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Abstract
As a result of heterogeneity nature of soils and variation in its hydraulic conductivity over several orders of magnitude 
for various soil types from fine-grained to coarse-grained soils, predictive methods to estimate hydraulic conductivity 
of soils from properties considered more easily obtainable have now been given an appropriate consideration. This 
study evaluates the performance of artificial neural network (ANN) being one of the popular computational intelligence 
techniques in predicting hydraulic conductivity of wide range of soil types and compared with the traditional multiple 
linear regression (MLR). ANN and MLR models were developed using six input variables. Results revealed that only three 
input variables were statistically significant in MLR model development. Performance evaluations of the developed 
models using determination coefficient and mean square error show that the prediction capability of ANN is far better 
than MLR. In addition, comparative study with available existing models shows that the developed ANN and MLR in this 
study performed relatively better.

Keywords Hydraulic conductivity · Artificial neural network · Multiple linear regression · Predictive model

1 Introduction

Solutions to many geotechnical and geo-environmental 
engineering issues require extensive understanding of soil 
hydraulic conductivity. According to Murthy [1], hydraulic 
conductivity is a measure of the ease with which water 
flows through permeable materials. It is a measured indi-
cator of the soil’s ability to convey water when exposed to 
a hydraulic gradient. This soil parameter plays a key role 
in solving problems relating to leachate transportation 
in landfill design, earth dam design as it dictates, among 
other important parameters, the selection of suitable 
material for the liner system and the core material for earth 
dam, respectively [2–4]. Like many geotechnical param-
eters, hydraulic conductivity is simple in concept, but has 
some very complex aspects in practice, especially when 
trying to obtain realistic measurements. Approaches taken 

to estimate hydraulic conductivity of soils include labora-
tory and field methods of measurement and calculation 
from empirical formulae. Laboratory and field measuring 
methods include constant head test, falling head test, flex-
ible wall permeameter test, rigid wall permeameter test, 
ring infiltrometer, instant profile method, test basins [5, 
6], etc. Meanwhile, the different empirical equations cur-
rently in use correlate the hydraulic conductivity of fine-
grained soils with the index properties which in accord-
ance with Freeze and Cherry [7], hydraulic conductivity is 
established to associate with the grain-size distribution of 
porous granular media. The major advantage of the avail-
able empirical methods [8, 9] is that the hydraulic conduc-
tivity value is rapidly estimated than the direct measure-
ment. The application of these relationships, however, 
may be incorrect and may lead to random errors [5]. Field 
test methods have the advantages that the soil profile is 
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often undisturbed but cannot control the soil environment 
unlike the laboratory test method [10]. Although labora-
tory methods are relatively easy, the common inconven-
ience is that they take time. Consequently, getting a quick 
result to a problem in the field within the given time frame 
can be challenging. As a result, appropriate consideration 
has now been given to determining the hydraulic conduc-
tivity of soils using predictive techniques [3].

Over the last few decades, computational intelligence 
(CI) methods otherwise known as soft computing have 
been applied to various fields of science and engineering. 
Complex tasks such as learning, modelling or getting a 
pattern from experimental approach can be handled with 
CI methods with accurate precision [11]. CI technique can 
either be single (such as artificial neural networks (ANNs), 
fuzzy, support vector machine (SMV), particle swarm opti-
misation (PSO), genetic algorithm (GA)) or hybrid (e.g. 
adaptive neuro-fuzzy inference system (ANFIS), GA-ANN, 
etc.). Single CI technique is employed mainly for predict-
ing, modelling or exploring data [11, 12]. ANN as a subset 
of CI has been the most popular and significant tool in 
various engineering fields [13–15]. Its high ability to pre-
dict nonlinear behaviours has unfolded its uniqueness to 
many researchers [16]. ANN is inspired by how the human 
brain works. The human brain consists of a large number 
of highly networked neurons working together to solve 
a specific problem. Like human brain that possessed tre-
mendous ability to process huge amount of information 
using data sent by human senses, ANNs too learn by train-
ing [17–19]. Neural network’s basic processing elements 
are called nodes, and the weighted connections perform 
the same work as synapses in biological systems. Nodes 
are simple elements of information processing, while the 
connection weights modulate the effect of the related 
input signals and a transfer function represents the non-
linear characteristic displayed by the neurons. The output 
of a neuron is then computed as the weighted sum of the 
inputs plus the bias activated by the transfer function [17, 
20]. By contrast, traditional linear regression is one of the 
oldest statistical methods that still maintains its relevance 
in the academic world, especially as a benchmark for 
measuring the performance of currently developed pre-
dictive tools. Multiple linear regression (MLR) examines the 
relationship between a response variable and the collec-
tion of independent variables. It is a generalisation of the 
linear regression model [21]. The assumption in regression 
modelling is that the output can be explained by a linear 
combination of input values.

In recent years, the use of ANNs has increased in sev-
eral areas of civil engineering profession. Its application to 
many geotechnical and geo-environmental engineering 
problems has shown a commendable degree of success. 
ANN can be trained with experimental data; as a result, it is 

esteemed superior among popular modelling tools [12]. A 
series of studies show that ANNs have been used success-
fully in the prediction of pile capacity, soil behaviour mod-
elling, soil retention structures, settlement of structures, 
stability of slope, tunnel design and underground open-
ings, liquefaction, soil compaction, soil swelling, soil chem-
ical properties such as cation exchange capacity (CEC) and 
classification of soils [22–29], in addition, ANN and MLR 
as tools for prediction of geotechnical properties [24–26], 
prediction of cation exchange capacity by ANN and MLR 
[30, 31], prediction of tropical soil’s hydraulic conductiv-
ity using eight different algorithms [10], and prediction 
of hydraulic conductivity of clays [3, 18, 32]. Minasny et al. 
[33] used the neural network tool to predict unsaturated 
hydraulic conductivity of alluvial soils.

The prediction or estimation of the hydraulic conduc-
tivity of soils using ANN and MLR by many researchers 
was based on a specific soil. To the best of our knowledge, 
there is no or limited recommendations in the literature 
with regard to ANN and MLR application for predicting 
hydraulic conductivity of all soil types. Therefore, the spe-
cific aim of this study is to develop models for the pre-
diction of saturated hydraulic conductivity of soils (fine 
grain and coarse grain) through a comparative study using 
artificial neural network and multiple linear regression 
analysis. These models were developed by increasing the 
spectrum of test soils used by Sinha and Wang [20] by add-
ing more results from various reliable experimental studies 
on hydraulic conductivity of naturally occurring soil types 
published in the literature using different input variables 
and training parameters for an optimised result. The input 
data used are: percentages of sand (S), fines (Fi), clay (C) of 
the soil samples, plasticity index (PI), and the compaction 
characteristics. Comparative studies were done with the 
selected existing MLR models and networks to evaluate 
the reliability of the developed models.

2  Methodology

2.1  Data collation and analysis

The reliability of the data set used is the most significant 
phase that can influence the ANN modelling, particularly 
in geotechnical and geo-environmental engineering. In 
addition, the efficiency of ANN relies on the data width 
selected. For more complicated issues, more examples 
are needed that show all the distinct features of the prob-
lem [17, 27]. In this study, data were collated from several 
experimental studies on hydraulic conductivity of different 
soil types published worldwide in the literature. Factors 
affecting hydraulic conductivity of soils include soil den-
sity, moulding water content, degree of saturation, void 
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ratio, soil composition, soil structure, permeant properties 
and others. Most of these factors are not really independ-
ent but interrelated complexly with each other, for exam-
ple, grain size and void ratio, etc. [20, 34]. The smaller the 
grain size, the smaller the voids which leads to the reduced 
size of flow channels [1]. Hence, low hydraulic conductivity 
is likely to be achieved when the soil is well graded and 
the clay fraction governs the hydraulic behaviour of the 
soil matrix. As stated by Lambe [35], five factors had the 
greatest influence on hydraulic conductivity: soil compo-
sition; soil structure; permeant characteristics; void ratio 
and degree of saturation. Considering the aforementioned 
factors, the experimental studies selected provide data on 
the particle size distribution, namely percentages of sand 
(S), fines (Fi), clay (C) of the soil sample, plasticity index 
(PI), and the compaction properties (optimum moisture 
content, OMC and the maximum dry density, MDD) and 
the corresponding hydraulic conductivity, k (i.e. seven vari-
ables). These input variables are factors considered easily 
obtainable that influence the hydraulic conductivity of 
most soils. The data set was divided into two parts: 75% 
for training and 25% for testing. To avoid overfitting, the 
training set was chosen so that each soil class was prop-
erly represented and samples in each class contain a wide 
range of variations. This data set was analysed using R 
Software to develop MLR model and network for hydraulic 
conductivity prediction.

2.2  R software

R is a software language for carrying out simple and com-
plicated statistical analyses. R is free software and comes 
with totally no guarantee. R was originally written by Rob-
ert Gentleman and Ross Ihaka from the Statistics Depart-
ment of the University of Auckland in New Zealand. It is 
a collaborative effort with many contributors, since mid-
1997 there has been a key team with written access to the 
R source [36]. R has a number of benefits for scholars; it is 
open source. Additionally, using R implies having access to 
a global group of individuals who are continuously creat-
ing new R packages and fresh teaching resources. Diverse 
packages for all machine learning techniques, especially 
neural network (e.g. nnet, NeuralNet, etc.) are available on 
R. Its language is easier to learn compared to other pro-
prietary software and offers rich and better options for 
statistics. Different user-friendly interfaces to execute R 
commands are available (e.g. RStudio) that are free and 
simple to install. Although MATLAB provides some good 
options to create, train, validate and test neural networks, 
it seems that there are not too many options for Windows 
and also requires license. For this research, RStudio version 
1.1.463 was used along with R version 3.5.2. R software is 
available for Mac, Windows and Linux operating systems 

and can be obtained via www.r-proje ct.org, and RStudio 
is accessible at www.rstud io.com.

2.3  Multiple linear regression model (MLR)

Regression modelling aimed at using numbers of inde-
pendent measurements to determine a mathematical 
function that describes the relationship between the input 
parameters and the output. In engineering and science, 
many problems revolve round the relationship between 
two or more variables. MLR is a linear regression technique 
that is very beneficial for predicting the best relationship 
between a response variable and several independent 
variables unlike the simple linear regression analysis [31, 
37]. One of the assumptions in multiple linear regression is 
non-existence of collinear relation between independent 
variables. Variance inflation factor (VIF) is an index that is 
used for collinear determination. If there is no linear rela-
tionship between independent variables, VIF value will 
be one and the deviation of this factor from 1 reveals the 
tendency to collinearity. Having VIF values more than 10 
for each variable show the multiple collinearity and it may 
result in estimation problems [38].

Multiple linear regression was developed using 75% of 
the training data set and the remaining 25% to evaluate 
the efficiency of the developed model. The MLR model for 
hydraulic conductivity prediction was executed using the 
‘lm’ function in R Software. Equation (1) shows the general 
form of the MLR equation:

where Y  is the response variable representing hydraulic 
conductivity k,

a is the intercept,
b1...bi are regression coefficients, and
X1...Xi are independent variables referring to basic soil 

properties (i.e. the input data).
At first, all the input variables were utilised in develop-

ing the MLR model and subsequently the variables that 
were significantly less effective on the hydraulic conduc-
tivity (output parameter) were eliminated.

2.4  Artificial neural network architecture

Multilayer perceptron (MLP) and radial basis function (RBF) 
are two of the most widely used neural network architec-
ture in the literature for classification or regression prob-
lems. General difference between MLP and RBF is that RBF 
is a localist type of learning which is responsive only to a 
limited section of input space [39]. However, MLP, being 
the most predominant network architecture and due to 
the simplicity of its design, was utilised for this study [18, 

(1)Y = a + b1X1 + b2X2 + ... + biXi

http://www.r-project.org
http://www.rstudio.com
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31, 40]. Figure 1 demonstrates a typical two-layer percep-
tron to simulate an input–output reaction. The network 
which consists of nodes is structured into input, hidden 
and output nodal layers. The input layer is not regarded a 
neuron layer as it does not process any signal. Every node 
is linked to all nodes in the adjacent layers. The training 
set which is made up of 108 observations (i.e. 75% of the 
data set) was used to developed ANN model for predicting 
hydraulic conductivity using the R Neuralnet library pack-
age. The six input variables that were employed for the 
neural network training are; S, Fi, C, PI, OMC, and MDD of 
the soil. The input layer therefore has six neurons. The only 
output is the hydraulic conductivity, so the output layer 
has only one neuron. Since there are no overall guidelines 
for defining the number of neurons in each hidden layer, 
Bahmed et al. [27] suggested the use of a simple architec-
ture of one hidden layer with a limited number of neurons 
to earn time in the training stage. The rule of thumb in 
deciding the number of hidden layers is normally to start 
the training process with one hidden layer, and if one hid-
den layer does not train well, then the number of hidden 
neurons can be increased before considering adding more 
hidden layers [41]. The choice of the number of hidden 
neurons depends on the complexity of the problem. In 
this study, the number of hidden neurons equal half of 
the input variables was used to start the network training. 
This was further increased as the training error remains 
above the training error tolerance until the training error 
drops. After several network trainings with different num-
ber of neurons in the hidden layer, one hidden layer with 
the number of neurons that produced the least error was 
selected.

The NeuralNet presents the training set to the ANN 
and modifies the weights to minimise the error generated 
between the actual and desired output. In other words, 
a neuron’s output is the weighted sum of inputs plus 
the bias activated by the transfer function [20]. Lim and 

Kolay [10] observed that backpropagation (BP) training 
algorithm yields the best prediction model for hydraulic 
conductivity of tropical soils compared to other learning 
algorithms such as Levenberg–Marquardt algorithm, scale 
conjugate gradient, BFGS quasi-Newton, conjugate gradi-
ent with Powell/Beale Restarts, Fletcher–Powell conjugate 
gradient, and one-step secant. As a result, feed-forward 
neural network, with backpropagation training algorithm 
was used to develop the ANN model for this study. The 
goal of BP training is to iteratively change the connections 
weights between the neurons in a direction that minimises 
the error. Connection weights in the network are adjusted 
by the algorithm using a sample-by-sample updating rule. 
In one algorithm iteration, a training sample is presented 
to the network. The signal is then fed in a forward manner 
through the network until the network output is obtained. 
The error between the actual and desired network outputs 
is calculated and used to adjust the connection weights 
[41]. After the completion of the training process, a new 
set of data was presented to the network, the testing 
data, to validate and evaluate the integrity of the trained 
network.

2.5  Performance evaluation

The following statistical indices, which were deemed 
significant, were used to assess the predictability of the 
developed ANN and MLR: mean squared error (MSE), root 
of the mean squared error (RMSE), multiple coefficient of 
determination (R2), and mean absolute error (MAE). During 
the ANN training, a minimum network error is repeatedly 
tried by altering the weights as earlier mentioned and the 
number of the hidden layer neurons.

The mean square error (MSE) indicates the error 
obtained while training, and it measures the average 
square gap between the anticipated response value and 
its prediction. MSE is calculated using Eq. (2):

where N is the overall number of data.
The root mean squared error (RMSE) is calculated 

between the measured values and the predicted values 
using Eq. (3)

Coefficient of determination, R2 defined by Eq.  (4) 
expressed the proportion of the total variation in 
response variable (predicted value) that is explained by 
different independent variables. The lower the difference 

(2)MSE =
1

N

N∑
n=1

(actual − predicted)
2

(3)RMSE =

√
1

N

N∑
n=1

(actual − predicted)
2

Fig. 1  Two-layer perceptron network architecture [42]
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between actual and forecast values the higher the 
value of the determination coefficient. The value of R2 is 
between 1 and 0. R2 is near 1, for a good fit model, and 
R2 near 0 indicates a poor fit model

where SSE =
∑

(a − â)
2 ; SSa =

∑�
a − a

�2
,

a is the true value; â is the forecast value of a , and
the mean value of the a values is a.
Mean absolute error (MAE) measures difference 

between two continuous variables.
The correlation coefficient (r) described the strength 

of the linear connection between the predicted and 
actual response variable, ranging from  − 1 to + 1.

(4)R2 = 1 −
SSE

SSa

3  Results and discussion

3.1  Data collated

The data set collated constitutes 144 observations, from 
different regions. Table 1 shows the summary of the data 
set collated of which 108 observations (75% of the data 
set), representing the characteristics of all the soil class 
present,

Were used as training set for both the ANN and MLR 
models for hydraulic conductivity prediction. The descrip-
tive statistics for each variable as contained in the collated 
data set is shown in Table 2. The PI ranged between 0.00 
and 480 with a mean value of 83.64 showing that the soils 
collated ranged from pure sands to extreme swelling clay 
(sodium bentonite).

Table 1  Data set sources Source Number of 
data

Soil description Region/country

Wang and Huang [44] 55 Ranges from sandy to clayey -
Benson et al. [45] 55 Majorly clayey USA
Anderson and Brandon [46] 2 Silt and silty clay Hawaii
Benson and John [47] 13 Majorly clays and few sands USA
Othman and Benson [48] 3 Clay Southern Wisconsin
Alhassan [49] 1 Lateritic Minna, Nigeria
Cuisinier et al., [50] 1 Silt Paris, France
Amiralian et al., [51] 1 Quartz sand Western Australia
Aytekin and Akcanca [52] 4 Sand Turkey
Elsharief et al. [53]; Mohammed 

and Elshariel [54]
2 Clayey and silty clay Eastern Sudan

Umar et al. [55] 1 Clayey sand Bauchi, Nigeria
Govindasamy and Taha [56] 1 Silty sand Malaysia
Maurya et al. [57] 2 Silty clay Sultanpur, India
Umar et al. [58] 1 Sandy clay Bauchi, Nigeria
Nithis et al. [2] 1 Clayey silt India
Ojuri and Oluwatuyi [4] 1 Sand S-W, Nigeria
Total number of data 144

Table 2  Descriptive statistics of 
data set collated

PI Sand % Fines % Clay % MDD OMC k

Min. value 0.00 0.00 0.00 0.00 1250.00 8.00 2.500e-13
First quantiles 14.00 8.50 58.00 20.88 1540.75 14.00 8.975e-11
Median 26.00 18.95 78.10 33.75 1680.00 18.15 2.700e-10
Mean 83.64 25.52 70.0005 34.88 1672.35 19.36 8.987e-07
Third quantiles 60.50 33.58 70.0005 47.05 1802.50 24.13 2.625e-09
Max. value 480.00 100.00 100.00 84.00 2083.00 38.10 7.670e-05
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3.2  Data cleaning and multicollinearity analysis

Sanity checks were carried out on the data set to ensure 
that there are no variable values that fall outside the 
expected boundaries (Table 2). This also includes check-
ing for missing values in each column for proper handling 
and to ensure there are sufficient observations to utilise 
for analysis. R software is gracefully designed to handle 
missing values with.

annotation ‘NA’ to indicate the existence of missing 
values [43]. Sanity checks revealed the absence of miss-
ing data and values of each parameter used is within the 
expected range.

Correlation assessment was conducted to explore the 
likelihood and degree of multicollinearity relationship 
between each independent variable and all other vari-
ables. Correlation analysis was computed on R software 
using the ‘cor ()’ command. From Table 3, the independ-
ent variables satisfied the conditions for non-existence 
of multicollinearity except for sand–fine pair (r = 0.969) 
and OMC–MDD pair (r = 0.907). The correlation values 
between the independent variable are expected to be less 
than 0.8 in order to avoid the multicollinearity problem 
in the predicting model. The strong relationship between 
the two pairs of variables as revealed by the correlations 
analysis suggests that one of the two variables for each 
pair is needed in the regression analysis. It can also be 
observed that the independent variables chosen have 

weak correlation relationship with the response variable, 
k. Another significant parameter that R also offers as a 
measure of multicollinearity is the Variance Inflation Fac-
tor (VIF). VIF analysis in R software is executed through the 
library ‘car’. VIF value less than 5 and close to one indicates 
that there is no linear connection between input variables, 
if more than 10, is an indication that the variable is not 
needed and can be removed from the model [38].

3.3  Multiple linear regression model

3.3.1  MLR model training

The training of the MLR model for hydraulic conductiv-
ity prediction was accomplished using 75% of the data as 
earlier mentioned with six input variables, namely PI, S, Fi, 
C, OMC and MDD of the soils. This was executed in R using 
the ‘lm ()’ function. Table 4 which was generated by R gives 
the summary of the developed MLR model. The residu-
als as indicated in Table 4 give the differences between 
the experimental values and the predicted values. Posi-
tive residuals indicate that the model predicted a value 
that was lower than the observed value, and a value less 
than zero indicates that the regression model predicted a 
value higher than the observed value. As shown in Table 4, 
‘Min’ as used by R indicates minimum value of residual, 
and ‘Max’, maximum value of residual. Residuals’ median 
value is denoted using ‘Median’. The variables 1Q and 3Q 

Table 3  Pearson correlation 
coefficient

PI Sand % Fines % Clay % MDD OMC k

PI 1
Sand % 0.016 1
Fines%  − 0.030  − 0.969 1
Clay % 0.395  − 0.655 0.697 1
MDD  − 0.446 0.464  − 0.505  − 0.661 1
OMC 0.275  − 0.622 0.635 0.680  − 0.907 1
k  − 0.085 0.343  − 0.306  − 0.213 0.037  − 0.119 1

Table 4  Summary table of 
parameter estimates, residuals, 
and standard errors for the 
linear model of hydraulic 
conductivity fitted with six 
predictors

Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

Residuals Min 1Q Median 3Q Max
 − 1.235e-05  − 1.857e-06  − 2.430e-07 1.158e-06 6.412e-05

Input variables Coefficients Std Error Pr ( >|T|) VIF
Intercept 3.300e-05 3.633e-05 0.3657 –
PI  − 1.416e-08 7.229e-09 0.0529 1.814
S 1.413e-07 1.872e-07 0.4522 45.955
Fi 3.092e-08 1.843e-07 0.8671 46.484
C 5.189e-10 6.234e-08 0.9934 3.1897
MDD  − 1.909e-08 1.128e-08 0.0935 8.385
OMC  − 2.591e-07 3.436e-07 0.4525 9.739
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are the points that label the first and third quartiles of the 
residuals. The median of the residual values of a good 
model is expected to be close to zero, whereas the mini-
mum and maximum values of almost the same value and 
the first and third quartile values should be approximately 
the same [43]. The residuals, as shown in Table 4, deviate 
slightly from these conditions for this present model. A 
section

Table shows the coefficient of each of the input vari-
ables. Hence, the developed regression equation is as 
shown in Eq. (5):

The column named ‘Std. Error’ in Table 4 displays the 
standard statistical error for each coefficient. The stand-
ard error is expected, for a reliable model, to be at least 
5–10 times less than the corresponding coefficient [43]. 
The resulting statistical standard errors for this model was 
almost greater than the corresponding coefficient for each 
input variable. The column marked Pr (> |t|) , gives the p 
value of the coefficient. The p value indicates the probabil-
ity that the corresponding coefficient is not needed in the 
model; it ranges from zero (no chance) to unity (absolute 
certainty). In other words, subtracting this value from one 
gives the significance level. In science generally, results 
yielding a p value less than or equal to 0.05 are consid-
ered to be statistically significant and statistically highly 
significant if p value is less than or equal to 0.001. The p 
values revealed PI and MDD to be the only variables that 
are statistically significant with p value equal 0.0529 and 
0.0935, respectively (i.e. 94.71% and 90.65% significance, 
respectively), while other inputs were not statistically 
strong enough to establish a significant model by MLR.

Retraining of the MLR was carried out using the back-
ward elimination approach as explained by Lilja [43] to 
determine the predictor that should be utilised in devel-
oping the model and the ones to discard. The ‘summary 
()’ function in R computes the significance level of each 

(5)

k = (3.300E − 05) + (−1.1416E − 08)PI + (1.413E − 07)S

+ (3.092E − 08)Fi + (5.189E − 10)C

+ (−1.909E − 08)MDD + (−2.591E − 07)OMC

input variable used in the model. As earlier stated, the vari-
able with the largest p value is least significant statistically, 
while threshold of p value equals 0.05 is predetermined 
below which the input variable has more than 95% chance 
that it is significant. Having p value higher than the set 
threshold value, such variable or predictor is removed 
from the model and re-computed. With the back-elimina-
tion process, regression Eq. (6) was developed with three 
predictors. The model outcomes as shown in Tables 4, 5 
indicate that Eq. (6) is more reliable than Eq. (5). The three 
variables, namely PI, percent sand (S) and MDD, prove to 
be statistically significant with p values below 0.05 and 
VIF close to 1.

3.3.2  MLR model validation

Having obtained the regression Eq. (6), the equations was 
fitted with the test data to predict hydraulic conductiv-
ity of the test data. Figure 2 shows the scatter plots for 
observed values of k against its predicted values for the 
test data. Performance evaluation of the developed MLR 
models was carried out using the obtained values of MSE, 
RMSE, MAE and determination coefficient R2 between the 
observed and predicted values as presented in Tables 6, 7. 
As noted from Table 7 for test samples, coefficient of deter-
mination, R2, and correlation coefficient, r, for model Eq. (6) 
demonstrate a stronger and more accurate output than 
model Eq. (5) with six input variables. 40.4% variation in 
hydraulic conductivity for model Eq. (6) was explained by 
the three input variables utilised (PI, S and MDD), whereas 
36.9% of hydraulic conductivity variability was explained 
by the six inputs utilised for MLR model Eq. (5). Correlation 
coefficient r, for MLR model Eq. (6) indicates a stronger lin-
ear relation between the observed and predicted values of 
k compared to r value for MLR model Eq. (5). Since R2 and r 
values could give a biased estimate of model performance, 
the MLR models are also compared with respect to their 
mean square error, MSE and mean absolute error, MAE. As 
shown in Table 7, MSE and MAE values for model Eq. (6) 
are lower showing that the MLR model with three input 
variables (PI, S and MDD) is more accurate. The result of the 

Table 5  Summary table of 
parameter estimates, residuals, 
and standard errors for the 
linear model of hydraulic 
conductivity fitted with three 
predictors

Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1

Residuals Min 1Q Median 3Q Max
 − 1.162e-05  − 1.842e-06  − 2.680e-07 1.000e-06 6.462e-05

Input variables Coefficients Estimate Std Error Pr ( >|T|) VIF
Intercept 1.858e-05 8.283e-06 0.0270 * –
PI  − 1.362e-08 6.339e-09 0.0340 * 1.42402
S 1.291e-07 3.139e-08 7.87e-05 *** 1.31927
MDD  − 1.198e-08 5.037e-09 0.0192 *
1.70804
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regression analysis revealed that PI, percent sand (S) and 
MDD of soils have more significant impact with respect to 
hydraulic conductivity of soils:

(6)

k = (1.858E − 05) + (−1.362E − 08)PI + (1.291E − 07)S

+ (−1.198E − 08)MDD

3.3.3  MLR comparative study

The MLR models of Salarashayeri and Siosemarde [29], 
Merdun, et al. [59] and Arshad, et al.[39] show a higher 
RMSE and MAE with relatively higher coefficient of 
determination as shown in Table 8. This indicates that 
the developed MLR model for this study with three 
input variables performed relatively better than the 
above-mentioned models with respect to error gener-
ated. The MLR model of Salarashayeri and Siosemarde 
[29] was developed using three input variables from 
soil particle diameters, namely D10, D50 and D60, where 
D10, D50 and D60 are the soil particle diameter (mm) cor-
responding to 10%, 50% and 60% finer by weight and 
saturated hydraulic conductivity, k is expressed in m/day. 
The obtained RMSE and MAE were 4.06 and 3.32, respec-
tively, when k is expressed in m/day, and the equivalent 
values when express in m/s are as shown in Table 8. Mer-
dun, et al. [59] utilised seven variables to developed MLR 
model, namely S, Si, C, BD, P1, P2, and P3, correspond-
ing to percent sand, percent silt, percent clay, bulk den-
sity and pore sizes, respectively. The obtained RMSE is 
0.938 when hydraulic conductivity is expressed in cm/hr. 
Arshad, et al. [39] utilised percentages of clay (C), silt (Si), 
sand (S), and bulk density (ρb) as independent variables 

Fig. 2  The scatter plots of 
observed versus predicted 
values of hydraulic conductiv-
ity for MLR Eq. (6) model
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Table 6  Summary of performance indices for MLR models (training)

MLR 
equa-
tions

Training

R2 r MSE RMSE MAE

5 0.154 0.392 4.719e-11 6.870e-06 2.641e-06
6 0.146 0.383 4.760e-11 6.899e-06 2.614e-06

Table 7  Summary of performance indices for MLR models (testing)

MLR 
equa-
tions

Testing

R2 r MSE RMSE MAE

5 0.369 0.607 1.294e-11 3.597e-06 1.993e-06
6 0.404 0.636 1.192e-11 3.452e-06 1.902e-06

Table 8  MLR models 
comparison

Model author Input variables R2 r RMSE MAE

Salarashayeri and 
Siosemarde [29]

D10, D50 and D60, 0.512 0.712 4.697 e-05 3.84 e-05

Merdun, et al. [59] S, Si, C, BD, P1, P2, and P3, 0.637 0.798 2.606 e-05 NA
Arshad, et al. [39] C, Si, S, ρb 0.5 0.707 1.402 e-04 NA
Present study PI, S, MDD 0.404 0.636 3.452e-06 1.902e-06
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to develop MLR model for hydraulic conductivity predic-
tion. The RMSE obtained was also higher than the one 
obtained for this present study (Table 8). This shows that 
for this current study, the MLR model developed with 
three independent variables for hydraulic conductivity 
prediction of soils is relatively better.

3.4  Artificial neural network

3.4.1  ANN training

The training of the ANN for hydraulic conductivity prediction 
was achieved using six input parameters as used for the MLR 
model. It is considered a good practice to normalise the data 
before training a neural network in order to avoid unneces-
sary results or very difficult training processes resulting in 
algorithm convergence problems [43]. Among the simple 
methods of data normalisation available, minimum–maxi-
mum normalisation approach was utilised to bring the data 
values between 1 and 0 using Eq. (7):

where ai is the normalised value, a is the actual value, amax 
is the maximum value and amin is the minimum value.

The architecture that produced the best result after sev-
eral network trainings contains one hidden layer with 10 
neurons (Fig. 3). This was chosen based on the obtained 
R2 and MSE (Fig. 4). The summary of the major training 
parameters is shown in Table 9. Figure 5 demonstrates the 
comparative significance of predictors in neural networks 
to the output prediction as obtained from R using Garson 
algorithm, a function in the NeuralNetTools library. Based on 
Garson algorithm, input relevance is calculated using Eq. (8):

where ni and nh are the number of inputs and hidden 
units, respectively, wij is the weight between input i  and 
hidden unit j and wjk is the weight between hidden unit 
j and output k.

Unlike the MLR, ANN utilised all the input variables to 
develop the network for hydraulic conductivity prediction 
with percent fines having the greatest influence, while 
the least is the percent clay. This indicates that ANN can 
interpret very complex relationships between the input 

(7)ai =
a − amin

amax − amin

(8)Rik =

nh�
j=1

⎛
⎜⎜⎜⎜⎝

�wij��wjk�
ni∑
i=1

��wij��wjk�
�

⎞
⎟⎟⎟⎟⎠

Fig. 3  ANN architecture for hydraulic conductivity prediction (R 
generated)
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Fig. 4  Number of hidden nodes versus MSE

Table 9  Major training parameter used for ANN model in R

Arguments as used in R Values and nomination in R

Hidden 10
Stepmax 1e + 05
learningrate 0.0078
algorithm backprop (refers to backpropagation)
error function sse (i.e. squared errors)
activation function logistic
linear.output F (false)
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variables and the response variable beyond what MLR can 
comprehend.

3.4.2  ANN model validation

The ANN model was provided with new data set, the 
test data, to assess its efficiency and capacity to gener-
alise forecast beyond the learning data. Figure 6 shows 
the scatter plot for observed values of k against its pre-
dicted values for the test data, while Table 10 gives the 
performance estimate of the ANN model. For test data, 
the obtained R2 and MSE values of 0.955 and 7.366e-
12 indicate an acceptable accuracy showing that 95.5% 
variation in hydraulic conductivity was explained by the 

six input variables considered with a minimised error 
thereby validating the model.

3.4.3  ANN and MLR model comparison

The MLR analysis of the data collated revealed that half 
of the input variables (percent fines, percent clay and 
OMC) did not contribute to the performance of the MLR. 
This could be attributed to nonlinear relationship or very 
low correlation between these variables and hydraulic 
conductivity. However, ANN shows a high level of under-
standing hidden relationships between these variables 
and the corresponding hydraulic conductivity. Hence, 
ANN high ability to predict nonlinear behaviour is worth 
commending. The results of the performance indices of 
the developed MLR and ANN models as presented in 
Table 11 show that ANN produces more reliable estimate 
of soils hydraulic conductivity than MLR. The higher R2 
of 0.995 and lower error estimates of ANN than those 
obtained by the MLR models was in support with other 
previous studies carried out by Sinha and Wang [20], 
Arshad, et al. [39] and other researchers showing that 
ANN is a better predictive tool to solving geotechnical/
geo-environmental problems than the traditional linear 
regression.

Fig. 5  Relative importance of 
input parameters
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Fig. 6  Scatter plot of observed versus predicted values of hydraulic 
conductivity for ANN model (testing)

Table 10  Summary of performance indices for ANN model

R2 r MSE RMSE MAE

Training 0.410 0.641 3.309e-11 5.753e-06 1.397e-06
Testing 0.955 0.977 7.366e-12 2.714e-06 6.817e-07

Table 11  Performance evaluation of MLR and ANN

Model Testing

r R2 MSE RMSE MAE

MLR (Eq. 6) 0.636 0.404 1.192e-11 3.452e-06 1.902e-06
ANN 0.977 0.955 7.366e-12 2.714e-06 6.817e-07
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3.4.4  ANN comparative study

Before this present study there are many studies on the 
ANN applications in geotechnical engineering and few in 
predicting hydraulic conductivity of a particular soil with 
different input variables utilised. Therefore, the developed 
network is compared with other existing models. Table 12 
gives the summary of this comparison. The input variables 
used in all the networks listed include plasticity index (PI), 
percentages of gravel (Gr), percent sand (S), percent fines 
(F), percent silt (Si), percent clay (C), bulk density (ρb), dry 
density (ρd), liquid limit (LL), plastic limit (PL), maximum 
dry density (MDD), moisture content (w), optimum water 
content (OMC), void ratio (e), soil particle diameters (D10, 
D50) and degree of compaction express in percentage (P%). 
Boroumand and Baziar [18] developed network for pre-
dicting hydraulic conductivity of clay using 55 data set: 
45 for training and 10 for testing. The soil physical proper-
ties and compaction properties used as input variables are 
MDD, PI, Gr, S, C with architecture of 5-4-1 corresponding 
to one hidden layer with four neurons. The obtained R2 was 
0.54 for test data. The ANN model of Sinha and Wang [20] 
utilised test soils prepared by mixing different amounts of 
four main components; gravel, sand, limestone dust and 
sodium bentonite. These four components were mixed to 
achieve 55 distinct combinations in distinct ratios. Five 
variables that were utilised as input include P (%), D10, D50, 
PL and LL. The network architecture contains one hidden 
layer with three neurons, the obtained R2 was 0.901. Lim 
and Kolay [10] utilised 10 input variables with 10 neurons 
in the hidden layer to developed hydraulic conductivity 
prediction network for tropical soils (Table 12). The data set 
used contained 144 observations, of which 100 were used 
as training set and the rest as test data. The obtained R2 
was 0.92. For easier comparison, the R2 value obtained for 
Lim and Kolay [10] was calculated from the obtained cor-
relation coefficient and the MSE for Merdun et al. [59] was 
calculated from the obtained RMSE, the unit of k used was 
properly considered. It can be observed from Table 12 that 
R2 value obtained for this study was the highest (0.955) 
with the lowest error estimate (MSE = 7.366e-12) show-
ing that the developed ANN for hydraulic conductivity 

prediction with six input variables, namely PI, S, Fi, C, MDD, 
and OMC, was well generalised to the validation data set 
(test data).

4  Conclusions

This research assessed the performance of artificial neural 
network (ANN) and the multiple linear regression (MLR) 
in predicting hydraulic conductivity of a wide range of 
soil types to obtain the appropriate value of soil hydraulic 
conductivity within the shortest time frame. Based on the 
analysis and the results obtained, the following conclu-
sions are drawn:

• The correlation and the p value results revealed that 
only three inputs variables (plasticity index, percent 
sand and MDD) are statistically significant to the devel-
opment of the MLR model and others are reductants.

• Relative Importance analysis revealed that the six input 
variables utilised for ANN development are all signifi-
cant with percentage of fines being the most influen-
tial.

• The results of the statistical indices (R2, MSE) show that 
ANN is the most reliable predictive tool and has strong 
ability to predict nonlinear behaviour when compared 
with MLR.

• Comparative study analysis shows the developed MLR 
and ANN to perform better that the corresponding 
available models considered.

• ANN model developed in this study can be efficiently 
utilised to predict the hydraulic conductivity of most 
soil types since the input variables are easily obtain-
able parameters thereby making soil investigation with 
respect to hydraulic conductivity faster.

• This study utilised the earliest and the most used acti-
vation function (sigmoid) for the developed network. 
It is suggested that the performance of rectified linear 
unit (ReLU) for ANN development to predict hydraulic 
conductivity of soils should be investigated. Further-
more, it will be important to develop a network that 
can predict hydraulic conductivity of different soil types 

Table 12  ANN models comparison

Model author Input variables Architecture Training data Testing data R2 MSE

Boroumand and Baziar [18] MDD, PI, Gr, S, C, 5–4-1 45 10 0.54 NA
Merdun et al. [59] S, Si, C, ρb, P1, P2, and P3 NA – – 0.52 9.512e-11
Sinha and Wang [20] P(%), d10, d50, PL, LL 5–3-1 – – 0.901 NA
Lim and Kolay [10] w, ρb, ρd, e, LL,PL, Gr, S, Si, C, 10–10-1 100 44 0.92 NA
Arshad et al. [39] C, Si, S, ρb 4–7-1 130 45 0.66 2.314e-09
Present study PI, S, Fi, C, MDD, OMC 6–10-1 108 36 0.955 7.366e-12
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stabilised with the same additive (e.g. lime, cement, fly 
ash, etc.).

Resolving to collate data from previous studies on 
hydraulic conductivity of soils was a result of unavailabil-
ity of database on basic soil’s properties in Nigeria. Since 
the performance of ANN depends on the reliability of the 
training data, the data set used for this study was carefully 
selected to minimise data error. However, the integrity of 
the collated data set cannot be fully ascertained.
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