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ABSTRACT Central Serous Retinopathy (CSR) or Central Serous Chorioretinopathy (CSC) is a significant
disease that causes blindness and vision loss among millions of people worldwide. It transpires as a result
of accumulation of watery fluids behind the retina. Therefore, detection of CSR at early stages allows
preventive measures to avert any impairment to the human eye. Traditionally, several manual methods for
detecting CSR have been developed in the past; however, they have shown to be imprecise and unreliable.
Consequently, Artificial Intelligence (AI) services in the medical field, including automated CSR detection,
are now possible to detect and cure this disease. This review assessed a variety of innovative technologies and
researches that contribute to the automatic detection of CSR. In this review, various CSR disease detection
techniques, broadly classified into two categories: a) CSR detection based on classical imaging technologies,
and b) CSR detection based on Machine/Deep Learning methods, have been reviewed after an elaborated
evaluation of 29 different relevant articles. Additionally, it also goes over the advantages, drawbacks
and limitations of a variety of traditional imaging techniques, such as Optical Coherence Tomography
Angiography (OCTA), Fundus Imaging and more recent approaches that utilize Artificial Intelligence
techniques. Finally, it is concluded that the most recent Deep Learning (DL) classifiers deliver accurate, fast,
and reliable CSR detection. However, more research needs to be conducted on publicly available datasets to
improve computation complexity for the reliable detection and diagnosis of CSR disease.

INDEX TERMS Central Serous Retinopathy, deep learning, fundus images, machine learning, optical
coherence tomography images.

I. INTRODUCTION
The retina is located behind the eyeball near the optic nerve
and comprises a thin layer of tissue [1]. It obtains the
focused light from the eye-lens, converts it into neural sig-
nals, and imparts signs to the brain for visual recognition.
The retina processes light using a layer of photoreceptor
cells. These are light-sensitive cells responsible for detecting
visual characteristics, such as color and light intensity.

The associate editor coordinating the review of this manuscript and
approving it for publication was Pasquale De Meo.

Subsequently, the data accumulated by the photoreceptor
cells are sent to the brain through the optic nerve for optical
recognition. Therefore, the retina plays a crucial role in image
processing for the human brain recognizes and distinguishes
various surrounding objects and names them. Since any dam-
age to the retina may have severe ramifications to our ocular
abilities. A typical schematic diagram of the human eye has
been depicted in Figure 1.

In this review, various retinal disease diagnosis and detec-
tion techniques have been described, and then focused on
utilizing advanced imaging and Artificial Intelligence (AI)
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FIGURE 1. Anatomy of the Human Eye, depicting various parts including
the Retina [2].

methods in a specific retinal disorder known as the Central
Serous Retinopathy (CSR).

The retinal disease diagnosis and detection can be per-
formed through several imaging techniques such as fun-
dus photography and Auto-Fluorescence, Optical Coherence
Tomography (OCT), andAngiography. Recently, in advanced
Deep Learning (DL) investigations, every patient is poten-
tially a source of precious diagnostic data that can be utilized
in training new Machine Learning (ML) models for better
treatment and diagnosis [3]–[5]. The most recognized use
of artificial intelligence (AI) strategies in retinal disease are
the development of spots intricate to disease characteristics
on color fundus photos. In this context, programmed seg-
mentation and characterization of anatomic and pathologic
have been combined and applied in retinal diseases [6], [7].
These techniques are effectively being utilized due to the
emergence and popularity of the OCT methodology since the
early 2000s.

Consequently, it is now possible to conduct exact detec-
tion of several features to perform automated segmenta-
tion of retinal diseases such as, sub-retinal and intraretinal
fluid, drusen, color epithelial disintegration, and topograph-
ical atrophy with equivalent exactness as human graders.
Another research field is developing a profound-settled image
of the retinal vasculature, where OCTA generates multi-
ple consecutively generated images using OCT-B scans.
In recent times some automated systems have been designed
in the detection and treatment of retinal disease mentioned
as Diabetic Retinopathy [8]–[14], Hypertensive Retinopa-
thy [15]–[18], Age-related Macular Degeneration [19]–[23]
and Glaucoma [24]–[29].

The automatic diagnosis of retinal disorders through the
analysis of retinal images has become a significant prac-
tice in clinical systems. Using these automated techniques,
the physicians have extra optimized and accurate results.
In the past, manual methods were used for retinal disease
detection, which were inefficient, time-consuming, and inac-
curate. Contrarily, computer-aided retinal disease recognition
systems are cost-effective, objective, accurate, user-friendly,
and fast. In addition, they do not largely rely on the ability
of an experienced ophthalmologist to examine the various
scanning images to detect the disease [29]. This review article
focuses on a specific retinal disease that is commonly known
as Central Serous Retinopathy (CSR) or Central Serous

Chorioretinopathy (CSC). It was first reported by Von Graefe
as ‘‘Relapsing central Lueitic Retinitits’’ [30]. The CSR is
among one of the major eye diseases, which is caused due to
the collection of fluids behind the retina, which can severely
damage eyesight due to the presence of a delicate tissue
layer constituting retina. Therefore, early-stage detection can
essentially allow for taking the appropriate preventive mea-
sures to restore vision, thereby leading to complete recovery.
The statistics have shown that CSR usually affects one eye,
but the damage to both eyes cannot be ruled out during the
lifetime of any patient. Besides, in some cases, the patients
may recover after a while, without any treatment [31]. More-
over, CSR usually is not correlated with affecting patient’s
quality of life [32]. According to many studies, the CSR
patients’ ages range between 7 to 83 years, with the most
affected age group of 40-50 years.

The interpretation of CSR in classical terms is referred to
as acute CSR. A patient with intense CSR may encounter
obscured vision, decrease in contrast sensitivity and shad-
ing vision, metamorphopsia, and minor hyperopic move.
Traditionally there is a central serous separation of focal
retina, sometimes with dull yellow stores and in a few
cases with serous RPE separation. In several cases of CSR,
a permanent sub-retinal fluid accumulates for three months
or more: resulting in permanent visual symptoms. Such
cases of CSR frequently experience a fluctuating degree
of sub-retinal fluid. However, most cases recover auto-
matically, whereas some patients may experience chronic
CSR [33].

Nevertheless, their visual acuity remains typically steady.
The chronicity of these patients depends upon the time dura-
tion of CSR, and it usually takes 3 to 6months in case of acute
CSR. Contrarily, in chronic CSR patients, the symptoms of
morphological changes and an increased risk of CNV have
been observed [33].

Patients with CSC are generally of the age of 25 and 50,
in which men are afflicted far more frequently than women.
These patients normally have symptoms such as the grum-
blings of unexpected beginning, contortion, and focal vision
blurring. Visual acuity ranges between 6/5 and 6/60, but its
usual range is 6/9 to 6/12 [34]. In the case of CSR, it is
generally a self-constraining disease with unconstrained res-
olution having boundaries of 3–4 months. Historically data
reveals that nearly half of the CSR patients may experience
recurrences of the disease within a year, causing the patient
to undergo various treatment procedures, which may last
for three months in chronic CSR, recurrent CSR, and first-
time CSR patients. Some standard CSR treatments include
the Micro Pulse Laser Treatment (MPLT), the Transpupillary
Thermo treatment (TTT), the Photodynamic therapy (PDT),
and the Intravitreal anti-Vascular Endothelial Growth Factor
(anti-VEGF). These treatment methods are based on the fol-
lowing points:

i. A majority of the population automatically recuperates
within 4 to 6 months without requiring any specific
medicaments.
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ii. If a patient’s CSR lasts for a year, then some treatment
may be required.

iii. In rare cases, if CSR lasts for more than a year, an oph-
thalmologist may opt for specific treatments such as
RPE detachment or bullous retinal detachment [35].

There have been approximately 40 articles published
related to deep learning and medical imaging. Among these
40 articles, only 29 articles are associated with Central Serous
Retinopathy (CSR). These articles, along with their method-
ologies, advantages, and limitations, are discussed in this
review. As mentioned above, CSR detection is performed
through various imaging technologies. We briefly summarize
them below.

A. IMAGING TECHNOLOGIES FOR DETECTION OF CSR
The traditional imaging technologies for CSR detection
include Fundus Photography, Fluorescein Angiography (FA),
and Optical Coherence Tomography (OCT). These technolo-
gies are discussed in the following subsections.

1) THE FUNDUS PHOTOGRAPHY
Fundus Photography is a process of obtaining the retinal red-
free image and is considered an alternative to OCT imag-
ing. This technique is based on the statistical approach and
requires advancement in contrast to its forerunner, color
photography film. Similarly, the digital image of retina pro-
vides quick towering-resolution and consistent image, and
it is accessible instantly and manageable for the develop-
ment of an image. Moreover, Fundus photography is regu-
larly employed for ailment records and clinical examination,
along with potential usage for tolerant training and tele-
health. Additionally, the images generated through Fundus
techniques can incorporate average and extensive views [3].
Figures 2 and 3 depict retinal scans obtained via fundus pho-
tography [36], [37]. In Figure 2, the normal indications of a
healthy eye have been depicted, whereas, in Figure 3, the dark
spot of a blister of fluid caused by CSR disease has been
shown.

FIGURE 2. Normal retinal fundus scan.

In CSC, multimodal-imaging methods incorporate OCT
with improved deep imaging, Indocyanine green angiog-
raphy, fundus auto fluorescence, OCTA, and fluorescein
angiography., The advancement of recent scanning strate-
gies, has transformed the comprehension regarding the patho-
physiology of CSC, and thus the treatment has thoroughly
changed. This review paper explains existing comprehension

FIGURE 3. Retinal fundus scan with CSR.

about physiopathology and hazardous components and mul-
timodal imaging-based highlights of CSR.

2) FLUORESCEIN ANGIOGRAPHY (FA)
Fluorescein Angiography (FA) is an effective imaging tech-
nique in which fluorescent dye is injected into blood vessels
of patient’s eyes in order to capture their clear images. The
main objective of this technique is to highlight the blood
vessels to form a clear and visible image. The patient is
normally prescribed with primary care before initiating the
FA procedure to ensure a satisfactory blood stream in the
veins. In addition, the physicians propose primary care to ana-
lyze further the eye issues, including macular degeneration,
diabetic retinopathy, or Central Serous Retinopathy (CSR).
The retinal images before and after fluorescein angiograms
are depicted in Figures 4 and 5, respectively [36].

FIGURE 4. Retinal image before the fluorescein angiograms (FA).

FIGURE 5. Retinal image after the fluorescein angiograms (FA).

3) OPTICAL COHERENCE TOMOGRAPHY (OCT)
Optical Coherence Tomography (OCT) appeared as an
advanced automation technology used for detection and
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diagnosis of different diseases developed in the early 1990s.
Above mentioned approach is similar to ultrasound imaging.
However, instead of making use of sound it uses the light. The
combination of catheters and endoscopes with OCT produces
high-resolution imaging of the organ system. OCT can pro-
vide tissue images intangible and situ form. Additionally, two
essential modalities of OCT are named as (i) Time-Domain
(TD), and (ii) Spectral Domain (SD) [37]. Time domain is
used to detect the interference patterns in creating a picture,
whereas the Spectral Domain SD fuses a spectrometer to
build examining time. SD can get pictures more rapidly than
TD due to its effective imaging method.

The physiologic segment gets the visual light beam parti-
tioned into the pigmented part (pigment epithelium) and the
nervous part. The layers of retina are named as Ganglionic
cell layer, inner plexiform layer, Nerve fiber layer, Outer plex-
iform layer, External limiting membrane, Internal limiting
membrane, Outer nuclear layer, Retinal pigment epithelium,
Inner nuclear layer, Photoreceptor outer segment, Interface
between IS and OS, Photoreceptor inner segment and Outer
Photoreceptors [38]. These layers are present in retina OCT
as shown in Figure 6.

FIGURE 6. Normal retinal OCT image [33] RPE: Retinal pigment
epithelium, IS/OS: Interface between IS and OS, IS photoreceptor inner
segment, ILM: Inner limiting membrane, ELM: External limiting
membrane, OS: Photoreceptor outer segment, OPL: Outer plexiform layer,
IPL: Inner plexiform layer, OPR: Outer Photoreceptor/RPE complex, INL:
Inner nuclear layer, ONL: Outer nuclear layer, GCL: Ganglionic cell layer,
NFL: Nerve fiber layer.

In Figure 6, the layers of the OCT image of retina do not
indicate any abnormality or disease [39]. Normally a person
with perfect vision has the same OCT as depicted in Figure 6.
In Figure 7, the sub retinal fluid and intra-retinal fluid
(OCT Scan) are linked with the CSR disease [40]. Besides,
the patient suffering from CSR produces a different OCT
scan, as depicted in Figure 7.

B. OCT IMAGING DATASETS
In this study, two publicly available datasets associated with
CSR are analyzed. A typical dataset contains a range of
records, and these CSR datasets consist of the repositories
of OCT and fundus images. Several researchers normally
access and utilize these publicly accessible datasets, which
can be easily retrieved using their specific links. In various
experimental studies, a portion of the all-out images is nor-
mally downloaded from these datasets in order to train new
Machine Learning models and algorithms and achieve testing

FIGURE 7. Retinal OCT image with CSR disease.

goals. In the following list, we briefly describe two publicly-
available datasets along with their accessibility.

1) OCTID DATASET
The OCT imaging database is an open-source OCT imaging
database, which is accessible at the website of University of
Waterloo, Canada. This database contains 102MH, 55 AMD,
107 DR, as well as 206 NO retinal images. The interface of
the dataset is user-friendly, and all the diverse groups have
been classified in the form of discrete datasets. The users
can easily access the required datasets via a unique DOI link.
Additionally, the images can be observed and downloaded in
the form of folders or as zip files [41].

2) ZHANG’S LAB
Zhang’s lab [42] contains the largest dataset of labeled OCT
images. There are thousands of publicly available datasets of
OCT images. It has been referred to specifically in identify-
ing medical diagnosis and treatable disease by image-based
deep learning. At Zhang’s lab, various images are available
for both training and testing purposes of various Machine
Learning ventures in retinal disease detection.

This review article provides a comprehensive review of
several state-of-the-art technologies, which make use of Arti-
ficial Intelligence (AI) algorithms for automatic detection
of CSR disease in patients. Most of these algorithms lead
to the evolution of new models that are trained on propri-
etary datasets that are also discussed in this study. These
models have assisted in development of many commercially-
available products used by hospitals and ophthalmologists
to automatically detect CSR in patients. To the best of
our knowledge, no such study is available in literature
for summarization of such technologies for CSR disease
detection.

The remainder of this article has been organized as follows:
Section II describes a detailed review of the literature. It also
contains the methodology to organize this review article by
discussing the content inclusion and exclusion criteria. Fur-
thermore, it includes case studies as well as Artificial Intel-
ligence (AI) techniques in imaging, using machine learning
and deep learning. Section III contains an analytical discus-
sion based on the literature review and establishes certain
research findings and open questions for researchers. Finally,
Section IV provides a detailed conclusion.
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II. LITERATURE REVIEW
In this section, a comprehensive literature review has been
compiled based on the following steps:

i. Identification of relevant and advanced research
articles.

ii. Articles emphasizing on the basic understanding the
research problem.

iii. A comprehensive search strategy that identifies the
research problem.

iv. Extraction of the desired data from the selected
research articles.

v. Validation and fact-checking of the collected data.
vi. Representation of data for better visualization and

readability.
The literature review articles have been searched from the
following reputable and well-recognized scientific publishers
and organizations:
i. The American Academy of Ophthalmology, (http://

www.aaojournal.org/)
ii. The JAMANetwork, (http://jamanetwork.com/journals/

jama)
iii. Investigative Ophthalmology and Visual Science,

(http://iovs.arvojournals.org/)
iv. American journal of ophthalmology, (https://www.ajo.

com/)
v. Digital library of IEEE Xplore, (http://ieeexplore.ieee.

org)
vi. Springer Nature Link, (http://link.springer.com/)
vii. Elsevier, (https://www.elsevier.com/)
viii. Science Direct, (http://www.sciencedirect.com/)

These scientific databases have been accessed to accu-
mulate peer-reviewed journal articles, review articles, and
conference papers. Figure 8 illustrates the methodological
flowchart of this review with different phases.

In Figure 8 the methodological phases through which
this review article has been arranged and presented for the
researchers, scientists, physicians, and practitioners to get
CSR treatment insights through detection using artificial
intelligence techniques. There are four different phases of the
review process, as shown in Figure 8.

A. SEARCHING STUDY
In this phase, the objective of CSR disease study is defined
and elaborated. Based on a defined selection criterion for
automatic CSR detection, a number of suitable CSR papers
have been selected for further analysis.

B. DETERMINING LITERATURE
After an extensive search of relevant articles, the next phase
was to determine the valuable articles for this study. For that
purpose, all the repetitive articles were eliminated based on
their citations, authors’ integrity, and institutional affiliations.
After studying the text of each article, the eye physicians were
consulted for settling differences and a better understanding
of the CSR disease.

FIGURE 8. Flow chart of systematic review process.

C. CSR DATA DERIVATION
Various advanced CSR detection algorithms based on AI,
ML, and DL were studied and analyzed in this phase. This
process provided a list of state-of-the-art algorithms based on
inclusion and exclusion criteria.

D. QUALITY EVALUATION & RESULTS SUMMARIZATION
Finally, all the discoveries have been summarized after eval-
uating the quality of the content.

In the following subsections, an extensive review of various
technologies based on advanced research articles is provided.
First, the content inclusion/exclusion criteria are detailed.
Then, the criterion of journal selection is briefly described,
which is followed by goal of this review.

E. CONTENT INCLUSION CRITERIA
‘‘Detection of CSR in OCT images using artificial intelli-
gence’’ is set as the sign indication for literature search. The
abstracts, titles, and methodologies of each article have been
checked for the research prompt and facts. All those arti-
cles were selected which have a clear research domain of
identification and detection of CSR through retinal images.
Another criterion was set to check the use of data sciences
and Artificial Intelligence in CSR disease detection.

F. CONTENT EXCLUSION CRITERIA
The aim of this review is to study and organize algorithms
and techniques that have been used for the segmentation of
CSR from retinal images. In this way, the articles having
algorithms but not relevant to CSR have not been considered
in this review. Additionally, the articles were selected based
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on the repute and the impact fact of the journal. In the case of
conference/symposium papers, their proceedings and ranking
of the conference were considered for this review. Another
criterion was to weigh the articles on the basis of their
citations and institutional affiliations. Finally, the contents
of similar papers have not been considered to maintain the
integrity in the quality of the review article.

G. SELECTION OF JOURNAL ARTICLES
The research articles were selected by cautious investiga-
tion for its consideration as well as prohibition standards.
The selected articles were copied in the system library and
spared, the terminology used to spare articles represent title,
publishing year, publisher, author first and last initials. Such
description facilitated in arranging the research articles and
their proficient recovery as per inquiries. References of the
considerable number of papers have been taken and spared in
EndNote reference library. Based on this selection criterion,
a database of articles was set up which included articles
related to basic understanding of retinal disease based on
studies of human anatomy, the CSR disease and its variants,
and the recent studies of utilization of AI techniques for
automatic detection of CSR. In the following sections, these
studies are discussed in detail.

H. GOALS OF THIS REVIEW
In this review, the sequel of precise and complete study of
CSR algorithms has been explored for automatically seg-
menting process in retinal OCT and fundus images. The
significant goal of the review is to analyze the development of
CSR algorithms and recognition of CSR from fundus images.
The analysis of optimistic algorithms has some applicable
clinical attributes for diagnosis, treatment, and prevention.
This review article presents the novel insights in using AI
techniques for CSR. As far as we could possibly know, there
is no such review in literature to give a thorough review
of such technologies. The significance of this review is to
present recent pattern recognition technologies, based on
the methodologies in pre-processing and segmentation from
OCT and fundus images that have already detected the CSR
disease.

I. DETECTION OF CSR BASED ON IMAGING
TECHNOLOGIES
In this section, several imaging technologies for CSR detec-
tion are discussed. In each case, the relevant research studies
are pointed out, along with their brief descriptions and possi-
ble shortcomings.

Teussink et al. [43] had differentiated OCT angiography
features of a patient with acute CSR considering FA as well
as Indo Cyanine Green Angiography (ICGA). In conduct-
ing experiment, the research team included 225 eye images
along with 100 FA and ICGA images. Additionally, 125 and
30 OCT angiography images of patients were recorded. The
results of chronic CSR reflected the irregular choriocap-
illaris flow patterns. Several researchers have studied the

combination of both FA and ICGA [44], [45]. However, this
study has been confined to a modest number of patients. Fur-
ther improvements in knowledge regarding vascular changes
require prospective and longitudinal studies.

Shin et al. [46] had used ophthalmoscope to detect CSR
from OCT scans.The CSR detection was normally depend-
ing on FA or biomicroscopy. The sample data of scanned
eye images of 38 patients for testing purposes was consid-
ered. The OCT ophthalmoscope usually provides additional
knowledge related to the zone involved and is practically
identical to the statistics proposed for FA. Therefore, Oph-
thalmoscope proves to be the best technique to detect CSR
at an early stage. Two recent studies confirmed the findings
of different PEDs on OCT in patients with CSR. Hence,
FA has additionally exhibited zones of diffuse epitheliopathy
in patients suffering from constant CSR [47].

Furthermore, Costanzo et al. [48] had compared the OCTA
with multimodal imaging, which resulted in CSR detection.
The authors have performed experiments of both techniques
using the same dataset of 33 eyes of 32 patients. The popula-
tion and protocols in this study have been analyzed to find
the results of both techniques. Consequently, the resultant
dataset of both techniques has been naive compared to the
previous studies in the treatment of eye diseases. This pro-
cedure used the description and classification of abnormal
choroidal vessels. The experimental analysis declares OCTA
had all the earmarks of being a promisingmethod since it kept
away from the weight of intravenous injections of dye which
probably would complicate genuine symptoms. The findings
of this study verified that OCTA techniquewas eligible for the
detection of an unusual choroidal vessel specimen among all
of the cases. Similar studies using the OCTA method had the
option to identify the distinctive neovascular network, usually
CNV, in 58% of eyes with lingering CSR [49]. Another
similar study resulted in excessive specificity and sensitivity
of 100% in OCTA images [50].

Agrawal et al. [51] proposed early detection of CSR with
the help of an image binarization. For this purpose, a sample
of 78 eyes from 39 patients was extracted for the experi-
ment. The significant vascularity records with intense CSR
compared and clear solid fellow eyes were observed. The
choroidal vascular changes in CSR of [52], [53] had resulted
in similar observations. The CVI was observed critical, and
LA was lower in the fellow eyes compared to the age-
coordinated healthy subjects. The stromal zone had not been
significant for exactness as the age-coordinated selection
of healthy subjects was required. Subsequently, the general
vascularity index was present in the fellow eyes compared to
the age-matched healthy eyes that generally make the eyes
prone to leakage. The authors also stated that they could not
use normalization before binarization.

Weng et al. [54] proposed the OCTA to tackle CSR dis-
ease. This research was conducted on seventy patients and
seventy-five eyes were utilized to perform OCTA on them.
Two readers analyzed the obtained images and CNV was
evaluated at outer retina. The authors concluded that the
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CSR disease (along with the CNV disease) mostly occurs in
patients over the age of 50 years [55].The authors collected
samples of 70 eyes of patients as dataset for their experi-
ments. The advanced mediums for photography were used
which had fundus FA. To detect CSR in images, the OCTA
appeared to be the best algorithm and stated that no other
technique could perform the detection similar to this tech-
nique. The results of the experiments represent 97.77% accu-
racy, approximately 100% sensitivity, and a specificity level
of 93.33%. The authors have compared their technique with
those of Maftouhi et al. [49], who claimed that 12 eyes suf-
fering from chronic CSC displayed the characteristic of the
choroidal hyper permeability except authentication of CNV.

Wong et al. [56] proposed a rational technique for OCT
image scan. This technique develops high resolution tomog-
raphy for ocular tissues. The sample dataset of 16 patients for
examination purpose was taken and results were correlated
with slit-lamp biomicroscopy and fundus photography [57].
Likewise, optical imaging tomography has provided a quanti-
tative assessment for the accumulation of subcutaneous fluid,
which can be used to achieve irregular goals of solid separa-
tion with high efficiency [58].

In addition to the above research, Weng et al. [54] pro-
posed the locally-adaptive and loosely-coupled approach to
detect retinal fluids in CSR disease. The dataset from an
in-process study on CSR in a hospital in Germany was
collected. The results were compared by medical doctors
manually and by using automatic trained segmentation. Fur-
thermore, the authors compared their algorithm with other
similar researches in a subjective manner. A few method-
ologies for the division of fluid-associated abnormalities
reported the TPR ranging between 86 to 96%, [59], [60]
that is similar to the authors attained 95% TPR. Overall,
their algorithm presented a flexible solution for retinal fluid
segmentation owning high accuracy qualitatively.

Englin et al. [61] proposed the max-flow optimization
algorithm based on a three-dimensional (3-D) continuous
method. This method covered two of the Neurosensory Reti-
nal Detachment (NRD), together with the Pigment Epithelial
Detachment (PED). The proposed method is based on a prob-
ability map using a random forecast model. The authors used
37 retinal OCT images for training and testing purposes. The
experimental results have shown that 92.1%, 0.53%, 94.7%,
and 93.3% constitute the Dice Similarity Coefficient (DSC),
for segmentation with NRD as compared to 92.5%, 0.14%,
80.9%, and 84.6%, with PED segmentation. Various methods
were proposed to conduct the classification of CSR but all
of them had been observed as 2-D images which classified
retinal disorder [62] with a few restrictions that need to be
enhanced in future investigations. There were extremely little
fluid sectors used as a rarity in the proposed methodology for
classification of retinal fluids.

Chien et al. [63] proposed the Balloon Snake Algo-
rithm implemented inMATLAB tool. This algorithmwas uti-
lized for the segmentation of fluid from OCT retinal images
in terms of ophthalmology [64]. The primary objective of this

research work was to detect edges and volume of retinal fluid
and provide the best possible OCT images. The following
steps have been referred for CSR disease detection.

i. Patient selection and data collection.
ii. OCT scan protocol.
iii. Sub-retinal fluid volume measurement via manual

segmentation.
iv. Obtaining sub-retinal fluid contour and volume from

the Balloon Snake algorithm.
The experimental results using the Balloon Snake algo-

rithm were reported to be approximately 30 minutes faster as
compared to the manual detection methods. The researchers
have introduced different strategies for measuring the vol-
ume of retinal fluid such as manual, semi-manual technique
or automatic commercially-available software products [65].
The techniques have been precise and regeneratable that
may require human collaborations to develop the segmenta-
tion line. The Balloon Snake-based algorithm is capable of
measuring a retinal fluid volume within 5 minutes. Using
this methodology in clinical examinations is found to be
extremely reliable, accurate, and fast.

Gao et al. [37] had proposed instinctive technique which
depends on graph theory and preceding B-scan information
to automatically segment retinal layers in CSR diseases. The
segmentation process includes the estimation of the exter-
nal nuclear layer boundaries, inner limiting membrane, pho-
toreceptor inner segments, abrasion of eye, and pigmented
layer of retina and RPE-choroid on graph search model. The
region of flexible search was developed with calculation of
the thickness. The experimental results had shown that it
meant entire thickness in contrast with manual segmentation
of (3.68± 2.96µm) as well as (5.84± 4.78µm) respectively.
Recent researchers also worked on automatic methods, but
these strategies were dependent upon intense irregularities
and breaks in the retinal layers because of outlines brought
about by retinal veins. Future direction has been proposed to
classify the border of CSC zone, which constitutes of differ-
ent layers to measure CSC locale also breakdown variety of
every retinal layer in various infections.

Similarly, Odaibo et al. [66] had proposed an optimized
technique to detect CSR in OCT images through cloud-based
mobile Artificial Intelligence (AI) platform. This technique
played a vital role in assisting physicians with less cost and
high-accuracy results. The algorithm is capable to classify
fluid and non-fluid OCT images. Interestingly, this algorithm
was integrated as an application in IOS operating system for a
test run. After testing and experimenting, the authors reported
the sensitivity levels between 82.5% & 97%, whereas the
specificity range was reported between 52% & 100%. More-
over, the authors proposed to test large amount of dataset in
their future experiments [56].

He et al. [67] derived comparison of the multicolored
imaging (MC) with the Color Fundus Photography (CFP)
and employed the result achiever technique to detect retinal
fluid in CSR. The authors took the sample of 75 eye scans
of 69 patients for experimental setup. The examination of
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TABLE 1. Summary of CSR detection based on imaging technologies.

all the samples for the clarity of vision, intraocular pressure,
slit lamp, CFP (Digital Fundus Camera, VISUCAM 200;
Carl Zeiss Meditec AG, Jena, Germany), FFA, MC image,
as well as SD-OCTwas conducted. The comparison of results
indicated that MC plays a more influential role of detection
compared to the CFP. The MC method attained 92.0% detec-
tion rate compared to the CFP. Many other studies have also
shown that MC is useful for detecting fundus diseases [68].
However, the limitation of MC is that there were no regular
and continuous session visits arranged for the patients. Fur-
thermore, it has been observed that the artifacts may affect the
quality of images, thereby compromising disease detection.

Cennamo et al. [69] used OCTA for the examination of
the Choriocapillary Vascular Density (CNV) in CSR disease.
The authors considered twelve OCTA eye scans from twelve
patients for testing. Their results determined that the OCTA
provided a better solution among all other techniques such
as, FA, SD-OCT, and ICGA, because these techniques are
not diagnostic. Therefore, the OCTA proved to detect CNV
in CSR by a direct visualization and resulted in attaining
100% sensitivity and specificity. Furthermore, a number of
recent researches have reported that OCTA has the best
ability to detect the choriocapillaris vascular density [70].
Table 1 presents a summary of the aforementioned CSR
detection techniques in an ascending order. The summaries

of the intricate peer-reviewed articles comprise of algorithms
used, number of datasets considered for the study and the
effectiveness of the proposed results. Essentially, Table 1
provides a quick glance of CSR imaging technologies for the
readers of this review.

J. ARTIFICIAL INTELLIGENCE BASED DETECTION OF CSR
Artificial Intelligence (AI) techniques are divided into three
different phases: training, validation and testing for arrange-
ment of images [71]. The most advanced AI techniques
include Machine Learning (ML) and its more recent variant
known as Deep Learning (DL). Machine Learning (ML) is
further categorized into supervised, unsupervised and rein-
forcement learning. In case of supervised learning, the tar-
geted variables are predicted from a prearranged indicator
(known as the Objective Function) for simplicity. Taking
advantage of arrangement of factors, generation of the Objec-
tive Function guides contribution to anticipated targets. The
dataset training phase keeps iterating until the model attains
an ideal degree of precision. The examples of supervised
learning techniques are Regression & Logistic Regression,
KNN, Decision Tree, and Random Forest, etc. In unsuper-
vised learning, the prediction of the objective or desired vari-
able is carried out. It is employed for the collecting population
in various groups, which is broadly used for fragmenting
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purposes. The examples of unsupervised learning include
K-means and Apriori algorithm. In reinforcement learning,
the machine is normally trained to sort and categorize explicit
choices. It is programmed to strategically learn itself when
introduced to a certain circumstance and up-skill reliablywith
trial and error experimentation. This allows the algorithm
to experience and attempt to catch the ideal data to attain
the precise business choices. An example of reinforcement
learning includes Markov Decision Process. Figure 9 shows
the methodology of Machine Learning (ML) model in which
fundus retinal image is used for classification of CSR.

FIGURE 9. ML model for classification of CSR.

The process starts with inputting a retinal image, which
is preprocessed for any anomaly detection or better visu-
alization for the next stages. After preprocessing, the next
stage is feature extraction in which various parts and fea-
tures of the eye scan are extracted. Then specific parts of
the scan are selected for training or testing purposes. If the
image is inputted specifically for the training purpose, it is
processed through various algorithmic stages to boost up the
ML model, thereby obtaining a particular pre-classified CSR
related image. Contrarily, if the image was initially inputted
for testing purposes, then it goes through the predefined
algorithmic stage to test the model for its validation. In this
way, the model is first trained using a large dataset of images,
and then tested using more data. Once the algorithmic model
goes through hundreds of thousands of images, it is trained to
determine any CSR diseases in future inputted images.

Deep Learning (DL) is an advanced version of ML based
on neural networks capable of unsupervised learning from
an unstructured and unlabeled dataset. In recent studies,
DL algorithms are vastly used by researchers and scientists
in almost every field including image recognition and auto-
mated disease detection. In ophthalmology, DL has been
applied to fundus images, optical intelligibility tomography
and visual fields, accomplishing robust classification exe-
cution in the discovery of CSR [72]. Figure 10 shows the
methodology of deep learning model in which fundus retinal
image is used for classification of CSR.

K. CONVOLUTIONAL NEURAL NETWORK (CNN)
The Convolutional Neural Network (CNN) is a deep learn-
ing (DL) architecture that requires unstructured data (such
as scanned images) as inputs, that allocate learning weights
and biases to different viewpoints/entities in the image and

have the option to separate one from the other based on their
significance [73].

FIGURE 10. CNN architecture for classification of CSR.

The development and advancement of the CNN declares
the capacity to learn automatically specific to a training
dataset as per the predictive modeling problem. The image
classification can be the best example of CNN and their out-
comes can easily be determined to specific features anywhere
on input images [74]. Figure 10 depicts the methodology of
CNN architecture in which fundus retinal image is used for
classification of CSR. It is evident that the input eye scan
image goes through multiple convolutional layers which have
the self-learning ability to focus on the CSR patch. After
the final CNN layer, the model can accurately segment the
image and determine the exact location and extent of the CSR
patch. Similar to this patch, numerous other features related to
various anomalies are focused in different DL models. In the
following paragraphs, the use of various ML/DL algorithms
in automatic detection of CSR disease have been reviewed,
along with brief description of the results and shortcomings.

Hassan et al. [75] had proposed the automated and ratio-
nal algorithm to detect CSR through OCT images. In this
methodology, the input OCT scan has been preprocessed
by de-noising and enhancing the image and then ILM and
choroid are segmented by applying optimal thresholding.
Feature extraction has been performed and the training
dataset is passed through SVM classifier and the required
classification is achieved. The algorithm detects images by
applying a Support Vector Machine (SVM). In this mech-
anism, five different characteristics were extracted from a
dataset gathered from different hospitals. The performance of
the SVM algorithms has been observed better than others as
proposed in [76]. The authors algorithm truly distinguished
88 out of 90 subjects attaining 97.77% accuracy, 100% sen-
sitivity and 93.33% specificity [75].

Syed et al. [77] proposed the rational technique to over-
come the CSR disease problem. The methodology consists
of three phases. In the first phase, the robust reconstruction
of 3-D OCT retinal surfaces was planned. In the second
phase 2 feature sets are formulated, one is thickness pro-
file and the other is cyst fluid. The retinal subject is clas-
sified using SVM classifier. The lodged algorithm worked
on multiple OCT images for the detection, whereas several
researchers worked on OCT and fundus images [78], [79].
The sample size of 18 OCT images was used as a dataset.
After conducting the experiments and calculations, authors
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achieved the accuracy of 98.88%, sensitivity of 100%, and
specificity of 96.66%. Furthermore, the authors reported that
their proposed algorithm is faster and more robust in detect-
ing CSR compared to the state-of-the-art researches. Finally,
the authors claimed to utilize the proposed algorithm for diag-
nosing other macular disorders such as, AMD and glaucoma.

Khalid et al. [80] proposed a decision support system that
instinctively aimed to dredge up CSR from retinal images
using the SVM classifier. The methodology works by pre-
processing i.e. sparse de-noise the input image and then
segmentation is applied. This segmentation results into retinal
layers whose retinal thickness profile is generated. Features
extracted are passed to the SVM classifier.

The dataset contained 90 OCT scans of 73 patients for
experimental purpose. The system ratings of 99.92%, 100%,
and 99.86% attained accuracy, sensitivity, and specificity
respectively [80]. In addition, the authors stated that any other
intricate research works had utilized their OCT pictures to
distinguish retinal variations from the norm [81], [82].

Xiang et al. [83] proposed the random forecast classifiers
incorporating a live wire algorithm. This algorithm intends to
find surfaces in optical coherence tomography. The sample
SD-OCT images of 24 spectral domains suffering with CSR
from various hospitals were used to conduct experiments.
The authors used both manual and automated methods to
detect the CSR. The authors claimed that the results obtained
from their algorithm outperformed the contemporary meth-
ods. Even though, the proposed strategy has been utilized
in OCT imaging with CSR, the underlying algorithm could
be efficiently utilized in different origins of OCT pictures.
Hassan et al. [84] proposed the CAD-based fully automated
algorithm using the KNN classifier to detect CSR. The
authors utilized a dataset of 80 retinal subjects to conduct the
experimental study. The proposed algorithm was assumed to
extract retinal layers through 3D features. The proposed algo-
rithm supports practitioners and doctors while detecting CSR
efficiently and accurately. The results had achieved 100%
efficiency in diagnosing the CSR. The numerous strategies
eventually resulted in the acquisition of eye checks as it may
be like OCT imaging and has emerged as one of the best
modern methods [85], [86]. Despite its good features, the
algorithm can be modified more to attain the exact images
with precision. In addition, this methodology can equally be
reached out to other retinal pathologies in the future.

Most of the CSR detection methods commonly impart the
process of segmentation. However, the authors Ji et al. [87]
proposed an algorithm that detects CSRwithout segmentation
of retinal layers named as ‘Hessian-based Aggregate com-
prehensive Laplacian of Gaussian algorithm’. The ensuing
framework is now commonly used for the automatic seg-
mentation of Neurosensory Retinal Detachments (NRD). The
23 samples of longitudinal SD-OCT scans were collected for
the testing phase. The execution and implementation process
require filtration of B-scans into little blob areas dependent
on local convexity by amassing the log-scale-standardized
convolution responses of every individual gLoG filter.

The feature vectors were sustained in the direction of unsu-
pervised clustering algorithm. The testing results showed
excellent performance as compared to the other manual
methods. Authors achieved 95.15%, 93.65% and 94.35%
as a mean true positive volume fraction, positive predictive
and dice similarity coefficient respectively. Various state-
of-the-art models were proposed in [88]–[91] for detecting
sub-retinal fluids in CSR, most of which are retinal layer seg-
mentation dependent. Therefore, the introducedmethodology
can deliver precise division outcomes that are exceptionally
reliable with the argument without retinal layer separation.
This technique may provide dependable NRD segmentations
to SD-OCT images and can be helpful for clinical analysis.
The future direction of the proposed strategy essentially cen-
ters on the expansion of 3-D segmentation.

DL plays a vital role in detecting sub-retinal fluids from
SD-OCT images and improving its boundaries day by day.
De Fauw et al. [92] had proposed a self-activating and self-
learning technique to segment retinal fluid from SD-OCT
CSR using a DL algorithm known as ‘deep segmentation
network’. This network uses a 3-D U-Net architecture to
interpret abraded OCT into tissue map. This algorithm was
trained on a very large dataset of 14,884 tissue-maps with
committed diagnosis and was later tested on 887 SD-OCT
scanned images. On the other hand, several researchers have
worked on a single end-to-end black-box network that needs
indefinite number of OCT scans [10]. This algorithm uses
a group of diverse segmentation and classification models;
(i) CNV (ii) MRO (iii) Normal (iv) CSR (V) Mac hole. This
also incorporates four DL phases: the digital OCT scans,
segmentation network, tissue segmentation map, and classi-
fication network. The ’black-box’ issue is distinguished as a
hindrance to the use of DL within healthcare systems. The
system structure intently coordinates the clinical dynamic
procedure, distinguishing decisions independently from the
subsequent referrals based on the scan. This practice permits
a clinician to investigate and envision an interpretable divi-
sion instead of merely giving a conclusion and referral rec-
ommendation. The proposed algorithm has achieved a total
error rate (1- accuracy) of 5.5% AUC on the referral deci-
sions. In [93], K. Gao et al. proposed the innovative image-
to-image, double-branched, fully-in-convolutional networks
(DA-FCN) for segmentation of retina fluid from SD-OCT
images. Many researchers worked on the same disease but
with othermethods likeMontuoro et al., proposed a 3D graph
search technique for the detection of CSR [94]. First the
dataset is extended by applying mirroring technique and then
shallow coarse is learnt by designing double branched struc-
tures. In the end, area loss is joint with softmax loss in order
to learn features that are more useful.

The proposed technique was prospective to provide a
measurable evaluation of NRD just as PED. The sample
of 52 SD-OCT test images dataset was acquired from 35 eye
scans of 35 patients. The results depicted that 94.3% of true
positive value fraction, 94.3% dice similarity efficient, and
96.4% positive predicative value was attained. Moreover, the
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proposed method had excessive achievements in TPVF and
DSC compared to the other related methods given in the
literature. These attainments can be enhanced and improved
to develop features that aremore distinguished by introducing
loss factors, which can segment retinal fluid efficiently and
precisely.

In addition to the aforementioned causes of CSR, Mac-
ulopathy plays a vital role in the blindness of the human
eye. It has been diagnosed by automated systems like OCT
imaging, and it may act as harmful object for the human
eye. Hassan and Hassan et al. [95] had proposed to develop a
rational technique for segmentation and grading according to
medical criteria. An algorithm called Support VectorMachine
(SVM) was used, which works in six different phases: (i) data
acquisition (ii) preprocessing (iii) retinal layer segmentation
(iv) retinal fluid detection (v) feature set formulation, and
(vi) classification. The clinical review of CSR andME along-
side the seriousness examination and 3D profiling utilizing
OCT images were also presented.

The dataset of 30 OCT test images was collected from
seventy-three different patients. Several researchers have
worked on retinal fluid segmentation like computer aided
diagnosis method by Hassan and Hassan et al. [95] for self-
activating identification of idiopathic CSR. The proposed
framework first performs preprocessing one the image, then
retinal layer segmentation is performed using Tensor Graph
and then retinal fluid is detected. Features extracted are
passed to SVM classifier and disease grading is performed.
The precision of the proposed work was reported as the true
affirmative rate as well as the true negative rate of 97.78%,
96.77%, and 100%, respectively. The technology of OCT
imaging, when integrated with ML algorithms, turns out
to be advantageous. Teja et al. [96] had proposed the inte-
grated random forest classifier and DeepLab algorithm for
the detection of CSR. The sample sizes of 768 B-scan tests
were collected. The phases of classification and segmentation
were determined through a number of famous frameworks
known as the XGBoost classifier, the random forest classifier
and the DeepLab. The testing score on OCT images was
achieved as the mean dice of 86.23% as compared to the
manual delineationsmade by the trained experts. Recent stud-
ies [97] also show that DeepLab set another cutting edge on
a several benchmark semantic image segmentation datasets.
Zhen et al. [98] proposed themechanizedmethodology based
on DL architecture termed as InceptionV3 to recognize CSR
portrayed on color fundus images. The sample size for train-
ing and testing was based on 2504 OCT-images that were
pre-processed and normalized. The results and experiments
concluded that the proposed algorithm is dependent on DL
may evaluate CSR portrayed on color fundus in a moderately
solid manner. The authors claimed that their results showed
that the AUC was 0.927 (95% CI: 0.895-0.959) and the
p-value was less than 0.001. Moreover, the cutoff threshold
was 0.5 and the accuracy was 85.7%. The restricted dataset
was used for creating model, but the trials showed the special
quality of profound learning innovation. Future translational

exertion is alluring to make such a tool accessible to the
clinical practice for beginning CSR screening results in early
stage diagnosis. Several researchers have worked on color
fundus images but these images were observed to be related to
diabetic retinopathy and diabetic macula edema [10] but very
limited work have been conducted on CSR. The combination
of DL algorithm and fundus photography can be very efficient
for the ophthalmologists in their clinical diagnosis, which
may reduce unnecessary usage of OCT-images and fluores-
cein photography. Finally, it must be pointed out that this
study contains some limitations which include the less variety
of images and the effects of image artifacts on CSC assess-
ment Ruan et al. [99] proposed the Fully Convolutional Net-
works (FCN) with multiphase level set named (FCN-MLS)
for segmenting the boundaries in retinal images. The sys-
tem proposed by the authors has been partitioned into three
main phases: (i) Pre-processing (ii) FCN for layer boundaries
segmentation (iii) Distance regularization level set (DRLS).
The sample size of 10 SD-OCT test datasets was collected,
thereby making it 120 B-scan images. The experimental
results obtained a gross average difference of absolute bound-
ary location and the gross average difference of boundary
thickness, which were 5.88 ± 2.38µm and 5.81 ± 2.19µm,
respectively. Various researchers have worked on retinal layer
segmentation using Artificial Intelligence (AI) and it worked
as the state-of-art methodology [100]. Rao et al. [101] pro-
posed the segmentation algorithm based on neural networks
to detect CSR. The capacity of a convolutional neural system
to highlight the separation of unpretentious spatial variety that
converts retinal fluid into division task [102]. This method
will find and segment the retinal fluid from OCT images
and reduce the impact of noise at background. It is based
on two phases: (i) pre-processing phase and (ii) fluid seg-
mentation phase. Dataset for experiments consists of 15 OCT
images obtained from CSR patients. The experimental results
with dice rate of 91%, precision 93%, and recall 89% were
reported. Furthermore, the authors claimed that the develop-
ment of hybridization of neural network and feature extrac-
tion techniques would be used as a future work for better
segmentation of CSR.

Hassan et al. [6] proposed a method for fully automated
Central Serous Retinopathy (CSR) detection using deep
CNN. In the developed framework, the pre-processing phase
enhanced the image quality and eliminated noise. The three
pre-trained classifiers (AlexNet, ResNet-18, and GoogleNet)
have been used for classification. The outcomes indicate that
AlexNet achieved the highest accuracy 99.64%, precision
98.91%, recall 100%, and f1-score 99.45% on publicly avail-
able OCT images dataset.

Pawan et al. [103] proposed an enhanced SegCaps archi-
tecture based on Capsule Networks for the segmentation of
SRF using CSCR OCT images. The developed method was
outperformed in UNet architecture and reduced parameters
to be trained by 54.21%. Furthermore, it was also reduced
the computation complexity of SegCaps by 37.85%, with
comparison to other method’s performance.
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TABLE 2. Summary of csr detection based on machine/deep learning in CSR detection.

Chen et al. [104] presented a study consisting of 2104 FFA
images from FFA sequences of 291 eyes, including 137 right
eyes and 154 left eyes from 262 patients. The attention gated
Network (AGN) has been used for the segmentation of leak-
age points and UNet was used for optic disk (OD) and macula
region segmentation. The results showed that the detection
was perfectly matched 60.7% in the test set. After utilizing

eliminated method, the accurate detection cases increased
93.4% and the dice on lesion level was 0.949, respectively.
Future work includes the improvement of Computational
Complexity.

Table 2 presents a list of the research papers considered
for this review paper that particularly uses Machine/Deep
learning technologies for CSR detection. This table
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comprises scholar name, year of publication, proposed algo-
rithm to solve the problem, suggested methodology for the
problem, dataset used, and outcomes respective to sensitive-
ness, specificity, accuracy, and region fall under ROC curve.

III. DISCUSSION
After a thorough study of 29 relevant articles, section
II looked at several CSR disease detection methodolo-
gies and algorithms. There were two broad categories for
this approach: a) Detection of CSR based on classical
imaging technologies, and b) Detection of CSR based on
Machine/Deep Learning techniques. Table 1 & 2 highlight
the key information about the relevant publications regard-
ing both of these categories. This information includes the
authors’ list, the size of datasets, the underlying algorithms,
and results summary. The Artificial Intelligence (AI) tech-
niques mentioned in this review are primarily based on ML
&DL approaches. The ML approach is further classified into
three sub-categories, namely, supervised learning (Regres-
sion, Decision Tree, Random Forest, KNN, and Logistic
Regression etc.), the unsupervised learning (Apriori algo-
rithm, K-means) and the Reinforcement Learning (Markov
Decision Process). From a careful analysis, it can be deter-
mined that the utilization of the classical ML approach has
yielded excellent results in accuracy, reliability, and speed for
a given sample dataset to diagnose CSR.

On the other hand, the DL technique is quite beneficial
for fundus image sorting procedures, and it yields better
results accuracy results than the classicalML approach. How-
ever, the results largely depend on the size of datasets
and the complexity of the underlying algorithms. This
review provides a qualitative and quantitative assessment
of the algorithms in both aforementioned categories (see
Tables 1 & 2 for summary). Furthermore, this meta-analysis
of previous researches has identified several algorithms such
as OCTA algorithms and SVMs. The results are described
in terms of accuracy, sensitivity, and error rates. From a
careful analysis, it can be determined that the KNN clas-
sifier (in the category of ML) has proposed to attain the
best accuracy, followed by the SVM classifier has attained
high accuracy and double-branched algorithm as well as area
Constraint Fully Convolutional Networks (DA-FCN) with
moderate accuracy. In case of DL, the Mobile Artificial Intel-
ligence Platform reported to have attained maximum accu-
racy, followed by Robust Reconstruction of 3-D OCT Retinal
Surfaces, which attained 98.88% accuracy. Finally, the Split-
Spectrum Amplitude-Decorrelation Angiography (SSADA)
methods attained slightly moderate accuracy. The most sig-
nificant measure to ascertain the reliability of results is the
size of datasets in all cases. Some of the researchers claim
that their results portray an accurate detection of the CSR
disease based on their models trained under specific datasets.
In most cases, the datasets are not large enough to properly
train the models to accurately detect any future anomalies in
scanned images fed to them for further analysis. Therefore,
the reliability and size of datasets used to train the models

FIGURE 11. Classifiers used in the literature for CSR detection.

FIGURE 12. Comparison of literature based on classification accuracy.

must be major criteria for quantifying the accuracy of the
results. Tables 1 & 2 give the size of datasets as well as the
relevant accuracy of the results, and subsequently, a more
accurately reported result based on smaller dataset should be
considered as less reliable compared to a less accurate result
based on a large dataset.

Another important parameter is to check the complexity
and comprehensiveness of the algorithms used for detection.
The comprehensiveness of algorithm means that it should
take into account every type of anomalies for CSR detection.
TheDL algorithms have greater complexity due to their usage
of Artificial Neural Networks (ANNs), which are composed
of multiple layers through which the data is processed and
transformed. Hence, they aremore accurate at the cost of their
complexity. The downside of these algorithms is that they
are normally computationally intensive in nature, and they
require a lot of processing time during the training and testing
phases. Their cost of reliability and accuracy is computational
time, especially if they are trained and tested over a huge
dataset.

Another major limitation in most of these ML/DL models
is that they have been trained & tested on proprietary datasets
that are not publicly available. This raises an important ques-
tion of their integrity and authenticity. There are very limited
publicly available datasets; in fact, there are only two such
datasets. Most of the models are trained on private datasets,
which are proprietary to their owner institutions. Therefore,
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more public datasets should be available for the research com-
munity to train & test their AI models. This practice will not
only encourage the researchers to access the datasets easily,
but it will also help to standardize the models for the CSR
disease detection. In this manner, the research community can
develop a generic standard detection model.

Figure 12 depicts the classification accuracy attained by
ML/DL classifiers and figure 13 shows total no of images
used in the literature with respect to each classifier.

FIGURE 13. Comparison of literature based on validation data images.

IV. CONCLUSION
Traditionally, the CSR disease due to retinal fluids was
detected by experienced ophthalmologists after manually
examining the scanned images of retina. However, this
approach is time-consuming, inaccurate and unreliable. With
the recent advancements in technology, the CSR has been
automatically detected with the aid of various AI-based mod-
els. Although the optimal detection of CSR is still a big
challenge for the researchers, these intelligent techniques
have become more popular and effective compared to the
manual detection approaches. The recent literature found that
numerous intelligent algorithms on OCT images are utilized
for the CSR detection, and the experts of segmentation pro-
cedures carefully control this process. However, it is still
subjected to human error. Therefore, the latest technology
relies on AI based algorithms, which include ML & DL.
These algorithms form accurate detection models, which are
trained & tested on the legacy datasets. After proper testing
and tuning, the researchers and physicians for the automatic
CSR detection and diagnosis utilize these models. In recent
times, these models are becoming more and more accurate
and reliable. Furthermore, there are numerous commercially
available products using AI based models. Moreover, the
performance of these models must be precisely analyzed with
the standard measurements and benchmarks.

In this study, a detailed review of automatic detection of
CSR using AI techniques has been presented. These auto-
matic detection methods assist in detecting the disease of
vision loss and blindness as a result of CSR. These methods
were categorized into classical imaging and ML/DL based
techniques. Furthermore, this study encompassed the retinal

datasets, strategies proposed for CSR assessment and accu-
racy. The additional retinal neovascularization, hemorrhages,
miniaturized scale aneurysm, and exudates were also been
highlighted for dataset of CSR detection. The roles of assess-
ment measurements for Computer Aided Diagnosis (CAD)
frameworks were deeply examined. The significance of each
ML and DL methodology was ascertained to perform a better
analysis of CSR for research community and ophthalmolo-
gists. A number of recent research articles were studied and
examined to compare their respective algorithms, usage of
their datasets and the accuracy of their results. A detailed
analysis showed that the advanced ML/DL models are being
employed for accurate, reliable, and rapid detection of CSR.
The algorithm introduced by Hassan et al. [84] is the most
promising algorithm as it gives 99.8% accuracy. This open
source CSR detection model will provide agility, sustainabil-
ity flexibility and cost effectiveness, thus it can serve the
mankind in a much better way.

Detection of CSR is evolving, using Machine Learning/
Deep Learning Algorithms and imaging technologies. How-
ever, it is still mattered of controversy, and to date studies that
have been published so far depends on the old methodologies
and are unrestrained. Failure to detect and diagnose CSRmay
result in complete vision loss. Although, researches showing
promising results but more research is required on publically
available dataset and improving the computational complex-
ity. Therefore, further studies are warranted to address this
issue, improving the patient’s care.

This paper provides a comprehensive review than exist-
ing review articles on existing methodologies to detect CSR
through ML/DL techniques. Additionally, the limitations of
these methodologies as well as the key suggestions have
been mentioned to cope up with the limitations for the assis-
tance of research community. Moreover, an open question
for future research can be to create an open-source CSR
detection model based on Deep Learning technologies, which
is accessible to the research community to test it on their
proprietary datasets or publicly available ones.
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