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Abstract 11 

The identification, adoption and utilisation of reliable interconnection technology to assembly 12 

crystalline silicon solar cells in photovoltaic (PV) module are critical to ensure that the device 13 
performs continually up to 20 years of its design life span. With report that 40.7 % of this 14 

type of PV module fails at interconnection coupled with recent reports of increase in such 15 

failure in the tropics, the review of interconnection technologies employed in crystalline 16 
silicon solar cells manufacture has become imperative. Such review is capable of providing 17 
information that can improve the reliability of the system when adopted which in turn will 18 
increase silicon PV module production share more than the current value of 90.956%. This 19 

review presents the characteristics of interconnect contacts in conventional cells and other 20 
unconventional crystalline silicon cells. It compares series resistance, shadowing losses and 21 

the induced thermo-mechanical stress in the interconnection for each interconnection 22 
technique employed. The paper also reviews interconnection technologies in these assemblies 23 
and presents a comparison of their concept, cell type, joint type, manufacturing techniques 24 

and production status. Moreover, the study reviews and discusses the material and 25 
technological reliability challenges of silicon solar cells interconnection. The review 26 

identifies laser soldering technology as one which has the potential of making interconnection 27 
with higher reliability when compared with conventional soldering technology. It was found 28 

that this technology supports the current design trend of thinner, wider and cheaper 29 
crystalline silicon solar cells significantly whilst producing interconnection that experience 30 

relatively lower induced thermo-mechanical stress. The authors recommend that wider 31 
acceptance and usage of laser soldering technology could improve the performance and 32 

consequently extend the mean-time-to-failure (MTTF) of photovoltaic modules in general 33 
and particularly the ones which operates in the tropics.  This will enable improvement in the 34 
reliability of PV modules for sustainable energy generation. 35 

 36 
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1. Introduction 39 

Photovoltaic (PV) modules constitute significant development in the worldwide green energy 40 
sector in the current campaign to increase sustainable energy production. Currently, the 41 
module is in huge demand because they are now used to supply electrical power [1, 2] to 42 
many applications. To meet the demand, the production of solar cells has increased because 43 
the modules are assembled by interconnecting solar cells to each other. It is expected that in 44 

the year 2020, the world annual production of solar cells will be around 100 GWp (Wp, is 45 
peak power produced under standard test conditions). While this amount of sustainable power 46 



 
 

production seems substantial, the continued operation of the module up to its design service 47 

life has become a concern because the desired power generation is lower than expected.  48 

The silicon solar cells have been identified as the most viable option suitable for large 49 
volume production [3]. However, it has been reported that the continual generation of 50 
electricity by PV modules, manufactured using this type of cell, in the field for a minimum 51 
life span of 20 years has been a concern [1, 4-6]. One of the key challenges is untimely 52 
failure of solar cells interconnection in the modules [7]. The interconnections provide 53 

electrical, mechanical and thermal contact between the solar semiconductor cell and 54 

electrodes. 55 

The failure of the interconnection is caused by degradation of solder joints during module’s 56 
field operations due to temperature cycling. Extreme degradation often culminates in module 57 
failure. The existence of this phenomenon and the need to provide solution has been reported 58 
in [1, 6, 8-10]. The analysis of the failure mechanisms of PV modules in the field 59 

demonstrates that the modules fail by many different modes. McCluskey [7] and Campeau, et 60 

al [11] have reported that according to a BP study, 40.7% of PV module failures observed 61 
were due to cell or interconnect breakage. This finding, in addition to other similar findings, 62 

has identified the reliability of PV interconnections as the current challenge in PV modules 63 

manufacture.  64 

Consequently, the interconnection technologies of silicon PV modules were selected for 65 

review. Silicon PV modules were chosen because the production of silicon-based solar cells 66 
was 90% of all solar cells produced globally in 2008 [3]. This production share may have 67 

been achieved because Silicon, being the second most abundantly available element on earth 68 
[12], has been used as the primary feedstock. For instance, this largest share of production 69 
was more than 90.956% of global PV module production in 2013 [13] and this share of 70 

production is expected to remain for a long time. This paper explores and characterises 71 
silicon solar cell interconnection technologies used in the various crystalline silicon solar cell 72 

manufactures.  73 

The objectives of this study are to present an overview of crystalline silicon PV modules 74 
while dwelling on the characterisation of the solar cell contact and interconnection 75 
technologies. The work advances to seek to review the current reliability challenges of the 76 
interconnection of the solar cells with regards to interconnection technique. In addition, the 77 

paper reviews research trends in solar cell interconnection and assembly technologies - 78 
focusing on the identification of suitable technology to meet long-term reliability demand of 79 

PV modules for energy generation. 80 

 81 

2.  Crystalline silicon solar cells interconnection technologies 82 

The contact and interconnection technology of conventional wafer-based silicon solar cells 83 

are discussed in sub-section 2.1 while challenges of conventional interconnection technology 84 

are presented in sub-section 2.2. A comparison of conventional and unconventional 85 

interconnection technologies is discussed in sub-section 2.3. 86 

2.1 Interconnection technology of conventional crystalline silicon solar cells  87 

 88 

The assembly and manufacturing process of conventional solar cells involves converting 89 

silicon wafers into solar cells through depositing layers of emitter material and anti-reflection 90 



 
 

coating (ARC). This process is followed by printing front metal electrode and back contacts 91 

on the cell material as well as soldering of highly conductive solder-coated ribbon strip along 92 
the length of the cell. An extended part of the ribbon strip is soldered to the back of a 93 
neighbouring cell to enable current transfer from the front of one cell to the back of a 94 
neighbouring cell in a series connection [5]. The use of low resistant electrode and finer lines 95 

for a larger aperture in the manufacture enables the delivery of higher short circuit current 96 
(Isc) and fill factor to the ribbon strip [14]. The interconnection of solar cells in crystalline 97 
silicon modules by soldering process is a high temperature process which occurs at about 250 98 
o
C. The elevated temperature soldering induces thermo-mechanical stress in the solder joints. 99 

 100 

Metallization technologies in use for solar cells contact formation include: screen printing, 101 

stencil-printing, pad-printing, ink-jet printing, dispensing technology, photolithographic and 102 

evaporation process, laser micro-sintering, plating (Nickel) and thickening of metal contacts 103 
by means of plating [15]. In the photovoltaic industry, the predominant technique used for the 104 
establishment of an ohmic contact to an n-type emitter of a crystalline silicon solar cell is 105 

screen printing of an Ag-based thick-film paste and firing through the ARC layer [15-18]. A 106 
typical structure of Aluminium Back Surface Field (Al-BSF) solar cell is shown in Fig.1.  107 
 108 

 109 
 110 
 111 

 112 
 113 

2.2 Challenges of conventional interconnection technology 114 
 115 
The manufacture of crystalline silicon solar cells using the conventional form of assembly 116 
results in associated challenges which limit the quantity of energy generated as well as 117 
imparts the thermo-mechanical reliability of PV modules. These challenges include series 118 

resistance, shadowing losses and induced thermo-mechanical stress in the solar cells.  119 
 120 

Series resistance losses are one of the major challenges associated with the manufacture of 121 
solar cells in the conventional form. These losses are created due to metallization for contact 122 
formation and the subsequent tabbing for current collection. In order to reduce these losses, 123 
new concepts are being developed with additional objectives of providing contacts for thinner 124 
wafers. This objective is aimed at: reducing material cost, ensuring low-stress interconnection 125 
between cells and enabling the ease of modules manufacture [19]. 126 

Fig.1. Typical structure of Al-BSF solar cell [16]  

 



 
 

Another key challenge of conventional interconnection technology is shadowing losses. 127 

When cells are made wider, thicker interconnection ribbon is required to conduct larger 128 
currents. It is reported in [20] that increase in the width of interconnection ribbon cross-129 
section increases the shadowing losses proportionally. The thickness of ribbon strip is limited 130 
by built-up stresses in the soldered joint. The differences in coefficient of thermal expansion 131 

between ribbon interconnection materials and silicon account for this stress accumulation [20, 132 
21]. Furthermore, stress occurrence at the edge of the wafers due to bending of the 133 
interconnection ribbon strip which connects the front side with the rear of the neighbouring 134 
wafer [21] impacts the reliability of the assembly. This situation entails that conventional 135 
interconnection technology makes a compromise between width and thickness of ribbon strip. 136 

Apart from shadowing losses, there are also recombination losses which are not influenced by 137 
interconnection technologies. However, reduction of these losses is desirable to enhance solar 138 
cell efficiency. This reduction can be achieved through the use of Laser-Fired Contact (LFC) 139 
process, particularly for the rear surface, to fabricate solar cells with a high quality rear 140 

surface [15, 22]. 141 

Induced thermo-mechanical stress in the solar cells is another challenge associated with the 142 
manufacture of solar cells in the conventional form. The manufacturing process of 143 
interconnecting wafer-based silicon solar cells involves the use of infra-red (IR) reflow 144 

soldering. The soldering process consists of two phases. These are stringing or tabbing as 145 
well as bussing. The former involves the interconnection of solar cells with each other to 146 

form strings while the later deals with the assembly of the strings of solar cells to form PV 147 
module [23, 24]. However, this interconnection procedure is difficult and the IR soldering 148 
induces high mechanical stress in the solder joint which accelerates fatigue related damage. 149 

Eventually, module failure occurs during field operations thereby halting energy generation. 150 
Figure 2 presents a diagram of solder interconnection between tabbing ribbon and 151 

conventional wafer-based crystalline silicon (c-Si) solar cells while Fig. 3 depicts a schematic 152 
of a typical laminated crystalline Si solar cell showing its cross-section. Figure 4 shows 153 
typical interconnected solar cells with tabbing and bussing ribbons while Fig. 5 shows a 154 

typical PV module with complete interconnected solar cells. 155 

    156 

 157 

 158 

Fig. 3. Schematic of cross-section of a typical     

            laminated crystalline Si solar cell. 
Fig. 2. Crystalline silicon solar cells interconnected  

            in series with tabbing ribbon 

 

Crystalline silicon solar cell 

Tabbing ribbon 
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 161 

In order to address some of the challenges of crystalline silicon solar cells interconnection 162 
using IR soldering, laser soldering technology is used because it offers some advantages. 163 
Laser soldering is well controlled and enables selective processing. Additionally, when used 164 
for spot soldering, it delivers heat very fast, precisely and efficiently on a small area of the 165 

solder interconnection without making physical contact with the brittle crystalline silicon 166 
solar cells. Since physical contact during soldering can result in cell breakage, laser soldering 167 

has demonstrated potentials of inducing minimal thermo-mechanical stresses on the solder 168 
joint as well as less probability of causing cell breakage during manufacture which will 169 

increase production yield [26].  170 
 171 

2.3 Comparison of different interconnection technologies 172 

In order to address the interconnection challenges, many unconventional PV modules with 173 

improved interconnection have been developed. Their interconnect concepts include back 174 

contact cells technology. In this technique, the interconnection materials and circuitry are 175 

located exclusively behind the cells. Examples include emitter wrap-through (EWT), 176 

metallisation wrap-through (MWT) and back-junction back-contact (BJBC).  Other 177 

cell/module concepts are alternate p- and n-type, honeycomb design (HD), pin up modules 178 

(PUM), sliver, spherical and cells with flexible electrode wire grid (Day4 Electrode). 179 

Back contact solar cells which include EWT, MWT and BJBC use in-plane interconnectors 180 

for interconnection of neighbouring cells [27]. The advantages of these cells over their 181 

conventional counterpart include: possession of reduced stress in the soldered joint, 182 

possession of minimal shadowing loss caused by metal grids, provision of more surface area 183 

for current generation, optimisation of module efficiency and improvement of aesthetics of 184 

the module [20, 28, 29]. 185 

Alternate p- and n-type silicon solar cells are bifacial screen-printed cells which use 186 

alternating p- and n-type semiconductor devices thereby allowing direct interconnection of 187 

equivalent sides on front-to-front and back-to-back of neighbouring cells [30]. The 188 

advantages of this solar cell technology compared to their conventional equivalent include 189 

Fig. 4.  Interconnected solar cells with    

             tabbing and bussing ribbons [25]  
Fig. 5. PV Module with complete         

            interconnected solar cells [23]  



 
 

simpler interconnection procedure, closer assembly of cells (for aesthetic reasons) and higher 190 

yield during module fabrication. 191 

Honeycomb design (HD) solar cells are cells made with surface texturing that resembles 192 

honeycomb structure. This type of design provides very effective light trapping in the cell by 193 

total internal reflection. The honeycomb texturing reduces surface reflection of the solar cells 194 

[31,32]. The interconnection of the thin HD crystalline silicon solar cells is achieved through 195 

the use of an integrated series-connection structure.  The advantage of HD cell concept is that 196 

series resistance losses are reduced due to removal of areas with contact resistance which are 197 

present in conventional cells. 198 

Pin up modules are back-contacted solar cells designed with a structured interconnecting 199 

back foil and limited number of holes in the wafer. The holes are used as vias and contain 200 

pins serving as interconnection from the front-side metallisation to the interconnection 201 

material at the rear [21, 33]. The advantages of Pin up modules over conventional modules 202 

include possession of minimal series resistance and shadowing losses.  203 

Sliver cells are perfectly bifacial monocrystalline silicon solar cells. These cells are long, 204 

narrow, thin and symmetrical in appearance. The technology employed in the fabrication of 205 

these cells promotes economy in the usage of silicon materials. A decrease of about 10 to 20 206 

times the quantity of silicon used in other conventional technologies is obtainable when sliver 207 

cells technology is utilised [34]. The sliver cells are interconnected with two thin, narrow 208 

substrate supports to form a conventional solar cell analogue. The cells are thin with 209 

collecting junctions on both surfaces and the contacts are on the rear of the cell [35].  The 210 

advantage of sliver cells concept is that shadowing losses are minimised compared to 211 

conventional crystalline cells. 212 

Spherical silicon solar cells capture light from all directions because of the spherical 213 

geometric nature of the reception surface. This design feature has the capacity to improve the 214 

amount of power the system generates to the maximum [36]. The benefits of spherical solar 215 

cells include less silicon usage, lower cost and usable in a variety of applications [37]. The 216 

spherical cells are interconnected adjacent to one another to form a mini-module in series 217 

which produces a specific constant voltage; and current which may be varied. A key 218 

advantage of spherical cells over conventional crystalline cells is that shadowing losses are 219 

effectively eliminated.  220 

Silicon cells with flexible electrode wire grid (Day4 Electrode) structurally consists of 221 

transparent polymeric film, a layer of adhesive and embedded copper wires coated with low 222 

melting point alloy [38] which interconnects the cells with copper wires. The copper wires 223 

are very tiny and embedded in the transparent film. This arrangement has the advantage of 224 

minimal shadowing effect predominant in the conventional crystalline cells. 225 

Although IR and laser soldering technology are used in several cell concepts, they are not the 226 
only interconnection techniques. Techniques which include ultrasonic welding [39], thermal 227 

spraying [40] and conductive adhesives [41] have been successfully employed. Each of these 228 
techniques induces thermo-mechanical stress in the solder joint to some degree. The 229 



 
 

techniques create series resistance and shadowing losses in the solar cell. Moreover, these 230 

techniques induce thermo-mechanical stress in the interconnection joint. The mechanism of 231 
thermo-mechanical stress origin is dependent on the difference between solder melting 232 
temperature and room temperature. This conveys the concept of homologous temperature of 233 
material. Homologous temperature expresses the temperature of a material as a fraction of its 234 

melting point using the Kelvin scale. At low homologous temperatures, joint materials of 235 
interconnected solar cells are structurally modified and residual intrinsic stresses are induced 236 
in the joint. On the other hand, processing temperature for each interconnection technique is 237 
different. The typical reflow temperature for tin-silver-copper (SnAgCu) solder used for 238 
interconnection of conventional front-to-back cells is about 250 

o
C [42]. Similarly, 239 

processing temperature for laser spot soldering of cells is about 225 
o
C [26] while for 240 

ultrasonic welding, the temperature is about 177 
o
C [43]. Likewise, the processing 241 

temperature for interconnection of cells using thermal arc metal spraying and conductive 242 

adhesive is about 150 
o
C [40] and 125 

o
C [41] respectively.  243 

Interconnection of solar cells results in bonded materials at the interconnection joint. In order 244 

to ensure that the bond has adequate strength, the bond is tested to determine its peel force. 245 

Peel force is the measure of adhesion strength required to part bonded materials. The 246 

interconnection concepts developed and their corresponding interconnection techniques with 247 

peel force and residual stress are presented in Table 1. It can be observed in the table that 248 

some interconnection concepts have more than one interconnection technique. It therefore 249 

serves as a reference guide to PV manufacturers who may be interested in making choices of 250 

technique to use when consideration on peel force and induced residual stress in the solder 251 

joint are factors. 252 

 253 

 254 

 255 

 256 
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 260 

 261 

 262 

 263 

 264 

 265 



 
 

Table 1: Comparison of different interconnection techniques with peel force and residual stress for various 

interconnection concepts employed in assembly of crystalline silicon solar cells    

Interconnection concept 

Inter-connection 

technique Peel force (N) Residual stress (MPa) 

  
Conventional front-to-back cell 

interconnection [24]. 

 

Tabbing ribbon soldered to front and 

back of cell [25, 26]. 

IR soldering 

------------------------  

Laser spot soldering 

 
 
 
 
 

 

2-16 [44] 

------ 

1-5 [46, 47] 

 

 

 

 

 

 

 49-359 [45] 

(Simulation) 

--------------- 

NA 

 

 

 

 

 

 

 

 
 
Back-contact EWT solar cells [48]. 

 

Hole drilled for vias which allow 

emitter wrap through from front of the 

cell to the back surface [27-29, 48, 49]. 

Laser soldering 

------------------------- 

Conductive adhesive 

 
 
 
 
 
 

1-5 [46,47] 

------ 

0.3-1 [50] 

 
 
 
 
 
 

NA 

--------------- 

15-19.5 [51] 

(Simulation) 

 

 

 

 

 

 

  
MWT solar cells [53]. 

 

Similar to EWT cells but has metal grid 

contact on the front surface while 

interconnection pads for both polarities 

are on the rear surface [52-54]. 

Laser soldering 

------------------------- 

Conductive adhesive 

 
 
 
 
 
 
 

1-5 [46, 47] 

------ 

0.3-1 [50] 

 
 
 
 
 
 
 

 
NA 

--------------- 

15-19.5 [51] 

(Simulation) 

 
 
 
 
 
 

  
BJ-BC solar cells [55] 

 

Both emitter and metallisation are 

located at the rear surface of the 

cell [55, 56] 

 IR soldering 

 
 
 
 
 
 
 

 2-16 [44] 

 

 

 

 

 

 

 

 

 49-359 [45] 

(Simulation) 
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Table 1 (Continued) 

Interconnection concept 

Inter-connection 

technique Peel force (N) Residual stress (MPa) 

  
Alternate p- and n-type silicon solar cells 

[30]. 

 

These bifacial cells allow direct 

interconnection of equivalent sides on 

front-to-front and back-to-back of 

neighbouring cells [30]. 

IR soldering 

 

 

 
 
 
 
 

 2-16 [44] 

 

 

 

 

 

 

 

 

 49-359 [45] 

(Simulation) 

 

 

 

 

 

 

 

 

 
HD solar cell [58] 

 

Interconnection of the thin HD  cells is 

achieved through the use of an integrated 

series-connection structure  

[31, 32, 57, 58]. 

IR soldering 

------------------------- 

Conductive adhesive 

 
 
 
 
 
 

2-16 [44] 

------ 

0.3-1 [50] 

 

 

 

 

 

 

 

 49-359 [45] 

(Simulation) 

---------------- 

15-19.5 [51] 

(Simulation) 

 

 

 

 

 

 

  

 
 

PUM Cell [33]. 

 

Interconnection from the front-side 

metallisation to the interconnection 

material at the rear achieved through vias 

containing pins [33, 59]. 

IR soldering 

---------------------- 

Thermal arc metal 

spraying 

 
 
 
 
 
 
 

2-16 [44] 

------ 

NA 

 
 
 
 
 
 
 
 

 49-359 [45] 

(Simulation) 

---------------- 

NA 

 

 
 
 
 
 
 
 

 

  
Sliver cells [34, 35]. 

 

Cells interconnected by two thin, narrow 

substrate supports [34, 35]. 

 Solder bumps 

 
 
 
 
 
 
 

 1-5 [46, 47] 

 
 
 
 
 
 
 

  

 

 

 

NA 
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Table 1 (Continued)  

Interconnection concept 

Inter-connection 

technique Peel force (N) Residual stress (MPa) 

 

  
Spherical cell [36]. 

 
Interconnected spherical cells [37]. 

 

Cells are interconnected adjacent to one 

another to form mini-modules which in 

turn are interconnected by ultrasonic 

welding [36, 37, 60, 61]. 

Ultrasonic welding 

 
 
 
 
 
 
 
 
 
 
 
 
  

 2-5 [62] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 NA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
Cell with flexible electrode [64]. 

 
Cell in contact with electrode [65]. 

 

Interconnection achieved using 
flexible Day4 electrode wire grid 

consisting of transparent polymeric 

film, a layer of adhesive and 

embedded copper wires coated with 

low melting point alloy. The wire 

grid is glued to the cells using 

adhesives to obtain interconnection  

[38, 63-65]. 

 Conductive adhesive 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 0.3-1 [49] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

15-19.5 [50] 

(Simulation) 
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Furthermore, interconnection technologies for silicon solar cells are numerous and have 271 

various applications. The conventional interconnection concepts remain dominant while the 272 

other concepts are completely unconventional and modest. The review found some concepts 273 

which combine conventional with other concepts. For instance, on-laminate laser soldering 274 

(OLLS) was developed to combine the reliability potentials of conventional module assembly 275 

with the smoothness potential of the process steps in the monolithic module assembly 276 

(MMA) [66, 67]. The concept involves interconnecting solar cells on a patterned back sheet 277 

foil using conductive adhesives or low melting point solders [68].  278 

Table 2 presents a comparison of interconnection technologies employed in the manufacture 279 
of silicon solar cells including thin-film silicon solar cells. The index of comparison is cell 280 
type, joint type and production status. It can be observed from the table that conventional 281 
interconnection technologies for wafer-based silicon solar cells and for thin-film silicon solar 282 

cells are the only widespread and commercially available technologies. New concepts used in 283 

solar cells interconnection are either partially available or are yet to be commercially 284 

available. 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

 301 

 302 

 303 



 
 

Table 2: Comparison of silicon solar cells interconnection technologies in terms of cell type,   304 
               joint type and production status 305 

    Cell type Interconnect 

technology 

Joint 

type 

Production status  

     Widespread  Partially  R & D 

S
il

ic
o

n
 s

o
la

r 
ce

ll
s W

af
er

-b
as

ed
 

Conv. c-Si and 

mc-Si 

Ribbon 

(front-to-back) Solder joint   

  Alternate p- and 

n-type 

Ribbon 

(equivalent sides) Solder joint 

  

  

EWT Edge tab 

(back contact) 

Solder/ 

conductive 

adhesive joint 

 

  

 MWT Conductive 

foil/Ribbon 

Conductive 

adhesive/ 

Solder joint 

 

  

 EWT, MWT Bone-shaped 

interconnector 

(MMA) 

Laser solder 

joint 

  

  

Honeycomb 

design 

Ribbon/Adhesive Solder/ 

conductive 

adhesive joint 

  

  

PUM Foils with patterned 

conductors 

Solder/thermal 

metal spraying 

 

  

  

Sliver Substrate support 

bond 

Solder joint 

 

  

 c-Si and mc-Si  Day4 electrode  Day4 

electrode 

adhesive joint       

C
z.

 S
i  Spherical Substrate support 

bond 

Ultrasonic 

Welded  

joint       

T
h

in
-f

il
m

 Conv.  

a-Si  

and  

µc-Si 

 Monolithic series Conductive 

film bond 

  

 

  

 306 

3. Interconnection materials and technology reliability challenges of silicon solar cells 307 

Although it is reported in [69] that the reliability status of PV systems is good, even with a 308 
reliable technology there is always room for improvement. With the reported recent cases of 309 

unprecedented failure of PV modules in the tropics, the improvement of reliability of 310 

modules has become essential more so as the improvement will encourage more system 311 

uptake. System’s reliability depends to some extent on their cost of manufacture and it is 312 
measured by parameters which include systems performance, availability and degradation 313 
during operation and maintenance (O&M) and predictability [70] as well. It has been widely 314 
reported that the daily thermal cycles which PV modules are subjected to in the field is one of 315 
the causes of degradation experienced by its interconnection. In addition to accelerating 316 
interconnect degradation; the thermal cycling also increases series resistance [71]. As 317 
discussed previously, silicon solar cells are interconnected with one another either by the 318 



 
 

process of soldering or by the use of electrical conductive adhesive [72]. The reliability 319 

challenges of each technique are widely reported by researchers. In this section, this review 320 
will present and discuss the challenges associated with these two techniques. It will discuss 321 
the reliability of interconnection made using solder in sub-section 3.1 while in sub-section 322 
3.2, it will discuss the reliability of interconnection made using electrical conductive 323 

adhesives.  324 
 325 

 326 

3.1 Reliability of solder interconnection in PV modules 327 

The key materials used in the assembly of conventional crystalline silicon modules include 328 
silicon, glass, copper ribbon, back sheet, encapsulant, bus-bar and solder [24]. A critical part 329 
of the module is the solder joint interconnections. They consist of many materials bonded 330 
together. The materials bonded together in the joint are the solder, bus-bar, ribbon and the 331 
silicon wafer. These materials possess different thermal and mechanical properties. In 332 

bonding, the assembly develop thermo-mechanical reliability issues which are caused by 333 

differences in the bonded materials’ coefficient of thermal expansion (CTE). In PV module 334 

solder interconnection, the solder provides a connection between the electrode and ribbon. 335 
This connection is the pathway through which current flows from the silicon semiconductor 336 
to the ribbon. The PV module temperature varies according to local weather which in turn 337 
affects the rate of solder interconnection degradation. In a lifetime prediction modelling 338 

analysis [73], Han et al reported that for the same type of Si PV modules located in various 339 
weather conditions, lifetime was shortest in a desert followed by those in the tropics. 340 
 341 

Although the use of soldering process in the assembly of solar cells in PV modules has the 342 
advantage of yielding products which possess high reliability at minimal production cost, the 343 

technology occurs at high temperature with inherent potential to produce shear stress in the 344 
silicon wafer. This occurrence which is due to the differences in CTEs of the bonded 345 
interconnect materials in the assembly [74] may result in systematic grid finger interruptions 346 

at the bus-bar edges [24, 74] and also fatigue damage. In the presence of transients associated 347 

with passing clouds and daily thermal cycling, the joints are exposed to fatigue loading which 348 
leads to metal segregation, grain boundary coarsening/cracking and increased series 349 
resistance and heating [7, 75, 76]. Some approaches have been proposed to either reduce or 350 

avoid these reliability issues which have been discussed and presented earlier in 351 
unconventional interconnection concepts. 352 

 353 

Interconnection technologies involving the use of laser soldering for interconnecting solar 354 
cells have been developed by researchers for various concepts of PV modules. Utilising laser 355 
soldering technology for interconnection has the potential to ensure that the joints are highly 356 
reliable when compared to conventional soldering technology. This is because laser soldering 357 
induces minimal thermal and mechanical stresses in the solder joints.  In an experimental 358 

investigation [77], Schmidhuber et al reported that peel force in conventional soldered tabs 359 

was in the range of 1 to 3 N while that in a laser soldered tabs is about zero. This finding 360 

supports the earlier statement that laser soldering has minimal mechanical damage in the 361 
solar cell interconnection. Therefore, the adoption and use of laser soldering technology to 362 
interconnect crystalline silicon cells need to be explored as a replacement for conventional 363 
soldering technology for improved reliability of solder interconnections in crystalline PV 364 

modules. 365 

 366 



 
 

3.2 Reliability of electrical conductive adhesive interconnection in PV modules  367 

The elevated temperature soldering of cells induces stress in the cells. In addition to the 368 
induced stress, the solder joints are also stressed and deformed during operations in the field. 369 

The deformation of the joints culminates in cell warpage, breakage and ultimately system 370 
failure at prolonged operations.  371 
 372 
To avoid this situation, some manufacturers use electrical conductive adhesives in place of 373 
solder for the interconnection. The electrical conductive adhesives, which are made of silver-374 

loaded epoxy resins, are being used successfully as an alternative bonding material for solar 375 
cells interconnection [78]. The use of conductive adhesives as an alternative to solder has 376 
been shown to have minimal change on the mechanical properties of the bonded materials in 377 
the joints. Similarly, its use enhances the conductivity of the joint. As this bonding process is 378 
carried out at low temperature, it leaves minimal residual stress on the joint with advantage of 379 

minimal cell breakage [78, 79]. It is pertinent to note that conductive adhesives can be used 380 
for interconnecting both crystalline and thin film solar cells.  381 

 382 

Although the adoption and use of this low temperature bonding technology appear to solve 383 
the initial challenge encountered in using soldering process, there are some key reliability 384 
challenges associated with modules manufactured using the process during field operations. 385 

The adhesives undergo accelerated degradation occasioned by oxidation of the adhesive 386 
material. Moreover, the adhesive-to-metal bond, which is the interconnection joint, 387 

experience de-bonding [78, 80]. The de-bonding commences with crack initiation and 388 

propagation which enables corrosion induced system failure. 389 

 390 

4. Future R&D challenges and opportunities 391 
 392 
While several crystalline silicon module concepts have been developed to address the various 393 

challenges discussed earlier, there is no single concept that has solved all the challenges. 394 

Therefore, opportunities exist for more research and development (R&D) for further 395 

improvement of the cells design and manufacture. In this regard, R&D opportunities focussed 396 
on series resistance, shadowing and recombination losses as well as induced thermo-397 

mechanical stress are discussed as follows. 398 
 399 

Series resistance losses in a crystalline silicon solar cell have three main causes. The first 400 

cause is the current flow through the emitter and base of the solar cell while the second cause 401 

is the contact resistance between the metal contact and the silicon. The final cause is the 402 

resistance of the top and rear metal contacts. In addition, it is also known that thermal cycling 403 

increases series resistance. Considerable R&D is required aimed at reducing series resistance 404 

losses through the decrease in metal contact resistivity which can improve energy conversion 405 

efficiency of the cells.   406 

Shadowing losses result from interconnection ribbons placed on the surface of wafer-based 407 
crystalline silicon cells. Their presence on the cell surface occupies precious space thereby 408 
preventing power generation by that cell portion. Increase in the width of interconnection 409 
ribbon cross-section increases the shadowing losses proportionally. The best situation will be 410 
to completely relocate the interconnection to the back of the cell. This desire forms the basis 411 
for back contact cell concepts. However, the fabrication challenges associated with these 412 
concepts has affected the uptake of the technology. Furthermore, the reliability of these 413 



 
 

concepts is yet to be proven in long-term field exposure. Thus, the R&D opportunities for 414 

reduction of shadowing losses include simplification of fabrication processes and ensuring 415 
solar cells developed are durable and reliable. 416 
 417 

Induced thermo-mechanical stress in PV modules is a concern that requires proper attention. 418 

Photovoltaic module interconnection consisting of solder joints, ribbon and busbar are found 419 

to be the most vulnerable part to degradation and failure. As mentioned earlier, the 420 

differences in CTE among these bonded materials and long repeated temperature cycles 421 

induce thermo-mechanical strain and stress in the joint. These factors lead to module 422 

untimely failure which becomes aggravated in poor solder bonding between ribbon and silver 423 

busbar. Concerted R&D is needed for the optimization of the parameter settings involved in 424 

manufacture of these modules to improve the reliability of PV module assembly. These 425 

parameters are the dimensions of the ribbon, busbar, backsheet and any other critical 426 

dimension identified. The application of finite element modelling in the early design stage of 427 

PV modules has the potential to predict the response of the assembly to cyclic thermo-428 

mechanical stresses and strains. The techniques could also be used to determine the optimal 429 

parameter settings of the control factors in the module assembly. This will enable the 430 

determination of an optimal parameter setting of solder joint to improve the thermo-431 

mechanical reliability of PV module assembly. Additionally, more R&D is required for 432 

conductive adhesives used for solar cells interconnection in order to improve their durability 433 

and reliability. 434 

 435 
 436 

5. Summary 437 
 438 
A review of contacts and interconnection technologies used to assemble crystalline silicon 439 

solar cells has been presented and discussed in this paper. The review was extended to 440 
include detailed description of the concepts and interconnection technologies employed in the 441 

manufacture of unconventional silicon solar cells. 442 
 443 
It was found that the predominant interconnection technology used in the manufacture of 444 
wafer-based silicon solar cells involves soldering of ribbon on the surface of cell. This basic 445 

technique is shown to be none ideal because the soldering process induces thermo-446 
mechanical stresses in the cells and joints. The review results show that the process of 447 
interconnecting ribbon on the front-to-back surface of the cells leads to significant series 448 
resistance, shadowing losses. It identifies the technology of laser soldering as one which is 449 
poised to produce high reliability interconnection joints in the module. The capacity to heat 450 

only very small area of the ribbon placed on the cell enables the laser technology to induce 451 
minimal stress on the cell and joints after soldering and consequently produces quality 452 
assembly. On the other hand, it was found that adhesive-to-metal bond experiences 453 

substantial crack initiation and propagation which enables corrosion induced system failure. 454 
More review results indicate that the concepts developed for unconventional solar cell (to 455 
address the current reliability issues in the manufacture of PV modules) are yet to attain 456 
popular uptake because of lack of track record, major changes in tooling and manufacturing 457 

facilities as well as their attendant cost. 458 

 459 
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