N 12 12 12 12 12 12 

** Correlation is significant at the 0.01 level (2-tailed).  

* Correlation is significant at the 0.05 level (2-tailed).  

 

 


