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Abstract 

Skin sensitisation in humans is an important toxicological effect to be determined should there be 

frequent and prolonged exposure. Current approaches to assessing skin sensitisation mostly utilise in 

vivo testing, although there is a move to alternatives such as in silico, in chemico and in vitro 

approaches. The aim of this thesis was to investigate whether these alternative approaches could be 

utilised for agrochemical active ingredients (AIs) and formulations. Agrochemicals represent a unique 

problem for risk assessment due to the high level of regulatory compliance required in addition to the 

intrinsic issues of assessing formulations. Using the in vivo experimental results as a benchmark, the 

overall sensitivity and specificity of the Classification Labelling and Packaging (CLP) threshold 

calculation method, regardless of agrochemical formulation type, were determined to be 58% and 

82% respectively. Thus, for the plant production products (PPPs) assessed, the threshold method had 

a high probability of accurately predicting non-sensitisers. To supplement the information, the in vitro 

triple pack (Direct Peptide Reactivity Assay, KeratinoSensTM and h-CLAT) was applied using established 

Integrated Testing Strategies and Defined Approaches. Overall, the triple pack performed poorly for 

the assessment of AIs and formulations alike. The Genomic Allergen Rapid Detection (GARD) assay for 

the ten AIs showed a high sensitivity but a low total accuracy; the sensitivity was 0% with the in vivo 

non-sensitisers being predicted as sensitisers in the GARD assay. Eight of the ten PPPs tested in the 

SENS-IS assay produced results that were in good agreement with the vertebrate study outcomes. 

Findings from investigations into the Two Dimensional (2D) in vitro test methods demonstrated that 

testing of complex mixtures in those models could not be conducted accurately with current methods. 

Use of the SENS-IS method allowed for direct application of the PPP to the Reconstructed Human 

Epidermis (RhE) test system so that good comparison to the products intended and anticipated use 

can be made. It is envisaged that the work conducted in this thesis will add to the toxicology research 

conducted on skin sensitisation thus far and be of use primarily for decision making in hazard 

assessment of agrochemicals.      
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1.0 CHAPTER ONE - INTRODUCTION 

“What is there that is not poison? All things are poison and nothing is without poison. Solely the dose 

determines that a thing is not a poison” (Grandjean, 2016). As most notably identified by the 

Renaissance physician, often referred to as the father of toxicology, Paracelsus, all substances have 

the potential to be poisons at sufficiently high enough doses. Paracelsus reasoned that therapeutic 

agents at high doses can be harmful, whilst substances generally considered to be toxic may be less 

harmful, or even beneficial, at lower doses (Tsatsakis et al., 2018). A good understanding of the 

response to specific doses of a given substance allows for an understanding of the concentration 

threshold at which a toxic effect can be anticipated. Acute toxicity is the observed adverse effects that 

occur once the threshold of toxicity has been reached following the administration of a substance 

once or multiple times during an exposure significantly less than the life cycle, e.g. a 24 hour period 

for rodents (Manuppello et al., 2020). Depending upon the route of exposure or adverse effect being 

assessed, acute toxicity is determined by the presence of lethality (for acute oral, dermal or inhalation 

studies) or the observed unwanted effects at the local site of administration (skin irritation, eye 

irritation or skin sensitisation). The need to understand the potential hazardous effects associated 

with acute exposure and the concentrations at which they may occur, has historically driven the 

hazard evaluation of industrial and agrochemicals products.  

This need, to assess short term or local effects, has resulted in the development of an acute testing 

strategy commonly referred to as the “six pack” (Hamm et al., 2017, Creton et al., 2010). The six pack 

involves the evaluation of the three systemic acute endpoints i.e., oral, dermal and inhalation acute 

toxicity (via median lethal dose, LD50 and LC50), and the three local acute endpoints, namely skin 

irritation, eye irritation and skin sensitisation. At present non-animal alternative methods are being 

integrated into the safety assessment process, however, this tends to be largely within the initial early-

stage screening phase of chemical development. Rowan and Spielmann (2019) previously identified 

that there was a need for the scientific community to understand that it was possible to use alternative 
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methods to meet some, or all, regulatory requirements, instead of solely addressing lead chemical 

prioritisation. The research described in this thesis will focus on the methods used to evaluate skin 

sensitisation specifically, but always bearing in mind the broader context of risk assessment across a 

range of endpoints.  

The recorded history of method development for the hazard assessment of skin sensitisation begins 

in 1895 with Jadassohn who first introduced patch testing to identify contact allergy in man 

(Jadassohn, 1896). Jadassohn developed the patch test through his initial identification that a patient 

had developed an eczematous reaction to mercury plasters. He termed this initial contact test the 

“Funktionelle Hautprüfung” (functional skin test) (Lachapelle and Maibach, 2009). Since the 

development of the first patch test over 125 years ago, there has been appreciation of the value and 

significance of human testing to provide the most relevant information. Tests on humans have been 

developed and now include the Human Repeat Insult Patch Test (HRIPT), initially developed by  Draize 

(Bormann and Maibach, 2021, Draize et al., 1944), or Human Maximisation Test (HMT) developed by 

Kligman (Zaghi and Maibach, 2009, Kligman, 1966). Regulatory guidance documents such as the 

Regulation (EC) No 1272/2008 for Classification, Labelling and Packaging (ECHA, 2017b) state that 

classification of a substance can be based on human evidence, such as positive data from patch testing 

(e.g. HRIPT or the HMT). However, patch tests on humans cannot be carried out for the sole purpose 

of fulfilling regulatory criteria ((EC), 2009a), rather this source of data is used only when it has been 

historically generated for other purposes (e.g. clinical studies) and is used as weight of evidence for 

sensitising potency subcategorisation.  

For several years, the chemical industry has attempted to put into place guidance leading towards the 

use of in vitro and/or in silico models to determine acute toxicity endpoints. The industry has been led 

in this endeavour by a combination of the concerns, most notably and recently expressed by the 

National Centre for the 3Rs (NC3Rs, the 3Rs being the reduction, refinement and replacement (of 

animal experimentation) a concept original pioneered by William Russell and Rex Burch (Russell and 
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Burch, 1960)) and also experience with regulations such as the Registration Evaluation Authorisation 

and Restriction of Chemicals (REACH) and the European Union (EU) Cosmetics Directive. Information 

on the potential of a chemical to cause sensitisation, along with its potency, must be provided for the 

classification and labelling of the substance. Specifically, these requirements exist for the classification 

and labelling of industrial chemicals under REACH Annex VII and VIII ((EU), 2017a), as well as for 

biocides ((EC), 2012b), pesticides ((EC), 2009a) and cosmetic ingredients ((EC), 2010). Acute toxicity 

testing is used mainly for the determination of the potential hazard that a given test item 

(chemical/formulation) may pose following brief exposure via the corresponding routes for the 

specific endpoints in question. At present, there still remains a substantial reliance on the use of 

experimental animals for the purpose of hazard identification and risk assessment (Prior et al., 2019).  

 

1.1 What is skin sensitisation?  

Skin sensitisation, or allergic contact dermatitis (ACD), is an immunological reaction generated by the 

body in response to local exposure to specific xenobiotic material on the skin (Brites et al., 2020). One 

in five people is prone to ACD to at least one contact allergen in their lifetime (Bormann and Maibach, 

2021). Symptoms associated with this adverse effect are observed on areas of the body that have 

been directly exposed to a sufficient amount (a threshold concentration) of the sensitising substance, 

in an individual who has previously been exposed, and developed a contact allergy, to that, or a closely 

structurally-related substance. The first exposure to the skin sensitising material initiates a cascade of 

biological events leading to the induction phase of skin sensitisation (Willett, 2014). The induction 

phase is not associated with clinical symptoms, however during this phase selective clonal expansion 

of the allergen-specific T-lymphocytes (T cells) occurs (Basketter and Maxwell, 2007). Upon further 

exposure to the specific sensitising material, a heightened response in the body may be seen. The 

heightened response occurs because the immune system is primed to recognise this revisiting allergen 

and elicit an inflammatory response that can lead to dermal injury (Jaworska et al., 2011). In addition 

to this, it has been reported that allergens of similar chemical structure can cause sensitised 
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individuals to experience ACD via cross-reactivity (Basketter and Maxwell, 2007). The symptoms 

associated with this subsequent contact with the chemical include oedema and the skin becoming 

itchy, blistered, dry and cracked. In addition, skin redness can be observed in lighter skin, whilst darker 

skin can become dark brown, purple or grey ((NHS), 2019). As this research aims to investigate new, 

non-animal alternative methods for hazard assessment of skin sensitisation and to compare them to 

the in vivo methods, it is appropriate that current understanding of the adverse outcome pathway 

(AOP) and mechanisms are explained further here.  

 

1.2 The skin sensitisation AOP and its relationship to in chemico and in vitro 

assays 

An AOP organises how the existing mode of action is understood as a series of linkages between 

measurable key events (KE), and a resulting adverse outcome (AO) seen as an organism’s response. 

The initial KE in an AOP is a molecular initiating event (MIE) (Ankley and Edwards, 2018). The MIE 

captures the interaction between a chemical and a biological macromolecule, the complex of which 

then triggers the cascading KE and may potentially lead to an AO (Ankley et al., 2010). The biochemical 

and cellular events that occur during the cascade of the AOP in skin sensitisation have been well 

researched and documented (Schultz et al., 2016, Kimber et al., 2018, OECD, 2014). As indicated 

above, skin sensitisation consists of two major phases. The first is the induction phase, during which 

an inherently susceptible subject is exposed to an allergen at a specific concentration threshold or 

greater, priming the immune system (Kimber et al., 2018). This involves the proliferation and 

differentiation of naïve, T-lymphocyte, helper, CD4+ cells (Th) to memory and effector Th. In the second 

phase of skin sensitisation, the elicitation phase, re-exposure (or challenge) of the specific allergen to 

the previously primed immune system leads to an accelerated and more aggressive secondary 

immune response that is recognised as ACD in humans or contact hypersensitivity in rodents (Kimber 

et al., 2018, OECD, 2014). The skin sensitisation AOP details the different processes that need to occur 

during these two phases for the adverse effect to occur as shown in Figure 1.1.  
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Figure 1.1 The skin sensitisation adverse outcome pathway (Willet, 2014) 

During the MIE (i.e. the first key event) of the skin sensitisation AOP, skin sensitising chemicals or 

haptens come into contact with the stratum corneum and enter into the body via the lipid bilayers, 

corneocytes or via appendages such as sweat ducts and hair follicles (Maxwell et al., 2014, Potts and 

Guy, 1992a). Once they have penetrated through the epidermal skin layer, as shown in structure of 

the skin in Figure 1.2, haptens can form a stable conjugate with endogenous epidermal or dermal 

molecules. In doing so they modify skin proteins, normally by the electrophilic hapten covalently 

binding to nucleophilic groups of the protein (Willett, 2014, Rustemeyer et al., 2012), in particular the 

thiol (i.e., cysteine) and primary amine (i.e., lysine) residues (OECD, 2014). The direct result of an 

electrophilic substance’s interaction with the nucleophilic centre of skin protein is the production of a 

hapten-protein complex (haptenation) (Basketter and Maxwell, 2007, Maxwell et al., 2014). It is this 

cysteine/ lysine/ peptide/ hapten complex that is involved in the in vitro direct peptide reactivity assay 

(DPRA), one of the key alternatives to in vivo skin sensitisation testing (OECD, 2019a). Prior to this 

binding, the parent compound may be converted metabolically to protein-reactive derivates 

(prohaptens) or converted abiotically via oxidation (prehaptens) (Aptula et al., 2007). These processes 

may also transform an initially reactive parent compound to an inert metabolite.  
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Figure 1.2 A schematic diagram of the structure of the skin (Dijkhoff, 2020) 

 

Figure 1.3 shows the induction phase of skin sensitisation and in the second key event (KE2) of this 

AOP, haptens react with cell surface proteins and activate response pathways in keratinocytes. These 

include inflammatory responses and changes in gene expression associated with cell signalling 

pathways, specifically the antioxidant/electrophile response element (ARE)-dependent pathways 

(OECD, 2018b). Keratinocytes are highly specialised epithelial cells that, in conjunction with the 

corneocytes, form the cornified epithelial layer of the epidermis known as the stratum corneum 

(Basketter and Maxwell, 2007). Keratinocytes are continuously replenished by the basal keratinocytes 

which divide frequently (Blanpain and Fuchs, 2006). Keratinocyte interaction with sensitising 

chemicals leads to the induction of ARE-pathways. Specifically the covalent binding of the electrophilic 

sensitising compound to the sensor protein Keap1 (Kelch-like ECH-associated protein 1) via its 

nucleophilic cysteine peptide residues, leads to the dissociation of transcriptional regulator Nrf2 

(nuclear factor-erythroid 2-related factor 2) from Keap1 (Natsch and Emter, 2008). Nrf2 then 

accumulates in the nucleus where it activates genes that have an antioxidant response element in 
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their promotor sequence. Sensitising compound reactivity towards specific cysteine residues 

therefore triggers a battery of genes mainly coding for phase two detoxifying enzymes (Natsch, 2010). 

The Keap1-Nrf2-ARE pathway is utilised by the in vitro ARE-Nrf2 luciferase assays in determining if a 

compound has the potential to activate KE2 of the skin sensitisation AOP (OECD, 2018b). The use of 

this pathway to identify potential sensitisers was further demonstrated by Natsch et al (2009) who 

determined that 66 of a total 84 tested skin sensitisers induced luciferase gene activity under the 

control of ARE elements. When investigating those for which human evidence specifically existed, 30 

of 34 tested skin sensitisers were correctly identified (Natsch et al., 2009).  

The epidermis is also populated by a specialised sub-set of immature dendritic cells (DC) known as 

Langerhans cells (LC). The LCs maintain a unique dendritic morphology which allows them to project 

their dendrite arms toward the stratum corneum (Clayton et al., 2017). The LCs and dermal DCs are 

professional antigen presenting cells that act as “sentinels” of the adaptive immune response 

(Basketter and Maxwell, 2007). These cells are able to recognise and phagocytose hapten-protein 

complexes formed via covalent bonding in the AOP molecular initiating event. Following phagocytosis 

of the hapten-protein complex, the subsequent processing and lysosomal degradation of the allergens 

takes place. The most resistant peptides (epitopes) are then presented on the major histocompatibility 

complex (MHC class 2) of the DC plasma membrane for the availability of specific receptors of naive 

helper CD4+ T cells (Nielsen et al., 2010). Following the DC interaction with the allergen complex, these 

cells become activated. The maturation of DCs is the significant function that marks key event three 

(KE3) of the skin sensitisation AOP (Edwards et al., 2018). The activation of  immature epidermal LCs 

and dermal DCs is demonstrated by the increased expression of the DC surface markers, such as CD54, 

CD80 and CD86 (Humeniuk et al., 2017). Enhanced production of proinflammatory cytokines such as 

IL-1α, IL-12 and TNF-α occur in parallel to the DC activation.  
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Figure 1.3 A schematic of the skin sensitisation induction phase as presented in OECD, (2014) 

 

The in vitro human cell line activation assay (h-CLAT) and the U937 cell line activation test (U-SENS™) 

use the increase in CD54 and CD86 cell surface markers to identify a substance’s potential to activate 

the KE3 (OECD, 2018a). The induction of the LC activation has been shown to also result in the 

upregulation of IL-1b and IL-18 expression (Basketter and Maxwell, 2007). Kranzer et al (2004) 

demonstrated that the stimulation of DCs induced IL-10, IL-12, IL-6 and IL-8 secretion as well as the 

upregulation of the DC surface co-stimulatory molecules (CD54 and CD86) (Kranzer et al., 2004). A 

dose-related increase in IL-8 was also demonstrated by Galbiati at al. (2020) following the THP-1 DC 

line’s exposure to allergens (these included α-hexylcinnamaldehyde, hydroxycitronellal and 

imidazolidinyl urea). It is worth noting that exposure to irritant chemicals failed to induce IL-8 

secretion in the THP-1 cell line (Galbiati et al., 2020). THP-1 cells are widely used to investigate the 

function and regulation of monocytes and macrophages as they resemble them in morphology and 

differentiation properties (Qin, 2012). The third of the in vitro skin sensitisation methods listed in the 

Organisation for Economic Cooperation and Development (OECD) test guideline 442E, the IL-8 luc 

assay, utilises the upregulation of IL-8 as a biomarker to indicate the potential of a substance to 

activate KE3 (OECD, 2018a). 
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Key event four (KE4) of the AOP involves the migration of the activated, antigen presenting DCs from 

the epidermis to the T-cell dominant draining lymph nodes via afferent lymphatics (Basketter and 

Maxwell, 2007). The DCs lose adhesiveness to their surrounding epithelia following their activation 

and express chemokine receptors to allow them to migrate to the draining lymph nodes in the lymph 

(Humeniuk et al., 2017). In the lymph nodes the DCs present the protein-hapten complex in 

conjunction with MHC class II to T cells. Helper CD4+ T-cells (Th) have unique T cell receptors (TCR) 

generated by recombination of genomic DNA sequences, during T cell development in the thymus. 

Each specific TCR is responsible for the specific affinity of each T cell for a particular MHC class II 

complex (Pennock et al., 2013). Once a naïve Th cell TCR has interacted with the MHCII of the APC and 

the peptide presented is recognised as foreign, the Th cell becomes activated. After this activation the 

Th cell proliferates to form effector and memory Th cells (Willett, 2014).  

The memory Th cells have the same TCR affinity as the parent Th cell. Memory Th cells subsequently 

proliferate and remain in the body for years in preparation for interaction with the same MHC2 

peptide complex (Lakkis and Sayegh, 2003). Once the initial bioavailable allergen concentration 

leading to induction of the Th cell activation has occurred, in the elicitation phase as shown in Figure 

1.4, a lower concentration of the same allergen may trigger a more intense immune response (Lakkis 

and Sayegh, 2003). The effector Th cells release cytokines which effectively act as alarm bells by 

activating B cells via their MHC2 complexes and enact Th cell dependent activation (Zubler, 2001). The 

effector Th also primes cytotoxic CD8+ T cells (TC). It is the lymph node cell proliferation of KE4 that is 

the basis for the LLNA (OECD, 2014). 
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Figure 1.4 A schematic diagram of the skin sensitisation elicitation phase as presented in OECD, 2014 

 

1.2.1 In Vivo Tests for Skin Sensitisation 

There are three specific in vivo animal skin sensitisation tests that have widely been used in the 

chemical industry. These are the Guinea Pig Maximisation Test (GPMT), the Buehler assay (BA) and 

the local lymph node assay (LLNA). The Magnusson and Kligman-founded (1969) GPMT uses the 

elicitation phase of skin sensitisation to identify materials with the potential to cause this adverse 

effect (Magnusson and Kligman, 1969).  

The GPMT combines the use of an initial intradermal induction of the test material in combination 

with Freund's complete adjuvant (FCA) with a subsequent challenge exposure to the test material via 

topical application (on day 20 – 22 of the test) (OECD, 1992). Between the initial intradermal induction 

and the final challenge exposure, there is an additional topical application of test material in an 

occlusive dressing. The GPMT maximises the possibility of observing an allergic reaction with the use 

of FCA during the induction phase, allowing the test to detect not only strong, but also weak, skin 

sensitisers (Momma et al., 1998, Hayes et al 2020). It has been proposed by Nakamura et al (1999) 

that, with the exception of drugs, chemicals are not usually injected intradermally with an adjuvant 

and therefore the GPMT may overestimate the skin sensitisation potential of chemicals that would 
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not readily penetrate the skin (Nakamura et al., 1999). An observed inflammatory response at 

challenge may not necessarily be allergenicity and rather a false-positive irritant response resulting 

from an induced hyperirritability (Kligman and Basketter, 1995).  

In contrast to the GPMT, the Buehler occluded patch test is a solely topical exposure-based test 

without the use of an adjuvant (Buehler, 1965, Botham et al., 2005). It is for this reason that 

agrochemical formulations are generally tested in the Buehler assay instead of the GPMT. This 

predates the development of the LLNA, during the period when the EU indicated a test preference for 

the GPMT. This was because the dosing procedure of the GPMT was considered inappropriate for 

agrochemical formulations that had the final intended product use of being sprayed in crop fields by 

farmers (Botham et al., 2005). The Buehler assay, like the GPMT, uses a minimum of 30 guinea pigs 

(20 in the treatment group and 10 in the control group) (OECD, 1992). The Buehler assay employs 

three 6-hour duration topical applications of a given test material via occlusive patches over an 

induction period of three weeks (one patch per week) (Frankild et al., 2000, OECD, 1992). Two weeks 

after induction the test animals are then challenged (elicitation phase) by closed-patch tests for six 

hours. A nine-application induction version of the Buehler assay, during the initial three-week 

application period, can also be conducted and has previously been requested by regulatory authorities 

in Europe that had questioned the sensitivity of the three-induction application assay (Botham et al., 

2005). However, in a study conducted by Botham et al (2005) using six reference materials, no 

significant difference in the ability of the three- and nine-induction variations of the Buehler assay to 

detect skin sensitisers was shown. The GPMT and the Buehler assay are the tests that comprise the 

OECD test guideline 406 (OECD, 1992). 

The conclusion of skin sensitisation potential of test materials in these two guinea pig tests is made by 

clinical observational review of all skin reactions and any unusual findings on the guinea pigs treated. 

This subjective review of these effects on the animal’s skin is then graded according to the Magnusson 

and Kligman grading scale for evaluation of challenge patch test reactions (OECD, 1992). This 
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qualitative output is considered highly variable in large part due to its subjective nature (Anderson et 

al., 2011b).  

These qualitative guinea pig assays led onto the development of the quantitative murine LLNA. 

Following explorations into whether it was possible to identify potential sensitisers on the basis of 

events in the induction phase instead of the elicitation phase, the LLNA was developed and introduced 

in 1989 (Kimber et al., 1989, Kimber et al., 2002b). The LLNA quantifies the allergen driven T 

lymphocyte proliferation in the draining lymph nodes during the induction phase of skin sensitisation. 

Since its introduction, the LLNA has been extensively evaluated nationally and internationally, with an 

extensive interlaboratory validation conducted (Gerberick et al., 2007). Following this validation, the 

LLNA was endorsed as a stand-alone test by the Interagency Coordinating Committee on the 

Validation of Alternative Methods (ICCVAM) in the USA and by the European Centre for Validation of 

Alternative Methods (ECVAM) (Ulrich and Vohr, 2005). It has been concluded that “In terms of 

predictive identification of important skin sensitizers, the LLNA is at least as sensitive as, and much 

more reliable than, current guinea pig tests” (Gerberick et al., 1999). In the regulatory validation of 

the LLNA 126 chemicals tested with reference to the guinea pig tests, produced 88% identical results 

in the LLNA, with a sensitivity of 90% and a specificity of 82%. The test is characterised by a high 

positive predictivity of 93% and by a negative predictivity of 76% (Gerberick et al., 2000).  However, 

when comparing to human data, the LLNA has been reported to be approximately 70 – 80% predictive 

of the human hazard (Kleinstreuer et al., 2018a). Other analyses have also been performed by Urbisch 

et al comparing the LLNA results of a dataset of 111 compounds to their corresponding human data. 

They demonstrated that the LLNA had a 91% selectivity, 64% specificity and 82% accuracy (Urbisch et 

al., 2015). The dataset of 111 individual compounds spanned a variety of industrial domains and are 

used in products such as fragrances, preservatives, pesticides, solvents, cosmetics, pharmaceuticals 

and surfactants, amongst others (Urbisch et al., 2015). The ICCVAM test method evaluation report 

indicated that for pesticide formulations there were no instances of under prediction with the false 
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negative rate shown at 0% (ICCVAM, 2010). The LLNA method was incorporated into the OECD test 

guideline 429 formally in April 2002 (OECD, 2010).  

Details of the exact method for conducting the LLNA are presented in the OECD test guideline. 

However, in summary, an initial preliminary test is conducted in mice to identify an appropriate vehicle 

and the maximum tolerated test material concentration for the main study. Concentrations leading to 

excessive irritation or systemic toxicity are ruled out (OECD, 2010). After this, mice are given topical 

applications on the dorsum of both ears at test material concentrations (or a relevant vehicle) 

according to their assigned groups. The mice receive this dose daily for three days. On day six of the 

test all mice are injected with tritiated (3H)-methyl thymidine (3H-TdR) via the tail vein. The mice are 

euthanised five hours after the 3H-TdR administration and the draining auricular lymph nodes of each 

mouse ear are excised and processed in phosphate buffer solution individually or as a test group in a 

pooled approach. Following an initial wash and then resuspension in trichloroacetic acid incorporation 

of 3H-TdR in lymph node cells is measured in scintillation fluid by β-scintillation counting as 

disintegrations per minute (DPM) for each treatment group (Kimber and Dearman, 2005). A three-fold 

increase in this DPM value observed in a treatment group in comparison to the vehicle control group 

is defined as a positive sensitisation reaction. This value of comparison to the control group for each 

test group is referred to as the Stimulation Index (SI) (i.e. an SI of ≥ 3 indicates a positive skin 

sensitisation response) (Kimber et al., 2002a).  

As shown in Table 1.1 the LLNA provides a quicker in vivo test method, with the use of fewer animals 

and less test material. The LLNA is a more refined method with fewer numbers of test material 

exposures, no need for an adjuvant and it provides a relevant route of exposure (Kimber and Dearman, 

2005). The LLNA also provide a definitive potency value that can be used in risk assessment, whereas 

the guinea pig assays do not (Basketter, 2016). 
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Test 
Method 

Minimum number of animals 
required 

Number of test material 
applications 

Length of 
test 

Draize  40 guinea pigs 10 39 days 

GPMT 30 guinea pigs 
5 (3 initial intradermal injections  

+ 2 topical) 23 days 

Buehler 
assay 30 guinea pigs 

4 or 10  
(3 or 9 induction respectively) 30 days 

LLNA 16 mice 3 6 days 

Table 1.1 Overview of in vivo skin sensitisation tests 

1.2.2 In Vitro and In Silico Tests for Skin Sensitisation 

Numerous non-animal test assays are available for skin sensitisation hazard assessment. The focus of 

this thesis is to review and assess a number of currently available, non-animal test methods for the 

assessment of individual agrochemicals and complex mixtures, specifically plant protection products. 

The in vitro methods (for skin sensitisation) that are accepted by the OECD include the direct peptide 

reactivity assay (DPRA), ARE-Nrf2 Luciferase test methods (specifically focusing on the KeratinoSensTM 

assay) and the human cell line activation test (h-CLAT). These are summarised below: 

The OECD 442C test method– The Direct Peptide Reactivity Assay (DPRA) is an in chemico test method 

which addresses peptide reactivity, postulated to be the MIE (i.e., the first key event) of the skin 

sensitisation AOP (OECD, 2012). Reactivity is measured by quantifying how much of the test substance 

being tested does not bind to either cysteine or lysine in a controlled system (OECD, 2019a, ECVAM, 

2012). 

The OECD 442D test method– The ARE-Nrf2 Luciferase Test Method (KeratinoSensTM) is an in vitro 

test method which addresses keratinocyte induction of a cyto-protective gene pathway linked to skin 

sensitisation, i.e., the second key event of the skin sensitisation AOP. The test method uses 

luminescence detection to measure gene expression of the antioxidant/electrophile response 

element (ARE)-dependent pathway (OECD, 2018b, ECVAM, 2014a). 

The OECD 442E test method – The human Cell Line Activation Test (h-CLAT) is an in vitro method 

which addresses the third key event of the skin sensitisation AOP i.e., activation of dendritic cells. The 
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test measures the upregulation of CD86 and CD54 dendritic cell surface markers in a human monocytic 

leukaemia cell line by flow cytometry (ECVAM, 2014b, OECD, 2018a). 

Throughout this thesis when referring to a combination of the above three in vitro and in chemico test 

methods the term “triple pack” will be used. The aim of the combination of these assays is to enable 

the differentiation between contact sensitising chemicals and those chemicals that do not cause skin 

sensitisation. Individually, each target a particular KE of the skin sensitisation AOP and, as such, must 

be used in an integrated approach to testing and assessment (IATA) to achieve a conclusive 

assessment of skin sensitisation potential (Casati et al., 2018b). There have been 12 defined 

approaches (DA) initially proposed (Kleinstreuer et al., 2018b) that prescribe how the in vitro methods 

listed above should be used in a fixed data interpretation procedure (DIP) to address the skin 

sensitisation assessment of a single compound (Casati, 2018). This research focuses on three DAs; the 

BASF 2 out of 3, the Kao systematic testing strategy and the Kao integrated testing strategy 

(Kleinstreuer et al., 2018b, OECD, 2017). These three DAs are described in further detail in Chapter 

Three of this thesis. 

Another in vitro method that will be evaluated in this thesis is the Genomic Allergen Rapid Detection 

(GARD) assay. The GARD assay is a method which uses the reverse transcription polymerase chain 

reaction (RT-PCR) to examine gene expression changes that may occur in dendritic and keratinocyte 

cell lines (Johansson et al., 2017). The GARD assay utilises the differences in transcriptomic analysis 

observed in the human myeloid cell line, induced by sensitising chemicals, in comparison to non-

sensitising controls. The resulting biomarker signature, which consists of 200 transcripts, is used as an 

input into a support vector machine (SVM) statistical model to provide a yes or no answer with regard 

to the sensitising potential of a test item (Johansson et al., 2013). Further research indicates that this 

assay can also be used to provide a level of potency as signalling pathways have been reported to be 

triggered differentially depending on the known potency of the subset of chemical reactivity groups 

(Zeller et al., 2017). In addition to this, Zeller et al (2017) reported that more potent sensitisers are 
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generally assigned higher GARD SVM values than those of lower potency. This suggests that genes 

within the signature contribute to potency. There are currently few data on this assay’s suitability to 

accurately determine the skin sensitisation potential of agrochemicals or its potential use for the 

assessment of complex mixtures.  

The SENS-IS assay uses reconstructed human epidermis (RhE) in conjunction with detection of the 

expression of a panel of genes relevant to the biological process associated with the skin sensitisation 

AOPs. 38 Genes are observed, including 17 in the REDOX group and 21 in the SENS-IS group. The 

induction of seven genes of either group indicates a positive reaction, whilst the lowest concentration 

at which this has occurred is used to identify the test material’s potency (Cottrez et al., 2016). This 

assay claims to discriminate between irritant and sensitising substances, considering the 

bioavailability of the test item. The use of a three-dimensional (3D) skin cell model enables easy 

application of multiple forms of test material into the test system without the need for solubility 

assessments that may be cumbersome when trying to evaluate complex mixtures. The SENS-IS assay’s 

ability to accurately assess the skin sensitisation potential of different types of agrochemical 

formulations will be investigated in this thesis.  

In addition to these in vitro methods, it is acknowledged that in silico (quantitative) structure-activity 

relationship ((Q)SAR) models can be used to aid the skin sensitisation hazard assessment process for 

individual chemicals (Enoch et al., 2008). In particular, by identifying the presence of specific structural 

alerts within single chemicals that may trigger covalent protein binding and which account for the MIE 

in the skin sensitisation AOP (Urbisch et al., 2016). Incorporation of (Q)SAR models alongside non-

animal methods is integrated into a number of DAs for skin sensitisation (OECD, 2017).  In silico models 

such as DEREK Nexus or the OECD QSAR Toolbox can identify the presence of structural alerts for skin 

sensitisation in single chemical test substances (Wilm et al., 2018, Verheyen et al., 2017). It could be 

suggested that their use should be common practice, at the very least in early-stage research, to aid 

in providing confidence in the assessment of potential lead compounds. Currently, however, in the 
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case of formulations, it is understood that the initial use of a battery of (Q)SAR programmes may not 

be plausible. This is because presently these in silico methods may not be able to account for potential 

interactions that can occur between different ingredients within a complex mixture. Some of the 

ingredients are intentionally included to produce these interactions or effects, whilst others may be 

unexpected and could potentially enhance aspects such as dermal absorption or irritant effects 

(Lindberg et al., 2020).  

1.3 Covalent chemistry for skin sensitisation 

There are a number of potential chemical mechanisms of action which are important for determining 

a chemical’s skin sensitisation potential (Enoch et al., 2008). The more commonly observed chemical 

mechanisms, as suggested by Aptula and co-workers, are Michael addition (MA), Schiff-base 

formation (SB), acylation (Ac), bimolecular nucleophilic substitution (SN2) reactions and aromatic 

nucleophilic substitution (SNAr) (Fabjan and Hulzebos, 2008, Aptula and Roberts, 2006). 

Acylation is the chemical mechanism whereby a carbonyl group is attacked by a nucleophile (Enoch et 

al., 2011). In the elicitation of skin sensitisation, the carbonyl group is present on a test material while 

the biological nucleophile is a cysteine or lysine peptide. During this mechanism the carbonyl group is 

attached to an electronegative leaving group (quite often a halide or carboxyl). This leaving group is 

expelled from the structure during the reaction, as illustrated in Figure 1.5 (Enoch et al., 2011, Aptula 

and Roberts, 2006).  

 

Figure 1.5 Reaction scheme for the acylation reaction 

  

Michael addition is the chemical mechanism of action that occurs when a biological nucleophile is 

drawn to, and attacks, an electron deficient carbon atom of a polarised electrophilic compound (Enoch 

et al., 2011). Electronegative substituents can increase the reactivity of a compound as they increase 
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its polarity and lead to a greater pull of the nucleophilic species towards the electron deficient carbon 

centre, as shown in Figure 1.6 (Roberts et al., 2007a).  

 

 

Figure 1.6 Reaction scheme for the Michael addition reaction 

 

A bimolecular nucleophilic substitution reaction (SN2) involves a biological nucleophile attacking an 

aliphatic carbon atom (or to a lesser extent nitrogen, sulphur or halogen atoms) to which an 

electronegative leaving group is attached, as shown in Figure 1.7. This reaction is termed bimolecular 

as it is a single step reaction and the two molecules (nucleophile and substrate) are both present in 

the reaction’s transition state (Ouellette and Rawn, 2015).  

 

Figure 1.7 Reaction scheme for the SN2 

 

Aromatic nucleophilic substitution (SNAr) involves the nucleophilic attack by a cysteine or lysine 

peptide to an aromatic ring system that has been activated in the presence of electron withdrawing 

groups, as shown in Figure 1.8. A suitably electronegative leaving group (typically a halogen) must be 

attached to the carbon for this carbon to be attacked by a nucleophile (Enoch et al., 2012). This results 

in a new covalent bond being established between the nucleophile and chemical. Two or more 

activating (electrophilic) groups in the ortho- or para- position on the benzene are also needed to 

prompt the leaving group (Enoch et al., 2011).  
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Figure 1.8 Reaction scheme for the SNAr reaction 

 

Schiff base (SB) formation reactions can only occur with a nitrogen containing nucleophile such as a 

primary amine (Enoch et al., 2011). Unlike the acylation mechanism, the carbonyl group in the Schiff 

base formation reaction is not attached to an electronegative leaving group. The SB reaction is a two-

step process, with the first involving a biological nucleophilic nitrogen group (e.g., a lysine unit within 

proteins) attacking the reactive carbonyl centre of a sensitising compound as shown in Figure 1.9. In 

this first step, protonation occurs forming an intermediate carbinolamine species (Gleeson and 

Gleeson, 2020). This protonated intermediate species then undergoes a proton transfer leading to a 

condensation reaction, in which water is eliminated to produce the final Schiff base.  

 

Figure 1.9 Reaction scheme for Schiff base formation 

 

The above chemistry can be encoded as structural alerts, this involves defining the key structural 

features associated with these chemical mechanisms (which is greater than the simplified outline 

above) (Enoch 2008, 2011). For example, for the SNAr reaction shown in Figure 1.8 the relevant 

structural alert would define the requirement for the presence of the halide leaving group (chlorine) 

attached to a benzene ring activated by two electron-withdrawing features in the ortho- and para- 

positions (nitro in the example). The definition of such structural alerts enables a chemical to be 

assigned into one of these reactivity domains, indicating that it has the ability to stimulate the skin 
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sensitisation MIE via the formation of a covalent adduct with the biological macromolecule. However, 

this does not guarantee that the chemical will cause skin sensitisation.  Aptula and Roberts (2006) 

stated that, “within a reaction mechanistic applicability domain, skin sensitisation potential is a 

function of reactivity and (usually) hydrophobicity. A compound can be insufficiently reactive or 

insufficiently hydrophobic to cause sensitisation”. For example, prior to forming a protein-hapten 

complex, the chemical needs to be able to gain access to the viable epidermis via the stratum 

corneum. This appears to be an additional factor that is not adequately addressed by assessing 

potential structural alerts for protein binding alone. Some understanding of the specific location and 

quantification of chemicals in the epidermal layer, defined as the epidermal disposition of a chemical, 

would provide further understanding of the potential for interaction with keratinocytes/Langerhans 

cells  (Basketter et al., 2007). Epidermal disposition should not be confused with a substance’s ability 

to penetrate through all layers of the skin and undergo resorption into the vascular system becoming 

available in systemic circulation (Fitzpatrick et al., 2017). A manually derived expert judgement for the 

MIE potential of the individual chemical structures should also performed alongside the QSAR 

prediction.  

1.4 Active Ingredients and Formulated Products 

Industrial companies must determine the skin sensitisation potential of individual chemicals, be they 

active ingredients, metabolites, or individual chemical intermediates. This is because users of the 

consumer product that contains an active ingredient, or workers involved in the manufacture or 

transportation of quantities of this material, may also encounter the intermediates. While contact 

might involve minute amounts, the accurate assessment of the skin sensitisation potential of these 

individual components will enable the correct hazard assessment, and thus labelling, of the container 

transporting this active ingredient (AI). In addition to the assessment of single chemicals, the 

assessment of formulations containing numerous co-formulants, (preservatives, bases, surfactants, 

solvents etc) is also required to enable successful registration, use and transportation. Currently, an 
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acute toxicity estimate calculation method is being promoted and its use is expected to be seen in the 

submission of new product formulations by European regulators (ECHA, 2017b). The United States 

Environmental Protection Agency (US EPA) also favours the use of this calculation in the submission 

of new formulations (though they are currently assessing reliability compared to known in vivo data 

via a pilot programme collecting data from company submissions (Basketter et al., 2020)). However, 

regulators in the Asia-pacific (APAC) region are still heavily reliant on the use of in vivo methods, in 

particular skin sensitisation methods for identifying the potential of a formulation or even individual 

ingredients to lead to an allergic skin reaction.  

1.5 Test Guidelines and Current Regulation for Skin Sensitisation  

Appropriate guidelines, such as those documented by the OECD, for each validated test method are 

available, well publicised and should be followed when hazard assessment for test substances is being 

conducted. However, individual regulatory bodies/global regions have different specific requirements 

when conducting these tests (i.e. the number of animals used or which methods are generally 

accepted, such as a preference for the Beuhler test rather than the LLNA in some Asia-Pacific 

countries) (Daniel et al., 2018b). In Europe, labelling of substances should be in accordance with the 

Classification Labelling and Packaging (CLP) regulation which has superseded the Dangerous 

Preparations Directive (DPD). Guidance from the CLP and regulatory bodies encourages the use of 

non-animal alternative methods to predict acute toxicity. The CLP guidance and Globally Harmonized 

System (GHS) of Classification acute definitions documents ((EC), 2008, GHS, 2017) report the 

mathematical formulae used for acute toxicity estimate calculations, which are currently being used 

to estimate the oral, dermal and inhalation systemic toxicity median lethal doses (LC50) of 

formulations. There are also predictive calculations for skin and eye irritation, as well as a material 

percentage threshold method for predicting skin sensitisation using generic or specific concentration 

thresholds for individual components present within a formulation (Corvaro et al., 2017). These are 
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all identified in the CLP guidance and all of these methods indicate a strong drive towards alternative 

testing methods, without the use of animals (ECHA, 2017b).  

In order to proceed with REACH registration of an individual chemical, historical data provided by 

previously performed in vivo methods of skin sensitisation testing, specifically the LLNA, or guinea pig 

maximisation test and/or Beuhler 3 or 9 application induction assay, are required (EU, 2017a). The 

REACH regulation promotes the sharing of available toxicity data, thus reducing animal usage by 

eliminating the need for in vivo tests to generate new data where data for specific endpoints already 

exist. In addition, the REACH regulation also promotes the use of alternative non-animal new approach 

methodologies (NAMs) where available. Registrants must first submit a proposal to the European 

Chemicals Agency (ECHA) before conducting testing for the purposes of REACH registration. In this 

process ECHA asks registrants to identify what alternative methods they had considered prior to the 

submission of these testing proposals (Rowan and Spielmann, 2019). It is recognised that there are 

now acceptable, validated, non-animal alternative assays available and regulations across the 

chemical industry promote their use wherever possible (ECHA, 2016b; ECHA, 2017b; EC, 2009a). In the 

EU, regulatory acceptance of a NAM for deriving information for the hazard assessment of local 

toxicity and acute or short-term effects has been achieved (Rogiers et al., 2020). However, that is not 

the case for systemic toxicity effects that are generally observed following longer term exposure, or 

adequate quantitative risk assessment for acute toxicity (Rogiers, 2019). Legislation states that the 

development of non-animal test methods should be promoted in order to produce safety data 

relevant to humans and to replace animal studies currently in use (EC, 2009a). The EU has banned 

cosmetic ingredient testing on animals (since 11th March 2009) as well as the testing of finished 

cosmetic products on animals (since 11th September 2004) (Rowan and Spielmann, 2019). In addition, 

there is a marketing ban prohibiting the sale of finished cosmetics and cosmetic ingredients in the EU 

that were tested on animals (since 11th March 2013) ((EC), 2021, Rogiers et al., 2020). The framework 

for this ban on animal testing of cosmetics within the EU was initially phased in via the EU Cosmetics 

Directive ((EC), 2003). This was further reinforced with the cosmetics regulation containing the same 
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restrictions (EC, 2009b). The European cosmetic legislation’s previous deadline of 2013 for the 

replacement of animal tests in use of safety assessment of cosmetic ingredients, has spurred on the 

development of new, OECD validated, in vitro sensitisation testing methods. For other endpoints, the 

use of in vitro methods is commonplace, such as the Bovine Corneal Opacity Permeability test (BCOP) 

and the Isolated Chicken Eye test (ICE) which are used regularly in the cosmetic, biocide and 

agrochemical industries for risk assessment of acute eye irritation. Recently, where alternative 

methods are available the REACH regulation and ECHA guidance have been updated to insist that the 

available in silico and in vitro test are used for skin sensitisation assessment in the chemical industry, 

in the specific regions that fall under this regulation (Taylor and Rego Alvarez, 2020). 

This thesis will focus on agrochemical active ingredients and agrochemical formulations/final 

products. Although the regulatory environment is in a constant state of change, Daniel et al (2018) 

provides an overview of the current skin sensitisation requirements for pesticides across the 

regulatory landscape of different global regions. These are summarised briefly below.  

1.6 Pesticide global regulatory requirements for skin sensitisation  

When reviewing, developing, or deciding upon an appropriate skin sensitisation hazard assessment 

approach, there is a need to understand the requirements of the location at which the final product 

is intended to be used/sold. Here the different skin sensitisation hazard assessment requirements 

between the different global regulatory regions are put into context to gain an understanding of where 

these requirements contrast.  

For registration of pesticide formulations in the European Union (EU) the use of the calculation 

method in accordance with the CLP regulation and United Nations (UN) GHS, needs to be conducted 

to determine skin sensitisation classification. In order to carry out this method the skin sensitisation 

potential of the active ingredients and co-formulants within the formulation must be known. This 

information should be available in the safety data sheets (SDS) of the individual ingredients indicating 

their skin sensitisation classification, if warranted, and also the method by which this decision was 
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reached i.e., LLNA, GPMT, Buehler or via read-across. For single compounds the EU currently accepts 

the use of OECD guideline non-animal in vitro and in chemico methods. There is an acknowledgment 

that no single alternative method can be used to fully address this endpoint (OECD, 2017) and, rather, 

a DA (as indicated above) to provide a weight-of-evidence (WoE) to address this should be conducted 

(Casati et al., 2018a). 

Active ingredients for pesticides or finished pesticide products for use in Brazil are evaluated by three 

different federal institutions prior to their registration. These institutions are the Brazilian Health 

Regulatory Agency (ANVISA), the Ministry of Agriculture, Livestock and Supply (MAPA), and the third 

is the Brazilian Institute of Environment and Renewable Natural resources (IBAMA) (Oliveira et al., 

2020). Toxicological review of the products presented for registration is conducted by ANVISA.  

The Brazilian Health Regulatory Agency requires hazard assessment relating to skin sensitisation of 

ingredients and the final product. They recommend using validated and internationally recognised 

alternative methods where available (Daniel et al., 2018b). All tests used need to be conducted in 

accordance with internationally accepted guidelines such as the OECD or US EPA. The Mutual 

Acceptance of Data (MAD) system is in place to bolster the acceptance of data from toxicology studies 

conducted to OECD test guidelines across different regulatory regions. The MAD system also allows 

for adherence by OECD non-member countries (Koëter, 2003). The basis for pesticide regulation in 

Brazil was established by the Brazilian federal law No. 7802 and proceeding Acts 4074/2002 and 

5981/2006 (Jardim and Caldas, 2012). For an active ingredient the GPMT or Buehler assay are 

indicated as the testing methods of choice. However, the Brazilian National Council for the control of 

animal experimentation (CONCEA) recognise the LLNA, DPRA and the ARE-Nrf2 Luciferase assay 

(Daniel et al., 2018b). As such these alternatives to the guinea pig assays can be used for skin 

sensitisation hazard assessment in circumstances where Brazilian registration is necessary for an 

agrochemical active ingredient. A hazard assessment on the finished pesticide product also needs to 
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be performed, to appropriately classify it as a sensitiser or not. However, unlike the active ingredient 

a clear direction on the specific skin sensitisation test method that should be used is not provided.  

In Canada, the Pest Management Regulatory Agency (PMRA) of Health Canada is the regulatory body 

that ensures the correct and appropriate evaluation of toxicity is conducted on finished plant 

protection products (PPP) or their active ingredients. In accordance with Health Canada regulatory 

requirements, a skin sensitisation assessment must be conducted ((PMRA), 1984). The preferred test 

method for this evaluation is the LLNA, although the GPMT and Buehler assay are also accepted 

(Daniel et al., 2018b). For active ingredients the use of validated non-animal alternative methods 

conducted to OECD test guidelines is also accepted. However, as no single in vitro method has 

currently been demonstrated to sufficiently evaluate the skin sensitisation, a combination of these 

methods is required (OECD, 2019a, OECD, 2018a, OECD, 2018b). Canada also accepts a bridging 

argument in place of an in vivo test for the final pesticide product where possible (Corvaro et al., 2016). 

Bridging of mammalian acute toxicity data is the use of toxicity data available on a formulation of 

similar composition to fill data gaps for the specific formulation in question. This is a recognised 

method of hazard assessment for complex mixtures and is accepted in a number of regulatory regions 

(EC, 2012a). 

Chinese regulations require animal tests (Strickland et al., 2019), in particular the Buehler assay for 

the assessment of skin sensitisation of new pesticide products. This test method is specified in order 

to provide results that allow for classification of non, weak, light, medium, strong or very strong 

sensitisers. Only products with test results demonstrating them to be weak or non-sensitising can be 

accepted for commercial use (Daniel et al., 2018b) in China.  

Skin sensitisation assessment on active ingredients and finished product pesticides is required in both 

Japan and South Korea. Alternative methods are generally accepted however, they are considered in 

these regions on a case-by-case basis (Daniel et al., 2018b; Strickland et al., 2019). 
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The US EPA allows for a bridging argument to be used in an evaluation of the skin sensitisation 

potential of a finished pesticide. If that is not possible a LLNA, GPMT or Buehler assay can be conducted 

(Strickland et al., 2019). The EPA released an interim science policy on the use of alternative 

approaches for skin sensitisation as a replacement for laboratory animals in 2018 (EPA, 2018). It 

expresses that consistent with the organisation’s commitment to advancing the implementation of 

new approach methodology in human risk assessment, the use of defined approaches to skin 

sensitisation hazard identification with alternative methods is accepted. This is in keeping with the 

memorandum signed by the EPA Administrator Andrew Wheeler, directing the agency to have 

completely eliminated their need for animal testing by the year 2035 (EPA, 2019). 

Table 1.2 helps to illustrate that although there is strong commitment towards the use and 

development of non-animal alternative methods for the assessment of skin sensitisation, there is a 

lack of global regulatory harmonisation on their acceptance. This lack of harmonisation is further 

demonstrated by the Commonwealth of Independent States (CIS). The CIS is comprises 11 countries, 

with all still requiring in vivo test data for acute toxicity assessment of a pesticide (Ministry of 

Agriculture of the Russian Federation, 2020). 
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Region Material type Accepted Test Method  

Brazil  

Active ingredient  

In vitro alternatives with OECD test guidelines  

LLNA 

Buehler, GPMT 

Pesticide 
Formulation 

LLNA 

Buehler, GPMT 

Other Latin American  
countries 

Active ingredient  
LLNA 

Buehler, GPMT 

Pesticide 
Formulation 

LLNA 

Buehler, GPMT 

Bridging in some countries 

Canada 

Active ingredient  

In vitro alternatives with OECD test guidelines  

LLNA 

Buehler, GPMT 

Pesticide 
Formulation 

Bridging 

LLNA 

Buehler, GPMT 

China 

Active ingredient  
Buehlera, GPMT 

LLNA 

Pesticide 
Formulation 

Buehlera, GPMT 

LLNA 

CIS countries 

Active ingredient  
LLNA 

Buehler, GPMT 

Pesticide 
Formulation 

LLNA 

Buehler, GPMT 

EU 

Active ingredient  
In vitro alternatives with OECD test guidelines  

LLNA 

Pesticide 
Formulation 

Bridging 

CLP/GHS calculation method 

LLNA 

US 

Active ingredient  
In vitro alternatives with OECD test guidelines  

LLNA 

Pesticide 
Formulation 

LLNAa 

Buehler, GPMT 

Japan/South Korea 

Active ingredient  

Buehler, GPMT 

LLNA 

In vitro methods considered case-by-case  

Pesticide 
Formulation 

LLNA 

Buehler, GPMT 

Australia/New 
Zealand 

Active ingredient  
In vitro alternatives with OECD test guidelines  

LLNA 

Pesticide 
Formulation 

Bridging 

CLP/GHS calculation method 

LLNA 

Table 1.2  Current understanding of the regional regulatory requirements for skin sensitisation 

testing (Basketter et al., 2020; Strickland et al., 2019; Daniel et al., 2018a)  a preferred assay 
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1.7 Research aims of this thesis 

The overall aim of this thesis was to evaluate the ability of a selection of non-animal, alternative skin 

sensitisation approaches to accurately predict the skin sensitisation potential and, where possible, the 

potency of agrochemical active ingredients and formulated plant protection products. The focus was 

to address areas of regulatory application where there could be a greater uptake of alternative 

methods. LLNA data will be used as the in vivo benchmark against which to compare these alternative 

methods. Where LLNA data are unavailable, data on previously conducted guinea pig assays will be 

used for comparison. The discussion of this endpoint for complex agrochemical mixtures is presented 

in Chapters Two, Three and Five. The prediction of this endpoint will be investigated and discussed for 

single chemicals in Chapters Three and Four.  

The specific objectives of the thesis were: 

• To evaluate the CLP/UN GHS threshold calculation method for skin sensitisation classification. 

o This involved identifying suitable agrochemical formulations of varying types that had 

data from previously conducted in vivo skin sensitisation tests (the results and 

methodology outlined in Chapter Two). 

• To investigate if the DPRA, KeratinoSensTM and h-CLAT assays could be effective and suitable 

in the prediction of skin sensitisation potential of agrochemical formulations. 

o This involved understanding previous research in this area, the concentration levels 

leading to cytotoxicity that impeded accurate results and the most appropriate 

solvent for use for each test material and assay (the results and methodology outlined 

in Chapter Three). 

• To evaluate the integrated testing strategy, the systematic testing strategy and the “two out 

of three” Defined Approaches in order to understand the benefits, limitations and general 

differences in accuracy of these approaches when assessing skin sensitisation of agrochemical 

active ingredients.  
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o Appropriate compounds with previous in vivo skin sensitisation data were identified 

and used in the assays and in silico models in accordance with the Defined 

Approaches. An appropriate performance evaluation of the approaches was 

conducted (results outlined in Chapter Three). 

• To evaluate the GARD assay’s ability to predict the skin sensitisation potential of agrochemical 

active ingredients accurately, using the in vivo data as a benchmark for this evaluation.  

o The same, or similar, active ingredients used in Chapter Three were evaluated. The 

predictions were reviewed and the need for further investigative work into the assay’s 

assessment of formulations and also potency was determined (results in Chapter 

four). 

• To investigate if the use of the 3D SENS-IS assay provided a more robust test model for the 

evaluation of both sensitising potential and potency of agrochemical formulations. 

o This required the investigation of the irritation potential of the test materials, to 

ensure that in vivo skin sensitisation data were available for the test materials to 

provide a benchmark from which to evaluate the assay results (results outlined in 

Chapter Five). 
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2.0 CHAPTER TWO - EVALUATION OF THE SKIN SENSITISATION 

THRESHOLD CALCULATION METHOD FOR THE HAZARD 

ASSESSMENT OF AGROCHEMICAL FORMULATIONS  

 

Hazard assessment methods used to evaluate the potential of a single chemical, or a complex mixture, 

to cause an allergic skin reaction have been established, and gradually refined over the years (Ibrahim 

et al., 2017, Doe and Botham, 2019). In conjunction with the efforts and work of various organisations 

such as the National Centre for the Replacement, Refinement and Reduction of Animals in Research 

(NC3Rs) in the UK and People for the Ethical Treatment of Animals (PETA), changes in regulatory 

acceptability of in vivo mammalian test methods across industries (such as those identified in the 

pesticide global regulatory requirements for skin sensitisation section of Chapter One) have continued 

to drive the development of non-animal alternative methods including in silico approaches. 

 

The previously established in vivo approaches to determine xenobiotic skin sensitisation potential, 

such as the GPMT and Buehler assay (OECD, 1992), aimed principally to utilise observed clinical effects 

on the skin to assess potential hazard. Further development of hazard assessment approaches for skin 

sensitisation has led to methods that target changes in specific biomarkers (Koppes et al., 2017), 

focusing on different key events of the agreed skin sensitisation AOP and their relationship to in 

chemico and in vitro assays section of Chapter One (OECD, 2014). In so doing, the adaptation of 

alternative assay methods has moved away from in vivo approaches towards in vitro tests and 

potentially an accepted synergistic output of results from in silico and in vitro methods (Johnson et al., 

2020). This shift is in tandem with the ideal of reducing, refining and ultimately replacing animal use, 

particularly in this case for skin sensitisation hazard assessment. 

 

Whilst alternative methods to assess skin sensitisation potential are validated for single substances,  

there are currently no regulatory accepted in vitro skin sensitisation methods that have been validated 

for the assessment of complex mixtures. The OECD test guidelines for the Direct Peptide Reactivity 
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Assay (DPRA), KeratinoSensTM and the human Cell Line Activation Test (h-CLAT) (all three are defined 

in more depth in Chapter Three and will be referred to as the in vitro triple pack from hereon) indicate 

that limited information on the applicability of these test methods to mixtures is available and that 

where a test substance is not clearly within the applicability domain, “upfront consideration should be 

given to whether the results of such testing will yield results that are meaningful scientifically.”(OECD, 

2019a, OECD, 2018a, OECD, 2018b).  

 

The threshold calculation method allows for the classification of complex mixtures for acute human 

health toxicological effects, without the in vivo testing of the mixture in question. This chapter aimed 

to evaluate the calculation method’s efficiency to accurately classify the skin sensitisation potential of 

plant protection products (PPP). The calculation method for skin sensitisation was conducted using 

the reported skin sensitisation potency of the individual components present within the complex 

mixture in question. These data were predominantly taken from the safety data sheets (SDS) of each 

of the components. A SDS may indicate if a component is classified according to CLP regulation (EC, 

2008). If the material in question is classified as a skin sensitiser, it will have been assigned the hazard 

phrase “H317” in accordance with EU CLP (ECHA, 2017b) and the Globally Harmonised System (GHS) 

(GHS, 2017). Alongside identification in the SDS of a substance as a skin sensitiser (H317), the category, 

and hence potency, of the material as a skin sensitiser is also given. A Generic Concentration Limit 

(GCL) is associated with the 1, 1A or 1B skin sensitisation sub-classifications provided in the SDS. There 

are certain individual chemicals for which these GCLs do not apply. These chemicals have Specific 

Concentration Limits (SCL) associated with them that can lead to the overall classification of the 

complex mixture at lower concentrations of a particular component. SCLs are assigned to chemicals 

in accordance with CLP (ECHA, 2017b) where the GCLs are not considered to be sufficiently protective. 

SCLs are set where there is adequate and reliable evidence indicating that the specific hazard (in this 

case skin sensitisation) is below the GCL for classification. Reported human data from occupational 
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exposure, such as workplace studies, are considered reliable data for the assignment of a chemical’s 

SCL.  

These SCLs are recorded and can be obtained from the European Chemical Agency (ECHA) website 

(https://echa.europa.eu/). An apparent limitation of the skin sensitisation calculation method is  for 

chemicals that do not achieve the Registration Evaluation, Authorisation and Restriction of Chemicals 

(REACH) regulation tonnage requirements and hence do not require a chemical safety report to be 

submitted (EU, 2017a). As such, and as indicated by Corvaro et al (2017), the absence of a skin 

sensitisation classification in the SDS of a chemical may not always indicate that the material is a non-

sensitiser. Instead, there may be occasions where the absence of classification and mention of skin 

sensitisation testing in the SDS is an indication that no testing for the skin sensitisation potential has 

been performed. This may be the case where a chemical is manufactured or imported at less than 10 

metric tons a year (Rudén and Hansson, 2010). Another concern may be if the data present were 

derived from in vitro testing alone and, thus, assessment of potency and subsequent sub-

categorisation (category 1A or category 1B) cannot be indicated in the SDS (ECHA, 2016b). Either of 

these scenarios could potentially lead to an underestimation of the skin sensitisation potential of the 

formulation via the threshold calculation method. The impact of these possible limitations on the 

accuracy of the skin sensitisation calculation method on agrochemical PPP is discussed below. 

In a previously conducted evaluation of the calculation method (Corvaro et al., 2017), 54% agreement 

between the calculation and in vivo studies was determined. A later study by Kurth et al. (Kurth et al., 

2019) found a slightly improved agreement of 65%, when in vivo classified products were considered 

only. These results have to be placed in the context of the OECD guidance on the validation and 

international acceptance of new or updated test methods for hazard assessment, which states “for a 

test method to be considered as a replacement, it should offer advantages over the accepted 

method.”(OECD, 2005). These advantages include a reduction in animal numbers used and their 

overall suffering. However, the OECD guidance also states that validation exercises need to 

demonstrate unambiguously that the new method meets, or exceeds, the performance of the 
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previous method. To evaluate performance, accuracy has been defined by The Interagency 

Coordinating Committee on the Validation of Alternative Methods (ICCVAM) as determinations of 

concordance, sensitivity, specificity, predictivity (positive and negative) and false positive and negative 

rates (OECD, 2005). In an assessment of the validity of the LLNA for pesticide formulations by the 

National Toxicology Program (NIH, 2010), the sensitivity of the LLNA against human data was shown 

to be 72%, specificity was 67%, accuracy was 72%, whilst the false positive and false negative rates 

were 33% and 28% respectively (n=72). However, the assessment compared the LLNA to guinea pig 

tests (Buehler and GPMT) and produced slightly higher values of 87% for sensitivity, 82% for specificity, 

86% for accuracy and for false positive and false negative results 18% and 13% respectively.  

At present, the threshold calculation method is the only non-animal alternative method for 

determining skin sensitisation of complex mixtures accepted by European regulatory authorities 

(Daniel et al., 2018a). This method is identified in the United Nations Globally Harmonised System of 

classification and labelling of chemicals and also in the European Chemical Agency’s guidance on the 

application of the CLP criteria (GHS, 2017, ECHA, 2017b). There are several pieces of legislation that 

propelled the development of non-animal alternative methods to testing for PPP. These include 

Regulation (EC) No. 1107/2009, concerning the placing of PPP on the market. Reduction of animal 

testing is a requirement of this regulation as it refers specifically PPP and their active substances, 

safeners, co-formulants, synergists and adjuvants. (EC) No. 1107/2009 outlines the acceptable rules 

in which PPP can be authorised for their placement on the market. In paragraph 40 of the regulatory 

document it states that, where available, suitable non-animal test methods should be used and that 

if animal testing is undertaken as a last resort, justification for the steps to avoid testing and prevent 

duplication of testing should be provided ((EC), 2009a). The alternative method should be fit for 

purpose, i.e. reproducible and produce reliable predictions of adverse effects that may occur in 

humans (Kurth et al., 2019). Leading on from regulation (EC) No 1107/2009, regulation (EC) 1272/2008 

(CLP) outlines suitable non-animal methods to predict the acute toxicity of complex mixtures using 

data available on the individual components of the formulation (EC, 2008).  As such in accordance 
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regulation (EC) No 1107/2009 the acute toxicity hazard assessment of PPP is for European submission 

is conducted using regulatory accepted NAMs wherever possible. Though in other sectors different 

requirements may be needed as identified in Table 1.2.  

Regulation (EC) No. 1107/2009 officially began to apply from 14 June 2011 and is also accompanied 

by the EC 1223/2009. This regulation prohibits the use of mammalian testing of ingredients for 

inclusion in cosmetic products and also the testing of the products themselves within the EU (EC, 

2009b). A postponement of the cosmetic marketing ban on animal tested products was implemented, 

whilst a search for alternative methods for three endpoints (toxicokinetics, repeated dose and 

reproductive toxicity) was conducted. In an EC-funded report on the progress of this research (Taylor 

et al., 2011, European Commission, 2011), it was observed that not only could timelines for the 

availability of suitable new alternatives for the three endpoints not be provided, but an additional two 

endpoints (skin sensitisation and carcinogenicity) had been added to the list (Taylor and Rego Alvarez, 

2020). Finally in an impact assessment on the cosmetics industry it was revealed that the proportion 

of new ingredients entering the market that would ultimately be affected by the ban was relatively 

low (4% of a company’s portfolio) (EC, 2013a). Leading on from that the EC decided not to extend the 

animal testing ban and it fully came into force on 11 March 2013. In addition there is the REACH 

1907/2006 regulation ((EU), 2017a) and the European directive 2010/63 which cover the use of 

animals for scientific purposes (EU, 2010). The EC No 1907/2006 regulation in accordance with the 

objective of promoting non-animal testing and the replacement, reduction or refinement of animal 

testing states that, “use of animals should be avoided by recourse to alternative methods validated by 

the Commission or international bodies, or recognised by the Commission or the Agency as 

appropriate to meet the information requirements under this Regulation”(EC), 2013b). In addition, it 

also requires that where data are already available, no additional animal testing should be conducted 

which may duplicate these data. This promotes the sharing of this toxicity data and improving the data 

available to conduct calculations as per the methods outlined in CLP and UN GHS guideline documents 

mentioned above. The REACH regulation specifically mentions the use of alternative test methods on 
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an international and national level, including qualitative or quantitative structure-activity relationship 

models or from information from structurally related substances (grouping or read-across), in vitro 

methodologies and other relevant methodologies. Whilst outlining these approaches it is also stated 

that these methods shall be regularly reviewed and improved with a view to reducing testing on 

vertebrate animals and the number of animals involved. In keeping with that this chapter aims to 

review the CLP threshold calculation method. 

 

2.1.1 History of skin sensitisation methods 

The Draize Test was developed as an in vivo test for the assessment of the skin sensitisation potential 

of individual, or mixtures of, chemicals. It is one of the first predictive skin sensitisation tests in guinea 

pigs to be described, with the original description of the method going back to 1944 (Botham et al., 

1991). It was also the first to be included in a test guideline in 1959 (Maurer et al., 1994). The Draize 

Test was the first attempt to standardise predictive sensitisation testing and was designed to identify 

potent skin sensitisers. Similar to the guinea pig test, the Draize Test used guinea pigs as the test 

species and had two test phases i.e., an induction phase and a challenge phase. As indicated in Table 

1.1 the Draize Test has been reported to need approximately 39 days for completion (Draize et al., 

1944) and was a non-adjuvant test that required ten intradermal applications of the test substance 

during the induction. This was followed by a single challenge injection of half the test material volume 

used in each of the induction injections, two weeks after the intradermal injections were completed 

(Johnson and Goodwin, 1985). A noted disadvantage of this assay is that false negative results have 

been recorded for known human skin sensitisers, such as nickel sulphate, benzocaine, neomycin and 

mercaptobenzothiazole (Botham et al., 1991, Maurer et al., 1975). This limitation of the Draize test 

drove the development of the alternative guinea pig skin sensitisation testing options. Although the 

Draize method was included in an older 1981 OECD 406 skin sensitisation test guideline alongside 

seven other methods, it was later removed from the revised OECD test guideline (OECD, 1992) in 
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favour of two methods (GPMT and the Buehler assay) that were considered to be more sensitive and 

more commonly used across different regulatory regions (Maurer et al., 1994a).  

Following on from the Draize method, the OECD guideline for testing of chemicals (OECD 406) was 

released and described two skin sensitisation methods also using the guinea pig. The non-adjuvant 

Buehler assay has been used since 1965 in addition to the GPMT of Magnusson and Kligman (1970). 

The GPMT and Buehler guinea pig assays measure skin sensitisation by focusing on the dermal 

inflammation caused by the challenge phase of their testing methods. There are, however, limitations 

associated with these tests. In particular, although a scale is available for the evaluation of challenge 

patch test reactions (OECD, 1992), judgment of the severity of any observed dermal inflammation 

following elicitation can be considered subjective. As such, results may differ dependent on the 

individual recording the animal results. Consequently, and in line with a clearer understanding of the 

cellular and molecular events following exposure to contact allergens, research into a more robust 

method led to the development of the LLNA. More detail on the specifics of these in vivo skin 

sensitisation tests and how the data is used are given in Section 1.2.1. 

  

The LLNA, which uses the mouse as the test animal, is viewed at present as the “gold standard” 

(Anderson et al., 2011a), for skin sensitisation determination for most regulatory sectors. The 

availability of a substantial amount of published literature on the LLNA makes it an appropriate 

benchmark against which new alternative methods are evaluated and validated. Although considered 

the gold standard and used as a benchmark in this fashion, it should be acknowledged that along with 

the LLNA’s strengths (the assay’s reproducibility, the reduction in animal numbers and the refinement 

leading to a single dose to animal to produce a quantitative result, rather than the use of clinical signs 

to reach a result that might be considered subjective as it is open to the interpretation of the study 

director), as is common with most predictive tests, the LLNA also has its own limitations. Specific 

limitations associated with the LLNA include:  
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• The LLNA’s susceptibility to variability due the use of different vehicles (Basketter et al., 2009) 

(i.e., bioavailability can be altered by the vehicle used and the maximum concentration at 

which a suitable homogenous testing solution can be formed may be altered depending on 

the vehicle).  

• The occurrence of false positive (observed for some strong irritants and unsaturated fatty 

acids (Roberts et al., 2016, Kreiling et al., 2008)) or false negative results (potentially for weak 

sensitisers or metal salts (Sailstad et al., 2001))  

• Potential interspecies differences especially between the mouse and man (Basketter et al., 

2009). 

Whilst historical data may be obtained from the Draize test, important for Chapter Two are the results 

from the Buehler, GMPT and most recently the LLNA. These three test methods are appropriate for 

the assessment of complex mixtures and test result data on the chosen agrochemical test formulations 

is more readily available from tests previously conducted according to these methods.  

In an ICCVAM evaluation it was acknowledged that where discordance between the LLNA and guinea 

pig assays was observed, the LLNA was a better predictor of the human response (Sailstad et al., 2001). 

As such, where LLNA data are available these results will be used as the comparative benchmark to 

evaluate against in this chapter, with regard to understanding the success, or otherwise, of the 

threshold calculation method.  

In Europe as of June 2011, the use of acceptable non-animal alternative methods for acute toxicity 

hazard assessment became a regulatory requirement for agrochemical mixtures, as per Commission 

Regulation (EU) No 545/2011 (Heppner, 2019). Consequently, the use of calculation methods to 

perform the hazard assessment of acute toxicity endpoints for complex mixtures, using data from each 

of the individual components present within a formulation, is an accepted and widely used method in 

the EU. For skin sensitisation, generic and specific concentration limits for potential sensitising 

components within a given formulation are now used to determine the sensitising potential of an 



38 
 

agrochemical mixture within Europe (ECHA, 2017b, GHS, 2017). It is worth noting that there are two 

separate calculation methods to perform acute local toxicity hazard assessments to provide 

classifications for plant protection products under (EC) No. 1272/2008 (Draisci, 2011). For skin and eye 

irritation, the additivity calculation is used. As previously stated, the threshold calculation is used for 

sensitisation. As their names imply, the two methods are very different. The additivity calculation 

conducts its evaluation of irritation by providing a summation of the irritation potential of all 

ingredients (active ingredients and co-formulants) present in a specific mixture (Corvaro et al., 2017). 

In contrast, the threshold calculation examines each component of the formulated mixture for its own 

potential to cause an allergic skin sensitisation response. This is in line with the respective AOPs, as 

each sensitising chemical leads to the proliferation of allergen specific memory T cells (OECD, 2014). 

If a mixture contains two sensitising compounds that are both below their concentration triggering 

threshold (or concentration limit), the mixture is considered a non-sensitiser. Unlike the additivity 

calculation, in a scenario such as that just described, the two components are not combined to provide 

a concentration value above their individual triggering concentrations. Whilst these calculation 

methods are commonly used, there is no consensus as to their relative level of accuracy or sensitivity. 

2.2 Aim of Chapter Two 

The aim of this chapter was to evaluate the accuracy and appropriateness of the threshold calculation 

method for determining skin sensitisation potential of agrochemical formulations. This enables 

understanding of how pesticide products are categorised for skin sensitisation via this method and 

identifies whether the pesticide formulation type has any impact on the results of the threshold 

calculation. The threshold calculations of several Syngenta agrochemical formulations of varying types 

were conducted. These calculation results were compared to the experimental results of previously 

conducted in vivo skin sensitisation tests. The comparison was conducted using statistical parameters 

to allow for criteria against which the threshold method’s performance could be evaluated.  
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2.3 Materials and Methods 

2.3.1 Selection of agrochemical formulations 

64 agrochemical formulations for consideration were selected based on the availability of results on 

the formulations from previously conducted mammalian skin sensitisation tests i.e., GPMT, Buehler 

assay or LLNA study results. In addition, formulations were selected in order to provide a diverse set 

of agrochemical formulation types. These formulation types include capsule suspension (CS), 

emulsifiable concentrate (EC), granule (GR), oil dispersion (OD) and seven other agrochemical 

formulation types as shown in Table 2.1. 

Type Description Major Use 

Number of 

formulations 

CS Capsule suspension (CS) 

For mixing and  

spraying with water (W) 1 

DT Tablet for direct application 

Tablets to be applied 

individually and directly in the 

field, and/or bodies of water 1 

EC Emulsifiable concentrate W 10 

FS 

Flowable concentrate  

for seed treatment Seed treatments (S) 13 

GR Granule Dry (D) 2 

OD Oil dispersion W 1 

SC Suspension concentrate W 20 

SE Suspo-emulsion W 2 

SL Soluble concentrate W 5 

WG Water dispersible granules W 7 

ZC 

A mixed formulation of CS and 

SC W 2 

Table 2.1. The number and type of agrochemical formulations assessed in this investigation 
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2.3.2 Determining skin sensitisation potential 

The in vivo data from previously conducted studies were obtained by performing a search on each of 

the individual formulations through the Syngenta internal database. The study type, study result and 

corresponding sub-categorisation, where available, were recorded in a spreadsheet. Each formulation 

was assigned an identification number for the purposes of this investigation, which was recorded 

alongside the product’s formulation type. Once details of all the formulations and their information 

were collected, each formulation’s sensitisation potential was assessed using the threshold calculation 

method and recorded.  

The threshold calculation was conducted in accordance with the methods outlined by both the UN 

GHS and EU CLP (EC, 2009a; ECHA, 2017b), using generic concentration limits (GCLs) or/and specific 

concentration limits (SCLs) where appropriate. According to both regulatory documents, where 

ingredients are present in the formulation above their GCL or SCL, the formulation should be classified 

as a Category 1 skin sensitiser. This threshold calculation does not allow for sub-categorisation of the 

formulation, it simply provides a binary, sensitiser or non-sensitiser, result.  

The formulation composition (i.e., individual ingredients and concentrations at which they were 

present) was recorded to enable the threshold calculation to be conducted (this is proprietary 

information and has not been included here). The Safety Data Sheets (SDS) of each ingredient were 

reviewed in order to identify any skin sensitisation classifications that may be present in Section two 

of the SDS or recorded skin sensitisation study data that would be recorded in Section 11 of the SDS, 

the Toxicology section. In addition to the CAS number, the chemical name of the ingredient was 

entered into the European Chemical Agency (ECHA) chemical database finder in order to identify if 

the chemical in question had a SCL associated with it (ECHA, 2020).  

Once the formulation composition was collected, the skin sensitisation potential/classifications of the 

individual ingredients and the corresponding GCL or SCLs were identified, the threshold calculation 

was conducted to determine the skin sensitisation classification of the formulation. 
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For GCLs, the criteria for classification as outlined in Table 2.2 were followed. For example, where an 

individual ingredient was classified as a category 1A skin sensitiser; if it was present at above or equal 

to 0.1%, the entire formulation should be classified as a skin sensitiser. The same principle was applied 

to the other two classification categories.  

Skin sensitisation  
classification of component 

Concentration triggering  
category 1 mixture classification 

Category 1 ≥1% 

Category 1A ≥0.1% 

Category 1B ≥1% 

Table 2.2. Generic concentration limits of components of a mixture classified as a skin sensitiser 
(ECHA, 2017b) 

 

Where an ingredient in the formulation was identified to have a SCL, this was used to determine if the 

concentration at which that ingredient was present in the formulation would trigger the classification 

of the whole mixture. Three specific ingredients and their SCLs that were identified via the ECHA 

website, and were present among the evaluated formulations, were benzisothiazolinone (BIT), 5-

chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one (3:1) (kathon) and clodinafop-

propargyl as shown in Table 2.3. These SCL thresholds were noticeably lower than the GCLs and where 

a mixture within the formulation might contain ingredients with separate SCLs or GCLs, these were 

considered separately and not, for example, as a mean calculated threshold. The concentration of any 

classified skin sensitiser ingredient that was present in a diluted mixture should be recorded at the 

diluted concentration and not that of the whole mixture. For example, if a preservative mixture is 

present at 10% of product formulation, and 0.25% BIT was present in that preservative mixture. It 

should be calculated that 0.025% of BIT was present in the formulation as a whole and not 10% and is 

below the SCL of BIT and does not lead to the classification of the formulation.  
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Chemical 
Harmonized skin  

sensitisation classification 
Concentration triggering  

category 1 mixture classification 

benzisothiazolinone category 1 ≥0.05% 

clodinafop-propargyl category 1A ≥0.001% 

Kathon category 1 ≥0.0015% 

Table 2.3. Examples skin sensitisation specific concentration limits for three substances (ECHA, 2020) 

Using the GCLs and SCLs, the calculated formulation skin sensitisation classifications were collected 

and compared to the in vivo experimental data to determine performance and reliability of this 

threshold method in relation to the animal methods. The calculated classifications were compared to 

the in vivo results using the performance criteria as described below. Examples of how the CLP 

threshold calculation is performed are given in Appendix 1. 

2.3.3 Performance criteria 

In order to assess the performance of the threshold calculations, the results of the calculations were 

compared to those of the in vivo experiments. The results were entered into a 2x2 confusion matrix, 

alongside the recorded results from the previously conducted in vivo skin sensitisation experiments. 

In order to evaluate the predictive performance of the threshold calculation, the following statistical 

parameters were calculated: sensitivity, specificity, total accuracy, positive and negative predictivity, 

Cohen’s kappa coefficient and Matthews Correlation Coefficient (MCC). These performance criteria 

were calculated as per the method indicated by Modi et al (2012) and are defined below. 

 Sensitivity  

This parameter reflects the proportion of formulations correctly predicted as skin sensitisers in 

relation to those determined by the in vivo experiments.  

Sensitivity = (True Positive (TP) / (TP + False Negative (FN)) x 100 
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A true positive being a skin sensitisation prediction by the threshold method that agreed with the 

observed result from the in vivo test conducted on that specific formulation. Whilst a false negative 

was a non-sensitiser prediction from the threshold method that disagreed with the observed result of 

an in vivo skin sensitisation test indicating that the given formulation was a skin sensitiser. 

 Specificity  

This aspect of the performance criteria demonstrates the proportion of formulations evaluated that 

have been correctly predicted by the threshold calculation to not be skin sensitisers, relative to all of 

the formulations experimentally determined to not be skin sensitisers (Cotter and Peipert, 2005).  

Specificity = (True Negative (TN) / (TN + False Positive (FP)) x 100 

For this evaluation a true negative was a non-sensitising prediction generated by the threshold 

method that agreed with the observed result from the in vivo test conducted on that specific 

formulation. Conversely, a false positive was a positive skin sensitiser prediction from the threshold 

method that disagreed with the observed result of the in vivo skin sensitisation test indicating that the 

given formulation was not a skin sensitiser. 

 Total Accuracy 

This represents the number of formulations accurately predicted by the threshold calculation as either 

a skin sensitiser or a non-skin sensitiser relative to the number of total predictions.  

Total accuracy = ((TP + TN) / (TP + FP + TN + FN)) x 100 

 Positive Predictivity  

This reflects the number of formulations correctly predicted to be skin sensitisers relative to all those 

that produced confirmed skin sensitisation results in the in vivo experiments.  

Positive predictivity = (TP / (TP +FP)) x 100 
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 Negative Predictivity  

This calculated value represents the proportion of formulations correctly predicted by the threshold 

calculation as non-sensitisers relative to the non-sensitiser in vivo experimental outcomes.  

Negative predictivity = (TN / (TN +FN)) x 100 

 Cohen’s Kappa Coefficient  

The Cohen’s kappa coefficient was chosen to indicate the extent of agreement between the 

frequencies of the two sets of data. Cohen’s kappa coefficient is commonly used to estimate interrater 

reliability (Yu, 2005). This allows understanding of what proportion of values not expected to be in 

agreement (by chance) actually are in agreement (DeVellis, 2005). 

K-value = (observed agreement – expected agreement) / (1 – expected agreement) 

When two measurements demonstrate agreement by chance, the kappa value (k-value) is zero. When 

the two measurements agree perfectly the k-value is 1.0 (Ensrud and Taylor, 2013). A k-value of 0 – 

0.20 indicates a slight agreement between measurements, 0.21 – 0.40 indicates fair agreement, 0.41 

– 0.60 for moderate agreement, 0.61 – 0.80 a substantial agreement and 0.81 – 1.0 almost perfect 

agreement. In the event that a negative k-value is calculated (less than 0, theoretically as low as – 1), 

this indicates the observed agreement was worse than chance agreement (McGee, 2018, Modi et al., 

2012)   

 Matthews Correlation Coefficient (MCC) 

As the two data sets were balanced, MCC was been used alongside the Cohen’s kappa coefficient for 

classification accuracy (Zhu, 2020). The MCC represents the correlation between the experimental and 

predicted classifications and was calculated from the confusion matrix values. An MCC of +1 indicated 

a perfect prediction, while an MCC value of -1 demonstrated total disagreement between predicted 

and experimental results. An MCC value of zero meant that this was no better than a random 

prediction (Tharwat, 2018). 
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MCC = (TP X TN) – (FP X FN) / √(TP + FP)(TP + FN)(TN + FP)(TN + FN)  

          = (TP/N) – (TPR x PPV) / √PPV x TPR (1 – TPR)(1 – PPV) 

Positive prediction value (PPV) 

True Positive Rate (TPR) or sensitivity  

Negative class (N) 

 

2.4 Results  

The distribution of 64 agrochemical formulations from the recorded in vivo experimental results was 

41% sensitisers and 59% skin non-sensitisers. The 64 formulations were a mixture of various 

agrochemical formulation types and distributed as identified in Table 2.1 above.  

The results of the threshold calculation were tabulated against those of the in vivo experimental 

studies in Table 2.4. To enable the threshold calculation to be conducted the composition of the 

individual formulations (i.e., the percentage at which each of the co-formulants or active ingredients 

of the mixture were present) was recorded, however this is Syngenta proprietary information and has 

not been included here. The threshold calculation method agreed with the experimental in vivo data 

for 46 of the 64 reviewed agrochemical formulations.  

N Pred. sensitiser Pred. non sensitiser 

Obs. sensitiser 15 (58%) 11 (42%) 
Obs. non sensitiser 7 (18%) 31 (82%) 

Table 2.4 Confusion matrix of predicted results for the classification of skin sensitisation using the threshold 
calculation approach against the experimental results (number and percentage agreement) 

Obs. – observed experimental result 

Pred. – predicted threshold calculation result 

 

The percentage agreement between the experimental and predicted data indicated that 58% of skin 

sensitising formulations and 82% of non-sensitising formulations were correctly assigned by the 

threshold calculation. 
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The results of statistical parameters that were calculated to provide criteria to evaluate the 

performance of the threshold method are shown in Table 2.5. The positive predictivity was 68%, 

demonstrating that among the formulations identified to be skin sensitisers in the in vivo assays, the 

calculation method had the probability of predicting 68% of them as sensitisers. Statistical 

measurements demonstrated that the calculation method had a higher probability of predicting 

formulations shown to be non-sensitisers in the in vivo experiments, as non-sensitisers, with the 

negative prediction value of 74%. The sensitivity value is 58% and this represents the proportion of 

the test formulations correctly predicted to be skin sensitisers. Demonstrating that this method would 

correctly identify only 58% of formulations as sensitisers, whilst misclassifying 42% of formulations as 

non-sensitisers.  

Positive predictivity 68.2% 

Negative predictivity 73.8% 

Sensitivity 57.7% 

Specificity 81.6% 

Total Success/Accuracy 71.9% 

*kappa-value 0.40 

MCC 0.43 

Table 2.5 Statistical parameters used for evaluation of the threshold calculation predictions of the 

agrochemical formulation test set results versus the in vivo experimental skin sensitisation results 

*Kappa-value: < 0.20 poor, 0.21 - 0.40 fair, 0.41 - 0.60 moderate, 0.61 - 0.80 substantial, 0.81 - 1.00 almost perfect 

agreement  

 

The statistics for the performance of the threshold calculation method are shown diagrammatically in 

Figure 2.1, where the specificity of the calculation method is 82%. This demonstrates the methods 

ability to correctly identify non-sensitising formulations. Only 18% of skin sensitising formulations 

were predicted as non-sensitisers. The total accuracy has been calculated as 72% and the Cohen’s 

kappa coefficient value was 0.40. This kappa-value demonstrates that the threshold calculation 

prediction provides a fair level of agreement with the in vivo experimental results.  

The four most represented formulation types among the test set (SC, FS, EC and WG formulations as 

per Table 2.1) were further evaluated by comparing the predicted results of these specific formulation 
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types to the experimental results. This was again performed by including the results in 2x2 confusion 

matrices (presented in the appendices) and the calculated statistical parameters are as shown in the 

radar plots in Figures 2.2 and 2.3 below. 

 

 
Figure 2.1  Statistical parameters used for evaluation of the threshold calculation predictions on the 

SC agrochemical formulation test set results against the in vivo experimental skin sensitisation 
results 

 

Of the SC agrochemical formulations that were observed to be skin sensitisers in the in vivo 

experimental studies, none were predicted as non-sensitising by the calculation method. The 

calculation showed agreement with 100% of experimental results for skin sensitisers as shown in 

Figure 2.1. The negative predictivity of the threshold calculation for SC formulations was 100%, 

indicating that all formulations it predicted as non-sensitisers were demonstrated in the in vivo studies 

to be non-sensitising. However, the positive predictivity for the SC formulations was much lower at 

46%. Sensitivity was 100%, while the specificity and total success were calculated to be low at 60 and 

70% respectively. The kappa-value demonstrated a moderate level of agreement between the 

calculation method and the experimental data with a value of 0.43. 
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Figure 2.2 Statistical parameters used for evaluation of the threshold calculation predictions on the 

FS agrochemical formulation test set results against the in vivo experimental skin sensitisation 
results 

 

The negative predictivity of the threshold calculation for FS formulations was 54%, indicating that the 

method had a probability of predicting formulations demonstrated in the in vivo studies to be non-

sensitising, as non-sensitiser, a little more than half of the time. However, the positive predictivity for 

the FS formulations was shown to be 0% as all in vivo experimental sensitisers were predicted to be 

non-sensitising. Sensitivity as shown in Figure 2.2 as also 0%, whilst the specificity was shown to be 

100% and total success 54%. The kappa-value demonstrated a poor level of agreement between the 

calculation method and the experimental data with a value of 0. 

 
Figure 2.3 Statistical parameters used for evaluation of the threshold calculation predictions on the 

EC agrochemical formulation test set results against the in vivo experimental skin sensitisation 
results 
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Of the EC formulations that were observed to be skin sensitisers in the in vivo experimental studies, 

33% were predicted as non-sensitising by the calculation method. The calculation showed 67% 

agreement with the experimental results for skin sensitisers as shown in the radar plot in Figure 2.3. 

The positive predictivity of the threshold calculation for EC formulations was 100%, indicating that all 

formulations predicted as skin sensitisers were demonstrated in the in vivo studies to be skin 

sensitising. However, the negative predictivity for the SC formulations was much lower at 25%. 

Sensitivity as shown in Figure 2.3 was 67%, whereas the specificity and total success were 100% and 

70% respectively. The kappa-value demonstrated a fair level of agreement between the calculation 

method and the in vivo experimental data with a value of 0.29. 

7 WG formulations Pred. sensitiser Pred. non sensitiser 

Obs. sensitiser 2 (100%) 0 

Obs. non sensitiser 0 5 (100%) 

In vivo dataset distribution Value (%) 

sensitiser 29% 

non sensitiser 71% 

Table 2.6 WG formulation type threshold predictions against the in vivo study results 

 

As the number of WG formulations evaluated was considered relatively low the same statistical 

analysis as performed in the previous formulation types was not performed. However, Table 2.6 shows 

that the calculation predictions for WG formulations were in agreement with the experimental results 

for both skin sensitising and non-sensitising formulations of this type.  

2.5 Discussion 

The aim of this Chapter was to investigate the suitability of the currently used threshold calculation 

method to determine the skin sensitisation potential of agrochemical complex mixtures. Predicted 

thresholds for 64 different agrochemical formulations were compared to the experimental results of 

previously conducted in vivo skin sensitisation tests. An effort was made to ensure that a number of 

different agrochemical formulation types were included amongst the 64 to allow for an observation 
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of any specific trends in the results of the predictions from the calculation method that might be 

correlated with the formulation type.  

An assessment of the threshold method prediction results for all 64 formulations, regardless of 

formulation type, was conducted. From the in vivo experimental data, 41% of the 64 formulations 

were evaluated as skin sensitisers and the remaining 59% as non-sensitisers. The threshold calculation 

predictions were in 58% agreement with the formulations shown to be skin sensitisers in the in vivo 

experiments. These predictions showed much greater agreement with experimental non-sensitisers, 

with a prediction accuracy of 82%. In terms of risk assessment, it may be preferable to see a reverse 

in these trends, such that the more conservative result is obtained. This approach of awarding a 

greater weight of confidence to positive skin sensitisation predictions than the negative predictions is 

in agreement with the previously identified reasoning indicated by Corvaro et al (2017). Where a 

positive result is indicated by the analysis of the product composition, it can be accepted without any 

further testing, with the appropriate Personal Protection Equipment (PPE) being indicated via labelling 

(Corvaro et al., 2017). Corvaro et al., 2017 recommended that negative results obtained from the 

calculation approach should be verified via other methods such as in vitro tests. However, at present, 

there are no validated in vitro or in vivo methods for the evaluation of skin sensitisation potential of 

complex mixtures. The use of in vitro methods currently accepted for the evaluation of single 

chemicals (specifically the in vitro triple pack) and also a newly developed in vitro method, the SENS-

IS assay (Cottrez et al., 2017), will be investigated further in the proceeding chapters of this thesis for 

their use in the assessment of the skin sensitisation potential of complex mixtures.  

As noted above, the threshold calculations showed good specificity but poor sensitivity. The 

availability of human data for the skin sensitisation of these agrochemical formulations, and 

specifically the lack of such data, is a particular limitation of the analysis in this investigation in terms 

of hazard identification. However, the findings of a previously conducted evaluation of LLNA to human 

data from the US National Institute of Health (NIH, 2010) allow comparison with values obtained from 
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the performance criteria evaluation in this research, with an understanding of the inter-species 

variability. The sensitivity of the calculation method, in comparison to the in vivo methods, was 14% 

lower than the LLNA compared to the human data. The specificity showed an improvement of 15%, 

while total accuracy was matched at 72%. With the decreased sensitivity, without taking into account 

the formulation type, the calculation method had a lower proportion of correctly predicted skin 

sensitisers than observed in the in vivo methods. Although the specificity is relatively high, the 

sensitivity value does indicate that non-sensitiser calculation results need further verification to be 

accepted confidently. The calculated K-value reinforces this hypothesis with a value of 0.40, indicating 

the agreement between the calculation method and in vivo experimental results was only reasonable.  

Looking, more specifically, at the results of the individual agrochemical formulation type evaluation, 

it can be determined whether or not there is a trend in the calculation classifications. Formulation 

types with at least seven different test formulations were further evaluated SC formulation results 

were investigated (20), FS formulations (13), EC formulations (10) and WG formulations (7). Of the 20 

suspension concentrate formulations, five were sensitisers in in vivo skin sensitisation studies and 15 

were shown to be non-sensitisers. When assessing the performance of the sensitivity of the 

calculation method in comparison to the mammalian skin sensitisation experiments of these SC 

formulations was 100%. The calculation identified all five of the skin sensitising SC formulations as 

category 1 skin sensitisers. However, the observed specificity of the calculation was much lower at 

60%. This demonstrates that the calculation method was less accurate at predicting experimentally 

non-sensitising formulations. The overall accuracy for SC was 70%, while the K-value showed 

moderate levels of agreement between the calculation predictions and the experimental results. 

Perfect agreement between methods is an unrealistic expectation when looking at the interrater 

reliability between two methods of measurement/hazard assessment. There is never 100% agreement 

between research results (Marusteri and Bacarea, 2010), especially where the species for which the 

hazard assessment is being performed is not that being compared to. Nonetheless, as discussed by 

McHugh et al (2012), although low K-values are often accepted in research, a low level of interrater 
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reliability is not acceptable for health care or clinical research. It has been suggested that Cohen’s 

proposed interpretation may be too lenient (with a value of 0.41) as it could be considered acceptable. 

McHugh et al suggested a reinterpretation of the levels that should be used when a kappa value of 

less than 0.60 (0.40 – 0.59) is considered to give a weak level of agreement (McHugh, 2012). If one 

uses this interpretation alongside the percentage total accuracy values, this indicates that for the SC 

formulation type the calculation approach is over predictive and could be considered insufficient as 

the sole method to determine skin sensitisation potential. 

Thirteen FS formulations were included in the evaluation of the skin sensitisation calculation method. 

Six were observed to be skin sensitisers in the in vivo experiments and the remaining seven were non-

sensitising. The predicted results from the calculation method for the FS formulation type, when 

compared to the experimental results, demonstrated the calculation was more likely to underestimate 

the skin sensitisation potential. The calculation method gave a positive predictivity value of 0%, as it 

failed to identify any of the skin sensitising FS formulations as category 1 skin sensitisers. In addition, 

the sensitivity value mirrored these results at 0%, reflecting the proportion of formulations correctly 

predicted as skin sensitisers. In contrast, the calculation method showed direct agreement with the 

prediction of the non-sensitising in vivo experimental data with specificity at 100%. Principally the 

calculation method predicted all of the FS formulations to be negative as it failed to identify sensitising 

FS formulations. This is contrary to the general premise associated with these calculation methods. 

This is a premise that indicates that the calculation method is at worst, a conservative approach to 

hazard assessment that may overestimate the potential for adverse effects more commonly than 

underestimate it (Corvaro et al., 2017). This further indicates that the calculation method should be 

used as an initial starting point for assessment and then should be followed up with more investigative 

methods to confirm the initial findings.  

Analysis of the calculation method’s performance on EC formulations showed a similar trend to that 

seen in the FS formulations, but not to the same extent. Thus, the EC formulations provided a 
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sensitivity of 67% with six of the nine in vivo experimentally skin sensitisers being correctly predicted 

by the calculation method. Specificity was 100%, however only one of the formulations was observed 

to be non-sensitising in vivo and an increase in the number of EC formulations (and other formulation 

types) would be required to allow for better evaluation and understanding of this performance 

criterion. Although the total accuracy seen for this formulation type was below  that observed with 

the LLNA vs human assessment (70% EC calculation prediction, 72% LLNA (NIH, 2010)), the K-value 

was very low at 0.29 (McGee, 2018). If the standard interpretation of this value by Cohen (Modi et al., 

2012) (fair, 0.21-0.40) or McHugh’s re-interpretation (McHugh, 2012) is used (minimal, 0.21-0.39), this 

level of agreement with the in vivo results is not considered acceptable.  

 

The poor performance, at times, of the calculation method indicates that more data and 

understanding is required. Further work could include an increase in the number of formulations being 

used in the evaluation of the calculation approach. This would also allow for the inclusion of additional 

formulation types (Table 2.1) in the individual analysis. Whilst the calculation method demonstrated 

good agreement with the in vivo results of the seven WG formulations, the number of WG 

formulations was low. As such, conducting the performance criteria evaluation as done with the 

previous formulation types, would not have provided information that would assist in further 

understanding the calculation prediction’s suitability for this formulation type. At present the data 

generated here indicate that the calculation method is appropriate as an initial step in the assessment 

of the WG formulation type. These results have shown that understanding what direction (over-

estimation or under-prediction) the calculation method has the higher probability to tend toward for 

each formulation type can provide useful information in forming a strategy for skin sensitisation 

assessment. This could allow for appropriate counteraction by exploring an alternative method of 

measurement when using the calculation method in a weight of evidence approach, instead of the 

stand-alone evidence for hazard assessment of the skins sensitisation endpoint as it is currently used. 

 



54 
 

There were a number of formulations for which the skin sensitisation calculation provided predictions 

that under-estimated the skin sensitisation potential. To improve the specificity of the method, 

identifying potential reasons for these false negative predictions is necessary. A number of potential 

reasons have been identified previously (Van Cott et al., 2018, Corvaro et al., 2017). When evaluating 

the individual ingredient safety data sheet information there are a number of coformulants that do 

not have a skin sensitisation classification and are assumed to have no skin sensitisation potential, 

these should be included in deriving the calculation prediction. However, it should be confirmed 

whether this absence of a skin sensitisation classification (with a globally harmonised classification 

hazard phrase of H317) in the SDS is due to an observed absence of skin sensitisation effects in an 

accepted test method. If there is no information regarding a skin sensitisation test conducted on the 

ingredient in question in the Toxicology Section 11 of the SDS, there is a possibility that the testing has 

not been conducted.  For some specialty ingredients, if produced at a low tonnage, a skin sensitisation 

assessment would not have been a REACH requirement under current guidelines ((EU), 2017a). In 

these scenarios there are no study data from which to derive a GCL or SCL to include in the calculation 

method and consequently this may be a cause for the false negative predictions observed. There is an 

overarching need to develop in silico methods that are fit for purpose. In order to accomplish this, 

methods such as the skin sensitisation calculation method need to be evaluated and scrutinised well 

by scientists from academia, industry and the regulatory bodies to whom the results of these 

assessments will ultimately end up with. A model is only as reliable as the data used to create it 

(Benfenati et al., 2019). The availability, abundance and quality of toxicology data play a crucial role 

in determining if a particular in silico model will be able to be considered reliable for that particular 

assessment. This is demonstrated with the skin sensitisation threshold method in instances where 

data on the co-formulants within the formulation being evaluated is absent. Where a scarce data set 

is available for formulations being evaluated, this draws into question the reliability of the predictions 

based on that information, especially where a prediction indicates the skin sensitisation hazard is not 

of concern. It is reasonable to see why a weight of evidence evaluation would be required to accept a 
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non-sensitiser prediction, where the data being used to reach that conclusion are scarce or their 

quality is in question. Thus, the data available need to be of good quality. Some information may be 

obtained from private data resources, where study reports detailing methods, good laboratory 

practice compliance, quality assurance and any deviations that occurred during the study are available 

for review. Such information can be shared in accordance with the REACH regulation, where the 

tonnage applies (EU, 2017a). Nonetheless, drawing on publicly available data still requires an expert’s 

review of its reliability, e.g. the Klimisch score (Klimisch et al., 1997), before its inclusion into a model 

such as the skin sensitisation threshold calculation. This is consistent with the views of (Cronin et al., 

2019) who stated that “Appreciation of data quality will enable higher confidence in models and 

understanding of their limitations”.  

 

An additional possibility that could explain the false negative predictions is the that the GCL assigned 

may have been too high and that the in vivo study to which the prediction is being compared, achieved 

a skin sensitisation response at a lower threshold concentration. This may be the case when comparing 

the predictions from the GCL to the results of an in vivo guinea pig challenge test, conducted at much 

lower concentration (OECD, 1992). This would agree with the high false negative observed by Corvaro 

et al (2017) when the comparing calculation methods to the results of the Buehler assay. Dumont et 

al. (Dumont et al., 2016) showed that when the solvent is not taken into account, the percentage of 

chemicals with discordant LLNA studies increased to 32% from 22% for a dichotomous hazard 

classification scheme (POS/NEG). It was demonstrated that when considering this dichotomous 

scheme, LLNA studies resulting in negative classifications showed a tendency to be less reliable than 

positive results. When considering the solvent there was a 35% chance for studies that had initially 

produced a negative result to then produce a positive result. When the solvent was not considered 

this increased to 50% (Dumont et al., 2016). Understanding the limitations of the reference data is 

important when using them to assess the performance of new test methods. The reproducibility of 

the in vivo methods must be understood when using them for the purpose of assessment. The 
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performance of LLNA on a compound using multiple vehicles can lead to different overall results on 

skin sensitisation potential and potency. Jowsey et al (Jowsey et al., 2008) demonstrated that vehicle 

differences do impact on the induction of skin sensitisation in the LLNA. Identifying that an 

underestimation of potency (EC3) can be associated with predominantly aqueous vehicles. Predicting 

where more substantial effects can be anticipated than is demonstrated by a skin sensitisation test is 

difficult. However, in this study where multiple in vivo skin sensitisation results were available for 

individual components of a formulation, the most potent value was used to derive the threshold 

prediction. 

 

An understanding of potential interactions between formulation components is required when 

conducting hazard assessments of complex mixtures, utilising any method. The calculation method 

fails to account for toxicodynamic interactions that may occur (intentionally designed or not), and the 

potential for these to happen only increases with the increased complexity of a formulation. Acute 

toxicity estimate calculations, as described in the EU CLP and GHS guidance documents, have been 

discussed by Van Cott et al. (Van Cott et al., 2018). The authors indicate that these methods do not 

take into account interactions between formulation ingredients that may alter the otherwise expected 

outcome of the components, via simple additivity. Effects caused by these interactions that are not 

taken into account by these calculations include changes in solubility of the toxic components, 

alteration of the absorption characteristics of toxic components due to surface tension and pH. In 

addition, some interactions are purposefully projected by the manufacturers, to lead to the formation 

of physical structures which reduce exposure to formulation components. Specifically, in the 

agrochemical industry the formation of structures such as urea capsule walls to aid in encapsulation 

of the formulation components, is performed to alter their bioavailability. Consequently, the effects 

of formulation types such as capsule suspensions (CS) may be over-estimated. This was not observed 

for CS formulation type in this research; however, only one of the 64 reviewed formulations was a CS 

formulation and as such further review of this formulation type would need to performed to explore 
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this possibility.  As the calculation does not take these possibilities into account, the results presented 

here confirm that this does lead to over- or under- estimation of the skin sensitisation potential when 

compared to the in vivo experimental results. 

 

In addition, the current calculation method does not account for any alteration in particle size of 

components that may occur i.e., formation of granules. Changes in particle size can have an effect on 

reactivity of the substances because of the surface area availability, which is not taken into account 

by the calculation. However, from the results of our WG formulation type, although low in sample 

size, the potential for over or under estimation due to the particle size was not observed in this 

formulation type. 

 

A further interaction that the skin sensitisation calculation does not take into consideration is the 

potential for disruption of the dermal layer by materials of the formulation with irritant properties. 

This may lead to increased exposure (bioavailability) of materials in the formulation with skin 

sensitising potential. It could be that in such cases the thresholds need to be altered, specifically that 

a reduction of the corresponding GCL or SCL should be considered.  It may be that this calculation is 

not appropriate for all formulation types, specifically those where interactions between the co-

formulants are pre-engineered. In those cases, alternative approaches, whether in silico, in vitro or in 

vivo may be more appropriate to derive an accurate hazard assessment. This calls for the development 

of more investigative non-animal approaches that can be used to assess the skin sensitisation 

potential of complex mixtures. 

2.6 Conclusions 

This Chapter has investigated the threshold calculation method as a means of assessing the hazard of 

pesticide formulation through comparison with existing in vivo data. The threshold calculation method 

was shown to be in better agreement for non-sensitising plant protection products, in comparison to 

experimental data, when the formulation type was not specified. The threshold method’s ability to 
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accurately identify sensitising plant protection products of unspecified agrochemical formulation 

types was, however, found to be less reliable. When the threshold calculation was further scrutinised 

by examining its predictions on specific formulation types, differences in the levels of specificity, 

sensitivity and accuracy were observed. The calculation predictions for the SC and EC agrochemical 

formulation types produced identical levels of accuracy, whilst the sensitivity was higher for the SC 

formulation predictions, indicating that the threshold method had identified sensitisers more 

efficiently for this formulation type. The lowest threshold calculation accuracy was observed for FS 

formulation predictions. These findings should be considered with a degree of caution, as a larger 

number of formulations for each product type may be required to build confidence in the performance 

criteria results. However, they do indicate that the general premise that the CLP/GHS calculation 

method is, at worst, conservative (Kurth et al., 2019) was not true for all complex mixture types. In 

addition, the k-values showed that the level of agreement between the calculation predictions and 

the in vivo experimental results was, at best, moderate. As such it can be concluded that a weight-of-

evidence approach using this method, in conjunction with other non-animal methods, needs to be 

performed to reach a confident assessment of skin sensitisation. As described, there are currently no 

non-animal methods for the assessment of skin sensitisation that have been validated for the testing 

of complex mixtures. In Chapters Three and Five of this thesis the capability of various potential in 

vitro assays to evaluate this hazard for agrochemical formulations will be examined in an attempt to 

address this issue. 

  



59 
 

3.0 CHAPTER THREE – SKIN SENSITISATION IN VITRO TRIPLE 

PACK AND IN SILICO ASSESSMENT 

3.1 Introduction 

Chapter Two describes the details of the threshold calculation method and how it is used for the skin 

sensitisation hazard assessment of complex mixtures. However, one of the main conclusions of 

Chapter Two is that there are instances in which these calculations may be limited by presence of 

chemicals for which no test data on skin sensitisation potential exists. Examples of these may be 

compounds in early development or those that have not have previously met the required tonnage 

necessary to deem this hazard data necessary for REACH (EC, 2017).  There is, therefore, a need to 

develop new test methods and refine available alternative non-animal test methods that can provide 

a reliable hazard assessment of single compounds and also potentially complex mixtures. Three OECD 

test guidelines detail accepted in vitro methods for the assessment of skin sensitisation potential. 

These are the OECD 442C, D and E test guidelines which provide methods and criteria to conduct the 

direct Peptide Reactivity Assay (DPRA) (OECD, 2019a), the KeratinoSensTM assay (OECD, 2018b) and 

the human cell line activation test (h-CLAT) (OECD, 2018a) respectively. Each of these three assays has 

undergone evaluation by the European Union Reference Laboratory for Alternatives to Animal Testing 

(EURL ECVAM) (Silvia et al., 2013, Silvia and Maurice, 2015, Silvia et al., 2014) or a ring study involving 

different laboratories to confirm transferability and reproducibility of their protocols (Ashikaga et al., 

2008). As mentioned in Chapter One, when referring to the combination of these three test methods 

in Defined Approaches (DA) such as the two out of three approach, the term triple pack will be used. 

Section 1.2.2 provides a detailed overview of the three non-animal assays that comprise the triple 

pack. Briefly these are the DPRA, KeratinoSensTM and h-CLAT. The DPRA is an in chemico assay used in 

conjunction with the aforementioned in vitro assays, to determine the skin sensitisation potential of 

a given test substance. The majority of chemical allergens are electrophilic and react with nucleophilic 

amino acids such as lysine and cysteine (Gerberick et al., 2004). The DPRA uses this interaction to 

determine a test substance’s potential to haptenate proteins and peptides. The assay evaluates a test 
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material’s reactivity towards synthetic cysteine and lysine peptides by recording peptide depletion 

after exposure to the test substance for a set period. The higher the peptide depletion, as observed 

using high performance liquid chromatography (HPLC), the more reactive a test substance is 

considered to be (Hoffmann et al., 2018). Gerberick et al (2004) demonstrated that cysteine was the 

peptide with higher sensitivity for measuring this skin sensitising peptide reactivity. Although 

indicative of the skin sensitisation reaction, it has been reported that chemical respiratory allergens 

do show a selective affinity for interaction with the lysine peptide (Kimber et al., 2018). As such it 

could be considered that an additional advantage of this in chemico method, as it allows for the 

specific evaluation of the interaction with cysteine. 

The KeratinoSensTM assay is an in vitro test method that utilises the Keap1-Nrf2-antioxidant response 

element pathway to quantify the luciferase gene induction of a test substance in an immortalized 

adherent reporter cell line (Natsch, 2018). An electrophilic test substance with skin sensitisation 

potential is anticipated to bind to the Keap 1 protein and, in the binding process, dissociate the Nrf2 

transcription factor. A build-up of Nrf2 in the cytoplasm leads to the translocation of Nrf2 into the 

nucleus, where it binds with and activates the antioxidant response element (ARE) triggering the 

luciferase gene (Natsch, 2010). The luciferase gene induction is monitored in the KeratinoSensTM assay 

by quantitative luminescence measurement. The predictivity, transferability and reproducibility of the 

KeratinoSensTM assay has been studied in detail (Natsch et al., 2011) and assessed by ECVAM prior to 

OECD test guideline acceptance (OECD, 2018b). Nonetheless, this assay does have limitations and 

there are a number of false negative (e.g. 2-methoxy-4-methylphenol, 3-aminophenol) and false 

positive results (e.g. tween 80) for materials that have been reported by this assay (Kolle et al., 2019). 

Among the false negatives are pro-haptens, which are not expected to elicit this outcome, as all of the 

in vitro assays mentioned here lack metabolic capabilities. Cytochrome P450 enzymatic mediated 

oxidation is required to transform these pro-haptens to reactive species (Emter et al., 2013). Tween 

80, which is not electrophilic and is considered to be a relatively inert compound has previously been 

identified as a false positive in the KeratinoSensTM assay (Kolle et al., 2019). Sodium dodecyl sulphate 
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has also been identified as generating a false positive result in the KeratinoSensTM as it has also been 

reported to induce luciferase at low cellular viability (Emter et al., 2013). 

The h-CLAT assay operates on the principle of monitoring the third KE of the skin sensitisation AOP 

(OECD, 2014). Upon activation of dendritic cells, which occurs through haptenisation with an 

electrophilic/sensitising compound, phenotypic and functional changes take place. These include 

changes such as the upregulation of the expression of major histocompatibility complex (MHC) class 

two molecules, co-stimulatory molecules (e.g. CD80, CD86 and CD54) and cytokines on the dendritic 

cell surface (Galbiati et al., 2020). Following their activation, the matured dendritic cells migrate to the 

lymph node where specific T-cells are activated. The h-CLAT assay provides a yes or no answer as to 

whether or not a test substance has dendritic cell activation potential or not. The assay does so by 

reporting the flow cytometry results of any changes in the expression of dendritic cell surface markers 

CD86 and CD54. A human monocytic leukaemia cell line is used to achieve this goal (Kim et al., 2018).  

The h-CLAT assay is used alongside the KeratinoSensTM and DPRA assays in an integrated approach to 

testing and assessment (IATA) of skin sensitisation potential of chemicals. Depending on the DA used 

(12 are reported (Kleinstreuer et al., 2018b)), the incorporation of an in silico method such as the OECD 

QSAR Toolbox (here after referred to as the Toolbox) or DEREK Nexus (as indicated in the Kao 

sequential testing strategy (OECD, 2017)) alongside these 2D in vitro assay methods, provides the 

potential for potency prediction alongside the initial hazard identification. This chapter will explore 

the use of some of these DAs. 

3.1.1 Aim of This Chapter 

An acknowledged limitation of in vitro assays is that there is little understanding of how they can be 

applied to assess the skin sensitisation potential of complex mixtures (Settivari et al., 2015a). The 

overarching aim of this chapter was to investigate and potentially address the issue of assessing the 

skin sensitisation potential of complex mixtures through three specific objectives: 
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• The first objective was to gain further understanding of how the in vitro triple pack test 

methods can be used to evaluate the skin sensitisation potential of complex mixtures, with 

specific evaluation of Plant Protection Products (PPP).  

• The second objective was to determine if any changes are needed to the standardised 

methods (if any) of the triple pack in vitro skin sensitisation assays, for these assays to be 

considered suitable for the assessment of complex mixtures. Whilst striving to achieve the 

first objective, this chapter also investigated the use of a combination of in silico methods (the 

CLP threshold method, DEREK Nexus and the Toolbox) alongside the in vitro methods. This 

was to investigate if these approaches could provide accompanying evidence to the results 

and could be considered as a potential new DA for skin sensitisation hazard assessment of 

complex mixtures.  

• The third objective of this chapter was to investigate the suitability of published DA to skin 

sensitisation of single compounds (OECD, 2017). 

In order to accomplish the overall aim, the in vitro triple pack methods were applied to selected 

agrochemicals’ Active Ingredients (AIs). This allowed for the production of case studies to evaluate the 

chosen DA from analysis of the results for skin sensitisation for the 10 AIs.  Attention was paid to the 

approaches that allow incorporation of in silico methods, specifically, the two out three weight of 

evidence (WoE) approach, the Kao ITS v1 and Kao ITS v2 approaches (OECD, 2017). Ten PPP 

formulations representing the AIs were also assessed in the in vitro triple pack. Once triple pack in 

vitro testing of the ten PPP was completed, potential integration of the CLP threshold method (ECHA, 

2017b) was evaluated. All in vitro assay results produced were assessed in comparison to the results 

of previously conducted in vivo experiments for the individual AIs and the PPP accordingly.  
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3.2 Materials and Methods 

3.2.1 Selection of Substances for Testing and Analysis 

A third-party Clinical Research Organisation (CRO) was contracted to conduct the in vitro triple pack 

skin sensitisation tests on the agrochemical AIs and formulations listed in Tables 3.1 and 3.2 below. 

The details of the experiments conducted by the CRO, Gentronix Ltd (Macclesfield, UK), are provided 

in this materials and methods section with further in the appendix 3, 4 and 6. 

3.2.2 Active Ingredients 

Ten agrochemical active ingredients were chosen for testing in the in silico and in vitro triple pack 2D 

cell assays. The critical criterion for selecting these ten active ingredients was to ensure that study 

data from previously conducted mammalian in vivo skin sensitisation tests were available. In addition, 

any globally harmonised skin sensitisation classifications were also recorded. The AIs tested and their 

existing data and information are reported in Table 3.1. Following identification and selection of the 

ten AIs, permission for their use was obtained from Syngenta. 

Active Ingredient CAS Number 

Indication 

(F, H, I) * 
In Vivo 
Study 

In Vivo Study 
Result 

Skin Sensitisation 
Harmonised Classification 

Labelling and Packaging (CLP) 
Category 

Acetamiprid 135410-20-7 I GPMT Non-sensitiser 
Not classified 

(EPA, 2002, FAO, 2005) 

Acibenzolar-S-
methyl 135158-54-2 F GPMT Sensitiser 

Skin Sens. 1, H317 
(EFSA, 2014a) 

Benzovindiflupyr 1072957-71-1 F LLNA Non-sensitiser Not classified (EFSA, 2015) 

Chlorantraniliprole 736994-63-1 I 
GPMT 
LLNA Non-sensitiser 

Not classified 
(EFSA, 2013a) 

Chlorothalonil 1897-45-6 F Buehler Sensitiser 
Skin Sens. 1, H317 

(EPA, 2011, FAO, 2015) 

Cyantraniliprole 736994-63-1 I LLNA Non-sensitiser Not classified (EFSA, 2014b) 

Dicamba 1918-00-9 H LLNA Non-sensitiser 

Not classified 
(EFSA, 2011a, Harp, 2010, 
EPA, 2006, ECHA, 2008) 

Mesotrione 104206-82-8 H GPMT Non-sensitiser Not classified (EFSA, 2016) 

Pinoxaden 243973-20-8 H LLNA Sensitiser 

Skin Sens. 1A, H317 
(ECHA, 2016a, EFSA, 2013b, 

FAO, 2016) 

**AI1  I LLNA Sensitiser No harmonised classification 

Table 3.1 Selected agrochemical AIs for skin sensitisation triple pack evaluation 

*F= fungicide, H= herbicide, I= insecticide 

** This AI is in the early stage of research and as such has remained confidential  
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3.2.3 Agrochemical Formulations 

The applicability of the three OECD test guideline in vitro assays to evaluate the skin sensitisation of 

complex mixtures (specifically PPPs) was investigated using ten agrochemical formulations: four 

suspension concentrates [SC], two emulsifiable concentrates [EC], two flowable concentrates for seed 

treatment [FS] and two water dispersible [WG] formulations. The ten agrochemical formulations 

chosen for testing in the in chemico/in vitro triple pack assays are listed in Table 3.2 below. Of the ten 

agrochemical formulations selected, six had previously yielded positive results in in vivo skin 

sensitisation tests, whilst four had delivered negative results and were therefore considered non-

sensitisers. These formulations were supplied by Syngenta Ltd for the purpose of this research.  

 

Formulation 
Number 

Formulation 
Type Active ingredient In Vivo Study 

In Vivo Study 
Result* 

CLP Skin 
Sensitisation 
Calculation 

Result 

SYN 1 EC 
Difenoconazole/ 
Benzovindiflupyr LLNA Sensitiser Not classified 

SYN 2 FS Acibenzolar-S-methyl LLNA Sensitiser Not classified 

SYN 3 SC 
Cyantraniliprole/ 

Diafenthiuron LLNA Non-sensitiser Not classified 

SYN 4 FS Metcamifen LLNA Non-sensitiser Not classified 

SYN 5 WG 
Mesotrione/Dicamba/ 

Nicosulfuron LLNA Non-sensitiser Not classified 

SYN 6 SC Chlorothalonil Buehler test Sensitiser Sensitiser 

SYN 7 EC 
Pinoxaden/ 

Cloquintocet-mexyl Buehler test Sensitiser Sensitiser 

SYN 8 SC AI1 LLNA Sensitiser Sensitiser 

SYN 9 SC Chlorantraniliprole LLNA Non-sensitiser Sensitiser 

SYN 10 WG Acetamiprid/AI1 LLNA Sensitiser Sensitiser 

*As indicated in Syngenta Ltd records 

Table 3.2 Selected agrochemical formulations for evaluation of the applicability of the OECD in vitro 

skin sensitisation methods 
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3.2.4 Prediction of Skin Sensitisation Potential Using In Silico Approaches 

The ten active ingredients were evaluated for their skin sensitisation potential by identification of any 

structural alerts for skin sensitisation that were present in their chemical structure. This was achieved 

by entering their Simplified Molecular Input Line Entry System (SMILES) strings into DEREK Nexus 

(version 2.3) and the OECD QSAR Toolbox (version 4.4.1) (referred to as the “Toolbox”) in silico QSAR 

tools. In addition, a manually derived expert judgement for the electrophilic activity associated with 

skin sensitisation MIE potential of the individual chemical structures was undertaken. During the 

expert review identification of any possible steric hinderance that may impede the potential for 

activity through the protein binding structural alerts identified by the in silico tools was conducted. 

DEREK Nexus indicated the presence or absence of a structural alert that can be associated with the 

endpoint in question. Alongside this, a measure of confidence, termed the likelihood measure, is 

provided by the model. The likelihood measure uses the following terms; certain, probable, plausible, 

equivocal, doubted, improbable and impossible as defined in Figure 3.1 (Judson et al., 2013). In this 

evaluation DEREK NEXUS results with likelihood terms of plausible, probable and certain were 

considered a positive prediction for protein reactivity. The terms doubted, improbable and impossible 

when associated with alerts were taken to not be indicative of skin sensitisation.  

 

Figure 3.1 DEREK Nexus Likelihood measurements (adapted from Judson et al., 2013) 

 

In the evaluation of protein reactivity in the Toolbox, the standardised workflow reported by 

Yordanova et al (2019) was used to obtain binary predictions for the ten AIs. The Toolbox is able to 
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assign a category associated with skin sensitisation potency, however a simple binary result predicting 

if the compound was or was not a skin sensitiser was adequate for this study. The Toolbox was used 

to evaluate whether the ten AI structures contained an electrophilic moiety that could lead to covalent 

binding to the skin proteins via one of the mechanistic domains mentioned earlier (e.g. acylation, 

Michael addition, nucleophilic substitution as defined fully in Section 1.3) (Aptula and Roberts, 2006, 

Enoch et al., 2011). The following Toolbox profilers were applied to identify structural features 

associated with protein binding and / or skin sensitisation potential: 

• Protein binding alerts for skin sensitisation by OASIS 

• Protein binding alerts for skin sensitisation according to GHS 

• Protein binding alerts for skin sensitisation by OASIS following autoxidation    

• Protein binding alerts for skin sensitisation according to GHS following autoxidation    

• Protein binding alerts for skin sensitisation by OASIS following skin metabolism 

• Protein binding alerts for skin sensitisation according to GHS skin metabolism 

Many skin sensitisers are activated via metabolism. Where a structural alert was not initially identified 

from the parent AI compound, the autoxidation profiler in the Toolbox was applied. In the absence of 

a metabolite with an alert being identified from this profiler, the skin metabolism profiler was then 

also applied to identify any potential metabolites. All metabolites identified by the metabolism 

profilers applied were run through the protein binding profilers as listed above using the same Toolbox 

workflow as previously identified (Yordanova et al., 2019). A compound was considered to be 

associated with an alert representing skin sensitisation if the OASIS/GHS profiler gave an outcome of 

1A or 1B for the parent structure, or if the OASIS with skin metabolism profiler gave a 1A result. A 

conclusion of non-sensitiser was made if the OASIS/GHS profiler identified no alert, or if the 

OASIS/GHS with skin metabolism profiler gave a 1B result (Masinja et al., 2021). 
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3.2.5 In vitro methods 

In vitro skin sensitisation testing using the triple pack of the agrochemical AIs was undertaken before 

that of the agrochemical formulations.  

 Direct Peptide Reactivity Assay (DPRA) 

The DPRA was conducted at the Gentronix Laboratory (Alderley Park, Macclesfield, UK) on all ten 

agrochemical AIs listed in Table 3.1 and subsequently on the ten agrochemical formulations listed in 

Table 3.2. For the AIs,  DPRA testing was conducted in accordance with OECD Test Guideline 442C 

(OECD, 2019a) and the ECVAM DB-ALM protocol 154 (ECVAM, 2012), with an initial preliminary 

solubility assessment conducted on all ten test materials. Table 3.3 below lists the solvents used for 

each AI test material and the maximum concentration achieved for each.   

Active ingredient 
 

Solvent(s) selected 
Maximum AI Concentration 

(mM) 

Acetamiprid Acetonitrile 100 

Acibenzolar-s-methyl Acetonitrile 80 

Benzovindiflupyr Acetonitrile 100 

Chlorantraniliprole Acetone: acetonitrile 1:1 6.25* 

Chlorothalonil Acetonitrile 50 

Cyantraniliprole Acetone: acetonitrile 1:1 6.25* 

Dicamba Water 100 

Mesotrione Acetonitrile 100 

Pinoxaden Acetonitrile 100 

AI1 Acetonitrile 100 

Table 3.3 Selected solvents for the ten Active Ingredients and maximum concentration achieved  

*Both cyantraniliprole and chlorantraniliprole dropped out of the solution readily. In order to maintain their 

dissolution both materials were sonicated prior to sampling for peptide HPLC analysis runs. 

 

The DPRA test guideline indicates that the test chemical should be pre-weighed and dissolved in an 

appropriate solvent to achieve a 100 mM solution before testing in the peptide solution (OECD, 2019a, 

ECVAM, 2012). However, to achieve this for multi-constituent mixtures without a singular defined 

Molecular Weight (MW), such as the ten agrochemical formulations being tested, a calculation of 

average MW for each formulation was required. A single average MW for each formulation was 

calculated by considering the MWs of each component (including active/non-active ingredients) and 
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their individual proportions. This resulted in MWs for testing ranging from 177 to 2260 Da (1M solution 

equating to the calculated average MW in grams per litre) as shown in Table 3.4. This approach was 

previously described by Settivari et al (2015) in the KeratinoSensTM assay (Settivari et al., 2015a). 

Polymers present in the formulation without a clearly defined MW were excluded from the 

calculation.  

Formulation number 
Average MW excluding 

water 
% of polymers with 

unknown MW 

SYN 1 232.71 0.02 

SYN 2 177.25 4.2 

SYN 3 578.92 0 

SYN 4 483.61 1.3 

SYN 5 254.40 0 

SYN 6 232.98 1.3 

SYN 7 332.39 0 

SYN 8 1008.41 4.2 

SYN 9 319.26 4.5 

SYN 10 2259.37 0 

Table 3.4. The calculated average MWs and percentage of polymers with unknown MW for the ten 

agrochemical test formulations tested. 

Following solubility assessment, five of the ten formulations demonstrated acceptable solubility in 

acetonitrile:DMSO (1:1). The remaining five were insoluble in all Test Guideline recommended 

solvents and, as a result, further assessment using these remaining five formulations did not proceed. 

Table 3.5 shows the five formulations solubilised in acetonitrile:DMSO and the concentrations at 

which they were added to the peptide test system.  

Formulation number 
Concentration added to 

peptide (mM) Solubility observations 

SYN 2 
 

100 
clear yellow solution at the start and end of 

incubation 

SYN 4 
 

25 
opaque white precipitate clearing by the end 

of incubation 

 
SYN 6 

 
100 

clear solution forming a murky solution by the 
end of incubation 

SYN 8 
 

50 
moderate opaque at start to a clear solution 

with particles on base of vial 

SYN 9 
 

50 
slightly cloudy at start to a clear solution by 

the end of incubation 

Table 3.5 DPRA formulation test concentrations 
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During the preliminary solubility assessment cysteine and lysine peptides were incubated with the test 

materials and observations of precipitation were made and recorded in Table 3.6. The test AI material 

concentration that the peptides were incubated with was the maximum test concentration 

recommended by the OECD Test Guideline 442C (5mM for incubation with cysteine and 25 mM for 

incubation with the lysine peptide).  

Active ingredient 
  

Observation in 
cysteine buffer 

Observation 
in lysine 
buffer 

Observation in 
cysteine buffer 

after 22-26 hours 
incubation 

Observation in 
lysine buffer 

after 22-26 hours 
incubation 

Acetamiprid 
no precipitation 

observed 

no 
precipitation 

observed 
no precipitation 

observed 
no precipitation 

observed 

Acibenzolar-s-
methyl 

precipitation 
observed 

precipitation 
observed 

precipitation 
observed 

precipitation 
observed 

Benzovindiflupyr 
precipitation 

observed 
precipitation 

observed 
precipitation 

observed 
precipitation 

observed 

Chlorantraniliprole 
precipitation 

observed 
precipitation 

observed 
precipitation 

observed 
precipitation 

observed 

Chlorothalonil 
precipitation 

observed 
precipitation 

observed 
precipitation 

observed 
precipitation 

observed 

Cyantraniliprole 
precipitation 

observed 
precipitation 

observed 
no precipitation 

observed 
no precipitation 

observed 

Dicamba 
no precipitation 

observed 

no 
precipitation 

observed 
no precipitation 

observed 
no precipitation 

observed 

Mesotrione 
no precipitation 

observed 

no 
precipitation 

observed 
no precipitation 

observed 
no precipitation 

observed 

Pinoxaden 
no precipitation 

observed 

no 
precipitation 

observed 
no precipitation 

observed 
no precipitation 

observed 

AI1 
no precipitation 

observed 
precipitation 

observed 
no precipitation 

observed 
no precipitation 

observed 

Table 3.6 AI solubility assessment following addition to peptide buffers 

The ten AIs were administered in the selected solvents at the highest test concentrations listed in 

Table 3.3 (±10% as per OECD test guideline 442C). Once formulated, a sample from each AI 

formulation was transferred from Gentronix Ltd to Alderley Analytical Ltd. under appropriate storage 

conditions for the HPLC analysis phase. All relevant reagents and solutions were prepared freshly for 

each independent HPLC run, where appropriate. The DRPA positive and solvent experimental controls 

used were as indicated in Appendix 3. 
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Cysteine and lysine peptide depletion prediction models 

The mean percentage cysteine and lysine peptide depletion models that were used to determine a 

DPRA reactivity class based on the peptide depletion results are outlined in the ECVAM DB-ALM 

protocol 154 and OECD Test Guideline for this assay (OECD, 2019a). Tables 3.7 and 3.8 outline the 

cysteine 1:10/lysine 1:50 prediction model and the cysteine 1:10 prediction model respectively. The 

cysteine 1:10 prediction model was only used if cysteine depletion alone result was produced from 

the DPRA. This may have occurred if AI co-elution with the lysine peptide was observed. 

Mean of cysteine and lysine % 
depletion Reactivity class DPRA prediction 

0% ≤ mean % depletion ≤ 6.38% No or minimal reactivity Negative 

6.38% < mean % depletion ≤ 22.62% Low reactivity 

 
Positive 

22.62% < mean % depletion ≤ 42.47% Moderate reactivity 

42.47% < mean % depletion ≤ 100% High reactivity 

Table 3.7 Cysteine 1:10/lysine 1:50 prediction model (OECD, 2019) 
 

Mean of cysteine (cys) % depletion Reactivity class DPRA prediction 

0% ≤ cys % depletion ≤ 13.89% No or minimal reactivity Negative 

13.89% < cys % depletion ≤ 23.09% Low reactivity 

 
Positive 

23.09% < cys % depletion ≤ 98.24% Moderate reactivity 

98.24% < cys % depletion ≤ 100% High reactivity 

Table 3.8  Cysteine 1:10 prediction model (OECD, 2019) 

 KeratinoSensTM assay 

The ten AIs and ten agrochemical formulations listed in Tables 3.1 and 3.2 respectively were tested in 

the KeratinoSensTM assay. A pre-test solubility assessment was conducted and, based upon outcome 

of that testing, the DMSO solvent was selected for use with the AI test materials and formulations. 

The highest concentration of each test material that could be formulated in DMSO is listed in Table 

3.9 for the AIs and Table 3.10 for the agrochemical formulations. Upon administration of the test 

material in DMSO to the KeratinoSensTM exposure medium, any colour changes or formation of 

precipitate was recorded. The concentrations of the test materials used for this pre-test solubility 

assessment on a microplate are also given in Tables 8.8 and 8.9 in Appendix 4. 
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KeratinoSensTM assay acceptance criteria 

All the requirements listed below must have been met for a KeratinoSensTM experimental run to be 

considered valid, in accordance with EURL ECVAM DB-ALM number protocol 155 (ECVAM, 2014a) and 

the OECD Test Guideline 442D(OECD, 2018b). Acceptance criteria for the KeratinoSens TM assay are as 

follows: 

• The positive control, cinnamic aldehyde, must induce a statistically significant response above 

the threshold of 1.5 for at least one dose. 

• The Imax and EC1.5 for cinnamic aldehyde must meet at least one of the following criteria: 

▪ The average induction in three replicates for cinnamic aldehyde at 64 M should be 

between 2 and 8. 

▪ The EC1.5 value of the positive control should be within two standard deviations of 

the Gentronix laboratory historical mean. 

▪ At least one of these criteria must be met, otherwise the run will be discarded. If only 

one of the criteria was fulfilled, then the dose response for cinnamic aldehyde was 

visually inspected to decide on acceptability. 

• For acceptance of the test, the average variability for the 3 x 6 solvent control wells (6 wells 

across 3 luminescence measurement microplates per experimental run) should be below 20%. 

If variability is higher, then the run should be discarded. 

Prediction model 

To derive a prediction, at least two valid (i.e., all acceptance criteria met) repetitions of the full 

experiment were needed if concordant results were obtained. If the first two calls were not-

concordant, then at least three valid repetitions of the full experiment were required. Based on the 

individual run results a positive KeratinoSensTM conclusion using the prediction model criteria outlined 

below, was made: 
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• The Imax is > 1.5-fold and statistically significantly different compared to the negative control 

(as determined by a two-tailed, unpaired Student’s t-test). 

• At the lowest concentration with a gene induction > 1.5-fold (i.e., at the EC1.5 determining 

value), the cell viability was > 70%. 

• The EC1.5 value was < 1000 µM (or < 200 µg/mL for test item without MW). 

• There was an apparent overall dose-response for luciferase induction (or a reproducible 

biphasic response). 

Where the test item was not soluble (or did not form a stable dispersion) at 1000 µM, the following 

applied: 

• If the test item induced luciferase at a lower, non-cytotoxic concentration, where it was still 

soluble, this was accepted as a positive result. 

• If the test item did induce cytotoxicity (viability <70%) at the maximal soluble concentration 

but did not induce luciferase up to the maximal soluble concentration, this was accepted as a 

negative result. 

• If a test item did not cause cytotoxicity or luciferase induction at the maximal soluble 

concentration, which was <1000 µM, this was be considered as an inconclusive result. 

 h-CLAT 

A pre-test solubility assessment was initially performed on the ten AIs and ten formulations. This 

identified nine of the AIs to be soluble in DMSO solvent, whilst dicamba was solubilised in saline. The 

initial concentrations of AI test material solubilisation in vehicle are shown in Table 8.22 and Table 

8.23 (Appendix 7) for the formulations. 

Pre-test solubility assessment identified saline as the appropriate vehicle for eight of test 

formulations, whilst cell media was identified for SYN5 and DMSO for the SYN8 formulation. For the 

SYN8 formulation there was very poor solubility observed in DMSO, saline and media. Full solubility 
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was not achieved at 5 mg/ml in any solvent, however DMSO was the better of the solvents and 

therefore selected for this formulation.  

Following the initial pre-test solubilisation in the solvents listed above, the AI test formulations were 

dissolved in cell culture medium to initially identify if any precipitation would arise that may render a 

negative result inconclusive. Concentrations for the cell culture medium were chosen as a result of 

this. 

A master stock of the THP-1 human monocytic leukaemia cell line was created and stored in liquid 

nitrogen at the Gentronix laboratory (Alderley Park, UK). The initial growing THP-1 cell culture was 

obtained from Public Health England culture collections (Porton Down, UK) whilst the h-CLAT test 

material exposure and cell reading were performed in the Gentronix laboratory.  

Prior to the initial cytotoxicity assessment on the test material’s concentrations, a pre-test analysis of 

the THP-1 cells was conducted. Initially a comparison of the doubling time of the THP-1 cells was 

conducted to confirm that they fall within the historic data control doubling number range for that 

laboratory. After this a positive and negative reactivity check, using 2,4-dinitrochlorobenzene (DNCB) 

or nickel sulphate as a positive control and lactic acid as the negative control, was conducted. This 

reactivity check was conducted to confirm that the results fell within defined acceptance criteria as 

outlined in the OECD Test Guideline 442E (OECD, 2018a).  

A 75% cell viability (CV75) dose finding assay was conducted. The dose finding assay was performed 

using the highest soluble concentrations of the different test material formulations and seven 

subsequent doses, using a 2-fold dilution series. This dose range concentration for each AI enabled 

the determination of the concentration leading to a CV75 compared to the cell viability present, 

following exposure to medium/solvent control. The individual CV75 concentrations for each of the 

test materials were then used to determine a range of concentrations of the test materials to be used 

in the h-CLAT for measurement of CD86/CD54 expression. If determined using CV75, the highest test 

material concentration was 1.2 x CV75 concentration, however for test materials where no 
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cytotoxicity was observed, the highest soluble concentration previously determined at the initiation 

of this h-CLAT assay was used. Agrochemical formulation and AI test material formulation as well as 

the specifics of the test item administration of the CV75 dose finding assay for this h-CLAT experiment 

are provided in Appendix 6. 

h-CLAT Assay acceptance criteria 

All the requirements listed below had to have been met for a h-CLAT run to have been accepted. If 

these requirements were not met, then the run was discarded: 

• Cell viability of medium and solvent controls should exceed 90% 

• In the positive control (DNCB), RFI values of both CD86 and CD54 should exceed the positive 

criteria (CD86 ≥ 150%, CD54 ≥ 200%) and cell viability should be more than 50% 

• In the solvent control, RFI values compared to the medium control of both CD86 and CD54 

should not have exceeded the positive criteria 

• For both medium and solvent controls, the MFI ratio of both CD86 and CD54 to isotype control 

should be > 105% 

If the majority of runs led to a negative outcome, the general outcome of the h-CLAT assay was 

considered negative if the following criteria applied:   

• Maximum tested concentration (CV75 x 1.2) leads to a viability < 90% 

• Or, when 5000 µg/mL in saline or 1000 µg/mL in DMSO or the highest soluble concentration 

is used as the maximal test concentration instead of CV75-based dose, even if the cell viability 

is above 90%  

Otherwise, the outcome will be considered inconclusive. 
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Prediction model 

Based on the results of individual runs a h-CLAT conclusion using the prediction model illustrated in 

Figure 3.2 and applying the criteria outlined below, was made: 

• If the first two runs were both positive for CD86 and/or were both positive for CD54, the h-CLAT 

prediction for the give test material was considered positive and a third run was not conducted. 

• If the first two runs were negative for both markers, the h-CLAT prediction was considered 

negative (with consideration given of the highest-tested dose conditions) without the need for a 

third run. 

• If, however, the first two runs were not concordant for at least one of the markers (CD54 or 

CD86), a third run was needed and the final prediction was based on the majority result of the 

three individual runs (i.e. 2 out of 3). In this respect, it should be noted that if two independent 

runs were conducted and only one was positive for CD86 and the other was only positive for 

CD54, a third run was required. If this third run was negative for both markers the h-CLAT 

prediction is considered negative. However, if the third run is positive for either marker or for 

both markers, the h-CLAT prediction is considered positive. 
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Figure 3.2 h-CLAT Prediction model (OECD, 2018a) 

P1: run with only CD86 positive; P2: run with only CD54 positive; P12: run with both CD86 and CD54 

positive; N: run with neither CD86 nor CD54 positive.  The figure shows the relevant combinations of 

results from the two/three successive runs, but does not reflect the order in which they may all be 

obtained. 

 

3.2.6 Defined approach (DA) evaluation 

The previously mentioned skin sensitisation testing techniques in this chapter were integrated to 

evaluate different DAs to testing of skin sensitisation. The in silico prediction was used in combination 

with the in vitro experimental data. This was done to provide further understanding for the potential 

of each of the chemicals to trigger the initial MIE and the ensuing key events in the AOP (OECD, 2014). 

Using the results from the triple pack in vitro tests, the three following DAs were investigated.  
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 Kao Integrated Testing Strategy  

The Kao Integrated Testing Strategy (ITS) versions one and two (Takenouchi et al., 2015), Sequential 

Testing Strategy and the two out of three DAs (OECD, 2017) were evaluated using the results of the in 

silico and in vitro methods.  

In the ITS based on the quantitative outcomes from in vitro assays (h-CLAT and the DPRA), a score of 

0 to 3 is awarded to the test chemical, while in the in silico method used (DEREK Nexus for version 1 

or the Toolbox for version 2 of this ITS) is awarded a score of 0 in the absence of an alert or one if an 

alert is reported as present (Kleinstreuer et al., 2018b). The summed score of the ITS combination of 

methods is used to predict the skin sensitisation potential and potency as shown in Table 3.9. 

DPRA assay outcome Assigned ITS score 

High reactivity 3 

Moderate reactivity 2 

Low reactivity 1 

No or minimal reactivity 0 

h-CLAT minimum induction 
threshold (MIT)  

≤10 µg/mL 3 

>10, ≤150 µg/mL 2 

>150, ≤5000 µg/mL 1 

not calculated 0 

DEREK Nexus (ITSv1)  

Alert 1 

No Alert 0 

OECD Toolbox (ITSv2)  

Sensitiser 1 

Non-sensitiser 0 

Potency Total battery score 

Strong (GHS category 
1A): 7 

Weak (GHS category 1B): 
2 - 6 

Not classified: 0 -1 

Table 3.9  Schematic of the Kao ITS (version 1 and 2) (Kleinstreuer et al., 2018b) 

Rather than strictly following the ITS scoring system, the evaluation of the agrochemical AI test set 

incorporated a manual assessment by expert judgement on the results of in silico tools before using 

them in the scheme indicated in Table 3.9.  
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 Kao Sequential Testing Strategy  

For evaluation of the Kao sequential testing strategy (STS) as shown in Figure 3.3, the approach 

developed by Kao (Nukada et al., 2013, Takenouchi et al., 2015) was followed without adaptation or 

alteration. Unlike the ITS the Kao STS does not integrate in silico models into its assessment of the skin 

sensitisation potential of single compounds. The STS uses the results of the DPRA and h-CLAT assays 

in a decision tree that allows for both hazard and potency evaluation of the given test material.  

The Kao STS assesses the results of the h-CLAT study in a tiered approach. Where a positive result has 

been produced in the h-CLAT assay (i.e., CD54 and/or CD86 dendritic cell surface markers have been 

induced by 200% or 150% respectively) a positive skin sensitisation result is accepted. The minimum 

induction threshold (MIT) value (i.e., the lowest test material concentration to lead to the dendritic 

cell marker positive response) is then used to identify a sensitisation potency classification. An MIT 

value of equal to or greater than 10 µg/ml leads to the test material being classified as a strong 

sensitiser while a MIT value of greater than 10µg/ml warrants a weak skin sensitiser classification for 

the test material. In the event that the h-CLAT results are negative, the DPRA assay results are 

reviewed. Individual peptide depletion values are not required for this evaluation. A simple positive 

or negative result from the DPRA assay allows for the classification of the test material to a weak skin 

sensitiser or for the material to not be classified as a skin sensitiser (Nukada et al., 2013).  
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Figure 3.3 Schematic of the Kao STS defined approach (Nukada et al., 2013) 

 

 Two out of three Defined Approach 

The two out of three DA uses a weight of evidence method to determine if a test material is a skin 

sensitiser (Urbisch et al., 2015). This chapter compared the two out of three approach to the other 

two previously described DA methods. This comparison was done by using the results of the DPRA, 

KeratinoSensTM and the h-CLAT in vitro and in chemico skin sensitisation assays on the ten 

agrochemical AI case studies.  

3.3 Results 

3.3.1 In silico results 

The ten active ingredients were entered into the DEREK Nexus model and the Toolbox using the 

compounds’ specific SMILES strings. Using the procedure as outlined in the methods and materials 

section, the skin sensitisation potential of the AIs was predicted/assessed by recording:  

• The DEREK alerts to measure the likelihood of the compound in leading to skin sensitisation 

and 

• The identification of possible mechanistic domains that may lead to covalent binding to skin 

proteins from the Toolbox. 
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The predictions from the two models for all ten compounds are reported in Table 3.10. The DEREK 

Nexus likelihood measure relates to the possibility of a compound being a skin sensitiser. 

 

Chemical name Log P* 
DEREK alerts - likelihood 

measure 
OECD toolbox  

mechanistic domains 

acetamiprid 0.79 No alerts – impossible 
Parent – none 

Skin metabolite – Schiff base formation 

 
acibenzolar-s-methyl 2.17 Thioester - plausible 

Parent – none 
Skin metabolite – nucleophilic 

substitution (SN2) 

benzovindiflupyr 4.3 No alerts – impossible 

Parent – none 
Skin metabolite 1 – Schiff base 

formation 
Skin metabolite 2 & 4 – acylation 

chlorantraniliprole 2.76 No alerts – impossible Parent - acylation 

chlorothalonil 2.94 Activated benzene - plausible 
Parent – Nucleophilic aromatic 

substitution (SNAr) 

cyantraniliprole 1.94 No alerts – impossible 

Parent – none 
Skin metabolite 1 – Schiff base 

formation 
Skin metabolites 3,6, 7 & 8 – acylation 

dicamba 2.24 No alerts – impossible 
Parent – none 

Skin metabolite – Schiff base formation 

mesotrione 0.73 
1,3-Diketone - plausible 
Nitrobenzene - plausible Parent –SNAr & Schiff base formation 

pinoxaden 3.2 
Hydrazine or precursor - 

equivocal Parent - acylation 

AI1 3.3 No alerts – impossible Parent - acylation 

Table 3.10 Predictions of log P, skin sensitisation and possible mechanisms of action from Derek 

Nexus and Toolbox chemical for the ten AIs  

*CAESAR (version 1.1.4) predicted AlogP values which were used to calculate log P in accordance with 

the previous work by Guziałowska-Tic, 2017. 
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3.3.2 In vitro results  

 DPRA Results for the AIs 

The ten agrochemical AIs were initially evaluated for cysteine/lysine peptide reactivity in the DPRA in 

chemico assay. The mean percentage peptide depletion values for lysine and cysteine following AI 

incubation are reported in Table 3.11 below.  

Active ingredient 

Mean % peptide 
depletion 

 
Standard deviation 

Mean Cysteine 
and Lysine % 

peptide depletion Cysteine Lysine Cysteine Lysine 

acetamiprid 14.6 8.51 3.37 3.38 11.6 

acibenzolar-s-methyl 
Could not be determined 

 

benzovindiflupyr 13.8 14.2 2.33 1.94 14.0 

chlorantraniliprole 2.48 4.45 1.99 2.84 3.47 

chlorothalonil 97.9 3.18 0.10 2.77 50.5 

cyantraniliprole 1.38 2.38 0.783 1.36 1.88 

dicamba 12.7 9.64 1.91 1.29 11.2 

mesotrione 95.1 12.3 0.289 0.757 53.7 

pinoxaden 100 9.42 0.00 3.11 54.7 

AI1 95.7 0.379 42.2 1.97 48.0 

Table 3.11 Percentage peptide depletion (from the DPRA assay) for the ten AIs 

The DPRA prediction model (OECD, 2018b) was used to determine the reactivity class of the active 

ingredients based upon the mean percentage cysteine and lysine peptide depletion values. As a 

percentage of peptide depletion was observed for both cysteine and lysine in all AI test materials, the 

cysteine 1:10/lysine 1:50 prediction model was used. Due to co-elution effects and an inability to meet 

acceptance criteria for the DPRA test peptide depletion for acibenzolar-s-methyl could not be 

determined. The peptide reactivity class was determined from the DPRA experiment for nine of ten 

AIs and reported in Table 3.12.  
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Active ingredient 

Mean Cysteine and 
Lysine % peptide 

depletion 
Prediction model 

used DPRA prediction 

acetamiprid 11.6 Cys 1:10/Lys 1:50 Positive – Low Reactivity 

acibenzolar-s-methyl 
Could not be determined 

 

benzovindiflupyr 14.0 Cys 1:10/Lys 1:50 Positive – Low Reactivity* 

chlorantraniliprole 3.47 Cys 1:10/Lys 1:50 
Negative - No or Minimal 

Reactivity* 

chlorothalonil 50.5 Cys 1:10/Lys 1:50 Positive – High Reactivity* 

cyantraniliprole 1.88 Cys 1:10/Lys 1:50 
Negative - No or Minimal 

Reactivity* 

dicamba 11.2 Cys 1:10/Lys 1:50 Positive – Low Reactivity 

mesotrione 53.7 Cys 1:10/Lys 1:50 Positive – High Reactivity 

pinoxaden 54.7 Cys 1:10/Lys 1:50 Positive – High Reactivity 

AI1 48.0 Cys 1:10/Lys 1:50 
Positive – Moderate 

Reactivity* 

Table 3.12 Reactivity class of Ten Active Ingredients as Sensitisers or Non-Sensitisers in the DPRA  

*Exceptions to the prediction model(s) occurred with these test items – specifically the presence of 
precipitate upon test material addition to the peptide buffer. 
 

 DPRA Results for the test formulations 

For the agrochemical test formulations, the reference control C in the acetonitrile:DMSO vehicle 

mixture showed a large depletion of cysteine and according to the guideline would give non-conclusive 

results with respect to the formulations. For the agrochemical test formulation reference control C in 

DMSO:Acetonitirle (1:1), the Coefficient of variation (CV) of peptide peak areas for the nine reference 

controls C in acetonitrile should be 0.15. The agrochemical formulations reference C control achieved 

a CV of 0.242. The mean peptide concentration of the reference control C was 0.073 mM. This was 

also below the acceptance criteria (0.45 – 0.55 mM). Therefore, the test guideline outlined criteria as 

outlined by the OECD Test Guideline 442C for the DPRA was not met for the five tested agrochemical 

formulations.  

The peptide depletion results of the agrochemical test formulations following DPRA testing are 

reported in Table 3.13 below.  
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Formulation number  Solubility observations 
% Cysteine 
Depletion* 

DPRA 
prediction 

SYN 2  

clear yellow solution at the start and 
end of incubation 97% Positive 

SYN 4 
 

opaque white precipitate clearing by 
the end of incubation Interference Inconclusive 

SYN 6  

clear solution forming a murky 
solution by the end of incubation 11.8% Positive 

SYN 8 
 

murky at start to a clear solution 
with particles on base of vial 90.1% Positive 

SYN 9  

little cloudy at start to a clear 
solution by the end of incubation Interference Inconclusive 

Table 3.13 Percentage peptide depletion (from the DPRA assay) for five agrochemical formulations  

*The 1:1 acetonitrile:DMSO solvent used as vehicle demonstrated extensive (85.4%) cysteine depletion in 

reference control C. Further cysteine depletion caused by formulation, relative to cysteine control has been 

reported here 

Following a preliminary assessment of formulation solubility, five formulations remained insoluble in 

all OECD recommended solvents, however, five of the formulations achieved solubility (100mM–

25mM) in acetonitrile:DMSO (1:1). Although 1:1 acetonitrile:DMSO is a suggested solvent for DPRA, it 

caused extensive (85.4%) cysteine depletion leading to a failed run (OECD, 2019a). Despite this, three 

of the formulations that were classified as sensitisers in vivo exhibited cysteine depletion indicative of 

a sensitiser in this in vitro assay as defined by the appropriate prediction model (Table 9). Assay 

interference was observed for the two non-sensitising formulations. However, as no formulation co-

eluted at or near the retention time of the cysteine peptide, this interference appeared to occur 

through the two formulations’ stabilising the cysteine peptide. As such, a negative peptide reactivity 

result could not be concluded for formulations SYN4 and SYN9. Confirming a negative result for the 

non-sensitising formulations was problematic due to solubility/cytotoxicity issues impacting the 

running of the assays to recommended guidelines and therefore formulations SYN4 and SYN9 were 

interpreted as inconclusive. 

 KeratinoSensTM results for the AIs 

The ten agrochemical AIs and ten PPP formulations were tested in the KeratinoSensTM assay.  
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The raw data from the KeratinoSensTM tests on the AIs mentioned here is presented in appendix 5. 

The results for the luciferase determinations for all ten AIs are shown in Table 3.14, the luciferase 

determinations, expressed as Imax values, indicated the maximum induction over the tested 

concentration range of for each AI. Table 8.17 shows the AI EC1.5 values for all ten AIs. Cell viability at 

all of the reported EC1.5 concentrations was ≥70%. The IC50 values determined in this assessment are 

also shown in Table 8.18. 

Table 8.16 also presented in appendix 5 shows that the average induction (Imax) in the replicate plates 

for the positive control at 64 µM was calculated to be between 2 and 8. The mean EC1.5 value was also 

within two standard deviations of the Gentronix laboratory’s historical mean, as shown in Table 8.20. 

These criteria were met in all runs except replicate five, where the induction of cinnamic aldehyde at 

64 µM was above the required range at 9.82. As the former criterion was not fulfilled in that run, the 

dose-response of cinnamic aldehyde was carefully checked, and the run was accepted as there was a 

clear dose-response with increasing luciferase activity at increasing concentrations for the positive 

control. All concentrations of cinnamic aldehyde tested produced cell viability results of > 70%. 

As per the OECD test guideline for the KeratinoSensTM evaluation the vehicle control variability of the 

18 vehicle control wells within one experimental run must be below 20%.  This criterion has been met 

as shown in table 8.21 to demonstrate acceptable variation that would not impact final results of the 

assay. Solvent variation from 12.11% to 15.19% was observed keeping within the KeratinoSensTM 

criteria (OECD, 2018). 

As all of the required acceptance criteria for this experiment have been fulfilled, the predictions 

derived from the luciferase inductions observed alongside the cytotoxicity evaluation at the 12 

concentrations of each AI were accepted. These assessments are listed in Table 3.14 and illustrated 

graphically in Figures 3.5-3.14.  
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Fig 3.4. Dose response curve for acetamiprid Fig 3.5. Dose response curve for cyantraniliprole 

Fig 3.6. Dose response curve for dicamba Fig 3.7. Dose response curve for benzovindiflupyr 

Active ingredient KeratinoSensTM assessment 

acetamiprid negative 

acibenzolar-s-methyl inconclusive 

benzovindiflupyr positive 

chlorantraniliprole inconclusive 

chlorothalonil positive 

cyantraniliprole negative 

dicamba negative 

mesotrione positive 

pinoxaden positive 

AI1 positive 

Table 3.14 Summary of the KeratinoSens™ assay predictions in the ten agrochemical AIs 
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Fig 3.8. Dose response curve for chlorothalonil Fig 3.9. Dose response curve for mesotrione 

Fig 3.10. Dose response curve for pinoxaden Fig 3.11. Dose response curve for AI1 

Fig 3.12. Dose response curve for acibenzolar-

s-methyl Fig 3.13. Dose response curve for chlorantraniliprole 

 

 

 

 

 

 

 

Figures 3.4 – 3.13 Active ingredient KeratinoSensTM assay dose response curves 
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Luminescence measurement following treatment with dicamba did not produce luminescence 

induction of over 1.5-fold in any of the 12 concentrations. The MTT cytotoxicity test indicated that cell 

viability of >70% was observed in all 12 concentrations as shown in Figure 3.6.  

The results of the KeratinoSensTM assay also gave positive predictions for five of the ten AIs tested. 

These five AIs are indicated in Table 3.14, being namely benzovindiflupyr, chlorothalonil, mesotrione, 

pinoxaden and AI1.  

 

 KeratinoSensTM results for the test formulations 

Solvent selection and maximal soluble concentration for each of the ten agrochemical formulations 

were determined in the initial step of the KeratinoSensTM assay. Subsequently, cytotoxicity was 

evaluated using the MTT assay and formulation doses adjusted to achieve >70% cell viability across as 

much of the dose response curve as possible. As such, starting doses of 1000mM to 2mM and 1.25 to 

1.5-fold dilution steps, were applied depending on solubility and cytotoxicity of the formulation. The 

results of the KeratinoSensTM assay on the agrochemical formulations are shown in Table 3.15. 

Agrochemical 
formulation 

number 

Concentration range tested (µM) 

EC1.5 IC50 Imax 
Test 

outcome min max fold dilution 

SYN 1 26.8 312.5 1.25 91.7 196.60 3.96 Positive 

SYN 2 28.8 335.5 1.25 - 319.91 1.00 Negative 

SYN 3 85.9 1000 1.25 297.7 >1000 2.56 Positive 

SYN 4 0.5 44 1.50 - >44 1.26 Inconclusive 

SYN 5 0.3 26.6 1.50 - >26.6 1.20 Inconclusive 

SYN 6 0.2 2.2 1.25 0.38 1.95 7.90 Positive 

SYN 7 1.9 21.6 1.25 - >21.64 1.10 Inconclusive 

SYN 8 1.5 132.2 1.50 - >132.2 1.30 Inconclusive 

SYN 9 68.7 800 1.25 - >800 1.04 Inconclusive 

SYN 10 9.2 800 1.50 11.5 >228 2.96 Positive 

Table 3.15 Results of the KeratinoSensTM assay for the ten agrochemical formulations tested 

EC1.5: Concentration leading to a 1.5 -fold induction of the luciferase activity.                                                                                            

IC50: Concentration effecting a reduction of cellular viability by 50%.                                                                                                         

Imax: the maximum induction factor of luciferase activity compared to the solvent (negative) control measured 

at any test chemical concentration 
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Figure 3.14. Dose response curve for SYN1 Figure 3.15. Dose response curve for SYN2 

 

Figure 3.16. Dose response curve for SYN3 

 

Figure 3.17. Dose response curve for SYN4 

 

Figure 3.18. Dose response curve for SYN5 

 

Figure 3.19. Dose response curve for SYN6 

 Dose response curve for SYN6 
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Figure 3.20. Dose response curve for SYN7

 

 

Figure 3.21. Dose response curve for SYN8 

 

Figure 3.22. Dose response curve for SYN9

 

 

Figure 3.23. Dose response curve for SYN10 

 

 

 

 

 

Figure 3.14 – 3.23 Agrochemical test formulations KeratinoSensTM assay dose response curves 

 

The mean Imax determined for SYN1 was 3.96, while the mean EC1.5 concentration was 91.7 µM. Cell 

viability of >70% was observed at the lowest dose with luminescence induction >1.5 when compared 

to the solvent control and at least two concentrations tested gave rise to viability >70%. A clear dose 

response for luminescence was also observed, as shown in Figure 3.14.  

Luminescence measurement following treatment with SYN2 did not produce luminescence induction 

of over 1.5-fold in any of the concentrations tested. The MTT cytotoxicity test indicated that cell 

viability of >70% was observed in all concentrations with the exception of the maximum concentration 

tested, as shown in Figure 16. Similar results were also seen following treatment with SYN7 as shown 

in Figure 3.15. 
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Following cell treatment with the SYN3, the luminescence measurement allowed for the 

determination of a mean Imax of 2.56. The mean EC1.5 concentration was 297.70 µM. Cell viability of 

>70% was observed at the lowest dose with luminescence induction >1.5 when compared to the 

solvent control and at least two concentrations tested gave rise to viability >70%. The calculated mean 

for the EC1.5 was <1000 µM and a clear dose response for luminescence was also observed as shown 

in Figure 3.16.  

Luminescence measurements following treatment with SYN4, SYN5, SYN8 and SYN9 did not produce 

luminescence induction of over 1.5-fold in any of the concentrations tested. Cell viability of >70% was 

observed in all concentrations tested as shown in Figures 3.18, 3.19, 3.22 and 3.23 respectively. 

The mean Imax determined for SYN6 was 7.9, while the mean EC1.5 concentration was 0.38 µM. Cell 

viability of >70% was observed at the lowest dose with luminescence induction >1.5 when compared 

to the solvent control and at least two concentrations tested gave rise to viability >70%. A clear dose 

response for luminescence was also observed as shown in Figure 3.19.  

The mean Imax determined for SYN10 was 2.96, while the mean EC1.5 concentration was 11.5 µM. Cell 

viability of >70% was observed at the lowest dose with luminescence induction >1.5 when compared 

to the solvent control. A clear dose response for luminescence was also seen and is shown in Figure 

3.23.  

 Human Cell Line Activation Test (h-CLAT) results for the AIs 

The h-CLAT assay was performed on all ten AIs and agrochemical formulations. To begin with the ten 

AIs were initially tested, and data reviewed. After the initial work on the AIs the h-CLAT evaluation 

proceeded to testing the agrochemical formulations. In the positive h-CLAT control (DNCB), RFI values 

of both CD86 and CD54 exceeded the positive criteria (CD86 ≥ 150%, CD54 ≥ 200%) and cell viability 

was more than 50%, thus this was deemed acceptable.  

In the solvent control, RFI values compared to the medium control of both CD86 and CD54 did not 

exceed the positive criteria (CD86 ≥ 150%, CD54 ≥ 200%) and were also considered to be acceptable. 
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For both medium and solvent controls, the MFI ratio of both CD86 and CD54 to isotype control was 

shown to be > 105% in each experimental run and concluded to be acceptable. 

The results of the 75% cell viability (CV75) dose range finding assay which was conducted for the ten 

AIs are detailed in Table 3.16. 

Active ingredient 

Highest test 

concentration 

on the plate 

(µg/mL) 
Rep 1 
CV75 

Cell 
viability at 

highest 
dose 

tested (%) 
Rep 2 
CV75 

Cell 
viability at 

highest 
dose 

tested (%) 
Mean 
CV75 

acetamiprid 800.0 no cyto 84.22 no cyto 96.20 N/A 

 
acibenzolar-s-methyl 30.0 no cyto 95.75 no cyto 98.32 N/A 

benzovindiflupyr 15.6 no cyto 83.74 no cyto 83.82 N/A 

chlorantraniliprole 62.5 no cyto 95.82 no cyto 96.67 N/A 

chlorothalonil 20.0 8.03 14.01 0.909 16.04 4.47 

cyantraniliprole 200.0 no cyto 96.76 no cyto 97.61 N/A 

dicamba 5000 no cyto 86.72 no cyto 87.62 N/A 

mesotrione 600.0 no cyto 94.49 no cyto 97.39 N/A 

pinoxaden 150.0 no cyto 94.54 no cyto 97.69 N/A 

AI1 75.0 no cyto 96.76 no cyto 94.20 N/A 

Table 3.16 CV75 Dose-Finding Assay Results for the Ten AIs 

No Cyto = No reduction in cell viability to 75% was observed at the test concentrations used in this study. 

N/A = A mean CV75 could not be calculated as no cytotoxicity was observed for these test items during the 

CV75 dose-finding assay. 
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The CD86 and CD54 dendritic cell surface marker expression as measured in all of the AI h-CLAT runs 

are reported in Tables 3.17 and 3.18 respectively. 

Active ingredient 

Highest test 

concentration 

on the plate 

(µg/mL) Rep 1 Rep 2 Rep 3 EC150b 

acetamiprid 800.0a no EC no EC Not required N/A 

 
acibenzolar-s-methyl 30.0 no EC no EC Not required N/A 

benzovindiflupyr 15.6 no EC no EC Not required N/A 

chlorantraniliprole 62.5 no EC no EC Not required N/A 

chlorothalonil 5.3 no EC no EC Not required N/A 

cyantraniliprole 200.0 no EC no EC Not required N/A 

dicamba 5000 no EC no EC no EC N/A 

mesotrione 600.0 no EC no EC Not required N/A 

pinoxaden 150.0 no EC no EC Not required N/A 

AI1 75.0 no EC 24.72 no EC N/A 

Table 3.17 The EC150 (CD86) values for the ten AIs 

a = The highest concentration determined for chlorothalonil as cytotoxicity was observed in CV75 dose-finding 

assay. Top test concentrations for the 9 remaining test items were determined by solubility results as no 

cytotoxicity was observed during the CV75 dose-finding assay.  

b = EC values were defined as the median of the values calculated in all three independent experiments (or in 

instances where only two of the three runs were positive, the highest of the two concentrations used is 

considered the EC value) 

 

 

 

 

 

 

 

 

  



93 
 

Active ingredient 

Highest test 

concentration 

on the plate 

(µg/mL) Rep 1 Rep 2 Rep 3 EC200* 

acetamiprid 800.0 686.10 670.20 789.50 686.10 

acibenzolar-s-methyl 30.0 no EC no EC Not required N/A 

benzovindiflupyr 15.6 no EC no EC Not required N/A 

chlorantraniliprole 62.5 no EC no EC Not required N/A 

chlorothalonil 5.3 no EC no EC Not required N/A 

cyantraniliprole 200.0 no EC no EC Not required N/A 

dicamba 5000 no EC 4167 1424 4167 

mesotrione 600.0 no EC no EC Not required N/A 

pinoxaden 150.0 no EC no EC Not required N/A 

AI1 75.0 36.17 28.22 no EC 36.17 

Table 3.18 The EC200 (CD54) values for the ten AIs 

*EC200 values were defined as the median of the values calculated in all three independent experiment runs (or 

in instances where only two of the three runs were positive, the highest of the two concentrations used is 

considered the EC value). 

The final h-CLAT predictions for the individual AIs as an outcome of the test results indicated above 

are listed in Table 3.19.  

Active ingredient h-CLAT prediction 

acetamiprid positive 

 
acibenzolar-s-methyl negative 

benzovindiflupyr negative 

chlorantraniliprole negative 

chlorothalonil negative 

cyantraniliprole negative 

dicamba positive 

mesotrione negative 

pinoxaden negative 

AI1 positive 

Table 3.19 Summary of predictions in the h-CLAT for the ten AIs 

Using the h-CLAT prediction model outlined in figure 3.2, three of the ten AIs (acetamiprid, dicamba 

and AI1) were classified as positive and seven of the ten AIs (acibenzolar-s-methyl, chlorothalonil, 
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cyantraniliprole, mesotrione, pinoxaden, benzovindiflupyr and chlorantraniliprole) were classified as 

negative under the test conditions used in the h-CLAT experimental runs. 

 Human Cell Line Activation Test (h-CLAT) results for the test formulations 

The results of the 75% cell viability dose range finding assay initially conducted for the ten 

agrochemical formulations are detailed in Table 3.20. 

Agrochemical 
formulation number 

Highest test 

concentration 

on the plate 

(µg/mL) 
Rep 1 
CV75 

Cell 
viability at 

highest 
dose 

tested (%) 
Rep 2 
CV75 

Cell 
viability at 

highest 
dose 

tested (%) 
Mean 
CV75 

SYN 1 78.13* 79.12 75.21 59.58 67.32 69.35 

SYN 2 78.13 no cyto 95.89 no cyto 92.41 N/A 

SYN 3 250.00 no cyto 89.49 no cyto 95.47 N/A 

SYN 4 875.00 no cyto 95.89 no cyto 92.03 N/A 

SYN 5 39.06 no cyto 96.80 no cyto 97.20 N/A 

SYN 6 3.91 1.49 56.30 3.31 72.85 2.40 

SYN 7 78.13* 73.10 69.94 76.01 72.14 74.56 

SYN 8 10.00 no cyto 96.90 no cyto 93.90 N/A 

SYN 9 500.00 no cyto 95.01 no cyto 92.21 N/A 

SYN 10 156.30 112.9 60.50 132.3 69.20 122.60 

Table 3.20 CV75 Dose-Finding Assay Results for the Ten agrochemical formulations 

*Due to high cytotoxicity observed in the initial run of the CV75 test, following of the CV75 tests were tested from 
a lower top test concentration (78.13 µg/ml). 
No Cyto = No reduction in cell viability to 75% was observed at the test concentrations used in this study. 
N/A = A mean CV75 could not be calculated as no cytotoxicity was observed for these test items during the CV75 
dose-finding assay. 

 

The CD86 and CD54 dendritic cell surface marker expression as measured in all of the agrochemical 

formulation h-CLAT runs are reported in Tables 3.21 and 3.22 respectively. 
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Agrochemical 
formulation number 

Highest test 

concentration 

on the plate 

(µg/mL) Rep 1 Rep 2 Rep 3 EC150a 

SYN 1 83.22 69.28 no EC no EC N/A 

SYN 2 78.13 no EC no EC Not required N/A 

SYN 3 250.00 no EC no EC no EC N/A 

SYN 4 875.00 no EC no EC no EC N/A 

SYN 5 39.06 no EC no EC Not required N/A 

SYN 6 2.87 1.16 0.69 0.53 0.69 

SYN 7 89.47 no EC 86.50 no EC N/A 

SYN 8 10.00 no EC no EC Not required N/A 

SYN 9 500.00 no EC no EC No EC N/A 

SYN 10 147.10 no EC no EC No EC N/A 

Table 3.21 The EC150 (CD86) values for the ten agrochemical formulations 

a = EC values were defined as the median of the values calculated in all three independent experiments (or in 
instances where only two of the three runs were positive, the highest of the two concentrations used is considered 
the EC value) 
 

Agrochemical 
formulation number 

Highest test 

concentration 

on the plate 

(µg/mL) 
Rep 1 Rep 2 

Rep 3 
 EC200* 

SYN 1 83.22 no EC no EC no EC N/A 

SYN 2 78.13 no EC no EC Not required N/A 

SYN 3 250.00 61.43 84.73 58.76 61.43 

SYN 4 875.00 313.50 57.87 461.50 313.50 

SYN 5 39.06 no EC no EC Not required N/A 

SYN 6 2.87 0.82 0.70 0.75 0.70 

SYN 7 89.47 no EC no EC no EC N/A 

SYN 8 10.00 no EC no EC Not required N/A 

SYN 9 500.00 298.60 254.10 485.80 298.60 

SYN 10 147.10 117.90 45.67 No EC 117.90 

Table 3.22 The EC200 (CD54) values for the ten agrochemical formulations 

*EC200 values were defined as the median of the values calculated in all three independent experiment runs (or 
in instances where only two of the three runs were positive, the highest of the two concentrations used is 
considered the EC value). 
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The final h-CLAT predictions for the individual agrochemical formulations as an outcome of the test 

results indicated above are listed in Table 3.23.  

Agrochemical formulation 
number h-CLAT prediction 

SYN 1 negative 

SYN 2 negative 

SYN 3 positive 

SYN 4 positive 

SYN 5 negative 

SYN 6 positive 

SYN 7 negative 

SYN 8 negative 

SYN 9 positive 

SYN 10 positive 

Table 3.23 Summary of predictions in the h-CLAT for the ten agrochemical formulations 

 Summary of in vitro results and final assessments 

Tables 3.24 and 3.25 summarise the results of all in vitro and in silico predictions carried out on the 

AIs and agrochemical formulations, with the results from the previously conducted in vivo skin 

sensitisation tests. 

Active ingredient 

In vitro tests In silico prediction In vivo test 
conclusions DPRA KeratinoSensTM h-CLAT DEREK Toolbox 

acetamiprid positive negative positive negative 
positive (skin 

metabolite – 1a) non-sensitiser 

acibenzolar-s-
methyl inconclusive inconclusive negative positive 

negative (skin 
metabolite – 1b) sensitiser 

benzovindiflupyr positive positive negative negative 
positive (skin 

metabolite – 1a) non-sensitiser 

chlorantraniliprole inconclusive inconclusive negative negative negative non-sensitiser 

chlorothalonil positive positive negative positive 
positive (parent 

– 1a) sensitiser 

cyantraniliprole inconclusive negative negative negative 
positive (skin 

metabolite – 1a) non-sensitiser 

dicamba positive negative positive negative 
positive (skin 

metabolite – 1a) non-sensitiser 

mesotrione positive positive negative positive 
positive (parent 

– 1b) non-sensitiser 

pinoxaden positive positive negative equivocal negative sensitiser 

AI1 positive positive positive negative 
positive (skin 

metabolite – 1a) sensitiser 

Table 3.24 Summary of all skin sensitisation tests performed on the ten AIs  

Red – disagreement with in vivo conclusion, Green – agreement with in vivo conclusion 
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Agrochemical 
formulations 

In vitro tests CLP Skin 
Sensitisation 

calculation result 
In vivo test 
conclusions DPRA KeratinoSensTM h-CLAT 

SYN 1 
not conducted positive negative non-sensitiser sensitiser 

SYN 2 
positive inconclusive negative non-sensitiser sensitiser 

SYN 3 
not conducted positive positive non-sensitiser non-sensitiser 

SYN 4 
inconclusive inconclusive positive non-sensitiser non-sensitiser 

SYN 5 
not conducted inconclusive negative non-sensitiser non-sensitiser 

SYN 6 
positive positive positive sensitiser sensitiser 

SYN 7 
not conducted inconclusive negative sensitiser sensitiser 

SYN 8 
positive inconclusive negative sensitiser sensitiser 

SYN 9 
inconclusive inconclusive positive sensitiser non-sensitiser 

SYN 10 
not conducted positive positive sensitiser sensitiser 

Table 3.25 Summary of all skin sensitisation tests performed on the ten agrochemical formulations 
Red – disagreement with in vivo conclusion, Green – agreement with in vivo conclusion 

 Defined approach predictions 

Review of Kao STS results  

The predicted outcomes for all AI test compounds from the Kao STS were determined and are shown 

in comparison to their in vivo outcomes in Table 3.26. 

Active ingredient h-CLAT result DPRA result 
KAO STS 

prediction In vivo conclusion 

acetamiprid 
positive 

(MIT = 800 µg/mL) positive weak sensitiser non-sensitiser 

acibenzolar-s-
methyl negative inconclusive inconclusive sensitiser 

benzovindiflupyr negative positive weak sensitiser non-sensitiser 

chlorantraniliprole negative inconclusive inconclusive non-sensitiser 

chlorothalonil negative positive weak sensitiser sensitiser 

cyantraniliprole negative inconclusive inconclusive non-sensitiser 

dicamba 
Positive 

(MIT = 1674 µg/mL) positive weak sensitiser non-sensitiser 

mesotrione negative positive weak sensitiser non-sensitiser 

pinoxaden negative positive weak sensitiser sensitiser 

AI1 
positive 

(MIT = 30.14 µg/mL) positive weak sensitiser sensitiser 

Table 3.26 Skin sensitisation classifications of the ten AIs according to the Kao STS 
Red – disagreement with in vivo conclusion, Green – agreement with in vivo conclusion 
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Results from the Kao Integrated Testing System (version 1 & 2)  

The results for the ten AIs from the Kao ITS (1 and 2) are shown in Table 3.27. 

Active ingredient h-CLAT result DPRA result 
KAO ITS 1 
prediction 

KAO ITS 2 
prediction 

acetamiprid 
positive 

(mit = 800 µg/ml) 
positive –  

low reactivity weak sensitiser weak sensitiser 

acibenzolar-s-
methyl negative inconclusive not classified not classified 

benzovindiflupyr negative 
positive –  

high reactivity weak sensitiser weak sensitiser 

chlorantraniliprole negative inconclusive not classified not classified 

chlorothalonil negative 
positive –  

low reactivity weak sensitiser weak sensitiser 

cyantraniliprole negative inconclusive not classified not classified 

dicamba 
positive 

(mit = 1674 µg/ml) 
positive –  

low reactivity weak sensitiser weak sensitiser 

mesotrione negative 
positive –  

high reactivity weak sensitiser weak sensitiser 

pinoxaden negative 
positive –  

high reactivity weak sensitiser weak sensitiser 

AI1 
positive 

(mit = 30.14 µg/ml) 

positive – 
moderate 
reactivity weak sensitiser weak sensitiser 

Table 3.27 Skin sensitisation classifications of the ten AIs according to the KAO ITS (1&2) 

Two out of three defined approach results 

The predictions of skin sensitisation from the two out of three DA for the AI materials tested are given 
in Table 3.28.  

Active ingredient 

In vitro tests 2/3 skin 
sensitisation 

prediction DPRA KeratinoSensTM h-CLAT 

acetamiprid positive negative positive sensitiser 

acibenzolar-s-methyl inconclusive inconclusive negative inconclusive 

benzovindiflupyr positive positive negative sensitiser 

chlorantraniliprole inconclusive inconclusive negative inconclusive 

chlorothalonil positive positive negative sensitiser 

cyantraniliprole inconclusive negative negative 
non-

sensitiser 

dicamba positive negative positive sensitiser 

mesotrione positive positive negative sensitiser 

pinoxaden positive positive negative sensitiser 

AI1 positive positive positive sensitiser 

Table 3.28 Skin sensitisation predictions for the ten AIs according to the 2/3 WoE defined approach 
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The skin sensitisation predictions derived from the two out of three DA (incorporating the CLP skin 

sensitisation calculation) for the ten agrochemical formulations are given in Table 3.29.  

Agrochemical 
formulations 

In vitro tests CLP Skin 
Sensitisation 

calculation result 
2/3 skin sensitisation 

prediction DPRA KeratinoSensTM h-CLAT 

ASYN 1 not conducted positive negative non-sensitiser* 
non-sensitiser 

 

ASYN 2 positive negative negative non-sensitiser 
non-sensitiser 

 

BSYN 3 not conducted positive positive non-sensitiser 
sensitiser 

 

BSYN 4 inconclusive inconclusive positive non-sensitiser 
inconclusive 

 

BSYN 5 not conducted inconclusive negative non-sensitiser* 
non-sensitiser 

 

ASYN 6 positive positive positive sensitiser 
sensitiser 

 

ASYN 7 not conducted inconclusive negative sensitiser 
inconclusive 

 

ASYN 8 positive inconclusive negative sensitiser* 
sensitiser 

 

BSYN 9 inconclusive inconclusive positive sensitiser* 
sensitiser 

 

ASYN 10 not conducted positive positive sensitiser 
sensitiser 

 

Table 3.29 Skin sensitisation predictions for the ten formulations according to the 2/3 WoE defined 

approach 

*CLP Calculation result substituted into 2/3 approach in place of inconclusive in vitro result 
A skin sensitiser result via in vivo experiment  
B non-skin sensitiser results via in vivo experiment  

 

The results in Table 3.29 indicate that six of the tested formulations were identified as skin sensitisers 

and four as non-sensitisers in vivo experiments. Three of the sensitisers identified experimentally in 

vivo were predicted to be skin sensitisers in the 2/3 approach above. Two were predicted as non-

sensitisers, whilst a conclusive prediction for the SYN7 formulation could not be made as the only two 

definitive results available were divergent. Only one of the four formulations identified as non-

sensitising in vivo (SYN 5) was predicted as a non-sensitiser via the 2/3 approach. In contrast to their 

in vivo results, both SYN3 and SYN9 were predicted to be skin sensitisers, with positive KeratinoSensTM 

and h-CLAT test results, whilst an inconclusive prediction was derived for the SYN4 formulation.   
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3.4 Discussion 

This chapter examined the use of the DPRA, KeratinoSensTM and h-CLAT 2D in vitro triple pack test 

methods and their combination with additional in silico tools in defined approaches for the skin 

sensitisation hazard assessment of agrochemical active ingredients. After this initial evaluation of the 

methods focusing on the AIs, the research moved on to gain an understanding of the triple pack 2D in 

vitro methods’ suitability for the skin sensitisation hazard assessment of complex mixtures. 

3.4.1 DPRA Active Ingredient Assessment 

The ten agrochemical AIs identified in Table 3.1 were all tested in the skin sensitisation in vitro triple 

pack, beginning with their assessment in the DPRA test. In the DPRA of the ten AIs, the peptide 

reactivity could not be determined for one substance, acibenzolar-s-methyl. This was due to co-elution 

of acibenzolar-s-methyl with lysine from the HPLC column. In addition to that, the acibenzolar-s-

methyl experimental runs failed to meet acceptance criteria. Therefore, it was not possible to obtain 

valid peptide depletion values for this test item in the DPRA. 

Seven of the of the ten AIs produced experimental peptide depletion values that were considered 

positive in accordance with the DPRA prediction model. The seven AIs were pinoxaden, dicamba, 

mesotrione, acetamiprid, AI1, chlorothalonil and benzovindiflupyr. The positive results indicate that 

these AIs have the potential to cause skin sensitisation as they may trigger the first key event in the 

skin sensitisation AOP.  

Chlorantraniliprole and cyantraniliprole produced mean cysteine and lysine percentage peptide 

depletion results of 3.47% and 1.88% respectively. In accordance with the DPRA prediction model 

these results indicate no, or minimal, reactivity and are thus classed as a negative result. However, 

observations of both chlorantraniliprole and cyantraniliprole following their incubation with the 

peptide buffers showed precipitation. It is possible that the results of the DPRA for these two 

compounds may be an underestimation of the peptide depletion. Therefore, a conclusion on the lack 

of reactivity could not be drawn with sufficient confidence in the case of the negative DPRA result for 
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these two AIs. In addition to this, chlorantraniliprole and cyantraniliprole were tested at 

concentrations lower than the recommended maximum concentration (OECD, 2019a, ECVAM, 2012) 

of 100mM. This is also considered an exception to the prediction model where a negative result is 

obtained (i.e., a sensitising threshold may not have been achieved) which could further indicate a lack 

of confidence in the negative result obtained for these two compounds. As such, the results for 

chlorantraniliprole and cyantraniliprole in this DPRA study are considered inconclusive.  

Chlorothalonil was also tested at concentrations below the recommended maximum concentration, 

however the mean peptide depletion for chlorothalonil was 50.5%, giving a positive result that 

indicated that the material is highly reactive. Consequently, there is no underprediction to be 

considered for this material. In the DPRA evaluation of benzovindiflupyr, precipitation was observed 

immediately after application of the material to the cysteine and lysine buffers and also observed 

again following the 22-26-hour incubation period. This indicates that although a positive result was 

obtained in the DPRA study for benzovindiflupyr (14% mean peptide depletion), the corresponding 

reactivity may have been underestimated due to the precipitate formation.  

3.4.2 KeratinoSensTM Active Ingredient assessment 

The KeratinoSensTM Assay was undertaken to gain an insight into the potential of the AIs to cause 

keratinocyte activation in the second key event of the skin sensitisation AOP. A positive result was 

concluded from the assay and the test substance identified as a potential skin sensitiser if the maximal 

average fold induction observed at any concentration tested (Imax) was statistically significantly higher 

than 1.5-fold (as compared to the basal luciferase activity and the interpolated concentration for 

which there is a 1.5 fold induction of luciferase activity (EC1.5) value was below 1000 μM in at least two 

repetitions). In addition, at the lowest concentration where a gene induction of ≥1.5-fold was 

observed, the cellular viability must be above 70%. 

Of the ten AIs, three produced negative predictions in the KeratinoSensTM assay. This indicates that 

they did not lead to Nrf2-mediated activation of antioxidant response element (ARE)-dependent genes 
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in the second key event of the skin sensitisation AOP. The three AIs were acetamiprid, cyantraniliprole 

and dicamba.  

Acetamiprid was tested at the highest concentration of 2000 µM as per the OECD 442D Test Guideline. 

At the maximal concentration and those below it, acetamiprid did not give rise to the positive result 

triggering luminescence induction of over 1.5-fold. In addition to this, at all 12 tested concentrations 

the MTT cytotoxicity test produced cell viability results of >70% as shown in Figure 3.4. Consequently, 

the negative prediction was accepted as per the prediction model.  

Cyantraniliprole was dosed at the maximal concentration of 500 µM. Luminescence measurement 

following its exposure did not give rise to luminescence induction of over 1.5 fold at any of the 12 

concentrations tested. Although the maximal dose tested for this AI was below the OECD guideline 

and ECVAM SOP recommended maximum concentration, cytotoxicity was observed at the highest of 

the 12 concentrations (cell viability <70%) in two out of three repetitions. Therefore, as an interaction 

between the AI and the test cell system has been observed, the KeratinoSensTM negative prediction 

can be accepted.  

Benzovindiflupyr was tested and, as shown in Figure 3.7, cell viability of >70% was observed at the 

lowest AI concentration to produce a luminescence induction value of > 1.5 in comparison to the 

solvent control. There is a clear dose response observed as an increase in luminescence induction can 

be seen as the AI concentration increases. A dose response can also be seen with cytotoxicity 

evaluation, with a steep drop in viability observed at 31.25 µM. The > 1.5-fold induction is achieved at 

a benzovindiflupyr concentration lower than that triggering the cell viability of < 70%. As the EC1.5 was 

< 1000 µM and a clear dose response was observed the positive KeratinoSensTM prediction for 

benzovindiflupyr can be accepted. 

The mean maximum luminescence induction observed (Imax) in the KeratinoSensTM assay for 

chlorothalonil was 12.67 (above the 1.5 fold positive threshold). The MTT cytotoxicity test indicated a 

steep decrease in cell viability as the chlorothalonil test concentration increased. Figure 3.8 shows a 
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cell viability of >70% at the lowest concentration, however every increased concentration following 

that led to a cell viability of <70%. Luminescence induction of >1.5, when compared to the solvent 

control, was observed at the concentration with >70% cell viability. The calculated geometric mean 

for the EC1.5 was <1000 µM, a clear dose response for luminescence was also observed and was 

comparable in both repetitions. Therefore, chlorothalonil was classed as positive in the KeratinoSens™ 

assay. 

Mesotrione was tested at a concentration range of 2000 µM to 0.98 µM and a mean Imax value of 1.95 

was determined. Cell viability of >70% was observed at the lowest concentration causing 

luminescence induction of >1.5 when compared to the solvent control. The calculated mean for the 

EC1.5 was <1000 μM and a clear dose response for luminescence was also observed as illustrated in 

Figure 3.9. Therefore, mesotrione was classed as positive in the KeratinoSens™ assay. 

Following cell treatment with pinoxaden, a mean Imax luminescence measurement of 23.7 was 

determined. The mean EC1.5 concentration result was 28.6 µM. Cell viability of >70% was observed 

at the lowest dose with luminescence induction >1.5 when compared to the solvent control and at 

least two concentrations tested gave rise to viability >70%. The calculated mean for the EC1.5 was 

<1000 µM and a clear dose response for luminescence was also observed as shown in Figure 3.10. As 

such, pinoxaden was classed as positive in the KeratinoSens™ assay and was considered to activate 

the Nrf2 transcription factor. 

The mean Imax determined for AI1 was 2.87, while the mean EC1.5 concentration was 28.79 µM. Cell 

viability of >70% was observed at the lowest dose with luminescence induction >1.5 when compared 

to the solvent control and at least two concentrations tested gave rise to viability >70%. The calculated 

mean for the EC1.5 was <1000 µM and a clear dose response for luminescence was also observed as 

shown in Figure 3.11 

Due to solubility issues with the solvent, acibenzolar-s-methyl and chlorantraniliprole were both 

tested at maximal concentrations below the guideline recommended concentrations. Luminescence 
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measurement did not give rise to an increase in luminescence induction over 1.5-fold in either AI. 

However, as cell viability below 70% was not observed at any of the concentrations tested in the 12 

dose range of either of these AIs, a negative prediction could not be accepted and instead the 

KeratinoSensTM predictions for these AIs are considered to be inconclusive. 

3.4.3 h-CLAT Active Ingredient assessment 

The ten agrochemical active ingredients were tested in the in vitro h-CLAT assay. This was 

performed to understand the potential for each of the ten AIs to successfully activate the third 

key event of the skin sensitisation AOP. This is the activation process in which dendritic cells 

change from antigen processing to antigen presenting cells. This activation process involves the 

modulation of the expression of dendritic cell surface phenotypic markers CD54 and CD86. The 

expression of CD54 and CD86 protein markers on the surface of the human monocytic leukaemia 

cell line, following exposure to the ten AIs was measured.  

Based on results of solubility and CV75 dose-finding tests, the AIs were formulated in a selected 

solvent (DMSO or saline as shown in appendix 7) to final concentrations of between 2.665 mg/mL 

and 500.0 mg/mL (between 5.330 μg/mL and 5000 μg/mL final top test concentration on the 24-

well plate). The AIs were identified as potential skin sensitisers if the RFI for CD54 was ≥ 200% 

(cell viability must be > 50%) and/or if the RFI for CD86 was ≥ 150% (cell viability must be > 50%) 

with concordant results in at least two independent h-CLAT runs. 

In the h-CLAT evaluation five AIs produced results that were in agreement with their in vivo animal 

skin sensitisation test outcomes. These five AIs were benzovindiflupyr, chlorantraniliprole, 

cyantraniliprole, mesotrione and AI1. In relation to the comparative in vivo results, the only true 

positive that was identified by the h-CLAT assay was AI1. Two experimental runs identified 

concentrations of AI1 leading to an increase in the CD54 cell surface marker considered positive. 

The remaining in vivo skin sensitising AIs (acibenzolar-s-methyl, chlorothalonil and pinoxaden) 
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produced false negative results in the h-CLAT assay. In h-CLAT assay two repetitions were 

conducted for each of these three AIs. In the experimental runs acibenzolar-s-methyl, 

chlorothalonil and pinoxaden failed to produce a single repetition with a CD86 or CD54 cell surface 

marker increase at the relative fluorescence intensity values considered positive.  

In a study by Takenouchi et al (2013) the predictive performance of the h-CLAT assay was 

evaluated for 112 water soluble chemicals with a log P of < 3.5 (Takenouchi et al., 2013). The 

sensitivity, specificity and overall accuracy reported by Takenouchi et al (2013) for the h-CLAT was 

94%, 74% and 88%, respectively. As indicated in table 3.10, all ten of the AIs tested had calculated 

log P values < 3.5. However, the predictive performance results (presented in appendix 7) 

generated from the testing of these agrochemicals produced lower values than those reported by 

Takenouchi et al (2013). Takenouchi et al (2013) tested 143 chemicals in the h-CLAT of which 31 had 

log P values above 3.5. The results showed that the h-CLAT has low sensitivity to chemicals in this log 

P range, with false negative results being identified for 13 of the 31 chemicals. In addition to the issue 

of log P domain, poor solubility was reported by Takenouchi et al (2013) with precipitation or oil 

droplet formation in the culture medium at the concentrations tested. Due to these issues, any 

negative results from the h-CLAT assay on test substances with a log P > 3.5 are considered 

inconclusive.  The sensitivity, specificity and accuracy of the h-CLAT assay for the ten agrochemical 

AIs tested were 25%, 67% and 50% respectively. It could be proposed that a greater number of 

chemicals identified as skin sensitisers in vivo could have provided greater confidence in the 

predictive performance results seen here, in particular low sensitivity result. However, it is also 

worth noting that the high cytotoxicity observed from tested AIs such as chlorothalonil led to a 

relatively low maximum test concentration being used in the h-CLAT test (i.e. 5.3 µg/mL). As such 

it could be considered that a higher concentration of the test material may lead to induction, 

however the h-CLAT test criteria prevent exploration into the more cytotoxic concentrations.  
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3.4.4 Active ingredient assessment of the skin sensitisation defined approaches  

 Kao Sequential Testing Strategy 

The results for the Kao sequential testing strategy skin sensitisation/non skin sensitisation 

classifications of the ten agrochemical AIs in table 3.26 indicate that only three of the ten evaluated 

predictions agreed with the in vivo experimental results for those AIs. The three correctly predicted 

AIs were chlorothalonil, pinoxaden and AI1.  

Chlorothalonil was determined to be a skin sensitiser in both the in vivo testing and by the Kao STS 

DA. The Kao STS DA also allows for an assessment of skin sensitisation potency of test materials. As 

the initial point of decision making in the Kao STS (as shown in Figure 3.3) is the review of h-CLAT assay 

results, a negative chlorothalonil result in the h-CLAT assay indicated that the highest potency value 

assigned by the STS was that of “weak sensitiser”. The positive DPRA result for chlorothalonil 

confirmed this weak sensitiser classification by the Kao STS. These chlorothalonil results demonstrate 

a limitation of the Kao STS categorisation strategy. The strategy relies upon the sensitivity and 

accuracy of the h-CLAT assay in order to correctly differentiate strong from weak skin sensitisers. If a 

false negative test result is obtained from the h-CLAT assay, a misclassification through the Kao STS 

can be expected. This limitation is also seen with the pinoxaden AI. Pinoxaden has a CLP skin 

sensitisation category 1A classification as shown in table 1 and the DPRA and KeratinoSensTM for this 

material were both positive, showing agreement with the in vivo sensitisation. However, the h-CLAT 

results for this material were negative and as such its overall potency is underpredicted by the Kao 

STS classification. 

There are a number of sources of existing experimental data for chlorothalonil. The United Nations 

Food and Agriculture Organisation (UN, 2015) reported that the majority of recorded in vivo study 

results for chlorothalonil indicate that it is a skin sensitiser. A guinea pig test conducted in China gave 

a “faint sensitiser” conclusion for chlorothalonil (UN, 2015). Another two reported skin sensitisation 

studies on chlorothalonil performed according to OECD Test Guideline 406 (guinea pig maximisation 
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test (GPMT)) provided conclusive evidence that the chlorothalonil is a sensitiser. However, it is also 

worth noting that the first GPMT study gave equivocal results due to the use of a chlorothalonil 

concentration that led to irritation during the GPMT challenge phase. In the second GPMT study on 

chlorothalonil, nine out of ten animals produced evidence of skin sensitisation. This second GPMT 

study was deemed to be more credible than the first as appropriate chlorothalonil concentrations 

were used throughout (UN, 2015). However, contradicting these results, a Buehler study on 

chlorothalonil by the US EPA (EPA, 2011) reported that none of the tested animals demonstrated any 

dermal reactions after the chlorothalonil challenge phase. Published case reports on human exposure 

(UN, 2015) also contradicted the EPA Buehler study, finding that chlorothalonil was a skin sensitiser. 

In addition, Boman et al (2000) (Boman et al., 2000) reported the findings of a LLNA which determined 

that chlorothalonil is an “extremely potent sensitiser”.  

Given the available published weight of evidence, chlorothalonil is currently considered to be an 

extremely potent skin sensitiser. A published peer review on chlorothalonil by European Food Safety 

Authority (EFSA) (EFSA et al., 2018) considered a category 1A skin sensitisation classification to be 

appropriate for this chemical. As such although it correctly identified chlorothalonil as a sensitiser, the 

Kao STS underpredicted the potency of chlorothalonil due to the h-CLAT indicating an inability for 

chlorothalonil to activate the third key event in the skin sensitisation AOP. 

The Kao STS DA gave a classification of weak sensitiser for pinoxaden based on the in vitro and in 

chemico results. The classification of pinoxaden as a sensitiser from the Kao STS was in agreement 

with the in vivo data (WHO, 2019). Results from in vivo studies are presented in an ECHA harmonised 

classification and labelling (CLH) report on pinoxaden (ECHA, 2016a). This report mentions two skin 

sensitisation tests conducted on pinoxaden. The first was a GPMT in which, at the maximal 

concentration of 50%, there was no indication of a dermal reaction in all 19 tested animals following 

challenge test (1 animal died). The second in vivo test reported in the CLH report was for the LLNA 

which produced an EC3 value of 0.43%, leading to the conclusion that pinoxaden was a strong 
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sensitiser under the conditions of that assay. Although no indication of skin sensitisation was in the 

GPMT, this may potentially have been as a result of alternative vehicles used in the two tests 

(carboxymethyl cellulose and Tween 80 used in the GPMT, whilst N,N-dimethylformamide was used 

in the LLNA) or a species specific effect observed as has been previously reported to occur with oleic, 

linoleic and linolenic acid (Roberts et al., 2016, Kreiling et al., 2008). With that being stated, a single 

human case of skin sensitisation was reported (ECHA, 2016a) in which pinoxaden was identified as the 

cause based on the exclusion of other potential causative agents by skin patch testing. Based on the 

result of the LLNA test, pinoxaden has an agreed harmonised classification as a category 1A strong 

skin sensitiser (EFSA, 2013a). As the weight of evidence indicates that pinoxaden is a strong skin 

sensitiser, the Kao STS classification has underestimated its potency. As observed with chlorothalonil, 

the underestimation of potency by the Kao STS has been driven by the negative result obtained from 

the h-CLAT result on pinoxaden.  

 A further four AIs showed conflicting results between the Kao STS and the reported in vivo 

conclusions. These four materials, namely acetamiprid, benzovindiflupyr, dicamba and mesotrione, 

were predicted to be weak sensitisers by the Kao STS whilst their in vivo data indicated no skin 

sensitisation potential. In a joint review of acetamiprid by FAO/WHO a negative GPMT skin 

sensitisation result was reported (Banasiak et al., 2012) and, as such, the material was considered not 

to be a skin sensitiser. However, the positive h-CLAT and DPRA result lead to acetamiprid being 

classified as a skin sensitiser by the Kao STS. Specifically, based on the minimum induction threshold 

(MIT) of 800 µg/mL in the h-CLAT assay, acetamiprid was classified as a weak sensitiser. A similar 

outcome was observed for dicamba, with the h-CLAT and DPRA results leading to a classification of 

weak sensitiser by the Kao STS. For both acetamiprid and dicamba the KeratinoSensTM assay was not 

taken into consideration by the Kao STS which gave a negative result for the activation of 

keratinocytes. The accuracy of the Kao STS was limited due to the fact it did not consider the 

KeratinoSensTM data, which related to the second KE of the skin sensitisation AOP.  
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It is also possible that the in vivo results are an underprediction of the AIs skin sensitisation potential. 

For underprediction it is possible that in the GPMT, Buehler assay or LLNA in vivo test the sensitisation 

threshold concentration required to cause an effect may not have been achieved. There is a greater 

possibility of this occurring with dicamba than with acetamiprid, as the latter does not have irritant 

properties that would limit its in vivo study concentration. Whilst In contrast, dicamba has been 

classified as an irritant (EFSA, 2011a) and may, therefore, have had reduced concentrations in the 

GPMT. In addition to that limitation, these in vivo studies have been performed on test species that 

are not the ultimate target species of concern. With that in mind there were no reported cases of 

human sensitisation reactions associated with the use of dicamba from 1982 to 2006 according the 

Pesticide Handler Database (O’Malley, 2010). As such, the weight of evidence indicates an over 

estimation by the Kao STS rather than an underprediction by the in vivo tests for dicamba and 

acetamiprid.  

The Kao STS was unable to provide a prediction for three of the AI materials tested, namely 

acibenzolar-s-methyl, chlorantraniliprole and cyantraniliprole. Inconclusive outcomes were obtained 

for these three AIs due to the inability to provide results for these AIs from the DPRA, one of the two 

assays used in the Kao STS DA.  With regard to the DPRA assay, peptide co-elution was observed with 

acibenzolar-s-methyl. However, peptide depletion could not be determined for acibenzolar-s-methyl 

as its reaction with the lysine peptide led to co-elution from the HPLC column, resulting in excessively 

high peak areas. For cysteine, the peptide depletion generated for acibenzolar-s-methyl showed a 

continuing decrease over the time of the HPLC run, which resulted in its peak area coefficient 

variability not meeting the acceptance criteria of the assay (OECD, 2019a). Therefore, it was not 

possible to obtain valid peptide depletion values for acibenzolar-s-methyl and an inconclusive result 

was the result of this DPRA test. In the absence of a conclusive DPRA result and without a positive h-

CLAT result, the Kao STS does not allow for a prediction to be made on the skin sensitisation potential 

of a test material, leaving an inconclusive overall outcome using this DA for acibenzolar-s-methyl.  



110 
 

Chlorantraniliprole and cyantraniliprole produced mean cysteine and lysine peptide depletion results 

of 3.47 and 1.88% respectively. In accordance with the DPRA prediction model, these results indicate 

no or minimal reactivity which is interpreted as a negative result. In the absence of any confounding 

factors, these negative DPRA results, alongside the negative h-CLAT results obtained for both AIs, 

would in accordance with the Kao STS (OECD, 2017, Nukada et al., 2013) lead to a negative assessment 

for skin sensitisation potential. However, observations of both chlorantraniliprole and cyantraniliprole 

following their incubation with the peptide buffers showed the formation of precipitation. As such, it 

is possible that the DPRA results for these two compounds may be an underestimation of the peptide 

depletion. Therefore, a conclusion on the lack of reactivity could not be drawn with sufficient 

confidence for these two AIs on the basis of the DPRA results. In addition to this, chlorantraniliprole 

and cyantraniliprole were tested at concentrations lower than the recommended maximal 

concentration (OECD, 2019a, ECVAM, 2012) of 100mM. This is also considered an exception to the 

prediction model, where a negative result is obtained (i.e. a sensitising threshold may not have been 

achieved) and further indicates a lack of confidence in the negative result obtained for these two 

compounds. As such, the results for chlorantraniliprole and cyantraniliprole in this DPRA study were 

considered inconclusive. This led to an overall prediction of the skin sensitisation from the Kao STS as 

being inconclusive. At present, the Kao DA does not allow for the use of alternative assays where a 

method may not be suitable for a test material, as has been observed here. Use of an alternative assay 

such as the KeratinoSensTM or integration of the results from an in silico method in circumstances such 

as these may allow for a complete evaluation of a given test material avoiding inconclusive 

conclusions.  

As indicated in the Methods Section, in order to perform the 2D in vitro skin sensitisation tests on the 

agrochemical formulations, there was a need to calculate a theoretical MW for each formulation in 

order to achieve a defined test item concentration in a solvent for testing (Settivari et al., 2015a). A 

limitation observed with this was that calculating an average MW for each of the formulations was 

only accurate to a limited degree. There are many possible sources of inaccuracy in the calculation of 
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theoretical molecule weight, but in particular this was due to the presence of large polymer 

ingredients in the formulations that had no defined MW. As indicated in Table 3.4, the maximum 

percentage of polymers with unknown MW was 4.5%. A potential effect of this is that there could be 

an incorrect calculation of the amount of test material required to achieve the 100mM solution in 

vehicle, possibly leading to solubility issues (as was frequently observed throughout the formulation 

testing) or, at worst, an underprediction of skin sensitisation potential due to lower actual test 

concentration ranges being tested than indicated by calculation. In addition to this, published test 

method guidelines for the KeratinoSensTM and h-CLAT assays document limitations associated with log 

P ranges. Specifically, for the h-CLAT assay, substances with a log P of greater than 3.5 have a tendency 

to produce false negative results, as stated in section 3.4.3. A similar limitation has been reported with 

the KeratinoSensTM assay, where substances with a log P above 7 are insoluble in the exposure 

medium. However, for this assay, if test material with a log P value > 7 is able to demonstrate solubility 

or a stable dispersion can be obtained, testing can be conducted and results accepted accordingly 

(OECD, 2018b).  As indicated by the reported log P values in Table 3.13, this physicochemical property 

does not raise any issues with the interpretation of data for the AIs. However, accounting for solubility 

is not so straightforward for the agrochemical formulations. Whilst work by Duman et al (2014) and 

Dordick (1989) was considered while attempting to develop a method to determine the log P of the 

ten agrochemical formulations, it became clear that being able to calculate the log P for these test 

formulations was not possible (Dordick, 1989, Duman et al., 2014). Placing the formulation into the 

octanol:water system would lead to the different ingredients of the formulation separating out at 

different levels as they each have their own individual log P values, and as such deriving a 

octanol:water partition-coefficient for the formulation as a whole is not an option. Taking that into 

account, use of the test guideline prescribed solvents, such as acetonitrile, to form a fully dissolved 

test solution will lead to the individual components of the formulations (such as the AIs or preservative 

materials) being separated in the test mixture. This presents the test systems of the individual assays 

with a form of the agrochemical formulations that could be considered to not be truly representative 



112 
 

of the agrochemical products as they would appear in the field. As such the conclusions drawn from 

these tests may perhaps not be considered suitable for true hazard assessment of this test material 

type. As an example of other possible vehicles, pluronic is used frequently for testing agrochemical 

formulations in the LLNA. Subsequently a 1% pluronic PE 9200 vehicle was explored during this 

research, however, the viscosity of the mixture did not allow for accurate testing and therefore this 

was not pursued further.     

 Kao Integrated Testing Strategy (version one and two) 

The skin sensitisation predictions from the Kao integrated testing strategies (ITS) (one and two) for 

the ten AIs were examined and the results are in Table 3.27. Kao ITS predictions for five of the ten AIs 

were contradictory to their in vivo results. Acibenzolar-s-methyl was predicted not to have any skin 

sensitising potential by the Kao ITS, whilst the in vivo GPMT was positive (UN, 2016, European Food 

Safety, 2014). The other four AIs incorrectly assessed, namely acetamiprid, benzovindiflupyr, dicamba 

and mesotrione were predicted to be weak skin sensitisers by the Kao ITS in contrast to their negative 

in vivo test results (EFSA, 2015, EFSA, 2011a, European Food Safety, 2016, European Food Safety, 

2015).  

Kao ITS predictions for four of the remaining five AIs were in agreement with the skin sensitisation 

potential identified by the in vivo test results. Amongst these four, cyantraniliprole and 

chlorantraniliprole were identified by the Kao ITS as materials that should not be classified for skin 

sensitisation. Overall, only three of the ten AIs were predicted by Kao ITS as non-sensitisers, whilst six 

of the ten AIs were identified as non-sensitisers by in vivo testing. However, the Kao ITS predictions 

for acibenzolar-s-methyl, cyantraniliprole and chlorantraniliprole may be considered to inconclusive 

rather than negative for skin sensitisation. This is because of the results obtained from the in vitro 

assays, specifically the DPRA result. The DPRA assay produced inconclusive results for these three AIs 

and, as such, a clear negative skin sensitisation prediction should not be derived using the Kao ITS. 
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This is because a third of the data required for the WoE assessment for this DA strategy is not available 

to make a complete conclusion.  

The DEREK Nexus skin sensitisation likelihood prediction obtained for the pinoxaden AI was equivocal. 

As indicated in Figure 3.1, an equivocal DEREK Nexus prediction is of low confidence on the prediction 

scale described by (Judson et al., 2013). As such, a lack of certainty score of 0 was assigned to the 

DEREK Nexus assessment in the Kao ITS version one for pinoxaden. This approach is as conducted by 

(Macmillan and Chilton, 2019) where a reasoning level of equivocal obtained from DEREK Nexus, or a 

negative prediction of non-sensitiser with mis/un-classified features, was not considered further in 

the DA. The in vitro assay results from the testing of pinoxaden were such that the equivocal DEREK 

Nexus result did not have an impact on the overall classification assigned in accordance with the Kao 

ITS potency total battery score. Specifically, the DPRA assay outcome for pinoxaden indicated high 

reactivity and, as such, it was assigned a Kao ITS score of three. In contrast, the h-CLAT result for 

pinoxaden was negative and thus assigned a score of zero. The overall ITS score for pinoxaden was 

three, placing it in the weak skin sensitiser (GHS category 1B) 2-6 score category for the Kao ITS version 

1 DA. As such, the presence or absence of an additional score from the in silico evaluation did not have 

a deciding impact on the overall categorisation of this AI. However, where an equivocal result is 

obtained from DEREK Nexus, it may be considered more appropriate to take a conservative approach 

and assign a score of one rather than zero. This approach would be appropriate in instances where 

this additional point would alter the final skin sensitisation categorisation of the material being tested.  

When consideration is given for the Kao ITS potency assessment of the four AIs demonstrated to be 

skin sensitisers in vivo, there appears to be a demonstrable underestimation of skin sensitisation 

potential. Pinoxaden and AI1 have LLNA EC3 values of < 1% (Australian Government, 2019, ECHA, 

2016a) and, according to the GHS and CLP classification criteria, an EC3 value of less than 2% supports 

classification as a category 1A (strong sensitiser) (ECHA, 2017b, GHS, 2017). In addition, an expert peer 

review in the EFSA journal on chlorothalonil considered that a category 1A classification for skin 
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sensitisation was appropriate (EFSA et al., 2018). The Kao ITS potency predictions for pinoxaden, AI1 

and chlorothalonil were the same for all three, namely assessing them as weak sensitisers. This was 

an underprediction of the potency of these AIs in comparison to the in vivo results.  As stated 

previously, the Kao ITS DA failed to identify acibenzolar-s-methyl as a skin sensitiser and, as such, a 

potency evaluation was not conducted. Predictions of skin sensitisation were not matched 

consistently between the two in silico models used (OECD QSAR Toolbox and DEREK Nexus) when 

evaluating all ten AIs. However, this did not lead to any differences in the final skin sensitisation 

predictions obtained from the Kao ITS version one or version two.  

 Two out of three defined approach 

In the two out of three approach, as initially described by (Bauch et al., 2012), skin sensitisation can 

be predicted using up to three accepted non-animal OECD Test Guideline test methods (e.g. DPRA, 

KeratinoSensTM or LuSens and h-CLAT or U-SensTM). In this investigation, sequential testing was 

performed using the DPRA, KeratinoSensTM and the h-CLAT assays in no defined order. The two out of 

three defined approach (2/3 DA) uses the weight of evidence of the three in vitro assays to provide a 

positive or negative prediction of skin sensitisation. This DA allows for skin sensitisation potential of 

single chemicals to be predicted but does not extend to predicting skin sensitisation potency (OECD, 

2017). Upon reviewing the predictions using the 2/3 DA in this investigation, based on the in vitro 

assay results of the ten AIs, four AIs had predictions that were in agreement with the in vivo test 

conclusions, these results are shown Table 3.28. These four AIs were chlorothalonil, pinoxaden, AI1 

(all predicted to be skin sensitisers) and cyantraniliprole (predicted non-sensitiser). There were four 

predictions from the 2/3 DA for AIs that did not match the in vivo skin sensitisation test results. These 

were for acetamiprid, benzovindiflupyr, dicamba and mesotrione. These four AIs had results from in 

vivo tests indicating that none of them were skin sensitisers. The 2/3 DA, however, indicated that all 

four of these AIs were skin sensitisers with at least two of the three in vitro tests producing a positive 

result for each of these AIs. The in chemico DPRA results were positive for all four AIs predicted by the 

2/3 DA to be skin sensitisers, contrary to the in vivo results showing them to be non-sensitisers. A 
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hypothesis that can be derived from this is that key event one, i.e. the MIE, of the skin sensitisation 

AOP was being passed by acetamiprid, benzovindiflupyr, dicamba and mesotrione. Or that the DPRA 

in chemico method was over predictive for these AIs leading to an over-estimation by the 2/3 DA.  

None of the AIs were predicted negative by the DPRA. Seven of the ten AIs produced positive results 

from the DPRA, with the remaining three (acibenzolar-s-methyl, chlorantraniliprole and 

cyantraniliprole) giving inconclusive results. For acibenzolar-s-methyl and chlorantraniliprole, this led 

to an overall inconclusive prediction by the 2/3 DA. Both acibenzolar-s-methyl and chlorantraniliprole 

also had inconclusive KeratinoSensTM results alongside negative h-CLAT results, leading to the overall 

inability of the 2/3 DA to make a final prediction for these two AIs. Due to solubility issues with the 

solvent in the testing of acibenzolar-s-methyl and chlorantraniliprole, both were tested at maximal 

concentrations below the guideline recommended maximum concentrations for the KeratinoSensTM. 

The measurement of luminescence did not give rise to an increase in luminescence induction of 

more than 1.5-fold in either AI. However, as cell viability below 70% was not observed at any of the 

concentrations tested in the 12 dose range of either of these AIs, a negative prediction could not be 

accepted. This leaves an inconclusive KeratinoSensTM result for acibenzolar-s-methyl and 

chlorantraniliprole.  

Overall, the 2/3 DA identified three of the four in vivo skin sensitisers. However, the approach only 

identified one of six in vivo non skin sensitising AIs, whilst four of the six as sensitisers and one giving 

an inconclusive result. Removing the two inconclusive 2/3 DA predictions (acibenzolar-s-methyl and 

chlorantraniliprole), leaving a test sample of eight, the specificity observed from this DA is low at 20%. 

One negative prediction was provided by this DA, and since it was in agreement with the in vivo result 

for that AI, the negative predictivity for the 2/3 DA based on the AIs tested was 100% although this is 

somewhat misleading due to there only being one compound. The overall performance of this DA 

based upon the results of the eight definitive predictions for the ten agrochemical active ingredients 

tested, as compared to the in vivo test results was 50%. When the inconclusive 2/3 DA predictions 
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(recorded as predicted neutral) were included in the results evaluation, in a 3x3 confusion matrix 

(included in appendix 8), the total success was lower at 40%. In the evaluation of the 2/3 DA 

predictions, both including and excluding the inconclusive predictions, a Cohens Kappa value of less 

than 0.2 was observed indicating a poor level of agreement with the in vivo results (Modi et al., 2012, 

McGee, 2018). 

3.4.5 Analysis of the results for Agrochemical formulation in vitro triple pack testing 

After completing the in vitro triple pack testing of the ten AIs and reviewing the results, this 

investigation moved on to pursue the next objectives. Specifically, how the in vitro triple pack test 

methods can be used to evaluate the skin sensitisation potential of the complex mixtures and if any 

changes could be made to the triple pack standardised methods for the assessment of PPP 

formulations. 

 DPRA test formulation assessment 

Solubility issues limited the number of formulations that could be tested in the DPRA test. Five (SYN2, 

SYN4, SYN6, SYN8 and SYN9) of the ten agrochemical formulations were tested in the DPRA. Various 

methods and solvent combinations were unable to produce acceptable testing solutions for the 

remaining five formulations (SYN1, SYN3, SYN5, SYN7 and SYN10). This inability to produce acceptable 

testing solutions was observed through either poor/no solubility and/or because the solvent 

combinations led to substantial peptide depletion profiles, limiting the dynamic range of the test 

system. Test formulations SYN2, SYN6 and SYN8 produced positive DPRA results indicating that they 

have the potential for the skin sensitisation MIE. Due to the impact on the cysteine peptide depletion 

caused by the acetonitrile:DMSO solvent, the use of the cysteine prediction model (Table 3.8) to 

provide a reactivity class has been excluded. However comparing the concentration levels with the 

DPRA control C containing the acetonitrile:DMSO mix it appears that formulations SYN2 and SYN8 

have high peptide reactivity. The cysteine/lysine prediction model (Table 3.7) places materials that 

lead to a mean peptide depletion in the range of 42.47% to 100% in the high reactivity class. As such 
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this places the tested formulations SYN2 and SYN8 within the high reactivity DPRA class. As the 

observed cysteine depletion caused by the DMSO:Acetonitrile solvent alone was 0.073 mM (85.4%) 

(shown in appendix 3), the measured high peptide depletion levels for formulations SYN2 (97%) and 

SYN8 (90%) can be confidently accepted as true DPRA positives. Though it is acknowledged that their 

reactivity may be overpredicted.  

Formulations SYN4 and SYN9 showed significant interference in the DPRA assay through 

physicochemical means of stabilising the cysteine peptide. This interference was potentially via 

oxidation of the peptide leading to dimerisation, as proposed by Akimoto et al (2020). Akimoto et al 

(2020) demonstrated that although DMSO is known to be an excellent solvent, it is also known to 

promote the oxidation of thiol groups. Their report shows a DMSO dose dependent decrease of 

residue levels of cysteine peptide due to oxidation in the DPRA (Akimoto et al., 2020). The use of 5% 

DMSO in acetonitrile resulted in a decrease in the mean cysteine peptide levels that were still within 

acceptable range, as per the test guideline (OECD, 2019a). However, the report states this oxidation 

of thiol groups by DMSO still presents a high likelihood that some individual measurements will still 

fall outside of the test guideline acceptable range. In addition, precipitation was observed during their 

solubility assessment. It is therefore very difficult to make assumptions regarding these two 

formulations and thus an inconclusive DPRA result for both formulations has been reached.  

 KeratinoSensTM test formulation assessment 

Of the six formulations identified as skin sensitisers through in vivo experiments, three were 

demonstrated to have keratinocyte induction potential in the KeratinoSensTM assay. These three 

formulations were SYN1, SYN6 and SYN10. They produced Imax values of 3.96, 7.90 and 2.96 

respectively, with a low EC1.5 value of 0.38 µM for the SYN6 formulation. It should be acknowledged 

that the KeratinoSensTM test has the limitation of not being able to determine potency. Nonetheless, 

the low EC1.5 value produced from formulation SYN6 gives an indication that this formulation is more 

reactive in the second key event of the skin sensitisation AOP than the other tested formulations.  
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The KeratinoSensTM results for SYN3 were contrary to the formulation’s non-sensitising result from 

the LLNA. SYN3 produced a positive KeratinoSensTM result with the highest EC1.5 of the four positive 

formulation results and three times that of its nearest comparable formulation, SYN1. This indicates a 

much greater concentration of the SYN3 formulation is required to trigger key event two than for the 

other formulations. This contrasts with the lower intensity (with an Imax of 2.56) at which SYN3 

triggered key event two, which was lower than the positive results of the other three formulations 

tested at lower maximum concentrations.  

The in vivo experimental results are being considered the benchmark against which the in vitro results 

are being assessed. As such the KeratinoSensTM assay was able to produce comparable positive results 

for the remaining three formulations identified as skin sensitisers in vivo. Formulations, SYN7 and SYN8 

produced inconclusive results in the KeratinoSensTM. Whilst formulation SYN2 produced a negative 

result conflicting with the in vivo result. Following initially solubility testing, the SYN2 formulation was 

shown to be soluble in DMSO at the top concentration of 335.5 µM. Concurrent cytotoxicity testing 

of the SYN2 formulation using MTT demonstrated that the maximum concentration induced cell 

viability of <70% (approximately 40% as shown in Figure 3.15), whilst luciferase induction remained 

below the 1.5 threshold at all 12 tested concentrations. Luciferase induction activity may potentially 

have been inhibited at the maximum SYN2 concentration, due to the observed steep cytotoxicity at 

the high end of the SYN2 test concentration range. An argument against this hypothesis is that the 

absence of a luciferase induction dose response from the SYN2 concentration ranges tested indicates 

an absence of an increase in keratinocyte activation potential in the SYN2 formulation. This negative 

KE2 interpretation is aligned with the current OECD 442D (2018) KeratinoSensTM test guideline. The 

test guideline states that, “if cytotoxicity (<70% viability) is reached at a maximal soluble test 

concentration <1000 µM, criteria for negativity can still be applied” (OECD, 2018b). OECD (2018b) was 

an update from the previous version of the 2015 OECD KeratinoSensTM test guideline, which stated 

that negative results from concentrations of <1000 µM should be considered inconclusive (OECD, 

2015b).  
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The use of the current KeratinoSensTM acceptance criteria has led to the results of remaining 

formulations tested in the assay being determined as inconclusive. All five remaining formulations 

(SYN4, SYN5, SYN7, SYN8 and SYN9) did not produce an Imax equal to or greater than the 1.5 threshold 

through any of the formulations tested concentration ranges. Alongside that they were unable to 

produce cell viability of <70% at their maximum test concentrations, failing to demonstrate 

keratinocyte test material interaction for these five formulations in the KeratinoSensTM assay.  

 h-CLAT test formulation assessment 

All ten agrochemical formulations were also tested in the h-CLAT assay. Of those ten only three 

produced h-CLAT results that agreed with the in vivo results. These three concordant results were for 

the SYN5 (negative), SYN6 (positive) and SYN10 (positive) formulations. The overall performance of 

the h-CLAT on these formulations compared to the in vivo experimental results was 30%. Of the four 

in vivo non-sensitising formulations, three (SYN3, SYN4 and SYN9) were identified as positive in the h-

CLAT alongside SYN6 and SYN10. These positive h-CLAT results given a sensitivity value of 33.3%, 

indicating a high potential for false positive h-CLAT predictions for agrochemical formulations.  

The negative predictivity of the h-CLAT assay for these ten formulations was 20%. This was as only one 

of the five negative h-CLAT predictions was in agreement with the in vivo experimental results, as 

shown in Table 3.23. This led to a relatively low specificity of 25%, reflecting a low proportion of 

formulations correctly predicted as being non skin sensitisers.  

Although the number of tested formulations could be considered low, a Kappa coefficient value was 

calculated to indicate the extent of agreement between the in vivo and in vitro experimental results. 

The calculated kappa value was negative, -0.40, and according to McGee et al (2018), this indicates 

that any observed agreement was worse than a chance agreement (McGee, 2018). Due to the 

relatively low number of formulations tested, future investigative work using a larger data set may 

provide greater confidence in the kappa value obtained.  
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 Final Weight of Evidence Evaluation of non-animal skin sensitisation test 

results on agrochemical test formulations 

A weight of evidence (WoE) approach was applied to produce a final prediction of the skin sensitisation 

potential of the ten formulations. A two out of three WoE approach used the three in vitro results. 

Where there was an inconclusive test prediction or inability to conduct a test (due to solubility or 

cytotoxicity issues), the results from the CLP threshold calculation have been substituted into the WoE 

approach.  

Using the WoE approach, four of the ten formulations produced skin sensitisation predictions that 

were in agreement with their in vivo experimental results, as shown in Table 3.29. Amongst these 

formulations, SYN5 and SYN8 required the inclusion of threshold calculation results in place of the 

inconclusive KeratinoSensTM predictions. SYN5 was predicted to be non-sensitising, whilst the SYN6, 

SYN8 and SYN10 formulations were predicted as sensitising formulations.  

Two of the ten formulations still produced inconclusive final skin sensitisation predictions through the 

WoE approach. This was observed in formulations SYN4 and SYN7, as definitive results could not be 

obtained from the DPRA or KeratinoSensTM tests and results from the CLP threshold calculation and h-

CLAT were disconcordant.  

The WoE predictions for the SYN1, SYN2, SYN3 and SYN9 formulations were not in agreement with 

the in vivo experimental results. Of these four formulations, two had their WoE predictions based 

solely on two concordant in vitro assays. For both SYN2 and SYN3 concordant KeratinoSensTM and h-

CLAT assay results led to WoE predictions that were in disagreement with the in vivo results. Omitting 

the inconclusive WoE results, the sensitivity of this approach was calculated to be 60% whilst the 

specificity and total success were 33% and 50% respectively. These performance criteria values are 

relatively low and do not indicate that a good degree of confidence can be given to the WoE approach 

predictions for these agrochemical formulations.  
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A prominent limitation of using these 2D in vitro skin sensitisation assays has been the inability to 

complete the tests for several of the ten formulations. As identified with the DPRA testing performed 

here, the need to completely dissolve the test material in a solvent may not always be possible. In 

formulations where it is possible, the dissolved test formulation does not represent the agrochemical 

formulation as workers or bystanders may be exposed to it in the field. As such the use of these 2D in 

vitro cell models to conduct a skin sensitisation hazard assessment for complex mixtures, such as the 

agrochemical formulations is not appropriate. In addition to that, the results obtained indicate poor 

predictivity for these complex mixture test substances. As such, further investigation into methods 

that allow for the testing of these formulations without disruption/transformation of their intended 

form needs to be done. In Chapter Five this thesis moves to investigate the SENS-IS 3D in vitro model 

that uses the human reconstructed human epidermis. This 3D in vitro assay will be investigated to 

understand if this adaptation in the test system exposure improves the skin sensitisation predictivity 

for agrochemical formulations.    

3.5 Conclusion 

In a final conclusive review of the four DAs used to assess the skin sensitisation potential of the 10 

agrochemical AIs, it can be seen that the Kao ITS 1 and 2 DAs were able to assess all 10 AIs. Six of the 

10 AIs were correctly identified agreement with the in vivo test results. Whilst the remaining four AIs 

had false positive predictions generated through the Kao ITS 1 and 2. The 2 out of 3 skin sensitisation 

prediction DA was unable to produce a clear prediction for two of the 10 AIs, giving inconclusive 

predictions. While the Kao STS DA provided inconclusive predictions for 3 of the 10 AIs as shown in 

Table 3.30. For the AIs that all four DAs were all able to provide a prediction on, the DAs were all in 

agreement with each other. Whether that be to provide predictions that showed agreement with the 

in vivo tests, or predictions that were false positives. With that being said, when the DAs capable of 

providing a potency prediction (i.e., Kao STS, Kao ITS 1 and 2) generated a false positive, it was for 

indication as weak sensitiser rather than a larger over estimation as a strong sensitiser. There is some 
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reassurance in observing that these methods provided an overestimation of the sensitising potential 

of these AIs and not an underestimation.  

Active ingredient 
2/3 skin 

sensitisation 
prediction 

KAO ITS 1 
prediction 

KAO ITS 2 
prediction 

KAO STS 
prediction 

In vivo 
conclusion 

Acetamiprid Sensitiser Weak Sensitiser Weak Sensitiser Weak Sensitiser 
 

Non-Sensitiser 

Acibenzolar-S-methyl Inconclusive Not Classified Not Classified Inconclusive 
 

Sensitiser 

Benzovindiflupyr Sensitiser Weak Sensitiser Weak Sensitiser Weak Sensitiser 
 

Non-Sensitiser 

Chlorantraniliprole Inconclusive Not Classified Not Classified Inconclusive 
 

Non-Sensitiser 

Chlorothalonil Sensitiser Weak Sensitiser 
 

Weak Sensitiser Weak Sensitiser 
 

Sensitiser 

Cyantraniliprole Non-Sensitiser Not Classified Not Classified Inconclusive 
 

Non-Sensitiser 

Dicamba Sensitiser Weak Sensitiser 
 

Weak Sensitiser Weak Sensitiser 
 

Non-Sensitiser 

Mesotrione Sensitiser Weak Sensitiser Weak Sensitiser Weak Sensitiser 
 

Non-Sensitiser 

Pinoxaden Sensitiser Weak Sensitiser 
 

Weak Sensitiser Weak Sensitiser 
 

Sensitiser 

AI1 Sensitiser Weak Sensitiser 
 

Weak Sensitiser Weak Sensitiser 
 

Sensitiser 

Table 3.30 Conclusive summary of the evaluated defined approach predictions for the 10 active 

ingredients against the comparative benchmark in vivo skin sensitisation test results. 
Red – disagreement with in vivo conclusion, Green – agreement with in vivo conclusion 

 

The results of this chapter demonstrating the specific DAs’ inability to complete assessment on the 

full list of ten AI test materials leads us to identify the Kao ITS as the most efficient of the evaluated 

DAs. The Kao ITS allows for fewer in vitro tests to be conducted, reducing the time and resource 

required to complete the skin sensitisation hazard assessment. Incorporation of the in silico models in 

Kao ITS also increases confidence in the findings which the 2 out of 3 DA does not. 

When considering the combined use of these in chemico/ in vitro methods to provide a skin 

sensitisation prediction for the ten PPPs, fewer than half showed predictions that were in agreement 

with their in vivo benchmark results. This is effectively less predictive than making a random guess. As 

such, when considering their use to provide information to replace in vivo skin sensitisation tests for 

complex mixtures, at present these three in chemico/in vitro methods are not suitable.     
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4.0 CHAPTER FOUR - COMPARISON OF THE PREDICTIVE 

NATURE OF THE GENOMIC ALLERGEN RAPID DETECTION 

(GARD) ASSAY WITH MAMMALIAN ASSAYS IN 

DETERMINING THE SKIN SENSITISATION POTENTIAL OF 

AGROCHEMICAL ACTIVE INGREDIENTS. 

 

4.1 Introduction 

The research in this chapter has been published and the information presented here is based on that 

publication (Masinja et al., 2020). Recently attempts have been made to identify non-animal test 

methods with good predictive power for chemical hazard identification in a bid to reduce laboratory 

animal use (Alloul-Ramdhani et al., 2014, Doe and Botham, 2019, Reisinger et al., 2015, Ivan de Ávila 

et al., 2019). In accordance with Article 62 of the European Regulation (EC) No. 1107/2009, concerning 

the placing of plant protection products on the market; the use of in vivo mammalian test methods 

should only be used as a last resort. Where available non-animal test methods should be used and 

promoted ((EC), 2009a), several such in vitro assays have been developed for skin sensitisation. In this 

thesis the triple pack approach is initially introduced and described in Section 1.2.2. Chapter Three 

gave an overall evaluation of the function of the triple pack. Another, as yet relatively unproven, 

approach is the Genomic Allergen Rapid Detection (GARD) assay. The GARD assay’s potential for 

evaluating the skin sensitisation potential of agrochemicals is unknown, hence it was selected for 

evaluation in this chapter. 

The GARD assay is a cell-based, in vitro alternative to animal testing which assesses skin sensitisation 

by measuring the biomarker signature in chemical-stimulated, human MUTZ-3 cells (Johansson et al., 

2011).  The MUTZ-3 cell line serves as a surrogate for dendritic cells (DC) and changes in transcription 

in the genes can be linked to processes involved in skin sensitisation (Rovida et al., 2013, Masterson 

et al., 2002). The GARD assay was first described in 2011 and measures transcriptional changes in 200 

genes associated with sensitisation (Johansson et al., 2011). The 200 gene biomarker signature 

includes transcripts involved in oxidative stress, dendritic cell maturation and cytokine responses 
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(Johansson et al., 2011).  The results are placed into a support vector machine (SVM) model trained 

on a set of reference chemicals (Forreryd et al., 2016). In particular, genes in pathways involved in 

dendritic cell maturation and activation, associated with key event three of the skin sensitisation 

adverse outcome pathway (AOP), which is also measured by the h-CLAT assay (OECD 2014, OECD 

2018a), are included in the GARD assay. The Nrf-2 mediated oxidative response (Uruno and 

Motohashi, 2011), which is also the pathway measured in the KeratinoSensTM and LuSensTM assays 

(OECD 2018b, DB-ALM (INVITTOX), 2013) is included in the GARD assay. Test materials of higher 

sensitising potency are assigned higher GARD SVM values than those of weaker sensitisers (Stevenson 

et al., 2019). 

During the validation process of alternative methods for skin sensitisation, a wide array of test 

materials from different industrial sectors have been tested using the GARD (Johansson et al., 2019), 

and other, assays (OECD, 2018a). This has aided in ascertaining limitations and, more specifically, 

chemical types that do not fall within the applicability domain of each method. The GARD assay 

consistently reports accuracies of close to 90 to 95% compared to in vivo data (Johansson et al., 2017, 

Johansson et al., 2014, Johansson et al., 2013; Zeller et al., 2017). The evaluation of the GARD assay in 

a blind study using cosmetics ingredients (from Cosmetics Europe) demonstrated a predictive 

performance of 83% (Johansson et al., 2017). Whilst the GARD assay has shown good performance in 

evaluation studies, it is worth noting that in vitro assays for skin sensitisation are not intrinsically 

standalone assays and none of them are perfectly predictive. However, they can be used as part of a 

weight of evidence approach, as such, knowledge about the chemical and property domain in which 

an assay works is crucial.  

The aim of this chapter was to assess the in vitro GARD assay’s skin sensitisation predictivity in 

comparison with mammalian skin sensitisation tests on agrochemical active ingredients. To achieve 

this, agrochemical compounds for which sensitising potential had been previously established through 

GLP in vivo studies (OECD 429 murine local lymph node assays, OECD 406 guinea pig maximisation test 
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and Buehler assays) were tested in the GARD assay. As a weight of evidence approach is advocated by 

the ECHA when using in vitro data for the purpose of classification (ECHA 2017), a QSAR analysis of 

each of the test materials was also performed. Human data are available elsewhere for some of the 

active ingredients however for the purposes of this evaluation these were not included as the 

comparison was with the available animal data.  The mammalian studies are considered to be an 

appropriate standardised data set for comparison purposes.  

4.2 Materials and Methods 

4.2.1 GARD assay cell line 

The GARD assays were conducted by Senzagen (Lund, Sweden) on behalf of Syngenta according to the 

protocol as described in Forreryd et al., 2016 and Johansson et al., 2013. The human myeloid 

leukemia-derived cell line SenzaCell (available through American Type Culture Collection (ATCC)) was 

used. This was maintained in α-minimum essential medium (Thermo Scientific Hyclone, United States) 

supplemented with 20% (volume/volume) foetal calf serum (Life Technologies, US) and 40 ng/ml 

recombinant human Granulocyte Macrophage Colony Stimulating Factor (rhGM-CSF) (Miltenyi Biotec, 

Germany). A medium change during cell expansion was performed every three to four days. Working 

stocks of cultures were grown for a maximum of 16 passages or two months after thawing. The 

chemically exposed cells were incubated for 24h at 37°C, 5% CO2 and 95% humidity.   

4.2.2 GARD Assay 

Active ingredient test substances shown in Table 4.1 were dissolved in dimethylsulfoxide (DMSO) or 

water, based on physico-chemical properties. The cytotoxic effects of test substances were 

monitored, as a concentration leading to 90% relative cell viability (Rv90) demonstrating the test 

substance’s toxicity, was used in the assay.  
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Agrochemical 

Active 

Ingredient** 

Indication 

(F, H, I) * In Vivo Outcome 

In Vivo 

Study 

Skin Sensitisation Harmonised 

Classification Labelling and 

Packaging (CLP) category 

Benzovindiflupyr F Negative LLNA 

Not classified 

(EFSA, 2015, FAO, 2013) 

Chlorothalonil F Positive Buehler 

Skin Sens. 1, H317 (EFSA et al., 

2018) 

Clodinafop-

propargyl H Positive GPMT 

Skin Sens. 1, H317 (EFSA et al., 

2020) 

Cyantraniliprole I Negative LLNA 

Not classified 

(EFSA, 2014, FAO, 2013) 

Dicamba H 

 

Negative 

 

LLNA 

Not classified 

(EFSA, 2011a, Harp, 2010, ECHA, 

2008, EPA, 2006) 

Difenoconazole F Negative Buehler 

Not classified 

(EFSA, 2011b) 

Pinoxaden H 

Negative 

 

Positive (EC3 =0.43%) 

GPMT 

 

LLNA*** 

Skin Sens. 1A, H317 (EFSA, 

2013b, FAO, 2016) 

AI1 I 

Positive 

(EC3 =0.13%) LLNA No harmonised classification 

AI2 I Positive (EC3 =1.1%) LLNA No harmonised classification 

AI3 I Positive 

Reduced 

Local lymph 

node assay 

(rLLNA) No harmonised classification 

AI4 I Negative rLLNA No harmonised classification 

AI5 I Positive rLLNA No harmonised classification 

Table 4.1 The active ingredients, agrochemical use and in vivo skin sensitisation outcomes of 

agrochemical compounds tested in the GARD assay 

*F: fungicide, H: herbicide, I: insecticide   

**AI1 - AI5: anonymised agrochemical active ingredients  

*** The result corresponding with the harmonised classification (LLNA) has been used for the purposes of comparison. 

These studies were considered OECD & GLP compliant  
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The assayed test substances were titrated to concentrations ranging from 1 μM to the maximum 

soluble concentration in cell media. For freely soluble test substances, 500 μM was set as the upper 

limit of the titration range. For test substances dissolved in DMSO, the in-well concentration of DMSO 

was 0.1%. After incubation with the test substance for 24 hours, harvested cells were stained with the 

viability marker Propidium Iodide (PI) (BD Bioscience, USA) and analysed by flow cytometry. For non-

toxic test substances, a concentration of 500 μM was used, if possible. When test substances were 

poorly dissolved in cell medium or insoluble at the 500 μM concentration, the highest soluble 

concentration was assessed and used. The concentration to be used for any given chemical was 

termed the ‘GARD input concentration’, shown in Table 4.3.  

Once the input concentration had been established, the cells were exposed solely to this 

concentration. A set of positive and negative controls were included as reference and quality controls. 

The test substances and controls were assayed in biological triplicates, performed at different 

timepoints, and using different cell cultures. After incubation for 24h at 37°C, 5% CO2 and 95% 

humidity, the cell cultures were lysed in TRIzol reagent (Life Technologies, Carlsbad, California, US) 

and stored at -20°C until RNA had been extracted. In parallel, stimulated cells were propidium iodide 

(PI) stained and analysed using flow cytometry to verify the expected relative viability (Johansson et 

al., 2019).  

4.2.3 Performance criteria  

In order to understand the GARD assay’s predictive power and the accuracy of its performance in 

comparison with the in vivo laboratory animal test data, statistical parameters were calculated 

between in vivo experimental and GARD in vitro assay result data. Sensitivity, specificity, total 

success/accuracy, positive and negative predictivity as well as the Cohen’s kappa coefficient were 

calculated to evaluate the performance of the GARD assay. These parameters were all calculated using 

the method described by Modi et al (2012) and also described fully and used for the evaluation of 

results in Chapter Two. 
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The differences in chemical characteristics between the GARD training set and agrochemical AI test 

set were also examined. This was performed by assessing the MW, logarithm of the octanol-water 

partition coefficient (log P) and numbers of hydrogen bond donors (HBD), hydrogen bond acceptors 

(HBA) and rotatable bonds (RB) present in each compound in the two chemical sets.  AlogP was used 

to calculate log P in accordance with the previous work by Guziałowska-Tic (Guziałowska-Tic, 2017) 

who demonstrated that AlogP provided the optimum conformity for this chemical property.  It should 

be noted that Kathon CG/ICP is present in the GARD training set. In order to best capture the 

physicochemical properties of this preservative mixture, its two active components 

(Methylisothiazolinone and Methylchloroisothiazolinone) were entered individually into the data set 

for this evaluation.  

4.2.4 Evaluation of structural alerts for protein binding and skin sensitisation 

Structural alerts for protein binding and skin sensitisation (Aptula and Roberts, 2006, Enoch et al., 

2011) were identified from the OECD QSAR Toolbox version 4.3 for the chemicals in both the training 

and test sets. The following profilers were applied:  

• Protein binding alerts for skin sensitisation by OASIS 

• Protein binding alerts for skin sensitisation by OASIS with skin metabolism 

• Protein binding alerts for skin sensitisation according to GHS  

• Protein binding alerts for skin sensitisation according to GHS with skin metabolism 

The alerts were assessed for their association with in vivo skin sensitisation. A compound was 

considered to be identified as a skin sensitiser if the OASIS/GHS profiler gave an outcome of 1A or 1B, 

or if the OASIS with skin metabolism profiler gave a 1A result. A non-sensitiser was concluded if the 

OASIS/GHS profiler identified no alert or if the OASIS/GHS with skin metabolism profiler gave a 1B 

result. The GARD assay does not encompass the metabolic system, consequently this was the rationale 

for rating OASIS with metabolism 1B as a non-sensitiser. This evaluation scheme is shown in Table 4.2 

below. 
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OECD QSAR Toolbox prediction scheme 
 

Sensitiser OASIS GHS profiler - 1A or 1B  

 OASIS w/metabolism profiler - 1A  

Non-sensitiser OASIS GHS profiler - No alert  

 OASIS GHS w/metabolism profiler - 1B  
Table 4.2. OECD QSAR Toolbox prediction scheme 

 

4.3 Results 

4.3.1 GARD Assay 

The aim of this research was to compare the results of the GARD assay to the available in vivo skin 

sensitisation study outcomes for twelve agrochemical AIs. The results from the GARD assay are 

summarised in Table 4.3.  

Test material 
Structural 

alert** 
in vivo 
study in vivo study result Rv90*** 

GARD input 
concentration 

GARD 
Decision 

Value 
(Mean ± 

SD) 

GARD 
skin 

result 

benzovindiflupyr AC/SB LLNA negative 40 µM 40 µM 6.0±0.9 positive 

chlorothalonil SNAr Buehler positive 0.5 µM 0.5 µM 4.6±1.4 positive 
clodinafop-
propargyl No alert GPMT positive - 100 µM 6.1±0.9 positive 

cyantraniliprole AC/SB LLNA negative - 100 µM 3.4±0.7 positive 

dicamba SB LLNA negative - 500 µM 0.0±0.8 positive 

difenoconazole No alert Buehler negative 50 µM 50 µM 6.3±0.9 positive 

pinoxaden No alert LLNA positive (EC3 =0.43%) - 500 µM 

-
0.5±0.5 negative 

AI1 SB/NA LLNA positive (EC3 =0.13%) - 100 µM 1.1±0.7 positive 

AI2 No alert LLNA positive (EC3 =1.1%) 140 µM 140 µM 6.9±0.4 positive 

AI3 MA rLLNA positive - 100 µM 3.4±0.6 positive 

AI4 No alert rLLNA negative 250 µM 250 µM 6.4±0.4 positive 

AI5 SNAr LLNA positive (EC3 = 0.9%) 50 µM 50 µM 4.4±0.5 positive 

Table 4.3 Protein binding alerts*, in vivo study results, Rv90**, GARD input concentration, GARD skin 

results, GARD decision values 

* AC, Acylation; MA, Michael addition; NA, Nucleophilic addition; SB, Schiff base formation; SNAr, Aromatic 

nucleophilic substitution;  

**Reaction domains were assigned based on expert judgment using the chemistry defined in Enoch et al 

(2011)***Rv90 - concentration of test substance inducing 90% relative viability.  

Positive control p-phenylendiamine,  

Negative control dimethylsulfoxide 
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4.3.2 Analysis of Applicability Domain of GARD Assay and Agrochemical AIs Tested 

Table 4.4 details the in vivo assay predictions compared to those of the GARD assay for this study’s 

test set. The GARD assay correctly predicted the six sensitisers, however, the negative predictivity of 

the GARD assay for the test set was not concordant with that of the in vivo results.   

 

GARD 
Positive 

GARD 
Negative 

In vivo Positive 6 1 

In vivo Negative 5 0 

Table 4.4 Summary of the concordance of test results of agrochemical test set in vivo skin sensitisation results 

versus the GARD assay results 

 

Performance analysis of these data using the statistical parameters was conducted as shown in Table 

4.5 and illustrated in Figure 4.1. When compared to the in vivo results, the negative predictivity of the 

of the GARD assay was mainly nonconcordant for this test set, with a positive predictivity of 55%, 

sensitivity of 86% and a total accuracy of 50%. Cohen’s Kappa coefficient provided a statistical 

measure of inter-rater agreement for categorical items (sensitiser/non-sensitiser) and the value for 

Cohen’s Kappa value was -0.16 indicating poor agreement between sensitisers and non-sensitisers. 

 

Positive predictivity 54.5% 

Negative predictivity 0.0% 

Sensitivity 85.7% 

Specificity 0.0% 

Total Success/Accuracy 50.0% 

*kappa-value -0.16 

MCC -0.14 

Table 4.5 Statistical parameters used for evaluation of the GARD assay predictions of the 

agrochemical test set results versus the in vivo skin sensitisation assay results 
*kappa-value: < 0.20 poor, 0.21 - 0.40 fair, 0.41 - 0.60 moderate, 0.61 - 0.80 substantial 
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Figure 4.1 Various statistical parameters adopted to evaluate prediction of skin sensitisation 
potential by the GARD assay conducted on the test set (12 agrochemical active ingredients) 

 

Matthews Correlation Coefficient (MCC) 

In order to determine possible reasons for the nonconcordant results between the GARD assay and in 

vivo test results for the agrochemical AI test set, the ranges of physicochemical properties of the GARD 

training set and the AIs tested were compared. A broad overview of the range relative physicochemical 

properties which may affect solubility and uptake is provided as a plot in Figure 4.2. A range of 

physicochemical properties (i.e. calculated log P (AlogP) against molecular weight) associated with the 

AIs were plotted against the published training set of the GARD assay.  
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Figure 4.2 The molecular weight and Log P values of both the GARD training set (Forreryd et al., 2018) and agrochemical AIs tested 
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Figure 4.3 shows the comparison of the distribution of molecular weight for the GARD training set and 

the agrochemical AIs tested. The chemicals in the GARD training set had molecular weights of 

approximately 150Da and only two had molecular weights above 300Da. The molecular weights of the 

agrochemical AIs tested were higher, with many approximately 400Da and only two agrochemicals 

(dicamba and chlorothalonil) with molecular weights below 300Da. A comparison of the distribution 

of AlogP for the GARD training set and the agrochemical AIs tested is given in Figure 4.4. The majority 

of the chemicals in the GARD training set have AlogP values in the range of -2 to 4, and only two were 

above 4. In contrast, most of the agrochemicals tested had an AlogP of approximately 4 and none had 

an AlogP value below 2.  In terms of the ranges of the two physicochemical properties considered, 

there is a difference between those of the GARD training set and the AIs tested.  

 

Figure 4.3 The distribution of molecular weights of the GARD training set of compounds (Forreryd et al., 2018) 
and the agrochemicals tested 

 

 

 

 

 

 

 

 

Red Agrochemical test set 

Blue GARD training set 

Red Agrochemical test set 

Blue GARD training set 

Figure 4.4 The distribution of log P values of the GARD training set of compounds and the agrochemicals 
tested 
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Following the conformal prediction analysis, the GARD assay result for dicamba was changed from 

being a skin sensitiser to a non-sensitiser as shown in Table 4.6. This was due to the derived Pnon-sens 

value of 0.16, indicating that dicamba had non-conformity to the non-sensitising group of 84% as 

opposed to the 86% it demonstrated for the sensitising group.  

Test material in vivo Study result 
GARD skin  
prediction Psens* Pnon-sens** 

Conformal 
Prediction 

benzovindiflupyr negative positive 0.84 0.02 sensitiser 

chlorothalonil positive positive 0.76 0.05 sensitiser 

clodinafop-propargyl positive positive 0.85 0.02 sensitiser 

cyantraniliprole negative positive 0.63 0.05 sensitiser 

dicamba negative positive 0.14 0.16 non-sensitiser 

difenoconazole negative positive 0.85 0 sensitiser 

pinoxaden positive negative 0.11 0.4 non-sensitiser 

AI1 positive positive 0.31 0.07 sensitiser 

AI2 positive positive 0.85 0 sensitiser 

AI3 positive positive 0.63 0.05 sensitiser 

AI4 negative positive 0.85 0 sensitiser 

AI5 positive positive 0.72 0.05 sensitiser 

Table 4.6 GARD assay conformal predictions of the test items 

*A measure of the Test Item non-conformity compared to the calibration set. If the p-value is below the error level 0.15 
the Test Item is strange compared to calibration sensitisers. A value of greater than 0.15 indicates that it belongs to the 
group sensitisers with 85% confidence. 
**A measure of the Test Item non-conformity compared to the calibration set. If the p-value is below the error level 0.15 
the Test Item is strange compared to calibration non-sensitisers. A value above 0.15 is therefore proof that it belongs to 
the group non-sensitisers with a confidence of 85%. 

 

An evaluation of the physico-chemical similarities between the GARD training set (Forreryd et al., 

2018)  and the test set of 12 agrochemical AIs was performed, and the results shown in Table 4.7. The 

evaluation focused upon the test materials’ log P, MW, HBA, HBD and RB, which are molecular 

descriptors often associated with membrane permeability and included in the defined rules for 

pesticide likeness (Avram et al., 2014). The HBA and RB also demonstrated a noticeable difference in 

recorded median values with little difference between the two sets seen in HBD. Table 4.7 shows the 

differences between physicochemical values of the training and test set.   
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 Training set Test set 

Properties Range 
1st 

Quartile Median 
3rd 

Quartile Range 
1st 

Quartile Median 
3rd 

Quartile 

MW 30 to 834 106 138 164 221 to 473 349 377 402 

Log P -4.77 to 5.74 0.18 1.12 2.17 2.78 to 5.02 3.44 3.94 4.28 

HBA 0 to 12 1 2 3 2 to 6 4.5 5 5 

HBD 0 to 3 0 1 2 0 to 2 0 0 0.25 

RB 0 to 19 0 1 3 0 to 7 3.75 6 7 

Table 4.7 Test set versus training set molecular properties 

 

An assessment of the chemical domains covered by both sets of chemicals was performed. The Venn 

diagram shown in Figure 4.5 indicates that the training set covers all the chemical domains identified 

in the agrochemical AI test set and also covers bimolecular nucleophilic substitution (SN2) which was 

not present in the test set.   

 

MA Michael addition  

SB Schiff base 

NA Nucleophilic addition 

AC Acylation 

SNAr Aromatic nucleophilic substitution  

SN2 Bimolecular nucleophilic substitution  

Figure 4.5 The Venn diagram of the chemical domains identified in the two chemical sets i.e. the 
GARD training set and the agrochemicals. Training data set as indicated in Forreryd et al., 2018 
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4.3.3 In Silico Evaluation  

Further evaluation using the OECD QSAR Toolbox comparing the in vivo study experimental results 

against the in silico profiling of both the agrochemical AI test set and GARD assay training set was 

performed. The structural alerts in the profilers were predictive of the skin sensitisation in vivo 

experimental outcome for the training set (Table 4.8).  

Number of 
compounds in 

each class 
Training 

set 
Predicted 
Sensitiser 

Predicted 
non-sensitiser 

20 Exp-sens 85% 15% 

20 Exp-NS 20% 80% 

40    

    
Number of 

compounds in 
each class Test set 

Predicted 
Sensitiser 

Predicted 
non-sensitiser 

7 Exp-sens 71% 29% 

5 Exp-NS 60% 40% 

12    
Table 4.8 The OECD QSAR Toolbox prediction for skin sensitisation against the in vivo experimental 

results of the test and training sets 

Exp-sens – demonstrated to have skin sensitiser potential in in vivo experimental studies. 

Exp-NS – demonstrated to have no skin sensitiser potential in in vivo experimental studies. 

 

4.4 Discussion 

This study compared the predictions of the GARD assay to the results of previously conducted in vivo 

animal assays testing the skin sensitisation potential of 12 agrochemical AIs. The GARD assay identified 

ten of the test materials as skin sensitisers and two as non-sensitisers. The results from the GARD 

assay were not in agreement with the in vivo data for five of the 12 agrochemical AI materials tested. 

In order to ensure the veracity of the outcome of the GARD assay, conformal prediction analysis was 

performed, and this changed the outcome of the GARD assay for dicamba from being a sensitiser to a 

non-sensitiser.  
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4.4.1  In Silico Evaluation – Mechanistic Chemistry and Physicochemical Property 

Domains 

In order to understand the performance of the GARD Assay compared to in vivo results for the AIs, 

their coverage in terms of mechanistic and chemical applicability domains was examined. First, an 

assessment was undertaken to comprehend the change in sensitisation outcome for dicamba using 

conformal prediction analysis (as shown in Table 4.6) and whether this could give an insight into 

domains. In this instance, it appears that this conformity exercise does not necessarily indicate if a 

chemical was within the appropriate applicability domain of the GARD assay, but rather it indicates 

using the model’s own training set, within which of the two groups of potential outcomes the test 

compound is most likely to fall. Thus, the conformal method would not necessarily be able to indicate 

how appropriate the GARD assay is for a chemical that falls outside of the chemical space of the 

training set used. As such it can be determined that the use of conformal predictions is not an 

appropriate method to ascertain whether the agrochemical AI test materials in this study fall within 

the current applicability domain of the GARD assay. 

To determine the possible role of mechanistic chemistry with regard to domain alerts flagged by the 

OECD QSAR Toolbox, each set of chemicals were investigated (note structural alerts are discussed in 

more detail below). No significant differences between the GARD assay training set and the 

agrochemical AI test set were observed during our evaluation. All of the chemical mechanisms of 

action important for skin sensitisation (Aptula and Roberts, 2006, Enoch et al., 2011) have been 

identified in the GARD assay training set. Thus, differences in the responses from the GARD assay and 

in vivo rodent skin sensitisation test results for the AIs tested are not as a result of any specific chemical 

mechanism of action for skin sensitisation being absent in the GARD training set, as it encompassed 

all those identified in the agrochemical AI test set. Therefore, in order to further understand why the 

difference in results between the GARD assay and in vivo experimental tests were observed, the 

physico-chemical properties of the chemicals in the GARD training set and the agrochemical test set 

were examined. 
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The physicochemical property domains of the GARD training set and the 12 AIs tested were compared 

to provide further understanding of the differences observed between the predicted GARD results 

and the in vivo experimental results. The purpose of this analysis was to determine if the sets 

represented different areas of chemical space, as defined by the physicochemical properties 

considered. Such properties are a key component of the “applicability domain” of a test assay or QSAR 

and other components of the applicability domain (where relevant) include structural similarity, 

mechanism of action, metabolism, reactivity and toxicokinetics (Dimitrov et al., 2005, Netzeva et al., 

2005, van der Laan et al., 2012). The purpose of this analysis was not a full determination of the 

applicability domains of the AI test set and GARD assay training set. For skin sensitisation, a full analysis 

of applicability domain would include an analysis of the mechanistic reactivity domain associated with 

each chemical (Aptula et al., 2005, Aptula and Roberts, 2006, Roberts et al., 2007b). However, 

definition and consideration of the physico-chemical property ranges, such as compound solubility, is 

a key step in the assessment of technical limitations to assist in the evaluation and ultimate validation 

of an in vitro assay (Bruner et al., 1996, Worth and Balls, 2004) and assists in its correct usage.  

Following the evaluation of molecular descriptors of the test and training set chemicals, an apparent 

difference in molecular weights was observed between the test and training set indicating that a 

higher MW range is present in the agrochemical AI test set compared to that seen in the training set. 

Whilst the training set contained molecules with a MW of predominantly 50-200Da, one further 

compound, Tween 80 with a MW 833Da, was included in the training set. This compound is, however, 

benign, a non-sensitiser and is used regularly as a vehicle in toxicity studies. Thus, the inclusion of 

Tween 80 in the training set has expanded the MW range of this set and this range may not be 

representative of all the compounds contained within it. This is demonstrated by the median of the 

training set. 

There is a substantial difference between the MW of Tween 80 and the nearest training set neighbour 

(penicillin). This indicated that the MW of the test set of agrochemicals was not adequately 

represented within the GARD training set however it is acknowledged that these were well within the 
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limits of absorption and skin penetration (Lipsinki et al., 2001). This means that there is a domain of 

chemical reactivity unaccounted for concerning the MW of the penicillin compound in the training set. 

As many of the agrochemicals fall within this domain, confidence in the accuracy with which the GARD 

assay will be able to give the correct prediction may not be strong.  

In addition to the difference in MW there is also a separation between the training set log P (with a 

range of -4.77 to 5.74 and median of 1.12) and the test set log P values (2.78 to 5.02 with a median of 

3.94). In this context the initial GARD predictions cannot be considered robust based on the current 

test data used in the assay. It is well reported that MW and log P have an influence on the rate of 

dermal absorption of chemicals (Potts and Guy, 1992b). These chemical parameters have not been 

used in this study to aid in the evaluation of skin sensitisation potential, instead they have been used 

here to identify potential differences in the chemical space between the two sets of chemicals. It has 

been previously reported that the most marked difference in physico-chemical properties between 

pharmaceuticals and agrochemicals is the lower number of hydrogen bond donors (Clarke and 

Delaney, 2003, Tice, 2001). Consequently the HBDs, HBAs and RBs in the training and test set groups 

have been compared (Clarke and Delaney, 2003). The addition of these three physico-chemical 

properties to this study’s evaluation enabled the complete comparison of the chemical sets in 

accordance with Lipinski’s “rule of five” and Hao and coworkers’ rules for pesticide likeness (Avram et 

al., 2014, Clarke and Delaney, 2003, Barret, 2018, Lipinski et al., 2001, Hao et al., 2011). A clear 

difference in distribution can be observed in four of the five physico-chemical properties of the 

chemical sets that have been reviewed here. Thus, at this time there is insufficient evidence to suggest 

the GARD training set offers the width in range necessary to capture the agrochemical AI test set 

properties.  

4.4.2 Review of Structural Alerts  

The assessment of the presence of structural alerts for skin sensitisation, as identified from the OECD 

QSAR Toolbox, in the chemical structures of the GARD assay training set and agrochemical AI test set 
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also provided predictions that, in comparison to the in vivo experimental data, overestimated the skin 

sensitisation potential of the test set. For the test set, there was 71% agreement between 

experimental sensitisation and predicted sensitisation. However, only 60% of the test set 

agrochemical AIs with in vivo non-sensitising results, were associated with structural alerts for protein 

binding (and hence skin sensitisation) by the OECD QSAR Toolbox. This overestimation of the 

sensitisation potential of the agrochemical AI test set is largely in keeping with the trend observed 

with the GARD assay results. It should be remembered that structural alerts for protein binding 

(related to skin sensitisation) in the OECD QSAR Toolbox have been developed from many sources 

including historical skin sensitisation data. For instance, Enoch et al (2008) developed a set of 

structural alerts for skin sensitisation based on historical LLNA data compiled by Gerberick et al (2005). 

These data, and a subsequent expanded LLNA data set (Kern et al 2010), are predominantly for small, 

low MW compounds, the majority of which are relevant as cosmetics ingredients or represent the 

chemical of cosmetic ingredient space with few, or no compounds representative of agrochemicals. 

The results seen in the OECD QSAR Toolbox profiling suggest that differences in chemical space can 

also influence skin sensitisation outcome. It may be hypothesised that the structural alerts are more 

informative of the skin sensitisation potential of low MW, cosmetic-like compounds than the potential 

for adverse outcomes in agrochemicals and specifically for our test set. In addition, the shift towards 

increased hydrophobicity and MW in the agrochemical AIs compared to the training set values, 

indicates a potential for lower skin penetration which is not accounted for. This is in line with a 

previous publication by Basketter et al (1992) suggesting that an important factor governing the skin 

sensitisation potential of halogenated chemicals, such as bromoalkanes, is their skin penetration rate 

(Basketter et al., 1992). To attain a more predictive set of structural alerts for agrochemicals these 

additional physicochemical factors and skin penetration need to be accounted for, or a factor may 

need to be applied to account for the dermal absorption differences. This is also an important 

consideration for all in vitro assays for skin sensitisation and is often accommodated within the weight 

of evidence or as part of the risk assessment. 
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 To illustrate the issue of the assessment of halogenated compounds, dicamba is a chlorinated benzoic 

acid that has been used widely on a variety of crops as an effective herbicide for more than 50 years 

(Wang et al., 2016, Yao et al., 2015). Whilst some acids are included in the training set e.g., salicylic 

acid, lactic acid, benzoic acid, the GARD assay was unable to make an accurate prediction for dicamba. 

The GARD assay predicted dicamba to be a skin sensitiser, whilst the in vivo study and ECHA 

harmonised classification have not classified it as such. The acids present in the training set were not 

halogenated and the only compound present in the GARD training set that was halogenated was 

methylchloroisothiazolinone. As expected with agrochemicals (Jeschke, 2010), nine of the 12 

compounds in the agrochemical AI test set were halogenated. This further indicates the difference 

between the chemistry of the two chemical sets evaluated in this study. In particular, there was 

discordance between the GARD and in vivo results for pinoxaden, which had an identified EC3 value 

from a previously conducted LLNA corresponding to a harmonised classification skin sensitisation 

Category 1A, H317 (ECHA, 2015, EFSA, 2013). This compound is outside of the applicability domain; 

however, this does not fully explain why this assay was unsuccessful at predicting a potent sensitiser. 

A potential limitation of the in vivo methods may also have been a factor in the differences in results 

seen between the GARD assay and in vivo methods results. The highest test material dose that could 

be selected for the guinea pig or LLNA skin sensitisation tests is the maximum soluble concentration 

that does not induce systemic toxicity and/or excessive local irritation (OECD, 1992, OECD, 2010). 

Where observed toxicity of a given test material may have limited the highest concentration that could 

be tested in the in vivo experiments, the GARD assay was still able to use the high concentrations and 

investigate skin sensitisation potential at these levels. For these test substances, solubility and 

cytotoxicity were not limiting factors in the methodology as the maximum exposure concentration 

was used for negative outcomes. 

The chemical space disparity that has been identified between the GARD training set and the 

agrochemical AI test set may have occurred because the predictive model is a machine learning 

classifier (a support vector machine model) that has been trained on gene signals mainly for 
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compounds used as, or similar to, cosmetics ingredients. The gene signal in relation to cosmetic 

ingredients has been learned by the model and chemicals of all domains are classified in this way. This 

gives each chemical a biological fingerprint relevant to cosmetics but not to agrochemicals.  

4.4.3 Future work and opportunities for further improvement 

The results from both the in silico work and the GARD assay indicate that the biological fingerprint (i.e. 

the changes in transcription in the genes in the Mutz-3 cells (surrogates for dendritic cells)) for skin 

sensitisation is not consistent across all chemicals. The GARD assay performed in the manner expected 

of it, in that it provided predictions of skin sensitisation potential for the agrochemical AI test set using 

the machine learned, biological fingerprint provided by its training set. In an attempt to improve skin 

sensitisation predictivity for agrochemical compounds in the GARD assay in the future, additional 

compounds should be added to the GARD training set with molecular weights between 300- 800Da 

and ALogP values of 3-5. Halogenation has not been identified as a cause of sensitisation; however 

unlike cosmetics, agrochemicals are intentionally biologically active and frequently halogenated. This 

may skew or change the biological fingerprint of this chemical set in a manner that affects the 

prediction produced by the GARD assay in comparison to the in vivo experimental results. As noted 

above, halogenation of compounds is important when considering skin sensitisation (Basketter et al., 

1992), thus addition of halogenated compounds to the GARD assay training set may improve its 

capability to predict skin sensitisation of agrochemicals. The compounds added to the training set 

should include an increased number of different chemistries i.e., biocides and agrochemicals and this 

may aid to further investigate this hypothesis.   

The design of the training set for machine learning in the GARD assay is a key component to adequately 

establish an understanding of biological outputs and how they apply to the individual domains of the 

AIs tested. The application of structural alerts delivers a clear understanding of the applicability 

domain and is required to be able to identify limitations to mechanistic chemistry in the in vitro assay 

being evaluated. However, it can be observed in this study that all reactivity domains present in the 
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test set are covered by the training set, and yet a nonconcordant result is observed between the in 

vitro and in vivo test methods. A hypothesis can be made that the physico-chemical parameters of the 

test and training chemical sets examined in this study also play a role in the setting of an applicability 

domain. This is in line with the previously made assumption that similar predictivity can be achieved  

by substances that are similar to those in the training set and that the applicability domain of a model 

would depend on the structural, physico-chemical and response information in the data  used for 

training a model (Wilm et al., 2018).  It is noteworthy that 12 compounds is a small test set to evaluate 

the GARD assay, the lack of overlap between the test and training set additional work needs to be 

conducted to address false positive and negative outcomes. 

Whilst the GARD assay is not an approved OECD test guideline, it may have the potential to replace 

mammalian testing in a number of different chemistries as part of a weight of evidence. However, this 

research has demonstrated the need for the GARD training set to be expanded, in particular to include 

agrochemical compounds that occupy a different chemical space in terms of size and hydrophobicity. 

Additional confidence needs to be demonstrated or limitations to the assay identified, before the 

GARD assay can be considered for use as a replacement to animal testing. Its appropriate use would 

be in conjunction with test methods that focus on other key events of the skin sensitisation AOP. 

Validation of new alternative methods using different chemistries to ensure robustness of in vitro 

assays and scientifically reliable results across chemical domains is crucial. 
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5.0 CHAPTER FIVE - USE OF SENS-IS IN DETERMINING THE SKIN 

SENSITISATION OF AGROCHEMICAL FORMULATIONS 

5.1 Introduction  

The previous chapters have explored the use of in vitro methods (DPRA, KeratinoSensTM and h-CLAT) 

to determine the skin sensitisation potential of agrochemical formulations. The in vitro approaches 

investigated were 2D cell-based models which resulted in the identification of an apparent limitation 

in each of the methods, namely that the 2D cell model methodology used in each of the assays 

required the agrochemical products to form a homogenous solution with a solvent in order to be 

tested. However, it was not always possible to form that homogenous solution and the lack of it may 

have led to a disruption of the composition of the agrochemical formulation. As such, these in vitro 

systems did not give a true representation of the formulation used or applied in real life application. 

In keeping with these observations, this research examined the use of a 3D in vitro model that allowed 

for the direct application of the agrochemical formulation in its intended manufactured form.  The 

hypothesis of this chapter is that the use of the SENS-IS assay should allow for the direct application 

of the agrochemical formulations to the test system and, as such, provide comparative results to in 

vivo vertebrate skin sensitisation studies.  

The SENS-IS assay is an in vitro method that utilises a three-dimensional Reconstructed Human 

Epidermis (RHE) model, known as the EpiSkinTM, to predict the skin sensitisation potential and, where 

positive, potency of a given test material (Cottrez et al., 2015). SENS-IS is one of several reconstructed 

3D cultured human skin models which are available and used as alternatives to human skin hazard 

assessment experiments. For example, epiCSTM (Henkel), EpiDermTM (MatTek) and EpiSkinTM (skin ethic 

laboratories, St. Philippe, France) are used in the assessment of dermal irritation, permeability and 

corrosivity potential of chemical compounds. These are widely accepted (e.g. in industry) and are 

listed as test systems in the OECD Test Guidelines 439 and 431 (OECD, 2019b, OECD, 2019c). 

The EpiSkinTM model used in the SENS-IS assay is comprised of non-transformed, adult, human-derived 

epidermal keratinocytes, which have been cultured on a collagen substrate at the air-liquid interface 
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(OECD, 2019c) in conditions which permit terminal differentiation and the reconstruction of an 

epidermis with a functional stratum corneum. This multi-layered, highly differentiated model of the 

human epidermis exists at different stages of maturity. The model is histologically similar to the in vivo 

human epidermis (Netzlaff et al., 2007), though structural differences between RHE models (including 

the EpiSkinTM) have been reported and investigated (Kano et al., 2011). Kano et al (2011) concluded 

that histological observations suggested that structural differences could be reasons for differences in 

the skin permeation of compounds among the different RHE models. They suggested a combination 

of histological analysis and RHE model assay results may be the most effective way to utilise a 3D skin 

model in the assessment of test substance effects on the skin.  

Whilst widely used, two dimensional skin cell cultures such as those used in models discussed in earlier 

chapters (i.e. the GARD assay, KeratinoSens, h-CLAT) have “an overt lack of physiological relevance” 

(Klicks et al., 2017). These 2D cultures omit the principal functions of the skin such as cell sheeting and 

layering, barrier function, immune function, and blood perfusion. However, the 3D EpiSkinTM model 

consists of a stratum corneum containing intracellular lamellar lipid layers, an organised basal spinous 

and granular layers to represent those found in vivo (OECD, 2019c).  The human keratinocytes cultured 

for the development of the EpiSkinTM test system are obtained from healthy consenting donors during 

plastic surgery. The Human Immunodeficiency Virus along with hepatitis B and C tests are performed 

on donor bloods as well as the bacterial and fungal sterility verification of the cells and absence of 

Mycoplasma (Cottrez et al., 2017).  

A noted disadvantage of the use of 3D skin models is that there tends to be a high batch-to-batch 

variability which can make result replication difficult (Kano et al., 2011). Specifically, in the SENS-IS 

assay some quality controls are performed by the EpiSkinTM provider and are required to fulfil the 

following criteria before assay use: 

• Histology scoring (Haematoxylin eosin and safran (HES) stained vertical paraffin section, n=6) ≥ 

19.5. 
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• IC50 determination (sodium lauryl sulfate concentration, MTT test, n=14) ≥ 1 mg/ml. This is the 

lower limit for an EpiSkinTM batch. With the upper limit, as reported in the OECD in vitro skin 

irritation test guideline, being IC50 = 3.0 mg/ml (OECD, 2019c).  

 

Once the test criteria have been applied to the EpiSkinTM test system for the required amount of time 

(as indicated in Materials and Methods), evaluation criteria are used to determine the test materials’ 

potential to cause skin sensitisation or irritation, with sensitisation being the ultimate endpoint. The 

SENS-IS assay uses a genomic signature to distinguish sensitisers from non-sensitisers. A test material 

is considered an irritant if it induces the overexpression of at least 15 genes of a group of 24 genes 

referred to as the “IRRITANT” gene set for this assay (Cottrez et al., 2017). The sensitisation endpoint 

focuses on two groups of gene sets. Specifically, the “SENS-IS” group, which contains 21 genes and the 

“redox” group which contains 17 genes. The test substance is considered a sensitiser if it induces the 

over expression of at least 7 genes in either or both of those gene groups i.e., a greater than 1.25-fold 

increase in comparison to the mean value of the phosphate buffer saline solution and olive oil negative 

controls. The expression of these biomarkers is measured by quantitative reverse transcription 

polymerase chain reaction (RT-PCR) (Cottrez et al., 2016). In order to also evaluate potency, the lowest 

test concentration that produces a positive response by inducing the required gene fold increase in 

the “SENS-IS” or “redox” groups, is used to allocate a potency classification for the tested material. 

The majority of in vitro skin sensitisation tests lack a quantitative aspect and are not able to deliver 

the information necessary to estimate safe exposure levels to allow for a quantitative risk assessment 

to be conducted (Cottrez et al., 2020).  

The identity of the irritation group of genes used in the SENS-IS assay has been published (Cottrez et 

al., 2016) however the identity of the genes that make up the “SENS-IS” and “redox” groups has only 

been disclosed in the assay patent (Mehling et al., 2019). The redox gene group consists of 17 genes 

that have Anti-oxidant Response Element (ARE) in their protective signals induced through the 
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interaction with sensitising compounds binding to cysteine amino acids of the keap1-NRF2 complex 

(Petry et al., 2018, Cottrez et al., 2016). The keap1-NRF2 system plays a vital role in dealing with 

various stressors. It concomitantly regulates many genes that contribute to the response to intrinsic 

and extrinsic stressors. These include oxidants and xenobiotics that may have been metabolised to 

electrophilic intermediates by cytochrome P450 enzymes.  The keap1-NRF2 ligand binding interaction 

is also utilised in the KeratinoSensTM assays evaluation of the second key event in the skin sensitisation 

adverse outcome pathway (OECD, 2018b, ECVAM, 2014a, Settivari et al., 2015b).   

Electrophilic compounds are thought to attack the Keap1-Nrf complex causing the dissociation of the 

Nrf2 (nuclear factor-erythroid 2-related factor 2) compound from Keap1. This leads to a nuclear 

accumulation of Nrf2 in an induced state. The induced Nrf2 compound forms a heterodimeric 

partnership with a small Maf proteins, as the Maf protein confers a unique feature on the Antioxidant 

Response Element (ARE) sequence. It is this Nrf2-maf-ARE combination that is responsible for the 

induction of genes encoding detoxifying enzymes to counteract the electrophilic compounds that 

triggered the initial dissociation of Nrf2 from Keap1 (Uruno and Motohashi, 2011). The ARE Nrf2 

interaction is utilised in both the SENS-IS and Keratinosens assays (Settivari et al., 2015b, Cottrez et 

al., 2020).   

The SENS-IS gene group consists of 21 genes. These genes are involved in inflammation, danger signals 

and cell migration which address the activation of dendritic cells by sensitising chemicals through a 

complex cascade of events (Cottrez et al., 2016). The focus on these particular genetic biomarkers 

enables the SENS-IS assay to determine if the KE3 of the skin sensitisation AOP (as outlined in Chapter 

One) is being activated by the test material in question. The specific genes markers monitored by the 

SENS-IS assay are confidential to Immunosearch and as such have not been reported in this thesis. 

The aim of this chapter is to explore the use of the SENS-IS 3D in vitro model, in order to understand 

if it can with good confidence accurately predict the skin sensitisation potential and potency of 

complex mixtures, specifically here agrochemical formulations.  
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5.2 Materials and Methods 

A third-party CRO was contracted to conduct the in vitro SENS-IS assay tests on the ten agrochemical 

formulations listed in Table 5.1. The details of the experiments conducted by the CRO, Immunosearch 

(Grasse, France), are provided in this materials and methods section with further details in the 

Appendix 9. 

5.2.1 Test Materials  

Ten agrochemical formulations were used as the test materials. They are as indicated in Table 4.1 and 

were provided by Syngenta Ltd, UK. The ten formulations selected had previously been tested through 

in vivo methods for skin sensitisation (in the LLNA or Buehler assay) and irritation (Draize skin irritation 

- OECD test guideline 404). The results of these in vivo tests were provided by Syngenta ltd and are 

given in Table 4.1, however the specific study report details remain proprietary information and as 

such are not reported here. The test materials were dissolved at 0.1%, 1%, 10% or 50% in PBS, DMSO 

or olive oil dependent upon the results of the solubility assessment. A solubility assessment was 

initially conducted to determine which of these three vehicles was the most suitable for each test 

material. 

5.2.2 Solubility assessment  

Each test material was diluted at two concentrations, 10% and 50%, in three separate vehicles, PBS, 

DMSO and olive oil. A solubility check was conducted based on the visual homogeneity observed in 

the three vehicles at these two concentrations. If multiple vehicles provided a homogenous solution 

deemed suitable for the assay, the corresponding test material/vehicle solutions were both tested in 

the SENS-IS assay at 10%. The vehicle solution that provided the highest gene induction response was 

used for the main test. The assay was continued with the selected vehicle at different concentrations, 

above or below 10% depending on the first analysis outcome. Positive results led to a reduced 

concentration for testing and a negative result led to an increase in the concentration used. Specific 
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details of the vehicles, positive and negative control materials used in this SENS-IS assay research are 

captured in Appendix 9.  

Thirty µL of each formulated test material solution was applied to the top layer of the reconstituted 

human epidermis (EpiskinTM model) with a micropipette. This application was approximately 26 

µL/cm2 on the EpiskinTM layer and was applied using a positive displacement pipette and gently spread 

evenly to ensure it covers the top layer.  

The test material was allowed to rest on the test system surface layer for 15 minutes at room 

temperature. After the 15 minutes exposure, the EpiskinTM unit was rinsed with PBS and incubated at 

37°C, 5% CO2 for 6 hours.  

After the 6-hour incubation, the complete epidermis was transferred into a vial to be snap frozen in 

liquid nitrogen. The epidermis model was then briefly placed in a 1ml RNAzol solution and 

homogenized to isolate the total RNA using two steel beads with a TissueLyser (Qiagen). Following 

centrifugation, the supernatant was collected, 0.2 ml of bromochloropropane was added and the 

mixture was vortexed. The vortexed mixture was centrifuged at 12000g for 15 minutes at 4°C. After 

vortexing the aqueous phase was collected and 1mL ethanol was combined with it. This mixture was 

immediately mixed by pipetting and loaded onto a RNeasy spin column and placed in a 2ml collection 

tube. The total RNA was extracted in concordance with the manufacturer’s instructions (Cottrez et al., 

2016). 

After reverse transcription, quantitative gene expression was measured by RT-PCR using a SYBR green 

real-time PCR master mix buffer with 0.4µM of each oligonucleotide primer in a total volume of 10µL.  

The reaction was conducted inside of a rapid high-throughput, plate-based real-time PCR amplification 

and detection instrument (Roche’s LightCycler® 480 system, France). Amplification followed and the 

detection instrument was conducted at 95°C with a 5-minute hold, after which 40 amplification cycles 

were carried out (at 95°C for 10 seconds and annealing at 60°C for 10 seconds) and this was completed 

with a 72°C cycle for 10 seconds.  
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The relative amount of each transcript was normalised to the amount of the mean expression levels 

of 3 house-keeping genes transcripts (Glucuronidase ß, ß2 microglobuline, and “non-POU domain 

containing, octamer-binding” (NONO)) (Cottrez et al., 2020). 

 

For each analysis three negative controls (PBS, olive oil or DMSO treated skin), a positive irritation 

control (5% SLS) and a positive sensitisation control (TNBS at 1%) were included. The test product and 

the controls were tested in at least two experiments (using different batches of Episkin models). 

Further experiments were conducted if invalid results were obtained in the previous experiments. 

 

5.2.3 Acceptance criteria 

As indicated previously, the initial integrity of the EpiskinTM test system must be fit for the purposes 

of this assay prior to study initiation. The IC50 acceptance criteria of the Episkin units must be ≥1.2 

mg/mL. The purpose of the irritant gene set in the SENS-IS assay evaluation criteria is to take into 

account genes that are not thought to be associated with skin sensitisation, but that are demonstrated 

to be overexpressed after exposure to a test compound, i.e. the irritation group takes into account 

non-specific gene expression due to cell stress (Petry et al., 2018). Amongst the irritation group of 

genes measured by the SENS-IS assay is the HSPAA1 gene. The expression of the HSPAA1 gene is used 

by the assay to measure tissue destruction. Following test material exposure to the epidermis, if the 

expression of the HSPAA1 gene is shown to be above 10% of that shown in the tissues exposed to the 

negative controls, the acceptance criteria for that run are not considered to have been met.  

In addition, tissue damage is also measured in the SENS-IS assay if greater than the irritation gene 

expression. If more than 20 genes are overexpressed from the irritant gene group, the result of the 

SENS-IS run is deemed to be inconclusive and the test substance is reanalysed at a lower concentration 

(Petry et al., 2018). This process of understanding the highest concentration that may be tolerated by 
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the assay or test system is similarly performed in the preliminary phases of other skin sensitisation 

tests, such as the local lymph node assay and guinea pig assays (OECD, 1992, OECD, 2010). The h-CLAT 

assay, which focuses on  dendritic cell activation for biomarkers, uses a dose range finding assay prior 

to the main test itself to understand the test material concentration that will result in 75%  cell viability 

(OECD, 2018a). The test material cytotoxicity is taken into account by the assays listed here when 

trying to evaluate skin sensitisation potential of a test material. This could be considered an essential 

phase of these assays to address potential for misinterpretation of irritation for sensitisation, though 

it may not necessarily address the potential for irritation to potentiate sensitisation potential of a 

complex mixture (Corvaro et al., 2016).   

Potency classifications for the test material identified as positive skin sensitisers by the SENS-IS assay 

are assigned based upon the lowest tested concentration to produce a positive response. A chemical 

is classified as an extreme, strong, moderate, or weak skin sensitiser if it produces a positive response 

at 0.1%, 1%, 10% or 50%, respectively. If negative at all concentrations, then the tested material is 

considered not to be a skin sensitiser (Cottrez et al., 2016).  

5.3 Results 

The SENS-IS assay was conducted on ten selected agrochemical formulations. These ten formulations 

had had previously been tested in vivo, for skin sensitisation through the LLNA or Buehler assay and 

also for skin irritation in the rabbit using OECD test guideline 404 (OECD, 2015a). The results of the 

SENS-IS assay previously conducted in vivo experiments are summarised in Table 5.1 and explained in 

more detail below. The raw data from the triplicate experimental runs is for all ten of the test 

formulations are presented in Appendix 10.
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Formulation 
number 

Formulation 
type* Active ingredient 

LLNA/Buehler 
result EC3** 

SENS-IS 
sensitisation result 

In vivo irritation 
result 

SENS-IS irritation 
result 

SYN 1 EC Difenoconazole/ Benzovindiflupyr Sensitiser 64.1% 
Positive 

Moderate sensitiser Non-irritant Irritant 

SYN 2 FS Acibenzolar-S-methyl Sensitiser 37.0% 
Positive  

Moderate sensitiser Non-irritant non-irritant 

SYN 3 SC Cyantraniliprole/Diafenthiuron Non-sensitiser  

Non-sensitiser at up to 
100% Non-irritant non-irritant 

SYN 4 FS Metcamifen Non-sensitiser  

Positive 
Weak sensitiser Non-irritant non-irritant 

SYN 5 WG Mesotrione/Dicamba/Nicosulfuron Non-sensitiser  

Non-sensitiser at up to 
100% Mild irritant non-irritant 

SYN 6 SC Chlorothalonil 
Buehler study - 

sensitiser  

Positive 
Extreme sensitiser Mild irritant non-irritant 

SYN 7 EC Pinoxaden/Cloquintocet-mexyl 
Buehler study - 

sensitiser  

Non-sensitiser at up to 
100% Moderate irritant non-irritant 

SYN 8 SC AI1 Sensitiser 0.79% 
Positive  

Strong sensitiser Non-irritant non-irritant 

SYN 9 SC Chlorantraniliprole Non-sensitiser  

Non-sensitiser at up to 
100% Non-irritant Irritant 

SYN 10 WG Acetamiprid/AI1 Sensitiser 0.23% 
Positive  

Strong sensitiser Non-irritant non-irritant 

Table 5.1 Summary of the main outcomes of the SENS-IS assay in addition to existing in vivo skin sensitisation and irritation data. 

*EC-emulsifiable concentrate, FS-flowable concentrate for seed treatment, SC-suspension concentrate, WG- water dispersible granules 

**EC3 is a potency value that indicates the estimated concentration of test substance that induces a stimulation index of 3.0 in the LLNA 
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5.3.1 SYN1 Formulation  

SYN1 is an Emulsifiable Concentrate (EC) formulation with two main active ingredients, 

difenoconazole and benzovindiflupyr. An in vivo skin irritation study had also been previously 

conducted on the SYN1 formulation in accordance with OECD Test Guideline 404 (OECD, 2015a). A 

non-irritant result was obtained from that study. In addition to the irritation study, a LLNA (OECD, 

2010) study was previously conducted using concentrations of 25%, 50% and 100% of SYN1. Both in 

vivo animal tests were previously conducted by Syngenta Ltd and the results of these tests are 

captured in Table 5.1. The formulation was demonstrated to be skin sensitiser in the LLNA study, with 

an EC3 value of 64.1% equating to a skin sensitisation category 1B classification in accordance with 

CLP and UN GHS regulations (ECHA, 2017b, GHS, 2017). Table 5.2 summarises the number of genes 

expressed in the SENS-IS assay following exposure to the different concentrations of SYN1 in DMSO 

and PBS. 

SYN1 formulation 

Number of 

overexpressed genes 

1% 

DMSO 

10% 

PBS 

10% 

DMSO 

50% 

DMSO 

Irritation 6 14 16 23 

SENS-IS 3 7 3 4 

REDOX 3 7 7 8 

Irritation Outcome NEGATIVE NEGATIVE POSITIVE POSITIVE 

Sensitisation Outcome NEGATIVE POSITIVE POSITIVE POSITIVE 

Table 5.2 Summary of the results of the SENS-IS assay for the SYN1 formulation, specifically the number of 
genes overexpressed and the overall outcome for irritation and skin sensitisation 

Red cell = positive gene induction criteria achieved  
 
Irritation indication  
The SYN1 test material produced an irritant result at the 50% and 10% concentrations in DMSO, with 

more than 15 genes overexpressed in the irritation gene group. At 1% SYN1 concentration < 7 genes 

of the irritation gene group were induced.   
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Sensitisation potential 

1% SYN1 in DMSO did not lead to an over-induction of ≥ 7 genes in the SENS-IS or REDOX groups. 

However, the application of the two 10% SYN1 formulations (in PBS and DMSO) resulted in an over-

induction of ≥ 7 genes in the SENS-IS and/or Redox groups. This ≥ 7 gene expression was also seen at 

the 50% SYN1 concentration tested. Under the experimental conditions of this study and in 

accordance with the potency classification scheme for the SENS-IS assay (Cottrez et al., 2020), the 

SYN1 formulation tested would be placed into the moderate skin sensitiser category.  

 

5.3.2 SYN2 Formulation 

Formulation SYN2 is a Flowable concentrate for a Seed treatment (FS) agrochemical product. The main 

active ingredient present in this formulation is acibenzolar-s-methyl.  A previously conducted in vivo 

skin irritation study demonstrated the SYN2 formulation to be non-irritant to skin. In addition to the 

irritation study, a LLNA was previously performed on this formulation at concentrations of 25%, 50% 

and 100% as captured in Table 4.1. The results of the LLNA on this formulation demonstrated it to be 

a skin sensitiser to the mouse, with an EC3 value of 37% equating to a skin sensitisation category 1B 

classification in accordance with CLP and UN GHS regulations.  

SYN2 was applied to the epidermis model (EpiskinTM) at 50%, 10% and 1% dissolved in PBS. Table 5.3 

provides a summary of the number of genes expressed in the SENS-IS assay following exposure to 

SYN2 at the three concentrations. 
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SYN2 formulation 

Number of overexpressed 

genes 

1% 

PBS 

10% 

PBS 

50% 

PBS 

Irritation 4 12 13 

SENS-IS 5 10 10 

REDOX 6 12 15 

Irritation Outcome NEGATIVE NEGATIVE NEGATIVE 

Sensitisation Outcome NEGATIVE POSITIVE POSITIVE 

Table 5.3 Summary of the results of the SENS-IS assay for the SYN2 formulation, specifically the number of 
genes overexpressed and the overall outcome for irritation and skin sensitisation 

Irritation indication  

Fewer than 15 genes of the irritation gene group expressed at up to 50% of the SYN2 FS formulation. 

Therefore, it can be considered that the SYN2 test material did not produce an irritant result at the 

any of the concentrations tested.  

Sensitisation potential 

1% SYN2 in PBS did not lead to an induction of 7 or more genes in the SENS-IS or REDOX groups. 

However, the application of 10% and 50% of the SYN2 formulation to the EpiDerm model led to an 

over-induction of more than 7 genes in the SENS-IS and Redox groups. Under the experimental 

conditions of this study and in accordance with the potency classification scheme for the SENS-IS assay 

(Cottrez et al., 2020), as the lowest concentration of with more than 7 genes overexpressed was 10%, 

the SYN2 formulation tested would be placed into the moderate skin sensitiser category. 

 

5.3.3 SYN3 Formulation 

SYN3 is a Suspension Concentrate (SC) agrochemical formulation with two main active ingredients, 

cyantraniliprole and diafenthiuron. An in vivo skin irritation study had also been previously conducted 

on the SYN3 formulation in accordance with OECD Test Guideline 404. A non-irritant result was 

obtained from that study. In addition to the irritation study, a LLNA was previously performed on this 



156 
 

formulation at concentrations of 0.25%, 0.5% and 1%. The results of that in vivo skin sensitisation 

assay demonstrated that the SYN 3 formulation was not a skin sensitiser in the mouse.  

In the assessment of the SENS-IS assay the skin sensitisation potential of the SYN3 formulation was 

evaluated. SYN3 was applied to the EpiskinTM model undiluted (100%) and at 50% and 10% dissolved 

in PBS. The resulting gene expression following exposure to the SYN3 concentrations is shown in Table 

5.4.  

 

SYN3 formulation 

Number of overexpressed 

genes 

10% 

PBS 

50% 

PBS PURE 

Irritation 0 1 3 

SENS-IS 6 3 2 

REDOX 4 1 2 

Irritation Outcome NEGATIVE NEGATIVE NEGATIVE 

Sensitisation Outcome NEGATIVE NEGATIVE NEGATIVE 

Table 5.4 Summary of the results of the SENS-IS assay for the SYN3 formulation, specifically the number of 

genes overexpressed and the overall outcome for irritation and skin sensitisation 

Irritation indication  

Fewer than 15 genes of the irritation gene group expressed at up to 100% of the SYN3 SC formulation. 

Therefore, the SYN3 test material did not produce an irritant result at the any of the concentrations 

tested.  

Sensitisation potential 

At all concentrations of SYN3 that the EpiskinTM model was exposed to, fewer than 7 genes were over-

expressed in either of the skin sensitisation gene groups.  The SYN 3 formulation was not considered 

to be a skin sensitiser under the conditions of the SENS-IS assay. 
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5.3.4 SYN4 Formulation 

Formulation SYN4 is a Flowable concentrate for Seed treatment (FS) agrochemical product. The main 

active ingredient present in this formulation is Metcamifen. A previously conducted in vivo skin 

irritation study (OECD Test Guideline 404) demonstrated the SYN2 formulation to be non-irritant to 

skin. A LLNA had also been previously conducted to assess this formulation’s skin sensitisation 

potential. It was performed on this formulation at concentrations of 25%, 50% and 100%. The results 

of that in vivo skin sensitisation assay demonstrated that the SYN 4 formulation was not a skin 

sensitiser in the mouse.  

SYN4 was applied to the epidermis model (EpiskinTM) pure (100%), at 50% and 10% in PBS and at 10% 

in DMSO. Table 5.5 provides a summary of the number of genes expressed in the SENS-IS assay 

following exposure to SYN4 at the three concentrations. 

SYN4 formulation 

Number of 

overexpressed genes 

10% 

DMSO 

10% 

PBS 

50% 

PBS PURE 

Irritation 4 7 1 14 

SENS-IS 5 3 1 11 

REDOX 3 2 5 11 

Irritation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE 

Sensitisation Outcome NEGATIVE NEGATIVE NEGATIVE POSITIVE 

Table 5.5 Summary of the results of the SENS-IS assay for the SYN4 formulation, specifically the number of 
genes overexpressed and the overall outcome for irritation and skin sensitisation 

 

Irritation indication  

The SYN4 test material did not produce an irritant result at the any of the concentrations tested. Fewer 

than 15 genes of the irritation gene group expressed at up to 100% of the SYN4 FS formulation. 

Sensitisation potential 

10% and 50% concentrations of the SYN4 formulation did not lead to an over-induction of more than 

7 genes in the SENS-IS or REDOX groups. The application of 50% of the SYN4 formulation to the 

EpiDerm model led to an over-induction of 11 genes in each of the SENS-IS and Redox groups.  
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Under the experimental conditions of this study and in accordance with the potency classification 

scheme for the SENS-IS assay the SYN4 formulation is considered to be a skin sensitiser with the lowest 

concentration triggering the overexpression of more than 7 genes was 50%, the SYN4 formulation is 

considered to be a weak skin sensitiser. 

5.3.5 SYN5 Formulation 

SYN5 is a water dispersible granules (WG) agrochemical formulation with three active ingredients, 

mesotrione, dicamba and nicosulfuron. The previously conducted in vivo skin irritation study on the 

SYN5 formulation produced a mild irritant result. In addition to the irritation study, a LLNA was 

previously performed on this formulation at concentrations of 10%, 25% and 50%. The results of that 

in vivo skin sensitisation assay demonstrated that the SYN 5 formulation was not a skin sensitiser in 

the mouse. In the assessment of the SENS-IS assay the skin sensitisation potential of the SYN5 

formulation was evaluated. SYN5 was applied to the EpiskinTM model undiluted (100%), at 50% and 

10% dissolved in PBS and 10% in DMSO. Table 5.6 captures the gene expression in the SENS-IS assay 

following exposure to the SYN5 concentrations. 

 

SYN5 formulation 

Number of 

overexpressed genes 

10% 

DMSO 

10% 

PBS 

50% 

PBS 

Pure 

 

Irritation 4 7 13 14 

SENS-IS 3 1 5 6 

REDOX 5 6 6 5 

Irritation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE 

Sensitisation 

Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE 

Table 5.6 Summary of the results of the SENS-IS assay for the SYN5 formulation, specifically the number of 
genes overexpressed and the overall outcome for irritation and skin sensitisation 
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Irritation indication  

Fewer than 15 genes of the irritation gene group were over-expressed at up to 100% of the SYN5 WG 

The SYN5 test material did not produce an irritant result at any of the concentrations tested. 

formulation. 

Sensitisation potential 

At all concentrations of SYN5 that the EpiskinTM model was exposed to, fewer than 7 genes were 

overexpressed in either of the skin sensitisation gene groups. The SYN 5 formulation was not 

considered to be a skin sensitiser under the conditions of the SENS-IS assay. 

 

5.3.6 SYN6 Formulation 

Formulation SYN6 is a Suspension Concentrate (SC) agrochemical product. The main active ingredient 

present in this formulation is chlorothalonil.  The previously conducted in vivo skin irritation study on 

the SYN6 formulation produced a mild irritant result. In addition to the irritation study, a Buehler 

guinea pig skin sensitisation test (OECD, 1992) was previously conducted on this formulation. The 

induction phase of the Buehler assay was conducted with 100% concentration of the SYN6 formulation 

and the challenge phase was conducted with 35%. The result of that Buehler study showed that the 

SYN6 formulation was a skin sensitiser in the guinea pig.  

SYN6 was applied to the epidermis model (EpiskinTM) at 50%, 10%, 1% and 0.1% dissolved in PBS. Table 

5.7 summarises the number of genes expressed in the SENS-IS assay following exposure to the four 

different concentrations of SYN6 in PBS. 
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SYN6 formulation 

Number of 

overexpressed genes 

0.1% 

PBS 

1% 

PBS 

10% 

PBS 

50% 

PBS 

Irritation 4 10 14 14 

SENS-IS 8 5 10 5 

REDOX 7 13 8 8 

Irritation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE 

Sensitisation Outcome POSITIVE POSITIVE POSITIVE POSITIVE 

Table 5.7 Summary of the results of the SENS-IS assay for the SYN6 formulation, specifically the number of 

genes overexpressed and the overall outcome for irritation and skin sensitisation 

Irritation indication  

The SYN6 test material did not produce an irritant result at the any of the concentrations tested. Less 

than 15 genes of the irritation gene group expressed at up to 50% of the SYN6 SC formulation. 

Sensitisation potential 

All concentrations of the SYN6 formulation tested in this assay (50 – 0.1%) lead to an overexpression 

of ≥ 7 genes in the SENS-IS and/or Redox groups. Under the experimental conditions of this study and 

in accordance with the potency classification scheme for the SENS-IS assay, as the lowest 

concentration of ≥ 7 gene overexpression was 0.1%, the SYN6 formulation tested was considered to 

be an extreme skin sensitiser. 

 

5.3.7 SYN7 Formulation 

SYN7 is an Emulsifiable Concentrate (EC) agrochemical formulation with two active ingredients, 

pinoxaden and cloquintocet. The previously conducted in vivo skin irritation study on the SYN7 

formulation produced a moderate irritant result. In addition to the irritation study, a 9 induction 

Buehler guinea pig skin sensitisation assay was previously conducted on this formulation. The Buehler 

assay was conducted with 5% of the SYN7 in induction phase, with 0.1 and 0.01% used in the challenge 
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phase. The result of that Buehler assay was that the SYN7 formulation was demonstrated to be a skin 

sensitiser in the guinea pig.  

For the SENS-IS assay the SYN7 formulation was applied to the EpiskinTM model undiluted (100%), at 

50% and at 10% dissolved in PBS. The number of genes expressed in the SENS-IS assay following 

exposure to the three different concentrations of SYN7 are presented in table 5.8. 

 

SYN7 formulation 

Number of overexpressed 

genes 

10% 

PBS 

50% 

PBS PURE 

Irritation 6 1 3 

SENS-IS 4 3 1 

REDOX 4 3 3 

Irritation Outcome NEGATIVE NEGATIVE NEGATIVE 

Sensitisation Outcome NEGATIVE NEGATIVE NEGATIVE 

Table 5.8 Summary of the results of the SENS-IS assay for the SYN7 formulation, specifically the number of 

genes overexpressed and the overall outcome for irritation and skin sensitisation 

Irritation indication  

The SYN7 test material did not produce an irritant result at any of the concentrations tested. Fewer 

than 15 genes of the irritation gene group were expressed at up to 100% of the SYN7 EC formulation. 

Sensitisation potential 

At all concentrations of SYN7 that the EpiskinTM model was exposed to, less than 7 genes were over-

expressed in either of the skin sensitisation gene groups.  The SYN7 formulation was not considered 

to be a skin sensitiser under the conditions of the SENS-IS assay. 

 

5.3.8 SYN8 Formulation 

Formulation SYN8 is a Suspension Concentrate (SC) agrochemical product. The main active ingredient 

present in this formulation is AI1. The previously conducted in vivo skin irritation study on the SYN8 

formulation produced a non-irritant result. In addition to the irritation study, a LLNA was previously 

performed on this formulation at concentrations of 1%, 2.5%, 10% and 25%. The results of that in vivo 
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skin sensitisation assay demonstrated that the SYN 8 formulation is a skin sensitiser in the mouse, with 

an EC3 value of 0.79% equating to a skin sensitisation category 1A classification in accordance with 

CLP and UN GHS regulations.  

SYN8 was applied to the epidermis model (EpiskinTM) at 50%, 10%, 1% and 0.1% dissolved in PBS. The 

number of genes expressed in the SENS-IS assay following exposure to the four different 

concentrations of SYN8 are presented in table 5.9. 

 

SYN8 formulation 

Number of 

overexpressed genes 

0.1% 

PBS 

1% 

PBS 

10% 

PBS 

50% 

PBS 

Irritation 1 2 6 13 

SENS-IS 4 3 7 1 

REDOX 4 9 8 7 

Irritation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE 

Sensitisation Outcome NEGATIVE POSITIVE POSITIVE POSITIVE 

Table 5.9 Summary of the results of the SENS-IS assay for the SYN8 formulation, specifically the 
number of genes overexpressed and the overall outcome for irritation and skin sensitisation 

Irritation indication  

Fewer than 15 genes of the irritation gene group expressed at up to 50% of the SYN8 SC formulation. 

Therefore, the SYN8 test material did not produce an irritant result at the any of the concentrations 

tested.  

Sensitisation potential 

0.1% SYN8 did not lead to an over-induction of ≥ 7 genes in the SENS-IS or REDOX groups. The 

application of 1%, 10% and 50% of the SYN8 formulation to the EpiDerm model lead to an over-

induction of ≥ 7 genes in the SENS-IS and/or Redox groups.  

Under the experimental conditions of this study and in accordance with the potency classification 

scheme for the SENS-IS assay, as the lowest concentration of ≥ 7 gene overexpression was 1%, the 

SYN8 formulation tested was placed into the strong skin sensitiser category. 
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5.3.9 SYN9 Formulation 

SYN9 is a Suspension Concentrate (SC) agrochemical formulation. The main active ingredient present 

in this formulation is chlorantraniliprole. The previously conducted in vivo skin irritation study on the 

SYN9 formulation produced a non-irritant result. In addition to the irritation study, a LLNA was 

previously performed on this formulation at concentrations of 25%, 50%, and 100%. The results of 

that in vivo skin sensitisation assay demonstrated that the SYN 9 formulation did not cause skin 

sensitisation in the mouse under the conditions of the LLNA study. 

SYN9 was applied to the epidermis model (EpiskinTM) at 100%, 50% and 10% dissolved in PBS and 

DMSO as indicated in the table below. Table 5.10 summarises the number of genes expressed in the 

SENS-IS assay following exposure to the different concentrations of SYN9 in PBS and DMSO. 

 
SYN9 formulation 

Number of 

overexpressed genes 

10% 

DMSO 

10% 

PBS 

50% 

PBS 

100% 

PBS 

Irritation 8 6 17 19 

SENS-IS 4 0 4 4 

REDOX 4 5 2 5 

Irritation Outcome NEGATIVE NEGATIVE POSITIVE POSITIVE 

Sensitisation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE 

Table 5.10 Summary of the results of the SENS-IS assay for the SYN9 formulation, specifically the number of 
genes overexpressed and the overall outcome for irritation and skin sensitisation 

 

Irritation indication  

The SYN9 test material produced an irritant result at the 100% and 50% concentrations in both DMSO 

and PBS vehicles, with more than 15 genes expressed in the irritation gene group. At 10% SYN9 

concentration fewer than 7 genes of the irritation gene group were induced.   
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Sensitisation potential 

At all concentrations of SYN9 that the EpiskinTM model was exposed to, less than 7 genes were over-

expressed in either of the skin sensitisation gene groups.  The SYN 9 formulation was not considered 

to be a skin sensitiser under the conditions of the SENS-IS assay. 

 

5.3.10 SYN10 Formulation 

Formulation SYN10 is a WG agrochemical product. The two main active ingredients present in this 

formulation are acetamiprid and AI1. The previously conducted in vivo skin irritation study on the 

SYN10 formulation produced a non-irritant result. In addition to the irritation study, a LLNA was 

previously performed on this formulation at concentrations of 0.1%, 1%, 10% and 50%. The results of 

that in vivo skin sensitisation assay demonstrated that the SYN 10 formulation is a skin sensitiser in 

the mouse, with an EC3 value of 0.23% equating to a skin sensitisation category 1A classification in 

accordance with CLP and UN GHS regulations.  

SYN10 was applied to the epidermis model (EpiskinTM) at 10%, 1% and 0.1% dissolved in PBS and DMSO 

as shown in the table below. Table 5.11 provides a summary of the number of genes expressed in the 

SENS-IS assay following exposure to SYN10 at the three concentrations. 

 
SYN10 formulation 

Number of 

overexpressed genes 

0.1% 

DMSO 

1% 

DMSO 

10% 

DMSO 

10% 

PBS 

Irritation 6 3 12 13 

SENS-IS 2 3 1 7 

REDOX 3 11 8 9 

Irritation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE 

Sensitisation Outcome NEGATIVE POSITIVE POSITIVE POSITIVE 

Table 5.11 Summary of the results of the SENS-IS assay for the SYN10 formulation, specifically the number of 
genes overexpressed and the overall outcome for irritation and skin sensitisation 
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Irritation indication  

The SYN10 test material did not produce an irritant result at the any of the concentrations tested. Less 

than 15 genes of the irritation gene group expressed at up to 10% of the SYN10 WG formulation. 

Sensitisation potential 

0.1% SYN10 did not lead to an over-induction of ≥ 7 genes in the SENS-IS or REDOX groups. The 

application of 1% and 10% of the SYN10 formulation to the epiderm model led to an over-induction 

of ≥ 7 genes in the SENS-IS and/or Redox groups. Specifically, the 1 and 10% SYN10 in DMSO lead to ≥ 

7 gene over-expression in the REDOX group.  The 10% SYN10 in PBS lead to ≥ 7 gene over-expression 

in both the REDOX and SENS-IS gene groups.  

Therefore, under the experimental conditions of this study and in accordance with the potency 

classification scheme for the SENS-IS assay, as the lowest concentration of ≥ 7 gene overexpression 

was 1%, the SYN10 formulation tested was placed into the strong skin sensitiser category. 

 

Formulation 
number 

In vivo experimental 
result 

SENS-IS 
sensitisation result 

In vivo vs SENS-IS result 
comparison 

SYN 1 Sensitiser Sensitiser Agreement 

SYN 2 Sensitiser Sensitiser Agreement 

SYN 3 Non-sensitiser Non-sensitiser Agreement 

SYN 4 Non-sensitiser Sensitiser Disagreement 

SYN 5 Non-sensitiser Non-sensitiser Agreement 

SYN 6 Sensitiser Sensitiser Agreement 

SYN 7 Sensitiser Non-sensitiser Disagreement 

SYN 8 Sensitiser Sensitiser Agreement 

SYN 9 Non-sensitiser Non-sensitiser Agreement 

SYN 10 Sensitiser Sensitiser Agreement 
Table 5.12 Complete comparative summary of the in vivo and SENS-IS skin sensitisation experimental results 

for all ten tested agrochemical formulations 
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5.4 Discussion 

The aim of the chapter was to evaluate the ability of the SENS-IS assay to determine skin sensitisation 

potential of agrochemical complex mixtures/products. With Syngenta’s consent, ten of their 

agrochemical formulations were selected for this evaluation.  

In this evaluation of the SENS-IS assay, its ability to correctly characterise the skin sensitisation 

potential of agrochemical products was assessed by comparing its results to those of vertebrate in 

vivo skin sensitisation tests. The basis for evaluating the SENS-IS assay result is not a direct comparison 

with human response (such as the human repeat insult patch test (Basketter, 2009) or reported in 

clinical data). As such, it should be acknowledged that the LLNA and Buehler assays are not a like-for-

like prediction of the human response.  

The comparisons between the vertebrate animal tests and human data were based on individual 

compounds, whilst this SENS-IS evaluation has been conducted on complex pesticide mixtures. Thus, 

it should not be assumed that the LLNA and Buehler assay performance will be the same in the 

assessment of pesticide formulations. An independent peer review provided a comparison between 

the available in vivo methods and human data on the skin sensitisation response of different 

chemicals. It also noted that there was an absence of human data on pesticide products to compare 

to the in vivo results (NIH, 1999). However, in the absence of human data, SENS-IS results were 

compared to the Buehler assay and “gold standard” (Basketter et al., 2009) LLNA data. As mentioned 

in Chapter One these two in vivo test methods are considered acceptable across global regulatory 

regions, as such in the absence of human skin sensitisation data on these ten test formulations the 

LLNA and Buehler assay results were used as benchmarks from which to assess the SENS-IS 

performance.  

In the comparative Table 5.12 it is shown that of the ten tested formulations only two SENS-IS results 

did not produce a skin sensitisation prediction that was in agreement with the previously conducted 

animal experiments. The data in Table 5.1 indicate that six of the ten formulations tested in the SENS-
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IS assay have been shown to be skin sensitisers in the in vivo assays, whilst the remaining four were 

non-sensitisers. Two of the six positive in vivo sensitisers (SYN6 and 7) were tested in the Buehler assay 

whilst all of the remaining eight formulations were previously tested in the LLNA. The SENS-IS skin 

sensitisation results for the ten formulations were in concordance with all but two of the in vivo 

results. The two discordant results were for formulations SYN4 and SYN7. SYN4, an FS agrochemical 

product, had previously been tested in the LLNA and demonstrated to be a non-sensitiser at up to 

100% concentration. In the SENS-IS assay this formulation was tested up to 100% and produced a 

result indicating skin sensitisation potential. At the two lower concentrations of the SYN4 formulation 

tested in this assay (50% and 10%), the gene induction threshold was not reached in either gene 

groups for skin sensitisation.  At the highest concentration of SYN4 both the SENS-IS and REDOX gene 

groups demonstrated an overexpression of 11 genes, well over the greater than the seven gene 

threshold. As the SYN4 formulation was only demonstrated to be positive in the SENS-IS assay at 100%, 

it is placed in the weak sensitiser category for the SENS-IS assay.  

The irritation identification parameters of the SENS-IS assay allow us to rule out the potential for 

misclassifying irritant potential as sensitising potential. Amongst the acceptance criteria for the SENS-

IS assay is the criterion that if more than 20 genes are overexpressed in the irritation gene group with 

an over-expression of more than seven genes in the two gene groups at the same test material 

concentration, then the results at that concentration must be considered as being inconclusive. This 

is done to remove bias from any non-specific gene expression that may be caused by cell stress 

(Reisinger et al., 2015). The SYN4 formulation tested at 100% over-expressed 14 of the irritation gene 

set. This was just below the ≥15 genes required to classify it as an irritant in this assay. This non-irritant 

result is in agreement with the in vivo non-irritant result for this formulation and allows us to rule out 

the difference between the SENS-IS and LLNA result as being a consequence of irritation.  

The difference in the construction of the epidermis layer between rodents and man may be a potential 

reason for the observed conflicting sensitisation potential in different assays. Skin from experimental 
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animals has been reported to have a different structure from the human skin and to also be more 

permeable (Basketter et al., 2007). This potential species difference may have led to a possible higher 

bioavailability in the skin, and hence greater access to immunoproteins of the compounds within the 

SYN4 formulation that may have sensitising potential. Although occupational toxicology data are 

currently not available for this thesis, comparison of the results of the SENS-IS assay for SYN4 to human 

exposure data from occupational toxicology reports may also help to provide evidence of whether the 

result of the SENS-IS assay is a true representation of the human response to this formulation. 

However, within the remit of this investigation, it can be concluded that the SENS-IS assay did not 

produce a skin sensitisation potential result for the SYN4 formulation that was predictive of the in vivo 

LLNA outcome. In order to understand if this outcome is specific to the FS pesticide formulation type 

or is attributed to specific ingredients, more formulations of an FS type need to be examined, as only 

two were used in this study.  

The second formulation tested which produced a SENS-IS result that was not in agreement with its in 

vivo result was SYN7. SYN7 is an EC pesticide formulation that, when tested in the Buehler assay, 

produced a positive result for skin sensitisation. However, when tested at up to 100% in the SENS-IS 

assay the SYN7 formulation it produced a non-sensitiser result. Upon initial testing in the SENS-IS assay 

SYN7 was tested at 100%, 50% and 10%. Phosphate buffered saline was initially used as the vehicle 

for concentrations at 50% and 10% SYN7. Following the initial review of the results obtained for this 

formulation, in which over-expression of the two sensitisation gene groups was below 7 at all 

concentrations, a re-run of this formulation in the SENS-IS assay was conducted. This was conducted 

using olive oil as the vehicle to allow us to determine if the vehicle had been a factor in the generation 

of sensitisation potential through means of test material delivery to the skin proteins. In particular, 

the Buehler assay on SYN7 had been conducted at very low concentrations (5% induction, 0.1% and 

0.01% challenge phase) and produced a positive result as a skin sensitiser. Conducted at 50% in olive 

oil, the SYN7 formulation still produced a result in the SENS-IS indicating it is a non-sensitiser. As such 

it can be ruled out that PBS or the olive oil vehicles had an impact on the outcome of the SENS-IS assay 



169 
 

for this formulation. The initial irritation screen performed in the Buehler assay on SYN7 led to 10% 

SYN7 being used for the induction phase, as the higher concentrations caused excessive irritation. 

Irritation potential of the SYN7 formulation did not limit the test concentrations used in the SENS-IS 

assay. At 100% SYN7 exposure, irritation was not indicated in the SENS-IS assay, as the number 

irritation genes expressed were below the threshold. Therefore, test material concentration was not 

a limiting factor for the assessment of the SYN7 formulation in the SENS-IS assay. There may 

potentially have been prohaptens present in the formulation requiring metabolic activation. That 

would provide logical reasoning as to why the in vivo sensitising result was not reflected in the in vitro 

SENS-IS assay that lacks metabolic capability.     

All 8 of the other formulations tested in the SENS-IS assay produced results that were in good 

agreement with the vertebrate study outcomes. In addition to being in concordance with the eight in 

vivo sensitisation results, the in vitro SENS-IS assay also generated potency predictions that fell in line 

with the EC3 values for the four skin sensitising formulations (SYN1, 2, 8 and 10) tested in the LLNA as 

shown in Table 5.1 and 5.12.  

The research conducted demonstrates the potential for the SENS-IS assay to replace the need to 

conduct vertebrate in vivo skin sensitisation assays such as the LLNA to determine potency of a 

complex mixture, such as those tested in this evaluation, or a single chemical. At present regulatory 

guidance documents (ECHA, 2017a, (EU), 2017b) allow for the use of the LLNA to determine potency 

of a test material that has been predicted as positive by the available and regulatory accepted in vitro 

skin sensitisation test methods. This research has been able to demonstrate that the SENS-IS assay is 

an in vitro method suitable for identifying both the skin sensitisation potential and potency of an 

agrochemical formulation to allow for suitable hazard identification.  

5.5 Conclusion 

The ten formulations were selected based on their different formulation types, the data available on 

each of them from previously conducted in vivo studies and the fact that they have been used to 
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investigate other in vitro assays in previous chapters. This selection should allow for the comparison 

between all of the methods investigating skin sensitisation of formulations in future assessment. The 

SENS-IS assay measured the level of expression of the two separate gene sets at a given time point 

after application of the formulation as compared to an internal negative, irritant (sodium lauryl 

sulphate) and positive sensitiser (2,4,6-trinitrobenzene sulfonic acid) controls. The SENS-IS assay 

displayed good agreement with the in vivo skin sensitisation results, correctly predicting five out of six 

of the previously identified formulations with skin sensitising potential. In addition, the assay 

demonstrated agreement with the previous potency evaluations for these formulations. The SENS-IS 

assay also correctly identified three out of four formulations previously shown to be non-skin 

sensitisers. In conclusion, this chapter indicates that the SENS-IS assay provides an in vitro testing 

option for accurate hazard assessment of skin sensitisation potential for agrochemical formulations.  
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6.0 CONCLUSION  

This thesis has focused on providing novel research on the use of non-animal approaches for the 

acceptable hazard assessment of skin sensitisation, focusing in on active ingredients and complex 

mixtures used to create plant protection products within the agrochemical industry. During this 

research attention was paid to recognising the regulatory accepted and test guideline established in 

vivo methods that have been used regularly in different chemical industries, as outlined in Chapter 

One. Varying material types have been tested in these in vivo methods, some which may not 

necessarily have been suitable given their intended product use. An example of this misappropriate 

use has been the assessment of PPP intended for field spray undergoing skin sensitisation hazard 

assessment in the GPMT. Early animal methods lacked more intricate quantitative details of the risk 

that the identified hazard may cause. However, through the refinement of these initial methods and 

the development of approaches such as the LLNA, more tangible quantitative data from these 

assessments have been provided. Specifically, the updated methods have allowed the evaluation of 

potency of those materials identified as sensitisers, information which can then be further used for 

risk assessment.  

It must also be said that as these previously established methods and approaches were refined and 

improved upon, there was conscious shift to reduce the number of animals they required. Ultimately 

these tests have been conducted to gain some knowledge of the potential for an allergic contact 

dermatitis event to occur to a human. Methods such as the HRIPT and HMT allowed for direct species 

comparison, however there is a clear ethical dilemma, and it is considered unsound practice to fill the 

skin sensitisation knowledge gap of a formulation or single material through exposing it directly to 

human skin. In addition, human patch tests cannot be carried out for the sole purpose of fulfilling 

regulatory criteria (EC., 2009a). These issues provide some clarity as to why in vivo animal studies have 

been used as the benchmark to provide a potential comparative response, for materials of unknown 

skin sensitisation potential.  
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Throughout this thesis alternative skin sensitisation hazard assessment approaches have been 

explored. This has been undertaken with an interest in seeking out where potential limitations within 

some of these methods may lie, where synergy between methods may provide a better option and to 

further understand how new alternative methods that are currently at the forefront of 

development/acceptance can potentially address complications. One of the specific complications of 

interest that was explored in this research has been identifying a non-animal experimental method 

that can be used to provide confident predictions for skin sensitisation potential of complex mixtures. 

In addition to that, it’s worth acknowledging the prospect of using the non-animal experimental 

approaches for the screening of lead compounds in early-stage product development.   

Before diving into the laboratory bench based non-animal experimental methods, the approach was 

taken in this thesis to understand how suitable any currently accepted non-animal methods for 

determining skin sensitisation of complex mixtures were for agrochemical formulations.  As such, the 

established CLP skin sensitisation threshold calculation approach was investigated in Chapter Two. 

The results of the evaluation in Chapter Two, alongside the results from all other evaluated methods, 

are provided in Tables 6.1 and 6.2. It was shown that with sufficient information regarding the 

composition of the formulation, the binary threshold calculation method had the potential to provide 

a quick and useful understanding of what the skin sensitisation potential of a formulation might be. 

However, when insufficient test material information was available for the ingredients present within 

a formulation being evaluated, the accuracy of the skin sensitisation classification by this method was 

limited. The calculated accuracy of the threshold calculation method when comparing against GPMT/ 

Buehler or LLNA as a benchmark was 72%. This is mediocre at best and for a hazard assessment 

unlikely to give an acceptable level of confidence. However, Chapter Two showed that the 

performance of the threshold calculation method varied dependent on the agrochemical formulation 

type. 
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Agrochemical AI In vivo Study result 
GARD skin 
prediction 

DPRA KeratinoSensTM h-CLAT DEREK Toolbox 

Acetamiprid Non-sensitiser Not tested Sensitiser Non-sensitiser Sensitiser Non-sensitiser Sensitiser 

Acibenzolar-s-methyl Sensitiser Not tested Inconclusive Inconclusive Non-sensitiser Sensitiser Non-sensitiser 

Benzovindiflupyr  Non-sensitiser Sensitiser Sensitiser Sensitiser Non-sensitiser Non-sensitiser Sensitiser 

Chlorantraniliprole Non-sensitiser Not tested Inconclusive Inconclusive Non-sensitiser Non-sensitiser Non-sensitiser 

Chlorothalonil  Sensitiser Sensitiser Sensitiser Sensitiser Non-sensitiser Sensitiser Sensitiser 

Clodinafop-propargyl  Sensitiser Sensitiser Not tested Not tested Not tested Sensitiser Sensitiser 

Cyantraniliprole  Non-sensitiser Sensitiser Inconclusive Non-sensitiser Non-sensitiser Non-sensitiser Sensitiser 

Dicamba  Non-sensitiser Sensitiser Sensitiser Non-sensitiser Sensitiser Non-sensitiser Sensitiser 

Difenoconazole  Non-sensitiser Sensitiser Not tested Not tested Not tested Non-sensitiser Non-sensitiser 

Mesotrione Non-sensitiser Not tested Sensitiser Sensitiser Non-sensitiser Sensitiser Sensitiser 

Pinoxaden Sensitiser Non-sensitiser Sensitiser Sensitiser Non-sensitiser Equivocal Non-sensitiser 

AI1 Sensitiser Sensitiser Sensitiser Sensitiser Sensitiser Sensitiser Sensitiser 

AI2 Sensitiser Sensitiser Not tested Not tested Not tested Sensitiser Non-sensitiser 

AI3 Sensitiser Sensitiser Not tested Not tested Not tested Sensitiser Sensitiser 

AI4 Non-sensitiser Sensitiser Not tested Not tested Not tested Sensitiser Non-sensitiser 

AI5 Sensitiser Sensitiser Not tested Not tested Not tested Sensitiser Sensitiser 

Table 6.1Final summary of the skin sensitisation in vivo test results and the evaluated NAM test results for the ten agrochemical AIs 
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Formulation 
number 

In vivo 
experimental 

result 

SENS-IS 
sensitisation 

result 
DPRA KeratinoSensTM h-CLAT 

CLP calculation  
result 

SYN 1 Sensitiser Sensitiser Not conducted Sensitiser Non-sensitiser Non-sensitiser 

SYN 2 Sensitiser Sensitiser Sensitiser Non-sensitiser Non-sensitiser Non-sensitiser 

SYN 3 Non-sensitiser Non-sensitiser Not conducted Sensitiser Sensitiser Non-sensitiser 

SYN 4 Non-sensitiser Sensitiser inconclusive Inconclusive Sensitiser Non-sensitiser 

SYN 5 Non-sensitiser Non-sensitiser Not conducted Inconclusive Non-sensitiser Non-sensitiser 

SYN 6 Sensitiser Sensitiser Sensitiser Sensitiser Sensitiser sensitiser 

SYN 7 Sensitiser Non-sensitiser Not conducted Inconclusive Non-sensitiser sensitiser 

SYN 8 Sensitiser Sensitiser Sensitiser Inconclusive Non-sensitiser sensitiser 

SYN 9 Non-sensitiser Non-sensitiser inconclusive Inconclusive Sensitiser sensitiser 

SYN 10 Sensitiser Sensitiser Not conducted Sensitiser Sensitiser sensitiser 

Table 6.2 Final summary of the skin sensitisation in vivo test results and the evaluated NAM test results 
for the ten agrochemical formulations 

 

A particular concern identified from the performance review of the CLP threshold calculation on 

different agrochemical formulation types was the potential for false negative results. The results for 

the FS agrochemical formulations as given in Chapter two and summarised in Table 6.2 demonstrate 

the potential of the CLP threshold calculation methods to predict false negatives. With low accuracy 

and potential for misclassification, Chapter Two indicates that this CLP threshold method should not 

be used as a standalone approach. Instead, the threshold calculation was proposed to be used in 

conjunction with another method that may/may not corroborate its binary result and, as such, provide 

a more robust final skin sensitisation classification of the formulation.  

In Chapter Three the CLP threshold method was used in combination with the in vitro triple pack in 

order to provide a WoE for a final skin sensitisation assessment on the chosen agrochemical 

formulations. The observed limitations associated with testing complex mixtures in the 2D cell assays 

of the triple pack hindered the triple pack’s ability to accurately determine the skin sensitisation 

potential of the PPPs. Although testing of individual AIs was performed successfully, one of the specific 

limitations identified with testing the agrochemical formulations in the triple pack assays was the need 

to be able to form a homogenous solution with a solvent in order to be tested. This experimental 

requirement is difficult to achieve for complex mixtures, as shown in the DPRA testing where only five 



175 
 

of the ten formulations were successfully placed in suspension. In addition, where certain materials in 

a formulation (such as preservatives) are intentionally encapsulated, the need for a homogenous 

solution can lead to the disruption of these capsules and result in direct exposure of the in vitro test 

system to the encapsulated material. Furthermore, attempting to evenly disperse agrochemical 

formulations into a solvent led to separation of the components of the designed formulations. As such, 

the test system was exposed to the ingredients of the PPP in a manner that would not represent 

potential exposure in real life field application. It was apparent that the use of these in vitro triple pack 

methods for the assessment of skin sensitisation potential of agrochemical formulations is not suitable 

in the method’s current design.  

Further investigation into two gene expression based in vitro methods was conducted in Chapters Four 

and Five. Research into the GARD assay was conducted first with the AIs, with the intention to proceed 

to test formulations once the research was able to demonstrate good concordance with the in vivo 

experimental results of the AIs. However, the GARD assay results showed poor agreement with the AI 

in vivo experimental results. Following review of the differences in physicochemical properties 

between the GARD assay training set and AI test set, it was hypothesised that the chemical space 

disparity between the two chemical sets led to a chemical domain that was not applicable to the 

biologically active agrochemicals. The GARD training set is currently highly populated with commonly 

used cosmetic materials, expanding it to include more biologically active agrochemicals may improve 

classifications from the machine learning classifier of the GARD assay by identifying specific gene 

signalling associated with sensitising and non-sensitising biologically active agrochemicals. As the 

results of the GARD assay evaluation did not demonstrate good agreement with the in vivo 

experimental results used as benchmarks, further investigation with complex mixtures was not 

pursued with this assay. Instead, using the findings from investigations into the 2D in vitro test 

methods, the decision was made to explore the use of the 3D in vitro SENS-IS assay. This assay allows 

for direct application of the PPP to the RhE test system so that good comparison to the products 

intended and anticipated use can be made. Good performance was demonstrated by the SENS-IS assay 
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in predicting both skin sensitisation potential and potency of the PPP. As such of the methods tested 

in this thesis, the SENS-IS assay has been shown to be the most reliable for skin sensitisation hazard 

assessment of agrochemical formulations. It could be used in conjunction with the CLP threshold 

method to provide accompanying supporting evidence or to verify the result of the initial calculation 

classification.  

A gold standard benchmark for which to compare the results of the in vitro assays to would be 

recorded human data. However, these were not available for the AI or formulations that were tested 

and so it should be acknowledged that using the in vivo animal assay results to determine non-animal 

alternative methods proficiency for hazard assessment of skin sensitisation when considering human 

use has a limitation. In addition to the in vivo animal studies being a combination of both GPMT and 

LLNA, going forward in order to reduce variability in comparative performance analysis, in absence of 

human data a preference of a single in vivo method type and not multiple would be considered 

primarily. Although the five different in chemico and in vitro test methods investigated in this thesis 

each targets a particular KE of the skin sensitisation AOP, there is scarce, if any, integration of data on 

the dermal disposition of test material in the skin layers proposed by any current defined approaches. 

Potential future research can investigate gaining a greater understanding of how dermal absorption 

data (specifically percentages present in the epidermis) can be used in conjunction with the in vitro 

skin sensitisation hazard assessment data, with the aim to provide an accurate risk assessment. In 

addition to that, further research to understand exactly how certain co-formulants (e.g., adjuvants, 

surfactants) and AIs may interact and impact skin sensitisation potential should be performed. This 

may potentially occur through changing dermal absorption or through potential damage to the 

stratum corneum, ultimately again altering absorption. It is anticipated that greater understanding of 

this would aid in the development of agrochemical formulations with better skin sensitisation profiles. 

This thesis has evaluated in chemico, in vitro and in silico hazard assessment methods for the skin 

sensitisation adverse effect. The aim being to identify effective and appropriate methods for the 
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assessment of skin sensitisation potential from agrochemical active ingredients and PPP. The 

protection goal of the skin sensitisation hazard assessment is to minimise the toxicological risk to 

humans with regards to this adverse effect. This goal has been pursued whilst understanding the 

intention of science in 21st Century toxicology to be a move towards decision making based on a 

predominantly predictive science that targets specific mechanism based biological observations 

(National Toxicology Program, 2004). The overall intention is to generate the information necessary 

to make a risk assessment decision whilst striving to reduce animal use. The purpose of the new 

approaches in toxicology is, in part at least, to move away from the selection of test methods based 

on what might have been considered a regulatory box ticking exercise, towards focussing resources 

on the key questions that will affect a risk assessment. It must be acknowledged that although skin 

sensitisation assessments began with human tests (as stated in Chapter One) or, where available, 

occupational toxicology or clinical reports, testing on humans is not conducted for the sole purpose 

of identifying chemical hazard. As such a move to using in vivo tests as the surrogates for human data 

was the first shift seen. The drive in 21st Century toxicology is to shift away from the classical in vivo 

tests that have formed the basis for decisions related to product safety and prioritisation of chemicals 

in early-stage research. The move away from in vivo animal testing and to the use of NAMs as 

surrogates for these classical in vivo animal tests is now being undertaken. Although this has resulted 

in a reduction in animal use, a noted limitation of how NAMs are being evaluated is that animal tests 

are regularly being used (especially in the case of agrochemicals) as the benchmark to which the 

performance of these skin sensitisation NAMs are assessed. It has been demonstrated that these 

animal methods are not 100% representative of an expected human response and as such where 

solely animal tests have been used as a benchmark for validation, a potential limitation of the NAM in 

question should be acknowledged.   

In the recently published OECD 497 guideline (OECD, 2021) on the use of skin sensitisation DAs, the 

integration of the in silico methods mentioned in Chapter Three have been outlined and accepted. 

This demonstrates the move by regulatory bodies to begin accepting the inclusion of the predictive 
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data generated by these in silico models in the regulatory submission of active ingredients. This in 

silico data are, however, considered alongside data produced from other NAMs in a WoE approach, 

to reinforce a final decision based on these outcomes together. In that context the use of the AOP for 

skin sensitisation has allowed the outlining of strategies using test methods that focus on the 

cascading steps required to lead to the adverse biological effect. In doing this the science has been 

able to move away from the in vivo tests that focus on the observation of the final outcome, and 

instead utilise and develop non animal NAMs. These NAMs focus on measuring biological interactions, 

specific biomarkers (in chemico/in vitro) or identifying chemical characteristics (in silico) that are 

essential in signifying the occurrence or activation of the events identified in the AOPs. In addition to 

the use of (Q)SAR models through WoE approaches in a regulatory context (OECD, 2021), these in 

silico approaches can be and have been used on their own as an initial screen on lead compounds. In 

early-stage research (Q)SAR models are used to focus resource on specific compounds by providing 

an initial indication of potential adverse effects. That indication of potential effects can then be further 

addressed through the selection of test methods to produce data to make decisions on those 

highlighted adverse effects in question. 

With the ultimate goal being to eliminate the need for animal testing and with a schedule such as the 

US EPA’s mandate to eliminate it by 2035 (EPA, 2019), it needs to be recognised that for us to achieve 

this, certain test material types require more focused attention to develop methods applicable to 

them. This is one of the issues addressed in this thesis. There are non-animal methods currently 

accepted for skin sensitisation testing of single chemicals. However, the research done here and 

specifically in Chapter Three on the use of triple pack methods, shows that these currently accepted 

NAMs were not appropriate for the skin sensitisation assessment of PPP. Demonstrating the need to 

focus efforts on identifying and developing alternative approaches suitable for test material types that 

would require risk assessment.  
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We have been able to demonstrate that the potential future direction for the hazard assessment of 

skin sensitisation of agrochemical complex mixtures lies in 3D in vitro reconstructed human skin 

models and identifying the genomic signature associated with skin sensitisation. It can be projected 

that the future incorporation of the test methods evaluated in this thesis will also need to include 

exposure data in order to provide a balanced risk assessment that does not assume 100% test 

substance interaction with the test system.  Ultimately, the final barrier for the global elimination of 

vertebrate testing is being able to achieve harmonised acceptance of available NAMs across the global 

regulatory landscape.  
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8.1 Appendix 1. Examples of CLP threshold calculations 

Formulation example 1 

Coformulant Material Type % CLP Skin Sensitisation Classification  GCL/SCL 

Active Ingredient A 11 Not classified NA 

Active Ingredient B 7 Not classified NA 

Solvent 31.5 Not classified NA 

Solvent 10 Not classified NA 

Surfactant 25 Not classified NA 

Antifoaming agent  0.5 Not classified NA 

Adjuvant 8 Not classified NA 

Antifreeze 7 Not classified NA 

 

In vivo test result for example formulation 1: 

Positive skin sensitiser  

Skin sensitisation classification derived from CLP threshold calculation:  

As all coformulant materials are not reported to have skin sensitisation potential in accordance with 

the threshold method the formulation would be determined not to have skin sensitisation potential.  
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Formulation example 2 

Coformulant material type % CLP skin sensitisation classification  GCL/SCL 

Active Ingredient A 20 Category 1 GCL -1% 

Antifreeze 15 Not Classified NA 

Dispersing agent 2 Not Classified NA 

Wetting agent 1 Not Classified NA 

Catalyst  0.5 Not Classified NA 

Stabilising agent 1 Not Classified NA 

Dispersing agent 2.5 Not Classified NA 

Antifoaming agent 3 Not Classified NA 

Preservative 0.05 Category 1 SCL - 0.05% 

Solvent 54.95 Not Classified NA 

 

In vivo test result for example formulation 2: 

Positive skin sensitiser 

Skin sensitisation classification derived from CLP threshold calculation:  

There are two ingredients present in this formulation of toxicological relevance regarding skin 

sensitisation. These are active ingredient A (present at 20% in the formulation) and the preservative 

material (present at 0.05%).  

Both materials are classified as category 1 skin sensitisers, however the active ingredient has a generic 

classification limit (GCL) of 1%, whilst the preservative has a specific concentration limit (SCL) of 0.05%.  

As both ingredients are present at or above their concentration classification limits, in accordance 

with the harmonised classification of individual ingredients and the sensitisation classification 

indicated in their individual safety data sheets; the example formulation two is considered to be a skin 

sensitiser and warrant a H317 category 1 classification.  
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Formulation example 3 

Coformulant material type % CLP skin sensitisation classification  GCL/SCL 

Active Ingredient A 12 Category 1B GCL -1% 

Active Ingredient B 14 not classified NA 

Adjuvant 11 not classified NA 

Preservative 0.04 Category 1 SCL - 0.05% 

Solvent 10.95 not classified NA 

Thickener 0.12 not classified NA 

Wetting agent 2.22 not classified NA 

Solvent 49.67 not classified NA 

 

In vivo test result for example formulation 3: 

Non-sensitiser  

Skin sensitisation classification derived from CLP threshold calculation:  

There are two ingredients present in this formulation of toxicological relevance regarding skin 

sensitisation. These are active ingredient A (present at 12% in the formulation) and the preservative 

material (present at 0.04%).  

Active ingredient A is classified as a category 1B skin sensitiser with a GCL of 1%, whilst the 

preservative material has a SCL of 0.05%.  
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8.2 Appendix 2. Chapter Two performance criteria results for the evaluation 

of the threshold calculation 

 

Figure 8.1 Performance criteria adopted to evaluate the prediction of skin sensitisation potential by 
the threshold calculation method conducted on 64 agrochemical formulations. 

 

 

 

 

 

 

Table 8.1 Statistical parameters used for evaluation of the threshold calculation predictions of the FS 
agrochemical formulation type test set results against the in vivo experimental skin sensitisation 

results. 

 

Positive predictivity 46% 

Negative predictivity 100% 

Sensitivity 100% 

Specificity 60% 

Total Success/Accuracy 70% 

kappa-value 0.43 

MCC 0.45 

Table 8.2 Statistical parameters used for evaluation of the threshold calculation predictions of the SC 
agrochemical formulation type test set results against the in vivo experimental skin sensitisation 

results. 
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Positive predictivity 0% 

Negative predictivity 54% 

Sensitivity 0% 

Specificity 100% 

Total Success/Accuracy 54% 

kappa-value 0.00 

MCC 0.00 
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Positive predictivity 100% 

Negative predictivity 25% 

Sensitivity 67% 

Specificity 100% 

Total Success/Accuracy 70% 

kappa-value 0.29 

MCC 0.25 

Table 8.3  Statistical parameters used for evaluation of the threshold calculation predictions of the EC 
agrochemical formulation type test set results against the in vivo experimental skin sensitisation 

results. 

 

20 SC 
formulations Pred. sensitiser Pred. non sensitiser 

In vivo dataset 
distribution Value (%) 

Obs. sensitiser 
5 (100%) 0 (0%) 

sensitiser 25% 

Obs. non 
sensitiser 6 (40%) 9 (60%) 

non sensitiser 75% 

13 FS 
formulations Pred. sensitiser Pred. non sensitiser 

  

Obs. sensitiser 
0 (0%) 6 (100%) 

sensitiser 46% 

Obs. non 
sensitiser 0 (0%) 7 (100%) 

non sensitiser 54% 

10 EC 
formulations Pred. sensitiser Pred. non sensitiser 

  

Obs. sensitiser 
6 (67%) 3 (33%) 

sensitiser 90% 

Obs. non 
sensitiser 0 (0%) 1 (100%) 

non sensitiser 10% 

7 WG 
formulations Pred. sensitiser Pred. non sensitiser 

  

Obs. sensitiser 
2 (100%) 0 

sensitiser 29% 

Obs. non 
sensitiser 0 5 (100%) 

non sensitiser 71% 

Table 8.4 Threshold calculation predictions for the SC, FS EC and WG formulation types against the in 
vivo study results. 
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8.3 Appendix 3. DPRA test methodology  

 

Experimental controls 

Positive controls 

Cinnamic aldehyde was used as the positive control in the HPLC analysis at a concentration of 100 mM 

in acetonitrile for the cysteine peptide runs. Peak splitting was observed on the chromatograms for a 

cinnamic aldehyde lysine peptide combination. The compound 2,3-butanedione (CAS 431-03-8), at a 

concentration of 100 mM acetonitrile, was used as the positive control in HPLC analysis for the lysine 

peptide runs only. The AI 2,3-butanedione is listed among the recommended OECD Test Guideline 

positive prediction substances to demonstrate DPRA proficiency and has similar depletion ranges to 

cinnamic aldehyde (Cys: 60-100%, Lys: 10-45%) (OECD, 2019). During proficiency testing of 2,3-

butanedione at the Gentronix laboratory, chromatography reliably showed a single peak only i.e., no 

splitting. Therefore 2,3-butanedione was considered a suitable alternative positive control chemical. 

Solvent controls  

Three types of reference controls (i.e., samples containing only the peptide dissolved in the 

appropriate solvent) were included in the HPLC run sequence: 

1. Reference control A: This reference control was made with acetonitrile and was used to verify 

the accuracy of the calibration curve for peptide quantification.  

2. Reference control B: This reference control was made with acetonitrile. Its replicates were 

injected at the beginning and at the end of the HPLC analysis run to verify the stability of the 

peptides over the HPLC analysis time.  

3. Reference control C: These reference controls were prepared in each solvent used for 

formulation of the ten AIs or agrochemical formulations (all acetonitrile:DMSO (1:1)) and were 

included in every HPLC analysis run. They were used to verify that the solvent did not impact 

the percent peptide depletion. The appropriate reference control C was used to calculate 

percent peptide depletion of each test item.  
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A co-elution control was also used. This control was prepared without the addition of the peptides in 

order to determine if the AI test material was absorbed at 220 nm and had a similar retention time as 

the cysteine or lysine peptides, as this would have interfered with the data analysis.  

Test substance incubation with cysteine and lysine peptides 

The formulated test substance solutions were incubated with the cysteine or lysine peptides for 

approximately 22 – 26 hours at room temperature and away from light. The proportions of test 

material and peptide solution incubated together followed OECD test guideline procedure for the 

DPRA test and are indicated in table 7 presented in the appendix.  

As indicated in table 6 a further test item solubility assessment was conducted on the ten AIs in the 

cysteine peptide buffer (sodium phosphate buffer (pH 7.5)) and the lysine peptide buffer (ammonium 

acetate buffer (pH 10.2)) following 22 – 26 hours incubation. Where the formation of precipitate was 

observed following incubation with the peptides, the samples were centrifuged (at low speed (100-

400 xg)) prior to HPLC analysis (ECVAM, 2012). Consequently, the final AI concentrations in the 

corresponding peptide buffers were an estimation and could not be determined with precision for 

samples where precipitation was observed.  

 

1:10 Ratio, Cysteine Peptide 
0.5 mM Peptide, 5 mM Test Item* 

1:50 Ratio, Lysine Peptide 
0.5 mM Peptide, 25 mM Test Item* 

750 µL cysteine peptide solution 
(Or pH 7.5 phosphate buffer for co-elution 

controls) 
+ 

200 µL acetonitrile 
+ 

50 µL test item solution 
Or 

50 µL of suitable solvent for reference 
controls A, B and C or positive control 

solution 

750 µL lysine peptide solution 
(Or pH 10.2 ammonium acetate buffer for co-

elution controls) 
+ 

250 µL test item solution 
Or 

250 µL solvent for reference controls 
 

Table 8.5  DPRA Test sample preparation for HPLC analysis 

*These final test item concentrations only apply if the test item was dissolved in solvent at 100 mM. 

Test item concentration will be less if this recommended maximum test concentration was not 

achieved. 
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Acceptance Criteria Description Result Pass/Fail 

Calibration curve standards All included in curve Pass 

Linear regression 
R2 > 0.990 0.999 Pass 

Reference Control A in acetonitrile 
0.45-0.55 mM 0.521 mM Pass 

Reference Control B in acetonitrile 
CV <0.15 0.083 Pass 

Reference Control C in acetonitrile 
CV <0.15 

0.45-0.55 mM 
0.043 

0.479 mM 
Pass 
Pass 

Positive control in acetonitrile  
60.8%< mean depletion of cysteine < 96.6% 69.55% Pass 

CV= Coefficient Variation, QC  

Therefore, all the system suitability tests and calibration results for this experiment PASS. 

Acceptance Criteria Description Result Pass/Fail 

Control C in DMSO:Acetonitirle (1:1)   

CV <0.15 
0.45-0.55 mM 

0.242 
0.073 mM 

Fail 
Fail 

Table 8.6 DPRA reference controls acceptance criteria 

Control C in the DMSO and acetonitrile mixture show a significant depletion of the cysteine peptide 

and according to the OECD 442C test guideline would give non-conclusive results with respect to the 

formulations. 
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8.4 Appendix 4. KeratinoSensTM test methodology 

Test item administration  

At the final density of 1 X 106 cells/mL, the THP-1 cells were treated with 500 µL of the eight test 

material concentrations. The test item and THP-1 were incubated for 24 hours (± 1 hour) in 5% CO2 at 

37OC. Stock solutions of each test material in their corresponding solvents (DMSO or saline) were 

prepared and then diluted in the same solvent in order to formulate the test solutions. Test material 

solutions dissolved in DMSO were diluted 1:500, whilst those dissolved in saline/media were diluted 

1:100 in a 24-well plate to give the final concentrations shown in Tables 6.8 and 6.9. 

Upon addition of the AI test material to the 24 well plate, any observed changes (e.g., precipitate 

formation or colour change) were recorded.  

Controls 

The vehicle control material chosen for use alongside each test material was the same solvent used to 

formulate the corresponding test material solution. A medium control was used for dicamba. Solvent 

treated cultures in which the solvent volume was equivalent to the volume used in the test material 

treated cultures were used as the negative control. The positive control used was DNCB. The DNCB 

was tested at a final concentration of 4.0 µg/mL in the 24 well plate.   

Cell harvesting  

Following the 24-hour incubation with test material, THP-1 cells were washed in flow cytometry 

staining buffer (FACS buffer, manufacturer and place, UK) and resuspended in blocking solution for 

approximately 15 minutes on ice and protected from light. The resuspension in blocking solution was 

performed to increase the specificity of antibody labelling on the target cells. After blocking, the cells 

were centrifuged, cell pellets were resuspended and split into three aliquots which were transferred 

to a 96-well microplate for antibody staining. 
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Cell staining with Fluorescein Isothiocyanate (FITC) labelled antibodies  

Following antibody solution preparation, cells were centrifuged for five minutes in the 96-well 

microplate at approximately 250g at 4oC and 50 µL of antibody was added to each cell pellet in the 96-

well microplate i.e., one cell pellet per sample for anti-CD86 antibody, one cell pellet per sample for 

anti-CD54 antibody and one cell pellet per sample for Mouse IgG1 antibody. Cells were then incubated 

for approximately 30 minutes. 

 

After antibody staining, cells were washed with FACS buffer and cell pellets were resuspended in 400 

µL of FACS buffer in a flow cytometry sample tube. Before each flow cytometry acquisition, PI solution 

at a final concentration of 0.625 µg/mL was added to each sample. 

All steps required for cell staining with antibodies were performed on ice/refrigerated and protected 

from light as directed (ECVAM, 2014b).  

Relative fluorescence intensity calculation  

The Relative Fluorescence Intensity (RFI) was used as an indicator of CD86 and CD54 expression. Based 

on the Mean Fluorescence Intensity (MFI), the RFI of CD86 and CD54 were calculated according to the 

following equation: 

RFI =     MFI of test item treated cells - MFI of test item treated isotype cells 

                MFI of solvent treated cells - MFI of solvent treated isotype cells              

The cell viability was recorded for each concentration of every test item using the isotype control cells. 

Calculation of the EC150 (for CD86) and EC200 (for CD54) 

Where test substances are predicted as positive in the h-CLAT assay, effective concentration (EC) 

values leading to the 150-fold and 200 fold inductions (in CD86 and CD54 respectively) can be 

determined. The EC values are calculated using the test data in the following equations: 

EC150 (for CD86) = Bdose + [(150 – BRFI) / (ARFI – BRFI) x (Adose – Bdose)] 

x 100 
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EC200 (for CD54) = Bdose + [(200 – BRFI) / (ARFI – BRFI) x (Adose – Bdose)] 

Where 

Adose is the lowest concentration in µg/mL leading to a RFI >150 (CD86) or 200 (CD54) 

Bdose is the highest concentration in µg/mL leading to a RFI <150 (CD86) or 200 (CD54) 

ARFI is the RFI at the lowest concentration with a RFI of >150 or 200 accordingly 

BRFI is the RFI at the highest concentration with a RFI of <150 or 200 accordingly 
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  Concentrations on the Microplate (µM) 

  

Highest 
conc. → → → → → → → → → → → 

Lowest 
conc. 

Test Item ID 
Concentration in 

Solvent (mM) 1 2 3 4 5 6 7 8 9 10 11 12 

              
acetamiprid 200.0 2000 1000 500 250 125 62.50 31.25 15.63 7.81 3.91 1.95 0.98 

              
acibenzolar-s-methyl 25.00 250 125 62.50 31.25 15.63 7.81 3.91 1.95 0.98 0.49 0.24 0.12 

              
benzovindiflupyr 25.00 250 125 62.50 31.25 15.63 7.81 3.91 1.95 0.98 0.49 0.24 0.12 

              
chlorantraniliprole 25.00 250 125 62.50 31.25 15.63 7.81 3.91 1.95 0.98 0.49 0.24 0.12 

              
chlorothalonil 30.00 300 150 75 37.50 18.75 9.38 4.69 2.34 1.17 0.59 0.29 0.15 

              
cyantraniliprole 50.00 500 250 125 62.50 31.25 15.63 7.81 3.91 1.95 0.98 0.49 0.24 

              
dicamba 200.0 2000 1000 500 250 125 62.50 31.25 15.63 7.81 3.91 1.95 0.98 

              
mesotrione 200.0 2000 1000 500 250 125 62.50 31.25 15.63 7.81 3.91 1.95 0.98 

              
pinoxaden 100.0 1000 500 250 125 62.50 31.25 15.63 7.81 3.91 1.95 0.98 0.49 

              
AI1 25.00 250 125 62.50 31.25 15.63 7.81 3.91 1.95 0.98 0.49 0.24 0.12 

Table 8.7  KeratinoSensTM active ingredient 12 microplate dosing concentrations. 
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  Concentrations on the Microplate (µM) 

  

Highest 
conc. → → → → → → → → → → → 

Lowest 
conc. 

Test Item ID 
Concentration in 

Solvent (mM) 1 2 3 4 5 6 7 8 9 10 11 12 

              

SYN1 312.50 312.50 250 200 160 128 102.40 81.92 65.54 52.43 41.94 33.55 26.84 

              
SYN2 1024 1024 819.20 655.36 524.29 419.43 335.54 268.44 214.75 171.80 137.44 109.95 87.96 

              
SYN3 1000 1000 800 640 512 409.60 327.68 262.14 209.72 167.77 134.22 107.37 85.90 

              
SYN4 44 44 29.33 19.56 13.04 8.691 5.794 3.863 2.575 1.717 1.145 0.763 0.509 

              
SYN5 26.60 26.60 17.73 11.82 7.881 5.254 3.503 2.335 1.557 1.038 0.692 0.461 0.308 

              
SYN6 2.15 2.15 1.72 1.38 1.10 0.88 0.71 0.56 0.45 0.36 0.29 0.23 0.19 

              
SYN7 21.64 21.64 17.31 13.85 11.08 8.86 7.09 5.67 4.54 3.63 2.90 2.32 1.86 

              
SYN8 33.08 33.08 22.05 14.70 9.80 6.53 4.36 2.90 1.94 1.29 0.86 0.57 0.38 

              
SYN9 397.80 397.80 265.20 176.80 117.87 78.58 52.39 34.92 23.28 15.52 10.35 6.90 4.60 

              
SYN10 114 114 91.20 72.96 58.37 46.69 37.36 29.88 23.91 19.13 15.30 12.24 9.79 

Table 8.8 KeratinoSensTM agrochemical formulations 12 microplate dosing concentrations 
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Active ingredient 
Highest soluble concentration 

in solvent (mg/mL) 
 

Selected solvent 

acetamiprid 400.0 DMSO 

acibenzolar-s-methyl 60.00 DMSO 

benzovindiflupyr 500.0 DMSO 

chlorantraniliprole 250.0 DMSO 

chlorothalonil 10.00 DMSO 

cyantraniliprole 100.0 DMSO 

dicamba 100.0 Saline 

mesotrione 300.0 DMSO 

pinoxaden 150.0 DMSO 

AI1 150.0 DMSO 

Table 8.9 AI pre-test solubility assessment for the KeratinoSensTM assay. 

 

Test formulation 
Highest soluble test 

concentration (µg/mL) 
 

Selected solvent 

SYN 1 5000 Saline 

SYN 2 78.13 Saline 

SYN 3 250 Saline 

SYN 4 875 Saline 

SYN 5 39.06 Media 

SYN 6 3.91 Saline 

SYN 7 5000 Saline 

SYN 8 10 DMSO 

SYN 9 500 Saline 

SYN 10 156.30 Saline 

Table 8.10  Agrochemical formulation pre-test solubility assessment for the KeratinoSensTM assay 

Active ingredient 
Final Concentration in Cell Culture 

Medium (µg/mL) 

acetamiprid 800.0 

acibenzolar-s-methyl 30.00 

benzovindiflupyr 15.63 

chlorantraniliprole 62.50 

chlorothalonil 20.00 

cyantraniliprole 100.0 

dicamba 1000 

mesotrione 600.0 

pinoxaden 150.0 

AI1 75.00 

Table 8.11 AI formulated test concentrations for the cell culture medium for the KeratinoSensTM 
assay 
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Control chemicals 

Dimethyl sulfoxide was selected as the negative control material. Vehicle controls consisted of DMSO 

solvent-treated cultures in which the volume of DMSO (1%) was equivalent to that in the test item-

treated cultures.  

Cinnamic aldehyde (CAS number 14371-10-9, >99% purity) was used as the positive control material 

for the KeratinoSensTM assay. It was tested at final concentrations of 64, 32, 16, 8 and 4 µM. 

Active ingredient 

Concentration 
in Solvent 

(mM) 

Concentration on 
the microplate 

(µM) 
Test item observations upon 
addition to the microplate 

acetamiprid 200.0 2000 None 

acibenzolar-s-methyl 25.0 250.0 
Precipitation at highest four 

concentrations tested 

benzovindiflupyr 25.0 250.0 None 

chlorantraniliprole 25.0 250.0 None 

chlorothalonil 30.0 300.0 
Precipitation at highest 

concentration tested 

cyantraniliprole 50.0 500.0 
Precipitation at highest two 

concentrations tested 

dicamba 200.0 2000 None 

mesotrione 200.0 2000 
Slight colour change at 

highest concentration tested 

pinoxaden 100.0 1000 None 

AI1 25.0 250.0 
Precipitation at highest three 

concentrations tested 

Table 8.12 Active ingredient maximum test concentrations used for the KeratinoSens™ assay and 
microplate observations 
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Test formulation 

Concentration 
in Solvent 

(mM) 

Concentration on 
the microplate 

(µM) 
Test item observations upon 
addition to the microplate 

SYN 1 200.0 2000 

Small amount of 
precipitation in top 

concentration 

SYN 2 102.4 1024 

Small amount of 
precipitation in top 

concentration 

SYN 3 70.64 706.4 None 

SYN 4 70.71 707.1 None 

SYN 5 85.15 851.5* None 

SYN 6 110.3 1103 None 

SYN 7 138.5 1385 None 

SYN 8 13.23 132.3 None 

SYN 9 79.56 795.6 None 

SYN 10 22.80 228.0 None 

Table 8.13 Agrochemical formulation maximum test concentrations used for the KeratinoSens™ 
assay and microplate observations 

*1:2 dilution in DMSO needed 

 

The ten agrochemical AIs and formulations were dissolved in DMSO and any precipitation observed, 

upon addition of the test material formulations to the KeratinoSensTM exposure medium, was 

recorded and is reported in Tables 3.10 and 3.11. Serial dilutions were made from the initial stock 

solutions for each of the test materials. Twelve concentrations using a 2-fold dilution scheme with 

DMSO as the solvent were administered. The twelve concentrations used for each AI and formulation 

are listed in Tables 8.13 and 8.14. 

Culture of the KeratinoSensTM human keratinocyte cell line 

The KeratinoSensTM cell line is an immortalised and genetically modified human adherent HaCat 

keratinocyte cell line (Schoop et al., 1999). A vial of the human keratinocyte cell line was obtained 

under licence from the assay developer Givaudan (Givaudan SA, Switzerland). This was used to create 
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an in-house master stock of the KeratinoSens™ human keratinocyte cell line in the Gentronix 

laboratory and working stocks were created. All cell stocks were stored in liquid nitrogen. Cells were 

maintained in D-MEM media, supplemented with 9.1% heat inactivated foetal calf serum and G418 

(Gibco, Life Technologies, UK), for a maximum of 25 passages. On the day prior to testing, cells were 

seeded into 96 well microplates at a concentration of 10,000 cells per well.  

Test material administration 

The KeratinoSensTM cells were placed in 96-well pates and grown for 24 hours at 37oC. The cell medium 

was removed, the cells were treated with 50 µL of the test material or positive control solution and 

solvent control cultures were treated with the same volume of solvent. Four concurrent 96-well 

microplates were prepared for each KeratinoSens™ test, three white, flat-bottomed 96-well 

microplates (for luminescence measurement) and one clear, flat bottomed 96-well microplate (for the 

MTT cytotoxicity assessment). 

The treated plates were incubated for 48 hours at 37oC in a humidified atmosphere of 5% CO2. At the 

end of this treatment, the cells were washed, and the luciferase production measured by flash 

luminescence. 

Endpoint measurements 

Microscopic observation to evaluate the presence or absence of precipitate - transparent plate 

After the 48-hour incubation period, the presence or absence of precipitate/emulsion was determined 

in each well by microscopic inspection.  

Luminescence flash signal to evaluate induction signal (white plates) 

After approximately 48 hours incubation with the test item, positive control or solvent, cells were 

lysed in passive lysis buffer (Promega Corp, UK). Passive lysis buffer was added to each well and the 

cells were incubated for 20 minutes, after which 50 µL of luciferase substrate (Promega Corp) was 
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added to each well. One second after this addition, the luciferase signal was integrated for two 

seconds. 

Absorbance signal to evaluate the cytotoxicity (transparent plate) 

Cytotoxicity was measured in parallel using a MTT reduction test. Following a 48-hour incubation with 

the test item, positive control or solvent control, cells were incubated with MTT for 4 hours under the 

same humidified atmosphere and temperature conditions (5% CO2 and 37oC). After this incubation 

period, the cells were then dissolved in sodium dodecyl sulphate (SDS) and the absorption at 

approximately 600nM was determined for each well using a plate reader (Tecan Infinite F500).  

Active ingredient 
Observations following 48-hour exposure period 

with test item 

acetamiprid 
 

None 

 
acibenzolar-s-methyl 

 
None 

benzovindiflupyr 
 

Precipitation at highest 3 concentrations tested 

chlorantraniliprole 
 

Precipitation at highest 2 concentrations tested 

chlorothalonil 
 

Precipitation at highest 3 concentrations tested 

cyantraniliprole 
 

Precipitation at highest 5 doses tested 

dicamba 
 

None 

mesotrione 
 

None 

pinoxaden 
 

None 

AI1 
 

None 

Table 8.14 Observations following the test item exposure period for the KeratinoSensTM assay 
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8.5 Appendix 5. KeratinoSensTM raw data results 

 Imax values for Replicates (Rep) 1 - 5 

Active Ingredient 
Rep 1 

Imax 
Rep 2 

Imax 
Rep 3 

Imax 
Rep 4 

Imax 
Rep 5 

Imax 
Mean 

Imax 

acetamiprid NA NA 1.40 1.21 1.47 1.36 

acibenzolar-s-methyl NA NA 1.06 0.98 1.00 1.01 

benzovindiflupyr 12.12 3.20 NA NA NA 7.66 

chlorantraniliprole 1.19 MTT 1.10 0.94 1.28 1.13 

chlorothalonil 17.85 7.49 NA NA NA 12.67 

cyantraniliprole NA NA 1.17 1.05 1.06 1.10 

dicamba 1.14 MTT 1.19 1.17 1.31 1.20 

mesotrione NA NA 1.69 2.42 1.74 1.95 

pinoxaden 26.00 21.34 NA NA NA 23.66 

AI1 NA NA 2.68 3.25 2.68 2.87 

Table 8.15  Imax values from the KeratinoSensTM assay for the ten active ingredients 

Key: NA = Not Applicable – test item was not tested in this experimental run, MTT = Cytotoxicity data from the 

MTT assay was unacceptable for this experimental run. 

 

 EC1.5 values (µM) for Replicates (Rep) 1 - 5 

Active Ingredient 
Rep 1 
EC1.5 

Rep 2 
EC1.5 

Rep 3 
EC1.5 

Rep 4 
EC1.5 

Rep 5 
EC1.5 

Mean 
EC1.5 

acetamiprid NA NA n.i. n.i. n.i. n.i. 

acibenzolar-s-methyl NA NA n.i. n.i. n.i. n.i. 

benzovindiflupyr 8.60 4.69 NA NA NA 6.65 

chlorantraniliprole n.i. MTT n.i. n.i. n.i. n.i. 

chlorothalonil <0.15 <0.15 NA NA NA <0.15 

cyantraniliprole NA NA n.i. n.i. n.i. n.i. 

dicamba n.i. MTT n.i. n.i. n.i. n.i. 

mesotrione NA NA 781.10 651.30 1324 918.80 

pinoxaden 28.16 29.03 NA NA NA 28.60 

AI1 NA NA 23.54 41.83 21.01 28.79 

Table 8.16 EC1.5 values from the KeratinoSensTM assay for the ten active ingredients 

Key: n.i. = no induction above threshold, NA = Not Applicable – test item was not tested in this experimental 

run, MTT = Cytotoxicity data from the MTT assay was unacceptable for this experimental run. 
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 IC50 values (µM) for Replicates (Rep) 1 - 5 

Active Ingredient 
Rep 1 
IC50 

Rep 2 
IC50 

Rep 3 
IC50 

Rep 4 
IC50 

Rep 5 
IC50 

Mean 
IC50 

acetamiprid NA NA >2000 >2000 >2000 >2000 

acibenzolar-s-methyl NA NA >250 >250 >250 >250 

benzovindiflupyr 24.63 20.85 NA NA NA 22.74 

chlorantraniliprole >250 MTT >250 >250 >250 >250 

chlorothalonil 1.12 0.83 NA NA NA 0.97 

cyantraniliprole NA NA 459.70 >500 >500 >500 

dicamba >2000 MTT >2000 >2000 >2000 >2000 

mesotrione NA NA >2000 >2000 >2000 >2000 

pinoxaden 110 104.90 NA NA NA 107.50 

AI1 NA NA 193.20 175.20 188.10 185.50 

Table 8.17 IC50 values from the KeratinoSensTM assay for the ten active ingredients 

Key: NA = Not Applicable – test item was not tested in this experimental run, MTT = Cytotoxicity data from the 

MTT assay was unacceptable for this experimental run. 

 

 
Positive control induction values 

Positive control 
acceptance criteria 

Cinnamic 
aldehyde 4 µM 

 
8 µM 

 
16 µM 

 
32 µM 

 
64 µM EC1.5 

 
EC1.5 

Imax 
64 µM 

rep 1 1.06 1.18 1.38 1.97 3.18 19.33 TRUE TRUE 

rep 2 1.30 1.33 1.81 2.81 4.69 10.87 TRUE TRUE 

rep 3 1.21 1.44 1.65 2.22 4.95 10.13 TRUE TRUE 

rep 4 1.11 1.31 1.53 2.54 5.22 15.02 TRUE TRUE 

rep 5 1.26 1.47 1.89 2.75 9.82 8.66 TRUE FALSE 

Mean 1.19 1.35 1.65 2.46 5.57 12.80   

Table 8.18 Numerical results for the positive control cinnamic aldehyde in the KeratinoSensTM assay 

 

Historical mean 22.01 μM 

STDEV 10.82 

Historical mean +2STDEV 43.65 μM 

Historical mean -2STDEV 0.380 μM 

Table 8.19 Gentronix Laboratory historic control data for cinnamic aldehyde positive control in the 
KeratinoSensTM assay 

 % standard deviation blanks 

rep 1 14.51 accepted 

rep 2 15.19 accepted 

rep 3 12.27 accepted 

rep 4 12.95 accepted 

rep 5 12.11 accepted 

Table 8.20 Solvent control variability 
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8.6 Appendix 6. H-CLAT assay methodology 

Test item administration of the CV75 Dose Finding Assay  

The THP-1 cells at a final density of 1 x 106 cells/mL were treated with 500 µL of the of test material 

for 24 hours for approximately one hour at 37°C in a 5% CO2 incubator. Eight AI concentrations in a 2-

fold dilution scheme were administered. Solvent control cultures were treated with the same volume 

used in nine AIs using DMSO and a medium control was used for dicamba only.  

Following the 24-hour incubation with the test material, a cell viability test was conducted. The cells 

were harvested and stained with propidium iodide (PI) at a concentration of 0.625µg/mL. The staining 

was performed in the absence of light and at 40C. Approximately 10000 living cells (i.e., cells exhibiting 

low or no PI staining) were collected and analysed using flow cytometry. The percentage of living cells 

(PI negative) was used to determine the cell viability. The flow cytometry software indicated the cell 

viability (% total) of the cell sample taken, or, if necessary, it was calculated as follows:  

Cell viability = (number of living cells / total number of acquired cells) X 100 

At least two cell viability assays were included at each test material concentration. On every occasion 

independently prepared test material formulations and control solutions were used, with separate 

cell passages, to derive a reliable CV75. The mean of the two runs was then used to set the test 

material dose range for measuring the CD54 and CD86 expression.  

As indicated in OECD Test Guideline 442E (OECD, 2018a), the CV75 value was calculated by log-linear 

interpolation using the following equation: 

Log CV75 = ((75 - c) X Log(b) – (75 - a) X Log(d)) / a – c  

Where a, b, c and d are represented in a dose response curve as shown in Figure 8.2. 
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Figure 8.2 CV75 determination dose response curve (OECD, 2018a) 

a – the minimum value of cell viability over 75% 

c – the maximum value of cell viability below 75% 

b and d - the test material concentrations leading to the value of cell viability of a and c respectively  

Agrochemical formulation and Active ingredient test material formulation  

Following the dose-range finding experimentation, eight final concentrations of the test materials 

were selected for the measurement of CD54 and CD86 expression. The highest test material 

concentration used for all substances was CV75 X 1.2 and a 1.2-fold dilution series was created to 

generate the seven remaining test concentrations. Where no cytotoxicity was observed following cell 

incubation with a test material, the eight dosing concentrations were prepared using a 1.2 -fold 

dilution series from the highest soluble concentration previously determined. The final maximum test 

concentration did not exceed 5000 µg/mL for test materials prepared in saline or culture medium, or 

1000 µg/mL for test materials prepared in DMSO.  

During the pre-test solubility assessment for the test formulations 1% Pluronic was also explored as a 

potential solvent. It was explored because it is used frequently as a vehicle in the LLNA testing of 

formulations. Confirmation of Pluronic as a usable solvent for this h-CLAT test would allow for the 

removal of the solvent variable when comparing results to the in vivo LLNA test. However, this type of 

Pluronic was extremely viscous. Vortexing and sonicating did not improve the solubility and resulted 

in oily globules within a cloudy media. Pluronic was immiscible with the THP-1 media, as such testing 

proceeded with the most appropriate solvents identified pre-test solubility. 
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8.7 Appendix 7. H-CLAT assay raw data results 

 Eight active ingredient test formulation concentrations (µg/mL) 

Active Ingredient 
dilution 

1 
dilution 

2 
dilution 

3 
dilution 

4 
dilution 

5 
dilution 

6 
dilution 

7 
dilution 

8 

acetamiprid 800.00 666.70 55.60 463.00 385.80 321.50 267.90 223.30 

acibenzolar-s-methyl 30.00 25.00 20.83 17.36 14.47 12.06 10.05 8.37 

benzovindiflupyr 15.63 13.03 10.85 9.05 7.54 6.28 5.23 4.36 

chlorantraniliprole 62.50 52.08 43.40 36.17 30.14 25.12 20.93 17.44 

chlorothalonil 150.00 125.00 104.20 86.81 72.34 60.28 50.23 41.86 

cyantraniliprole 200.00 166.70 138.90 115.70 96.45 80.38 66.98 55.82 

dicamba 5000.00 4167.00 3472.00 2894.00 2411.00 2009.00 1674.00 1395.00 

mesotrione 600.00 500.00 416.70 347.20 289.40 241.10 200.90 167.40 

pinoxaden 150.00 125.00 104.20 86.81 72.34 60.28 50.23 41.86 

AI1 75.00 62.50 52.08 43.40 36.17 30.14 25.12 20.93 

Table 8.21 AI h-CLAT test formulation concentrations 

 

 Eight Agrochemical test formulation concentrations (µg/mL) 

Test formulation 
dilution 

1 
dilution 

2 
dilution 

3 
dilution 

4 
dilution 

5 
dilution 

6 
dilution 

7 
dilution 

8 

SYN1 83.22 69.35 57.79 48.16 40.13 33.44 27.87 23.23 

SYN2 78.13 65.11 54.26 45.21 37.68 31.40 26.17 21.80 

SYN3 250 208.30 173.60 144.70 120.60 100.50 83.72 69.77 

SYN4 875.00 729.20 607.60 506.40 422 351.60 293 244.20 

SYN5 39.06 32.55 27.13 22.60 18.84 15.70 13.08 10.90 

SYN6 2.87 2.40 2.00 1.66 1.39 1.16 0.96 0.80 

SYN7 89.47 74.56 62.13 51.78 43.15 35.96 29.96 24.97 

SYN8 10 8.33 6.94 5.79 4.82 4.02 3.35 2.79 

SYN9 500 416.70 347.20 289.40 241.10 200.90 167.40 139.50 

SYN10 147.10 122.60 102.20 85.13 70.94 59.12 49.26 41.05 

Table 8.22 Agrochemical formulation h-CLAT test concentrations 

 

Agrochemical AI h-CLAT performance evaluation data 

N h-CLAT. positive h-CLAT. negative 

in vivo. sens 1 3 

in vivo. non sens 2 4 

Table 8.23 Agrochemical AI h-CLAT results confusion matrix 
 

Positive predictivity 33.3% 

Negative predictivity 57.1% 

Sensitivity 25.0% 

Specificity 66.7% 

Total Success 50.0% 

*kappa-value -0.09 

Table 8.24 Agrochemical formulation h-CLAT performance evaluation data 
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Active ingredient 
Test item observations upon 
addition to the 24-well plate 

Test item observations following 
exposure period 

acetamiprid None None 

 
acibenzolar-s-methyl 

Precipitation at seven highest 
concentrations tested (30.00 – 10.05 

µg/mL) in both runs 1 and 2 None 

benzovindiflupyr None None 

chlorantraniliprole None None 

chlorothalonil None None 

cyantraniliprole 

Precipitation at highest 
concentration tested (200.0 µg/mL) 
in run 1 and again at the two highest 

concentration tested (200.0 and 
166.7 µg/mL) in run 2 

Small amounts of precipitation at 
highest four doses tested (200.0 

– 115.7 µg/mL) in run 1 only 

dicamba None None 

mesotrione 

Slight colour change at six highest 
concentrations tested (600.0 – 241.1 

µg/mL) in both runs 1 and 2 None 

pinoxaden None None 

AI1 None None 

Table 8.25 Recorded changes following AI test substance administration to h-CLAT 24 well plate. 

 

Agrochemical formulation h-CLAT performance evaluation data 

 

N h-CLAT. positive h-CLAT. negative 

in vivo. sens 2 4 

in vivo. Non sens 3 1 

Table 8.26 Agrochemical formulation h-CLAT results confusion matrix 

 

Positive predictivity 40.0% 

Negative predictivity 20.0% 

Sensitivity 33.3% 

Specificity 25.0% 

Total Success 30.0% 

*kappa-value -0.40 

Table 8.27 Agrochemical formulation h-CLAT performance evaluation data 
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8.8 Appendix 8. Defined approach formulation and AI raw data 

AI two out of three defined approach results 

 

N Pred. Bad Pred. Neutral Pred. Good 

Obs. Bad 3 1 0 

Obs. Neutral 0 0 0 

Obs. Good 4 1 1 

Table 8.28 3x3 confusion matrix for the two/three skin sensitisation defined approach on the AI test 
material 

 

Statistics Value 

Total Success (%) 40.0% 

*kappa-value 0.09 

N 10 

Table 8.29 two/three AI Classification Success Rates 

 

Agrochemical formulation weight of evidence and performance evaluation data 

 

N Pred. Sens Pred. Non Sens 

in vivo. sens 3 2 

in vivo. non sens 2 1 

Table 8.30 Agrochemical formulation WoE approach confusion matrix 

 

Positive predictivity 60.0% 

Negative predictivity 33.3% 

Sensitivity 60.0% 

Specificity 33.3% 

Total Success 50.0% 

*kappa-value -0.07 

Table 8.31 Agrochemical formulation WoE performance evaluation data
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8.9 Appendix 9. SENS-IS solvent material list 

 

  Controls Material Supplier 
Batch 

number Description Concentration Storage 

vehicle/negative 
control 

Phosphate 
Buffered Saline Gibco 1905421 Clear solution Pure Room temperature 

vehicle/negative 
control Olive oil Puget 18215V0114 Yellow solution Pure 

Room temperature, protected 
from light and humidity 

vehicle/negative 
control 

Dimethyl 
sulfoxide 

Pan 
biotech H170410 

Viscous clear 
solution Pure 

Room temperature, protected 
from light and humidity 

Irritation 
positive control 

Sodium Lauryl 
Sulfate Invitrogen 1927138 

10% dilution 
clear solution 

5% (commercial 
solution diluted at 

50% in PBS) 
Room temperature, protected 

from light and humidity 

Sensitisation 
positive control 

2, 4,6-
trinitrobenzene 

sulfonic acid Sigma BCBV5717 
Clear yellow 

solution 1% solution -20oC 

Table 8.32  SENS-IS solvent material list 
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8.10 Appendix 10. Positive and negative control results for all experimental 

runs 

Key 

Positive        negative  

Experimental controls for SYN1 

Table 8.33 Positive and negative control results for all experimental runs 

Experiment #1: 

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  21 10  4 

SENS-IS 6  5  4 

REDOX 5  16 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #2:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  23 10  4 

SENS-IS 3  8  0 

REDOX 4  16 0 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #3:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  23 14  5 

SENS-IS 5  11  5 

REDOX 4  16 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 
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Experimental controls for SYN2 

Experiment #1: 

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  21 10  4 

SENS-IS 6  5  4 

REDOX 5  16 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #2:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  23 10  4 

SENS-IS 3  8  0 

REDOX 4  16 0 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #3: 

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  23 14  5 

SENS-IS 5  11  5 

REDOX 4  16 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 
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Experimental controls for SYN3 

Experiment #1:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  21 10  4 

SENS-IS 6  5  4 

REDOX 5  16 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #2: 

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  23 14  5 

SENS-IS 5  11  5 

REDOX 4  16 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #3:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  22 11  2 

SENS-IS 2  7  2 

REDOX 1  14 1 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 
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Experimental controls for SYN4 

Experiment #1:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  17 13  1 

SENS-IS 2  8  6 

REDOX 2  15 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #2:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  23 14  5 

SENS-IS 5  11  5 

REDOX 4  16 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #3:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  18 6  1 

SENS-IS 5  5  0 

REDOX 5  14 2 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 
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Experimental controls for SYN5 

Experiment #1:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  19 13  14 

SENS-IS 1  10  3 

REDOX 5  17 3 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #2:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  17 13  1 

SENS-IS 2  8  6 

REDOX 2  15 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #3:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  21 10  4 

SENS-IS 6  5  4 

REDOX 5  16 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 
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Experimental controls for SYN6 

Experiment #1:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  19 13  14 
SENS-IS 1  10  3 
REDOX 5  17 3 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #2:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  17 13  1 
SENS-IS 2  8  6 
REDOX 2  15 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #3: 

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  21 10  4 
SENS-IS 6  5  4 
REDOX 5  16 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #4: 

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  21 10  4 
SENS-IS 6  5  4 
REDOX 5  16 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 
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Experimental controls for SYN7 

Experiment #1:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  21 10  4 

SENS-IS 6  5  4 

REDOX 5  16 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #2:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  23 14  5 

SENS-IS 5  11  5 

REDOX 4  16 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #3:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  22 11  2 

SENS-IS 2  7  2 

REDOX 1  14 1 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 
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Experimental controls for SYN8 

Experiment #1:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  21 10  4 

SENS-IS 6  5  4 

REDOX 5  16 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #2:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  23 10  4 

SENS-IS 3  8  0 

REDOX 4  16 0 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #3: 

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  23 14  5 

SENS-IS 5  11  5 

REDOX 4  16 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 
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Experimental controls for SYN9 

Experiment #1:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  19 13  14 

SENS-IS 1  10  3 

REDOX 5  17 3 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #2:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  17 13  1 

SENS-IS 2  8  6 

REDOX 2  15 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #3: 

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  21 10  4 

SENS-IS 6  5  4 

REDOX 5  16 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 
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Experimental controls for SYN10 

Experiment #1:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  19 13  14 

SENS-IS 1  10  3 

REDOX 5  17 3 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #2:  

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  17 13  1 

SENS-IS 2  8  6 

REDOX 2  15 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 

Experiment #3: 

 
Positive control for 

irritation 
Positive controls 
for sensitisation Negative control 

Number of 
overexpressed genes SLS 5% TNBS 1% DMSO 100% 

Irritation  21 10  4 

SENS-IS 6  5  4 

REDOX 5  16 4 

Irritation Outcome  POSITIVE  NEGATIVE  NEGATIVE 
Sensitisation 

Outcome  NEGATIVE  POSITIVE  NEGATIVE 
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8.11 Appendix 11. SENS-IS gene induction results of the experimental runs for 

the ten test formulations  

Key 

Positive         negative  

Table 8.34 SENS-IS gene induction results of the three experimental runs for each of the ten test 
formulations 

 Experimental run 1  Experimental run 2  Experimental run 3  

SYN1 10% (in PBS) 10% (DMSO) 50% (DMSO) 10% (DMSO) 
10% 

(DMSO) 
1% 

(DMSO) 

Irritation 14 17 23 16 15 6 

SENS-IS 7 6 4 3 5 3 

REDOX 7 7 8 7 7 3 

Irritation Outcome NEGATIVE POSITIVE POSITIVE POSITIVE POSITIVE NEGATIVE 

Sensitisation Outcome POSITIVE POSITIVE POSITIVE POSITIVE POSITIVE NEGATIVE 

       

SYN2 50% (PBS) 10% (PBS) 10% (PBS) 1% (PBS) 10% (PBS) 1% (PBS) 

Irritation 13 12 8 5 5 4 

SENS-IS 10 10 4 4 1 5 

REDOX 15 12 9 5 7 6 

Irritation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE 

Sensitisation Outcome POSITIVE POSITIVE POSITIVE NEGATIVE POSITIVE NEGATIVE 

       

SYN3 50% (PBS) 10% (PBS) 100% 50% (PBS) 100% 50% (PBS) 

Irritation 9 0 3 1 2 1 

SENS-IS 6 6 2 3 2 4 

REDOX 4 4 2 1 2 6 

Irritation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE 

Sensitisation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIV NEGATIVE 

       

SYN4 10% (in PBS) 10% (DMSO) 100% 50% (PBS) 100% 50% (PBS) 

Irritation 7 4 14 1 13 5 

SENS-IS 3 5 11 1 4 1 

REDOX 2 3 11 5 7 3 

Irritation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE 

Sensitisation Outcome NEGATIVE NEGATIVE POSITIVE NEGATIVE POSITIVE NEGATIVE 

       

SYN5 10% (in PBS) 10% (DMSO) 100% 50% (PBS) 100% 50% (PBS) 

Irritation 7 4 14 13 9 11 

SENS-IS 1 3 6 5 3 6 

REDOX 6 5 5 6 5 6 

Irritation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE 

Sensitisation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE 

      



241 
 

 Experimental run 1  Experimental run 2  Experimental run 3  

SYN6 50% (PBS) 10% (PBS) 50% (PBS) 10% (PBS) 1% (PBS) 0.1% (PBS)  
Irritation 14 14 5 10 10 4  
SENS-IS 5 10 3 4 5 8  
REDOX 8 8 8 8 13 7  
Irritation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE  
Sensitisation Outcome POSITIVE POSITIVE POSITIVE POSITIVE POSITIVE POSITIVE  

        

 Experimental run 1  Experimental run 2  Experimental run 3  

SYN7 50% (PBS) 10% (PBS) 100% 50% (PBS) 10% (PBS) 100% 50% (PBS) 

Irritation 7 10 0 2 6 3 1 

SENS-IS 5 5 1 1 4 1 3 

REDOX 5 6 0 1 4 3 3 

Irritation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE 

Sensitisation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE 

        

 Experimental run 1  Experimental run 2  Experimental run 3   
SYN8 50% (PBS) 10% (PBS) 10% (PBS) 1% (PBS) 1% (PBS) 0.1% (PBS)  
Irritation 13 6 2 2 2 1  
SENS-IS 1 7 5 6 3 4  
REDOX 7 8 9 8 9 4  
Irritation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE  
Sensitisation Outcome POSITIVE POSITIVE POSITIVE POSITIVE POSITIVE NEGATIVE  

        

SYN9 10% (PBS) 10% (DMSO) 50% (PBS) 10% (PBS) 100% 50% (PBS)  
Irritation 6 8 16 7 19 17  
SENS-IS 0 4 6 2 4 4  
REDOX 5 4 6 5 5 2  
Irritation Outcome NEGATIVE NEGATIVE POSITIVE NEGATIVE POSITIVE POSITIVE  
Sensitisation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE  

        

SYN10 10% (PBS) 10% (DMSO) 
10% 

(DMSO) 
1% 

(DMSO) 
1% 

(DMSO) 
0.1% 

(DMSO)  
Irritation 13 14 12 3 5 6  
SENS-IS 7 2 1 3 4 2  
REDOX 9 9 8 11 9 3  
Irritation Outcome NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE NEGATIVE  
Sensitisation Outcome POSITIVE POSITIVE POSITIVE POSITIVE POSITIVE NEGATIVE  
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8.12 Appendix 12. Chapter Three active ingredient test material in silico model 

entry information    

Active Ingredient CAS Number SMILES 

OECD toolbox – identified 
metabolites with potential for 

covalent binding 

Acetamiprid 135410-20-7 CC(=NC#N)N(C)CC1=CN=C(C=C1)Cl 
Skin metabolite – Schiff base 

formation 

Acibenzolar-s-
methyl 7135158-54-2 CSC(=O)C1=C2C(=CC=C1)N=NS2 

Skin metabolite – nucleophilic 
substitution (SN2) 

Benzovindiflupyr 1072957-71-1 
O=C(Nc1cccc2c1C3C(=C(Cl)Cl) 

C2CC3)c4cn(nc4C(F)F)C 

Skin metabolite 1 – Schiff base 
formation 

 
Skin metabolite 2 & 4 – acylation 

Chlorantraniliprole 736994-63-1 
CC1=CC(=CC(=C1NC(=O)C2=CC(=NN 
2C3=C(C=CC=N3)Cl)Br)C(=O)NC)Cl None 

Chlorothalonil 1897-45-6 c1(c(c(c(Cl)c(c1Cl)Cl)C#N)Cl)C#N None 

Cyantraniliprole 736994-63-1 
Cc1cc(cc(c1NC(=O)c2cc(nn2c3c 

(cccn3)Cl)Br)C(=O)NC)C#N 

Skin metabolite 1 – Schiff base 
formation 

 
Skin metabolites 3,6, 7 & 8 – 

acylation 

Dicamba 1918-00-9 
 

c1(c(c(ccc1Cl)Cl)OC)C(=O)O 
Skin metabolite – Schiff base 

formation 

Mesotrione 104206-82-8 
CS(=O)(=O)C1=CC(=C(C=C1)C(=O) 
C2C(=O)CCCC2=O)[N+](=O)[O-] None 

Pinoxaden 243973-20-8 
O=C(OC1=C(C(=O)N2N1CCOCC2) 

c3c(cc(cc3CC)C)CC)C(C)(C)C None 

AI1 Agreed Confidential information 

Table 8.35 Active ingredient smiles codes and metabolites identified by the OECD toolbox containing 

structural alerts for protein binding associated with skin sensitisation. 
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8.13 Appendix 13. Copy of published GARD assay agrochemical AI 

evaluation research 

 


