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Abstract 

Chimpanzees are declining at a rate of up to 6.5% per year in some parts of 

Africa due to human impacts. Effective conservation relies on accurate and 

reliable information on population density, distribution and connectivity. Yet, 

traditional line transect surveys are costly to conduct over large areas and 

particularly at sufficiently regular intervals to determine trends in abundance. 

Moreover, they often fail to identify critical areas for animal movement. Given the 

vast landscape across which chimpanzees are found, we need new methods that 

are time and cost efficient while providing precise and accurate data across broad 

spatial scales. This thesis explores the potential of multiple remote sensing 

technologies along with molecular methods to provide critical information on 

population distribution, density and connectivity across broad spatial and 

temporal scales. My research first investigated the potential of drones for 

chimpanzee population surveys in Tanzania. More specifically, I evaluated drone 

performance in detecting chimpanzee nests by comparing ground and aerial 

surveys in the Issa valley, western Tanzania. I found ground and aerial nest 

numbers to be correlated, with an average of 10% of nests observed from the 

ground detectable from the air. Although I highlight challenges in using drones 

for chimpanzee surveys, the study provides guidance for future investigations and 

emphasises the importance of contrasting background and high-resolution 

images. Next, using satellite imagery from 1973 and 2018 and a landcover 

projection for 2027, I model landscape connectivity change for chimpanzees within 

the Greater Mahale Ecosystem (GME), an area containing nearly all of Tanzanian’s 

chimpanzees. The model reveals a series of corridors allowing chimpanzee 

movement throughout the ecosystem, as well as a reduction of connectivity over 

time likely to continue through 2027. By identifying critical areas for chimpanzee 

movement, the model provides valuable guidance on where to focus conservation 

efforts. Finally, using two molecular markers (mitochondrial control region 

sequences and 10 microsatellite loci), I describe population structure and genetic 

diversity of Tanzania’s chimpanzees. My analyses confirm historical gene flow 

between Gombe National Park (GNP) and the GME but also suggest complete 
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interruption of chimpanzee movements between the two areas in recent years. 

Both genetic markers suggest high genetic diversity with no evidence of 

inbreeding and a greater mitochondrial DNA diversity within GNP.  This 

surprising result might be explained by potential gene flow with extra-park 

chimpanzees and evidence of Gombe females preference for genetically dissimilar 

mates. Results of this study resolve previous contrasting findings on connectivity 

between GNP and the GME and support the establishment of two conservation 

units. Together, these chapters demonstrate the diversity of non-invasive 

technologies that can be applied, not only to help chimpanzee conservation, but 

also any large-bodied species facing accelerated rates of anthropogenic 

disturbance.  
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Chapter 1: 

General introduction 

 Significance 

Primates are important to tropical biodiversity, providing critical ecosystem 

functions and services (Estrada et al., 2017; Redmond and Goodall, 2008). As our 

closest living biological relatives, primates also offer insights into human 

evolution, biology, and behaviour. However, most primate populations are 

declining in numbers and ~60% of primate species are now under threat of 

extinction (Estrada et al., 2017). Habitat loss, degradation and fragmentation are 

the main causes of their decline along with hunting, anthropogenic diseases and 

climate change (Wich and Marshall, 2016). Global social and economic systems are 

changing rapidly, increasing global demand for natural resources. As a result, 

deforestation is occurring at an unprecedented rate (Hansen et al., 2013). This 

extensive forest loss represents a major threat to primates, which face subsequent 

challenges to adapt and respond to novel rates, types and scales of disturbance 

(Haddad et al., 2015). There is an urgent need to preserve the remaining 

populations and mediate species loss. To establish where and how many 

individuals remain and understand the potential connectivity between 

populations is a crucial first step to develop management plans. With this 

information, conservation planners can establish baseline estimates for prioritizing 

areas and assess effectiveness of their efforts over time  (Nichols and Williams, 

2006; Plumptre and Cox, 2006). Traditional ground surveys are a critical initial 

method to monitor ecosystems, however, they are costly in time and money across 

large spatial and temporal scales (Plumptre, 2000).  

Integrating various emerging and established remote sensing technologies 

such as satellites and drones greatly increases the spatial and temporal scales over 

which an ecosystem can be surveyed and threats to be identified and potentially 

mitigated (Marvin et al., 2016). Besides remote sensing data, molecular tools are 

another fast-evolving technology able to provide a wide range of information 

across large spatial and temporal scale (Frankham et al., 2011). The DNA extracted 
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from non-invasive samples (e.g. dung) provides scientists with detailed 

information about population demography, genetic variability and gene flow, 

without the need of capturing, disturbing or even seeing the individuals 

(Goossens and Bruford, 2009).  

By integrating multiple remote sensing technologies and population genetic 

analyses, this thesis not only provides critical information on where to focus 

conservation effort to protect and preserve a viable large population of 

chimpanzees, but also demonstrate the potential of integrating technologies and 

methodologies for biodiversity conservation at broader scale. 

Chimpanzee conservation in Tanzania 

Chimpanzees, our closest living biological relatives, are classified as either 

Endangered (Nigeria-Cameroon chimpanzees P. t. ellioti, central chimpanzees P. t. 

troglodytes, and eastern chimpanzees P. t. schweinfurthii) or Critically Endangered 

(Western Chimpanzees P. t. verus)  by the International Union for Conservation of 

Nature due to their declining populations across Africa (Humle et al., 2016). 

Tanzania represents the eastern and southern limit of their distribution (Figure 

1.1) and hosts two of the longest studies of their behaviour: Gombe National Park 

(GNP), where Dr. Jane Goodall pioneered research on the species in 1960 (Goodall, 

1968) and Mahale Mountains National Park (MMNP), where Dr. Toshisada 

Nishida established a permanent field station in 1965 (Nishida, 2011). Both study 

sites led to ground-breaking discoveries on chimpanzee behaviour and influenced 

the creation of the two national parks protecting wild chimpanzees in Tanzania. 

However, several surveys have now revealed that most (~75%) of Tanzanian 

chimpanzees are found outside national parks with the majority (~1 500) 

inhabiting the Greater Mahale Ecosystem (GME) (Kano et al. 1999; Yoshikawa et 

al. 2008; Plumptre et al. 2010; Nakamura et al. 2013; Piel and Stewart 2014, Figure 

1.1b). This mosaic ecosystem, dominated by miombo-woodland interspersed with 

riparian forest, offers important diversity of resources for chimpanzees and is one 

of the driest places where they occur (Moore, 1992). As a result, they exhibit 

unique patterns not otherwise seen in forest-dwelling populations. For example, 
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they are found at extremely low density (Kano et al., 1999; Moore and Vigilant, 

2014; Piel and Stewart, 2014; Yoshikawa et al., 2008) and have large home ranges 

(Moore and Vigilant 2014; Piel and Stewart, unpublished data). Given the 

environmental similarity between this savanna landscape and reconstructions of 

hominin habitats, western Tanzania offer an insight into human evolution (Moore, 

1992). Moreover, a recent study has shown that chimpanzees exhibit greater 

behavioural diversity in environments with more pronounced seasonality (such as 

savannah woodland habitats) (Kalan et al., 2020). With chimpanzee behavioural 

diversity currently threatened by increasing human pressure (Kühl et al., 2019) 

and the GME falling at the extreme end of the species habitat continuum (van 

Leeuwen et al., 2020), the importance of protecting GME chimpanzees cannot be 

overstated.  

It is in the context of informing models of human evolution that Kyoto 

University African Primate Expedition (KUAPE) organised the first chimpanzee 

survey across Tanzania in 1961. About halfway between Gombe and Mahale, 

Kabogo station was established in the aim of studying chimpanzees living in an 

habitat similar to that in which early hominids evolved (Azuma and Toyoshima, 

1961). Kabogo station was moved in 1963 to three additional camps (Kasakati, 

Filabanga and Kasoje), with the latest remaining as MMNP’s long-term research 

site (Nishida, 2011). Kano led the first extensive survey across western Tanzania 

from 1965 to 1967 and noted the presence of chimpanzees all along the shore of 

Lake Tanganyika, with the Ugalla river representing the eastern limit and Wansisi 

mountains the southern limit of their distribution (Kano, 1972, 1971) (Figure 1.1c). 



18 

 

 

Figure 1.1 : Chimpanzee distribution a) across Africa; b) in Western Tanzania;  c) 

map from Kano (1971) showing early chimpanzee survey sites in Tanzania . 

In 1997, more that 25 years after Kano’s first survey, another population of 

chimpanzees was reported further south, in the Lwazi river river basin (Ogawa, 

1997). Later suveys confirmed the presence of large chimpanzee populations 

outside protected areas but also stressed the major human demographic changes 

and their threat to chimpanzee survival in Tanzania (Massawe 1992; Moyer et al. 

2006; Yoshikawa et al. 2008; Ogawa et al. 2013; Piel and Stewart 2014; Piel et al. 

2015). A major political event, the Ujamaa village resettlement scheme of the mid 

1970s, had a significant impact on forest and woodland cover. This reform 

program shifted over five million small farmers and hunter-gathers from their 

scattered homesteads into nucleated settlements and collective farms. Although 

reducing human population in some remote habitats, population concentration 

a) 

b) 

c) 
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has lead to heavy pressure on surrounding miombo woodland, increasing 

deforestation and habitat degradation (Massawe, E, 1992; McCall, 1985; Pintea et 

al., 2011). Tanzania has also received a large number of refugees from neighboring 

countries. Nearly 1.3 million people from Rwanda, Burundi, and the Democratic 

Republic of the Congo (DRC) sought refuge in western Tanzania between 1993 

and 1998  (Whitaker, 2002). It is likely that the establishment of the refugee 

settlements and sudden increase in human population density has increased the 

pressure on chimpanzees through poaching (most newcomers not sharing the 

Tanzanian traditional taboo against eating primates) and increased conversion of 

land for agriculture (Jambiya et al., 2007; Ogawa et al., 2013, 2006a, 2006b; 

Whitaker, 1999).  

 

Although historical events have played a role in the decline of Tanzanian 

chimpanzee populations, suitable habitat continues to decline and still represents 

the primary threat to the species persistance in the country (Davenport et al., 2010; 

Moyer et al., 2006; Piel et al., 2015a; Piel and Stewart, 2014; Plumptre et al., 2010). 

To protect the remaining chimpanzees, the Tanzanian governement, together with 

conservation organizations, and local stakeholders have developped a national 

conservation action plan for the species  (Lasch et al., 2011; TAWIRI, 2018). The 

document identifies threats to chimpanzees in the country along with strategies 

necessary to counter these threats. Human activities such as agriculture, 

infrastructure and settlement development, logging and charcoal production, 

livestock keeping and mining, have been recognized as the leading threats to 

chimpanzees and their habitat. As part of the overall conservation strategy, the 

plan emphasised the needs of conducting regular and systematic chimpanzee 

surveys. This baseline information is necessary to implement the additional steps 

toward conservation progress: development of district land use framework plans, 

expansion / establishment of protected areas, reduction of human-chimpanzee 

conflict through and reduction of chimpanzee habitat loss. Given the sheer scale of 

chimpanzee distribution across western Tanzania (>20,000 km2), we need new 
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methods that are time and cost efficient while providing precise and accurate data 

across broad spatial scales. 

Emerging remote sensing technologies for wildlife monitoring 

Collecting baseline information on population distribution, abundance and 

trend is a vital first step for effective conservation. Not only are these data 

important for identifying priority areas under local threat and developing 

conservation management strategies (e.g. Nichols and Williams 2006; Plumptre 

and Cox 2006),  but they also enable direct assessment of the effectiveness of 

conservation measures (e.g. Tranquilli et al. 2012; Akçakaya et al. 2018). There are 

several established methods for monitoring wild primate populations. Line 

transect surveys are widely used to estimate population density for a variety of 

mammal species, including great apes (e.g. Buckland et al., 2001; Piel et al., 2015a; 

Silveira et al., 2003; Stokes et al., 2010; Wich and Marshall, 2016). In these surveys, 

animal densities are estimated from counting direct or indirect signs of the animal 

presence. Given the elusive nature of great apes, scientists have traditionally relied 

on nests count (e.g. Kouakou et al., 2009; Spehar et al., 2010). To convert nest 

density to animal density, the nest decay rate and nest production rate are 

required. However, these factors require extensive studies as they vary 

considerably in time and space (Spehar et al., 2010) and thus are site-specific. 

Across large spatial and temporal scales, traditional line transect surveys are 

costly in time and for these reasons, geographically wide surveys are not repeated 

frequently (Kühl et al., 2009). Along with ground deployed technology such as 

passive acoustic monitoring (PAM) and camera trapping (CT) (Crunchant et al., 

2020), emerging remote sensing technologies can help increase the spatial and 

temporal scales over which wildlife populations can be surveyed and monitored, 

especially when used in combination (Marvin et al., 2016).  
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Manned planes and helicopters 

Manned planes and helicopters pioneered wildlife monitoring from remote 

sensing platforms1 and have been widely used by conservationists to obtain data 

on animal distribution and density (Wang et al., 2019). For instance, light aircraft 

have been used to assess the abundance of African wildlife since the mid‐1950s 

(Jachmann, 2002) and five decades of aerial surveys provided important insights 

into changes in marine megafauna populations on the western pacific ocean 

(Martin et al., 2016). Helicopters have also been used to estimate orangutan 

density through aerial nest count (Ancrenaz et al., 2005). Detection of animals (or 

their signs) is either performed in real time by trained observers (e.g. Stoner et al., 

2007) or using on-board cameras to collect aerial imagery (e.g. Descamps et al., 

2011).  While such surveys can greatly increase the spatial and temporal scales of 

wildlife surveys, they are expensive to implement and are of high risk for the 

operators (i.e. crashes) (Sasse, 2003). 

Unmanned Aircraft Vehicles (UAV) 

Unmanned Aircraft Vehicles (hereafter referred to as Drones) are rapidly 

gaining popularity as a powerful tool for wildlife monitoring (Chabot and Bird, 

2015). These remotely operated aircrafts with pre-programmed flight capabilities 

offer the ability to collect rapid high-resolution data across moderate to broad 

spatial scales. Originally used for military applications, the use of drones has now 

widely spread across wildlife conservation applications including landcover 

mapping, anti-poaching efforts and wildlife monitoring (Wich, 2015). Several 

drone systems are available, and their different designs offer operational 

advantages. Fixed-wing drone models offer relatively long flight endurance (up to 

1h30) allowing the coverage of larger areas but are limited by needing landing 

sites (e.g. large open areas). Multirotor drones have shorter flight time capacities 

 
1 Throughout the thesis, bold italics indicate terms that are described in the 

Glossary 
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but can fly at lower altitudes and can be controlled in a more precise manner 

(Anderson and Gaston, 2013). Because some commercially produced systems 

remain cost prohibitive for conservationists, Koh and Wich (2012) were one of the 

firsts to develop a low-cost alternative to commercially available drones. 

Assembled from off the shelf components, these systems also offer much greater 

flexibility in terms of the sensors they can carry. Numerous types of sensors are 

available, and their numbers are expanding rapidly (Toth and Jóźków, 2016). In 

conservation research, drones are commonly equipped with RGB (Red, Green, 

Blue) cameras but recently, Multispectral, Hyperspectral, Thermal and Light 

Detection and Ranging (LiDAR) cameras have also been deployed and 

successfully used to detect animals and map vegetation (Wich and Koh, 2018). A 

common challenge in drone-based wildlife survey is the amount of data they 

produce (e.g. thousands of images) and the associated time to analyse them 

(Chabot and Bird, 2015). With the development of computer vision algorithms, 

scientists have recently been able to detect animals automatically, saving hours of 

tedious images examination (e.g. Gonzalez et al., 2016; Seymour et al., 2017). 

Satellites 

Satellite remote sensing platforms offer freely available images across most 

regions of the planet. Dating back to 1972, when the first non-military satellite 

program (Lansdat-1) was launched by the National Aeronautics and Space 

Administration (NASA), satellites offer the longest continuous global record of the 

Earth’s surface (NASA, 2020). Such data have allowed consistent monitoring of 

worldwide forests (Hansen et al., 2013) and represent an unprecedented tool for 

conservation decision support (Rose et al., 2015). Continuously updated variables 

derived from satellite remote sensing can also be used to refine habitat suitability 

models for near real-time monitoring (Jantz et al., 2016). More than just  

monitoring wildlife habitat, satellite imagery can be used to detect animals or their 

signs. Löffler and Margules (1980) first demonstrated the feasibility of using 

Landsat-1 data to detect hairy-nosed wombat (Lasiorhinus latifrons) colonies. With 

the improvement of spatial resolution, it is now possible to detect a wide variety of 
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animals ranging from birds (e.g. Fretwell et al., 2012) to mammals (e.g. Yang et al., 

2014). However satellite images are hampered by atmospheric interference from 

clouds (Yang et al., 2014) and very high-resolution images (less than a meter 

resolution) necessary to detect small species also remain expensive (ranging from 

US $14.50-17.50 per km2 depending on exact bands required (LLC 2020)).  

Although any one of these methods has limitations (e.g. limited drone 

flying time, cloud cover hampering satellite images), together they can work as a 

powerful ensemble to address key questions for species conservation. 

Population genetics for wildlife conservation 

Besides remote sensing data, molecular information extracted from non-

invasive samples (such as dung, hair, urine or extracts from discarded food items) 

represent another powerful tool to remotely monitor wildlife distribution and 

abundance, without the need of seeing the animals (Arandjelovic and Vigilant, 

2018; Schwartz et al., 2007; Vigilant and Guschanski, 2009). Compared to the 

methods described above, only genetic markers provide an evolutionary context 

(Schwartz et al., 2007). The observed genetic signature reported by genetic 

diversity has enabled researchers to estimate the sizes of ancestral populations and 

date drastic population decline (e.g Okello et al., 2008). These data help to 

determine the role that historical events have played and are important for 

understanding long-term population viability. Indeed, population persistence is 

highly dependent on genetic mixing from migrating individuals (Young and 

Clarke, 2000). This not only avoids inbreeding and fixation of deleterious alleles, 

but also increases the adaptive potential of a population (Crooks and Sanjayan, 

2006).  

The importance of applying genetic principles for nature conservation was 

first described by Otto Frankel and Michael Soulé (1981). These authors 

highlighted the long-term impact of inbreeding depression on population 

persistence (i.e. the reduced reproduction and survival of offspring from related 

parents) and urged the need to preserve genetic diversity. However, the 
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contribution of genetic factors to species extinction was controversial and was 

generally considered minor (DeSalle, 2005; DeSalle and Amato, 2004). It was not 

until more recently that conservation genetics was recognised as an integral part 

of the field of conservation biology (Frankham et al., 2002). The use of genetic 

theory and techniques to reduce the risk of extinction in threatened species is now 

widely applied among conservationists and its applications keep expanding 

(DeSalle and Amato, 2004).  

Advances in molecular marker technologies have played an important role in 

the development of conservation genetics. The first major advance was in the 

1960s with the development of allozyme electrophoresis (i.e. separating proteins in 

an electrical potential gradient and subsequently visualising them using a locus-

specific histochemical stain). As the first method allowing the direct measure of 

genetic diversity in natural populations, the technique quickly became widespread 

(e.g. Avise, 1974; Lewontin and Hubby, 1966). However, it required capturing or 

killing individuals to extract their blood; additionally, proteins evolve relatively 

slowly, hence were not suitable to study small populations of endangered species 

(Bertorelle et al., 2009). A latter breakthrough revolutionized population genetics: 

the PCR, or Polymerase Chain Reaction. With DNA fragments amplified millions 

of times, only a minute amount of DNA is needed to conduct genetic analyses 

(Mullis et al., 1986). This technique not only enabled genetic monitoring from non-

invasive samples (usually containing low amount of DNA) (Frankham et al., 2004) 

but also facilitated the development of a wide range of genetic markers (e.g. 

Random amplified polymorphic DNA (RAPD); Amplified fragment length 

polymorphism (AFLP); mitochondrial DNA (mtDNA); minisatellite and 

microsatellite repeats, single nucleotide polymorphic markers (SNP’s); see Avise 

(2012) for an extensive review). 

These molecular markers represent a powerful tool to gather precise 

information for wildlife conservation such as population abundance (e.g. Solberg 

et al. 2006; Gray et al. 2013; Moore and Vigilant 2014; Arandjelovic and Vigilant 

2018), demographic history (e.g. Okello et al. 2008; Pilot et al. 2014; Stoffel et al. 
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2018), population structure and gene flow (e.g. Wang et al. 2017; McCarthy et al. 

2018; Hendricks et al. 2020), detecting hybridization (e.g. Gottelli et al. 1994; 

Rhymer and Simberloff 1996; Oliveira et al. 2008) and defining management unit 

(e.g. Moritz 1994; Liu et al. 2007; Hurt et al. 2017).  

Thesis outline  

In this dissertation, I apply two remote sensing technologies (drones and 

satellite imagery) as well as population genetic analyses to investigate chimpanzee 

distribution and connectivity across western Tanzania.  

My research first investigated the potential of drones for chimpanzee 

population survey in Tanzania. More specifically, I evaluated the performance of 

two drone prototypes in detecting chimpanzee nest in the Issa Valley, Western 

Tanzania. I also assessed the factors influencing nest detectability from drone data 

(Chapter 2). 

Next, using satellite imagery, I examined landscape connectivity change for 

chimpanzees within the GME (Chapter 3). I first developed habitat suitability 

models to create an index of habitat selection by chimpanzees. The resulting maps 

were used to model habitat connectivity independently of any a priori habitat 

patches or populations using circuit theory. To assess connectivity change over 

time and predict the impact of future forest loss on chimpanzees, I used satellite 

images from 1973 and a landcover projection for 2027.  

In Chapter 4, I analysed 234 faecal samples from 16 different sampling 

locations within the GME along with genotypes from 136 individuals from Gombe 

National Park to explore chimpanzee population structure and genetic diversity 

across western Tanzania.  

Chapter 5 synthesises the results of the previous research chapters, 

discusses the conservation implications of these findings, and highlight future 

research perspectives. 
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Each research chapter is presented as a manuscript in preparation for 

submission or already published in peer-reviewed journal.  
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Abstract 

As with other species of great apes, chimpanzee numbers have declined over the 

past decades. Proper conservation of the remaining chimpanzees requires 

accurate and frequent data on their distribution and density. In Tanzania, 75% of 

the chimpanzees live at low densities on land outside national parks and little is 

known about their distribution, density, behavior or ecology. Given the sheer 

scale of chimpanzee distribution across western Tanzania (>20,000 km2), we need 

new methods that are time and cost efficient while providing precise and 

accurate data across broad spatial scales. Scientists have recently demonstrated 

the usefulness of drones for detecting wildlife, including apes. Whilst direct 

observation of chimpanzees is unlikely given their elusiveness, we investigated 

the potential of drones to detect chimpanzee nests in the Issa valley, western 

Tanzania. Between 2015 and 2016, we tested and compared the capabilities of two 

fixed-wing drones. We surveyed twenty-two plots (50 × 500 m) in gallery forests 

and miombo woodlands to compare nest observations from the ground with 

those from the air. We performed mixed-effects logistic regression models to 

evaluate the impact of image resolution, seasonality, vegetation type, nest height 

and color on nest detectability. An average of 10% of the nests spotted from the 

ground were detected from the air. From the factors tested, only image resolution 

significantly influenced nest detectability in drone-acquired images. We discuss 

the potential, but also the limitations, of this technology for determining 

chimpanzee distribution and density and to provide guidance for future 

investigations on the use of drones for ape population surveys. Combining 

traditional and novel technological methods of surveying allows more accurate 

collection of data on animal distribution and habitat connectivity that has 

important implications for ape conservation in an increasingly 

anthropogenically-disturbed landscape. 

 

Keywords: UAV; great apes; conservation; survey; Tanzania; image resolution 
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2.1. Introduction 

As with other great ape species, chimpanzee numbers have declined over 

the past decades and the species is currently threatened by extinction (Humle et 

al., 2016). Several studies have documented the impact of habitat loss (Campbell et 

al., 2008; Junker et al., 2012; Wich et al., 2014), poaching (Bowen-jones and Pendry, 

1999; McLennan et al., 2012; Piel et al., 2015b) and infectious disease (Rudicell et 

al., 2010; Walsh et al., 2003) on wild populations. In Tanzania, 75% of wild 

chimpanzees are found within a 20,000 km2 area of national parks (Kano, 1972; 

Moore and Vigilant, 2014; Ogawa et al., 2011; Piel and Stewart, 2014; Plumptre et 

al., 2010; Zamma and Inoue, 2004). Monitoring these chimpanzees is therefore 

crucial for their conservation in Tanzania. For conservation management, it is 

important to establish where and how many individuals remain and to 

understand the potential connectivity between populations. These data represent 

key information that is used towards creating baseline estimates for assessing the 

effectiveness of conservation efforts over time (Nichols and Williams, 2006; 

Plumptre and Cox, 2006). 

There are several established methods for studying and monitoring wild 

animal populations. Line transect surveys are widely used to estimate population 

density for a variety of mammal species, including great apes (Piel et al., 2015a; 

Silveira et al., 2003; Stokes et al., 2010; Wich et al., 2016). Data from direct 

observations of animals or indirect evidence such as dung (Moore and Vigilant, 

2014), nests (Kouakou et al., 2009; Spehar et al., 2010) and calls (Kidney et al., 2016) 

can be converted into density and subsequently population estimates across larger 

landscapes (Buckland et al., 2001). Indirect evidence is especially important in 

great ape surveys given the elusive nature of the species and their extensive range 

and distribution(Kühl et al., 2009).  

Traditional land-based transects are time-consuming and expensive, and 

for these reasons geographically wide surveys are not repeated frequently (Kühl et 

al., 2009). Aerial surveys with light aircraft can be effective across broad areas for 

counting large mammals (Jachmann, 2002; Kirkman et al., 2013), but have 



30 

 

limitations. While such surveys may provide an unbiased population size estimate 

for large mammals found in open areas (e.g., elephants, buffalos, zebras), they are 

unlikely to provide accurate estimates for smaller species (e.g., black-backed 

jackal, bushbuck, vervet monkey) (Greene et al., 2017) or those that live in habitats 

with greater canopy cover. Furthermore, aircraft surveys are logistically difficult 

to implement due to their very high cost and the risk they pose to operators (i.e., 

aircraft crashes) (Sasse, 2003). Due to their increasing availability, high resolution 

satellite images have also been used to detect animals or their signs (Yang et al., 

2014). Although promising, this method is also unlikely to provide accurate 

estimates for small species and is hampered by cost and atmospheric interference 

from clouds, especially problematic in the tropical regions where great apes are 

distributed (Hansen et al., 2008). Camera-traps and acoustic sensors are other 

promising remote technologies that enable broad spatiotemporal and precise 

information on animals that are elusive and otherwise difficult to study 

(Blumstein et al., 2011; Rowcliffe and Carbone, 2008). Nevertheless, these methods 

have high initial costs and still require intensive manual labor for deployment, 

memory card collection and substantial expertise in subsequent data analyses. 

Recently, scientists have started to deploy drones—remotely operated 

aircraft with autonomous flight capabilities—for wildlife monitoring (Chabot and 

Bird, 2015; Koh and Wich, 2012a; Wich, 2015). This application allows for rapid 

and frequent monitoring across moderate to broad spatial extents while providing 

high-resolution spatial data. Several studies have now reported successful animal 

detection using drone-derived aerial imagery, ranging from birds (Chabot et al., 

2014; Chabot and Bird, 2015) to large terrestrial (Mulero-Pázmány et al., 2014; 

Vermeulen et al., 2013) and marine (Hodgson et al., 2017, 2013; Koski et al., 2015, 

2009) mammals. Recent studies on using drones to detect indirect signs of animals 

have also reported promising results in detecting orangutan (Wich et al., 2015) as 

well as chimpanzee (van Andel et al., 2015) nests. 

Given the extent of the area in need of monitoring, exploring drone 

applications for chimpanzee population surveys in Tanzania may reduce cost and 
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time investments. Visibility bias (i.e., failure to detect all animals within a sampled 

area) is a primary source of error in aerial surveys (Greene et al., 2017; Jachmann, 

2002; Pollock and Kendall, 1987). Prior to the widespread deployment of drones 

for a census, it is important to first evaluate bias in the method (i.e., calculate a 

correction factor) by comparing the resulting detections with traditional ground 

survey results. Numerous factors can impact the detectability of a direct or 

indirect sign of wildlife (Buckland et al., 2001). Thus, it is critical to determine 

what affects chimpanzee nest detectability in drone-acquired images. In the 

current study, we assessed several factors known to affect target detectability in 

aerial images: image resolution (Dulava et al., 2015; Mulero-Pázmány et al., 2014); 

canopy cover and vegetation type (Greene et al., 2017; Mulero-Pázmány et al., 

2014; Patterson et al., 2016; van Andel et al., 2015); and target size and color 

(Greene et al., 2017; Koski et al., 2009).  

In summary, our objectives were to (1) evaluate drone performance for 

chimpanzee nest surveys by comparing ground and aerial surveys; and (2) assess 

the factors that influence detectability from drone data. Based on the results of the 

aforementioned studies, we hypothesized that using a higher resolution camera as 

well as flying at a lower altitude would increase the nest detection probability. We 

also expected a higher detection probability during the leaf-off season and in the 

more open miombo woodland vegetation than the closed riverine forest. Finally, 

we predicted that nests higher in the canopy and with a color that contrasts with 

their surroundings will be easier to detect.  
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2.2. Materials and Methods  

2.2.1. Study Site 

The study was conducted in May 2015 and September 2016 (beginning and 

end of dry seasons, respectively) in the Issa Valley, western Tanzania (Figures 2.1 

and 2.2). The area is characterized by a landscape mosaic, dominated by miombo 

woodland (named for the dominant tree genera of Brachystegia and Julbernardia) 

interspersed with grasslands, swamps and gallery forest restricted to steep 

ravines. Open vegetation (e.g., miombo woodland, grassland and swamps) 

represents more than 90% of the 85 km2 study area (Piel et al., unpublished data; 

Figure 2.1). The region is one of the driest, most open and seasonally extreme 

habitats in which chimpanzees live (Moore, 1992), with annual temperatures 

ranging from 11 °C to 35 °C and a dry season (<100 mm of rainfall) lasting from 

May to October. 

 

Figure 2.1: Location and map of the Issa Valley showing the distribution of all plots. 

Vegetation class layer produced by Caspian Johnson (unpublished). 
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Figure 2.2: Partial orthomosaics of the study site representative of the vegetation at the 

beginning (May 2015) and at the end (September 2016) of the dry season. 

2.2.2. Ground Surveys 

To collect chimpanzee nest data from the ground for comparison with 

drone observations, we created 22 plots, each 50x500 m, stratified equally across 

gallery forest and miombo woodland (Figure 2.2). Within each plot, two 

experienced observers walked slowly and recorded the GPS location of all 

observed chimpanzee nests. Only one inspection per plot was performed. During 

the 2015 survey, data were collected using the open data kit 

(https://opendatakit.org/) on NEXUS 7 tablets with an average accuracy of 15 m. In 

2016, we used the global navigation satellite system (GNSS) Mobile Mapper 20 

(MM20, http://www.spectraprecision.com), allowing us to collect data with a <1 m 

accuracy. For each nest, we collected additional data, including nest height from 

ground (estimated to the nearest meter), vegetation type (open or closed) and the 

nest color (green or brown). 

2.2.3 Aerial Surveys 

For the aerial surveys, we used two drone models paired with two different 

cameras (Figure 2.3).  

Pairing A: The ConservationDrones.org X5 (Skywalker X5 frame; 

hobbyking.com [similar to HBS FX61]) equipped with a GPS-enabled Canon S100 

camera (resolution: 4000 × 3000 pixels; sensor size: 7.6 × 5.7 mm) operating a 

Canon Hack Development Kit firmware modification (allowing pictures to be 

automatically taken every three seconds). 
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Pairing B: The more stable HBS Skywalker 100 km Long Range Fix Wings 

drone (Skywalker 2013 body 1880 mm; hobbyking.com) fitted with a Sony 

RX100M2 (resolution: 5472 × 3648 pixels; sensor size: 13.2 × 8.8 mm). Both were 

equipped with an autopilot system based on the ‘ArduPilot Mega’ (APM), which 

includes a computer processor, GPS, data logger, pressure and temperature 

sensor, airspeed sensor, triple-axis gyro, and accelerometer. Cameras were 

triggered automatically based on a predefined flight plan to produce at least 60% 

front- and side-overlap among images. Missions were planned using the open-

source software APM Mission Planner (http://planner.ardupilot.com/) on a 

standard Windows-based laptop. Once we completed the missions, we geotagged 

the images from the Sony camera using the same software. Geotagging was not 

necessary for the Canon images as the camera was GPS-equipped.  

 

Figure 1.3: Types of drone/camera pairing deployed: (a) Pairing A; (b) Pairing B. 

The drones performed two types of missions: straight line transects and 

grid missions (Figure 2.4).  

Line transects: Straight line missions covering the areas within the ground 

plots at an average altitude of 90 m above ground level (AGL). We investigated 

aerial images obtained during these missions for the presence of chimpanzee 

nests.  

Grid missions: Grid pattern missions flown at an average altitude of 120 m 

above ground level with extensive overlap (>60%) between flight legs to allow for 

the creation of orthomosaics. We produced orthomosaics using the geotagged 

images in Pix4D mapper (https://pix4d.com, version 4.0.25). Although ground 



35 

 

control points (GCPs)2 were set up in each area for both years, the GCPs from 

2015 could not be localized in the aerial images. The resulting accuracy of the 

orthomosaics was that of the Canon S100 camera GPS (average accuracy of 5 m). 

Improved GCPs were set up in 2016 allowing a georeferencing accuracy within a 

meter. We used the orthomosaics for the subsequent spatial relocation of aerial 

observations made while interpreting the photos from the nest counting missions. 

 

Figure 2.4 : Types of mission flown: (a) Line transect; (b) Grid mission. 

2.2.4. Nest Detection 

One observer (NB) examined the 1227 images resulting from the transect 

missions falling within the plots. Images were imported into the WiMUAS 

software (Linchant et al., 2015) and investigated for the presence of nests. The 

aerial observation location was subsequently exported to a georeferenced 

shapefile. Because the resulting file was accurate to within 50 m, each aerial 

observation was relocated using the orthomosaics. Due to the 15 m inaccuracy of 

the 2015 ground data, a buffer of 15 m was created around each nest and if an 

aerial observation was recorded within this 15 m radius that was considered an 

aerial nest detection. 

 
2 2015 GCPs were created from red fabric attached at the top of trees and 

2016 GCPs consisted of white vinyl crosses pinned onto the ground. 
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2.2.5. Analyses 

All statistical analyses were conducted in the R studio (version 1.0.136). 

Performance of the Aerial Detection 

We calculated recall and false alarm rates to estimate the performance of 

nest detection using drone imagery (Macmillan and Creelman, 2005). Recall rate is 

the percentage of successful detection (i.e., the proportion of nests observed from 

the ground detected during the aerial survey in relation to the total number of 

nests observed from the ground). The false alarm rate is the proportion of false 

detections (the number of aerial observations not aligning with nests found from 

the ground by the total number aerial observations). Because the data were not 

normally distributed, we used non-parametric statistics. A Wilcoxon-signed rank 

test was applied to compare the number of nests per plot found on the ground and 

on the aerial drone survey. We further ran a Spearman rank correlation to test for 

associations between the number of nests per plot across the two survey methods. 

Factors Influencing Detectability 

We used three generalized linear models (GLM) with a binomial error 

structure and logit-link function to evaluate which factors (drone/camera pairing, 

season, vegetation type, nest age, nest height and flight altitude above ground 

level (AGL)) influenced the recall rate and the false alarm rate. The models were 

fitted using the GLM function from the lme4 package (Bates et al., 2015). We fitted 

all terms of interest and tested significance via likelihood ratio tests to determine 

which factors resulted in a significant reduction in explanatory power when 

removed (Crawley, 2012).  

Factors influencing the recall rate: For the first model, the recall rate was 

fitted following the method from Lopez-Bao (López-Bao et al., 2008). The number 

of nest detection successes vs. number of failures by plot (modelled as 1 = success 

and 0 = failure) was fitted as the dependent variable. Drone/camera pairing 

(Pairing A or Pairing B), season (May 2015 or September 2016) and vegetation type 
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(open or closed) were each fitted as two-level fixed effects. As it was not possible 

to test the influence of all variables in this model (e.g., nest color and nest height 

required a perfect individual nest match between the ground and aerial survey), 

we fitted a second model. This second model included only the data from the 2016 

survey, for which aerial observations could be more accurately matched to 

individual nests found on the ground. We fitted the nest detection event (not 

detected = 0, detected = 1) as the dependent variable. Vegetation type (open vs. 

closed) and nest color (green or brown) were each fitted as the two-level fixed 

effect and flight altitude AGL3 and nest height were fitted as covariates. We 

determined flight altitude AGL by subtracting the elevation (extracted from a 

Shuttle Radar Topographic Mission (SRTM) layer—30 m resolution; 

http://earthexplorer.usgs.gov) from the flight altitude above mean sea level 

(extracted from the geotagged images) at each recorded nest location. 

Factors influencing the false alarm rate: In the last model, the false 

detection event (true detection = 0, false detection = 1) was fitted as dependent 

variable. Drone/camera pairing (Pairing A or Pairing B), season (May 2015 or 

September 2016) and vegetation type (open or closed) were each fitted as two-level 

fixed effects and flight altitude AGL was fitted as a covariate. 

2.3. Results 

2.3.1. Performance of the Aerial Detection 

Considering both survey seasons (May 2015 and September 2016) and the 

results from both drone/camera pairings (pairing A and pairing B), we 

documented 667 chimpanzee nests from the ground (Supplementary Figure S2.1) 

and 112 from aerial observations (Figure 2.5; Supplementary Figure S2.2). Of these 

aerial observations, 64 fell within the 15 m radius of a nest that had been spotted 

 
3 Because flight altitude would have required to be averaged within survey 

plots to be used in the first model, we decided to only include it in the second 

model (with a flight altitude value above each individual nest).  
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from the ground and were considered to be nests, representing a 9.6% recall rate 

and 42.8% false alarm rate. Although the image analysis resulted in significantly 

fewer nest records per plot compared to what the ground teams documented 

(Wilcoxon- signed rank test: v = 981; p < 0.001; n = 47), the number of nests detected 

from aerial survey imagery showed a significantly positive correlation with those 

recorded on the ground per plot (Spearman’s ρ = 0.53; p < 0.001, n = 47). 

 

Figure 2.5: Examples of images of chimpanzee nests: captured during drone surveys (a,b) 

and observed from the ground (c,d). 

2.3.2. Factors Influencing Detectability 

Factors Influencing the Recall Rate 

Our first model included drone/camera pairing and season and vegetation 

type. From these variables, only drone/camera pairing significantly influenced the 

recall rate (likelihood ratio test: X2 = −10.96, p < 0.001), with the highest probability 

of nest detection with Pairing B (12.81% probability) (Figure 2.6). There was no 

significant difference in the recall rate between open and closed vegetation types 

(likelihood ratio test: X2 = 93.1, df = 41, p = 0.747) or between the beginning and end 

of the dry season (likelihood ratio test: X2 = 93, df = 43, p = 0.551) (Table 2.1). 
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Figure 2.6: Effect of drone/camera pairing on the recall rate. Error bars represent 95% 

confidence intervals for the predicted probabilities. 

Table 2.1: Outcomes of GLM to investigate the effect of drone/camera pairing, season and 

vegetation on the recall rate. 

The p value for each term is based on the chi-squared test (likelihood ratio test (LRT)) for change in 

the deviance when comparing models with or without that term. Parameter estimates are reported 

for all terms in the full model. *=p<0.05; **=p<0.01. 

Our second model (for 2016 data only) included flight altitude, nest height and 

vegetation type. We decided to remove nest color from our second model as of the 

337 nests recorded by the ground survey team in 2016, only one was green. The 

recall rate differed significantly across flight altitude AGL (likelihood ratio test: X2 

= 4.35, p < 0.05), with nests more likely to be detected when flying at a lower 

altitude (19.58% probability) (Figure 2.7). We found a trend towards higher 

detectability in closed rather than open vegetation (likelihood ratio test: X2 = 2.79, p 

< 0.1) (Table 2.2). There was no significant difference in nest detection depending 

on nest height within the tree (likelihood ratio test: X2 = 0.07, p = 0.789). 
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Figure 2.7: Effect of the flight altitude (AGL) on the recall rate. Grey ribbon represents 95% 

confidence intervals for predicted probabilities 

Table 2.2: Outcomes of GLM to investigate the effect of altitude, vegetation type and nest 

height on the recall rate. 

The p value for each term is based on the chi-squared test (likelihood ratio test (LRT)) for change in 

deviance when comparing models with or without that term. Parameter estimates are reported for 

all terms in the full model. *=p<0.05. 

Factors Influencing the False Alarm Rate 

For this model, we investigated the influence of drone/camera pairing, season, 

vegetation type and flight altitude AGL on the false alarm rate. Drone/camera 

pairing, vegetation type and flight altitude AGL significantly influenced the false 

alarm rate (Table 3.3). Aerial observations from Pairing A were more likely to be 

false positives (83% probability). The overall false alarm rate was higher in closed 

vegetation than in open vegetation but significantly differed between seasons 

(likelihood ratio test: X2 = 4.01, p < 0.05). Aerial observations made at the beginning 

of the dry season (May 2015) were more likely to be false positives when recorded 

in open vegetation (0.94% probability opposed to 0.19% probability for closed 
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vegetation). The false alarm rate significantly increased at lower altitude 

(likelihood ratio test: X2 = 9.55, p < 0.05) (Figure 2.8).  

  

  

  

 

Figure 2.8: Effect of (a) drone/camera pairing; (b) vegetation type within 

season for pairing A and (c) flight altitude above ground level (AGL) on the false 

alarm rate for both pairing. Error bars and grey ribbon represent 95% confidence 

intervals for predicted probabilities. 
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Table 2.3. Outcomes of GLM investigating the effect of the drone/camera pairing, season, 

vegetation type and flight altitude AGL on the false alarm rate. 

 
The p value for each term is based on the chi-squared test (likelihood ratio test (LRT)) for change in 

deviance when comparing models with or without that term. Parameter estimates are reported for 

all terms in the full model. *=p<0.05; **=p<0.01; ***=p<0.001. 

2.4. Discussion 

We investigated the feasibility of using drones to detect chimpanzee nests in 

the Issa Valley, western Tanzania, and evaluated the influence of image resolution, 

seasonality, vegetation type, nest height and color on nest detectability. An 

average of 10% of the nests observed from the ground were detected from the air, 

with improved nest detection in imagery with higher spatial resolution. Our 

overall detection rate was lower than that previously reported for chimpanzee 

nests in Gabon (39.9%) (van Andel et al., 2015) and orangutan nests in Indonesia 

(17.4%) (Wich et al., 2015). This discrepancy is likely due to methodological 

differences and our systematic approach. In their study, van Andel et al. (2015) 

used two approaches that biased the probability of detection. In the first, they 

collected nest data first via ground surveys and then used the location of the 

recorded nests to confirm their presence in drone images. In the second, nests 

were first detected on drone images and then confirmed on the ground using the 

location of the aerial observations. These methods effectively demonstrated that it 

was indeed possible to detect chimpanzee nests from drones, although these 

specific approaches resulted in an increased probability of detecting a nest in the 

drone images for the first approach and on the ground for the second approach. 
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Wich et al. (Wich et al., 2015) used a buffer of 25 m around nests recorded on the 

ground to select which nest detected from the air would be included in the 

analyses, comparing the relative density of nests from the aerial and ground-based 

surveys. The smaller 15 m buffer used in our study could be associated with our 

smaller detection rate, i.e., we were more conservative regarding what constituted 

a match. Moreover, aerial nest surveys may be more efficient for orangutan nests 

as they tend to build nests higher in the tree canopy and visual contrasts of nest 

materials and canopy color are seemingly more apparent in these habitats 

(Ancrenaz et al., 2005; van Casteren et al., 2012).  

Of the factors hypothesized to influence the probability of chimpanzee nest 

detection in drone-derived aerial imagery, only image resolution was identified as 

having a significant influence on the recall rate, with a higher probability of nest 

detection associated with the higher-resolution camera at a lower flight altitude 

AGL. This finding is consistent with that of Mulero-Pázmány et al. (2014), who 

also found that the targets (i.e., rhinoceros, people acting as poachers) were better 

detected with a lower-flying drone. Our results are also consistent with those of 

Dulava et al. (2015), who reported a significant negative relation between ground 

sampling distance (GSD) and correct waterbird identification with a minimum of 

5 mm GSD. In our study, we favored flight altitude AGL above GSD as a measure 

of resolution because of identical camera parameters, however, the two are 

conceptually interchangeable. We obtained the highest probability of nest 

detection at the lowest possible flight altitude (AGL: 65 m), corresponding to 1.4 

cm GSD. Flying at lower altitude would have threatened drone safety. These 

findings reflect the inherent trade-offs between monitoring at a high spatial 

resolution (grain) versus across broad spatial extents, such as ground sampling 

distance (GSD) and ground sampling area (GSA). This highlights the importance 

of the a priori identification of the minimum GSD required to detect ground 

targets from the air during the survey design period, particularly if planning for 

extensive area surveys where the balance between GSD and GSA should be 

optimized.  
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Contrary to expectations, we did not find a significant influence of nest height 

on aerial nest detection. Nests constructed higher in trees are expected to be more 

visible from the air, however, the visibility also depends on the height of the tree 

(i.e., a nest at 15 m will be more visible in a tree of 15 m height than in a tree of 20 

m). The inclusion of tree height into models will be important in subsequent 

analyses. 

Another surprising result of our study was the lack of influence of canopy 

cover and vegetation type, with no significant differences between the probability 

of nest detection in the leaf-off season and the “greener season” as well as between 

the more open miombo woodland vegetation and the closed, riverine forest. Even 

more surprising, the probability of nest detection tended to be higher in closed 

rather than in open vegetation. This finding contradicts numerous other studies 

that demonstrated a significant improvement of target detection from drone 

imagery in more open habitats (e.g., (Greene et al., 2017; Mulero-Pázmány et al., 

2014; Patterson et al., 2016; Pearse et al., 2008; van Andel et al., 2015)). A possible 

explanation for this might be the difficulty of detecting brown nests against a 

similarly colored background, in this case the less continuous and more earth-

toned colors of the Miombo woodland and the grassland mosaic. Light body color 

has been demonstrated to negatively influence animal detection during aerial 

surveys in a conservation area of northern Tanzania (e.g., dark Ostrich (Struthio 

camelus) better detected than light Grant’s gazelle (Nanger granti)) (Greene et al., 

2017).The results from Chabot and Bird (2012) further support the importance of 

contrast in target detection. In their investigation into the use drones to survey 

flocks of geese they reported a poor detection of low-contrast Canada Geese 

(Branta canadensis) but good aerial survey performance for the high-contrast Snow 

Geese (Chen caerulescens) resulting in more efficient aerial count compared to 

ground count (60% higher). We were unable to test the role of contrast in our 

study due to an insufficient sample of recent (green) nests. 

Findings from the analysis of the factors influencing false alarm rates support 

this hypothesis. Different vegetation types significantly affected the false alarm 

rate depending on the season. The false alarm rate was higher in miombo 
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woodland at the beginning of the dry season. The canopy cover in miombo 

woodland is much higher during this period than at the end of the dry season. At 

the beginning of the dry season, the miombo woodland reflects a mosaic of green 

leaves and a brown understory, leading to potential misinterpretation of aerial 

data. At the end of the dry season, however, reflection is mostly from the brown 

understory, making nest detection more difficult but more accurate. As only 

Paring A was flown in both seasons, we acknowledge that technological factors 

may play a role in these seasonal effects, however we strongly believe future 

studies will benefit from considering and further exploring the effects of seasonal 

canopy differences on nest detection. 

The limitations on the use of drones to survey chimpanzees are threefold. 

Firstly, only a small proportion of chimpanzee nests are detectable from the air. 

Most chimpanzee nests are built in the middle of the tree crown (Stewart, 2011) 

making them undetectable from above the tree canopy (van Andel et al., 2015). 

Chimpanzees also exhibit ground night nesting (Hicks, 2010), which would also be 

difficult to detect from aerial surveys. Secondly, the high proportion of false alarm 

rate highlighted in this study is problematic. The false alarm rate is an important 

parameter that must be taken into consideration when assessing new wildlife 

survey methods, as it may lead to an overestimation of the population density 

(Greene et al., 2017). However, the false alarm rate has not been described in 

previous studies investigating the use of drones to detect great ape nests. In this 

study, we reported a 42.8% false alarm rate. These aerial observations, for which 

the location did not align with any of the nests spotted from the ground, can be 

explained in two ways: (1) These could be nests visible from the air, but not the 

ground, as would be the case of nests high in the canopy that might be obscured 

from ground teams by the mid-canopy. Van Schaik et al. (2005) noted that nests 

can go undetected during ground surveys, resulting in an underestimation of ape 

densities; (2) alternatively, false positives could represent dead leaves or canopy 

gaps revealing the brown understory that was mistaken for nests. This uncertainty 

represents an important problem in the deployment of drones to assess 

chimpanzee presence/density, especially in a new area where little information is 
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available. We argue here that whilst aerial imagery offers an improvement in 

spatial coverage and data collection time and frequency, this approach still 

requires complementary validation from ground surveys. Finally, the time 

associated with analyzing thousands of images to identify nests represents an 

additional key limitation to using drones in this context.  

The limitations we discussed above are significant but not prohibitive, and the 

findings from our study provide guidance for future investigation on the use of 

drones for ape population surveys. Firstly, it is important to generate high spatial 

resolution images and lower GSD, providing greater details and significantly 

increasing the probability of nest detection. For our survey, we decided to use 

fixed-wing drone models allowing longer flights that can cover larger areas. 

Because of the mountainous terrain, flying at lower altitude was not possible. 

Most chimpanzees do not live across mountainous terrain, therefore this problem 

would not affect large parts of their range. Multirotor drones have smaller flight 

time capacities but can fly at lower altitudes (Duffy and Anderson, 2016). This 

technology is improving rapidly (e.g., drone design optimization allowing longer 

flight time (Du et al., 2016; Magnussen et al., 2014)), which could make multirotors 

a viable option in the future. Meanwhile, camera resolution is improving, which 

will allow future studies to obtain higher resolution images from fixed wing 

surveys. Reliable detection also requires a high contrast background. During both 

our survey seasons, the brown understory made nest identification difficult. We 

therefore recommend conducting future surveys during seasons with green 

vegetation on the ground to contrast otherwise brown nests. We acknowledge that 

this context might reduce the probability of detecting fresh green nests, however, 

given their low abundance, their non-detectability is less likely to impact 

chimpanzee density estimations. Multispectral sensors may help address this 

problem. Widely used for landcover classification and vegetation monitoring 

(Arnold et al., 2013; Berni et al., 2009; De Biasio et al., 2010; Gini et al., 2014; 

Sugiura et al., 2005; Woll et al., 2011) this technology uses green, red, red-edge and 

near infrared wavebands to capture detail not available to standard RGB cameras. 

Green vegetation materials are characterized by high reflectance in the near infra-
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red (NIR) domain (outside of the spectral range of human vision); a multispectral 

camera can provide useful contrast to discriminate between live and dead 

vegetation. Furthermore, it would be interesting to assess the potential of oblique 

aerial images. This perspective may offer better glimpses through foliage and 

more intuitively interpretable representations of the targets. Another step would 

be to assess the potential of 3D mapping of the canopy surface for nest detection. 

3D models can now be created using point clouds from drone imagery 

(Greenwood, 2015) providing better perspectives for visual interpretation of the 

data. Another complementary approach would be to use light detection and 

ranging (LiDAR) technology. Recently developed at sizes suitable for drone 

payloads (Wallace et al., 2012), this remote sensing technique offers new insights 

beyond simple top of canopy structure that may help nest detectability algorithms. 

For example, these technologies could be used to better establish the habitat 

characteristics of trees holding nests. These data could be used in computer vision 

algorithms (Abd-Elrahman et al., 2005; Gonzalez et al., 2016; Hodgson et al., 2018; 

Selby et al., 2011) to refine automatic nest detection, possibly reducing the false 

alarm rate. A recent study on using a drone to detect eagle nests reported 75% nest 

detection using a semi-automated method (Andrew and Shephard, 2017). Similar 

to the difficulties encountered with chimpanzee nest detection, eagle nests are 

found in highly heterogeneous environments with many features that resemble 

nests, at small scale (~1–2 m), and with variable nest size, shape and context. This 

result is promising for broader nest detection applications, including those of great 

apes. 

Given the shy and elusive nature of great apes, direct surveys are rarely 

feasible. Researchers thus must rely on indirect signs to estimate population 

density. However, to convert nest counts into ape density, the nest decay rate and 

nest production rate are required. These factors are highly dependent on ape 

species and environmental characteristics, and therefore require extensive study 

(Kühl et al., 2009). Recent studies have now shown the potential of thermal 

cameras mounted on drones for animal detection (Gonzalez et al., 2016; Gooday et 

al., 2018; Mulero-Pázmány et al., 2014). However, this approach would require 



48 

 

extensive spatial coverage and further research is required to assess whether apes 

could be detected using a thermal camera mounted on a drone. 

2.5. Conclusions 

The design and execution of great ape surveys are crucial to allocating 

conservation efforts to where they are most needed, but face many logistical 

challenges, particularly when they must be implemented across broad areas. 

Drone surveys could be a revolutionary method, allowing rapid and frequent 

monitoring in remote and poorly-understood areas, with data accessible 

immediately and containing a rich variety of information about habitat and other 

conservation revelation conditions. The limitations we discussed above are 

meaningful but not prohibitive, and the rapid pace of technological improvement 

suggests many promising solutions in a near future. Assessing the potential of 

drones to detect chimpanzee nests has major implications, not only for 

chimpanzee monitoring across Tanzania, but also for all great apes monitoring. 

This technology could be applied to survey extensive areas filling problematic 

gaps in our current understanding of ape distribution and abundance (Hicks et al., 

2014), providing key information for conservationists. 
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Figure S2.1: Locations of nests observed from the ground 
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Figure S2.2: Aerial observations (true positives and false positives) recorded from drone 

surveys. 
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Abstract 

Chimpanzees, like all great ape species, have experienced a dramatic decline in 

global numbers during the past decades. The degradation, fragmentation and loss 

of suitable habitat impede chimpanzee movements, reducing the potential for 

dispersal and thus population viability. In Tanzania, 90% of the 2 000-3 000 

remaining chimpanzees are found within the Greater Mahale Ecosystem (GME), 

the majority of which live at low densities outside of national park boundaries. 

Recent genetic analyses have identified potential boundaries between the northern 

and southern populations of the GME. Using landscape connectivity modelling, 

we aimed to clarify population connectivity across this vast ecosystem (>20 000 

km2) and assess change over time. We developed habitat suitability models to 

create an index of habitat selection by chimpanzees and mapped connectivity 

using circuit theory. Our results suggest that, in recent history (1973), the entire 

ecosystem was linked by a series of corridors showing a high likelihood of 

chimpanzee movement. Our analysis also reveals a reduction of connectivity by 

2017 impacting the two corridors linking the northern and southern GME. When 

projected to 2027, areas contributing to connectivity are predicted to continue to 

decline, threatening all available corridors between the northern and southern 

GME. By modelling connectivity across time, we were able to identify key areas to 

focus conservation efforts to maintain population viability within the largest 

chimpanzee population in Tanzania.  

Keywords: Landscape connectivity; Primate conservation; Great Apes; Circuit 

theory; Habitat suitability 
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3.1. Introduction 

Deforestation is occurring at an unprecedented rate (Hansen et al., 2013). 

This extensive forest loss represents a major threat to wildlife, which face 

subsequent challenges to adapt and respond to novel rates, types and scales of 

disturbance (Haddad et al., 2015). Fifteen percent of the world's terrestrial surfaces 

are now under some form of protection (IUCN and UNEP-WCMC, 2018). 

However, the establishment of isolated reserves will not alone suffice for the 

conservation of biodiversity. Effective conservation must consider connectivity 

between these areas (Rudnick et al., 2012). Landscape connectivity is defined as 

the extent to which a landscape facilitates or impedes the movements of organisms 

(Taylor et al., 1993). If dispersal routes are blocked or degraded, genetic exchange 

between remaining populations will be reduced or lost, increasing the level of 

inbreeding and genetic drift in small populations (Young and Clarke, 2000). Such 

effects eventually compromise adaptive potential and reduce fitness, accelerating 

extinction of small populations (e.g. Gilpin and Soulé, 1986). Maintaining 

connectivity confers ecosystems with greater resilience to disturbance and 

ultimately facilitates species persistence (Crooks and Sanjayan, 2006). 

Landscape connectivity models can help highlight important areas on 

which to focus conservation efforts. These models use estimates of landscape 

resistance (the degree to which landscape features impede animal movement) to 

predict the likelihood of connectivity between habitat patches (Taylor et al., 2006). 

Several studies have now shown the potential of landscape connectivity modelling 

to identify priority areas and support conservation planning of a wide range of 

species, from herptiles (e.g. Mui et al., 2017) and birds (e.g. Rayfield et al., 2016), to 

small (e.g. Fabrizio et al., 2019) and large mammals (e.g. Roever et al., 2013), 

including great ape species (Freeman et al., 2019; Vanthomme et al., 2019). 

As with all the other species of great apes, chimpanzees are classified either 

as Endangered (Nigeria-Cameroon chimpanzees P. t. ellioti, central chimpanzees P. 

t. troglodytes, and eastern chimpanzees P. t. schweinfurthii) or Critically Endangered 

(Western Chimpanzees P. t. verus) by the International Union for Conservation of 
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Nature (www.iucnredlist.org). Tanzania represents the eastern and southern limit 

of chimpanzee distribution and hosts two of the longest studies of their behaviour 

(Gombe National Park: Pusey et al., 2007; and Mahale Mountains National Park: 

Nakamura et al., 2015; Figure 3.1). However, several surveys have now revealed 

that 75% of Tanzanian chimpanzees live outside of these two National Parks, with 

the majority (~1 500) inhabiting the Greater Mahale Ecosystem (GME) (Kano et al., 

1999; Nakamura et al., 2013; Piel and Stewart, 2014; Plumptre et al., 2010; 

Yoshikawa et al., 2008). This mosaic ecosystem dominated by miombo-woodland 

(i.e. deciduous trees and shrubs with grass understory and discontinuous canopy) 

interspersed with riparian forest offers an important diversity of resources for 

chimpanzees but is under several pressures. Habitat loss through settlement 

expansion and conversion to agriculture represents the primary threat to 

chimpanzees within the ecosystem, followed by annual burning, logging, and 

poaching (Moyer et al., 2006; Piel and Stewart, 2014). Monitoring the impact of 

habitat loss on remaining chimpanzee populations is logistically challenging given 

that chimpanzees in this area are found at extremely low densities (Piel et al., 

2015a). Remote sensing technologies can help to overcome these challenges by 

providing precise and accurate data across broad spatial and temporal scales 

(Marvin et al., 2016). 

The GME has previously been regarded as one ecosystem that supports one 

continuous chimpanzee population (Inoue et al., 2011), however, other studies 

have highlighted potential barriers which may limit chimpanzee movement 

between northern and southern populations (Bonnin et al., 2015; Moyer et al., 

2006; Piel et al., 2013; Rudicell et al., 2011). Given the long generation time of 

chimpanzees, the genetic consequences of recent habitat destruction have the 

potential to manifest decades into the future and have long-lasting effects on the 

genetic diversity of the remaining populations (Landguth et al., 2010).  

In this study, we aimed to clarify chimpanzee habitat connectivity by 

developing a landscape connectivity map that is independent of any a priori 

habitat patches or populations.  By using remote sensing data from 1973 and a 
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land-cover projection for 2027, we also evaluated the impact of forest loss on 

habitat connectivity. We hypothesised the GME to be connected by multiple areas 

of high connectivity values in 1973. We also expected a reduction in connectivity 

associated with forest loss, now isolating the northern and southern populations. 

Identified areas of high likelihood of chimpanzee movement can be used by 

conservationists to support detailed conservation planning needs of local human 

communities and chimpanzees. 

3.2. Methods  

3.2.1. Study area 

The GME is a ≈ 18 000 km2 region in western Tanzania, bordered to the 

north by the Malagarasi river, to the south by Katavi National Park, to the east by 

the Ugalla river and to the west by Lake Tanganyika (Figure 3.1). The area is 

dominated by miombo-woodland (Brachystegia spp. and Julbernardia spp., 

Fabaceae) with small patches of riparian forest, swamp, bamboo and grassland. 

The topography consists of broad valleys separated by steep mountains and flat 

plateaus ranging from 900 to 2 500 m above sea level. The GME represents the 

southern and eastern extreme of chimpanzee distribution and is one of the driest 

habitats in which they are found (Moore, 1992). The area includes the Mahale 

Mountains National Park (MMNP), which protects a high level of biodiversity, 

although it has been estimated that 75% of the chimpanzee population lives 

outside of MMNP (Moyer et al., 2006). To account for potential chimpanzee 

movement along the edges of the GME, we drew a 20km buffer around the GME 
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boundary.

 

Figure 3.1: Location and map of the GME 

3.2.2. Environmental variables 

We selected five biophysical variables to integrate into our species 

distribution model: Vegetation type, proportion of riparian forest, distance from 

riparian forest, elevation and distance from steep slopes. 

We created our vegetation layers based on a previously developed canopy 

cover product for the year 2000 (Appendix S3.1). We defined riparian forest as 

areas with tree canopy cover > 70% and miombo-woodland as vegetation types 

with tree canopy cover between 30% and 70%. To create a land-cover map for 

2019, we used the global forest change product from GLAD (Global Land Analysis 

& Discovery) between 2000 to 2019 and reclassified deforested pixels to non-forest 

from our 2000 landcover product. In order to map historical vegetation type, we 
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acquired a 60-meter resolution Landsat Multispectral Scanner (MSS) scene for 

August 17, 1973 downloaded from http://earthexplorer.usgs.gov. We 

georeferenced the image to the 2000 canopy cover layer using ArcGIS Desktop 

(Esri). Both 2000 and 2019 vegetation layers were resampled from 30-meter to 60-

meter resolution to match 1973 coarser spatial resolution and support comparison 

between 1973, 2000 and 2019 vegetation types. To further improve comparison 

between the datasets, 2000 forest and woodland areas were masked out from the 

1973 image, assuming that if areas were forested in 2000 they were also forested in 

1973. We confirmed that 2000 forest areas were still forests in 1973 by visually 

inspecting the 1973 Landsat image. The remaining 1973 image was classified in 

riparian forest, miombo-woodland and other non-forest/non-woodland classes 

using unsupervised Iso Cluster algorithm in ArcGIS Desktop. To validate our 1973 

vegetation layer, we used "Create Accuracy Assessment Points" function in 

ArcGIS Desktop and generated 100 randomly distributed points within each class 

using the Equalized Stratified Random sampling strategy (see Appendix S3.1 for 

more details). 

The resulting land-cover map comprised three types representing non-

forest, miombo-woodland and riparian forest, the latter two being the main 

chimpanzee habitats in the GME. Distance from riparian forest was calculated 

such that each grid value reflected the linear distance from riparian forest (riparian 

forest pixels getting a zero value). We used these landscape features because 

chimpanzees are highly dependent upon trees, many of which host important 

food sources (Nishida et al., 1983; Piel et al., 2017) and for their role as shelter e.g. 

nesting sites (Stewart et al., 2011). We extracted elevation and distance from steep 

slopes (> 20 degrees) from a Shuttle Radar Topographic Mission (SRTM) layer (30 

m resolution; http://earthexplorer.usgs.gov) (Pintea & Plumptre 2006; Jantz et al. 

2016). We included topographic measures because altitude has an influence on 

chimpanzee distribution (Fitzgerald et al., 2018; Plumptre et al., 2010). Elevation 

may act as a proxy for suitable climatic conditions, affecting nesting site 

preference and food resource distribution (Jantz et al., 2016). Moreover, in western 
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Tanzania, studies have shown that nesting sites are associated with steep slopes 

(Hernandez-Aguilar, 2009; Pintea and Plumptre, 2006; Stewart, 2011). We fitted all 

four variables at 60 m resolution and accounted for chimpanzee responses to 

vegetation type at a larger scale by creating a new layer reflecting the proportion 

of riparian forest within a 30.8 km2 neighbourhood, using focal statistics in ArcGIS 

Desktop. We used 30.8 km2, as this represents the average home range size based 

on three habituated chimpanzee communities in the GME (55km2 at Issa, Piel and 

Stewart, unpublished data; 27.4 km2 for M-group (MMNP), Nakamura et al., 2015 

and 10km2 for K-group (MMNP), Nishida, 2011). We did not include settlements 

or roads as a predictor variable because of the difficulty of accessing reliable data 

for 1973. We checked for collinearity by estimating the variance inflation factor 

(VIF; values>3 considered highly correlated predictors (Zuur et al., 2010)). We did 

not find multicollinearity among our five predictor variables (VIF <1.3) and thus 

used all predictors for further analyses. 

3.2.3.Land-cover change projections 

For future time periods, we used a model of predicted deforestation by 

2027 developed for the Ntakata REDD project (Shoch et al., 2019) which used 

Multi-Layer Perceptron neural network to predict the likelihood of deforestation 

based on historical deforestation occurring between 2007 and 2019. Predicted 

deforestation was used to create land-cover map representing 2027 by 

reclassifying forest pixels mapped in 2019 to non-forest in 2027 where 

deforestation was projected. 

3.2.4. Habitat suitability modelling  

We decided to base our resistance values on a habitat suitability model, 

which is a preferred alternative to expert opinion when empirical data on animal 

movement or genetic distance are insufficient or not available (Beier et al., 2008; 

Stevenson-Holt et al., 2014). To build our model, we used evidence of chimpanzee 

presence from surveys led by Greater Mahale Ecosystem Research and 

Conservation (GMERC) between 2008 and 2020. By a combination of transects and 
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reconnaissance walks we have documented over 11 947 observations of 

chimpanzee presence (direct observations, vocalizations, feces, feeding remains, 

nests, prints, and tools). For our analysis, we removed vocalizations as 

chimpanzee calls can be heard up to 3km (Piel, 2014) and our modelling resolution 

is 60 m. In order to reduce spatial bias caused by unequal sampling effort, we 

followed Kramer-Schadt et al.’s (2013) recommendations and used spatial filtering 

and balancing of occurrence data, to reduce spatial autocorrelation. For spatial 

filtering, we used Spatial Rarefy Tool in the SDM ToolBox v2.2 under ArcGIS 10.7 

(Brown, 2014) to allow only one record per 60 x 60m. We chose this value to allow 

sampling bias reduction and to keep a high spatial resolution on how landscape 

features impact chimpanzee distribution. After spatial filtering, records were still 

heavily biased towards the Issa valley, the GMERC long-term field site (Piel et al., 

2015b). We thus further reduced the number of records in Issa by randomly 

selecting 90 records to produce a sample with the same density as the average 

density of the total covered area (Kramer-Schadt et al., 2013). This resulted in N= 2 

554 occurrence points used to train the final model (Appendix S3.2, Figure S3.2.1).  

We used an ensemble of species distribution model algorithms because this 

approach reduces the uncertainty associated with relying on a single method 

when projecting to a different time period (Araújo and New, 2007; Buisson et al., 

2010). We applied three algorithms that have been shown to perform well when 

modelling species distributions: Random Forests (RF), Generalised Boosted 

Models (GBM) and MAXENT (Elith and Graham, 2009; Elith et al., 2006). We used 

the default settings in the biomod2 package (Version 3.3-7) ] in the open-source 

software R (v. 3.6.1; http://www.R-project.org/ ) for each algorithm (Thuiller et al., 

2016) 

We sampled 10 000 pseudo-absence records at random from the 

background extent, excluding cells with previously removed true-presence points 

due to spatial filtering and balancing of occurrences. We randomly divided the 

original dataset, using 70% to construct the models and 30% to validate their 

accuracy. We replicated five runs to obtain a robust estimate and tested accuracy 
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using the Area Under the Curve (AUC). Only models with AUC values equal to or 

greater than 0.9 were included in our final ensemble, with the contribution of each 

model proportional to its goodness-of-fit statistics. The True Skill Statistic (TSS) 

was also calculated for our final ensemble as an additional measure of accuracy 

(Allouche et al., 2006). 

We derived resistance values using a negative exponential function of the 

suitability model output (Keeley et al., 2017, 2016; Mateo-Sánchez et al., 2015; 

Trainor et al., 2013).  

𝑟 =  1001−𝑆𝐷𝑀 

where r is the resistance value of a given cell and SDM is the suitability 

value associated to the cell. This transformation takes into consideration that 

during long-distance movements animals might be able to move through areas 

that would be classified as moderately suitable in the home range. 

3.2.5. Circuit-based connectivity modelling 

We developed landscape connectivity maps using electricity circuit theory 

implemented through Circuitscape 4.0.5 (Mcrae et al., 2008) using the pairwise 

mode which considers conductance across all pairs of nodes in the study area. We 

decided to focus on circuit theory rather than other commonly used modelling 

approaches (e.g. least-cost path analysis) because of its success to quantify animal 

movement and gene flow (Dickson et al., 2018) and because of its ability to create a 

quantitative proxy of probabilities of connectivity across an entire surface without 

the need to define focal patches. We followed the method of Koen et al., (2014) to 

develop landscape connectivity maps that were independent of a priori source or 

destination locations by randomly placing regularly distanced nodes around a 40 

km buffer perimeter (20% of the max length of the GME). To identify the optimum 

number of nodes required to generate an unbiased landscape-scale permeability 

map, we created 10 current density maps using 10–100 nodes at intervals of 10. We 

selected 10 000 cells randomly in each current density map and used Pearson 

correlation to compare estimates extracted from each current density map (i.e. 10 
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to 90 nodes) with estimates from the full current density map (developed using 

100 nodes). We considered that our modelling was sufficient when the curve 

comparing correlation coefficients to the number of node pairs reached an 

asymptote. 

To help delineate the area of highest likelihood of chimpanzee movement, 

we selected all pixels with the highest current density quartile (Vanthomme et al., 

2019), which for the purposes of this study, we term “current flow corridors”. To 

test the sensitivity of the identified corridors to the choice of our quartile 

threshold, we also used geometrical interval classification and selected all pixels in 

the upper class (Ersoy et al., 2019) (resulting maps are presented in supplementary 

material). 

3.3. Results 

The fit of the final chimpanzee habitat suitability model was 0.817 for TSS 

and 0.971 for AUC, thus indicating a high level of predictive power. Predictive 

accuracy of individual models ranged from 0.744 (+/-0.010) to 0.776 (+/-0.009) for 

TSS and from 0.937 (+/-0.004) to 0.950 (+/-0.003) for AUC, depending on the 

algorithm. On average, RF models performed best compared to GBM and 

MAXENT models (Table. S2.1). The contribution of each variable to the model was 

as follows: distance from steep slope (46.4%), distance from riparian forest (31.6%), 

proportion of riparian forest (11.2%), elevation (6.1%) and vegetation type (4.7%). 

The response curves produced by the model indicate that the relative probability 

of chimpanzee occurrence decreases with distance from steep slopes as well as 

with distance form riparian forest whereas it increases with proportion of riparian 

forest. Regarding elevation, chimpanzees were most likely found between 1000 

and 1850 m. Further, probability of presence was highest in riparian forest and 

lowest in non-forested areas; miombo-woodland showed intermediate 

probabilities (Appendix S3.2, Figure S3.2.2).  

Thirty node pairs were sufficient to generate unbiased connectivity maps 

(Appendix S3.2, Figure S3.2.3). The current density map derived from Circuitscape 



63 

 

reflects relative probability of movement, with areas of high current density 

representing higher probability of movement. The GME appears to have been 

connected by several current flow corridors facilitating chimpanzee movement in 

1973 (Figure 3.2; Appendix S2, Figure S3.2.4). 

 

 

Figure 3.2: Habitat connectivity maps derived from Circuitscape for 1973 a) 

Current density map, b) current flow corridors 

 

Although the pattern of landscape connectivity remained broadly similar 

over time (Appendix S3.2, Figue S3.2.5), a reduction in current density is observed 

for 1 966.7 km2 between 1973 and 2019. This reduction is impacting both current 

flow corridors linking the northern and southern GME (Figure 3.3a). When 

projecting to 2027, we predict 2 152.3 km2 further decline, severely impacting the 

western current flow corridor linking the northern and southern GME and 

affecting a large area in the south-east of the GME (Figure 3.3b). Increase in 

current flow is also observed for both time periods corresponding to displacement 

of probability of movement. 

b) a) 
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3.4. Discussion 

Figure 3.3: Current density change between a) 1973 and 2019, b) 2019 and 2027 

Landscape connectivity is of central importance to maintain population 

viability, especially in increasingly anthropogenically disturbed landscapes. We 

used circuit theory to assess chimpanzee habitat connectivity within the GME, an 

area containing nearly the entire free-ranging population of Tanzania’s 

chimpanzees (Plumptre et al., 2010). Our results suggest that the ecosystem was 

linked by a series of corridors showing a relatively high probability of chimpanzee 

movement in 1973. This result is consistent with previous population genetic 

analyses suggesting recent gene flow throughout the GME (Inoue et al., 2011). Our 

analysis also reveals a reduction of connectivity impacting the two current flow 

corridors linking the northern and southern GME. Mishamo, a refugee settlement 

established in 1981 to host 35 000 Burundian refugees was hypothesised to 

separate the ecosystem or at least hinder chimpanzee movement between the 

northern and the southern population of the GME (Moyer et al., 2006; Piel and 

Stewart, 2015; Rudicell et al., 2011). However, our 1973 model shows that the 

a) b) 
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central part of the ecosystem was already unsuitable for chimpanzees prior to the 

establishment of this settlement (Appendix S3.2, Figure S3.2.6). This result is 

supported by Kano's (1971) early work on chimpanzee distribution in Tanzania, 

when he reported no chimpanzees in the Lugufu basin (location of Mishamo 

establishment) following his extensive 1965-1967 surveys. The Lugufu 

Basin/Mishamo region is mainly flat and was dominated by Miombo-woodland 

and grassland (Bomans et al., 1981), whereas surveys indicate that chimpanzees 

select hilly areas with riparian forests (Hernandez-Aguilar, 2006; Kano, 1972; 

Moyer et al., 2006; Ogawa et al., 2013; Piel and Stewart, 2014, this study). While the 

Mishamo refugee settlement expansion occurred outside of chimpanzee habitat, 

the impact of increased human population density cannot be overlooked. It is 

likely that the establishment of the refugee settlement and the arrival of tens of 

thousands of people to the region has increased pressure on forests through 

consumption of firewood, charcoal production, conversion of land for agriculture 

and poaching (Jambiya et al., 2007; Ogawa et al., 2013, 2006a, 2006b; Whitaker, 

1999). 

A survey led 40 years after Kano’s first expedition reported a reduction in 

chimpanzee density in each revisited area within the GME, but no extinction of 

local populations (Yoshikawa et al., 2008). Following surveys from Piel et al. 

(2015a) reported similar pattern and found an overall decline in mean chimpanzee 

nest density between 2007 and 2014 in the northern GME (previously identified as 

the Masito-Ugalla Ecosystem, MUE) and an association between habitat loss and a 

decline in chimpanzee density. Our analysis of Landsat images reveals a total 

forest (i.e. riparian forest and miombo-woodland) decline of 1 677 km2 between 

1973 and 2017 (Figure 3.4). Surprisingly, vegetation type contributed relatively 

little to our model (4.7%) and deforestation of miombo-woodland did not have a 

large impact on our landscape connectivity change. Instead, destruction of entire 

blocks of riparian forests were responsible for the observed reduction of 

connectivity between 1973 and 2017 and have disproportionately affected current 

flow corridors. Although travelling through more open miombo-woodland 
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without nearby riparian forests may represent a higher risk of predation, miombo-

woodland could still have been used by chimpanzees to a certain extent to reach 

sparsely distributed resources. The significant deforestation of miombo-woodland 

in the centre of the GME and settling of thousands of humans in the area is now 

likely to prevent any chimpanzee movements. This is particularly alarming given 

that the Shoch et al. (2019) model predicts another 2 426 km2 of forest to be lost by 

2027, threatening a large area in the south-east of the GME (Figure 3.3b; Figure 

3.4). The consequences of habitat loss in this area will have a devastating impact 

on chimpanzees, not only reducing suitable habitat, but also an area of high 

movement probability. This area falls within the Ntakata REDD project 

boundaries, a project initiated in May 2017 with the goals of engaging and 

supporting local communities in the protection of their village land forest reserves 

(Shoch et al., 2019). By providing support for community patrols and monitoring 

by village game scouts, we are hopeful that this approach results in increased 

conservation of this large, critical area for chimpanzees. 

 

 

Figure 3.4: Vegetation change from 1973 to 2027 

Along with forest loss, the Mpanda-Uvinza road may have potentially 

played a role in the current density reduction within the eastern corridor. Splitting 

the ecosystem, the road crosses the only migration route available for movement 
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of individuals from eastern MUE to the south (Figure 3.5 Box b). Even though 

chimpanzees have been reported crossing and even using roads (Cibot et al., 2015; 

Hockings et al., 2006), roads can impede animal movement through mortality 

during crossing (McLennan and Asiimwe, 2016). Probably impacting chimpanzees 

more than the road itself, the associated deforestation enabled by easier access to 

forest resources is affecting habitat at a larger scale (Laurance et al., 2009; 

Palminteri et al., 2019; this study). Although this road was already established in 

1973 (Kano, 1971), increases in traffic and other associated anthropogenic 

pressures may have negatively impacted animal movement. Chimpanzee presence 

has been reported on both sides of the road in the north of the ecosystem (Piel and 

Stewart, 2014), however, chimpanzee movement across the road still needs to be 

confirmed. Investigations into what extent this road and its associated land use 

change limit chimpanzee movement and thus gene flow will have important 

implications for conservation, especially because the (currently, dirt) road is now 

in the process of being paved (NB pers. obs). The Ilagala-Mahale road running to 

the west of the ecosystem may also have deleterious impacts on chimpanzee 

habitat and movement. Its construction in 2006 was correlated with a dramatic 

increase in forest loss and construction plans foresee an extension of the road to 

the south of MMNP (Palminteri et al., 2019). Our model highlights critical areas for 

chimpanzees and could be used for the development of detailed land use planning 

along the road. By establishing new village forest reserves and wildlife crossing 

structures across developing roads in these critical areas for chimpanzee 

movements we could help maintain movement and balance needs of local 

communities and chimpanzees (Gloyne and Clevenger, 2001; Lasch et al., 2011; 

Plumptre et al., 2010; TAWIRI, 2018). 
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Figure 3.5: Priority areas to maintain connectivity for chimpanzee 

conservation within the GME. Background represents current density change 

between 1973 and 2027 within current flow corridors delineated for 1973. Box a. 

western corridor running through the Lugufu river; Box b. eastern corridor 

crossing Uvinza-Mpanda road; Box c. corridor allowing movement in/out MMNP 

Large rivers may also act as barriers to animal movement (e.g. Eriksson et 

al. 2004). The GME is bordered by a large river, the Malagarasi, to the north, and 

segmented by the Lugufu river running through the north west of the ecosystem 

(Figure 3.5 Box a). Inoue et al. (2011) proposed the Malagarasi river to be a major 

biogeographical boundary preventing chimpanzee movement into the GME from 

the north, however circumstantial evidence suggests that chimpanzees can move 

across the 100m wide river using natural, shallow fords, which together with 

further genetic evidence, suggests that the river does not form a complete barrier 

to gene flow (Piel et al., 2013). The Lugufu river is only 15 m wide (at its widest), 

and so may similarly allow some movement across it, especially in the dry season; 

however, more investigation is needed. Given the extreme seasonality of the 

ecosystem, with a six months dry season (<100 mm of rainfall/month), temporal 
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variation of connectivity also remains to be examined. Variation of river flow and 

depth could result in temporal barriers to chimpanzee movement (Eriksson et al., 

2004), but also affect the availability of water resources from smaller streams. 

Other resources such as plants also show important seasonal variation and are 

known to influence chimpanzee ranging patterns (Doran, 1997; Hasegawa, 1990; 

Wrangham, 1977). Adding phenological data (e.g. resource availability) to our 

model would allow a better understanding of chimpanzee movement within this 

extremely seasonal ecosystem. 

Here we chose to derive resistance values from habitat suitability 

modelling, which is recommended over expert opinions although often 

underperforms compared to direct movement data or genetic methods when 

sufficient genetic data are available (Beier et al., 2008; Stevenson-Holt et al., 2014). 

Less biased and more data-driven than expert opinions, habitat suitability 

modelling allows the creation of a more precise resistance surface at a fine-scale. 

However, our occurrence data are skewed towards sleeping sites, with nest 

locations comprising 81% of our presence points. This may explain the major 

contribution of steep slopes to our model as chimpanzee nests are often associated 

with steep slopes within the ecosystem (Hernandez-Aguilar, 2009; Stewart, 2011), 

whereas feeding and travel behaviour is likely not. Similarly, the importance of 

distance from riparian forest may represent sleeping site preferences although 

chimpanzees use miombo-woodland extensively for feeding and travelling 

(Hernandez-Aguilar, 2009; Nishida, 1989). Further work integrating genetic data 

(e.g. landscape genetic analysis) will help us better understand how landscape 

features impact chimpanzee movement across the GME. 

Our models have confirmed historical connectivity throughout the GME 

and have highlighted priority areas for chimpanzee conservation in Tanzania. 

First, our results revealed potential corridors linking the northern and southern 

population of the GME (Figure 3.5 Box a. and b). Additional ground surveys and 

genetic analysis could confirm whether chimpanzee movement is possible along 

this potential corridor and if there is genetic exchange. Our model also identified 
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corridors to the north-east of MMNP (Figure 3.5 Box c). Previous surveys have 

confirmed chimpanzee presence in this area in 2011-2012 (Piel and Stewart, 2014). 

However, as for the eastern and western corridors linking the northern and 

southern population of the GME, increasing anthropogenic pressure and 

associated deforestation is threatening this corridor. We recommend focusing 

conservation efforts on maintaining riparian forest, which is not only necessary for 

chimpanzee survival, but also essential for the provision of natural resources on 

which local human livelihoods depend. Our model supports evidence of large 

areas within the GME that are suitable for chimpanzee habitat and movement. 

Preference of GME chimpanzees for steep terrain may have allowed their 

continued persistence, as such areas are difficult for humans to access and are less 

favourable for conversion to other land-uses (Heinicke et al., 2019; Kinnaird et al., 

2003). By maintaining and possibly enhancing connectivity identified in this study 

and giving priority to those areas currently under threat, we are optimistic that 

Tanzania can continue to host a large viable population of chimpanzees.  
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Supplementary Materials 

Appendix S3.1 

Generation of the 2000 continuous tree cover dataset 

In this section we detail how we created and evaluated our tree cover 

product. We used a similar methodology compared to Sexton et al. (2013) but with 

key differences in the reflectance data and modelling algorithm. Instead of using 

Landsat reflectance data directly our approach uses a set annual multi-temporal 

metrics and in place of piece-wise linear regression, we use gradient boosted 

regression trees as implemented in the XGBoost software (Chen and Guestrin, 

2016). We evaluated our product using a hold-out sample from our dataset and 

independent reference data gathered from the Global Ecosystem Dynamics 

Investigation (GEDI) LiDAR sensor attached to the International Space Station.  

Training Data 

Tree cover training data were derived from the MODerate-resolution 

Imaging Spectroradiometer (MODIS) Vegetation Continuous Fields (VCF) Tree 

Cover dataset (MOD44B), currently in Version 6, which has a spatial resolution of 

250 meters and is produced on an annual basis from 2000 to 2019 (Dimiceli et al., 

2015). MODIS VCF data have been used for several studies such as quantifying 

forest loss in and around tropical protected areas (Defries et al., 2005), climate 

modelling (Lawrence and Chase, 2007), quantifying global gross forest cover loss 

(Hansen et al., 2010) and mapping carbon emissions from tropical deforestation 

(Harris et al., 2012). We acquired MODIS VCF data for the period 2000-2019 for the 

study area from the NASA Land Processes Distributed Active Archive Center 

(LPDAAC) using the Application for Extracting and Exploring Analysis Ready 

Samples (AppEEARS Team, 2020).  

Multi-temporal Landsat Metrics 

We used Landsat Analysis Ready Data produced by the Global Land 

Analysis and Discovery team at the University of Maryland (GLAD ARD) to 

create a set of annual metrics for the study area from 2000 to 2019. The GLAD 
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ARD are 16-day composites of tiled Landsat (TM, ETM+ and OLI sensors) 

normalized surface reflectance from 1997 to the present updated annually, and 

designed for landcover monitoring at global to local scales (Potapov et al., 2020). 

In addition to a layer describing per pixel quality, each 1˚ by 1˚ tile contains 

normalized surface reflectance for the blue, green, red, near-infrared (NIR), 

shortwave infrared band 1 (SWIR1), shortwave infrared band 2 (SWIR2) and 

surface brightness temperature (LST). For a number of reasons, such as uneven 

cloud cover and differing acquisition strategies among the constellation of Landsat 

satellites, it is infeasible to use the 16-day composites directly.  The metrics 

approach increases spatial and temporal consistency by building an annual time-

series of the highest quality observations, and subsequently computing a set of 

metrics that represent salient phenological features across a landscape. We 

generated a set of 354 annual phenological metrics from the GLAD ARD tiles as 

detailed in Potapov et al. 2020 and displayed in figure S3.1.1. The tiled Landsat 

data and software to create the annual phenological metrics are freely available 

and can be downloaded at https://glad.umd.edu/ard/home. We supplemented our 

dataset with elevation data from Shuttle Radar Topography Mission (SRTM) 

(http://srtm.csi.cgiar.org/). 
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Figure S3.1.1: Adapted from figure 10 in Potapov et al. 2020. Phenological metrics with 

names in brackets.  

The first set of metrics represents statistics calculated from 16-day 

observation time-series ranked by the spectral reflectance or index value. The 

ranking is performed independently for each spectral band or index. The second 

set of metrics represents statistics calculated from 16-day observation time-series 

ranked by the value of a corresponding variable (NDVI, SVVI, and brightness 

temperature). Q1, Q2, and Q3 represent the 1st, 2nd, and 3rd quartiles, 

respectively. 

Reference Data 

We obtained independent reference data from Global Ecosystem Dynamics 

Investigation (GEDI) Lidar attached to the International Space Station (ISS). GEDI 

is a full waveform Lidar specifically designed for measuring vegetation canopy 

structure and data from this mission is being used to create a suite of vegetation 



75 

 

and aboveground biomass products (Dubayah et al., 2020). The footprint-level (25 

meter diameter) vegetation canopy height and cover metrics for the first 9 months 

of GEDI observations (April - December 2019) have been processed and are 

publicly available. We retrieved Level 2B canopy structure metrics, including 

percent canopy cover, from the NASA Land Process Distributed Active Archive 

Center (LPDAAC).  

Methods 

For each year in the 2000 to 2019 period, we aggregated and co-located all 

metrics to match the 250 meter resolution MODIS VCF product and extracted all 

250 meter pixels over land. Samples from all years were pooled together to create 

a single dataset.  We then randomly divided the data into three subsets for 

training, early stopping and evaluation. We used the XGBoost software to model 

MODIS VCF percent tree cover as a function of the multi-temporal metrics as well 

as elevation, slope and aspect derived from the SRTM data. For model evaluation, 

we computed the root mean square error (RMSE), mean absolute error (MAE), 

mean bias error (MBE), and Pearson’s correlation coefficient (ρ) (Willmott, 1982) 

using GEDI percent canopy cover as a reference. 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑡𝑐𝑖 − 𝑟𝑖)2𝑛

𝑖=1

𝑛
 

𝑀𝐴𝐸 =  
∑ |𝑡𝑐𝑖 −  𝑟𝑖|

𝑛
𝑖=1

𝑛
 

𝑀𝐵𝐸 =  
∑ (𝑡𝑐𝑖 − 𝑟𝑖)

𝑛
𝑖=1

𝑛
 

𝜌 =
𝑐𝑜𝑣(𝑡𝑐, 𝑟)

𝜎𝑡𝑐 ∗  𝜎𝑟
  

 

where i = pixel index 

 𝑡𝑐𝑖 = modelled percent tree cover 

 𝑟𝑖 = reference percent canopy cover from GEDI Lidar 

 n  = sample size 

 𝑐𝑜𝑣 = covariance function 
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 𝜎 = standard deviation 

Results 

Qualitatively, our product better captures tree cover in the region 

compared with the widely used Hansen et al. (2013) global product (Figure S3.1.2). 

For example, the global product over predicts tree cover over sloped terrain.  

 

 

Figure S3.1.2: A zoomed region of the study area showing high resolution Google Earth imagery 

(a), our percent tree cover product (b), and percent tree cover from Hansen et al. (2013). 

We were able model the MODIS VCF data well with RMSE of 5.61%, MAE 

of 4.23%, no bias error and ρ of 0.88 on the hold-out sample. Our modelled tree 

cover and MODIS VCF tree cover are tightly distributed along the one-to-one line 

(Figure S3.1.3). 

 

Figure S3.1.3: 2 dimensional density plot with Landsat predicted tree cover on the x-axis and 

MODIS VCF tree cover on the y-axis. The one-to-one line is shown in white. 
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Our product better matched the Lidar derived canopy cover compared to 

the MODIS VCF with smaller error and higher correlation (Table S3.1.1). 

Table S3.1.1: Error metrics for tree cover predicted from Landsat data as well as the MODIS VCF 

product. Reference data are canopy cover as measured from the GEDI Lidar sensor.  

 

 

Both our product and the MODIS VCF tended to over predict low canopy 

cover values and under predict high canopy cover values (Figure S3.1.4).  The 

MODIS VCF product is known to saturate at approximately 85% canopy cover 

(Hansen et al., 2002; Sexton et al., 2013) and this artifact is present in our product 

as well. Neither product predicts tree cover above 85% and the non-linear trend is 

evident in our product (Figure S3.1.4b). 

 

Figure S3.1.4: 2 dimensional density plots with canopy cover from GEDI 

Lidar on the x axes, percent tree cover from Landsat on the y-axis (a), and MODIS 

VCF tree cover on the y-axis (b). The one-to-one lines are shown in white. 

Classification and evaluation of the 1973 image 

Classification 

The bare lands from 2000 image were masked from 1973 image and the 

resulting masked 1973 images was than classified using unsupervised Iso Cluster 

algorithm in ArcGIS Desktop, using 20 number of classes with minimum class size 
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of 20 ad sampling interval of 10. This produced a raster with 17 classes that was 

than reclassified in forest and non-forest classes.  

Evaluation 

To validate 1973 vegetation we used "Create Accuracy Assessment Points" 

function in ArcGIS Desktop and generated 100 randomly distributed points within 

each class: Other, Woodland, Forest using Equalized Stratified Random sampling 

strategy.  

We generated a distance layer from tree cover loss points from Hansen 

2000-2019 and removed any points that were less than two pixels (120 meters) 

from deforestation pixels to focus on areas least impacted by people because our 

high resolution satellite imagery were acquired within 2010 to 2019 time interval. 

Total left points for ground-truthing were Other=77, Woodland=76 and Forest=80. 

The total overall Kappa accuracy was 0.83. The User Accuracy for the Forest was 

0.95 and for Woodland was 0.91. 

We used human interpretation of high-resolution satellite imagery to 

ground-truth the points by overlaying in ArcGIS Desktop using 

Maxar/DigitalGlobe ImmageConnect extension random points with Maxar 50 cm 

to 1-meter multitemporal satellite imagery collected between 2010-2019 along with 

Esri Imagery basemaps and Landsat MSS scene from 1973 
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 Appendix S3.2   

 

Figure S3.2.1: Locations of the occurrence points used in the final habitat suitability model 
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Table S3.2.1: Predictive accuracy and standard deviation (SD) of the 5 replicates for the 3 

algorithms.

 

   Individual runs   Ensemble 

  TSS SD AUC SD   TSS AUC 

RF 0.776 0.009 0.950 0.003   0.914 0.991 

GBM 0.762 0.010 0.945 0.003   0.777 0.949 

MAXENT 0.744 0.010 0.937 0.004   0.758 0.943 
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Figure S3.2.2: Response curves derived by the ensemble prediction. The plots show the mean response (dark line and dark points) and the 

standard deviation (error bars and grey ribbon) of the 5 replicates of the 3 algorithms. The curves display how the predicted probability of 

presence vary in function of each environmental variable. These response curves do not account for interactions between variables. 



82 

 

 

 

Figure S3.2.3: Pearson correlation coefficients of extracted values (n = 100 000) from a full 

permeability map developed using 100 random nodes compared to extracted values from 

permeability maps developed using fewer random nodes (i.e. 10–100). 

 

Figure S3.2.4: Current flow corridors for 1973 derived from upper geometrical interval  



 

 

Figure S3.2.5: Current density map for 1973, 2017 and 2027 within the GME and a 20km buffer 



 

 

 

Figure S3.2.6: Area of Mishamo refugee settlement establishment overlaid 

with chimpanzee habitat suitability for 1973 within the GME and a 20km buffer 
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Abstract 

Rapid habitat loss across chimpanzees’ range threatens their viability and 

can result in small, isolated populations likely to suffer from inbreeding. Tanzania 

is home to two of the longest studies of chimpanzees, both in national parks and in 

their 6th and 7th decade. Most Tanzanian chimpanzees, however, live outside of 

national parks. Initial studies on gene flow and genetic diversity of Tanzanian 

chimpanzees have provided contrasting findings regarding population 

connectivity. Here we use both mitochondrial control region sequences and 

genotypes from 10 microsatellite loci to describe population structure and genetic 

diversity of chimpanzees across Tanzania. Although mitochondrial sequence 

analysis supports historical gene flow across their distribution, nuclear loci 

revealed two distinct genetic clusters corresponding to Gombe National Park 

(GNP) and the Greater Mahale Ecosystem (GME). The absence of admixed 

individuals suggests complete interruption of gene flow between the two 

ecosystems in recent years. However, a high level of gene flow appeared to be 

maintained within each ecosystem with no clear structure identified by Bayesian 

cluster analyses. Despite increasing anthropogenic pressures, Tanzanian 

chimpanzees have maintained high genetic diversity with no evidence of 

inbreeding at any sites and a greater mitochondrial DNA diversity within GNP. 

Restoring or strengthening connectivity between GNP and northern populations 

(i.e. Burundi) and maintaining connectivity within the GME through the 

protection of key areas for chimpanzee movements would help to safeguard 

genetic diversity and is of high significance for the species long term survival. 

Keywords: Conservation genetics, great apes, gene flow, gene diversity, 

microsatellites, mitochondrial DNA 
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1. Introduction 

Species are disappearing at an unprecedented rate with destruction of natural 

habitats and hunting representing the primary drivers (Lewis and Maslin, 2015; 

Pimm et al., 2014). The creation of protected areas is essential to reducing 

extinctions but by itself will not secure the conservation of biodiversity. A critical 

aspect of biodiversity conservation requires identifying, maintaining, and possibly 

enhancing connectivity between protected habitat patches (Rudnick et al., 2012). 

Genetic exchanges are vital to population persistence, not only preventing the 

deleterious effects of inbreeding and genetic drift (Frankham, 2015, 2005), but also 

providing opportunities to mitigate the negative impacts of new climatic and 

environmental pressures (Bijlsma and Loeschcke, 2005; Jump et al., 2009). Hence, 

quantifying genetic diversity and assessing of the amount of gene flow among 

populations represent key information for conservation planning (Frankham et al., 

2011). 

Chimpanzees are part of the ~30 000 species facing extinction (IUCN, 2020). 

Habitat loss (e.g. Junker et al., 2012; Kühl et al., 2017), poaching (e.g. McLennan et 

al., 2012; Strindberg et al., 2018) and infectious disease (Keele et al., 2009; Walsh et 

al., 2003) have all been documented to threaten chimpanzees’ long-term survival. 

Tanzania is home to ~2 700 chimpanzees (Moyer et al., 2006), most of which are 

found at low density and outside of national parks (Piel and Stewart, 2014). Forest 

conversion to agricultural land, unsustainable timber extraction, and human 

settlement expansion are threatening the future of Tanzania’s chimpanzees (Lasch 

et al., 2011; TAWIRI, 2018). Historically, two national parks were created to protect 

part of their distribution: Gombe National Park (GNP) was established in 1968 and 

now protects ~100 chimpanzees (Foerster et al. 2016, this study), while Mahale 

Mountains National Park (MMNP), which was created in 1985, is home to ~235 

chimpanzees (Chitayat et al., 2021). The latter is part of the Greater Mahale 

Ecosystem (GME), an area of 18 000 km2 estimated to host ~90% of Tanzania’s 
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chimpanzee population (Kano et al., 1999; Nakamura et al., 2013; Piel and Stewart, 

2014; Plumptre et al., 2010; Yoshikawa et al., 2008). This mosaic ecosystem is 

mostly comprised of miombo woodland interspersed with riverine forest and is 

one of the driest places where chimpanzees occur (Moore, 1992). Across the GME, 

chimpanzees live at extremely low densities (range: 0.01 – 1.5) and have 

correspondingly large home ranges (Kano, 1972; Moore and Vigilant, 2014; Ogawa 

et al., 2007). These extraordinary patterns are logistically challenging to those 

trying to monitor the free-ranging populations of Tanzania’s chimpanzees. To help 

protect the remaining chimpanzees, it is crucial to understand how genetic 

diversity is spatially distributed and maintain connectivity between populations. 

Initial studies on gene flow and genetic diversity of Tanzanian chimpanzees 

have provided contrasting findings regarding connectivity between populations. 

Analysis of mitochondrial sequences of 138 fecal samples collected across western 

Tanzania revealed no shared haplotypes between GNP and other areas, although 

haplotypes were shared between GME chimpanzees and individuals from Lwazi, 

the southern part of their distribution, located 200 km further south (Inoue et al., 

2011). Inoue et al. (2011) concluded that the Malagarasi River, a pre-rift time 

tributary of the Congo river (Kullander and Roberts, 2011) running between the 

GME and GNP (Figure 4.1), represented a barrier to chimpanzee movement, 

limiting gene flow. They also reported a low genetic differentiation index across 

the GME, suggesting the ecosystem was a single population and proposed 

historical chimpanzee dispersal from the southern population (i.e. Lwazi). 

However, later analyses revealed mitochondrial DNA haplotypes are shared 

between chimpanzees in GNP and the GME (Piel et al. 2013). Piel et al. (2013) also 

reported circumstantial evidence that chimpanzees cross the Malagarasi river 

using natural, shallow fords. Chimpanzees in GNP and northern GME are also 

infected with closely related strains of simian immunodeficiency virus (SIVcpz) 

(Rudicell et al., 2011), which suggests that the river does not form a complete 

barrier to chimpanzee movement. Further analysis found no SIVcpz positive 
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infections in over 400 samples collected across the southern GME, which suggest 

potential barriers within the GME (Piel et al. 2013). Whether a large refugee 

settlement – Mishamo - established in the 1980s in the middle of the ecosystem 

hinders chimpanzee gene flow across the GME is unknown (Moyer et al., 2006; 

Rudicell et al., 2011). The Lugufu river, which runs through the middle of the 

ecosystem, may also limit chimpanzee movement between the northern and 

southern GME populations (Piel and Stewart, 2014). Given the increasing pressure 

on chimpanzee habitat from settlement expansion and conversion to agriculture 

(Moyer et al., 2006; Piel and Stewart, 2014), clarifying connectivity and 

maintaining genetic diversity is vital to the species’ long term survival.  

In this study, we aimed to clarify the population genetic structure and 

examined the genetic diversity of chimpanzees across Tanzania by using both 

mitochondrial control region sequences and genotypes from 10 microsatellite loci. 

Specifically, our objectives were to: (1) detect historical or current connectivity 

between GNP and the GME: from previous studies, we hypothesized that 

historical gene flow occurred between the two ecosystems but that the two 

populations are now genetically isolated from one another, (2) investigate 

potential genetic structure within the GME: here we predict some structuring 

within GME due to potential barriers to movement and (3) assess genetic diversity 

within those ecosystems, i.e., is there any evidence of inbreeding that could impact 

on the long-term viability of this population?  

2. Materials and Methods 

2.1. Samples 

We analysed 234 faecal samples from 16 different sampling locations within 

the GME (Figure 4.1). We collected fresh samples opportunistically on transects 

and reconnaissance walks during a series of surveys led by the Greater Mahale 

Ecosystem Research and Conservation Project (GMERC) from 2011 to 2019. For 
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each sample, approximately 15g of chimpanzee feces was collected into a tube 

containing 15-20ml of RNAlater (Ambion) and frozen on site at approximately  

-20°C from the day of collection. We mailed samples monthly to the Hahn 

laboratory at the Department of Microbiology, University of Pennsylvania, USA, 

where they were then stored at −80°C until analysis. 

We also included genotypes from 135 individuals from GNP. Samples 

collected from 2002 were genotyped for previous analyses (Barbian et al., 2018; 

Keele et al., 2009) and updated with samples collected up to 2019. For the 

purposes of this study, the three GNP chimpanzee communities (i.e. Mitumba, 

Kasekela and Kalande) were used as representative “sample sites”; GNP and GME 

are hereafter referred to as ecosystems.  

Figure 4.1: Distribution and location of faecal samples. Ind.: corresponding number of individual 

chimpanzees used for analyses 
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2.2. Molecular techniques 

2.2.1. DNA extraction 

We extracted faecal DNA using the QIAamp Stool DNA Mini kit (Qiagen, 

Valencia) as described in Keele et al. (2006). Briefly, 1.5 ml of fecal RNAlater 

mixture was resuspended in stool lysis buffer, clarified by centrifugation, reacted 

with an InhibitEx tablet (Qiagen, Valencia, CA), treated with proteinase K, and 

passed through a DNA binding column. Bound DNA was finally eluted in 200 µl 

elution buffer. 

2.2.2. mtDNA sequencing 

We amplified a 498bp fragment of the mitochondrial hypervariable D-loop 

control region 1 (HV1) by Polymerase Chain Reaction (PCR) using the primers 

L15997 (5’-CACCATTAGCACCCAAAGCT-3’) and H16498 (5’-CCTGAAGT 

AGGAACCAGATG-3’). PCR conditions were the same as for mtDNA 

amplification (Morin et al., 1994) except that an annealing temperature of 55°C 

was used and 55 amplification cycles were performed. 

We assembled and aligned the resulting sequences with Mega 7.0.26 (Kumar et al., 

2016), along with georeferenced sequences from previous studies (Keele et al., 

2006; Liu et al., 2008; Rudicell et al., 2011).  

2.2.3. Microsatellite genotyping 

We amplified 10 polymorphic autosomal microsatellite loci (Table S4.1) 

following the MiSeq-based approach developed by Barbian et al. (2018). Loci were 

amplified in one-step multiplex reaction using cycling conditions described in 

Barbian et al. (2018). For each sample, three replicate PCR reactions were 

combined in equal volume and diluted in nuclease-free sterile water (1:10) prior to 

MiSeq sequencing. Details about sequencing and data analysis pipeline using 

CHIIMP can be found in Barbian et al. (2018). Homozygous alleles were confirmed 

by sequencing at least two independent PCR amplicons. All samples with less 
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than 8 loci confirmed were excluded from further analyses. In contrast with 

previously established methods, this approach can detect alleles of similar size 

that differ in their sequence. To be able to differentiate each allele and to fit the 

required integer input format of most population genetic software, we used 

sequential index numbers as identifiers. We chose microsatellites as opposed to 

single nucleotide repeats (SNPs) for our study because data were already available 

for GNP. Furthermore, microsatellites have been shown to perform comparably to 

SNPs in estimates of population genetic structure (Lemopoulos et al., 2019). 

2.3. Dataset preparation 

Given non-invasive sampling of unhabituated chimpanzees across the 

GME, some individuals may have been sampled more than once. We conducted 

an identity analysis in Cervus 3.0.7 (Kalinowski et al., 2007) to distinguish 

individuals. Genotypes that mismatched at one or two loci were re-examined for 

possible genotyping errors or allelic dropout. We calculated the probability of 

identity pID and pIDsib (Waits et al., 2001) for each putative match in Cervus and 

used it to ensure that our loci could reliably discriminate individuals (e.g. pID < 

0.0001) before merging the data into consensus genotypes. From the 234 samples 

collected across the GME, we identified 156 individuals. 

The presence of related individuals can increase the signal of genetic 

differentiation. We thus calculated pairwise estimates of relatedness for all 

individuals (GNP and GME) using Coancestry 1.0.1.9 (Wang, 2011). We used 1000 

bootstrap permutations to estimate relatedness at 95% confidence intervals. We 

excluded 62 individuals (61 from GNP and 1 from the GME) with a relatedness 

index above 0.75 (Mitchell et al., 2015) based on the triadic likelihood estimator 

(Wang, 2007). We used data for the remaining 229 unrelated individuals for 

subsequent analyses on population genetic structure and kept all individuals (291) 

for genetic diversity analyses.  
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We tested for the presence of possible null alleles, large allelic dropout or 

scoring error due to stuttering using the program Micro-checker 2.2.3 (Van 

Oosterhout et al., 2004). None of the loci showed evidence of genotyping error 

across GNP and the GME. We also tested for linkage disequilibrium (LD) and 

deviation from Hardy-Weinberg equilibrium (HWE) between all pairs of loci in 

Genepop 4.7.5 (Rousset, 2008). We observed no deviation from HWE and no 

evidence of LD after sequential Bonferroni correction when GNP and the GME 

were analysed separately. We therefore included all loci for further analyses. 

2.4. Population genetic analysis 

2.3.1. Mitochondrial control region 

We constructed a Median-joining haplotype network (Bandelt et al., 1999) 

using PopART 1.7 (Leigh and Bryant, 2015). We estimated measures of molecular 

diversity (haplotype diversity (h), mean pairwise sequence difference (MPD) and 

nucleotide diversity (π)) using ARLEQUIN 3.5.2.2 (Excoffier and Lischer, 2010).  

We also performed analysis of molecular variance (AMOVA) (Excoffier et 

al., 1992) in ARLEQUIN to estimate the variance between and within GNP and 

GME samples, with individuals grouped by sample site within these two areas. 

The obtained degree of genetic differentiation for haplotypic data (φ-statistics, 

analogous to Wright’s F-statistics (Wright, 1943)) is calculated using information 

on the allelic content of haplotypes, as well as their frequencies (Excoffier et al., 

1992). We subsequently investigated population structure using BAPS 6.0 (Cheng 

et al., 2013; Corander et al., 2003). We performed genetic mixture analyses with an 

upper bound of K = 19 and without prior information on geographic location. 

Results from mixture clustering were used to determine the optimal number of 

clusters, which were used to perform an admixture analysis. 
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2.3.2. Microsatellites 

We computed general statistics of microsatellite diversity for each sample 

site and among GNP and the GME. Microsatellite number of alleles (Na), rarefied 

allelic richness (Ar), expected and observed heterozygosity (He and Ho, 

respectively) and inbreeding coefficients (FIS) were obtained using the R package 

diveRsity 1.9.90 (Keenan et al., 2013).  

We next examined hierarchical partitioning of genetic variation within and 

between populations and between ecosystems using analysis of molecular 

variance (AMOVA) as implemented in the software ARLEQUIN (Excoffier and 

Lischer 2010). Estimates of pairwise FST values were obtained using diveRsity 

1.9.90 with significance of deviations from zero assessed using 1 000 bootstrap 

steps to generate 95% confidence intervals (Keenan et al., 2013). As recommended 

(Meirmans and Hedrick, 2011), we also calculated standardized FST (F’ST) as it is 

most suited for microsatellite loci due to their high polymorphism. Mantel tests 

were performed in GenAlex (Peakall and Smouse, 2012) to examine correlation 

between genotypic and geographic (Euclidean) distances. 

To detect population structure, we ran admixture models in STRUCTURE 

v2.3.4 (Pritchard et al., 2000) without a priori assignment of samples to 

populations. Because STRUCTURE tends to underestimate the number of 

contributing populations when using unbalanced sample sizes, we used Wang 

(2017) recommendations and set the population-specific ancestry prior, decreased 

the initial α to 1/K and used the uncorrelated allele frequency model. We 

conducted 10 independent runs for each assumed number of clusters (K) from 1 to 

19 (e.g. number of sample sites). We used a burn-in of 10,000 and 100,000 Markov 

Chain Monte Carlo (MCMC) iterations. The independent runs of each cluster were 

merged and visualized using the R package Pophelper 2.3 (Francis, 2017). Optimal 

K values were determined in Pophelper using the log probability of the data [ln Pr 

(X|K)] (Pritchard et al., 2000) and the ad hoc statistic ∆K based on the rate of 
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change in the log probability (Evanno et al., 2005). To investigate substructure, 

main clusters were subsequently analysed using the same method. As all 

individuals were available for GNP communities, Wang (2017) recommendations 

were not applied for cluster only comprising GNP. We also performed a principal 

component analysis (PCA) using the R package Adegenet 2.1.1. (Jombart, 2008) to 

visualize the genetic variability across Tanzania and within both ecosystems. 

3. Results 

3.1. Mitochondrial control region 

We identified 20 different mtDNA HV1 haplotypes with 38 variable sites 

from 293 individuals sampled across GNP and the GME (two samples failed to 

amplify). Of these, four haplotypes were shared between the GME and GNP, nine 

were specific to GNP and seven were specific to the GME. 

Although the majority of haplotypes (16 out of 20) were specific to either 

GNP or the GME, no geographical partitioning appeared in the Median-joining 

haplotype network with GNP and the GME clustering together either by 

haplotype sharing or sequence similarity (Figure 4.2). A small number of 

mutational steps (1-4) were observed between each haplotype except for UG59 

which diverged by 7 mutations (Figure 4.2). We observed two predominant 

haplotypes (GM7 and MH32) shared by two third of the individuals sampled 

within GME while a balanced distribution was found within GNP (Figure 4.2; 

Table S4.2). 
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Figure 4.2: Median-joining haplotype network of chimpanzee mitochondrial HV1 sequences. 

Haplotypes colours represent the geographic repartition. Hash marks on the haplotype edges 

indicate individual mutational steps. 

Haplotype diversity was significantly higher in GNP than in the GME (PH 

<0.01, two-tailed Mann-Whitney U test). There was no significant difference 

between GNP and the GME for Nucleotide diversity (PSD = 0.261, two-tailed Mann-

Whitney U test) and Mean pairwise difference (PMPD = 0.211, two-tailed Mann-

Whitney U test). Among all sample sites, haplotype diversity was highest in 

Kalande (H = 0.985), whilst nucleotide diversity was highest in Kalobwe (SD = 

0.019). Issa-BManga had the lowest haplotype and nucleotide diversity (H = 0.200, 

SD = 0.001) (Table S4.3). 

Results from the AMOVA revealed that most of the mtDNA genetic 

variation (76.12%) was found within sample sites (Table S4.4). Genetic variation 
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between GNP and the GME accounted for 16.19% of the total variation. The 

remaining 7.69% was found among sample sites within ecosystems (i.e. GNP and 

GME). The fixation index between ecosystems was low (φCT = 0.162) but significantly 

different from zero (p<0.0001). The global φST value for the 19 sample sites across 

Tanzania was 0.239 and was significantly different from zero (p<0.0001). 

A similar pattern was observed within GNP and the GME with most of the 

variation detected within sample sites (Table S4.4). No mtDNA structuring was 

detected within GNP (φST = 0.000; p-value = 0. 0.459), whereas significant 

structuring was found between sample sites within the GME (φST = 0.137; p-value 

= <0.0001). Only 1.36% of the genetic variance was attributed to differences 

between the north and south of the GME and the fixation index did not 

significantly differ from zero (φCT = 0.014; p-value = 0.2268). 

Mixture analyses using BAPS indicated that the data were optimally 

described by K = 10 clusters (highest Log likelihood -901.5562). Although some 

clusters were mainly found in GNP or in the GME, clusters did not sort by 

geographic location (Figure 4.3). This absence of a clear geographical pattern also 

held true when K=2 clusters was used (in accordance with the two main areas) 

(Figure 4.3). 

Figure 4.3: Results of individual clustering analyses for mitochondrial data using BAPS for both 

K=2 and K=10 analyses. Vertical bars represent individuals with different colours corresponding to 

different inferred cluster. Mit: Mitumba; Kase: Kasekela; Kala: Kalande; Mas: Masito; ; Mlo: 

Mlofwesi; Her: Herembe; IssB : Issa-Bmanga; Muf: Mufumbasi; ; Iss: Issa; Kaj: Kajeje; Nta: Ntakata; 
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Kak: Kakungu; ; Mab: Mabungo; Kalo: Kalobwe; Bug: Bugwe; Mah: MMNP; Buj: Bujombe; Kash: 

Kashagulu; Wan: Wansisi 

3.1. Microsatellites 

Overall genetic diversity estimates did not differ significantly between GNP 

and the GME (PNa = 0.835, PAr=0.943, PHo = 1.000 ,PHe = 0.933, 2-sample t-test). We 

observed no evidence of inbreeding at any sites (as indicated by the lower 95% 

confidence interval of FIS never above 0) (Table S4.5).  

Most of the variation in microsatellite allele frequencies was found within 

sample sites, both across GNP and the GME and within each ecosystem (Table 

S4.6). Allele frequency variation between GNP and the GME accounted for 9.04% 

of the total variation. Only 0.80% of the total variation found within the GME was 

attributed to north-south separation of the ecosystem. Fixation indices were 

significant for all partitions. 

Indices of genetic differentiation between sample sites ranged from 0 to 

0.180 for FST and from 0 to 0.620 for F’ST (Figure S4.1). The lower 95% confidence 

interval indicated significant population differentiation between GNP 

communities and all GME samples sites for both FST and F’ST. GNP communities 

were all significantly different from one another based on the latter index, 

although Mitumba and Kalande did not show significant differentiation for FST. 

Within the GME, 43 and 54 out of 120 sample site comparisons showed significant 

differentiation for FST and F’ST, respectively (Figure S4.1). 

We found a pattern of isolation by distance (IBD) across all sample sites 

with significant correlation between FST and geographic distances (Mantel test: R = 

0.626, P <0.001). However, this pattern was not detected within GNP (Mantel test: 

R = 0.039, P = 0.560) or within the GME (Mantel test, R = 0.141, P = 0.150) (Figure 

S4.2).  
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The STRUCTURE analysis that specified K=2 correctly assigned individuals 

to either GNP or GME clusters with high probability (mean estimate membership 

coefficient q= 0.99) (Figure 4.4). The highest proportion of admixture was 29% for 

one individual sampled in Wansisi. The PCA corroborated STRUCTURE results 

and clearly separated GNP and the GME along the first axis. The first component 

explained 6.3% of the total variation while the second axis represented 2.4% of the 

variation.  

We repeated STRUCTURE analyses within each cluster and found no clear 

evidence of substructure (Figure S4.3). Within GNP, K = 3 was favoured by Evanno’s 

method but the highest Log likelihood was found for K = 1. Nonetheless, neither 

STRUCTURE nor the PCA revealed any clear structuring (Figure S4.3 - GNP). In the 

GME, both Evanno’s method and the Log likelihood favoured K = 2 but no clear 

geographic pattern emerged from either STRUCTURE or PCA analyses (Figure S4.3 – 

GME).  
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Figure 4.4: Results of individual clustering analyses. (a) Plot of mean L(K) and ∆K over 10 runs for 

each K value. (b) Bar plot created from STRUCTURE runs at K=2. Each vertical bar represents an 

individual with colours indicating the proportion of each individual assigned to each inferred 

cluster. (c) PCA plot of the 10 microsatellite loci for the entire dataset. Eigenvalues corresponding 

to the represented components are filled in black. Points represent genotypes; Populations are 

labelled inside their 95% inertia ellipses 

4. Discussion 

Despite extensive research into two focal communities – GNP and MMNP – 

we know relatively little about the conservation status of most of Tanzania’s 

chimpanzees. Here, we built on previous genetic studies to investigate the 

potential connectivity and genetic diversity of Tanzanian chimpanzees. By 

incorporating new non-invasive samples across a large spatial scale and analysing 

two molecular markers, we were able to resolve previous contrasting findings. We 

confirmed historical chimpanzee movement across GNP and the GME, which 

today represent two populations completely isolated from one another. We found 

no clear geographic pattern of genetic differentiation within the GME, suggesting 
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a high level of gene flow throughout the ecosystem. Finally, we found no evidence 

of inbreeding at any sites and a greater mtDNA genetic diversity within GNP 

compared with the GME. 

Connectivity between GNP and the GME 

No clear geographic pattern emerged from mtDNA haplotypes while clear 

clusters corresponding to GNP and the GME were revealed using microsatellite 

genotypes. This contrasting pattern could be explained by the different modes of 

inheritance and mutation rates of our genetic markers. In chimpanzees, as with 

most animals, mtDNA is inherited maternally, meaning that it is passed down 

from mothers to their offspring, while microsatellite genotypes are inherited from 

both parents. With female chimpanzees typically dispersing from their natal 

community and male typically being philopatric (e.g. Boesch and Boesch-

Achermann, 2000; Michio Nakamura et al., 2015), we expect mtDNA to spread 

over longer distances and to see a greater genetic structure in microsatellite 

genotypes. Microsatellite markers also have higher evolutionary rates and are 

more likely to reveal contemporary genetic patterns while mtDNA are useful to 

reveal recent historical events (Frankham et al., 2004). The lack of geographic 

structuring in mtDNA haplotypes was therefore expected within GNP and 

supports the hypothesis of historical gene flow between GNP and the GME. 

Microsatellite distinct clusters, on the other hand, indicate a recent interruption of 

gene flow. The small amount of mtDNA haplotype-sharing between GNP and the 

GME could be explained by incomplete lineage sorting. 

Evidence of widespread historic gene flow among eastern chimpanzee 

populations is well established with shared mtDNA haplotypes across the entire 

range of the subspecies  (Goldberg and Ruvolo, 1997a; Morin et al., 1994). Our 

pattern of genetic variation across Tanzania is similar to the one reported across 

the eastern chimpanzee range (Goldberg and Ruvolo, 1997b) with most of the 

variation found within sample sites. However, our measure of genetic 
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differentiation (global φST value of 0.239) is twice as high as the one reported 

(0.129) by Goldberg and Ruvolo (1997b), which is rather surprising given the 

smaller scale of our analysis. Greater genetic differentiation observed in our study 

could be the result of a reduction in gene flow due to increasing anthropogenic 

pressure on chimpanzee habitats in the 20 years since Goldberg and Ruvolo’s 

(1997b) study. Nonetheless, given that GNP was the southern sample locality in 

Goldberg and Ruvolo's (1997b) study, genetic differentiation reported here 

between the GME and GNP could be greater than genetic differentiation between 

GNP and more northern populations despite being separated by longer 

geographic distances. Supporting this hypothesis, a more recent study comparing 

nine wild chimpanzee populations found higher φST between GNP and M-group 

(from MMNP) than between GNP and three communities sampled in Uganda 

(Langergraber et al., 2011). Such differentiation could be due to the matrix of 

human settlements separating GNP and the GME (Pintea, 2007) and long standing 

geographic barriers (e.g. rivers) reducing the amount of gene flow between the 

two habitats.  

The GNP and GME are indeed separated by more than 50km of flat terrain 

with sparse gallery forest and a relatively dense human population. Given that 

chimpanzees in Tanzania are known to select hilly areas with riparian forests 

(Hernandez-Aguilar, 2006; Kano, 1972; Moyer et al., 2006; Ogawa et al., 2013; Piel 

and Stewart, 2014), these unsuitable chimpanzee habitats could limit chimpanzee 

movement. In addition, the Malagarasi river separates GNP and the GME. 

Circumstantial evidence suggests that chimpanzees can move across the river 

using a natural, shallow ford (Piel et al., 2013) and there is evidence of historical 

gene flow across Tanzania (Piel et al.,2013; this study). However, the 100m wide 

river surely limits gene flow and could be responsible for the higher genetic 

distance observed between GNP and other Tanzanian populations then GNP and 

northern populations (i.e. Ugandan sites). Further investigation that includes all 
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eastern chimpanzee haplotypes would allow us to better understand the genetic 

position of GNP and GME chimpanzees within the species’ range.  

Genetic structure within the GME 

Previous studies proposed that the GME comprised one panmictic 

population (Inoue et al., 2011; Yoshikawa et al., 2008). However, other studies 

have highlighted potential barriers limiting chimpanzee movement between 

northern and southern populations in the GME (Moyer et al., 2006; Piel et al., 2013; 

Rudicell et al., 2011). Our AMOVA analysis revealed significant differentiation 

within the GME, however a division north-south of the ecosystem explained less 

than 2% of the total mtDNA variation and less than 1% of the microsatellite 

variation (Table S4.4 and S4.6). Pairwise FST values also indicated significant 

differentiation between one third of all sample sites, although this should be 

interpreted with caution given the large sampling error when estimated from 

small sample sizes (Puechmaille, 2016). A large refugee settlement established in 

the 80s located in the middle of the GME was hypothesized to separate the 

ecosystem or at least hinder chimpanzee movement (Moyer et al., 2006; Rudicell et 

al., 2011). Although the genetic consequences of this relatively recent event are 

unlikely to be already visible (50 years representing ~2 chimpanzee generations), 

unsuitable chimpanzee habitats in the area prior to the establishment of this 

settlement could have hindered chimpanzee movement north-south of the 

ecosystem (Bonnin et al., 2020). Habitat connectivity modelling revealed narrow 

corridors allowing gene flow throughout the ecosystem (Bonnin et al., 2020). This 

could explain the absence of both genetic structuring and genetic isolation by 

distance within the GME. It is possible that different landscape features have 

shaped the genetic structure of GME chimpanzees. Future landscape genetic 

analyses will help to better understand how landscape features are impacting 

chimpanzee movement. Across the GME, chimpanzees live at extremely low 

densities and have large home ranges (Moore and Vigilant 2014; Piel and Stewart, 
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unpublished data). These extraordinary patterns may also result in a shift in social 

structure and consequently, affect population genetic structure. Further analyses 

using sex-specific markers or conducting separated analyses for each sex would 

help us to examine the role of sex-specific dispersal patterns. 

Genetic diversity  

Our data provide no evidence of inbreeding at any sites and even suggest a 

greater mtDNA genetic diversity within GNP than across the GME. This is 

surprising given that GNP is much smaller than the GME and is thought to be 

isolated from other nearby populations (Pintea et al., 2011; Pusey et al., 2007). 

Morin et al. (1994) reported surprisingly high within-community mtDNA genetic 

diversity and attributed it to females mediating gene flow. Inoue et al. (2011) also 

found greater genetic diversity in GNP than in five other sampled Tanzanian 

habitats. Evidence of Gombe females’ preference for genetically dissimilar mates 

might have played a role in avoiding inbreeding and optimizing genetic diversity 

(Walker et al., 2016). It is also possible that GNP chimpanzees are not completely 

isolated and exchange genes with northern populations. With GNP chimpanzees 

sharing mtDNA haplotypes reported up to Uganda (Goldberg and Ruvolo, 1997a; 

Inoue et al., 2011; Morin et al., 1994). GNP may still be part of a large population 

including Burundi, Rwanda, Uganda and DRC. Females periodically arrive in 

GNP from unknown origin (Walker et al., 2016). Although the park is primarily 

surrounded by anthropogenic landscapes, chimpanzees have been reported 

crossing highly fragmented landscapes in other parts of their range (McCarthy et 

al., 2015). On the other hand, the unusual geographic location of GME 

chimpanzees - which marks the southeastern limit of Pan distribution may also be 

responsible for the lower mtDNA diversity observed (Lester et al. in press). With 

Lake Tanganyika separating them from western populations and the Malagarasi 

river and unsuitable habitats limiting gene flow from the north, new alleles 

coming from neighbouring populations are less likely to reach the GME 
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chimpanzees. It is also possible that due to the opportunistic nature of sampling 

within the GME, some genetic variability was missed. Contrary to GNP, for which 

we had access to genotype data for nearly all individuals, we estimate that we 

sampled less than 10% of chimpanzees present in the GME. Larger sampling 

would confirm the pattern observed. Combining our data with published 

haplotypes reported by Inoue and colleagues (2011) would have increased our 

sample size and would have allowed the inclusion of Lwazi, the southern part of 

chimpanzee distribution in Tanzania. However, Inoue and colleague’s sequences 

were 167bp shorter and missing mutation sites revealed in our haplotypes, thus, 

we decided not to include them in our analysis. 

5. Conclusion  

Our results provide additional evidence for historical gene flow between 

GNP and the GME, which now represent two distinct genetic clusters completely 

isolated from one another. The current population structure supports the 

designation of GNP and GME as two managements units, in that they represent 

the logical unit for population monitoring and demographic study (Moritz, 1994). 

In addition to a complete loss of gene flow between the two areas, chimpanzees in 

the GME seems to be adapted to a very different type of habitat, ranging across 

larger home ranges in a more open and dry landscape. However, the evidence of 

historical gene flow through mtDNA haplotype sharing suggests that habitat 

restoration could allow the two populations to exchange migrants again.  

Despite loss of connectivity between the two ecosystems and increasing 

anthropogenic pressure on chimpanzee habitat (Piel et al., 2015a; Piel and Stewart, 

2014; TAWIRI, 2018; Yoshikawa et al., 2008), we found high levels of gene flow 

and genetic diversity within both the GNP and the GME. Given the long 

generation time of chimpanzees, the genetic consequences of recent landscape 

changes may not be detectable yet. If the GNP is also isolated from populations to 

the north, the population of ~100 chimpanzees remains vulnerable to inbreeding 
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depression. Restoring or strengthening connectivity between GNP and northern 

populations could help to safeguard their genetic diversity and long-term 

viability. With the GME hosting over 90% of Tanzania’s chimpanzee population, 

protecting remaining suitable habitats and maintaining connectivity across this 

vast ecosystem is of key importance to maintain a large viable population of 

chimpanzee. By focusing conservation effort on key corridors highlighted by 

habitat connectivity models (Bonnin et al., in press), we can best maintain gene 

flow and balance needs of communities and chimpanzees. 
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Supplementary Materials 

 

Figure S4.1: Genetic differentiation index between sample sites. a) FST (Weir & Cockerham, 

1984) b) F’ ST (Hedrick, 2005). Italic and bold indicate significant population differentiation (lower 

95% confidence interval > 0) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4.2: Isolation by distance analysis. 

Genetic distances plotted against geographic distance for the full dataset and within each ecosystem. Each point represents pairwise comparison between sample. The trend 

line indicates the least-squares regression estimate. Mantel test results for correlation between genetic and geographic distance are displayed at the bottom of each plot 
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Figure S4.3: Results of individual clustering analyses for GNP and the GME. (a) Plot of mean L(K) and ∆K over 10 runs for each K value. (b) Bar plot created from structure. 

Each vertical bar represents an individual with colours indicating the proportion of each individual assigned to each of the inferred cluster. (c) PCA plot of the 10 microsatellite loci for 

the entire dataset. Eigenvalues corresponding to the represented components are filled in black. Points represent genotypes; breeds are labelled inside their 95% inertia ellipses.  

Mit: Mitumba; Kase: Kasekela; Kala: Kalande; Bug: Bugwe; Iss: Issa; IssB : Issa-Bmanga; Kaj: Kajeje; Mas: Masito; Mlo: Mlofwesi; Muf: Mufumbasi; Buj: Bujombe; Her: Herembe; Kak: Kakungu; Kalo: Kalobwe; 

Kash: Kashagulu; Mab: Mabungo; Mah: MMNP; Nta: Ntakata; Wan: Wansisi 
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Table S4.1: STR loci used for MiSeq genotyping 

  

Locus Code Forward primer sequencea Reverse primer sequencea Size range (bp)b

D18S536 A 5’‐ATTATCACTGGTGTTAGTCCTCTG‐3’ 5’‐CACAGTTGTGTGAGCCAGTC‐3’ 131-179

D4S243 B 5’‐TCAGTCTCTCTTTCTCCTTGCA‐3’ 5’‐TAGGAGCCTGTGGTCCTGTT‐3’ 194-235

D10S676 C 5’‐GAGAACAGACCCCCAAATCT‐3’ 5’‐ATTTCAGTTTTACTATGTGCATGC‐3’ 155-200

D9S922 D 5’‐TCAGAGGACCACTGCCTAAG‐3’ 5’‐CTGATGGGATTTGTGCCTAT‐3’ 263-307

D2S1326 1 5’‐AGACAGTCAAGAATAACTGCCC‐3’ 5’‐CTGTGGCTCAAAAGCTGAAT‐3’ 232-270

D5s1457 FP1 5’‐TAGGTTCTGGGCATGTCTGT‐3’ 5’‐TGCTTGGCACACTTCAGG‐3’ 91-147

D1s550 FP2 5’‐CCTGTTGCCACCTACAAAAG‐3’ 5’‐TAAGTTAGTTCAAATTCATCAGTGC‐3’ 136-180

D4s2408 FP3 5’‐AATAAACTTCAACTTCAATTCATCC‐3’ 5’‐AGGTAAAGGCTCTTCTTGGC‐3’ 274-298

D11s2002 FP4 5’‐CATGGCCCTTCTTTTCATAG‐3’ 5’‐AGTGTGAGCCACCACACCAGC‐3’ 136-160

D17S974 NMS5 5’‐AGACCCTGTCTCAGATAGATGG‐3’ 5’‐TAAAATAGAAAGTGCCCCTCC‐3’ 188-216
aSTR loci were amplified as previously described (Keele et al.  2009b; Rudicell et al.  2010), except for the addition of MiSeq adapters at the 5’ end of 

both forward (5’‐TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG‐3)’ and reverse (5’‐GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-

3’) primers.
bAll selected loci fell within the size range of the sequencing chemistry (Illumina v2 chemistry, 500 cycle kit) and were thus sequenced without 

fragmentation using only the forward reads (<400 bp).
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Table S4.2: Nucleotide sequence differences and geographic distribution of Tanzanian’ chimpanzees mtDNA control region haplotypes 
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GM1 T A A C C C C T A T C A C C C C A T C C G A T A A T C T C T T C C C A C G C 7 14 21

GM2 . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4 3 11

GM3 . . . T C . . C . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5 4 10

GM4 . G . . . . . . . . . . . . . . . . . . A G . . . . . . . C . . T . . . . . 4 1 5

GM5 . . . . . . . . . . . . . . . . . . T . . A . . . . . . . T . . . . . . . . 11 11

GM6 . A . . . . . . . . . . . T . . . . C . G . C G . C A . . C . . C . . . . T 7 13 1 21

GM7 . . . . . . . . . . . . T C . . T . . . . . . . G T . . . . . . . . . . . C 4 2 4 3 3 1 3 7 12 4 5 3 2 3 5 61

GM8 . . . . . . . . . . . . . . T . A . . . . . . A . . . C . . . . . . . . . . 3 2 1 6

GM9 C . . . . . . . . . C G C . C . . C . T . . . . A . . T . T C . . . . . . . 1 2 1 3 7

GM10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . . . . . . 4 1 3 1 1 2 3 1 1 17

GM11 T . . . . T . . . . . A . . . . . . . C . . . . . . . C . . . C . . . . . . 3 13 3 19

GM12 . . . . . . . . . C . . . . . . . . . . . . . . . . . T . . . T . T . T . . 4 7 11

GM13 . . . . . . . T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 3 6

GME1 . G . . . C . . . T T . . . . . . T . . A . T . . . C . . . T C T C . C . . 1 1 1 3

GME8 . A . . . T . C . . C . . . . . . C . . G . C . . . A C . C C . C . . . . . 1 1

GME11 . . . . . C . . . . . G . . . T . T . T . . . . . . . T . T T . . . . . . . 1 1

UG59a . . . . . . T . G . T A . . T C . . . . . . . . . . . . T . . . . T G . A . 6 1 2 1 4 2 2 1 19

UG135a . . G . . . C . A . . . T . C . T . . C . . . G G . . . C C . . . C A . G . 1 1 2

MH32a . . A . . . . . . . C G C . . T A . . T . . . A A . . . . T C . . . . . . . 7 1 9 3 7 3 3 1 4 2 1 2 5 48

MH37a . . . . . . . . . . . . . . . C . C . . . . . . . . . . . . . . . . . . . . 1 1 3 1 2 2 3 13

Total 35 82 19 10 6 10 7 13 12 8 18 6 17 11 9 8 3 9 10 293*

In red, haplotypes found in GNP; in bleu, haplotypes found in the GME; in black, haplotypes found both in GNP and the GME.
a Haplotype already documented in GenBank

* Two samples failed to amplify 



 

 

Table S4.3: Genetic variability of mtDNA observed in the GNP and the GME and across 

sample sites 

 

 

Table S4.4: Hierarchical analyses of molecular variation (AMOVA) for mtDNA HVRI 

  

N Hp H SD MPD

GNP 136 13 0.906 +/- 0.008 0.016 +/- 0.008 8.158 +/- 3.808

    Mitumba 35 10 0.889 +/- 0.024 0.017 +/- 0.009 8.232 +/- 3.909

    Kasekela 82 13 0.893 +/- 0.013 0.016 +/- 0.008 8.114 +/- 3.804

    Kalande 19 8 0.895 +/- 0.035 0.015 +/- 0.008 7.649 +/- 3.732

GME 157* 11 0.754 +/- 0.021 0.015 +/- 0.008 7.137 +/- 3.365

    Masito 10 3 0.511 +/- 0.164 0.009 +/- 0.005 4.267 +/- 2.309

    Mlofwesi 6 3 0.600 +/- 0.215 0.013 +/- 0.008 6.133 +/- 3.399

    Issa-BManga 10 2 0.200 +/- 0.154 0.001 +/- 0.001 0.400 +/- 0.403

    Mufumbasi 7 3 0.714 +/- 0.127 0.014 +/- 0.008 6.571 +/- 3.535

    Issa 13 5 0.756 +/- 0.097 0.018 +/- 0.010 8.795 +/- 4.340

    Kajeje 12 4 0.636 +/- 0.128 0.010 +/- 0.006 4.833 +/- 2.537

    Herembe 8 3 0.750 +/- 0.097 0.017 +/- 0.010 8.357 +/- 4.333

    Ntakata 18 8 0.824 +/- 0.072 0.014 +/- 0.008 6.732 +/- 3.329

    Kakungu 6 4 0.800 +/- 0.172 0.010 +/- 0.007 4.800 +/- 2.728

    Mabungo 17 3 0.471 +/- 0.118 0.010 +/- 0.006 5.000 +/- 2.557

    Kalobwe 11 4 0.764 +/- 0.083 0.019 +/- 0.011 9.055 +/- 4.518

    Bugwe 9 3 0.667 +/- 0.132 0.016 +/- 0.009 7.611 +/- 3.922

    MMNP 8 4 0.821 +/- 0.101 0.018 +/- 0.011 8.857 +/- 4.574

    Bujombe 3 2 0.667 +/- 0.314 0.014 +/- 0.011 6.667 +/ -4.328

    Kashagulu 9 4 0.806 +/- 0.089 0.015 +/- 0.009 7.111 +/- 3.685

    Wansisi 10 2 0.556 +/- 0.075 0.012 +/- 0.007 5.556 +/- 2.916

Sample size (N), number of haplotypes (Hp), haplotype (gene) diversity (H), nucleotide diversity (SD) and 

mean pairwise difference (MPD)

* Two samples failed to amplify

Partition

Variance 

components

Percentage 

of variation

Fixation 

Indices
p-value

Among ecosystems (φCT) 0.762 16.45 0.164 <0.01

Among sample sites within ecosystems (φSC) 0.305 6.58 0.079 <0.0001

Within sample sites (φST) 3.565 76.97 0.230 <0.0001

Among sample sites 0.042 1.03

Within sample sites (φST) 4.045 98.97 0.010 0.151

Among regionsb (φCT) 0.049 1.36 0.014 0.2268

Among sample sites within regionsb (φSC) 0.448 12.36 0.125 <0.0001

Within sample sites (φST) 3.125 86.28 0.137 <0.0001

Across GNP and GME

Within GNP

Within GME

a Ecosystems referring to GNP and GME
b Regions defined as north and south of the GME
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Table S4.5: Summary statistics of genetic diversity averaged across 10 microsatellite loci 

across GNP and the GME 

 

Table S4.6: Hierarchical analyses of molecular variation (AMOVA) for 10 microsatellite loci 

N Na Ar Ho He FIS (LL,UL)

GNP 136 9.6 9.320 0.800 0.780 -0.034 (-0.060,-0.007)

    Mitumba 35 7.7 3.520 0.790 0.770 -0.020 (-0.064,0.022)

    Kasekela 82 8.7 3.490 0.810 0.750 -0.088 (-0.122,-0.054)

    Kalande 19 7.4 3.650 0.780 0.780 -0.002 (-0.103,0.097)

GME 159 9.9 9.23 0.81 0.78 -0.039 (-0.064,-0.013)

    Masito 10 6.1 3.59 0.900 0.750 -0.193 (-0.309,-0.107)

    Mlofwesi 6 3.6 2.72 0.800 0.650 -0.221 (-0.486,-0.036)

    Issa-BManga 11 5.5 3.29 0.790 0.740 -0.067 (-0.201,0.064)

    Mufumbasi 7 4.4 3.01 0.810 0.670 -0.207 (-0.391,-0.051)

    Issa 13 5.6 3.3 0.790 0.730 -0.077 (-0.179,-0.005)

    Kajeje 12 5.2 3.04 0.770 0.720 -0.071 (-0.198,0.041)

    Herembe 9 5.9 3.33 0.820 0.720 -0.143 (-0.259,-0.069)

    Ntakata 18 6.8 3.57 0.880 0.770 -0.143 (-0.210,-0.081)

    Kakungu 6 4.4 2.91 0.740 0.590 -0.256 (-0.467,-0.140)

    Mabungo 17 6.6 3.31 0.800 0.730 -0.096 (-0.174,-0.026)

    Kalobwe 11 5.7 3.38 0.840 0.740 -0.138 (-0.228,-0.078)

    Bugwe 9 5.4 3.31 0.790 0.710 -0.110 (-0.249,-0.020)

    Bujombe 3 2.7 2.28 0.750 0.530 -0.421 (-0.939,-0.050)

    MMNP 8 4.7 3.04 0.800 0.660 -0.216 (-0.399,-0.085)

    Kashagulu 9 5.2 3.01 0.680 0.700 0.017 (-0.192,0.230)

    Wansisi 10 5.1 3.19 0.840 0.710 -0.171 (-0.274,-0.087)

Sample size (N), Mean number of alleles per locus (Na), rarefied allelic richness (Ar), observed 

and expected heterozygosity (Ho and He, respectively), inbreeding coefficient (FIS) and 95% 

confidence intervals lower (LL) and upper (UL) limits.

Partition
Variance 

components

Percentage of 

variation

Fixation 

Indices
p-value

Among ecosystemsa (FCT) 0.264 9.04 0.09 <0.0001

Among sample sites within ecosystemsa (FSC) 0.07 2.39 0.026 <0.0001

Within sample sites (FST) 2.588 88.56 0.114 <0.0001

Among sample sites 0.07 2.21

Within sample sites (FST) 3.087 97.79 0.022 <0.001

Among regionsb (FCT) 0.02 0.8 0.008 <0.05

Among sample sites within regionsb (FSC) 0.06 2.11 0.021 <0.0001

Within sample sites (FST) 2.86 97.1 0.029 <0.0001

Across GNP and GME

Within GNP

Within GME

a Ecosystems referring to GNP and GME
b Regions defined as north and south of the GME
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Chapter 5:  

General conclusion 

In this dissertation, I have demonstrated the potential of combining remote 

sensing and genetic approaches to monitor chimpanzees and their habitat across 

large spatial and temporal scales. This dissertation has highlighted some of the 

opportunities in using emerging remote sensing technologies for chimpanzee 

monitoring and has provided detailed information on where to focus conservation 

efforts to protect and preserve a large, viable population of chimpanzee. 

Findings overview 

Drones for chimpanzee monitoring 

The results from chapter 2 demonstrate the feasibility of using drones to 

detect chimpanzee nests in the mosaic landscape of western Tanzania. This study 

adds to a growing body of literature on the potential of drone technology for 

wildlife monitoring (Wich and Koh, 2018). Although the technology has been used 

across a wide range of taxa, only few studies have investigated the potential of 

drones for primate monitoring (3 out of 68 studies reported in Which and Koh 

2018). Nearly a decade ago, Koh and Wich (2012) first demonstrated the feasibility 

of using a drone to detect Sumatran orangutans (Pongo abelii). Their low-cost 

prototype drone fitted with a standard camera was able to capture a wild 

Sumatran orangutan on top of a palm tree. Three years later, chimpanzee (Pan 

troglodytes) nests were counted from drone-acquired images in Gabon (van Andel 

et al., 2015), followed by a similar study on orangutan nests in Indonesia (Wich et 

al., 2015). Both studies reported successful detection of great ape nests and 

highlighted the potential of drones for great ape surveys, especially in open 

habitat, where nest detection was higher. The study presented in chapter 2 

follows-up on these findings. With most (~75%) Tanzanian chimpanzees found 

outside national parks in an area characterised as one of the most open habitats in 

which chimpanzee inhabit (Moore, 1992), drones appeared as a promising tool for 
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chimpanzee surveys in the country. A significant correlation was observed 

between the number of nests detected from the air and those recorded on the 

ground but only a small proportion (9.6%) of the nests spotted from the ground 

were detected from the air. Surprisingly, detection tended to be lower in open 

vegetation than in closed forest. The discontinuous miombo-woodland colours 

composed by green leaves and visible brown understory had created a difficult 

background from which to accurately identify brown nests. Although the chapter 

highlighted potential challenges in using drones for chimpanzee surveys, the 

study provided guidance for future investigations and highlighted the importance 

of contrasting background and high resolution images. 

Satellite imagery and molecular markers to assess chimpanzee connectivity 

and viability 

In chapters 3 and 4, I used satellite imagery and molecular markers to 

investigate chimpanzee connectivity across western Tanzania. By using remote 

sensing data from 1973 and a land-cover projection for 2027, I was able to map 

historical habitat connectivity for chimpanzees and predict the impact of future 

forest loss. The results suggest historical connectivity throughout the Greater 

Mahale Ecosystem (GME), the ecosystem containing nearly the entire free-ranging 

population of Tanzania’s chimpanzees (Plumptre et al., 2010). The analysis also 

revealed a reduction of connectivity since 1973, which is likely to continue through 

2027 and beyond if no effective conservation actions are enacted. In fact, 2 426 km2 

of forest are predicted to be lost by 2027  (Shoch et al., 2019), adding to the 1 677 

km2 already lost since 1973 (as revealed by the Landsat analyses from chapter 2). 

The reduction of forest, especially the destruction of entire blocks of riparian 

forests, and arrival of thousands of humans in the ecosystem has had a significant 

impact on chimpanzee habitat and movement corridors.  
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In chapter 4, I investigated the potential consequences of such disruptions 

on the genetic diversity and population structure of Tanzanian chimpanzees. I 

analysed 234 faecal samples collected across the GME along with genotypes from 

136 individuals from Gombe National Park (GNP) and found no evidence of 

inbreeding and a greater genetic diversity within GNP compared with the GME. 

This result was rather surprising given that GNP is significantly smaller than the 

GME and was thought to be isolated from any other chimpanzee populations for 

decades (Pintea et al., 2011; Pusey et al., 2007). Behavioural adaptations to avoid 

inbreeding such as selecting mates genetically distant (Walker et al., 2016) and 

possible connectivity between GNP chimpanzees and northern populations (e.g. 

Burundi) may explain this unexpected result. Using both mitochondrial control 

region sequences and genotypes from 10 microsatellite markers, I was also able to 

resolve previous contrasting findings on connectivity between GNP and the GME 

(Inoue et al., 2011; Piel et al., 2013). Mitochondrial DNA analyses confirmed 

historical chimpanzee movement across GNP and the GME while microsatellite 

markers revealed a complete interruption of gene flow in recent years. No clear 

geographic pattern emerged within the GME for both markers from Bayesian cluster 

analyses. However, AMOVA analysis and Pairwise FST values indicated significant 

differentiation between sample sites which could not be explained by a division 

North-South of the ecosystem, nor via isolation by distance. The narrow corridors 

connecting the ecosystem revealed in chapter 3 could be responsible for the 

observed genetic pattern.  

Conservation implications 

Fifteen years ago, Tanzania was estimated to be home to ~2 700 chimpanzees 

(Moyer et al., 2006), scattered across ~20 000 km2 (Humle et al., 2016). With less 

than 10% of their range protected by national parks, the majority of Tanzanian 

chimpanzees are facing increasing pressure from habitat loss, degradation and 

fragmentation (Davenport et al., 2010; Moyer et al., 2006; Piel et al., 2015a; Piel and 

Stewart, 2014; Plumptre et al., 2010). Improving connectivity and enhancing 
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protection of chimpanzees outside of national parks was identified as essential by 

the most recent national conservation action plan for the species (TAWIRI, 2018). 

The results from chapters 3 and 4 compiled key information to support decision-

making and guide management of the remaining chimpanzees. Chapter 3 has 

highlighted areas on where to focus conservation efforts (Figure 3.5), not only to 

protect current chimpanzee habitat, but also critical corridors for connectivity that 

might be classified as only moderately suitable chimpanzee habitat. Our model 

output represents a useful base on which to build detailed land-use planning, 

benefiting the long-term chimpanzee conservation and the local community (e.g. 

Zeller et al. 2013). By identifying critical areas for chimpanzee movement, our 

output map could help to better allocate land for biodiversity conservation but 

also for food production and economic development. Our connectivity map can 

also provide guidance on mitigation projects such as providing the most suitable 

location for wildlife crossing structures over roads (e.g. tunnels, bridges, speed 

bumps, informative signs). Finally, by providing fine scale measure of habitat 

importance for chimpanzees, landscape connectivity models along with species 

distance models can be used to quantify biodiversity co-benefit of climate 

mitigation projects such as REDD+ projects (Dickson et al., in press). 

Results from chapter 4 also provide guidance for effective conservation. 

Our genetic data provide evidence of complete interruption of gene flow between 

GNP and the GME supporting the establishment of two conservation units (e.g. 

isolated populations identified within species that are used to help guide 

management and conservation efforts (Fraser and Bernatchez, 2001)). In addition 

to being adapted to very different types of habitat (GNP chimpanzees live in  

forest while most GME individuals range across a more open and dry landscape), 

the two ecosystems now represent distinct genetic clusters completely isolated 

from one another. Our findings suggested a high level of gene flow and genetic 

diversity maintained within both GNP and the GME. The GNP population of ~100 

chimpanzees distributed across 35km2 remains vulnerable to inbreeding – especially 

because genetic consequences of recent landscape changes have the potential to 
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manifest decades into the future (Landguth et al., 2010) - however, our results 

suggest possible connectivity with northern chimpanzee populations which could act 

as a genetic rescue. We have shared our results with GNP researchers and 

conservationists and are hopeful that GNP can continue hosting a viable population 

of chimpanzees by restoring or strengthening connectivity with northern populations. 

With the GME hosting over 90% of Tanzania’s chimpanzee population, we 

propose protecting the remaining suitable habitat and maintaining connectivity by 

focusing conservation effort on the key corridors highlighted in chapter 3 as key 

strategies to maintain a large viable population of chimpanzees.  

Research perspectives  

The future of drones for primate monitoring 

Since our results from chapter 2 were published, several other studies have 

been released describing similarly encouraging results for drones to become a 

valuable tool for primate monitoring. Contrary to earlier studies, which used 

standard visual spectrum (RGB) cameras, several of the recent studies used drones 

fitted with Thermal Infrared (TIR) cameras. Using infrared radiation, these 

cameras detect the body heat emitted from animals. This drone/ TIR camera 

pairing has now demonstrated successful detection for seven species of primate 

across Asia and South America : Howler monkey (Alouatta palliata), Black-handed 

spider monkeys (Ateles geoffroyi) (Kays et al., 2018), Geoffroy’s spider monkeys (A. 

geoffroyi) (Spaan et al., 2019), Bornean orangutans (Pongo pygmaeus), proboscis 

monkeys (Nasalis larvatus) (Burke et al., 2019), Sichuan snub-nosed monkey 

(Rhinopithecus roxellana) (Gang et al., 2020) and Hainan gibbon (Nomascus hainanus) 

(Zhang et al., 2020). These studies all indicate that a TIR camera fitted to a drone 

offers an exciting new tool to monitor primate populations. However, false 

positives (e.g. incorrect detection) and species identification remain a challenge. 

When the canopy structure is composed of numerous emergent trees, drone 

altitude is limited, necessarily higher than the tallest trees. As a consequence, pixel 

resolution is generally insufficient to detect clear shapes and identify animals at 
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the species level (Kays et al., 2018; Spaan et al., 2019; Zhang et al., 2020). Several 

solutions to address the challenges have been proposed. Kays et al. (2018) 

suggested that future work should combine thermal imagery with infrared 

spotlights or colour flash so that additional bands in the electromagnetic spectrum 

could be used to facilitate species identification. Burke et al. (2019) suggested 

developing an autonomous on-board system halting the drone and reducing its 

flight altitude above automatically detected animals, allowing sufficient resolution 

to identify the species.  

With detection mainly influenced by image resolution (Bonnin et al., 2018), 

the rapid pace at which drone and sensor technologies are improving along with 

the developments in the field of Computer Science, in particular machine learning 

(Lamba et al., 2019), suggests many promising opportunities in the near-future for 

monitoring distribution and potentially density of chimpanzees and other great 

apes. 

Connectivity model improvement and genetic data integration   

Modelling connectivity for wildlife conservation is a growing field with a 

wide range of methods now available to measure and map landscape resistance to  

movements (Bocedi et al., 2014; Correa Ayram et al., 2016). In chapter 3, I chose to 

derive resistance values using circuit theory (Mcrae et al., 2008), allowing me to 

develop a landscape-scale permeability map that was independent of an priori 

source or destination locations. Contrary to least-cost path, the other popular 

modelling approach for identifying and quantifying landscape connectivity, 

circuit theory considers all possible routes and does not assume that individuals 

have perfect knowledge of the landscape (McClure et al., 2016). Not only is this 

approach more likely to accurately represent chimpanzee long distance 

movement, but it can also be performed by randomly placing regularly distanced 

nodes around a buffer perimeter, removing the challenge of defining focal nodes 

within the study areas (Koen et al., 2014). With the majority of Tanzanian 

chimpanzees found outside national park boundaries and an unknown number of 
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populations, this approach has reduced the bias associated with choosing random 

nodes within the GME. However, a recent study using both modelling approaches 

to identify corridors between two Gabonese national parks found that least-cost 

path performed better than circuit theory in predicting corridors for western 

lowland gorillas (Gorilla gorilla gorilla) and central chimpanzees (Pan troglodytes 

troglodytes) (Vanthomme et al., 2019). Further work testing the sensitivity of using 

least-cost path analyses on the landscape connectivity output will help us to better 

understand how chimpanzees move across the landscape. Large continuous 

suitable habitat patches could be used to define nodes within the study area 

(D’Elia et al., 2019; Maiorano et al., 2019). By projecting our model to 1973 and 

2027, we were able to assess connectivity change for chimpanzees across a large 

temporal scale, however, the approach restricted the number of predictor variables 

we could include in our model (e.g. difficulty of accessing reliable settlement and 

road data for 1973). Future investigations focusing on current predictions would 

benefit from including additional variables such as roads, rivers, settlements, and 

vegetation indices. 

To fully exploit the potential of our connectivity model to informing 

sustainable management decisions, validating our model would be a crucial step 

forward. One way to achieve this would be to collect independent field data 

(Crooks and Sanjayan, 2006). Chimpanzee data collected through additional line 

transect surveys, camera traps, or passive acoustic monitoring could be used to 

evaluate the model by assessing the correlation between connectivity values and 

chimpanzee density (Laliberté and St-Laurent, 2020). Another approach would be 

to integrate genetic data to parameterise resistance surface. Landscape genetic 

methods assess multiple alternative resistance models to determine the optimal 

resistance values that best describe pairwise genetic differentiation (e.g. FST). This 

approach thoroughly investigates the relationship between landscape features and 

gene flow, allowing a detailed understanding of how landscape features affect 

animal movements (Balkenhol et al., 2016). Applied with our data, this method 

would help us to better understand the impact of roads, rivers and land-cover 
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change for chimpanzee movement within Tanzania. Additionally, by extending 

our analysis to the entire Tanzanian chimpanzee range and including samples 

across the Tanzania - Burundi border, we could investigate chimpanzee 

movement at the trans-national scale. Not only would these additional data 

inform protection of the entire Tanzanian chimpanzee population, but also make a 

difference at the eastern chimpanzee subspecies level. 
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Glossary 

Adaptive potential: Potential to adapt to environmental change. 

 

Amplified fragment length polymorphism (AFLP): A dominant molecular marker that 

genotypes individuals at multiple loci. Amplified DNA is digested with restriction 

enzymes, 

adapters are attached to the ends of amplified fragments, and a subset of fragments is 

then 

re-amplified to generate a multi-band pattern 

 

Allelic dropout: Failure of a microsatellite allele to amplify in some PCR reactions, 

especially when low-quality DNA is the template. 

Allelic Richness (Ar): Allelic diversity (average number of allele per locus) standardized 

to a particular sample size 

Circuit theory: Principles applied to electric circuits in which electric current flow from 

one node (connection point) to another through resistors (electrical components that 

conduct current). Applied to movement ecology, circuit theory treats the landscape as if it 

were a large electrical surface with low resistance values assigned to landscape features 

facilitating movement, and high resistances assigned to movement barriers. Current flow 

can then be calculated between pairs of nodes (representing habitat patches or 

populations) and can be related to the probability of animal movement across the 

landscape. In contrast with Least-cost path analysis, the other popular connectivity 

modelling approach, circuit theory simultaneously considers all possible pathways and 

does not assume that the animals have perfect knowledge of the landscape. 

Connectivity: The degree of movement of organisms or processes. The more movement, 

the more connectivity, and conversely, the less movement, the less connectivity. 

Deleterious alleles: Alleles reducing the viability and fitness (see fitness) of individuals 

when homozygous. 

 

False alarm rate: Proportion of false detections. Calculated as the ratio between the 

number of false detections (in this thesis, aerial observations not aligning with nests found 

from the ground) to the total number of detections (here aerial observations).  

Fitness: The relative ability of an individual to survive and reproduce compared with 

other. 

 

Fixation index (F-statistics):  Provides an estimate of the genetic differentiation between 

subpopulations. FST ranges from 0 (no differentiation between subpopulation) to 1 

(fixation of different alleles in subpopulation). 

Fixed-wing drone: Drone with a rigid structure which generates lift under the wing due 

to forward airspeed. 

 

Genetic drift: Changes in the genetic composition of a population due to random 

sampling in finite populations 
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Georeferencing: The inclusion of geographic coordinates in a digital map or aerial photo 

of an area. A georeferenced digital map or image has been tied to a known Earth 

coordinate system, so users can determine where every point on the map or aerial photo 

is located on the Earth's surface. 

Geotagging: process of adding a geographical location to a media.  

Global Navigation Satellite System (GNSS): Constellation of satellites providing signals 

from space that transmit positioning and timing data to GNSS receivers. 

 

Ground Control Points (GCP): Ground control points are large marked targets on the 

ground, spaced strategically throughout the area of interest, with known spatial 

coordinates. These points are used to accurately georeferenced and calibrate images.  

Ground Sampling Area (GSA): The area on the ground covered by one aerial image. 

Ground Sampling Distance (GSD): The length on the ground corresponding to the side 

of one pixel in an aerial image. 

Haplotype diversity (h): A measure of genetic diversity, represents the probability that 

two randomly sampled alleles are different 

Hardy-Weinberg equilibrium (HWE): The equilibrium genotype frequencies achieved in 

a random mating population with no perturbating forces from mutation, migration, 

selection or chance. 

Inbreeding coefficient (FIS): Measures the degree of inbreeding within individuals 

relative to the rest of their subpopulation. Positive Fis values indicate that individuals in a 

population are more related than you would expect under a model of random mating. 

Inbreeding depression: A reduction in the fitness of offspring that result from matings 

between close relatives. 

Inbreeding: Mating between closely related individuals 

least-cost path analysis: Identify the path with the least accumulated resistance between 

two locations across a resistance surface (see resistance surface). In contrast with circuit 

theory which take into consideration all possible routes, least-cost path analysis assume 

that individuals have perfect knowledge of the landscape and select a single optimal route 

which is only one cell wide. Least-cost models can therefore better identify long-distance 

movement which are passed down through generation.  

Light Detection and Ranging (LiDAR): Active remote sensing system that uses light in 

the form of a pulsed laser to measure ranges (variable distances) to the Earth. These light 

pulses—combined with other data recorded by the airborne system — generate precise, 

three-dimensional information about the shape of the Earth and its surface characteristics. 

Lineage sorting: Fixation of different alleles (or haplotypes) in different lineages 

(populations or species reproductively isolated from one another). 
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Linkage disequilibrium (LD): Non-random association of alleles at two or more loci. 

These alleles tend to be inherited together significantly more than expected by random 

mating. 

Mean pairwise sequence difference (MPD): The mean number of loci for which two 

haplotypes are different.  

Microsatellite: A stretch of DNA that consists of a short tandem sequence of up to five 

base pairs that is repeated multiple times (typically showing variable number of repeats). 

Minisatellite: Repetitive DNA sequences that are each 10-100 bases long and are 

dispersed throughout the genome. 

Mitochondrial DNA (mtDNA): The circular DNA molecule of the mitochondrion. 

Haploid (contains only one set of chromosomes) and generally passed on only from 

mother to offspring. 

Multirotor drones: Drones with rotary wings or rotor blades, which generate lift by 

rotating around a vertical mast. 

 

Nucleotide diversity (π): A measure of genetic diversity at the nucleotide level.  

Quantifies the mean sequence divergence among several haplotypes by factoring in both 

the frequencies and the pairwise divergences of different sequences. 

Null alleles: Alleles that fail to amplify during a PCR reaction. Microsatellite null alleles 

can lead to the erroneous identification of homozygotes. 

Orthomosaics: A mosaic of orthorectified images. Orthorectifying imagery is the process 

of aligning the images that have been captured usually using photogrammetry techniques 

and processing them so that the geometric angles are aligned correctly creating a 

geometrically correct map with a uniform scale. 

Permeability: The degree to which a landscape feature or a habitat location facilitate 

animal movement (inverse of resistance). 

Random amplified polymorphic DNA (RAPD): Dominant molecular marker that 

generates multiple DNA fragments through the random PCR amplification of multiple 

regions of the genome using single arbitrary primers. 

Recall rate: Proportion of successful detections. Calculated as the ratio between the 

number of true detections (in this thesis, nests observed from the ground detected during 

the aerial survey) to the total number of detectable events (nests observed by the ground 

survey). 

Remote sensing platforms: Technologies acquiring information from a distance. 

Resistance surface: A representation of the landscape in which each location is assigned a 

resistance value which affect movement through the landscape. 

Resistance: The degree to which a landscape feature or a habitat location impede animal 

movement (inverse of permeability). 
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Sequential Bonferroni correction: Procedure whereby the significance level of a statistical 

test is adjusted in order to protect against Type I errors (also called false positives) when 

multiple comparisons are being made. Bonferroni correction consists in multiplying the 

significance level by the total number of tests performed. For the sequential version, 

considered more powerful, the statistical tests are first performed to obtain their “p-

values.” The tests are then ordered from the one with the smallest p-value to the one with 

the largest p-value. The test with the lowest probability is tested first with a Bonferroni 

correction involving all tests. The second test is tested with a Bonferroni correction 

involving one less test and so on for the remaining tests.  

Single Nucleotide Repeat (SNP): A variation between two sequences of DNA that is 

caused by a single nucleotide substitution 

Standardized FST  (F’ST): Corrected so that it scales 0–1 (FST divided by FST max) 

Stuttering: Artefact seen when amplifying short tandem repeats and typically occurs at 

one repeat unit shorter in length than the parent allele caused by slippage of the DNA 

polymerase during DNA synthesis. 

Unmanned Aircraft Vehicles (UAV) or drones: an aircraft that does not have a human 

pilot on board but is controlled by someone on the ground. 

 

φST: FST analogous for molecular sequence data - Use information on the allelic content of 

their haplotypes as well as their frequency. 
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