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Differences in social organisation or structure are often observed among populations 12 

exposed to differing predation regimes and physical environments (Lott 1991). For example, 13 

guppies, Poecilia reticulata, exposed to greater predation risk tend to form larger, more 14 

peaceful groups than those under less threat of predators (Magurran & Seghers, 1991).  15 

Social species may also show differentiation among populations at other levels of biological 16 

organisation, for example in physiology or morphology, and these responses may shape and 17 

constrain one another (Montiglio et al. 2016; Young & Bennett, 2010). For example, animals 18 

that are physically less susceptible to predation may be less motivated to engage in social 19 

interactions. It is necessary to examine responses to ecological heterogeneity at multiple 20 

levels of organisation to predict how changing environments are likely to affect social 21 

structure, organisation, and behaviour (Fisher et al. 2021).  22 

 An emerging model system for the study of sociality is the daffodil cichlid fish, 23 

Neolamprologus pulcher. Daffodil cichlids are endemic to Lake Tanganyika, East Africa and 24 

are one of only around two dozen known cooperatively breeding fish species (Dey et al. 25 

2017). Daffodil cichlids live in groups, typically of about 4-14 fish (Heg et al. 2005), which 26 

work together to defend a small benthic territory that they use to evade predation and raise 27 

the offspring of the dominant breeding pair (Balshine et al. 2001; Taborsky 1984). Recently, 28 

it has been shown that geographically close, but reproductively isolated populations of 29 

daffodil cichlids show differences in social structure depending on the local ecological 30 

conditions (Groenewoud et al. 2016).  31 

In this issue of Functional Ecology, Freudiger et al. (2021) examine variation in body 32 

shape across eight populations of daffodil cichlids. Morphological change is a common 33 
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response to ecological heterogeneity in fishes (Eklöv et al. 2007; Imre et al. 2002; Ruehl et 34 

al. 2011).  The authors looked at populations which are exposed to differing levels of 35 

predation, habitat complexity, and available shelter size. Freudiger et al. report that 36 

populations living in areas with higher predation risk, larger shelters, and greater habitat 37 

complexity tend to be deeper bodied than those from less complex, lower predation 38 

environments. Deeper bodies help fish to avoid being eaten by gape limited predators, 39 

increase burst swim speed, and improve manoeuvrability in complex habitats. On the other 40 

hand, available shelter size may constrain how deep their bodies can be. Freudiger et al. 41 

found that this difference in morphology is not explained by genetic drift nor geographic 42 

distance because neither genetic similarity nor spatial proximity between populations 43 

correlated with the degree of difference in morphology. Rather, there appears to be 44 

convergent emergence of a deeper bodied phenotype among populations that are exposed 45 

to greater predation risk in more complex habitats. These deeper bodied fish may be limited 46 

in which shelters they can use, which could place a limit on group size due to the availability 47 

of suitable shelters. Deeper bodied fish may also be less vulnerable to predators and 48 

therefore more willing to engage in dangerous antipredator behaviours. Changing body 49 

shape could also alter head size and shape which may affect some of the key helping 50 

behaviours shown by subordinates such as digging and brood care. Helping behaviour can 51 

affect the size and number of subordinates that are tolerated by the dominant pair, altering 52 

the composition of these social groups (Fischer et al. 2014, 2017).   53 

Freudiger et al. report that these population differences are retained across two 54 

generations of common garden breeding in the laboratory, which suggests that phenotypic 55 

plasticity is not a sufficient explanation and that genetic divergence, and/or epigenetic 56 

effects likely play a significant role. However, plasticity may be relevant when looking at 57 
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more flexible behavioural characteristics. It would be interesting to look for differences in 58 

social interactions, communication, and cooperative behaviour among daffodil cichlid 59 

populations, and examine the role of phenotypic plasticity in any variation observed. The 60 

results of the laboratory study that Freudiger et al. present suggest a possible role for 61 

parental effects, as each generation closely resembles its parents but less so its 62 

grandparents. The role of parental effects in determining population differences in daffodil 63 

cichlids is ripe for closer examination.  64 

The authors were not able to disentangle the effects of shelter size, habitat 65 

complexity, and predator abundance on morphology due to the strong correlation among 66 

these habitat characteristics within the studied populations. Future studies should aim to 67 

separate these factors, either through finding new study populations which do not show 68 

this covariance between these ecological characteristics, or through laboratory or field 69 

experimentation that manipulates these parameters independently. Another open question 70 

is how these populations may differ in neural and physiological characteristics in addition to 71 

morphology and social structure. For example, exposure to predators has been shown to 72 

affect brain size and organisation between populations of fishes (Gonda et al. 2011; Reddon 73 

et al. 2018; Walsh et al. 2016), and these differences may underpin social and behavioural 74 

variation. Populations of fish that vary in exposure to predation and in social behaviour also 75 

show neuroendocrine differences, for example in the nonapeptide hormone vasotocin 76 

(Reddon et al. submitted). Conducting similar comparisons among daffodil cichlid 77 

populations could offer a window into the physiological mediators of social variation in 78 

response to predation threat. 79 

The population differences identified by Freudiger et al. (2021) show how 80 

morphology may respond to ecological heterogeneity among neighbouring populations in 81 
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the daffodil cichlid. These changes in morphology may have effects on social organisation 82 

and structure by influencing susceptibility to predation, competition for shelters, and the 83 

tendency for subordinates to participate in brood care and territory maintenance. I look 84 

forward to future work further unravelling the causes and consequences of behavioural, 85 

physiological, and neural differentiation among populations exposed to differing ecological 86 

conditions in these fascinating fish. 87 
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