

LJMU Research Online

Farlow, JO, Falkingham, PL and Therrien, F

Pedal Proportions of Small and Large Hadrosaurs and Other Potentially Bipedal Ornithischian Dinosaurs

http://researchonline.ljmu.ac.uk/id/eprint/15204/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Farlow, JO, Falkingham, PL and Therrien, F (2021) Pedal Proportions of Small and Large Hadrosaurs and Other Potentially Bipedal Ornithischian Dinosaurs. Cretaceous Research, 127. ISSN 0195-6671

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

LJMU Research Online

Farlow, JO, Falkingham, PL and Therrien, F

Pedal Proportions of Small and Large Hadrosaurs and Other Potentially Bipedal Ornithischian Dinosaurs

http://researchonline.ljmu.ac.uk/id/eprint/15204/

Article

Citation (please note it is advisable to refer to the publisher's version if you intend to cite from this work)

Farlow, JO, Falkingham, PL and Therrien, F (2021) Pedal Proportions of Small and Large Hadrosaurs and Other Potentially Bipedal Ornithischian Dinosaurs. Cretaceous Research. ISSN 0195-6671

LJMU has developed LJMU Research Online for users to access the research output of the University more effectively. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Users may download and/or print one copy of any article(s) in LJMU Research Online to facilitate their private study or for non-commercial research. You may not engage in further distribution of the material or use it for any profit-making activities or any commercial gain.

The version presented here may differ from the published version or from the version of the record. Please see the repository URL above for details on accessing the published version and note that access may require a subscription.

For more information please contact researchonline@ljmu.ac.uk

http://researchonline.ljmu.ac.uk/

- 1 Pedal Proportions of Small and Large Hadrosaurs and Other Potentially Bipedal
- 2 **Ornithischian Dinosaurs**
- 3 James O. Farlow^a, *, Peter L. Falkingham^b, and François Therrien^c
- 4 *, ^a corresponding author, Department of Biology, Purdue University Fort Wayne, 2101 East
- 5 Coliseum Boulevard, Fort Wayne, IN 46805 USA; <u>farlow@pfw.edu</u>
- 6 ^b School of Biological and Environmental Sciences, Liverpool John Moores University,
- 7 Liverpool, UK; <u>p.l.falkingham@ljmu.ac.uk</u>
- 8 c Royal Tyrrell Museum of Palaeontology, P.O. Box 7500, Drumheller, AB T0J 0Y0 Canada;
- 9 Francois.Therrien@gov.ab.ca
- 10 Highlights:

11	• Foot skeletons of hadrosaurid dinosaurs show little shape change from small
12	(young) to large (adult) individuals
13	• Foot skeletons of small (young) hadrosaurids are more similar in shape to those of
14	large (adult) individuals than to those of small-bodied ornithischians of comparable
15	size
16	• Small and large iguanodontian footprints of similar shape found in the same
17	footprint assemblage could well have been made by conspecific dinosaurs
18	Key words: Hadrosaurids; Ornithischia; Ichnology; Allometry
19	
20	ABSTRACT: Foot skeletons of small (young) hadrosaurid dinosaurs were compared with those

of large (adult) hadrosaurids to assess the extent of pedal shape change during ontogeny. Foot

22	skeletons of juvenile hadrosaurids were also compared with those of similar-sized adult, bipedal,
23	non-hadrosaurian ornithischians to which the juvenile hadrosaurids were closer in size, to
24	investigate the possibility that pedal shape change during hadrosaurid ontogeny would have been
25	great enough for feet (and therefore footprints) of young hadrosaurids to have been more similar
26	to those of small-bodied ornithischians than those of large adult hadrosaurids. Although possible
27	allometric shape changes in hadrosaurid pedal proportions are detected, these are so subtle that
28	the feet of young hadrosaurids are far more similar to those of adult hadrosaurs than those of
29	small-bodied, non-hadrosaurid, ornithischians. Footprints made by conspecific hadrosaurids of
30	different size and age are therefore likely to have been similar in shape, and footprints made by
31	juvenile hadrosaurs are unlikely be misidentified as prints made by adults of smaller-bodied,
32	more gracile, bipedal ornithischians.
22	
34	1. Introduction
35	
36	Because dinosaurs hatched from eggs, thereby limiting the maximum body size of a
37	newly hatched individual, dinosaur species characterized by large adult body sizes could span a
38	substantial ontogenetic size range (Carpenter, 1999). Footprints thought to have been made by
39	small (or at least immature) dinosaurs are known for several trackmaker clades (Currie and
40	Sarjeant, 1979; Lockley et al., 1994, 2006, 2012; Pascual-Arribas and Hernández-Medrano,
41	2011; Dalman, 2012; Kim et al., 2012, 2018, 2019; Fiorillo et al., 2014; Xing and Lockley, 2014;
42	Fiorillo and Tykoski, 2016; Díaz-Martínez et al., 2015a; Castanera et al. 2020; Enriquez et al.
43	2021), but distinguishing footprints of a particular morphotype made by juveniles of large-

44 bodied species from those of adults of small-bodied species remains challenging.

45	Hadrosaurids were large to enormous plant-eating dinosaurs that were prominent
46	components of Late Cretaceous dinosaur faunas (Horner et al., 2004). Footprints made by large
47	ornithopods, including hadrosaurids, are common in Cretaceous dinosaurian ichnofaunas
48	(Lockley et al. 2014; Díaz-Martínez et al., 2015b). At some tracksites footprints attributed to
49	hadrosaurids or other large iguanodontians come in distinct size classes, suggesting the
50	possibility that they represent age-classes of a single species (Matsukawa et al., 1999, 2001;
51	Fiorillo et al., 2014; cf. Lockley et al., 2012). This prompts questions of whether the feet (and
52	thus footprints) of juvenile hadrosaurids can be expected to be similar in shape to those of larger
53	individuals, only smaller, or whether they would also differ in shape from those of their elders,
54	perhaps being closer in form to similar-sized feet of smaller-bodied adults of different
55	ornithischian clades. As noted by Castanera et al. (2020: 408), "little is known about the
56	influence of ontogenetic changes in the feet of ornithopod dinosaurs and thus possible footprint
57	shape variations." Might ontogenetic changes in hadrosaurid foot shape mirror phylogenetic
58	changes observed from basal ornithopods through derived, large iguanodontians (Moreno et al.
59	2007)? In this study, we compare pedal dimensions in a large sample of hadrosaurids and
60	bipedal, non-hadrosaurid ornithischians in order to assess ontogenetic change in pedal
61	morphology among hadrosaurs, to determine if tracks left by juvenile hadrosaur feet could be
62	confused with those left by adults of small-bodied ornithischians.

63

64 **2. Materials and methods**

65 2.1. Institutional abbreviations

66	CMNFV: Canadian Museum of Nature, Ottawa, Ontario; LACM: Natural History Museum of
67	Los Angeles County, California; MOR: Museum of the Rockies, Bozeman, Montana; TMP:
68	Royal Tyrrell Museum of Palaeontology, Drumheller, Alberta; YPM: Peabody Museum of
69	Natural History, Yale University, New Haven, Connecticut.
70	
71	2.2. Specimen descriptions
72	This study was specifically prompted by a report of juvenile individuals of
73	Prosaurolophus maximus (Hadrosauridae, Saurolophinae) from the Upper Cretaceous Bearpaw
74	Formation of southern Alberta (Drysdale et al., 2019)). In one of these specimens, TMP
75	2016.37.1 (Fig. 1A, B; supplemental animation [right]), between the left and right feet,
76	metatarsals II and III and all the phalanges of the foot are preserved. A second specimen, TMP
77	1998.50.1, is less complete, but still preserves several pedal phalanges.
78	Prior to the description of these specimens, Prieto-Marquez and Guenther (2018)
79	described perinatal specimens of Maiasaura peeblesorum (Hadrosauridae, Saurolophinae) from
80	the Upper Cretaceous Two Medicine Formation of Montana. Among these was YPM VPPU
81	22400 (Fig. 1C; supplemental animation [left]), a composite right foot assembled from scattered
82	bones of several young individuals of about the same size from the same locality (John R.
83	Horner (personal communication 2 August 2018). This specimen is of particular interest due to
84	its diminutive size (Wosik et al. 2017 described a very young Edmontosaurus individual of
85	comparable size that regrettably did not preserve pedal phalanges), but its composite nature
86	means it must be treated cautiously. Possible sources of error associated with treating the
87	composite baby as a valid data point include both the possibility of misidentification of

88	phalanges and possible differences in relative proportions of phalanges among the different
89	perinatal individuals.
90	A fourth small hadrosaurid specimen (MOR 471; Fig. 2D), identified as Hypacrosaurus
91	stebingeri (Hadrosauridae, Lambeosaurinae), is intermediate in size between TMP 2016.37.1 and
92	YPM VPPU 22400. We also measured a foot of Edmontosaurus annectens (Hadrosauridae,
93	Saurolophinae; LACM 7233/23504) that is very close in size to TMP 2016.37.1.
94	
95	2.3. Measurements and data analyses
96	We measured pedal phalanges of juvenile and adult hadrosaurids, and of other bipedal, or
97	facultatively or potentially bipedal, ornithischians (Maidment and Barrett 2014). These include
98	some basal ceratopsians (cf. Chinnery and Horner 2007; Senter 2007; Lee et al. 2011;
99	Morschhauser et al. 2018; Slowiak et al. 2019). We did not, however, include stegosaurs, which
100	some authors (e.g. Gierliñski and Sabath 2008) have interpreted as bipedal, but which most
101	workers regard as quadrupedal (Maidment and Barrett 2014).
102	Massurements were made by ourselves (mostly by Ferlow) on the rholences of disits U

Measurements were made by ourselves (mostly by Farlow) on the phalanges of digits II-IV of the ornithischians examined in this study. The innermost hindfoot toe (digit I) is present in basal ornithopods and in ceratopsians, but is lost in derived iguanodontians, including hadrosaurids (Moreno et al. 2007), and so will not be considered in this study (but see Farlow et al. 2018 for a consideration of the relative size of digit I in bipedal dinosaurs more generally). Phalanges were measured following the protocols of Farlow et al. (2018: pp. 10-11; Fig. 2 here). Non-ungual phalanx lengths were measured on the medial and lateral sides of the bone,

109 from roughly the dorsoventral midpoint along the concave proximal articular end to roughly the

dorsoventral midpoint along the convex distal articular end of the bone. Ungual lengths were
measured in a straight-line manner on the medial and lateral sides of the bone from roughly the
dorsoventral midpoint along the concave proximal articular end of the bone to the tip of the
bone. For specimens in which only the medial or lateral length could be measured, that value was
used in the analysis; otherwise the medial and lateral lengths were averaged. Widths were the
maximum transverse dimension along the distal ends of non-ungual phalanges.

The specific measurements used in this study were those that could readily be made on TMP 2016.37.1. Measurements for that specimen, TMP 1998.50.1, MOR 471, and YPM VPPU 22400 are given in Table 1; measurements for other ornithischian feet are taken from Farlow et al. (2018: Appendix Table A1.1, pp. 379-391), which provides detailed information about the specimens.

Both bivariate and multivariate analyses of measurements were done, using IBM SPSS 121 Statistics version 26. For investigations of allometry and for principal components analysis 122 123 (PCA), the parameters compared were log-transformed prior to analysis. For investigations of allometry, both ordinary least squares (OLS) regression and reduced major axis (RMA) bivariate 124 analyses were done, both including and excluding the composite neonate specimen of 125 126 Maiasaura. Allometry was inferred if the 95 % confidence interval (CI) of the slope of the 127 bivariate analysis excluded a value of 1.000. For RMA analyses, the CIs were mostly calculated 128 in SPSS following Rayner (1985: Table 1) and Leduc (1987), but for CIs that this protocol that presented as statistically significant, the CIs were also calculated in the statistical package Past 129 version 4.06 (cf. Hammer et al., 2001). Due to the relatively small sample size of measurable 130 131 foot skeletons, each foot was treated as an independent data case, and no attempt was made to consider the effects of different numbers of specimens across taxa, or to correct for variable 132

133 phylogenetic propinquity. However, we do note where a particular taxon may be strongly

134 affecting the overall results.

135

136 **3. Results**

137 *3.1. Principal components analysis*

In the PCA of the entire ornithischian sample, including the composite baby *Maiasaura*specimen (Table 2), more than 90 % of the data variance is associated with the first principal
component. All of the pedal parameters show positive loadings on that first component,
indicating that it is associated with overall size. The remaining data variance is mainly associated
with PC 2 (about 5 %) and PC 3 (about 1.5 %).

Variables with positive loadings on PC 2 are the lengths of phalanges distal to the first 143 144 (most proximal) phalanx of digits II-IV, while variables with negative loadings are the lengths of 145 the first (most proximal) phalanges of the three digits and the widths of phalanges III2 and IV2. Hadrosaurids and other large iguanodontians plot more negatively along PC 2 than other 146 147 ornithischians in the sample (Fig. 3A), with the single data case for *Camptosaurus* plotting between the trends for the relatively stout hadrosaurids and other large iguanodontians, on the 148 one hand, and the more gracile ornithischians on the other (cf. Gierliński and Sabath 2008). 149 Hadrosaurids and large iguanodontians, and the more gracile ornithischians, show parallel trends 150 151 along PC 2, with hadrosaurids and other big iguanodontians becoming less negative, and the gracile forms increasingly positive, with increasing foot size. The small, juvenile hadrosaurids 152 153 plot along the overall large-ornithopod trend of PC 2, much more negatively than gracile ornithischians of comparable size. 154

155	Scatterplots of selected aspects of PC 2 (Fig. 3B, C) allow exploration of these shape
156	features with more data cases than PC 2 itself, because they allow use of data cases for which
157	some of the components of PC 2 could not be measured. Plotting the ratio of the combined
158	length of phalanges III2-III4 to the length of phalanx III1 (Fig. 3B) again shows the larger
159	iguanodontians to have relatively shorter distal phalanges than more gracile ornithischians, with
160	Tenontosaurus in the gracile group displaying an interesting tendency to increase the relative
161	length of the distal part of the toe with increasing digit III length. The smaller hadrosaurids are
162	clearly more like their larger kin than like gracile ornithischians of similar size in this
163	comparison; hadrosaurids show no strong tendency for size-related change (but see below) in the
164	ratio, especially if the Maiasaura baby is included in the sample (although Edmontosaurus, one
165	of the biggest hadrosaurids in the sample, seems to take larger values of the ratio than other,
166	smaller hadrosaurids).

167 The relative width of phalanx III2 (Fig. 3C) is another aspect of PC 2. Across the 168 ornithischians in our sample, the relative breadth of phalanx III2 increases with increasing 169 animal size (cf. Moreno et al. 2007; Lockley 2009; Farlow et al. 2018). However, the smaller, 170 younger hadrosaurid specimens again are more like their elders than like gracile ornithischians to 171 which they are more similar in size. There is no indication of an increase in relative stoutness of 172 digit III with increasing digit length in hadrosaurids.

Variables with positive loadings on PC 3 (Table 2) include the lengths of all the nonungual phalanges of digits II-IV, while variables with negative loadings include the ungual
lengths, and to a lesser extent phalanx widths. A scatterplot of PC 3 against PC 1 (Fig. 3D)
doesn't provide as clear separation of hadrosaurids from gracile ornithischians, but it does
distinguish hadrosaurids from other large iguanodontians, with hadrosaurids taking more positive

values of PC 3. There is a suggestion that PC 3 may become more positive with increasing sizein hadrosaurids, if the composite *Maiasaura* baby is included in the sample.

180 The ratio of ungual III4 length to the combined lengths of non-ungual phalanges of digit 181 III (Fig. 3E) is an aspect of PC 3, with higher values of the ratio associated with more negative values of PC 3. The relative length of ungual III4 of hadrosaurids is comparable to that of many 182 183 gracile ornithischians, although *Tenontosaurus* has a relatively longer ungual that becomes proportionally even longer with increasing size. Hadrosaurids have a relatively shorter ungual 184 185 than other big iguanodontians. Because more positive values of PC3 are associated with 186 relatively long non-ungual phalanges (Table 2), and, as already noted, hadrosaurids may show more positive values of PC3 with increasing foot size (Fig. 3D), one might expect ungual III4 to 187 become shorter with respect to the length of the non-ungual phalanges of digit III with increasing 188 189 size, but this does not occur (Fig. 3E). If anything, ungual III4 becomes relatively longer, especially in Edmontosaurus. 190

191

192 *3.2. Bivariate comparisons in hadrosaurids*

Restricting comparisons to hadrosaurs, and to comparisons of relative sizes of phalangeal parameters within single digits, allows further exploration of the trends identified by PCA with a larger sample size. Consistent with the relationship between PC 2 and PC 1 seen in hadrosaurids (Fig. 3A), the slope of the log-transformed length of phalanx III2 against that of phalanx III1 in hadrosaurids is greater than 1, whether the composite *Maiasaura* baby is included or not in the sample, and whether the slope is computed with an OLS regression or reduced major axis model (Table 3). However, the 95 % confidence interval of the slope does not exclude a value of 1 in

200 any of the four versions of the relationship, and so the slopes are not significantly different than 1 201 (isometry). The relationship between the log-transformed length of phalanx III3 against that of phalanx III1, in contrast, has calculated slope values less than 1 in three of the four versions of 202 203 the relationship, but again without any of the 95 % confidence limits excluding 1. The slope of the log-transformed combined lengths of phalanges III2-III4 against the log-transformed length 204 205 of phalanx III1 in the four versions of the relationship shows the same pattern of results as seen in the four versions of the relationship between the log-transformed length of phalanx III2 206 against the log-transformed phalanx III1 (Fig. 3B). All told, these results suggest, but do not 207 208 demonstrate, the possibility of positive allometry of the length of at least some of the more distal phalanges relative to the length of the first phalanx of digit III. For digit II, in contrast to digit III, 209 the relationship between the log-transformed combined lengths of the distal phalanges against 210 211 the log-transformed length of the first phalanx (Table 3) does not show consistent patterns across the four versions of the relationship. For digit IV three of the four versions of the relationship 212 between log-transformed combined lengths of the distal phalanges against the log-transformed 213 length of the first phalanx have slopes less than 1. For none of the relationships between 214 proximal and distal phalanges in digits II and IV does the slope differ significantly from 1. 215

The relative widths of phalanges have negative loadings on both PC 2 and PC 3 (Table 2). Three of the four versions of the relationship between log-transformed phalanx III2 width and log-transformed digit III length have slopes greater than 1 (Table 3), but in none of these does the slope differ significantly from 1 (cf. Fig. 3C).

The lengths of the unguals relative to the lengths of non-ungual phalanges are the main contributors to PC 3 (Fig. 3D, 3E). For digit III, the relationship between log-transformed ungual length and the log-transformed combined lengths of the non-ungual phalanges has slopes with

values greater than 1 in all four versions of the comparison (Table 3); if the composite baby *Maiasaura* foot is excluded from the comparison, both the regression and the RMA slopes have
95 % confidence limits whose minimum values are at least barely greater than 1. For digit II,
three of the four versions of the corresponding comparison yield slopes greater than 1, albeit
without being significantly different than 1. For digit IV, in contrast, the slopes of all four
versions of the relationship are less than 1, but again without being significantly different than 1.

Across the ornithischians in our sample, two clear tendencies are observed as animal size increases: 1) an increase in aggregate length of the phalanges of digit II (Fig. 4A), but not digit IV (Fig. 4B), relative to the aggregate length of the phalanges of digit III; and 2) decrease in length of digit IV relative to the length of digit II (Fig. 4C). Hadrosaurids do not differ from other ornithischians of comparable size in the relative lengths of the three digits.

For hadrosaurids alone, if the composite *Maiasaura* baby is included in the sample, OLS 234 regression and RMA slopes, for both log-transformed digits II and IV, show slight but significant 235 positive allometry with respect to the length of log-transformed digit III, and also with respect to 236 the log-transformed length of just phalanx III1 (probably the most important weight-bearing 237 bone of the digital portion of the foot) (Table 3). Excluding the composite *Maiasaura* baby, the 238 239 RMA slopes for the log-transformed lengths of both digits II and IV, against the log-transformed length of digit III, remain at least slightly greater than 1 without being statistically significant. 240 Excluding the composite Maiasaura baby, the regression slope for log-transformed digit IV 241 against the log-transformed length of digit III is also greater than 1, but that of log-transformed 242 digit II is less than 1, with neither of these slopes being statistically significant. Again excluding 243 244 the composite *Maiasaura* baby, both regression and RMA slopes of the relationship between logtransformed digit II and IV length and log-transformed phalanx III1 length are greater than 1, 245

with the RMA slope between log-transformed digit IV length and log III1 length being slightly
but significantly greater than 1. The RMA and regression slopes of log-transformed digit IV
length against the log-transformed length of digit II are greater than 1, albeit just barely if the
composite *Maiasaura* baby is excluded, but none of these slopes is significantly different than 1.

250

251 4. Concluding Remarks

Although, as usual in dinosaur paleontology, additional specimens, particularly of very young hadrosaurids, would be desirable, some conclusions about ontogeny and foot shape seem valid. Across the size range of hadrosaurids in our sample, there are suggestions of at least subtle shape change from small to large individuals, but most of these are not statistically significant. Those that are significant are greatly affected by whether or not the composite *Maiasaura* baby, whose foot is much smaller than that of any other pedal specimen in our sample, is included in the analysis.

Even if the composite Maiasaura baby foot is included in the comparison, it appears that 259 very young hadrosaurids had feet more similar in shape to those of their large elders than to feet 260 261 of similar-sized, non-hadrosaurid ornithischians (Figs. 1, 3, 4). Any allometric changes in foot, 262 and thus footprint, shape during ontogeny would not have been great enough for the juvenile pes or pes print to look recognizably different from that of an adult in any feature other than size (cf. 263 264 Dodson 1986 for ceratopsids). Stating things baldly-and perhaps with a degree of exaggeration--over the span of its lifetime, a hadrosaurid (and presumably any other large-bodied 265 iguanodontian as well) would likely not have transitioned from making Anomoepus-like 266

267 footprints as a neonate to making *Caririchnium*-like or *Hadrosauropodus*-like footprints as a268 fully-grown adult.

269 This conclusion corroborates inferences from the ichnological record. Published 270 descriptions of footprints attributed to large iguanodontians commonly report two size parameters, footprint length and width. Footprints assigned to the (possibly questionable: 271 272 Lockley et al., 2014; Díaz-Martínez et al., 2015b) ichnogenus Ornithopodichnus from the Lower 273 Cretaceous of Korea and China (Kim et al., 2009; Lockley et al., 2012; Xing and Lockley, 2014) span a significant size range, with lengths ranging ca. 12-43 cm. (Interestingly, the smaller 274 275 footprints would have been made by dinosaurs about the same size as our TMP 2016.37.1.) The 276 length: width ratio of the small and large prints is very similar, suggesting relatively little or no shape change between the small and large trackmakers (as noted by Lockley et al. 2012). The 277 278 same is true of Caririchnium from the mid-Cretaceous Dakota Group of Colorado (Matsukawa et al., 1999), Hadrosauropodus from the Upper Cretaceous Cantwell Formation of Alaska (Fiorillo 279 et al., 2014; Fiorillo and Tykoski, 2016), and Amblydactylus (or Caririchnium-Díaz-Martínez 280 et al., 2015b) from the Lower Cretaceous Gething Formation (Fig. 5) of British Columbia 281 (Currie and Sarjeant, 1979). The lack of dramatic pedal shape change between small and large 282 283 hadrosaurids reported in this study suggests—but obviously does not prove, given the likely similarity of foot shape across large iguanodontian trackmaker species—that small and large 284 285 specimens of iguanodontian footprints of similar shape, found at the same tracksite or at least in 286 the same ichnofauna, could well have been made by juvenile and adult individuals of the same zoological species. 287

288

289 5. Acknowledgments

пΛ.
14

290	We thank Dan Brinkman for facilitating access to the composite <i>Maiasaura</i> baby foot,
291	and Jack Horner for information about its composition. Jens Lallensack provided useful
292	discussion; Peter Dodson and Martin Lockley provided helpful reviews that greatly improved our
293	text and analyses. Jim Whitcraft assisted in the production of figures. This research was
294	supported by NSF EAR 9612880 to Farlow.
295	
296	6. References
297	Carpenter, K. 1999. Eggs, Nests, and Baby Dinosaurs. Indiana University Press, Bloomington,
298	Indiana.
299	Castanera, D., Silva, B.C., Santos, V.F., Malafaia, E., and Belvedere, M. 2020. Tracking Late
300	Jurassic ornithopods in the Lusitanian Basin of Portugal: ichnotaxonomic implications.
301	Acta Palaeontologica Polonica 65, 399-412.
302	Chinnery, B.J., and Horner, J.R. 2007. A new neoceratopsian dinosaur linking North American
303	and Asian taxa. Journal of Vertebrate Paleontology 27, 625-641.
304	Currie, P.J., and Sarjeant, W.A.S. 1979. Lower Cretaceous dinosaur footprints from the Peace
305	River Canyon, British Columbia, Canada. Palaeogeography, Palaeoclimatology,
306	Palaeoecology 28, 103-115.
307	Dalman, S.G., 2012. New data on small theropod footprints from the Early Jurassic (Hettangian)
308	Hartford Basin of Massachusetts, United States. Bulletin of the Peabody Museum of
309	Natural History 53, 333-353.

310	Díaz-Martínez, I., García-Ortiz, E., and Pérez-Lorente, F., 2015a. A new dinosaur tracksite with
311	small footprints in the Urbión Group (Cameros Basin), Lower Cretaceous, La Rioja,
312	Spain). Journal of Iberian Geology 41, 167-175.
313	Díaz-Martínez, I., Pereda-Suberbiola, X., Pérez-Lorente, F., and Canudo, J.I., 2015b.
314	Ichnotaxonomic review of large ornithopod dinosaur tracks: temporal and geographic
315	implications. PLoS One 10(2):e115477.doi:10.1371/journal.pone.0115477.
316	Dodson, P. 1986. Avaceratops lammersi: a new ceratopsid from the Judith River Formation of
317	Montana. Proceedings of the Academy of Natural Sciences of Philadelphia 138: 305-317.
318	Drysdale, E.T., Therrien, F., Zelenitsky, D.K., Weishampel, D.B., and Evans, D.C., 2019.
319	Description of juvenile specimens of Prosaurolophus maximus (Hadrosauridae,
320	Saurolophinae) from the Upper Cretaceous Bearpaw Formation of southern Alberta,
321	Canada, reveals ontogenetic changes in crest morphology. Journal of Vertebrate
322	Paleontology. DOI: 10.1080/02724634.2018.1547310.
323	Enriquez, N.J., N.E. Campione, T. Brougham, F. Fanti, M.A. White, R.L. Sissons, C. Sullivan,
324	M.J. Vavrek, and P.R. Bell. 2021. Exploring possible ontogenetic trajectories in
325	tyrannosaurids using tracks from the Wapiti Formation (Upper Campanian) of Alberta,
326	Canada. Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2021.1878201.
327	Farlow, J.O., Coroian, D., and Currie, P.J. 2018. Noah's Ravens: Interpreting the Makers of
328	Tridactyl Dinosaur Footprints. Indiana University Press, Bloomington, Indiana.
329	Fiorillo, A.R., and Tykoski, R.S. 2016. Small hadrosur manus and pes tracks from the lower
330	Cantwell Formation (Upper Cretaceous) Denali National Park, Alaska: implications for
331	locomotion in juvenile hadrosaurs. Palaios 31, 479-482.

332	Fiorillo, A.R., Hasiotis, S.T., and Kobayashi, Y. 2014. Herd structure in Late Cretaceous polar
333	dinosaurs: a remarkable new dinosaur tracksite, Denali National Park, Alaska, USA.
334	Geology 42, 719-722.
335	Gierliński, G., and K. Sabath. 2008. Stegosaurian footprints from the Morrison Formation of
336	Utah and their implications for interpreting other ornithischian tracks. Ocrytos 8, 29-46.
337	Hammer, Ø., Harper, D.A.T., and Ryan, P.D. 2001. Past: Palaeontological statistics software
338	package for education and data analysis. Palaeontologia Electronica 4; http://palaeo-
339	electronica.org/2001_past/issue1_01.html.
340	Horner, J.R., Weishampel, D.B., and Forster, C.A., 2004. Hadrosauridae. In: Weishampel, D.B.,
341	Dodson, P., & Osmólska, H. (Eds.), The Dinosauria. Second Edition. University of
342	California Press, Berkeley, 438-463.
343	Kim, K.S., Lockley, M.G., Kim, Y.K., and Seo, S.J., 2012. The smallest dinosaur tracks in the
344	world: occurrences and significance of Minisauripus from east Asia. Ichnos 19, 66-74.
345	Kim, K.S., Lim, J.D., Lockley, M.G., Xing, L., Kim, D.H., Piñuela, L., Romilio, A., Yoo, J.S.,
346	and Ahn, J., 2018: Smallest known raptor tracks suggest microraptorine activity in
347	lakeshore setting. Scientific Reports 8:16908/doi:10.1038/s41598-018-35289-4.
348	Kim, K.S., Lockley, M.G., Lim, J.D., and Xing, L., 2019. Exquisitely-preserved, high-definition
349	skin traces in diminutive theropod tracks from the Cretaceous of Korea. Scientific
350	Reports 9: 2039/https://doi.org/10.1038/s41598-019-38633-4.
351	Kim, J.Y., Lockley, M.G., Kim, H.M., Lim, JD., and Kim, K.S. 2009. New dinosaur tracks
352	from Korea, Ornithopodichnus masanensis ichnogen. et ichnosp. nov. (Jindong

353	Formation, Lower Cretaceous): implications for polarities in ornithopod foot
354	morphology. Cretaceous Research 30, 1387-1397.
355	Leduc, D.J. 1987. A comparative analysis of the reduced major axis technique of fitting lines to
356	bivariate data. Canadian Journal of Forestry Research 17, 654-659.
357	Lee, YN., Ryan, M.J., and Kobayashi, Y. 2011. The first ceratopsian dinosaur from Korea.
358	Naturwissenschaften 98, 39-49.
359	Lockley, M.G. 2009. New perspectives on morphological variation in tridactyl footprints: clues
360	to widespread convergence in developmental dynamics. Geological Quarterly 53, 415-
361	432.
362	Lockley, M.G., Huh, M., and Kim, B.S. 2012. Ornithopodichnus and pes-only sauropod
363	trackways from the Hwasun tracksite, Cretaceous of Korea. Ichnos 19, 93-100.
364	Lockley, M.G., Meyer, C.A., and dos Santos, V.F., 1994. Trackway evidence for a herd of
365	juvenile sauropods from the Late Jurassic of Portugal. Gaia 10, 27-35.
366	Lockley, M.G., Xing, L., Lockwood, J.A.F., and Pond, S. 2014. A review of large Cretaceous
367	ornithopod tracks, with special reference to their ichnotaxonomy. Biological Journal of
368	the Linnean Society 113, 721-736.
369	Lockley, M.G., Houck, K., Yang, SY., Matsukawa, M., and Kim, SK., 2006. Dinosaur-
370	dominated footprint assemblages from the Cretaceous Jindong Formation, Hallyo
371	Haesang National Park area, Goseong County, South Korea: evidence and implications.
372	Cretaceous Research 27, 70-101.

\sim	111	\mathbf{a}	D	r,		12	\sim	
U.	ա	αu				ц.	U	

373	Maidment, S. C. R., and Barrett, P. M. 2014. Osteological correlates for quadrupedality in
374	ornithischian dinosaurs. Acta Palaeontologica Polonica 59, 53-70.
375	Matsukawa, M., Lockley, M.G., and Hunt, A.P., 1999. Three age groups of ornithopods inferred
376	from footprints in the mid-Cretaceous Dakota Group, eastern Colorado, North America.
377	Palaeogeography, Palaeoclimatology, Palaeoecology 147, 39-51.
378	Matsukawa, M., Matsui, M., and Lockley, M.G., 2001. Trackway evidence of herd structure
379	among ornithopod dinosaurs from the Cretaceous Dakota Group of northeastern New
380	Mexico, USA. Ichnos 8, 197-206.
381	Moreno, K., M.T. Carrano, and K. Snyder. 2007. Morphological changes in pedal phalanges
382	through ornithopod dinosaur evolution: a biomechanical approach. Journal of
383	Morphology 268, 50-63.
384	Morschhauser, E. M., You, H., Li, D., and Dodson, P. 2018. Postcranial morphology of the basal
385	neoceratopsian (Ornithischia: Ceratopsia) Auroraceratops rugosus from the Early
386	Cretaceous (Aptian-Albian) of northwestern Gansu Province, China. Journal of
387	Vertebrate Paleontology Memoir 18, Volume 38 Supplement, 75-116.
388	Pascual-Arribas, C., and Hernández-Medrano, N., 2011. Posibles huellas de crías de terópodo en
389	el Yacimiento de Valdehijuelos (Soria, España). Studia Geologica Salmanticensia 47, 77-
390	110.
391	Prieto-Marquez, A., and Guenther, A.F., 2018. Perinatal specimens of Maiasaura from the
392	Upper Cretaceous of Montana (USA): insights into the early ontogeny of saurolophine
393	hadrosaurid dinosaurs. PeerJ 6:e4734; DOI 10.7717/peerj.4734.

- Rayner, J.M.V. 1985. Linear relations in biomechanics: the statistics of scaling functions. Journal
 of Zoology, London 206, 415-439.
- Senter, P. 2007. Analysis of forelimb function in basal ceratopsians. Journal of Zoology 273,
 305-314.
- 398 Slowiak, J., Tereshchenko, V.S., and Fostowicz-Frelik, L. 2019. Appendicular skeleton of
- 399 *Protoceratops andrewsi* (Dinosauria, Ornithischia): comparative morphology,
- 400 ontogenetic changes, and the implications for non-ceratopsid ceratopsian locomotion.
- 401 PeerJ 7: e7324 DOI 10.7717/peerj.7324.
- 402 Wosik, M., M.B. Goodwin, and D.C. Evans. 2017. A nestling-sized skeleton of *Edmontosaurus*
- 403 (Ornithischia, Hadrosauridae) from the Hell Creek Formation of northeastern Montana,
- 404 U.S.A., with an analysis of ontogenetic limb allometry. Journal of Vertebrate
- 405 Paleontology 37, DOI: 10.1080/02724634.2017.1398168.
- 406 Xing, L., and Lockley, M.G. 2014. First report of small Ornithopodichnus trackways from the
- 407 Lower Cretaceous of Sichuan, China. Ichnos 21, 213-222.

Table 1	. Measuremen	nts of pedal	phalang	es of juvenile hadros	aurids; measurements
				THE 2016 27 1 (F)	

used are those parameters measurable on TMP 2016.37.1 (Fig. 1A, B). All

measurements in millimeters.

	1						
Species	Specimen	Phalanx Ler	Phalanx Length (L) or Distal Width (dw)				
Prosaurolophus	TMP	II1L: 78	II2L: 31	II3L: 47			
maximus	2016.37.1	III1L: 73	III2L: 23	III2dw: 71	III3L: 18	III4L: 46	
		IV1L: 57	IV2L: 12	IV2dw: 51	IV3L: 11	IV4L: 15	IV5L: 45
Prosaurolophus	TMP	II1L: 67	II2L: 21	II3L: 39	0		
maximus	1998.50.1	III1L: 62	III2L:	s	5		
		IV1L: 53	IV2L: 15	0	IV3L: 8		IV5L: 32
Hypacrosaurus	MOR	II1L: 64	II2L: 21	II3L: 41			
stebingeri	471 TM-	III1L: 65	III2L: 17	III2dw: 54	III3L: 13	III4L: 39	
	019	IV1L: 46	IV2L: 12	IV2dw: 39	IV3L: 9	IV4L: 9	IV5L: 40
Maiasaura	YPM	II1L: 14	II2L: 7	II3L: 11			
peeblesorum	VPPU	III1L: 19	III2L: 6	III2dw: 15	III3L: 6	III4L: 14	
composite foot	22400	IV1L: 11	IV2L: 4	IV2dw: 9	IV3L: 3	IV4L: 3	IV5L: 11

408

Table 2. Principal components analysis (PCA, using a covariance matrix) of logtransformed linear dimensions of pedal phalanges of bipedal and potentially bipedal ornithischian dinosaurs. Parameters used in the analysis are those that could be measured in TMP 2016.37.1. Number of specimens = 36.

Parameter	PC1 loading (raw	PC2 loading	PC3 loading (raw
	[rescaled])	(raw [rescaled])	[rescaled])
Phalanx II1 Length	0.281 (0.979)	-0.043 (-0.148)	0.023 (0.079)
Phalanx II2 Length	0.224 (0.974)	0.016 (0.069)	0.039 (0.169)
Phalanx (Ungual) II3 Length	0.250 (0.952)	0.042 (0.161)	-0.061 (-0.234)
Phalanx III1 Length	0.279 (0.960)	-0.075 (-0.257)	0.024 (0.082)
Phalanx III2 Length	0.200 (0.937)	0.048 (0.223)	0.047 (0.222)
Phalanx III2 Distal Width	0.336 (0.959)	-0.093 (-0.266)	-0.009 (-0.027)
Phalanx III3 Length	0.184 (0.924)	0.063 (0.314)	0.026 (0.132)
Phalanx (Ungual) III4 Length	0.244 (0.957)	0.047 (0.184)	-0.047 (-0.185)
Phalanx IV1 Length	0.292 (0.975)	-0.056 (-0.186)	0.022 (0.074)
Phalanx IV2 Length	0.210 (0.913)	0.085 (0.368)	0.017 (0.073)
Phalanx IV2 Distal Width	0.338 (0.978)	-0.062 (-0.178)	-0.023 (-0.066)
Phalanx IV3 Length	0.197 (0.912)	0.082 (0.381)	0.012 (0.055)
Phalanx IV4 Length	0.202 (0.922)	0.072 (0.328)	0.009 (0.043)
Phalanx (Ungual) IV5 Length	0.265 (0.977)	0.023 (0.084)	-0.048 (-0.176)
Eigenvalues (&% of variance)	0.910 (91.662)	0.053 (5.348)	0.015 (1.552)
Cumulative variance explained (%)	91.662	97.010	98.562
Kaiser-Meyer-Olkin Measure of Sampling	Adequacy = 0.927; Ba	rtlett's Test of Sphe	ricity: chi-square =
1366.093, p < 0.001			

410

Table 3. Regression and reduced major axis slopes of bivariate relationships between log-transformed linear measurements of hadrosaur foot skeletons. "Including" and "excluding" refer to whether or not the composite foot skeleton of the neonate *Maiasaura peeblesorum* specimen is included in the sample. Slope values in **bold** have a 95 % CI that excludes 1.000, indicating that the slope has a value significantly different than 1. For RMA slopes that present as statistically different than 1, the 95 % CI was calculated two ways: following Rayner (1985) and Leduc (1987) (top line), and using the program PAST (Hammer et al., 2001; bottom line).

Independent	Dependent	Method	Sample	\mathbb{R}^2	Slope	95 % CI	N
Variable	Variable	C	R				
Phalanx III1	Phalanx III2	Regression	Including	0.885	1.063	0.905-1.221	27
Length	Length		Excluding	0.667	1.072	0.753-1.390	26
	0	RMA	Including	0.885	1.130	0.973-1.312	27
			Excluding	0.667	1.312	0.965-1.783	26
	Phalanx III3	Regression	Including	0.822	0.895	0.723-1.067	27
	Length		Excluding	0.590	0.980	0.636-1.324	26
	2	RMA	Including	0.822	0.988	0.813-1.199	27
			Excluding	0.590	1.276	0.884-1.841	26
	Combined Length	Regression	Including	0.912	1.012	0.873-1.151	24
	Phalanges III2-III4		Excluding	0.754	1.099	0.814-1.384	23
		RMA	Including	0.912	1.060	0.923-1.217	24
			Excluding	0.754	1.265	0.971-1.650	23
Digit III Length	Digit III Ungual	Regression	Including	0.952	1.058	0.953-1.163	24
Excluding	Length		Excluding	0.884	1.198	1.002-1.395	23
Ungual		RMA	Including	0.952	1.085	0.982-1.198	24
			Excluding	0.884	1.274	1.079-1.504	23

						1.049-1.399	
Phalanx II1	Combined Length	Regression	Including	0.955	0.974	0.878-1.070	23
Length	Phalanges II2-II3		Excluding	0.878	1.060	0.876-1.245	22
		RMA	Including	0.955	0.997	0.903-1.100	23
			Excluding	0.878	1.132	0.950-1.349	22
Digit II Length	Digit II Ungual	Regression	Including	0.933	0.991	0.871-1.111	23
Excluding	Length		Excluding	0.814	1.027	0.798-1.256	22
Ungual		RMA	Including	0.933	1.026	0.908-1.159	23
			Excluding	0.814	1.138	0.907-1.428	22
Phalanx IV1	Combined Length	Regression	Including	0.947	0.945	0.837-1.052	21
Length	Phalanges IV2-IV5		Excluding	0.829	0.989	0.767-1.212	20
		RMA	Including	0.947	0.971	0.866-1.088	21
		\circ	Excluding	0.829	1.086	0.864-1.366	20
Digit IV Length	Digit IV Ungual	Regression	Including	0.941	0.942	0.829-1.055	21
Excluding	Length		Excluding	0.803	0.882	0.686-1.098	20
Ungual		RMA	Including	0.941	0.971	0.860-1.096	21
			Excluding	0.803	0.984	0.766-1.264	20
Digit III Length	Digit II Length	Regression	Including	0.986	1.100	1.036-1.164	20
			Excluding	0.959	0.992	0.888-1.096	19
		RMA	Including	0.986	1.108	1.044-1.175	20
						1.073-1.254	
			Excluding	0.959	1.013	0.911-1.126	19
	Digit IV Length	Regression	Including	0.987	1.106	1.043-1.169	20
			Excluding	0.954	1.059	0.940-1.178	19
		RMA	Including	0.987	1.113	1.051-1.178	20
						1.072-1.223	
			Excluding	0.954	1.084	0.968-1.213	19

Phalanx III1	Digit II Length	Regression	Including	0.981	1.116	1.042-1.189	21
Length			Excluding	0.939	1.080	0.943-1.216	20
		RMA	Including	0.981	1.126	1.053-1.204	21
						1.057-1.205	
			Excluding	0.939	1.114	0.981-1.264	20
	Digit IV Length	Regression	Including	0.974	1.117	1.030-1.204	21
			Excluding	0.907	1.128	0.949-1.306	20
		RMA	Including	0.974	1.132	1.046-1.224	21
				\mathbf{O}		0.982-1.200	
			Excluding	0.907	1.184	1.009-1.389	20
			Q.			1.047-1.342	
Digit II Length	Digit IV Length	Regression	Including	0.991	1.002	0.949-1.055	17
		Q	Excluding	0.968	1.057	0.947-1.167	16
		RMA	Including	0.991	1.007	0.955-1.061	17
			Excluding	0.968	1.074	0.967-1.193	16
Digit III Length	Phalanx III2 Distal	Regression	Including	0.960	1.018	0.921-1.114	22
	Width		Excluding	0.858	0.941	0.758-1.125	21
	5	RMA	Including	0.960	1.039	0.944-1.143	22
			Excluding	0.858	1.016	0.833-1.238	21

415	Fig. 1. Foot skeletons of small and large specimens of hadrosaurs. Scale bar in panels $A-D = 5$
416	cm. (A, B) Nearly complete left pedal skeleton of TMP 2016.37.1, Prosaurolophus
417	maximus. As preserved, digit II is folded beneath digits III and IV. Individual phalanges
418	are labeled. (A) Dorsal view, showing digits III and IV. The ungual of digit III is missing
419	on this foot, but preserved in the right foot. (B) Ventral view, showing digit II. (C) Dorsal
420	view of composite right foot skeleton of YPM VPPU 22400, Maiasaura peeblesorum.
421	(D) Dorsal view of right foot skeleton of MOR 471, Hypacrosaurus stebingeri. (E)
422	Anterior oblique view right foot of CMNFV 8501, Hypacrosaurus altispinus. Scale in
423	right foreground marked off in cm and inches.
424	

Fig. 2. Measurements of pedal phalanges of hadrosaurs. (A) Non-ungual phalanx in side view,
showing how lengths are measured on either the medial or lateral side of the bone. (B)
Distal articular view of a non-ungual phalanx, showing the measurement of distal width.
(C, D) Measurements of ungual lengths. (C) Side view of bone. (D) Dorsal view of bone,
with lines showing medial and lateral length measurements.

437	positive loadings on PC 2 are lengths of phalanges distal to the first phalanx of digits II-
438	IV, while parameters with negative loadings on PC2 are lengths of the first phalanx of
439	digits II-IV, and phalanx widths. (B) Scatterplot of an aspect of PC 2 (ratio of the
440	combined lengths of the three distal phalanges of digit III to the length of the first
441	phalanx of digit III) against digit III length. (C) Scatterplot of another aspect of PC 2
442	(relative width of phalanx III2) against digit III length. (D) Scatterplot of PC 3 against PC
443	1. Parameters with positive loadings on PC 3 are lengths of the non-ungual phalanges,
444	while parameters with negative loadings on PC 3 are ungual lengths and, to a lesser
445	extent, phalanx widths. (E) Scatterplot of an aspect of PC 3 (ratio of ungual length to the
446	combined lengths of the non-ungual phalanges) of digit III against the length of digit III.
447	
448	Fig. 4. Relative lengths of digits II, III, and IV of hadrosaurs and other bipedal, facultatively
449	bipedal, or potentially bipedal ornithischians. (A) Scatterplot of the length of digit II
450	relative to the length of digit III, as a function of digit III length. (B) Scatterplot of the
451	length of digit IV relative to the length of digit III, as a function of digit III length. (C)
452	Scatterplot of the length of digit IV relative to the length of digit III, as a function of digit
453	III length.

454

Fig. 5. Small (TMP 77.17.06) and large (TMP 76.11.11) footprints, *Amblydactylus kortmeyeri*(Currie and Sarjeant 1979), plausibly attributed to the same iguanodontian species, from
the Lower Cretaceous Gething Formation of British Columbia. Scale marked in 1-cm
increments.

459

- 460 Supplemental animation. Pedal skeletons of juvenile hadrosaurids. (Left) YPM VPPU 22400,
- 461 composite right foot of *Maiasaura peeblesorum*. (Right) TMP 2016.37.1, left foot of
- 462 *Prosaurolophus maximus.*

Journal Prevention

The authors have no conflicts of interest associated with this study.