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Abstract: A model that anticipates the passenger flow on trains will help passengers to avoid 
overcrowded trains in their journey planning. Such a model will also help rail industry to 
understand the current use of train capacity and plan the distribution of rolling stock, 
personnel and facilities. However, the existing studies only developed the models for 
forecasting the passenger flow in stations, which cannot reflect the true passenger number 
on trains. In this paper, a hierarchical modelling framework for passenger flow prediction is 
proposed. It includes two layers of fuzzy models, where a global model is used to predict for 
ordinary circumstances and a number of local models are used to predict the variations in 
passenger number due to specific factors, such as events and weather. A new data sifting 
method is proposed to obtain the most informative and representative data for model 
training, which greatly improves the modelling efficiency. The proposed method is then 
validated using a case study of forecasting the passenger flow of London Underground trains.

Keywords: passenger flow; train; fuzzy modelling; data sifting; event; weather

1. Introduction

Improving passengers’ experience is a crucial challenge for the rail transport. One of the key factors that
affect the passenger experience is  overcrowding,  and the crowding level  on trains  may even affect  the
path/train choice of passengers (Pel et al. 2014, Kim et al. 2015). If an accurate passenger flow model is
available  to  predict  the  crowding  level  on  trains,  it  can  help  rail  passengers  to  strategically  plan  their
journeys to  avoid  overcrowded trains,  by choosing alternative means of  transportation or  changing the
travel  time.  It  can  also  help  rail  operators  and  administrators  to  appropriately  allocate  train  capacity,
personnel and facilities and adjust the service timetable.

In the past ten years, there have been many models developed to predict the passenger flow in stations
(Wei and Chen 2012; Jiang et al. 2014; Ding et al. 2018). More details about these studies can be found in
the literature review of Section 2. However, to the best of our knowledge, there is no research that studied
the passenger flow on trains and developed the relevant forecasting models. On the other hand, most of the
existing models could only predict the passenger flow under regular conditions, and there are limited works
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investigated the variation of the passenger flow when large events happen (Pereira et al. 2015; Chen et al.
2020) or under different weather conditions (Wang et al. 2018).

In this research, we studied the historical data of a London Underground train line and proposed a data-
driven modelling framework for predicting the passenger flow on trains. First, the elements that affect the
passenger number were identified, including temporal factors (time in a day and day of the week), location,
direction, local events and weather. We then proposed a hierarchical modelling framework including two
layers of models. A global model was developed to predict the passenger flow under ordinary circumstances
and a number of  local  models  were developed to predict  the changes in  passenger number caused by
specific factors, such as events and weather conditions. These models implement fuzzy rule-based systems
(FRBSs) (Zadeh 1973) with a heuristic optimisation technique (Zhang and Mahfouf 2010) and a novel  data
sifting strategy. The heuristic optimisation technique provides FRBSs the ability of learning from data and the
data sifting strategy improves the efficiency of model generation. Different with the time-series models that
are suitable to predict the passenger flow for near future, such as the autoregressive (AR) or autoregressive
integrated moving average (ARIMA) models, the FRBS is able to predict for any time point and does not rely
on the observation of  the current  passenger  flow.  Different  with  other  commonly-used non-parametric
models, such as artificial neural networks (ANNs), the FRBS is more transparent due to its use of linguistic IF-
THEN rules. Finally, the framework was successfully applied into the prediction of the passenger load on the
London Underground trains.

This research would help the rail industry understand the factors affecting the passenger number on
trains and be able to predict the impact of these factors. The developed predictive models can be integrated
with existing journey planning tools to help travellers better plan their journeys to avoid overcrowded trains,
where they may choose alternative means of  transportation (private  cars,  taxis,  buses,  shared bicycles,
walking,  etc.)  or  slightly  change the travel  time. Combined with multi-criteria  optimisation and decision
making techniques, the developed models can be further exploited to consider the personalised preferences
of passengers and automatically suggest the best decisions for journey planning. This research also has a
potential to inform distribution of rolling stock, personnel and facilities in that a good predictor of passenger
load could enable better optimisation of train capacity and other resources.

The novelty of this work lies in the following aspects: First, this work is a very early and timely research
in modelling the passenger flow on trains. It considers not only the ordinary conditions but also the effect of
events and weather. Second, this work employs FRBSs to map the relationship between model inputs and
output, where FRBSs are more transparent than commonly-used black-box methods due to the presence of
linguistic rules. Last, this work proposes a clustering-based data sifting method for selection of the most
representative data for model training. This  helps greatly  reduce the time and resources used in model
generation and is very valuable in the current data-rich era.

The remaining sections are organised in the following way. Section 2 reviews the existing methods of
the passenger flow prediction, especially focusing on the applications in the rail transport. In Section 3, the
data from London Underground trains are analysed and the key attributes that affect the passenger number
are identified. Section 4 proposes a data-driven modelling method with a two-layer structure. A salient data
sifting mechanism is invented to enhance the modelling efficiency. In  Section 5, the proposed modelling
approach is  implemented to construct  passenger flow models for London Underground services.  Finally,
conclusions and implications of this study are presented in Section 6.

2. Related Work
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In the past two decades, there have been extensively studies carried out on passenger demand and
traffic flow (Li and Sheng 2016; Melo et al. 2019), especially focusing on short-term traffic/passenger flow
prediction. These studies range across road transport (Smith et al. 2002; Vlahogianni et al. 2014; Sheng and
Sharp 2019), rail transport (Tsai et al. 2009; Li et al. 2017a), waterborne transport (Kim and Lee 2018; He et
al. 2019) and air transport (Faraway and Chatfield 1998; Bao et al. 2012). There have been several review
articles discussing the technologies and applications in the field of short-term traffic flow prediction for road
transport (Vlahogianni et al. 2004, 2014; Karlaftis and Vlahogianni 2011).

Considering the modelling architecture, the relevant research can be grouped into two main categories:
parametric modelling and non-parametric modelling. The parametric models include the ARIMA models (Lee
and Fambro 1999; Williams and Hoel 2003; Tan et al. 2009; Kumar and Vanajakshi 2015), state space models
(Stathopoulos and Karlaftis 2003), grey models (Hsu and Wen 1998), etc. The ARIMA model is an effective
regressive  time-series  model  and  is  the  most  widely  used  parametric  method in  traffic/passenger  flow
prediction. However, it assumes linear relationships among the time variables and thus suffers for dealing
with the problems involving nonlinear relationships.

The non-parametric modelling approaches include ANNs (McFadden et al. 2001; Ishak et al. 2003; Chan
et al. 2012), support vector machine (SVM) (Wu et al. 2004; Chen et al. 2012; Jiang et al. 2014), Kalman filter
(Wang et  al.  2007;  Lippi  et  al.  2013),  non-parametric  regression  (Clark  2003;  Sun et  al.  2014),  wavelet
analysis (He and Ma 2002, Jiang et al. 2005; Sun et al. 2015), etc. In these non-parametric approaches, ANNs
have received the greatest interests and have been extensively implemented, due to their advantages of
mapping nonlinear relationships and high accuracy. Various types of ANNs have been utilised, such as multi-
layer perceptron networks (Zhang 2000; Smith et al 2002;), recurrent neural networks (van Lint et al. 2002;
Ishak et al. 2003; Zhang et al. 2018a), radial basis function networks (Park et al 1998; Li et al 2017), spectral
basis networks (Park et al. 1999), etc.

Besides  the  methods  mentioned  above,  some  research  (Zeng  et  al.  2008;  Li  et  al.  2014)  tried  to
integrate both the parametric and non-parametric methods to achieve better performance. Several other
studies  (Chen  and  Wu  2012;  Wei  and  Chen  2012;  Jiang  et  al.  2014)  combined  the  empirical  mode
decomposition (EMD) with the parametric and non-parametric approaches to further improve the modelling
accuracy.

Compared  with  the  traffic/passenger  flow  studies  in  road  transport,  the  relevant  research  in  rail
transport  is  still  in  an  emerging  stage.  Table  2-1  summarises  some  representative  studies  about  the
passenger flow prediction in rail  transport,  where most of these work arose since 2014. Several studies
considered  national railway services and predicted daily  (Tsai  et  al.  2009; Jiang et  al.  2014)  or  monthly
(Milenkovic  et  al.  2018)  passenger  demand.  Most  of  the  research  studied  Metro  systems  due  to  the
relatively  easy access to the passenger flow data,  which were generally  collected from automated fare
collection (AFC) systems. The existing models can only predict the passenger flow in stations or on platforms,
and cannot accurately predict the passenger number on a certain train, especially in the case multiple train
services share the same station or platform. However, the crowding level on a train is normally higher than
that in a station and it is the more significant factor that affects the passenger experience. Though some
approaches  (Hörcher  et  al.  2017;  Hänseler  et  al.  2020)  were  proposed  to  achieve  the  assignment  of
passengers  to  individual  trains,  there  is  still  a  lack  of  dedicated  models  that  can  directly  predict  the
passenger flow on trains. In the research of this paper, we utilised the data collected from train loading
sensors to anticipate the detailed passenger number on trains. 
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Table 2-1. An overview of the studies on rail passenger flow prediction.

Literature Area Case Study Method Data Source Problem

Variable Object Condition

Tsai et al. 2009 National railway Taipei-Kaohsiung, 
Taiwan

ANN Daily tickets Passenger 
demand

Railway Ordinary

Wei and Chen 
2012

Metro Taipei, Taiwan ANN and EMD AFC Passenger flow Station Ordinary

Leng et al. 2013 Metro Beijing, China Probability tree AFC Passenger flow Station Ordinary
Dou et al. 2014 National railway Beijing-Jinan, China FKNN Tickets Passenger flow Railway Ordinary
Sun et al. 2014 Metro Beijing, China NR AFC Passenger flow Station Ordinary
Jiang et al. 2014 National railway Wuhan-Guangzhou,

China
SVM and EMD Daily tickets Passenger 

demand
Station Ordinary

Zhang et al. 
2014

Metro New York, USA Network Kriging AFC Passenger 
demand

Station Ordinary

Pereira et al. 
2015

Metro and bus Singapore ANN Internet and 
AFC

Passenger flow Station CE

Sun et al. 2015 Metro Beijing, China SVM and Wavelet AFC Passenger flow Station Ordinary
Ding et al. 2016 Metro Beijing, China GBDT AFC Passenger flow Station Ordinary
Jiao et al. 2016 Metro Beijing, China Kalman filter AFC Passenger flow Station Ordinary
Li et al. 2017a Metro Beijing, China ANN AFC Passenger flow Station Ordinary, CE
Ni et al. 2017 Metro New York, USA ARIMA and LR Social media 

and TU
Passenger flow Station CE

Ding et al. 2018 Metro Beijing, China ARIMA and GARCH AFC Passenger flow Station Ordinary
Gong et al. 2018 Metro Sydney, Australia ONMF AFC Passenger flow Network Ordinary
Li et al. 2018 Metro Xi’an, China ARIMA and SR AFC Passenger flow Station Ordinary
Ling et al. 2018 Metro Shenzhen, China ANN, SVM and 

GBDT
AFC Passenger flow Station Ordinary

Milenkovic et al.
2018

National railway Serbia ARIMA National 
Statistical 
Office

Passenger 
demand

Railway Ordinary

Wang et al. 
2018

Metro Shanghai, China LR AFC Passenger flow Station Ordinary, 
CW

Chen et al. 2019 Metro Chengdu, China ANN and EMD AFC Passenger flow Station Ordinary
Guo et al. 2019 Metro Guangzhou, China ANN and SVM AFC Passenger flow Station Ordinary
Jia et al. 2019 Metro Guangzhou, China ANN AFC Passenger flow Station Ordinary
Li et al. 2019a Metro Beijing, China ANN AFC Passenger flow Station Ordinary
Liu et al. 2019a Metro Nanjing, China ANN AFC Passenger flow Station Ordinary
Liu et al. 2019b Metro Beijing, China Wavelet AFC Passenger flow Network Ordinary
Tang et al. 2019 Metro Chongqing, China ANN AFC Passenger flow Station Ordinary
Xiong et al. 
2019

Metro Beijing, China ANN AFC Passenger flow Station Ordinary

Yang et al. 2019 Metro Chongqing, China ANN AFC Passenger flow Station Ordinary
Zhang et al. 
2019a

Metro Beijing, China ANN AFC Passenger flow Station Ordinary

Zhao and Mi, 
2019

National railway Beijing-Shenzhen, 
China

ANN, SVM and 
Wavelet

Daily tickets Passenger 
demand

Station Ordinary

Zhu et al. 2019 Metro Qingdao, China ANN and SVM AFC Passenger flow Station Ordinary
Chen et al. 2020 Metro Nanjing, China ARIMA and GARCH AFC Passenger flow Station Ordinary, CE
Jing and Yin, 
2020

National railway Beijing, China ANN Daily tickets Passenger 
demand

Station Ordinary

Lu et al. 2020 Metro Xi’an, China ANN AFC Passenger flow Station Ordinary
Zhang et al. 
2020

Metro Xiamen, China ANN AFC Passenger flow Station Ordinary

Zhao et al. 2020 Metro Shanghai, China ANN and STL AFC Passenger flow Station Ordinary
This research Metro London, UK FRBS Train loading Passenger flow Train Ordinary, 

CE, CW
Method: ANN (artificial neural network), EMD (empirical mode decomposition), FKNN (fuzzy k-nearest neighbour), NR (non-parametric regression), 
GBDT (gradient boosting decision tree), LR (linear regression), GARCH (generalized autoregressive conditional heteroskedasticity), ONMF (online 
non-negative matrix factorization), SR (symbolic regression); STL (seasonal and trend decomposition using loess) Data Source: AFC (automated fare 
collection), TU (turnstile usage); Condition: CE (considering events), CW (considering weather)
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Most of the research in the table considered the passenger flow under ordinary conditions and only
several papers (Pereira et al. 2015; Li et al. 2017a; Ni et al. 2017; Chen et al. 2020) studied the effect of large
events on the passenger flow. Pereira et al. (2015) and Ni et al. (2017) used Internet and social media data to
predict the passenger arrivals using public transport, including Metro and buses. Li et al. (2017) and Chen et
al.  (2020) developed models for forecasting the non-regular passenger demands of Metro under special
events. Wang et al. (2018) considered weather as one of the factors that affects the passenger flow of the
Metro stations.

Among these research, ANN and  ARIMA are the most frequently used methods, and other employed
methods include  EMD, SVM, Kalman filter,  linear regression,  non-parametric regression, gradient boosting
decision tree (GBDT), generalized autoregressive conditional heteroscedasticity (GARCH), etc. The work in
this paper is an early attempt to employ fuzzy rule-based systems as models. FRBSs are more flexible to use
than the commonly used time-series models, as they do not rely on the observation of the current passenger
flow and can predict for any time in future. FRBSs are more interpretable than the commonly used black-box
methods due to the presence of linguistic rules. Several pieces of research (Zhang and Ye 2008; Li et al. 2016;
Yu et al. 2019) have applied fuzzy sets and fuzzy systems into the traffic/passenger flow prediction in road
transport. In the work of Dou et al. (2014), the fuzzy set concept was employed to improve the k-nearest
neighbour (KNN) model in prediction of  the passenger flow for a high-speed railway and was shown to
outperform the original KNN model and the ARIMA model. However, it did not employ a FRBS as the main
modelling structure and thus did not take the full advantage of a fuzzy system in modelling accuracy and
transparency.

The  difference  between  our  research  and  other  existing  research  lies  in  three  aspects:  First,  our
research  models  the  passenger  flow on  trains;  while  other  research  focused  on  the  passenger  flow in
stations or on platforms. Second, our research considers not only the ordinary conditions but also the effect
of events and weather; while the majority of other research only considered ordinary conditions and only
several studied the effect of either events or weather. Third, our research employs FRBSs in modelling, which
can achieve a good balance between accuracy and transparency; while other research mainly employed
either accurate ANN models or transparent ARIMA models.

3. Data Collection and Analysis

The train loading data studied in this research were collected by Transport for London (TfL), UK, from a
London Underground train line, the Victoria line. The Victoria line is one of the busiest Underground lines
running across central London from the south to the northeast. Figure 3-1 shows the map of the Victoria line
and Table A-1 in appendix illustrates the abbreviations of its station names. The Victoria line carries 200
million passengers each year and thus generates a huge amount of data.

The  collected  data  cover  a  period  of  one  year  that  starts  from 01  October  2014  and  ends  by  30
September 2015. The data of the train loading were measured by an automatic weighting system fitted on
trains. They include all the loading information of each individual train at every station across the whole
year.  Some  other  relevant  information,  such  as  the  train  number,  lead  car  number,  train  destination,
direction and actual departure time at each station, was also provided. There are more than 4.86 million
records in total.
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Figure 3-1: Map of the Victoria line.

The loading of  each train  is  returned as  a  percentage of  total  crush loading capacity  in  the range
between 0 and 1. This index value is  called passenger load status. It  is  an approximation based on the
averaged measurements of the secondary suspension pressure transducer across 8 cars on each train. 0%
loading represents a train with no passengers on it and 100% loading represents a crush laden train which
has 1431 passengers on it, where it assumes an average weight per passenger is 72kg. At the current stage,
we do not consider the uncertainty of the assumption and conversion. The following equation is used to
calculate the passenger number from a given train load status:

Passenger number (t )= (Passenger load status (t ))×1431
100

. (1)

For analysis  and modelling,  the passenger load status  is  averaged in each fixed interval  of  30 minutes,
between 5:00 am and 1:00 am next day (daily continuous period for services running). The interval of 30
minutes is an appropriate setting for the case study, which ensures that there are at least several trains
running during each interval. Public holidays, such as Christmas and New Year days, are excluded from the
analyses of normal workdays.

Weather data and events data were also provided by TfL. The weather data during the aforementioned
study period were recorded in every 15 minutes for 24 hours from nineteen weather stations in the London
area. They contain temperature, rain state, rain intensity, snow state, etc. and there are more than 650
thousands weather records in the data set. More than three thousands events happened in London and the
information about their locations, start time and finish time were collected and included in a data base.

The following paragraphs assess the attributes that make important contribution to the number of
passengers. The potential attributes include temporal variables (month in a year, day of the week and time
in a day) (Li et al. 2017a; Ding et al. 2018; Liu et al. 2019b), positional variables (station and travel direction)
(Ding et al. 2018; Li et al. 2018; Liu et al. 2019a), weather (Wang et al. 2018) and events (Li et al. 2017a; Ni et
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al. 2017; Chen et al. 2020). In the following analyses, the passenger load in a certain day will be compared
with the annual average of the passenger load. In calculation of the annual average, the abnormal days, such
as bank holidays and the days when extreme weather, big events or long service disruption happens, are
excluded. In this study, 122 days out of 365 days are identified as abnormal and have been excluded from
the calculation of the annual average. In the following analyses, the passenger load at a certain station refers
to the passenger load when trains approach that station. 

As demonstrated in Figure 3-2, the passenger flow varies a lot in a single day. For weekdays, its pattern
is highly similar, where two peaks can be observed for most stations. The first peak generally occurs in the
morning  between  7:30  and  9:30  and  the  second  peak  is  in  the  afternoon  between  17:00  and  19:00.
Normally, the passenger flow in the morning peak and/or the afternoon peak could be 2-3 times of that in
off-peak hours. The weekend shows different trends compared to weekdays and there is no distinct morning
and afternoon peaks. High passenger load often appears between 11:00 and 19:00. The passenger load on
Saturday is generally higher than that on Sunday. It is also noticed that there is an increase in passenger flow
during the late nights on Friday and Saturday due to entertainment and social activities. These observation
shows that day of the week and time in a day have a significant impact on the passenger flow, as indicated in
(Liu et al. 2019b). We also investigated the variation of the passenger flow in different seasons. It was found
that the mean passenger flow keeps a very similar trend across four seasons.
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Figure 3-2: Mean passenger flow for different days of a week at Oxford Circus.

From a starting station to an end station, the mean passenger load shows a trend of first increasing and
then decreasing along the Victoria line. Figure 3-3 shows how the passenger load level (0-100) changes with
respect  to  different  stations  for  both  northbound and  southbound  trains.  It  can  be  observed  that  the
northbound trains and the southbound trains at the same station produce very different figures. We can also
find that the maximum passenger load normally appears in the morning peak of the southbound trains
between Highbury & Islington and Warren Street. From the average curve, one can see that the passenger
flow at the stations in the city centre could be 2-3 times of that at the stations close to the termini. The
different scenarios observed from different stations and different running directions show that positional
variables largely affect the passenger number.
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Figure 3-3: Variation of mean passenger load for morning peak, afternoon peak and day average at different
stations: (a) northbound trains and (b) southbound trains.

Two  statistical  measures,  Pearson’s  correlation  coefficient  (for  linear  relationship  detection)  and
correlation ratio (for non-linear relationship detection), were employed to study the significance of different
variables to the passenger load.  From Table 3-1,  it  can be seen that time in a day and station ID have
relatively large correlation with the passenger load and their relationships are non-linear, which is consistent
with the observations from the previous figures.

Table 3-1: Correlation between passenger load and other relevant factors.

Time in a day Day of a week Month Station ID
Corr coef r -0.080* -0.105* -0.043* -0.060*

Corr ratio 0.352 0.154 0.050 0.490
*significance level of 1%.
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Weather condition is  considered to closely associate with human lives. It  could make an impact on
decisions and activities of human, including choice of transport and trip planning. Some adverse weather
conditions, such as heavy rain and snow, may be important factors that affect the passenger number of
Underground trains. Figure 3-4 shows two examples of the passenger flow on the raining days. It can be seen
that the passenger load at peak time is slightly higher than the yearly average value and the passenger load
at off-peak time is slightly lower than the yearly average value. In the morning and afternoon peak time, the
majority of the travellers would be commuters, who may choose to change their travel modes from walking,
cycling and buses to subway, which is less weather affected. Wu and Liao (2020) found a similar scenario
that the travellers tended to choose subway or cars rather than cycling and buses under inclement weather
conditions.  In  the  off-peak  time,  there  are  many  people  travelling  for  leisure  purposes.  They  have  the
flexibility and may consider cancelling or delaying their inessential trips, where some research found that the
leisure trips are more sensitive to adverse weather conditions (Arana et al. 2014). However,  the effect of
weather on subway passenger flow is relatively small compared to other means of transport due to the
reliability of rail transport (Nosal and Miranda-Moreno 2014; Wu and Liao 2020). Some research (Liu et al.
2019a) even found heavy rain had a negligible impact on the passenger flow of the whole subway network. 
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Figure 3-4: Effect of rain on passenger flow at Victoria: (a) 04 Nov 2014, Tuesday, maximum intensity 9.1

mm/h and (b) 13 Aug 2015, Thursday, maximum intensity 15.5 mm/h.

As the capital of the UK, London has unique history, culture and venues that make it one of the most
popular  destinations  for  tourists  and  events.  This  brings  the  London  transport  services  a  big  pressure.
Though there are thousands of events happening every year, not all of them have a large impact on the
Victoria line. In this work, we have tried to identify the events that may affect the Victoria line, which is
basically judged by whether the venue of an event is close to the Victoria line. Figure 3-5 shows two events
affecting the passenger flow, a concert and a football match. It can be observed that the passenger load
shows a significant increase before and after the events. 
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Figure 3-5: Changes on passenger flow for two events: (a) a concert close to BRX: 02 Dec 2014, event

duration 19:00-23:00, increase in arriving passenger number 4859; and (b) a football match close to SVS: 11
Apr 2015, event duration 15:00-16:45, increase in leaving passenger number 9049.

There are some other factors that would also affect the number of passengers, such as accessibility of
stations (Li et al. 2017b), availability of alternative means of transportation (private cars, taxis, buses, shared
bicycles, etc.), and their price, quality of service and convenience (Zhang et al. 2018b, Li et al. 2019b, Zhang
et al. 2019b). For a given station, their effect on the passenger number normally keeps stable, if there is no
large change in  transport  services and environment around the station. Therefore, for prediction of  the
short-term passenger flow, one doesn’t need to consider every single factor, but regard all of their effect has
been embedded into positional and temporal factors.

4. Methodology of Data-driven Modelling

In this research, we propose a two-layer structure to achieve an accurate prediction for the passenger
flow on trains, which is shown in Figure 4-1. This framework includes a global model and a number of local
models. The global model can provide a general prediction for the passenger number based on temporal and
positional information. The local models are able to predict the change in the passenger number due to
some momentary  factors,  such as events  and weather conditions.  The aggregation of  the global  model
output  and  the  local  models  outputs  provides  an  accurate  and  practical  prediction  for  the  real-time
passenger number.

The two-layer modelling structure is preferable to a single model that uses all the attributes as inputs,
due to two reasons: better accuracy and better maintainability. In the historical data set, the number of data
samples  that  involve  special  events  and  special  weather  conditions  is  relatively  small,  which  cause  an
imbalance between the data from normal days and those from special days. If a ‘single model’ is trained
using all available data, it will perform well in the areas with high-density training data (normal days) but not
that  well  in  the  areas  with  sparse  training  data  (days  with  events  or  adverse  weather).  The  two-layer
structure can solve the problem by modelling the effect of special attributes separately, which can balance
the training effort among various conditions and help improve the prediction accuracy for the special days.
On the other hand, in the case that new event-related or weather-related data are collected, the ‘single
model’  needs to  be fully  redeveloped and  retrained,  which is  time-consuming.  However,  the  two-layer

10



structure allows only updating the relevant local model or building a new local model and integrating with
other modular components.

Information
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Figure 4-1: The proposed modelling framework including global model and local models.

For  the  generation  of  global  and  local  models  from  data,  we  propose  a  modelling  approach
implementing  FRBSs  (Zadeh,  1973).  In  this  approach,  a  heuristic  algorithm  reduced  space  searching
algorithm (RSSA) (Zhang and Mahfouf, 2010) is employed to provide learning and optimisation abilities. A
clustering-based data sifting strategy is proposed to select the most informative and representative data for
model  training, which greatly  helps  to  improve the modelling  efficiency in a case  of  possessing a large
amount of data. This strategy is particularly important for the case of modelling the number of passengers
on trains, as it considers the data from different stations and different travel directions, which are much
more than the data used in modelling the passenger volume at a single station. 

4.1 Introduction to fuzzy rule-based systems

FRBSs can process complex,  vague and uncertain information  by using interpretable linguistic rules.

They were developed based on fuzzy set theories (Zadeh, 1965). A fuzzy set can be denoted as a pair ( A , μ A)
,  where  A is  the set  name and  μA is  the membership  function.  For a given value  x ∈ A,  μA( x ) is  its
membership  value  with  respect  to  A.  Gaussian  functions,  triangular-shape  functions,  trapezoidal-shape
functions are normally used as membership functions.

FRBSs combine fuzzy set theories with linguistic “If-Then” rules to represent systems, which makes the
system models easier to be interpreted and explained. Figure 4-2 shows an example of a general FRBS, which
includes four main parts: a fuzzy rule-base, fuzzifiers, a fuzzy inference engine and a defuzzifier.
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Figure 4-2: Basic configuration of fuzzy systems.

The fuzzy  rule-base, also known as a knowledge-base, is the core of a fuzzy system. It consists of  the
following If-Then linguistic statements:

Rulej: IF x1 is A1
j  and x2 is A2

j … and xn is An
j , THEN y is B j,

where  j=1 ,2 ,… ,m and  m is  the  total  number  of  fuzzy  rules;  X =[ x1 , x1 ,…, x n ]
T  are  input  fuzzy

variables and Ai
j, i=1 ,2 ,… ,n, are input fuzzy sets; y is an output fuzzy variable and B j is an output fuzzy

set.

The antecedent variables and consequent variable of fuzzy rules are all fuzzy variables. This requires a
real input value to be fuzzified first to allow a further use by fuzzy rules the fuzzy reference engine. The
fuzzifiers convert  input real values to fuzzy set values by using membership functions. The fuzzy inference
engine  implements fuzzy  logic  principles  and  the  applicable fuzzy  rules  in  a  reasoning  process,  which
suggests a fuzzy set output from given fuzzy set inputs. The defuzzifier maps from the output fuzzy set to a
single real value. The defuzzifier aims to specify a real-value datum point to represent the output fuzzy set
appropriately.  The commonly used defuzzification methods include centre average, middle of maximum,
centre of gravity, etc.

There are two ways to construct  FRBS models:  to generate models from expert  knowledge and to
generate models from data. The data-driven modelling approach enables an automatic identification of the
structure  and  parameters  of  FRBSs.  As  a  primary  requirement,  a  data-driven  modelling  method needs
learning and optimisation abilities to initialise and refine fuzzy sets and fuzzy rules of the system. Heuristic
algorithms are commonly used learning and optimisation techniques.

4.2 A fuzzy modelling approach with data sifting

In this research, we developed a data-driven modelling approach that constructs linguistic FRBSs with
good accuracy and interpretability, which is named a fuzzy inference system with data sifting and structure
improvement (FIS-DSSI).  The  FRBSs employ Gaussian functions as the  membership functions of fuzzy sets,
the  product  inference  engine  as  the  fuzzy  inference  engine  and  the  centre  average  method  as  the
defuzzification method (Wang 1997). In the proposed approach, a clustering technique is utilised to elicit the
initial fuzzy model. A data sifting algorithm is designed to select the most compact and informative training
data  set.  A  heuristic searching  and  optimisation  algorithm  RSSA  is  then  implemented  to  improve  the
structure and parameters of the initial model. Figure 4-3 shows the proposed modelling approach, which
consists of several execution steps. It is also worth noting that the modelling approach is designed based on
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continuous variable domains, but it works well with discrete input variables, since one can regard a discrete
input as a special case of a continuous input. The proposed fuzzy modelling method will be implemented to
construct both the global and local models for passenger flow. The difference between the global model and
the local model lies in different choices of input and output variables and different training data.

Clusters information

Training Data

Data Clustering

Improved Fuzzy 
Models

Fuzzy Model 
Generation

Data Sifting

Structure & Parameters 
Optimisation

Initial FRBS Reduced 
training data

Figure 4-3: The proposed fuzzy modelling approach.

4.2.1 Clustering

Clustering  is  an  unsupervised  classification  technique  that  groups  unlabelled  data  into  meaningful
clusters. The data within one cluster share similarities and the data in different clusters are rather dissimilar.
In this work, an improved clustering algorithm, the fast agglomerative complete-link clustering (Zhang and
Mahfouf,  2008)  was used,  which  was  designed  to greatly  reduce  the  computational  complexity  of
conventional hierarchical clustering algorithms. The Euclidean distance is used as the similarity measure in
our work.

4.2.2 Generation of an initial fuzzy model 

The clusters information is then used to build an initial FRBS. In the model, each fuzzy rule reflects a
single cluster. The fuzzy sets are defined based on the position and shape of clusters. The centre of a fuzzy
set’s  membership function is set to be the centre of the corresponding cluster.  The membership function
should cover the scope of the corresponding cluster.

In this work, we employ the Gaussian membership functions as follows:

μA( x )=e
−( x− c)2

σ 2

,(2)
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where μA( x ) represents the membership degree of x  belonging to A; σ>0 and it relates to the scope of the
membership function; c  is the membership function’s centre. 

As  an  example,  we  consider  a  general  modelling  problem  that  possesses  a  collection  of  (n+1)-

dimensional input-output (n inputs and 1 output) training data { p1 , p2 ,… , pN }. pk=[ x1
k , x2

k ,… , xn
k , yk ]T ,

where k=1 ,2 ,… , N , and N  is the total number of the data samples. If a clustering process is performed,

one gets a specified number (m) of clusters. If C j represents the jth cluster,  C j={p j 1 , p j 2 ,… , p j (ND|| j )},

where j=1 ,2 ,… ,m, and ND j is the data volume in the jth cluster. 

The jth fuzzy rule that relates to cluster C j is as shown in Section 4.1. For a fuzzy set Ai
j, the centre

parameter of the membership function is calculated using the following equation:

c i
j=∑

l=1

ND j xi
jl

ND j

.(3)

On the other hand, a membership function needs to cover all the data that compose the related cluster. This
means that, for every datum in the cluster, its membership degree needs to exceed a certain level to make
sure the datum is dominated by the related fuzzy rule. Such a requirement leads to the following equation:

min
l

(μAi
j ( x i

jl ))=min
l

(e

−(x i
jl − ci

j )2

(σ i
j)2 )=Th , (4)

where  l=1 ,2 ,… , ND j.  Th is  a  threshold  value and  is  set  to  0.25 in  this  paper.  Equation  (4)  can  be

rewritten to the following equation to determine the parameter σ i
j:

σ i
j=

max  ( x i
jl −c i

j)
√− ln  (Th )

.(5)

4.2.3 Data sifting

In data-driven modelling, a large number of training data may not lead to good performance and may
reduce the modelling efficiency. Some data may represent the same or very similar information. Using all of
such  data  will  not  be  efficient.  On  the  other  hand,  the  available  data  may  show different  densities  in
different areas due to various data collection strategies. If all the data are used in modelling,  the developed
model will  only be finely trained in certain areas and will  perform badly in other areas. To avoid these
situations, we designed a data sifting technique to select the most representative data with a balanced data
density for model training purpose.

In this research, we utilise clusters information for training data selection. During clustering,  the data
samples are grouped into different clusters containing some distinctive information. This indicates that the
representative training data need to be obtained from every single cluster. To balance the data distribution,
one  should  select  the  same  number  of  data  from  each  cluster,  or  make  the  resulted  data  density
approximately the same across different areas.

The proposed data sifting method works as the following steps:
1. If the number of data in one cluster C j is odd, add an infinity datum to the cluster to form a new 

cluster C j={p j 1 , p j 2 ,… , p j (ND|| j )}, where j=1 ,2 ,… ,m and ND j is an even number.
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2. Within each cluster, randomly pair the data samples.

C j={( p jr (1) , p jr(2 )) ,( p jr (3) , p jr (4))… ,( p jr ( ND j −1) , p jr ( ND j ))}, where r=randperm(ND j ) and

randperm () return a row vector including a random permutation of the integers from 1 to ND j 
inclusive.

3. For each cluster, do a second round paring to form

C j
❑={( p j r❑ (1) , p j r❑ (2)) ,( p j r❑ (3) , p j r❑ (4))… ,( p j r❑ ( ND j− 1) , p j r❑ ( ND j ))}, where r

❑=randperm (ND j ).
4. Combine two sets of data pairs of all clusters {C1 ,C2 … ,C m ,C1

❑ ,C2
❑ ,… ,C m

❑}and get

{( p ' 1 , p ' 2) , ( p ' 3 , p ' 4)… ,( p' (∑j

ND j− 1) , p '(∑j

ND j))} . 

5. For each pare, calculate its distance measure using

d k=N ( p ' k , p ' (k+1 ))=√∑
i=1

n

(w Ii
2×( x i

k+1 − x i
k)2

+wO
2 × ( yk +1− yk )2), where

k=1 ,3 ,… ,(∑j

ND j −1) and w I=[w I 1 ,w I 2 ,… ,w❑] and wo are the distance weights for input 

and output variables, respectively.

6. Find the pair with the minimum distance value d id min
=min  (d k), where i d min is the index of the pair

( p ' id min
, p ' (i d min +1)). 

7. Except for the found pair, find the datum p' id min
 in another pair ( p ' id 1 , p ' (id 1+1 )), where

p' id 1= p ' idmin
 or p' (id 1+1)=p ' id min

. Also, find the datum p' (i d min+1) in another pair ( p ' id 2 , p ' (id 2+1)), 
where p' id 2= p ' (i d min+1 ) or p' (id 2+1 )= p '(i d min+1).

8. If N ( p ' id 1 , p ' (id 1+1))< N ( p ' id 2 , p ' (id 2+1)), remove p' id min
 from clusters C j; otherwise, remove

p' (i d min+1) from clusters C j.

9. Set d id min
=∞.

10. Repeat Steps 6 – 9 for ceil (ND j /10) times, where ceil ( x ) rounds up x  to the nearest integer. After

the iterations, about 10% of the data in the current clusters are removed.
11. If the total number of data in all clusters is smaller than a predefined value NR, terminate the 

process; otherwise, return to Step 1.

The distance weights w I and wo will affect the compactness of clusters and will thus affect the elicited
FRBS’s sensitivity to a certain input variable. Generally, a large value of a weight suggests that the variable of
the corresponding dimension is more important than another variable with a small weight value. For the
modelling purpose, it is appropriate to use a large value for the output weight.

4.2.4 Structure improvement

The  structure  and  parameters  optimisation  process  starts  after  the  completion  of  initial  model
generation and data sifting. The optimisation process repeats whenever new parameters are generated and
stops until a termination criterion is met. The optimisation process is carried out based on the reduced
training data, which can help reduce the computational burden and increase the training speed.
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In this work, the structure and interpretability of models are improved using the following operations:
combination of similar fuzzy sets, elimination of redundant fuzzy sets, combination of similar fuzzy rules and
elimination of redundant fuzzy rules. Through the reduction of fuzzy sets and fuzzy rules, the total number of
parameters is reduced and the complexity of the model is reduced.

The similarity measure between fuzzy sets is defined as follows:

S ( Ai
k , Ai

l)= 1

1+√(c i
k − ci

l)2
+(σ i

k − σ i
l)2

(6 )

A threshold Th1 is used to control the combination of similar fuzzy sets. If S ( Ai
k , Ai

l)>Th1, which means the

fuzzy sets Ai
k and Ai

l  are highly overlapped. In this case, they will be combined to a single set Ai
new. A fast

way to calculate its parameters is that c i
new=(c i

k+c i
l)/2 and σ i

new=(σ i
k+σ i

l)/2. One can also apply Equations

(3) and (5) to calculate c i
new and σ i

new by merging samples in relevant clusters.

Redundancy of  a  fuzzy  set Ai
k is identified by  calculating the similarity  S ( Ai

k ,U ),  where U  is  the

universal set and μU ( x)=1 ,∀ x. If a fuzzy set is very similar to the universal set, the membership degree of
any  given  value  according  to  the  set  is  always  close  to  1.  Such  a  set  does  not  provide  any  help  in
differentiating different situations and is considered to be redundant. A threshold Th2 is used to control the

elimination of redundant fuzzy sets. If S ( Ai
k ,U )>Th4, Ai

k is deemed to be redundant and will be removed.

In the case that a redundant set is removed, the antecedent conditions of fuzzy rules that include the set
should  also be removed.  This  will  result  in some ‘shorter’  fuzzy  rules that do not  contain all  the  input
variables.

The similarity between two fuzzy rules is determined by the similarity of the antecedent terms of these
two rules. The similarity measure is designed as follows:

S R( Rk ,R l )=∏
i=1

n

S (Ai
k , Ai

l) (7)

where A1
k , A2

k ,… , An
k  are the fuzzy sets in the preconditions of the kth fuzzy rule Rk; A1

l , A2
l ,… , An

l  are the

fuzzy sets in the preconditions of the l th fuzzy rule Rl. Once S R exceeds a threshold value Th3, Rk and Rl

will be combined to form a new fuzzy rule Rnew. The pairs of the fuzzy sets involved in both the antecedent

and consequent terms of Rk and Rl  will be merged, following the method introduced before.

To  evaluate  the  redundancy  of  a linguistic rule,  we  employed  an evaluation  measure  confidence

(Ishibuchi  et  al.  2001).  If  C  is  a set  with N  training  data  pk=[ xk , yk ]T=[x1
k , x2

k ,… , xn
k , yk ]T ,  where

k=1 ,2 ,… , N . The confidence of a fuzzy rule was designed as the following equation:

conf ( A → B )=
|C ( A) ∩C ( B )|

|C ( A )|
=
∑
k=1

N

(μA (xk )× μB( y k ))

∑
k=1

N

μA( xk )
(8)

where  |C ( A )| represents how  many data  samples  that are  compatible  with  antecedent  conditions;

|C ( A )∩C (B )| represents the approximate number of data  samples, which are  consistent with both the

antecedent and consequent conditions; μA( xk ) is the compatibility level for the input vector x k with respect
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to terms A=[ A1 , A2 ,… , An ]; and μB( yk ) is the compatibility level for the output yk
 to a consequent term

B. μA ( xk ) was usually defined by a product operator as follows:

μA( xk )=μA1
( x1

k )× μA2
( x2

k )× …× μ An
( xn

k ) (9).
Confidence measures the proportion of data that are compatible with a certain fuzzy rule. If the value is low,
it means the fuzzy rule is poorly supported by data and a large number of observations may be against it.
Normally, the fuzzy rules generated using a clustering-based method have good confidence values, while a
grid-partitioning-based method may generate  some  redundant  rules  with  low  confidence values. In  this
work, if the index value of a certain rule is less than a threshold Th4, the rule is considered redundant and
will be removed.

4.2.5 Structure and parameters optimisation

The structure improvement mechanism introduced in Section 4.2.4 can only improve the simplicity (or
interpretability)  of  a FRBS and may cause a decrease in modelling accuracy. Therefore,  it must cooperate
with  a parameter  optimisation  mechanism  to  achieve  a  balanced  improvement  between  accuracy  and
interpretability. We  consider  two  aspects  in  the  improvement  of  an  initial  FRBS:  accuracy  and
interpretability. The Root Mean Square Error (RMSE) is used to evaluate the accuracy performance and is
defined as follows:

RMSE=√∑k=1

N

( y m
k − y p

k )2

N
(10)

where  ym
k  represents  a measured output, y p

k  represents  a predicted output,  k=1 ,2 ,… , N  and  N  is the

total data number. The interpretability relates to the average length of fuzzy rules (Lrule), the quantity of
fuzzy rules (Nrule) and the quantity of fuzzy sets (Nset ).

To normalise the measures used to assess accuracy and interpretability and make them comparable in
scale, we design an objective function for optimisation as follows:

w1
RMSE
RMSE I

+w2
Lrule
Lrule I

+w3
Nrule
Nrule I

+w4
Nset
Nset I

(11)

where RMSE I  is the RMSE  of the initial FRBS; Lrule I , Nrule I  and Nset I are the average rule length, fuzzy
rules number and fuzzy sets number of the initial FRBS, respectively.

A  heuristic  optimisation  algorithm is  utilised  to  tackle  the  objective  function  to  improve  both  the
structure and parameters of fuzzy systems. The decision variables include the parameters of all fuzzy sets
and four thresholds  Th1 -  Th4, which control the  degree of interpretability improvement as introduced in
Section 4.2.4. Figure 4-5 shows a flow diagram of the  designed mechanism for structure and parameters
optimisation.
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Figure 4-5: The proposed mechanism for structure and parameters optimisation.

In this work, we employed a fast search and optimisation method, reduced space searching algorithm
(RSSA) (Zhang and Mahfouf 2007, 2010). It was inspired by a human behaviour when searching for a solution
in daily life. Different with other heuristic algorithms, RSSA tries to transform and shift the search space to
locate the optimal sub-space, while most other optimisation techniques focus on producing new candidate
solutions with various mechanisms. RSSA was shown to be a successful algorithm that can find the global
optimum rapidly. 

5. Predictive Models of Passenger Flow on Trains

The designed fuzzy modelling method FIS-DSSI has been implemented to build both the global and local
models for passenger flow of London Underground trains. The difference between the global model and the
local  model  lies  in  different  choices  of  input  and  output  variables  and  different  training  data.  In  the
modelling experiments, the initial FRBS model was constructed with 50 fuzzy rules and 50 fuzzy sets for each
dimension,  which were later  reduced through the optimisation process.  The configurations of the RSSA
algorithm were set the same as the recommendations in (Zhang & Mahfouf, 2010). The maximum function
evaluation number  is 10,000. Each experiment was  run multiple times and the results showed very good
repeatability and consistency.

5.1 Global model

To predict the passenger flow in an ordinary condition, four attributes were used as the model inputs,
which are time in a day, day of the week, station ID and travel direction. For day of the week, discrete values
1 to 7 were assigned to represent Monday to Sunday, respectively. For station ID, discrete values 0 to 15
were assigned to represent the stations from the south terminus to the north terminus, respectively. It
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means the station ID for Brixton is 0 and the station ID for Walthamstow Central is 15. For travel direction, 0
represents  northbound  trains  and  1  represents  southbound  trains.   The  model  output  is  the  average
passenger load of all the trains approaching a particular station within a 30-min time interval. It is worth
noting that the passenger load approaching one station is the same with the passenger load departing from
the previous station. Since the model is developed to predict the passenger load arriving at every station, the
information about departing passenger load can also be obtained from the arriving prediction of the next
station. In the experiments, 10685 data were used in training and other 7459 data were used in testing. After
the operation of the proposed data sifting mechanism (see Section 4.2.3), 3326 data were obtained as the
representatives for the whole training data set and they have shown to work very well in the generation of
the global model. Figure 5-1 shows the performance of the generated model in the prediction of both the
training and testing data sets. The RMSE of this model is 1.5457 for training and 1.8358 for testing.

To validate the model in prediction, it was further employed to predict the passenger flow of certain
trains.  Figure  5-2  shows  the  forecasting  examples  for  both  northbound and  southbound  trains,  at  the
stations Oxford Circus and Stockwell, on Wednesday and Saturday. From the figure, it  is observed that the
developed model can forecast the passenger load dynamically and precisely. The model is reckoned to be
robust, as it tends to produce moderate and smooth predictions and ignore the noises involved.
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Figure 5-1: Measured passenger load versus predicted passenger load using the developed global model
(with ±10% error bands).
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Figure 5-2: Prediction of the passenger load on northbound and southbound trains when approaching
Oxford Circus and Stockwell.

Figure 5-3  includes the  three-dimensional response surfaces of the generated model. From Figure 5-
3(a), it is observed that there is a distinct afternoon peak for taking the northbound trains at Euston; and the
maximum passenger load for this afternoon peak is slowly going down from Monday to Friday, and then
largely decreasing on Saturday and Sunday. Figure 5-3(b) demonstrates that the model can predict different
passenger load patterns for different stations, for example, the south stations have a high morning peak
while some middle stations have a high afternoon peak. This is consistent to the data observation done in
Section 2 and it reflects the fact that some commuters take the northbound trains to work in the morning
and some other commuters travel from the city centre to north to go back home in the afternoon. The
smooth response surfaces also demonstrate the good nonlinear mapping and generalisation abilities of the
proposed modelling approach.
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Figure 5-3: 3-D response surfaces of the global model: (a) for northbound trains at Euston and (b) for

northbound trains on Friday.

Figure 5-4 illustrates 5 fuzzy rules of the developed model.  Such fuzzy rules  may also be described as
approximate linguistic rules, which employ some linguistic hedges (Zadeh, 1972), such as:

R1: IF Station Index is small AND Travel Direction is ‘1’ AND Day of the Week is small AND Time in a Day
is more or less medium, THEN Passenger Load is small.
R3: IF Station Index is small medium AND Travel Direction is ‘1’ AND Day of the Week is more or less 
small medium AND Time in a Day is medium large, THEN Passenger Load is large.

Through  investigating the linguistic rules, one  may obtain more  knowledge  about the passenger  flow on
trains and the potential relationships between inputs and output.

Table 5-1 compares the performance of the proposed FIS-DSSI method with some parametric and non-
parametric models. ANN-BP represents a feedforward neural network with a training method of Bayesian
regularization backpropagation (Dan Foresee and Hagan 1997). It has a single hidden layer with 50 sigmoid
neurons. The adaptive neuro-fuzzy inference system (ANFIS) model is a Sugeno-type fuzzy inference system
with a combination of the least-squares and back-propagation gradient descent methods in training (Jang
1993). The ANFIS model generated in experiments has 53 fuzzy rules. The ANN-BP and ANFIS models used
the same  model inputs and training and testing data as the FIS-DSSI model. It can be observed that the
newly developed model outperforms these widely used neural network and fuzzy models. A single AR or
ARIMA model is only developed for a single station for either northbound or southbound trains, where Table
5-1 shows the example of such models for southbound trains at station OXC. In the experiments, the order 2
AR model and the ARIMA (2, 0, 2) (Ding et al. 2018) model were employed. The results in Table 5-1 show the
accuracy of prediction for future one step (30 minutes). The time-series models are suitable to predict for
the near future based on the current and near past observations, while the non-parametric models do not
have such a limitation.

R1 R2 R3 R4 R5

IF Station
Index is
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Figure 5-4. Examples of fuzzy rules of the global passenger flow model.

Table 5-1: Comparison of different methods in modelling the passenger flow.

Model Training Testing
RMSE r RMSE r

AR* 3.5022±0 0.9609±0 3.8235±0 0.9591±0
ARIMA* 3.3425±0 0.9630±0 3.6175±0 0.9619±0
ANN-BP 2.4928±0.0971 0.9790±0.0018 2.6187±0.0951 0.9767±0.0015
ANFIS 3.1483±0 0.9658±0 3.2561±0 0.9646±0
Proposed FIS-DSSI 1.5457±0.0311 0.9880±0.0032 1.8358±0.1491 0.9883±0.0008
*Models for passenger flow of southbound trains at OXC.

5.2 Local models

Two local  models  were developed,  which can forecast  the change in  passenger load due to some
temporary factors, i.e. weather conditions and events. It should be noted that the service disruption and its
spatiotemporal effects (Li et al. 2020) would also affect the passenger flow. If the relevant data are available,
one can construct another local model to predict the change of passenger flow caused by service disruption
and its  spatiotemporal  effect.  In  the weather  local  model of  the current  case  study,  the  only  weather
condition considered is  heavy rains.  Some other  adverse  weather conditions,  such as  snows and heavy
winds, were not included into the current model due to the lack of the relevant data. 
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For the weather local model, the input variables include time in a day, day of the week, station ID, travel
direction,  rainfall  intensity  and estimated water  volume of  a  rainy  day.  The assignment  of  the discrete
variables is the same with that of the global model. The output variable is the passenger load change on the
trains of the Victoria line. In the model construction, 1032 data samples were used in training and 518 data
samples  were used  in testing. The RMSEs of this model for training and testing are 1.4295 and 1.6734,
respectively. Figure 5-5(a) gives the predictive performance of the generated local model working on testing
data.
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Figure 5-5: Measured versus predicted outputs using developed local models (with ±10% error bands): (a)

the weather local model and (b) the event local model.

To validate the model in prediction, the weather local model was employed to predict the variation of
the passenger load in a rainy day, 13th October 2014, Monday. As shown in Figure 5-6, the local model helps
adjust the prediction provided by the global model. The aggregation of the global model output and the local
model output provides an accurate prediction for the true passenger load level.

In this study, only the events that regularly happen and have a large impact on the passenger number of
the Victoria Line were included in the event local model. We can identify two types of events with different
patterns in affecting passenger number. One type of events are ‘time-concentrated’ events, such as football
matches and concerts, where people are expected to attend the whole period of an event and thus they
normally take trains before and after the event. The other type of events are ‘time- flexible’ events, such as
festive fairs, where people can join at any time during an event which results in an increase in the train
passenger number during the whole period of the event.

For the event local model, the input variables include time in a day, day of the week, station ID, travel
direction, event ID, start time of event, end time of event and estimated attendance. The assignment of the
discrete variables is the same with that of the global model. For event ID, the value assignment can be found
in Table A-2 in Appendix. The output variable is the passenger load change on the trains of the Victoria line.
In the model construction, 714 data samples were utilised in training and 357 data samples were utilised in
testing. The RMSEs of this model for training and testing are 1.8774 and 2.0786, respectively. Figure 5-5(b)
gives the predictive performance of the generated local model working on testing data.
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Figure 5-6: Prediction of passenger load on trains in a rainy day, 13 th October 2014, Monday: (a) northbound

trains approaching Warren Street and (b) southbound trains leaving Warren Street.

Figure 5-7 shows the examples of using  the global model plus the local event model to predict the
passenger load for two football-match days. The first  day is  5th October 2014, Sunday, and an England
Premier League football match (Tottenham Hotspur vs. Southampton) was held in White Hart Lane at 14:00
– 15:50. The second day is 29th October 2014, Wednesday, and an England League Cup match (Tottenham
Hotspur vs. Brighton & Hove Albion) was held in White Hart Lane at 19:45 – 21:30. From the figure, we can
observe a good consistency between the predicted values and the measured real data. This means that the
local models help adjust the prediction by the global model to achieve more accurate prediction for the
passenger flow.
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Figure 5-7: Prediction of passenger load on trains on two football-match days: (a) southbound trains leaving

Seven Sisters on 5th October 2014, Sunday and (b) northbound trains approaching Seven Sisters on 29 th

October 2014, Wednesday.

6. Conclusion
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In  this  paper,  we  have  proposed  a  hierarchical  modelling  framework  for  traffic/passenger  flow
prediction. It includes two layers of models, where a global model used to predict the passenger flow under
ordinary circumstances and a number of local models used to predict the changes in passenger flow due to
specific  factors,  such  as  events,  weather  and  service  disruption.  A  new  data  sifting  method  has  been
proposed to select the most informative and representative data for model training, which greatly reduces
the  computational  complexity  and  improves  the  modelling  efficiency.  The  proposed  method  has  been
successfully applied to the problem of forecasting passenger flow of  London Underground trains. It  was
shown that the aggregation of the global model output and the local models outputs provides an accurate
and practical prediction for the real-time passenger flow.

The case study shows that the passenger flow greatly varies in different locations at different times. On
weekdays, the passenger flow in the morning peak and the afternoon peak could be 2-3 times of that in off-
peak hours. The passenger flow at the stations in the city centre could be 2-3 times of that at the stations
close to the termini. It is also noticed that there is an increase in passenger flow during the late nights on
Friday and Saturday. The rail operators and station administrators should allocate appropriate train capacity,
personnel, and service and infrastructural facilities to reflect the spatiotemporal distribution of passenger
flow. The passenger flow analysis and prediction also helps formulate maintenance schedule by finding less
busy time, helps prepare and evaluate emergency response plans by providing possible passenger number,
and helps prioritise safety and  security inspection by providing spatiotemporal distribution of  passenger
flow. Considering the high passenger demand in the weekday peak hours, more services may be introduced
to the timetable to avoid overcrowded scenarios. For the stations with low passenger flow, their attraction
and the radiation accessibility  (Li  et  al.  2017b.)  should be evaluated. If  needed, the accessibility can be
improved by increasing the connection buses, improving the nearby walking environment and providing
enough shared bicycles.

It shows that the impact of weather on the subway (Metro) passenger flow is not very large. Under
some adverse weather conditions, such as heavy rains, some people may cancel or delay their inessential
trips; on the other hand, some people tend to shift travel modes from walking, cycling and bus to subway.
Considering a large passenger number under bad operating conditions, such as slippery surfaces in stations
and trains, some extra risk is introduced. Therefore the risk mitigation strategy should be carefully designed
and  followed.  Large  events  greatly  affect  the  passenger  flow  in  a  short  time  window.  If  the  surge  of
passenger number happens in peak hours,  it  can easily  lead to overcrowded and unsafe scenarios.  The
transport regulators and policymakers should take this  into account when scheduling and approving big
sport and culture events; and the transport operators may introduce extra subway and/or other transport
services, provide more personnel and resources to ease the short-term pressure relating to events.

There are still  some limitations in this  work.  For instance, the current case study has analysed the
passenger flow data from one train line but has not addressed the interrelationship between different lines;
the current case study has not investigated how service disruption and its spatiotemporal effects would
affect the passenger flow. Some future work can be carried out for further improvement and exploitation of
this research. First, the current data-driven modelling work can be extended from one train line to a regional
or  national  network,  where  the  service  disruption  and  its  spatiotemporal  effects  will  be  studied.  The
interrelationship between different lines can be studied using a networked modelling paradigm. Second, the
developed passenger flow models can be merged with online journey planning tools, which can provide
detailed crowding prediction in advance of travel to help passengers make better decisions in their journey
planning. Multi-criteria decision making (MCDM) techniques can be employed to consider the passengers’
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personalised preferences and suggest the best decision. Last, the developed models can be combined with
multi-objective  optimisation  techniques  to  develop  a  decision  support  tool,  which  is  used  to  plan  the
distribution of rolling stock to achieve the optimal use of train capacity.

Appendix

Table A-1: Station abbreviations.

Abbreviations Station names Abbreviations Station names
WAL Walthamstow Central WST Warren Street
BHR Blackhorse Road OXC Oxford Circus
TTH Tottenham Hale GPK Green Park
SVS Seven Sisters VIC Victoria
FPK Finsbury Park PIM Pimlico
HBY Highbury & Islington VUX Vauxhall
KXX King's Cross St. Pancras STK Stockwell
EUS Euston BRX Brixton

Table A-2: Value assignment for event ID

Event Event ID value
Football match 1
Concert and show 2
Festive fairs 3
Market 4
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